1
|
Mattoo TK, Spencer JD. Biomarkers for urinary tract infection: present and future perspectives. Pediatr Nephrol 2024; 39:2833-2844. [PMID: 38483594 DOI: 10.1007/s00467-024-06321-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 08/28/2024]
Abstract
A prompt diagnosis of urinary tract infection (UTI) is necessary to minimize its symptoms and limit sequelae. The current UTI screening by urine test strip analysis and microscopic examination has suboptimal diagnostic accuracy. A definitive diagnosis of UTI by urine culture takes two to three days for the results. These limitations necessitate a need for better biomarkers for the diagnosis and subsequent management of UTI in children. Here, we review the value of currently available UTI biomarkers and highlight the potential of emerging biomarkers that can facilitate a more rapid and accurate UTI diagnosis. Of the newer UTI biomarkers, the most promising are blood procalcitonin (PCT) and urinary neutrophil gelatinase-associated lipocalin (NGAL). PCT can provide diagnostic benefits and should be considered in patients who have a blood test for other reasons. NGAL, which is on the threshold of clinical care, needs more research to address its scope and utilization, including point-of-care application. Employment of these and other biomarkers may ultimately improve UTI diagnosis, guide UTI therapy, reduce antibiotic use, and mitigate UTI complications.
Collapse
Affiliation(s)
- Tej K Mattoo
- Pediatric Nephrologist, Wayne Pediatrics, Detroit, MI, USA.
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA.
- Department of Urology, Wayne State University School of Medicine, Detroit, MI, USA.
| | - John David Spencer
- The Kidney and Urinary Tract Center, Nationwide Children's Abigail Wexner Research Institute, Columbus, OH, USA
- The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
2
|
Porter JM, Oswald MS, Busuttil K, Emmanuel SN, Bennett A, McKenna R, Smith JG. Mechanisms of AAV2 neutralization by human alpha-defensins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614754. [PMID: 39386661 PMCID: PMC11463608 DOI: 10.1101/2024.09.25.614754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Antiviral immunity compromises the efficacy of adeno-associated virus (AAV) vectors used for gene therapy. This is well understood for the adaptive immune response. However, innate immune effectors like alpha-defensin antimicrobial peptides also block AAV infection, although their mechanisms of action are unknown. To address this gap in knowledge, we investigated AAV2 neutralization by human neutrophil peptide 1 (HNP1), a myeloid alpha-defensin, and human defensin 5 (HD5), an enteric alpha-defensin. We found that both defensins bind to AAV2 and inhibit infection at low micromolar concentrations. While HD5 prevents AAV2 from binding to cells, HNP1 does not. However, AAV2 exposed to HD5 after binding to cells is still neutralized, indicating an additional block to infection. Accordingly, both HD5 and HNP1 inhibit externalization of the VP1 unique domain, which contains a phospholipase A 2 enzyme required for endosome escape and nuclear localization signals required for nuclear entry. Consequently, both defensins prevent AAV2 from reaching the nucleus. Disruption of intracellular trafficking of the viral genome to the nucleus is reminiscent of how alpha-defensins neutralize other non-enveloped viruses, suggesting a common mechanism of inhibition. These results will inform the development of vectors capable of overcoming these hurdles to improve the efficiency of gene therapy. Author Summary AAVs are commonly used as gene therapy vectors due to their broad tropism and lack of disease association; however, host innate immune factors, such as human alpha-defensin antimicrobial peptides, can hinder gene delivery. Although it is becoming increasingly evident that human alpha-defensins can block infection by a wide range of nonenveloped viruses, including AAVs, their mechanism of action remains poorly understood. In this study, we describe for the first time how two types of abundant human alpha-defensins neutralize a specific AAV serotype, AAV2. We found that one defensin prevents AAV2 from binding to cells, the first step in infection, while both defensins block a critical later step in AAV2 entry. Our findings support the emerging idea that defensins use a common strategy to block infection by DNA viruses that replicate in the nucleus. Through understanding how innate immune effectors interact with and impede AAV infection, vectors can be developed to bypass these interventions and allow more efficient gene delivery.
Collapse
|
3
|
Caterino JM, Stephens JA, Wexler R, Camargo CA, Hunold KM, Wei L, Hains D, Southerland LT, Bischof JJ, Schwaderer A. Establishment of Baseline Urinary Antimicrobial Peptide Levels by Age: A Prospective Observational Study. J Gerontol A Biol Sci Med Sci 2024; 79:glad223. [PMID: 37708314 PMCID: PMC11083632 DOI: 10.1093/gerona/glad223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Antimicrobial peptides (AMPs) are key effectors of urinary tract innate immunity. Identifying differences in urinary AMP levels between younger and older adults is important in understanding older adults' susceptibility and response to urinary tract infections (UTI) and AMP use as diagnostic biomarkers. We hypothesized that uninfected older adults have higher urinary human neutrophil peptides 1-3 (HNP 1-3), human alpha-defensin-5 (HD-5), and human beta-defensin-2 (hBD-2), but lower urinary cathelicidin (LL-37) than younger adults. METHODS We conducted a cross-sectional study of patients aged ≥18 years completing a family medicine clinic nonacute visit. Enzyme-linked immunosorbent assays were performed for AMPs. We identified associations between age and AMPs using unadjusted and multivariable linear regression models. RESULTS Of the 308 subjects, 144 (46.8%) were ≥65 years of age. Comparing age ≥65 versus < 65 years, there were no significant differences in HNP 1-3 (p = .371), HD5 (p = .834), or LL-37 (p = .348) levels. Values for hBD-2 were lower in older adults versus younger (p < .001). In multivariable analyses, older males and females had significantly lower hBD-2 levels (p < .001 and p = .004). Models also showed urine leukocyte esterase was associated with increased levels of HNP 1-3 and HD5; hematuria with increased hBD-2; and urine cultures with contamination with increased HNP 1-3 and hBD-2. CONCLUSIONS Baseline urinary HNP 1-3, HD-5, and LL-37 did not vary with age. Older adults had lower baseline hBD-2. This finding has implications for the potential use of urinary AMPs as diagnostic markers and will facilitate further investigation into the role of innate immunity in UTI susceptibility in older adults.
Collapse
Affiliation(s)
- Jeffrey M Caterino
- Department of Emergency Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Julie A Stephens
- Department of Biomedical Informatics, Center for Biostatistics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Randell Wexler
- Department of Family and Community Medicine, The Ohio State University College of Medicine, Gahanna, Ohio, USA
| | - Carlos A Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Katherine M Hunold
- Department of Emergency Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Lai Wei
- Department of Biomedical Informatics, Center for Biostatistics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - David Hains
- Division of Nephrology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Lauren T Southerland
- Department of Emergency Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Jason J Bischof
- Department of Emergency Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Andrew Schwaderer
- Division of Nephrology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
4
|
Schwaderer AL, Rajadhyaksha E, Canas J, Saxena V, Hains DS. Intercalated cell function, kidney innate immunity, and urinary tract infections. Pflugers Arch 2024; 476:565-578. [PMID: 38227050 DOI: 10.1007/s00424-024-02905-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/17/2024]
Abstract
Intercalated cells (ICs) in the kidney collecting duct have a versatile role in acid-base and electrolyte regulation along with the host immune defense. Located in the terminal kidney tubule segment, ICs are among the first kidney cells to encounter bacteria when bacteria ascend from the bladder into the kidney. ICs have developed several mechanisms to combat bacterial infections of the kidneys. For example, ICs produce antimicrobial peptides (AMPs), which have direct bactericidal activity, and in many cases are upregulated in response to infections. Some AMP genes with IC-specific kidney expression are multiallelic, and having more copies of the gene confers increased resistance to bacterial infections of the kidney and urinary tract. Similarly, studies in human children demonstrate that those with history of UTIs are more likely to have single-nucleotide polymorphisms in IC-expressed AMP genes that impair the AMP's bactericidal activity. In murine models, depleted or impaired ICs result in decreased clearance of bacterial load following transurethral challenge with uropathogenic E. coli. A 2021 study demonstrated that ICs even act as phagocytes and acidify bacteria within phagolysosomes. Several immune signaling pathways have been identified in ICs which may represent future therapeutic targets in managing kidney infections or inflammation. This review's objective is to highlight IC structure and function with an emphasis on current knowledge of IC's diverse innate immune capabilities.
Collapse
Affiliation(s)
- Andrew L Schwaderer
- Division of Nephrology, Department of Pediatrics, Indiana University, 699 Riley Hospital Drive, STE 230, Indianapolis, IN, 46202, USA.
| | - Evan Rajadhyaksha
- Division of Nephrology, Department of Pediatrics, Indiana University, 699 Riley Hospital Drive, STE 230, Indianapolis, IN, 46202, USA
| | - Jorge Canas
- Division of Nephrology, Department of Pediatrics, Indiana University, 699 Riley Hospital Drive, STE 230, Indianapolis, IN, 46202, USA
| | - Vijay Saxena
- Division of Nephrology, Department of Pediatrics, Indiana University, 699 Riley Hospital Drive, STE 230, Indianapolis, IN, 46202, USA
| | - David S Hains
- Division of Nephrology, Department of Pediatrics, Indiana University, 699 Riley Hospital Drive, STE 230, Indianapolis, IN, 46202, USA
| |
Collapse
|
5
|
Kumar R, Tyagi N, Nagpal A, Kaushik JK, Mohanty AK, Kumar S. Peptidome Profiling of Bubalus bubalis Urine and Assessment of Its Antimicrobial Activity against Mastitis-Causing Pathogens. Antibiotics (Basel) 2024; 13:299. [PMID: 38666975 PMCID: PMC11047597 DOI: 10.3390/antibiotics13040299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 04/29/2024] Open
Abstract
Urinary proteins have been studied quite exhaustively in the past, however, the small sized peptides have remained neglected for a long time in dairy cattle. These peptides are the products of systemic protein turnover, which are excreted out of the body and hence can serve as an important biomarker for various pathophysiologies. These peptides in other species of bovine have been reported to possess several bioactive properties. To investigate the urinary peptides in buffalo and simultaneously their bioactivities, we generated a peptidome profile from the urine of Murrah Buffaloes (n = 10). Urine samples were processed using <10 kDa MWCO filter and filtrate obtained was used for peptide extraction using Solid Phase Extraction (SPE). The nLC-MS/MS of the aqueous phase from ten animals resulted in the identification of 8165 peptides originating from 6041 parent proteins. We further analyzed these peptide sequences to identify bioactive peptides and classify them into anti-cancerous, anti-hypertensive, anti-microbial, and anti-inflammatory groups with a special emphasis on antimicrobial properties. With this in mind, we simultaneously conducted experiments to evaluate the antimicrobial properties of urinary aqueous extract on three pathogenic bacterial strains: S. aureus, E. coli, and S. agalactiae. The urinary peptides observed in the study are the result of the activity of possibly 76 proteases. The GO of these proteases showed the significant enrichment of the antibacterial peptide production. The total urinary peptide showed antimicrobial activity against the aforementioned pathogenic bacterial strains with no significant inhibitory effects against a buffalo mammary epithelial cell line. Just like our previous study in cows, the present study suggests the prime role of the antimicrobial peptides in the maintenance of the sterility of the urinary tract in buffalo by virtue of their amino acid composition.
Collapse
Affiliation(s)
- Rohit Kumar
- Cell Biology and Proteomics Lab., Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Nikunj Tyagi
- Cell Biology and Proteomics Lab., Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Anju Nagpal
- Cell Biology and Proteomics Lab., Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Jai Kumar Kaushik
- Cell Biology and Proteomics Lab., Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Ashok Kumar Mohanty
- ICAR-Indian Veterinary Research Institute, Mukteshwar 263138, Uttarakhand, India
| | - Sudarshan Kumar
- Cell Biology and Proteomics Lab., Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| |
Collapse
|
6
|
Hong JS, Shamim A, Atta H, Nonnecke EB, Merl S, Patwardhan S, Manell E, Gunes E, Jordache P, Chen B, Lu W, Shen B, Dionigi B, Kiran RP, Sykes M, Zorn E, Bevins CL, Weiner J. Application of enzyme-linked immunosorbent assay to detect antimicrobial peptides in human intestinal lumen. J Immunol Methods 2024; 525:113599. [PMID: 38081407 PMCID: PMC10956375 DOI: 10.1016/j.jim.2023.113599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
Intestinal transplantation is the definitive treatment for intestinal failure. However, tissue rejection and graft-versus-host disease are relatively common complications, necessitating aggressive immunosuppression that can itself pose further complications. Tracking intraluminal markers in ileal effluent from standard ileostomies may present a noninvasive and sensitive way to detect developing pathology within the intestinal graft. This would be an improvement compared to current assessments, which are limited by poor sensitivity and specificity, contributing to under or over-immunosuppression, respectively, and by the need for invasive biopsies. Herein, we report an approach to reproducibly analyze ileal fluid obtained through stoma sampling for antimicrobial peptide/protein concentrations, reasoning that these molecules may provide an assessment of intestinal homeostasis and levels of intestinal inflammation over time. Concentrations of lysozyme (LYZ), myeloperoxidase (MPO), calprotectin (S100A8/A9) and β-defensin 2 (DEFB2) were assessed using adaptations of commercially available enzyme-linked immunosorbent assays (ELISAs). The concentration of α-defensin 5 (DEFA5) was assessed using a newly developed sandwich ELISA. Our data support that with proper preparation of ileal effluent specimens, precise and replicable determination of antimicrobial peptide/protein concentrations can be achieved for each of these target molecules via ELISA. This approach may prove to be reliable as a clinically useful assessment of intestinal homeostasis over time for patients with ileostomies.
Collapse
Affiliation(s)
- Julie S Hong
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States of America.
| | - Abrar Shamim
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States of America; College of Dental Medicine, Columbia University, New York, NY, United States of America
| | - Hussein Atta
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States of America
| | - Eric B Nonnecke
- Department of Microbiology and Immunology, University of California Davis School of Medicine, Davis, CA, United States of America
| | - Sarah Merl
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States of America
| | - Satyajit Patwardhan
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States of America
| | - Elin Manell
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States of America; Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Esad Gunes
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States of America
| | - Philip Jordache
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States of America
| | - Bryan Chen
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States of America
| | - Wuyuan Lu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Bo Shen
- Department of Surgery, Columbia University/New York-Presbyterian Hospital, New York, NY, United States of America
| | - Beatrice Dionigi
- Department of Surgery, Columbia University/New York-Presbyterian Hospital, New York, NY, United States of America
| | - Ravi P Kiran
- Department of Surgery, Columbia University/New York-Presbyterian Hospital, New York, NY, United States of America
| | - Megan Sykes
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States of America; Department of Surgery, Columbia University/New York-Presbyterian Hospital, New York, NY, United States of America
| | - Emmanuel Zorn
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States of America
| | - Charles L Bevins
- Department of Microbiology and Immunology, University of California Davis School of Medicine, Davis, CA, United States of America
| | - Joshua Weiner
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States of America; Department of Surgery, Columbia University/New York-Presbyterian Hospital, New York, NY, United States of America
| |
Collapse
|
7
|
Saxena V, Arregui S, Zhang S, Canas J, Qin X, Hains DS, Schwaderer AL. Generation of Atp6v1g3-Cre mice for investigation of intercalated cells and the collecting duct. Am J Physiol Renal Physiol 2023; 325:F770-F778. [PMID: 37823193 PMCID: PMC10881235 DOI: 10.1152/ajprenal.00137.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023] Open
Abstract
Kidney intercalated cells (ICs) maintain acid-base homeostasis and recent studies have demonstrated that they function in the kidney's innate defense. To study kidney innate immune function, ICs have been enriched using vacuolar ATPase (V-ATPase) B1 subunit (Atp6v1b1)-Cre (B1-Cre) mice. Although Atp6v1b1 is considered kidney specific, it is expressed in multiple organ systems, both in mice and humans, raising the possibility of off-target effects when using the Cre-lox system. We have recently shown using single-cell RNA sequencing that the gene that codes for the V-ATPase G3 subunit (mouse gene: Atp6v1g3; human gene: ATP6V1G3; protein abbreviation: G3) mRNA is selectively enriched in human kidney ICs. In this study, we generated Atp6v1g3-Cre (G3-Cre) reporter mice using CRISPR/CAS technology and crossed them with Tdtomatoflox/flox mice. The resultant G3-Cre+Tdt+ progeny was evaluated for kidney specificity in multiple tissues and found to be highly specific to kidney cells with minimal or no expression in other organs evaluated compared with B1-Cre mice. Tdt+ cells were flow sorted and were enriched for IC marker genes on RT-PCR analysis. Next, we crossed these mice to ihCD59 mice to generate an IC depletion mouse model (G3-Cre+ihCD59+/+). ICs were depleted in these mice using intermedilysin, which resulted in lower blood pH, suggestive of a distal renal tubular acidosis phenotype. The G3-Cre mice were healthy, bred normally, and produce regular-sized litter. Thus, this new "IC reporter" mice can be a useful tool to study ICs.NEW & NOTEWORTHY This study details the development, validation, and experimental use of a new mouse model to study the collecting duct and intercalated cells. Kidney intercalated cells are a cell type increasingly recognized to be important in several human diseases including kidney infections, acid-base disorders, and acute kidney injury.
Collapse
Affiliation(s)
- Vijay Saxena
- Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Samuel Arregui
- Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Shaobo Zhang
- Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Jorge Canas
- Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Xuebin Qin
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, United States
| | - David S Hains
- Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Andrew L Schwaderer
- Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States
| |
Collapse
|
8
|
Chelangarimiyandoab F, Mungara P, Batta M, Cordat E. Urinary Tract Infections: Renal Intercalated Cells Protect against Pathogens. J Am Soc Nephrol 2023; 34:1605-1614. [PMID: 37401780 PMCID: PMC10561816 DOI: 10.1681/asn.0000000000000187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/22/2023] [Indexed: 07/05/2023] Open
Abstract
Urinary tract infections affect more than 1 in 2 women during their lifetime. Among these, more than 10% of patients carry antibiotic-resistant bacterial strains, highlighting the urgent need to identify alternative treatments. While innate defense mechanisms are well-characterized in the lower urinary tract, it is becoming evident that the collecting duct (CD), the first renal segment encountered by invading uropathogenic bacteria, also contributes to bacterial clearance. However, the role of this segment is beginning to be understood. This review summarizes the current knowledge on CD intercalated cells in urinary tract bacterial clearance. Understanding the innate protective role of the uroepithelium and of the CD offers new opportunities for alternative therapeutic strategies.
Collapse
Affiliation(s)
- Forough Chelangarimiyandoab
- Department of Physiology and Membrane Protein Disease Research Group, Faculty of Medicine & Dentistry, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
9
|
Porter JM, Oswald MS, Sharma A, Emmanuel S, Kansol A, Bennett A, McKenna R, Smith JG. A Single Surface-Exposed Amino Acid Determines Differential Neutralization of AAV1 and AAV6 by Human Alpha-Defensins. J Virol 2023; 97:e0006023. [PMID: 36916912 PMCID: PMC10062168 DOI: 10.1128/jvi.00060-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
Adeno-associated viruses (AAVs) are being developed as gene therapy vectors due to their low pathogenicity and tissue tropism properties. However, the efficacy of these vectors is impeded by interactions with the host immune system. One potential immune barrier to vector transduction is innate immune host defense peptides, such as alpha-defensins, which are potent antiviral agents against other nonenveloped viruses. To investigate the interaction between AAVs and alpha-defensins, we utilized two closely related AAV serotypes, AAV1 and AAV6. Although their capsids differ by only six residues, these two serotypes exhibit markedly different tissue tropisms and transduction efficiencies. Using two abundant human alpha-defensins, enteric human defensin 5 (HD5) and myeloid human neutrophil peptide 1 (HNP1), we found both serotype-specific and defensin-specific effects on AAV infection. AAV6 infection was uniformly neutralized by both defensins at low micromolar concentrations; however, inhibition of AAV1 infection was profoundly influenced by the timing of defensin exposure to the virus relative to viral attachment to the cell. Remarkably, these differences in the defensin-dependent infection phenotype between the viruses are completely dictated by the identity of a single, surface-exposed amino acid (position 531) that varies between the two serotypes. These findings reveal a determinant for defensin activity against a virus with unprecedented precision. Furthermore, they provide a rationale for the investigation of other AAV serotypes not only to understand the mechanism of neutralization of defensins against AAVs but also to design more efficient vectors. IMPORTANCE The ability of adeno-associated viruses (AAVs) to infect and deliver genetic material to a range of cell types makes them favorable gene therapy vectors. However, AAV vectors encounter a wide variety of host immune factors throughout the body, which can impede efficient gene delivery. One such group of factors is the alpha-defensins, which are a key component of the innate immune system that can directly block viral infection. By studying the impact that alpha-defensins have on AAV infection, we found that two similar AAV serotypes (AAV1 and AAV6) have different sensitivities to inhibition. We also identified a single amino acid (position 531) that differs between the two AAV serotypes and is responsible for mediating their defensin sensitivity. By investigating the effects that host immune factors have on AAV infection, more efficient vectors may be developed to evade intervention by the immune system prior to gene delivery.
Collapse
Affiliation(s)
- Jessica M. Porter
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Mackenzi S. Oswald
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Anjali Sharma
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Shanan Emmanuel
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Austin Kansol
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Antonette Bennett
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Jason G. Smith
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
10
|
Peng H, Fan P, Hong Y, He J, Zeng X, Xu F, Zhao Y, Jin T. 3' untranslated region variants in DEFA5 gene associated with susceptibility to IgA nephropathy in the Chinese Han population. Biomark Med 2022; 16:1151-1159. [PMID: 36632813 DOI: 10.2217/bmm-2022-0518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Aim: To evaluate the association between single-nucleotide polymorphisms in the 3' untranslated region of the DEFA5 gene and IgA nephropathy (IgAN) risk, the authors performed an association study in the Chinese Han population. Materials & methods: The authors recruited 426 IgAN patients and 498 controls. The MassARRAY platform (Agena Bioscience, Inc., CA, USA) was used to genotype single-nucleotide polymorphisms in DEFA5. Odds ratios and 95% CIs were calculated through logistic regression analysis. Results: The authors observed that rs12716641 significantly reduced IgAN risk in the allele (odds ratio: 0.77; p = 0.026) and genotype (odds ratio: 0.75; p = 0.039) models. Stratification analysis revealed that several genotypes of rs12716641 played a protective role against IgAN. Conclusion: The authors' results revealed that single-nucleotide polymorphisms in the 3' untranslated region of DEFA5 were associated with IgAN risk.
Collapse
Affiliation(s)
- Hongwei Peng
- Renal Medicine, Hainan Wanning People's Hospital, Wanning, Hainan Province, 571500, China
| | - Pingyun Fan
- Renal Medicine, Hainan Wanning People's Hospital, Wanning, Hainan Province, 571500, China
| | - Yifen Hong
- Renal Medicine, Hainan Wanning People's Hospital, Wanning, Hainan Province, 571500, China
| | - Jing He
- Renal Medicine, Hainan Wanning People's Hospital, Wanning, Hainan Province, 571500, China
| | - Xiangxiu Zeng
- Renal Medicine, Hainan Wanning People's Hospital, Wanning, Hainan Province, 571500, China
| | - Fengguo Xu
- Renal Medicine, Hainan Wanning People's Hospital, Wanning, Hainan Province, 571500, China
| | - Yunxia Zhao
- Renal Medicine, Hainan Wanning People's Hospital, Wanning, Hainan Province, 571500, China
| | - Tianbo Jin
- Key Laboratory of Resource Biology & Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, Shaanxi, 710000, China.,Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, China
| |
Collapse
|
11
|
Saxena V, Arregui S, Kamocka MM, Hains DS, Schwaderer A. MAP3K7 is an innate immune regulatory gene with increased expression in human and murine kidney intercalated cells following uropathogenic Escherichia coli exposure. J Cell Biochem 2022; 123:1817-1826. [PMID: 35959632 PMCID: PMC9671826 DOI: 10.1002/jcb.30318] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/28/2022] [Accepted: 08/01/2022] [Indexed: 01/09/2023]
Abstract
Understanding the mechanisms responsible for the kidney's defense against ascending uropathogen is critical to devise novel treatment strategies against increasingly antibiotic resistant uropathogen. Growing body of evidence indicate Intercalated cells of the kidney as the key innate immune epithelial cells against uropathogen. The aim of this study was to find orthologous and differentially expressed bacterial defense genes in human versus murine intercalated cells. We simultaneously analyzed 84 antibacterial genes in intercalated cells enriched from mouse and human kidney samples. Intercalated cell "reporter mice" were exposed to saline versus uropathogenic Escherichia coli (UPEC) transurethrally for 1 h in vivo, and intercalated cells were flow sorted. Human kidney intercalated cells were enriched from kidney biopsy using magnetic-activated cell sorting and exposed to UPEC in vitro for 1 h. RT2 antibacterial PCR array was performed. Mitogen-activated protein kinase kinase kinase 7 (MAP3K7) messenger RNA (mRNA) expression increased in intercalated cells of both humans and mice following UPEC exposure. Intercalated cell MAP3K7 protein expression was defined by immunofluorescence and confocal imaging analysis, was consistent with the increased MAP3K7 mRNA expression profiles defined by PCR. The presence of the orthologous innate immune gene MAP3K7/TAK1 suggests that it may be a key regulator of the intercalated cell antibacterial response and demands further investigation of its role in urinary tract infection pathogenesis.
Collapse
Affiliation(s)
- Vijay Saxena
- Department of Pediatric NephrologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Samuel Arregui
- Department of Pediatric NephrologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Malgorzata Maria Kamocka
- Department of Medicine, Division of NephrologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - David S. Hains
- Department of Pediatric NephrologyIndiana University School of MedicineIndianapolisIndianaUSA,Department of Pediatrics, Division of NephrologyRiley Hospital for ChildrenIndianapolisIndianaUSA
| | - Andrew Schwaderer
- Department of Pediatric NephrologyIndiana University School of MedicineIndianapolisIndianaUSA,Department of Pediatrics, Division of NephrologyRiley Hospital for ChildrenIndianapolisIndianaUSA
| |
Collapse
|
12
|
Human neutrophil peptides 1-3 protect the murine urinary tract from uropathogenic Escherichia coli challenge. Proc Natl Acad Sci U S A 2022; 119:e2206515119. [PMID: 36161923 PMCID: PMC9546544 DOI: 10.1073/pnas.2206515119] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antimicrobial peptides (AMPs) are critical to the protection of the urinary tract of humans and other animals from pathogenic microbial invasion. AMPs rapidly destroy pathogens by disrupting microbial membranes and/or augmenting or inhibiting the host immune system through a variety of signaling pathways. We have previously demonstrated that alpha-defensins 1-3 (DEFA1A3) are AMPs expressed in the epithelial cells of the human kidney collecting duct in response to uropathogens. We also demonstrated that DNA copy number variations in the DEFA1A3 locus are associated with UTI and pyelonephritis risk. Because DEFA1A3 is not expressed in mice, we utilized human DEFA1A3 gene transgenic mice (DEFA4/4) to further elucidate the biological relevance of this locus in the murine urinary tract. We demonstrate that the kidney transcriptional and translational expression pattern is similar in humans and the human gene transgenic mouse upon uropathogenic Escherichia coli (UPEC) stimulus in vitro and in vivo. We also demonstrate transgenic human DEFA4/4 gene mice are protected from UTI and pyelonephritis under various UPEC challenges. This study serves as the foundation to start the exploration of manipulating the DEFA1A3 locus and alpha-defensins 1-3 expression as a potential therapeutic target for UTIs and other infectious diseases.
Collapse
|
13
|
Zhai YJ, Feng Y, Ma X, Ma F. Defensins: defenders of human reproductive health. Hum Reprod Update 2022; 29:126-154. [PMID: 36130055 PMCID: PMC9825273 DOI: 10.1093/humupd/dmac032] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/31/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Reproductive tract infection is an important factor leading to male and female infertility. Among female infertility factors, microbial and viral infections are the main factors affecting female reproductive health and causing tubal infertility, ectopic tubal pregnancy and premature delivery. Among male infertility factors, 13-15% of male infertility is related to infection. Defensins are cationic antibacterial and antiviral peptides, classified into α-defensins, β-defensins and θ-defensins. Humans only have α-defensins and β-defensins. Apart from their direct antimicrobial functions, defensins have an immunomodulatory function and are involved in many physiological processes. Studies have shown that defensins are widely distributed in the female reproductive tract (FRT) and male reproductive tract (MRT), playing a dual role of host defence and fertility protection. However, to our knowledge, the distribution, regulation and function of defensins in the reproductive tract and their relation to reproduction have not been reviewed. OBJECTIVE AND RATIONALE This review summarizes the expression, distribution and regulation of defensins in the reproductive tracts to reveal the updated research on the dual role of defensins in host defence and the protection of fertility. SEARCH METHODS A systematic search was conducted in PubMed using the related keywords through April 2022. Related data from original researches and reviews were integrated to comprehensively review the current findings and understanding of defensins in the human reproductive system. Meanwhile, female and male transcriptome data in the GEO database were screened to analyze defensins in the human reproductive tracts. OUTCOMES Two transcriptome databases from the GEO database (GSE7307 and GSE150852) combined with existing researches reveal the expression levels and role of the defensins in the reproductive tracts. In the FRT, a high expression level of α-defensin is found, and the expression levels of defensins in the vulva and vagina are higher than those in other organs. The expression of defensins in the endometrium varies with menstrual cycle stages and with microbial invasion. Defensins also participate in the local immune response to regulate the risk of spontaneous preterm birth. In the MRT, a high expression level of β-defensins is also found. It is mainly highly expressed in the epididymal caput and corpus, indicating that defensins play an important role in sperm maturation. The expression of defensins in the MRT varies with androgen levels, age and the status of microbial invasion. They protect the male reproductive system from bacterial infections by neutralizing lipopolysaccharide and downregulating pro-inflammatory cytokines. In addition, animal and clinical studies have shown that defensins play an important role in sperm maturation, motility and fertilization. WIDER IMPLICATIONS As a broad-spectrum antimicrobial peptide without drug resistance, defensin has great potential for developing new natural antimicrobial treatments for reproductive tract infections. However, increasing evidence has shown that defensins can not only inhibit microbial invasion but can also promote the invasion and adhesion of some microorganisms in certain biological environments, such as human immunodeficiency virus. Therefore, the safety of defensins as reproductive tract anti-infective drugs needs more in-depth research. In addition, the modulatory role of defensins in fertility requires more in-depth research since the current conclusions are based on small-size samples. At present, scientists have made many attempts at the clinical transformation of defensins. However, defensins have problems such as poor stability, low bioavailability and difficulties in their synthesis. Therefore, the production of safe, effective and low-cost drugs remains a challenge.
Collapse
Affiliation(s)
| | | | - Xue Ma
- Correspondence address. Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China. E-mail: https://orcid.org/0000-0002-7781-821X (F.M.); Department of Pediatric Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China. E-mail: https://orcid.org/0000-0002-7650-6214 (X.M.)
| | - Fang Ma
- Correspondence address. Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China. E-mail: https://orcid.org/0000-0002-7781-821X (F.M.); Department of Pediatric Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China. E-mail: https://orcid.org/0000-0002-7650-6214 (X.M.)
| |
Collapse
|
14
|
Kenneally C, Murphy CP, Sleator RD, Culligan EP. The Urinary Microbiome and Biological Therapeutics: Novel Therapies For Urinary Tract Infections. Microbiol Res 2022; 259:127010. [DOI: 10.1016/j.micres.2022.127010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/12/2022]
|
15
|
du Preez HN, Aldous C, Hayden MR, Kruger HG, Lin J. Pathogenesis of COVID-19 described through the lens of an undersulfated and degraded epithelial and endothelial glycocalyx. FASEB J 2021; 36:e22052. [PMID: 34862979 DOI: 10.1096/fj.202101100rr] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022]
Abstract
The glycocalyx surrounds every eukaryotic cell and is a complex mesh of proteins and carbohydrates. It consists of proteoglycans with glycosaminoglycan side chains, which are highly sulfated under normal physiological conditions. The degree of sulfation and the position of the sulfate groups mainly determine biological function. The intact highly sulfated glycocalyx of the epithelium may repel severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) through electrostatic forces. However, if the glycocalyx is undersulfated and 3-O-sulfotransferase 3B (3OST-3B) is overexpressed, as is the case during chronic inflammatory conditions, SARS-CoV-2 entry may be facilitated by the glycocalyx. The degree of sulfation and position of the sulfate groups will also affect functions such as immune modulation, the inflammatory response, vascular permeability and tone, coagulation, mediation of sheer stress, and protection against oxidative stress. The rate-limiting factor to sulfation is the availability of inorganic sulfate. Various genetic and epigenetic factors will affect sulfur metabolism and inorganic sulfate availability, such as various dietary factors, and exposure to drugs, environmental toxins, and biotoxins, which will deplete inorganic sulfate. The role that undersulfation plays in the various comorbid conditions that predispose to coronavirus disease 2019 (COVID-19), is also considered. The undersulfated glycocalyx may not only increase susceptibility to SARS-CoV-2 infection, but would also result in a hyperinflammatory response, vascular permeability, and shedding of the glycocalyx components, giving rise to a procoagulant and antifibrinolytic state and eventual multiple organ failure. These symptoms relate to a diagnosis of systemic septic shock seen in almost all COVID-19 deaths. The focus of prevention and treatment protocols proposed is the preservation of epithelial and endothelial glycocalyx integrity.
Collapse
Affiliation(s)
- Heidi N du Preez
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
| | - Colleen Aldous
- College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Melvin R Hayden
- Division of Endocrinology Diabetes and Metabolism, Department of Internal Medicine, University of Missouri-Columbia School of Medicine, Columbia, Missouri, USA.,Diabetes and Cardiovascular Disease Center, University of Missouri-Columbia School of Medicine, Columbia, Missouri, USA
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
| | - Johnson Lin
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
16
|
Bender K, Schwartz LL, Cohen A, Vasquez CM, Murtha MJ, Eichler T, Thomas JP, Jackson A, Spencer JD. Expression and function of human ribonuclease 4 in the kidney and urinary tract. Am J Physiol Renal Physiol 2021; 320:F972-F983. [PMID: 33818125 PMCID: PMC8174806 DOI: 10.1152/ajprenal.00592.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/18/2022] Open
Abstract
Antimicrobial peptides are essential host defense mechanisms that prevent urinary tract infections. Recent studies have demonstrated that peptides in the ribonuclease A superfamily have antimicrobial activity against uropathogens and protect the urinary tract from uropathogenic Escherichia coli (UPEC). Little is known about the antibacterial function or expression of ribonuclease 4 (RNase 4) in the human urinary tract. Here, we show that full-length recombinant RNase 4 peptide and synthetic amino-terminal RNase 4 peptide fragment have antibacterial activity against UPEC and multidrug-resistant (MDR)-UPEC. RNASE4 transcript expression was detected in human kidney and bladder tissue using quantitative real-time PCR. Immunostaining or in situ hybridization localized RNase 4 expression to proximal tubules, principal and intercalated cells in the kidney's collecting duct, and the bladder urothelium. Urinary RNase 4 concentrations were quantified in healthy controls and females with a history of urinary tract infection. Compared with controls, urinary RNase 4 concentrations were significantly lower in females with a history of urinary tract infection. When RNase 4 was neutralized in human urine or silenced in vitro using siRNA, urinary UPEC replication or attachment to and invasion of urothelial and kidney medullary cells increased. These data show that RNase 4 has antibacterial activity against UPEC, is expressed in the human urinary tract, and can contribute to host defense against urinary tract infections.NEW & NOTEWORTHY Ribonuclease 4 (RNase 4) is a newly identified host defense peptide in the human kidney and bladder. RNase 4 kills uropathogenic Escherichia coli (UPEC) and multidrug-resistant UPEC. RNase 4 prevents invasive UPEC infection and suppressed RNase 4 expression may be a risk factor for more severe or recurrent urinary tract infection.
Collapse
Affiliation(s)
- Kristin Bender
- Nephrology and Urology Research Affinity Group, Nationwide Children's Hospital, Columbus, Ohio
- The Abigail Wexner Research Institute at Nationwide Children's Hospital, Center for Clinical and Translational Research, Columbus, Ohio
| | - Laura L Schwartz
- Nephrology and Urology Research Affinity Group, Nationwide Children's Hospital, Columbus, Ohio
- The Abigail Wexner Research Institute at Nationwide Children's Hospital, Center for Clinical and Translational Research, Columbus, Ohio
| | - Ariel Cohen
- Nephrology and Urology Research Affinity Group, Nationwide Children's Hospital, Columbus, Ohio
- The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Claudia Mosquera Vasquez
- Nephrology and Urology Research Affinity Group, Nationwide Children's Hospital, Columbus, Ohio
- The Abigail Wexner Research Institute at Nationwide Children's Hospital, Center for Clinical and Translational Research, Columbus, Ohio
| | - Matthew J Murtha
- Nephrology and Urology Research Affinity Group, Nationwide Children's Hospital, Columbus, Ohio
- The Ohio State University College of Medicine, Columbus, Ohio
| | - Tad Eichler
- Nephrology and Urology Research Affinity Group, Nationwide Children's Hospital, Columbus, Ohio
- The Abigail Wexner Research Institute at Nationwide Children's Hospital, Center for Clinical and Translational Research, Columbus, Ohio
| | - Jason P Thomas
- Nephrology and Urology Research Affinity Group, Nationwide Children's Hospital, Columbus, Ohio
- Division of Nephrology, Department of Pediatrics, Nationwide Children's Hospital, Columbus, Ohio
| | - Ashley Jackson
- Nephrology and Urology Research Affinity Group, Nationwide Children's Hospital, Columbus, Ohio
- The Abigail Wexner Research Institute at Nationwide Children's Hospital, Center for Clinical and Translational Research, Columbus, Ohio
- The Ohio State University College of Medicine, Columbus, Ohio
- Division of Nephrology, Department of Pediatrics, Nationwide Children's Hospital, Columbus, Ohio
| | - John David Spencer
- Nephrology and Urology Research Affinity Group, Nationwide Children's Hospital, Columbus, Ohio
- The Abigail Wexner Research Institute at Nationwide Children's Hospital, Center for Clinical and Translational Research, Columbus, Ohio
- The Ohio State University College of Medicine, Columbus, Ohio
- Division of Nephrology, Department of Pediatrics, Nationwide Children's Hospital, Columbus, Ohio
| |
Collapse
|
17
|
Saxena V, Gao H, Arregui S, Zollman A, Kamocka MM, Xuei X, McGuire P, Hutchens M, Hato T, Hains DS, Schwaderer AL. Kidney intercalated cells are phagocytic and acidify internalized uropathogenic Escherichia coli. Nat Commun 2021; 12:2405. [PMID: 33893305 PMCID: PMC8065053 DOI: 10.1038/s41467-021-22672-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 03/18/2021] [Indexed: 02/02/2023] Open
Abstract
Kidney intercalated cells are involved in acid-base homeostasis via vacuolar ATPase expression. Here we report six human intercalated cell subtypes, including hybrid principal-intercalated cells identified from single cell transcriptomics. Phagosome maturation is a biological process that increases in biological pathway analysis rank following exposure to uropathogenic Escherichia coli in two of the intercalated cell subtypes. Real time confocal microscopy visualization of murine renal tubules perfused with green fluorescent protein expressing Escherichia coli or pHrodo Green E. coli BioParticles demonstrates that intercalated cells actively phagocytose bacteria then acidify phagolysosomes. Additionally, intercalated cells have increased vacuolar ATPase expression following in vivo experimental UTI. Taken together, intercalated cells exhibit a transcriptional response conducive to the kidney's defense, engulf bacteria and acidify the internalized bacteria. Intercalated cells represent an epithelial cell with characteristics of professional phagocytes like macrophages.
Collapse
Affiliation(s)
- Vijay Saxena
- Indiana University School of Medicine, Department of Pediatrics, Division of Nephrology, Indianapolis, IN, USA.
| | - Hongyu Gao
- Indiana University School of Medicine, Department of Medical & Molecular Genetics, Indianapolis, IN, USA
| | - Samuel Arregui
- Indiana University School of Medicine, Department of Pediatrics, Division of Nephrology, Indianapolis, IN, USA
| | - Amy Zollman
- Indiana University School of Medicine, Department of Medicine, Division of Nephrology, Indianapolis, IN, USA
| | - Malgorzata Maria Kamocka
- Indiana University School of Medicine, Department of Medicine, Division of Nephrology, Indianapolis, IN, USA
| | - Xiaoling Xuei
- Indiana University School of Medicine, Department of Medical & Molecular Genetics, Indianapolis, IN, USA
| | - Patrick McGuire
- Indiana University School of Medicine, Department of Medical & Molecular Genetics, Indianapolis, IN, USA
| | - Michael Hutchens
- Oregon Health and Science University, Department of Anesthesiology & Perioperative Medicine, Portland, OR, USA
| | - Takashi Hato
- Indiana University School of Medicine, Department of Medicine, Division of Nephrology, Indianapolis, IN, USA
| | - David S Hains
- Indiana University School of Medicine, Department of Pediatrics, Division of Nephrology, Indianapolis, IN, USA
| | - Andrew L Schwaderer
- Indiana University School of Medicine, Department of Pediatrics, Division of Nephrology, Indianapolis, IN, USA.
| |
Collapse
|
18
|
Wu Z, Ding Z, Cheng B, Cui Z. The inhibitory effect of human DEFA5 in growth of gastric cancer by targeting BMI1. Cancer Sci 2021; 112:1075-1083. [PMID: 33503272 PMCID: PMC7935777 DOI: 10.1111/cas.14827] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 01/18/2021] [Accepted: 01/25/2021] [Indexed: 12/24/2022] Open
Abstract
Defensins, a class of small cysteine‐rich cationic polypeptides across cellular life, are identified as antimicrobial compounds that display direct antimicrobial and immune signaling activities that are involved in the host defense. In addition to their roles in the innate immune system, accumulating studies have reported that some members of defensins are expressed and involved in some cancer cells, such as colon cancer, colorectal cancer, lung cancer and renal cell carcinomas. However, the roles of α‐Defensin 5 (DEFA5) in tumorigenesis and development remain unknown. In the present study, bioinformatics analysis and quantitative PCR results showed that the expression level of DEFA5 was dramatically downregulated in human gastric cancer. Overexpression of human DEFA5 in gastric cancer cell lines SGC7901 and BGC823 effectively diminished cell proliferation and reduced the colony forming ability. Moreover, DEFA5 overexpression induced cell cycle arrest by significantly increasing the number of G1‐phase cells. Consistently, in vivo tumor formation experiments in nude mice showed the suppression of the tumor growth by DEFA5 overexpression, suggesting an inhibitory effect of DEFA5 in gastric cancer. Mechanistically, DEFA5 directly binds to BMI1, which subsequently decreased its binding at the CDKN2a locus and upregulated the expression of 2 cyclin‐dependent kinase inhibitors, p16 and p19. Taken together, we concluded that DEFA5 showed an inhibitory effect in gastric cancer cell growth and may serve as a potential tumor suppressor in gastric cancer.
Collapse
Affiliation(s)
- Zhongwei Wu
- Department of Emergency Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhaohui Ding
- Department of Gastrointestinal surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bo Cheng
- Department of Emergency Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zongchao Cui
- Department of Emergency Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
19
|
Upregulated Expression of Intestinal Antimicrobial Peptide HD5 Associated with Renal Function in IgA Nephropathy. DISEASE MARKERS 2020; 2020:2078279. [PMID: 32089753 PMCID: PMC7025039 DOI: 10.1155/2020/2078279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/19/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE It was reported that gut-kidney axis may play an important role in IgA nephropathy (IgAN). Previous five GWASs of different populations for IgAN have discovered several genes related to intestinal immunity, including DEFA gene. However, the roles of the encoded proteins of DEFA5/6 which were called intestinal antimicrobial peptides HD5 and HD6 were not clear in kidney disease, such as IgAN. The purpose of this study was to clarify the association of HD5 and HD6 with IgAN. METHODS We measured HD5 and HD6 in serum, urine, and kidney of IgAN patients and normal controls by ELISA, Western blot, and immunofluorescence. The association of HD5 or HD6 levels with clinical and pathologic phenotypes was analyzed. RESULTS Serum levels of HD5 and HD6 were significantly higher in IgAN patients than those in normal controls. Baseline serum HD5 levels were significantly associated with eGFR (P = 0.002) and tubular atrophy/interstitial fibrosis (P = 0.002) and tubular atrophy/interstitial fibrosis (P = 0.002) and tubular atrophy/interstitial fibrosis (P = 0.002) and tubular atrophy/interstitial fibrosis (. CONCLUSIONS In IgAN patients, an elevated serum HD5 level at the time of renal biopsy was associated with poor renal outcomes. HD5 rather than HD6 was probably associated with renal function of IgAN patients.
Collapse
|
20
|
Cox SN, Chiurlia S, Divella C, Rossini M, Serino G, Bonomini M, Sirolli V, Aiello FB, Zaza G, Squarzoni I, Gangemi C, Stangou M, Papagianni A, Haas M, Schena FP. Formalin-fixed paraffin-embedded renal biopsy tissues: an underexploited biospecimen resource for gene expression profiling in IgA nephropathy. Sci Rep 2020; 10:15164. [PMID: 32938960 PMCID: PMC7494931 DOI: 10.1038/s41598-020-72026-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/29/2020] [Indexed: 01/01/2023] Open
Abstract
Primary IgA nephropathy (IgAN) diagnosis is based on IgA-dominant glomerular deposits and histological scoring is done on formalin-fixed paraffin embedded tissue (FFPE) sections using the Oxford classification. Our aim was to use this underexploited resource to extract RNA and identify genes that characterize active (endocapillary–extracapillary proliferations) and chronic (tubulo-interstitial) renal lesions in total renal cortex. RNA was extracted from archival FFPE renal biopsies of 52 IgAN patients, 22 non-IgAN and normal renal tissue of 7 kidney living donors (KLD) as controls. Genome-wide gene expression profiles were obtained and biomarker identification was carried out comparing gene expression signatures a subset of IgAN patients with active (N = 8), and chronic (N = 12) renal lesions versus non-IgAN and KLD. Bioinformatic analysis identified transcripts for active (DEFA4,TNFAIP6,FAR2) and chronic (LTB,CXCL6, ITGAX) renal lesions that were validated by RT-PCR and IHC. Finally, two of them (TNFAIP6 for active and CXCL6 for chronic) were confirmed in the urine of an independent cohort of IgAN patients compared with non-IgAN patients and controls. We have integrated transcriptomics with histomorphological scores, identified specific gene expression changes using the invaluable repository of archival renal biopsies and discovered two urinary biomarkers that may be used for specific clinical decision making.
Collapse
Affiliation(s)
- Sharon Natasha Cox
- Schena Foundation, Research Center of Kidney Diseases, Strada Provinciale Valenzano-Casamassima Km. 3.00, 70100, Valenzano, Bari, Italy. .,Division of Nephrology, Dialysis, and Transplantation, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy.
| | - Samantha Chiurlia
- Schena Foundation, Research Center of Kidney Diseases, Strada Provinciale Valenzano-Casamassima Km. 3.00, 70100, Valenzano, Bari, Italy
| | - Chiara Divella
- Division of Nephrology, Dialysis, and Transplantation, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Michele Rossini
- Division of Nephrology, Dialysis, and Transplantation, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Grazia Serino
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, 70013, Castellana Grotte, Bari, Italy
| | - Mario Bonomini
- Department of Medicine and Aging Sciences, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Vittorio Sirolli
- Department of Medicine and Aging Sciences, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Francesca B Aiello
- Department of Medicine and Aging Sciences, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Gianluigi Zaza
- Renal Unit, Department of Medicine, University-Hospital of Verona, Verona, Italy
| | - Isabella Squarzoni
- Renal Unit, Department of Medicine, University-Hospital of Verona, Verona, Italy
| | - Concetta Gangemi
- Renal Unit, Department of Medicine, University-Hospital of Verona, Verona, Italy
| | - Maria Stangou
- Department of Nephrology, Hippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Aikaterini Papagianni
- Department of Nephrology, Hippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Mark Haas
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Francesco Paolo Schena
- Schena Foundation, Research Center of Kidney Diseases, Strada Provinciale Valenzano-Casamassima Km. 3.00, 70100, Valenzano, Bari, Italy. .,Division of Nephrology, Dialysis, and Transplantation, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy.
| |
Collapse
|
21
|
Lacerda Mariano L, Ingersoll MA. The immune response to infection in the bladder. Nat Rev Urol 2020; 17:439-458. [PMID: 32661333 DOI: 10.1038/s41585-020-0350-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2020] [Indexed: 12/22/2022]
Abstract
The bladder is continuously protected by passive defences such as a mucus layer, antimicrobial peptides and secretory immunoglobulins; however, these defences are occasionally overcome by invading bacteria that can induce a strong host inflammatory response in the bladder. The urothelium and resident immune cells produce additional defence molecules, cytokines and chemokines, which recruit inflammatory cells to the infected tissue. Resident and recruited immune cells act together to eradicate bacteria from the bladder and to develop lasting immune memory against infection. However, urinary tract infection (UTI) is commonly recurrent, suggesting that the induction of a memory response in the bladder is inadequate to prevent reinfection. Additionally, infection seems to induce long-lasting changes in the urothelium, which can render the tissue more susceptible to future infection. The innate immune response is well-studied in the field of UTI, but considerably less is known about how adaptive immunity develops and how repair mechanisms restore bladder homeostasis following infection. Furthermore, data demonstrate that sex-based differences in immunity affect resolution and infection can lead to tissue remodelling in the bladder following resolution of UTI. To combat the rise in antimicrobial resistance, innovative therapeutic approaches to bladder infection are currently in development. Improving our understanding of how the bladder responds to infection will support the development of improved treatments for UTI, particularly for those at risk of recurrent infection.
Collapse
Affiliation(s)
- Livia Lacerda Mariano
- Department of Immunology, Institut Pasteur, Paris, France.,Inserm, U1223, Paris, France
| | - Molly A Ingersoll
- Department of Immunology, Institut Pasteur, Paris, France. .,Inserm, U1223, Paris, France.
| |
Collapse
|
22
|
Evaluation of Antimicrobial Peptides at the Diagnosis of Urinary Tract Infection in Children. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10083-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Abstract
Defensins are a major family of host defense peptides expressed predominantly in neutrophils and epithelial cells. Their broad antimicrobial activities and multifaceted immunomodulatory functions have been extensively studied, cementing their role in innate immunity as a core host-protective component against bacterial, viral and fungal infections. More recent studies, however, paint defensins in a bad light such that they are "alleged" to promote viral and bacterial infections in certain biological settings. This mini review summarizes the latest findings on the potential pathogenic properties of defensins against the backdrop of their protective roles in antiviral and antibacterial immunity. Further, a succinct description of both tumor-proliferative and -suppressive activities of defensins is also given to highlight their functional and mechanistic complexity in antitumor immunity. We posit that given an enabling environment defensins, widely heralded as the "Swiss army knife," can function as a "double-edged sword" in host immunity.
Collapse
Affiliation(s)
- Dan Xu
- Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Sciences and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Wuyuan Lu
- Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
24
|
Qureshi AH, Liang D, Canas J, Hooks J, Arrregui SW, Saxena V, Rooney R, Nolan V, Schwaderer AL, Hains DS. DCHS1 DNA copy number loss associated with pediatric urinary tract infection risk. Innate Immun 2020; 26:473-481. [PMID: 32295462 PMCID: PMC7491237 DOI: 10.1177/1753425920917193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Urinary tract infections (UTI), associated with vesicoureteral reflux (VUR), can lead to chronic kidney disease. Genetic alterations in the innate immune defenses contribute to UTI risk. We investigated a novel gene, Dachsous Cadherin-Related 1 (DCHS1), in children with UTI. We determined absolute DNA copy number (CN) of DCHS1 in children with UTI. In this case-control study, we utilized multiple complementary methods to determine the genomic CN of DCHS1. Children with (n = 370) and without (n = 71) VUR from two well-phenotyped clinical trials of UTI were copy-typed and compared to 491 healthy controls with no known history of VUR or UTI. Less than 1% of controls had a single copy of DCHS1, while 31% of children with UTI and no VUR and 7% of children with UTI and VUR had a single copy of the DCHS1 gene. Using immunostaining, we localized expression postnatally to the bladder and renal epithelia. Mice were also challenged with two uropathogenic Escherichia coli strains, and Dchs1 mRNA was quantified. This study represents the first report of DCHS1 in association with pediatric UTI. We hypothesize that its role in innate immunity is critical to lower urinary tract defense. Further investigation is required to determine the role of DCHS1 in innate immunity.
Collapse
Affiliation(s)
- Aslam H Qureshi
- Division of Pediatric Nephrology, Department of Pediatrics, University of Tennessee Health Science Center, USA.,Department of Pediatrics, Children's Hospital at Erlanger, University of Tennessee College of Medicine, USA
| | - Dong Liang
- Department of Pediatrics, Indiana University School of Medicine, USA
| | - Jorge Canas
- Department of Pediatrics, Indiana University School of Medicine, USA
| | - Jenaya Hooks
- Department of Pediatrics, Indiana University School of Medicine, USA
| | - Samuel W Arrregui
- Department of Pediatrics, Indiana University School of Medicine, USA
| | - Vijay Saxena
- Department of Pediatrics, Indiana University School of Medicine, USA
| | - Robert Rooney
- Integrative Genomics Biorepository, Department of Pediatrics, University of Tennessee Health Science Center, USA
| | - Vikki Nolan
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, USA
| | - Andrew L Schwaderer
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, USA
| | - David S Hains
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, USA
| |
Collapse
|
25
|
Gupta S, Preece J, Haynes A, Becknell B, Ching C. Differentiating Asymptomatic Bacteriuria From Urinary Tract Infection in the Pediatric Neurogenic Bladder Population: NGAL As a Promising Biomarker. Top Spinal Cord Inj Rehabil 2020; 25:214-221. [PMID: 31548788 DOI: 10.1310/sci2503-214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Objective: To evaluate whether urinary antimicrobial peptides (AMPs) can discriminate between asymptomatic bacteriuria (ASB) and urinary tract infection (UTI) in pediatric patients with neurogenic bladder (NGB). Design/Methods: Bladder urine was collected from pediatric patients (≤18 years old) with NGB without augmentation cystoplasty. Patients were divided into the following groups based on symptomatology and results of urinalysis/urine culture: (a) UTI, (b) ASB, and (c) sterile. Urine AMPs β defense 1 (BD-1), neutrophil gelatinase-associated lipocalin (NGAL), cathelicidin (LL-37), hepatocarcinoma-intestine-pancreas/pancreatitis-associated protein (HIP/PAP), and human α defensin 5 (HD-5) were compared between groups by enzyme-linked immunosorbent assays. In addition, urines from pediatric controls without NGB or UTI were also analyzed. Significance was determined using Student's t test for parametric or Mann-Whitney U test for nonparametric data. A p value of <.05 was considered significant. Results: Thirty-six patients with NGB from a spinal dysraphism were evaluated: UTI, n = 6; ASB, n = 18; sterile, n = 12. These groups did not differ significantly by age but did significantly differ by gender (p = .0139). NGAL significantly differed between UTI and ASB groups (median 38.5 ng/mg vs 15.5 ng/mg, respectively; p = .0197) with a sensitivity and specificity of 82.4% and 83.3%, respectively. HIP/PAP, BD-1, HD-5, LL-37, and NGAL levels were all significantly higher in sterile NGB urines compared to 17 non-NGB pediatric controls (p < .0001, p = .0020, p = .0035, p = .0006, and p = .0339, respectively). Conclusion: All five urinary AMPs evaluated were significantly elevated in NGB patients compared to controls. NGAL levels may help differentiate between UTI and ASB in pediatric NGB patients.
Collapse
Affiliation(s)
- Sudipti Gupta
- Division of Urology, Nationwide Children's Hospital, Columbus, Ohio.,Center for Clinical and Translational Research, Nationwide Children's Hospital, Columbus, Ohio
| | - Janae Preece
- Department of Urology, Children's Hospital of Michigan, Detroit, Michigan
| | - Andria Haynes
- Division of Urology, Nationwide Children's Hospital, Columbus, Ohio
| | - Brian Becknell
- Division of Nephrology, Nationwide Children's Hospital, Columbus, Ohio
| | - Christina Ching
- Division of Urology, Nationwide Children's Hospital, Columbus, Ohio.,Center for Clinical and Translational Research, Nationwide Children's Hospital, Columbus, Ohio
| |
Collapse
|
26
|
Gulati NM, Miyagi M, Wiens ME, Smith JG, Stewart PL. α-Defensin HD5 Stabilizes Human Papillomavirus 16 Capsid/Core Interactions. Pathog Immun 2019; 4:196-234. [PMID: 31583330 PMCID: PMC6755940 DOI: 10.20411/pai.v4i2.314] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 08/17/2019] [Indexed: 12/17/2022] Open
Abstract
Background: Human papillomavirus (HPV) is linked to nearly all cases of cervical cancer. Despite available vaccines, a deeper understanding of the immune response to HPV is needed. Human α-defensin 5 (HD5), an innate immune effector peptide, blocks infection of multiple sero-types of HPV, including high-risk HPV16. While a common mechanism of α-defensin anti-viral activity against nonenveloped viruses such as HPV has emerged, there is limited understanding of how α-defensins bind to viral capsids to block infection. Methods: We have used cryo-electron microscopy (cryoEM), mass spectrometry (MS) crosslinking and differential lysine modification studies, and molecular dynamics (MD) simulations to probe the interaction of HPV16 pseudovirions (PsVs) with HD5. Results: CryoEM single particle reconstruction did not reveal HD5 density on the capsid surface. Rather, increased density was observed under the capsid shell in the presence of HD5. MS studies indicate that HD5 binds near the L1 and L2 capsid proteins and specifically near the C-terminal region of L1. MD simulations indicate that favorable electrostatic interactions can be formed between HD5 and the L1 C-terminal tail. Conclusions: A model is presented for how HD5 affects HPV16 structure and cell entry. In this model, HD5 binds to disordered regions of L1 and L2 protruding from the icosahedrally ordered capsid. HD5 acts to cement interactions between L1 and L2 and leads to a closer association of the L2/genome core with the L1 capsid. This model provides a structural rationale for our prior observation that HD5 interferes with the separation of L1 from the L2/genome complex during cell entry. Graphical Abstract
Collapse
Affiliation(s)
- Neetu M Gulati
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio.,Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, Ohio
| | - Masaru Miyagi
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | - Mayim E Wiens
- Department of Microbiology, University of Washington, Seattle, Washington
| | - Jason G Smith
- Department of Microbiology, University of Washington, Seattle, Washington
| | - Phoebe L Stewart
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio.,Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
27
|
Desloges I, Taylor JA, Leclerc JM, Brannon JR, Portt A, Spencer JD, Dewar K, Marczynski GT, Manges A, Gruenheid S, Le Moual H, Thomassin JL. Identification and characterization of OmpT-like proteases in uropathogenic Escherichia coli clinical isolates. Microbiologyopen 2019; 8:e915. [PMID: 31496120 PMCID: PMC6854850 DOI: 10.1002/mbo3.915] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/01/2019] [Accepted: 07/06/2019] [Indexed: 01/01/2023] Open
Abstract
Bacterial colonization of the urogenital tract is limited by innate defenses, including the production of antimicrobial peptides (AMPs). Uropathogenic Escherichia coli (UPEC) resist AMP‐killing to cause a range of urinary tract infections (UTIs) including asymptomatic bacteriuria, cystitis, pyelonephritis, and sepsis. UPEC strains have high genomic diversity and encode numerous virulence factors that differentiate them from non‐UTI‐causing strains, including ompT. As OmpT homologs cleave and inactivate AMPs, we hypothesized that UPEC strains from patients with symptomatic UTIs have high OmpT protease activity. Therefore, we measured OmpT activity in 58 clinical E. coli isolates. While heterogeneous OmpT activities were observed, OmpT activity was significantly greater in UPEC strains isolated from patients with symptomatic infections. Unexpectedly, UPEC strains exhibiting the greatest protease activities harbored an additional ompT‐like gene called arlC (ompTp). The presence of two OmpT‐like proteases in some UPEC isolates led us to compare the substrate specificities of OmpT‐like proteases found in E. coli. While all three cleaved AMPs, cleavage efficiency varied on the basis of AMP size and secondary structure. Our findings suggest the presence of ArlC and OmpT in the same UPEC isolate may confer a fitness advantage by expanding the range of target substrates.
Collapse
Affiliation(s)
- Isabelle Desloges
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - James A Taylor
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Jean-Mathieu Leclerc
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - John R Brannon
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Andrea Portt
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - John D Spencer
- Division of Nephrology, Nationwide Children's Hospital, Columbus, Ohio
| | - Ken Dewar
- Microbiome and Disease Tolerance Centre, McGill University, Montreal, QC, Canada.,Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Gregory T Marczynski
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.,Microbiome and Disease Tolerance Centre, McGill University, Montreal, QC, Canada
| | - Amee Manges
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Samantha Gruenheid
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.,Microbiome and Disease Tolerance Centre, McGill University, Montreal, QC, Canada
| | - Hervé Le Moual
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.,Microbiome and Disease Tolerance Centre, McGill University, Montreal, QC, Canada.,Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Jenny-Lee Thomassin
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| |
Collapse
|
28
|
Catinean A, Neag MA, Mitre AO, Bocsan CI, Buzoianu AD. Microbiota and Immune-Mediated Skin Diseases-An Overview. Microorganisms 2019; 7:microorganisms7090279. [PMID: 31438634 PMCID: PMC6781142 DOI: 10.3390/microorganisms7090279] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 12/16/2022] Open
Abstract
In recent years, increased attention has been paid to the relationship between microbiota and various diseases, especially immune-mediated diseases. Because conventional therapy for many autoimmune diseases is limited both in efficacy and safety, there is an increased interest in identifying nutraceuticals, particularly probiotics, able to modulate the microbiota and ameliorate these diseases. In this review, we analyzed the research focused on the role of gut microbiota and skin in immunity, their role in immune-mediated skin diseases (IMSDs), and the beneficial effect of probiotics in patients with this pathology. We selected articles published between 2009 and 2019 in PubMed and ScienceDirect that provided information regarding microbiota, IMSDs and the role of probiotics in these diseases. We included results from different types of studies including observational and interventional clinical trials or in vivo and in vitro experimental studies. Our results showed that probiotics have a beneficial effect in changing the microbiota of patients with IMSDs; they also influence disease progression. Further studies are needed to better understand the impact of new therapies on intestinal microbiota. It is also important to determine whether the microbiota of patients with autoimmune diseases can be manipulated in order to restore homeostasis of the microbiota.
Collapse
Affiliation(s)
- Adrian Catinean
- Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Maria Adriana Neag
- Pharmacology, Toxicology and Clinical Pharmacology Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania.
| | - Andrei Otto Mitre
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Corina Ioana Bocsan
- Pharmacology, Toxicology and Clinical Pharmacology Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Anca Dana Buzoianu
- Pharmacology, Toxicology and Clinical Pharmacology Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| |
Collapse
|
29
|
Saxena V, Fitch J, Ketz J, White P, Wetzel A, Chanley MA, Spencer JD, Becknell B, Pierce KR, Arregui SW, Nelson RD, Schwartz GJ, Velazquez V, Walker LA, Chen X, Yan P, Hains DS, Schwaderer AL. Whole Transcriptome Analysis of Renal Intercalated Cells Predicts Lipopolysaccharide Mediated Inhibition of Retinoid X Receptor alpha Function. Sci Rep 2019; 9:545. [PMID: 30679625 PMCID: PMC6345901 DOI: 10.1038/s41598-018-36921-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 11/23/2018] [Indexed: 01/14/2023] Open
Abstract
The renal collecting duct consists of intercalated cells (ICs) and principal cells (PCs). We have previously demonstrated that collecting ducts have a role in the innate immune defense of the kidney. Transcriptomics is an important tool used to enhance systems-level understanding of cell biology. However, transcriptomics performed on whole kidneys provides limited insight of collecting duct cell gene expression, because these cells comprise a small fraction of total kidney cells. Recently we generated reporter mouse models to enrich collecting duct specific PC and ICs and reported targeted gene expression of anti-microbial peptide genes. Here we report transcriptomics on enriched ICs and PCs and performed a pilot study sequencing four single ICs. We identified 3,645 genes with increased relative expression in ICs compared to non-ICs. In comparison to non-PCs, 2,088 genes had higher relative expression in PCs. IC associated genes included the innate interleukin 1 receptor, type 1 and the antimicrobial peptide(AMP) adrenomedullin. The top predicted canonical pathway for enriched ICs was lipopolysaccharide/Interleukin 1 mediated inhibition of Retinoid X Receptor alpha function and decreased Retinoid X Receptor expression was confirmed to occur 1-hour post experimental murine UTI in ICs but not in non-ICs.
Collapse
Affiliation(s)
- Vijay Saxena
- Indiana University School of Medicine, Riley Children's Hospital, Indianapolis, Indiana, United States.
| | - James Fitch
- The Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, United States
| | - John Ketz
- The Research Institute at Nationwide Children's, Center for Clinical and Translational Research, Columbus, Ohio, and College of Medicine, Ohio State University, Columbus, Ohio, United States
| | - Peter White
- The Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, United States
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Amy Wetzel
- The Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Melinda A Chanley
- The Research Institute at Nationwide Children's, Center for Clinical and Translational Research, Columbus, Ohio, and College of Medicine, Ohio State University, Columbus, Ohio, United States
| | - John D Spencer
- The Research Institute at Nationwide Children's, Center for Clinical and Translational Research, Columbus, Ohio, and College of Medicine, Ohio State University, Columbus, Ohio, United States
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Brian Becknell
- The Research Institute at Nationwide Children's, Center for Clinical and Translational Research, Columbus, Ohio, and College of Medicine, Ohio State University, Columbus, Ohio, United States
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Keith R Pierce
- Innate Immunity Translational Research Center, Children's Foundation Research Institute at Le Bonheur Children's Hospital, Memphis, Tennessee, United States
| | - Sam W Arregui
- Indiana University School of Medicine, Riley Children's Hospital, Indianapolis, Indiana, United States
| | - Raoul D Nelson
- Division of Nephrology, Department of Pediatrics, University of Utah, Salt Lake City, Utah, United States
| | - George J Schwartz
- University of Rochester Medical Center, School of Medicine and Dentistry, Rochester, New York, United States
| | - Victoria Velazquez
- Research Institute at Nationwide Children's Hospital Flow Cytometry Core Laboratory, Columbus, Ohio, United States
| | - Logan A Walker
- Department of Physics, College of Arts and Sciences, The Ohio State University, Columbus, Ohio, United States
| | - Xi Chen
- Genomics Shared Resource, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, United States
| | - Pearlly Yan
- Genomics Shared Resource, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, United States
- Division of Hematology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| | - David S Hains
- Indiana University School of Medicine, Riley Children's Hospital, Indianapolis, Indiana, United States.
| | - Andrew L Schwaderer
- Indiana University School of Medicine, Riley Children's Hospital, Indianapolis, Indiana, United States.
| |
Collapse
|
30
|
Saxena V, Hains DS, Ketz J, Chanley M, Spencer JD, Becknell B, Pierce KR, Nelson RD, Purkerson JM, Schwartz GJ, Schwaderer AL. Cell-specific qRT-PCR of renal epithelial cells reveals a novel innate immune signature in murine collecting duct. Am J Physiol Renal Physiol 2018; 315:F812-F823. [PMID: 28468965 PMCID: PMC6230735 DOI: 10.1152/ajprenal.00512.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 03/23/2017] [Accepted: 04/25/2017] [Indexed: 01/17/2023] Open
Abstract
The urinary tract is usually culture negative despite its close proximity to microbial flora. The precise mechanism by which the kidneys and urinary tract defends against infection is not well understood. The initial kidney cells to encounter ascending pathogens are the collecting tubule cells that consist of principal cells (PCs) that express aquaporin 2 (AQP2) and intercalated cells (ICs) that express vacuolar H+-ATPase (V-ATPase, B1 subunit). We have previously shown that ICs are involved with the human renal innate immune defense. Here we generated two reporter mice, VATPase B1-cre+tdT+ mice to fluorescently label ICs and AQP2-cre+tdT+ mice to fluorescently label PCs, and then performed flow sorting to enrich PCs and ICs for analysis. Isolated ICs and PCs along with proximal tubular cells were used to measure antimicrobial peptide (AMP) mRNA expression. ICs and PCs were significantly enriched for AMPs. Isolated ICs responded to uropathogenic Escherichia coli (UPEC) challenge in vitro and had higher RNase4 gene expression than control while both ICs and PCs responded to UPEC challenge in vivo by upregulating Defb1 mRNA expression. To our knowledge, this is the first report of isolating murine collecting tubule cells and performing targeted analysis for multiple classes of AMPs.
Collapse
Affiliation(s)
- Vijay Saxena
- The Research Institute at Nationwide Children's, Center for Clinical and Translational Research, Columbus, Ohio, and College of Medicine, Ohio State University , Columbus, Ohio
| | - David S Hains
- Innate Immunity Translational Research Center, Children's Foundation Research Institute at Le Bonheur Children's Hospital , Memphis, Tennessee
| | - John Ketz
- The Research Institute at Nationwide Children's, Center for Clinical and Translational Research, Columbus, Ohio, and College of Medicine, Ohio State University , Columbus, Ohio
| | - Melinda Chanley
- The Research Institute at Nationwide Children's, Center for Clinical and Translational Research, Columbus, Ohio, and College of Medicine, Ohio State University , Columbus, Ohio
| | - John D Spencer
- The Research Institute at Nationwide Children's, Center for Clinical and Translational Research, Columbus, Ohio, and College of Medicine, Ohio State University , Columbus, Ohio
| | - Brian Becknell
- The Research Institute at Nationwide Children's, Center for Clinical and Translational Research, Columbus, Ohio, and College of Medicine, Ohio State University , Columbus, Ohio
| | - Keith R Pierce
- Innate Immunity Translational Research Center, Children's Foundation Research Institute at Le Bonheur Children's Hospital , Memphis, Tennessee
| | - Raoul D Nelson
- Division of Nephrology, Department of Pediatrics, University of Utah , Salt Lake City, Utah
| | - Jeffrey M Purkerson
- University of Rochester Medical Center, School of Medicine and Dentistry , Rochester, New York
| | - George J Schwartz
- University of Rochester Medical Center, School of Medicine and Dentistry , Rochester, New York
| | - Andrew L Schwaderer
- The Research Institute at Nationwide Children's, Center for Clinical and Translational Research, Columbus, Ohio, and College of Medicine, Ohio State University , Columbus, Ohio
| |
Collapse
|
31
|
Fruitwala S, El-Naccache DW, Chang TL. Multifaceted immune functions of human defensins and underlying mechanisms. Semin Cell Dev Biol 2018; 88:163-172. [PMID: 29501617 PMCID: PMC6485945 DOI: 10.1016/j.semcdb.2018.02.023] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 02/26/2018] [Indexed: 12/13/2022]
Abstract
Defensins have been long recognized as natural antimicrobial peptides, but they also possess diverse and versatile immune functions. Defensins can both induce inflammation and suppress inflammatory responses by acting on specific cells through distinct mechanisms. Defensins can also modulate the immune response by forming a complex with cellular molecules including proteins, nucleic acids, and carbohydrates. The mechanisms of defensin-mediated immune modulation appear to be cell-type and context specific. Because the levels of human defensins are often altered in response to infection or disease states, suggesting their clinical relevance, this review summarizes the complex immune functions of human defensins and their underlying mechanisms of action, which have implications for the development of new therapeutics.
Collapse
Affiliation(s)
- Saahil Fruitwala
- Public Health Research Institute, Rutgers, the State University of New Jersey, New Jersey Medical School, Newark, NJ, USA
| | - Darine W El-Naccache
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, the State University of New Jersey, New Jersey Medical School, Newark, NJ, USA; Public Health Research Institute, Rutgers, the State University of New Jersey, New Jersey Medical School, Newark, NJ, USA
| | - Theresa L Chang
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, the State University of New Jersey, New Jersey Medical School, Newark, NJ, USA; Public Health Research Institute, Rutgers, the State University of New Jersey, New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
32
|
Abstract
OBJECTIVES The aims of this study were to assess empiric antibiotic use for presumed urinary tract infection (UTI) in the emergency department (ED) and to determine how often urine culture results subsequently do not confirm the diagnosis. METHODS This study is a retrospective cohort study of patients aged 21 years or younger in the Nationwide Children's Hospital ED from May 1, 2012, to October 31, 2012, who had a urinalysis and urine culture performed and were discharged home with empiric antibiotic therapy for presumed UTI. Patients with known urinary tract anomaly or antibiotic use in the previous 7 days were excluded. Confirmed UTI was defined as pyuria (>5 white blood cells per high-power field or dipstick positive for leukocyte esterase) and a positive urine culture (≥50,000 colony-forming units/mL of a uropathogen). RESULTS Of the 175 enrolled patients, urine was obtained by clean catch in 138 (79%), catheterization in 35 (20%), first-pass void in 1 (0.6%), and undocumented method in 1 (0.6%). Pyuria was demonstrated in 164 patients (94%), but only 97 (55%) had a positive urine culture. The combination of pyuria and a positive urine culture confirmed UTI in 90 patients (51%). The most commonly prescribed antibiotics were cefdinir in 103 patients (59%), trimethoprim/sulfamethoxazole in 40 (23%), and ciprofloxacin in 23 (13%). The median duration of prescribed therapy was 10 days (interquartile range, 7-10 days). Treatment duration was correlated negatively with age (r = -0.53, P < 0.01). CONCLUSIONS The current management of suspected UTI in ED patients results in unnecessary antibiotic exposure, highlighting an important opportunity for outpatient antimicrobial stewardship efforts.
Collapse
|
33
|
The Role of Defensins in HIV Pathogenesis. Mediators Inflamm 2017; 2017:5186904. [PMID: 28839349 PMCID: PMC5559915 DOI: 10.1155/2017/5186904] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/24/2017] [Indexed: 02/08/2023] Open
Abstract
Profound loss of CD4+ T cells, progressive impairment of the immune system, inflammation, and sustained immune activation are the characteristics of human immunodeficiency virus-1 (HIV-1) infection. Innate immune responses respond immediately from the day of HIV infection, and a thorough understanding of the interaction between several innate immune cells and HIV-1 is essential to determine to what extent those cells play a crucial role in controlling HIV-1 in vivo. Defensins, divided into the three subfamilies α-, β-, and θ-defensins based on structure and disulfide linkages, comprise a critical component of the innate immune response and exhibit anti-HIV-1 activities and immunomodulatory capabilities. In humans, only α- and β-defensins are expressed in various tissues and have broad impacts on HIV-1 transmission, replication, and disease progression. θ-defensins have been identified as functional peptides in Old World monkeys, but not in humans. Instead, θ-defensins exist only as pseudogenes in humans, chimpanzees, and gorillas. The use of the synthetic θ-defensin peptide “retrocyclin” as an antiviral therapy was shown to be promising, and further research into the development of defensin-based HIV-1 therapeutics is needed. This review focuses on the role of defensins in HIV-1 pathogenesis and highlights future research efforts that warrant investigation.
Collapse
|
34
|
Abstract
α, β, and θ defensins are effectors of the innate immune system with potent antibacterial, antiviral, and antifungal activity. Defensins have direct antiviral activity in cell culture, with varied mechanisms for individual viruses, although some common themes have emerged. In addition, defensins have potent immunomodulatory activity that can alter innate and adaptive immune responses to viral infection. In some cases, there is evidence for paradoxical escape from defensin neutralization or enhancement of viral infection. The direct and indirect activities of defensins have led to their development as therapeutics and vaccine components. The major area of investigation that continues to lag is the connection between the effects of defensins in cell culture models and viral pathogenesis in vivo. Model systems to study defensin biology, including more physiologic models designed to bridge this gap, are also discussed.
Collapse
Affiliation(s)
- Mayumi K Holly
- Department of Microbiology, University of Washington, Seattle, Washington 98195;
| | - Karina Diaz
- Department of Microbiology, University of Washington, Seattle, Washington 98195;
| | - Jason G Smith
- Department of Microbiology, University of Washington, Seattle, Washington 98195;
| |
Collapse
|
35
|
Kjölvmark C, Åkesson P, Påhlman LI. Urine concentrations of human beta-defensins and ribonuclease 7 in urinary tract infection and asymptomatic bacteriuria. Diagn Microbiol Infect Dis 2017; 89:58-60. [PMID: 28689894 DOI: 10.1016/j.diagmicrobio.2017.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/09/2017] [Accepted: 06/12/2017] [Indexed: 10/19/2022]
Abstract
Antimicrobial peptides (AMPs) provide a first line of defense against bacterial infections. Here we report that urine levels of AMPs, locally produced in the urinary tract, are lower in individuals with asymptomatic bacteriuria (ABU) compared to patients with urinary tract infection (UTI).
Collapse
Affiliation(s)
- Charlott Kjölvmark
- Division of Infection Medicine, Hospital of Helsingborg, Helsingborg, Sweden; Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden.
| | - Per Åkesson
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Lisa I Påhlman
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
36
|
Studies on the Interaction of Tumor-Derived HD5 Alpha Defensins with Adenoviruses and Implications for Oncolytic Adenovirus Therapy. J Virol 2017; 91:JVI.02030-16. [PMID: 28077642 DOI: 10.1128/jvi.02030-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/20/2016] [Indexed: 12/19/2022] Open
Abstract
Defensins are small antimicrobial peptides capable of neutralizing human adenovirus (HAdV) in vitro by binding capsid proteins and blocking endosomal escape of virus. In humans, the alpha defensin HD5 is produced by specialized epithelial cells of the gastrointestinal and genito-urinary tracts. Here, we demonstrate, using patient biopsy specimens, that HD5 is also expressed as an active, secreted peptide by epithelial ovarian and lung cancer cells in situ This finding prompted us to study the role of HD5 in infection and spread of replication-competent, oncolytic HAdV type 3 (HAdV3). HAdV3 produces large amounts of penton-dodecahedra (PtDd), virus-like particles, during replication. We have previously shown that PtDd are involved in opening epithelial junctions, thus facilitating lateral spread of de novo-produced virions. Here, we describe a second function of PtDd, namely, the blocking of HD5. A central tool to prove that viral PtDd neutralize HD5 and support spread of progeny virus was an HAdV3 mutant virus in which formation of PtDd was disabled (mut-Ad3GFP, where GFP is green fluorescent protein). We demonstrated that viral spread of mut-Ad3GFP was blocked by synthetic HD5 whereas that of the wild-type (wt) form (wt-Ad3GFP) was only minimally impacted. In human colon cancer Caco-2 cells, induction of cellular HD5 expression by fibroblast growth factor 9 (FGF9) significantly inhibited viral spread and progeny virus production of mut-Ad3GFP but not of wt-Ad3GFP. Finally, the ectopic expression of HD5 in tumor cells diminished the in vivo oncolytic activity of mut-Ad3GFP but not of wt-Ad3GFP. These data suggest a new mechanism of HAdV3 to overcome innate antiviral host responses. Our study has implications for oncolytic adenovirus therapy.IMPORTANCE Previously, it has been reported that human defensin HD5 inactivates specific human adenoviruses by binding to capsid proteins and blocking endosomal escape of virus. The central new findings described in our manuscript are the following: (i) the discovery of a new mechanism used by human adenovirus serotype 3 to overcome innate antiviral host responses that is based on the capacity of HAdV3 to produce subviral penton-dodecahedral particles that act as decoys for HD5, thus preventing the inactivation of virus progeny produced upon replication; (ii) the demonstration that ectopic HD5 expression in cancer cells decreases the oncolytic efficacy of a serotype 5-based adenovirus vector; and (iii) the demonstration that epithelial ovarian and lung cancers express HD5. The study improves our understanding of how adenoviruses establish infection in epithelial tissues and has implications for cancer therapy with oncolytic adenoviruses.
Collapse
|
37
|
Chairatana P, Nolan EM. Defensins, lectins, mucins, and secretory immunoglobulin A: microbe-binding biomolecules that contribute to mucosal immunity in the human gut. Crit Rev Biochem Mol Biol 2017; 52:45-56. [PMID: 27841019 PMCID: PMC5233583 DOI: 10.1080/10409238.2016.1243654] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/19/2016] [Accepted: 09/28/2016] [Indexed: 02/08/2023]
Abstract
In the intestine, the mucosal immune system plays essential roles in maintaining homeostasis between the host and microorganisms, and protecting the host from pathogenic invaders. Epithelial cells produce and release a variety of biomolecules into the mucosa and lumen that contribute to immunity. In this review, we focus on a subset of these remarkable host-defense factors - enteric α-defensins, select lectins, mucins, and secretory immunoglobulin A - that have the capacity to bind microbes and thereby contribute to barrier function in the human gut. We provide an overview of the intestinal epithelium, describe specialized secretory cells named Paneth cells, and summarize our current understanding of the biophysical and functional properties of these select microbe-binding biomolecules. We intend for this compilation to complement prior reviews on intestinal host-defense factors, highlight recent advances in the field, and motivate investigations that further illuminate molecular mechanisms as well as the interplay between these molecules and microbes.
Collapse
Affiliation(s)
- Phoom Chairatana
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Elizabeth M. Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
38
|
Chairatana P, Nolan EM. Defensins, lectins, mucins, and secretory immunoglobulin A: microbe-binding biomolecules that contribute to mucosal immunity in the human gut. Crit Rev Biochem Mol Biol 2016. [PMID: 27841019 DOI: 10,1080/10409238.2016.124365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the intestine, the mucosal immune system plays essential roles in maintaining homeostasis between the host and microorganisms, and protecting the host from pathogenic invaders. Epithelial cells produce and release a variety of biomolecules into the mucosa and lumen that contribute to immunity. In this review, we focus on a subset of these remarkable host-defense factors - enteric α-defensins, select lectins, mucins, and secretory immunoglobulin A - that have the capacity to bind microbes and thereby contribute to barrier function in the human gut. We provide an overview of the intestinal epithelium, describe specialized secretory cells named Paneth cells, and summarize our current understanding of the biophysical and functional properties of these select microbe-binding biomolecules. We intend for this compilation to complement prior reviews on intestinal host-defense factors, highlight recent advances in the field, and motivate investigations that further illuminate molecular mechanisms as well as the interplay between these molecules and microbes.
Collapse
Affiliation(s)
- Phoom Chairatana
- a Department of Chemistry , Massachusetts Institute of Technology , Cambridge , MA , USA
| | - Elizabeth M Nolan
- a Department of Chemistry , Massachusetts Institute of Technology , Cambridge , MA , USA
| |
Collapse
|
39
|
Schwaderer AL, Wang H, Kim S, Kline JM, Liang D, Brophy PD, McHugh KM, Tseng GC, Saxena V, Barr-Beare E, Pierce KR, Shaikh N, Manak JR, Cohen DM, Becknell B, Spencer JD, Baker PB, Yu CY, Hains DS. Polymorphisms in α-Defensin-Encoding DEFA1A3 Associate with Urinary Tract Infection Risk in Children with Vesicoureteral Reflux. J Am Soc Nephrol 2016; 27:3175-3186. [PMID: 26940096 PMCID: PMC5042661 DOI: 10.1681/asn.2015060700] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 01/13/2016] [Indexed: 12/12/2022] Open
Abstract
The contribution of genetic variation to urinary tract infection (UTI) risk in children with vesicoureteral reflux is largely unknown. The innate immune system, which includes antimicrobial peptides, such as the α-defensins, encoded by DEFA1A3, is important in preventing UTIs but has not been investigated in the vesicoureteral reflux population. We used quantitative real-time PCR to determine DEFA1A3 DNA copy numbers in 298 individuals with confirmed UTIs and vesicoureteral reflux from the Randomized Intervention for Children with Vesicoureteral Reflux (RIVUR) Study and 295 controls, and we correlated copy numbers with outcomes. Outcomes studied included reflux grade, UTIs during the study on placebo or antibiotics, bowel and bladder dysfunction, and renal scarring. Overall, 29% of patients and 16% of controls had less than or equal to five copies of DEFA1A3 (odds ratio, 2.09; 95% confidence interval, 1.40 to 3.11; P<0.001). For each additional copy of DEFA1A3, the odds of recurrent UTI in patients receiving antibiotic prophylaxis decreased by 47% when adjusting for vesicoureteral reflux grade and bowel and bladder dysfunction. In patients receiving placebo, DEFA1A3 copy number did not associate with risk of recurrent UTI. Notably, we found that DEFA1A3 is expressed in renal epithelium and not restricted to myeloid-derived cells, such as neutrophils. In conclusion, low DEFA1A3 copy number associated with recurrent UTIs in subjects in the RIVUR Study randomized to prophylactic antibiotics, providing evidence that copy number polymorphisms in an antimicrobial peptide associate with UTI risk.
Collapse
Affiliation(s)
| | - Huanyu Wang
- The Centers for Clinical and Translational Medicine and
| | | | | | - Dong Liang
- Innate Immunity Translational Research Center, Children's Foundation Research Institute at Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Pat D Brophy
- Division of Nephrology, Department of Pediatrics, University of Iowa Children's Hospital, Iowa City, Iowa
| | - Kirk M McHugh
- Division of Anatomy, The Ohio State University, Columbus, Ohio
| | | | - Vijay Saxena
- The Centers for Clinical and Translational Medicine and
| | | | - Keith R Pierce
- Innate Immunity Translational Research Center, Children's Foundation Research Institute at Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Nader Shaikh
- Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - J Robert Manak
- Departments of Biology and Pediatrics, University of Iowa, Iowa; and
| | | | | | | | - Peter B Baker
- Department of Pathology, Nationwide Children's Hospital, Columbus, Ohio
| | - Chack-Yung Yu
- Molecular and Human Genetics, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - David S Hains
- Innate Immunity Translational Research Center, Children's Foundation Research Institute at Le Bonheur Children's Hospital, Memphis, Tennessee; Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
40
|
Abstract
BACKGROUND Pediatricians frequently use urinalysis to diagnose urinary tract infection (UTI) while awaiting urine culture results, but sensitivity and specificity of urinalysis are limited. This study evaluated the diagnostic accuracy of the antimicrobial peptides (AMPs) human α-defensin 5 (HD5) and human neutrophil peptides (HNP) 1-3 as novel UTI biomarkers in children. METHODS We prospectively enrolled 199 pediatric Emergency Department or Urgent Care patients evaluated for a UTI. Urine concentrations of HD5 and HNP1-3 were measured by enzyme-linked immunosorbent assay. Urine culture was the reference standard. Sensitivities and specificities of leukocyte esterase (LE), HD5, HNP1-3, and test combinations were compared. RESULTS For predicting positive urine culture, the areas under the receiver-operating characteristic curves for HD5 and HNP1-3 were 0.86 (95% confidence interval (CI): 0.81-0.92) and 0.88 (95% CI: 0.82-0.93), respectively. Compared to LE ≥ trace, the combination test "LE and HD5" increased specificity by 6% (95% CI: 3-10%) without decreasing sensitivity. In the subgroup whose urine was collected by a clean-catch method, combination tests "LE and HD5" and "HD5 and HNP1-3" increased specificity by > 10% compared to LE alone. CONCLUSION Urine AMP profiles are a promising novel strategy as an adjunct to urinalysis to aid UTI diagnosis in children.
Collapse
|
41
|
Lüthje P, Brauner A. Novel Strategies in the Prevention and Treatment of Urinary Tract Infections. Pathogens 2016; 5:E13. [PMID: 26828523 PMCID: PMC4810134 DOI: 10.3390/pathogens5010013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/05/2015] [Accepted: 01/21/2016] [Indexed: 01/15/2023] Open
Abstract
Urinary tract infections are one of the most common bacterial infections, especially in women and children, frequently treated with antibiotics. The alarming increase in antibiotic resistance is a global threat to future treatment of infections. Therefore, alternative strategies are urgently needed. The innate immune system plays a fundamental role in protecting the urinary tract from infections. Antimicrobial peptides form an important part of the innate immunity. They are produced by epithelial cells and neutrophils and defend the urinary tract against invading bacteria. Since efficient resistance mechanisms have not evolved among bacterial pathogens, much effort has been put into exploring the role of antimicrobial peptides and possibilities to utilize them in clinical practice. Here, we describe the impact of antimicrobial peptides in the urinary tract and ways to enhance the production by hormones like vitamin D and estrogen. We also discuss the potential of medicinal herbs to be used in the prophylaxis and the treatment of urinary tract infections.
Collapse
Affiliation(s)
- Petra Lüthje
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, Stockholm SE-171 76, Sweden.
| | - Annelie Brauner
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, Stockholm SE-171 76, Sweden.
| |
Collapse
|
42
|
Abstract
Urinary tract infections (UTIs), including pyelonephritis, are among the most common and serious infections encountered in nephrology practice. UTI risk is increased in selected patient populations with renal and urinary tract disorders. As the prevalence of antibiotic-resistant uropathogens increases, novel and alternative treatment options will be needed to reduce UTI-associated morbidity. Discoveries over the past decade demonstrate a fundamental role for the innate immune system in protecting the urothelium from bacterial challenge. Antimicrobial peptides, an integral component of this urothelial innate immune system, demonstrate potent bactericidal activity toward uropathogens and might represent a novel class of UTI therapeutics. The urothelium of the bladder and the renal epithelium secrete antimicrobial peptides into the urinary stream. In the kidney, intercalated cells--a cell-type involved in acid-base homeostasis--have been shown to be an important source of antimicrobial peptides. Intercalated cells have therefore become the focus of new investigations to explore their function during pyelonephritis and their role in maintaining urinary tract sterility. This Review provides an overview of UTI pathogenesis in the upper and lower urinary tract. We describe the role of intercalated cells and the innate immune response in preventing UTI, specifically highlighting the role of antimicrobial peptides in maintaining urinary tract sterility.
Collapse
|
43
|
Shan Y, Dong Y, Jiang D. Recombinant expression of a novel antimicrobial peptide consisting of human α-defensin 5 and Mytilus coruscus mytilin-1 in Escherichia coli. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s13765-015-0109-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
44
|
Chromek M. The role of the antimicrobial peptide cathelicidin in renal diseases. Pediatr Nephrol 2015; 30:1225-32. [PMID: 25159719 DOI: 10.1007/s00467-014-2895-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/17/2014] [Accepted: 06/23/2014] [Indexed: 12/18/2022]
Abstract
The balance between the human body and surrounding microorganisms is crucial for homeostasis and health. A disturbance in host-pathogen interactions causes disease. Two important diseases of the kidney and urinary tract are directly caused by bacteria or bacterial toxins: urinary tract infection (UTI) and diarrhea-associated hemolytic uremic syndrome (HUS). In the majority of cases, UTIs are caused by bacteria ascending from the perineum through the urethra to the urinary tract. In contrast, HUS is caused by non-invasive bacteria, such as enterohemorrhagic Escherichia coli, which colonize the gut and do not enter the blood stream. In this latter case, the bacteria release Shiga toxin, which binds to blood cells and thus reaches the target organs, mainly kidneys. Interactions between Shiga toxin, blood cells and endothelial cells in the kidney lead to cell apoptosis and inflammation. Innate immunity and the antimicrobial peptide cathelicidin seem to play important roles in the pathogenesis of both UTI and HUS. Moreover, influencing cathelicidin production and release might offer new therapeutic and prophylactic strategies for both diseases.
Collapse
Affiliation(s)
- Milan Chromek
- Paediatric Nephrology Unit, Astrid Lindgren Children's Hospital, Karolinska University Hospital Huddinge, B57, SE-14186, Stockholm, Sweden,
| |
Collapse
|
45
|
Purkerson JM, Schwaderer AL, Nakamori A, Schwartz GJ. Distinct α-intercalated cell morphology and its modification by acidosis define regions of the collecting duct. Am J Physiol Renal Physiol 2015; 309:F464-73. [PMID: 26084929 DOI: 10.1152/ajprenal.00161.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/12/2015] [Indexed: 01/27/2023] Open
Abstract
During metabolic acidosis, the cortical collecting duct (CCD) of the rabbit reverses the polarity of bicarbonate flux from net secretion to net absorption, and this is accomplished by increasing the proton secretory rate by α-intercalated cells (ICs) and decreasing bicarbonate secretion by β-ICs. To better characterize dynamic changes in H(+)-secreting α-ICs, we examined their morphology in collecting ducts microdissected from kidneys of normal, acidotic, and recovering rabbits. α-ICs in defined axial regions varied in number and basolateral anion exchanger (AE)1 morphology, which likely reflects their relative activity and function along the collecting duct. Upon transition from CCD to outer medullary collecting duct from the outer stripe to the inner stripe, the number of α-ICs increases from 11.0 ± 1.2 to 15.4 ± 1.11 and to 32.0 ± 1.3 cells/200 μm, respectively. In the CCD, the basolateral structure defined by AE1 typically exhibited a pyramidal or conical shape, whereas in the medulla the morphology was elongated and shallow, resulting in a more rectangular shape. Furthermore, acidosis reversibly induced α-ICs in the CCD to acquire a more rectangular morphology concomitant with a transition from diffusely cytoplasmic to increased basolateral surface distribution of AE1 and apical polarization of B1-V-ATPase. The latter results are consistent with the supposition that morphological adaptation from the pyramidal to rectangular shape reflects a transition toward a more "active" configuration. In addition, α-ICs in the outer medullary collecting duct from the outer stripe exhibited cellular morphology strikingly similar to dendritic cells that may reflect a newly defined ancillary function in immune defense of the kidney.
Collapse
Affiliation(s)
- Jeffrey M Purkerson
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York; and
| | - Andrew L Schwaderer
- Department of Pediatrics and Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio
| | - Aya Nakamori
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York; and
| | - George J Schwartz
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York; and
| |
Collapse
|
46
|
|
47
|
Alpha-defensin HD5 inhibits furin cleavage of human papillomavirus 16 L2 to block infection. J Virol 2014; 89:2866-74. [PMID: 25540379 DOI: 10.1128/jvi.02901-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Human papillomavirus (HPV) is a significant oncogenic virus, but the innate immune response to HPV is poorly understood. Human α-defensin 5 (HD5) is an innate immune effector peptide secreted by epithelial cells in the genitourinary tract. HD5 is broadly antimicrobial, exhibiting potent antiviral activity against HPV at physiologic concentrations; however, the specific mechanism of HD5-mediated inhibition against HPV is unknown. During infection, the HPV capsid undergoes several critical cell-mediated viral protein processing steps, including unfolding and cleavage of the minor capsid protein L2 by host cyclophilin B and furin. Using HPV16 pseudovirus, we show that HD5 interacts directly with the virus and inhibits the furin-mediated cleavage of L2 at the cell surface during infection at a step downstream of the cyclophilin B-mediated unfolding of L2. Importantly, HD5 does not affect the enzymatic activity of furin directly. Thus, our data support a model in which HD5 prevents furin from accessing L2 by occluding the furin cleavage site via direct binding to the viral capsid. IMPORTANCE Our study elucidates a new antiviral action for α-defensins against nonenveloped viruses in which HD5 directly interferes with a critical host-mediated viral processing step, furin cleavage of L2, at the cell surface. Blocking this key event has deleterious effects on the intracellular steps of virus infection. Thus, in addition to informing the antiviral mechanisms of α-defensins, our studies highlight the critical role of furin cleavage in HPV entry. Innate immune control, mediated in part by α-defensins expressed in the genital mucosa, may influence susceptibility to HPV infections that lead to cervical cancer. Moreover, understanding the mechanism of these natural antivirals may inform the design of therapeutics to limit HPV infection.
Collapse
|
48
|
Nienhouse V, Gao X, Dong Q, Nelson DE, Toh E, McKinley K, Schreckenberger P, Shibata N, Fok CS, Mueller ER, Brubaker L, Wolfe AJ, Radek KA. Interplay between bladder microbiota and urinary antimicrobial peptides: mechanisms for human urinary tract infection risk and symptom severity. PLoS One 2014; 9:e114185. [PMID: 25486068 PMCID: PMC4259481 DOI: 10.1371/journal.pone.0114185] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 11/05/2014] [Indexed: 12/11/2022] Open
Abstract
Resident bacterial communities (microbiota) and host antimicrobial peptides (AMPs) are both essential components of normal host innate immune responses that limit infection and pathogen induced inflammation. However, their interdependence has not been investigated in the context of urinary tract infection (UTI) susceptibility. Here, we explored the interrelationship between the urinary microbiota and host AMP responses as mechanisms for UTI risk. Using prospectively collected day of surgery (DOS) urine specimens from female pelvic floor surgery participants, we report that the relative abundance and/or frequency of specific urinary microbiota distinguished between participants who did or did not develop a post-operative UTI. Furthermore, UTI risk significantly correlated with both specific urinary microbiota and β-defensin AMP levels. Finally, urinary AMP hydrophobicity and protease activity were greater in participants who developed UTI, and correlated positively with both UTI risk and pelvic floor symptoms. These data demonstrate an interdependency between the urinary microbiota, AMP responses and symptoms, and identify a potential mechanism for UTI risk. Assessment of bacterial microbiota and host innate immune AMP responses in parallel may identify increased risk of UTI in certain populations.
Collapse
Affiliation(s)
- Vanessa Nienhouse
- The Burn and Shock Trauma Research Institute at Loyola University Chicago, Health Sciences Division, Maywood, Illinois, United States of America
- Department of Microbiology and Immunology at Loyola University Chicago, Health Sciences Division, Maywood, Illinois, United States of America
- Stritch School of Medicine at Loyola University Chicago, Health Sciences Division, Maywood, Illinois, United States of America
- Infectious Disease and Immunology Research Institute at Loyola University Chicago, Health Sciences Division, Maywood, Illinois, United States of America
| | - Xiang Gao
- Department of Biological Sciences, University of North Texas, Denton, Texas, United States of America
- Department of Computer Science and Engineering, University of North Texas, Denton, Texas, United States of America
| | - Qunfeng Dong
- Department of Biological Sciences, University of North Texas, Denton, Texas, United States of America
- Department of Computer Science and Engineering, University of North Texas, Denton, Texas, United States of America
| | - David E. Nelson
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Evelyn Toh
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Kathleen McKinley
- Department of Pathology at Loyola University Chicago, Health Sciences Division, Maywood, Illinois, United States of America
| | - Paul Schreckenberger
- Stritch School of Medicine at Loyola University Chicago, Health Sciences Division, Maywood, Illinois, United States of America
- Infectious Disease and Immunology Research Institute at Loyola University Chicago, Health Sciences Division, Maywood, Illinois, United States of America
- Department of Pathology at Loyola University Chicago, Health Sciences Division, Maywood, Illinois, United States of America
| | - Noriko Shibata
- Department of Microbiology and Immunology at Loyola University Chicago, Health Sciences Division, Maywood, Illinois, United States of America
- Infectious Disease and Immunology Research Institute at Loyola University Chicago, Health Sciences Division, Maywood, Illinois, United States of America
| | - Cynthia S. Fok
- Stritch School of Medicine at Loyola University Chicago, Health Sciences Division, Maywood, Illinois, United States of America
- Department of Obstetrics/Gynecology, Division of Female Pelvic Medicine and Reconstructive Surgery at Loyola University Chicago, Health Sciences Division, Maywood, Illinois, United States of America
- Department of Urology at Loyola University Chicago, Health Sciences Division, Maywood, Illinois, United States of America
| | - Elizabeth R. Mueller
- Stritch School of Medicine at Loyola University Chicago, Health Sciences Division, Maywood, Illinois, United States of America
- Department of Obstetrics/Gynecology, Division of Female Pelvic Medicine and Reconstructive Surgery at Loyola University Chicago, Health Sciences Division, Maywood, Illinois, United States of America
- Department of Urology at Loyola University Chicago, Health Sciences Division, Maywood, Illinois, United States of America
| | - Linda Brubaker
- Stritch School of Medicine at Loyola University Chicago, Health Sciences Division, Maywood, Illinois, United States of America
- Department of Obstetrics/Gynecology, Division of Female Pelvic Medicine and Reconstructive Surgery at Loyola University Chicago, Health Sciences Division, Maywood, Illinois, United States of America
- Department of Urology at Loyola University Chicago, Health Sciences Division, Maywood, Illinois, United States of America
| | - Alan J. Wolfe
- Department of Microbiology and Immunology at Loyola University Chicago, Health Sciences Division, Maywood, Illinois, United States of America
- Stritch School of Medicine at Loyola University Chicago, Health Sciences Division, Maywood, Illinois, United States of America
- Infectious Disease and Immunology Research Institute at Loyola University Chicago, Health Sciences Division, Maywood, Illinois, United States of America
| | - Katherine A. Radek
- The Burn and Shock Trauma Research Institute at Loyola University Chicago, Health Sciences Division, Maywood, Illinois, United States of America
- Department of Microbiology and Immunology at Loyola University Chicago, Health Sciences Division, Maywood, Illinois, United States of America
- Stritch School of Medicine at Loyola University Chicago, Health Sciences Division, Maywood, Illinois, United States of America
- Infectious Disease and Immunology Research Institute at Loyola University Chicago, Health Sciences Division, Maywood, Illinois, United States of America
- Department of Surgery at Loyola University Chicago, Health Sciences Division, Maywood, Illinois, United States of America
- * E-mail:
| |
Collapse
|
49
|
Hains DS, Chen X, Saxena V, Barr-Beare E, Flemming W, Easterling R, Becknell B, Schwartz GJ, Schwaderer AL. Carbonic anhydrase 2 deficiency leads to increased pyelonephritis susceptibility. Am J Physiol Renal Physiol 2014; 307:F869-80. [PMID: 25143453 DOI: 10.1152/ajprenal.00344.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Carbonic anhydrase 2 regulates acid-base homeostasis, and recent findings have indicated a correlation between cellular control of acid-base status and the innate defense of the kidney. Mice deficient in carbonic anhydrase 2 (Car2(-/-) mice) have metabolic acidosis, impaired urine acidification, and are deficient in normal intercalated cells. The objective of the present study was to evaluate the biological consequences of carbonic anhydrase 2 deficiency in a murine model of pyelonephritis. Infection susceptibility and transcription of bacterial response components in Car2(-/-) mice were compared with wild-type littermate controls. Car2(-/-) mice had increased kidney bacterial burdens along with decreased renal bacterial clearance after inoculation compared with wild-type mice. Standardization of the urine pH and serum HCO(3)(-) levels did not substantially alter kidney infection susceptibility between wild-type and Car2(-/-) mice; thus, factors other than acid-base status are responsible. Car2(-/-) mice had significantly increased neutrophil-gelatinase-associated lipocalin mRNA and protein and expression at baseline and a marked decreased ability to upregulate key bacterial response genes during pyelonephritis. Our findings provide in vivo evidence that supports a role for carbonic anhydrase 2 and intercalated cells in promoting renal bacterial clearance. Decreased carbonic anhydrase expression results in increased antimicrobial peptide production by cells other than renal intercalated cells, which is not sufficient to prevent infection after a bacterial challenge.
Collapse
Affiliation(s)
- David S Hains
- Division of Nephrology, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Xi Chen
- Division of Nephrology, Le Bonheur Children's Hospital, Memphis, Tennessee; Center for Clinical and Translational Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Vijay Saxena
- Center for Clinical and Translational Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Evan Barr-Beare
- Center for Clinical and Translational Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Weisi Flemming
- Center for Clinical and Translational Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Robert Easterling
- Center for Clinical and Translational Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Brian Becknell
- Center for Clinical and Translational Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio; Division of Nephrology, Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - George J Schwartz
- Department of Pediatrics, The University of Rochester, Rochester, New York
| | - Andrew L Schwaderer
- Center for Clinical and Translational Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio; Division of Nephrology, Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, The Ohio State University, Columbus, Ohio;
| |
Collapse
|
50
|
Su X, Min S, Cao S, Yan H, Zhao Y, Li H, Chai L, Mei S, Yang J, Zhang Y, Zhang Z, Liu F, Sun W, Che Y, Yang R. LRRC19 expressed in the kidney induces TRAF2/6-mediated signals to prevent infection by uropathogenic bacteria. Nat Commun 2014; 5:4434. [PMID: 25026888 DOI: 10.1038/ncomms5434] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 06/18/2014] [Indexed: 02/06/2023] Open
Abstract
The innate immune-dependent bactericidal effects are critical for preventing microbial colonization in the urinary system. However, the mechanisms involved in establishing innate immune responses in kidney are not completely understood. Here we describe the role of a novel member of the LRR (leucine-rich repeat) class of transmembrane proteins, LRRC19 (LRR-containing 19) in eliminating uropathogenic bacteria. LRRC19 is predominantly expressed in human and mouse kidney tubular epithelial cells and LRRC19-deficient mice are more susceptible to uropathogenic Escherichia coli (UPEC) infection than wild-type or TLR4 knockout mice. Recognition of UPEC by LRRC19 induces the production of cytokines, chemokines and antimicrobial substances through TRAF2- and TRAF6-mediated NF-κB and MAPK signalling pathways. Thus, LRRC19 may be a critical pathogen-recognition receptor in kidney mediating the elimination of UPEC infection.
Collapse
Affiliation(s)
- Xiaomin Su
- 1] Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China [2]
| | - Siping Min
- 1] Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China [2]
| | - Shuisong Cao
- 1] Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China [2]
| | - Hui Yan
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Yining Zhao
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Hui Li
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Limin Chai
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Shiyue Mei
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Jia Yang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Yuan Zhang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Zhujun Zhang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Feifei Liu
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Wei Sun
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Yongzhe Che
- 1] Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China [2] Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China
| | - Rongcun Yang
- 1] Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China [2] Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China [3] State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| |
Collapse
|