1
|
Moore C, Helms ML, Nipper MA, Winfrey LC, Finn DA, Meshul CK. Dopamine loss alters glutamate synapses and transporters in the medial prefrontal cortex and anxiety-related behaviour in a male MPTP rodent model of Parkinson's disease. Eur J Neurosci 2024; 60:6195-6215. [PMID: 39431445 DOI: 10.1111/ejn.16577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/27/2024] [Accepted: 09/30/2024] [Indexed: 10/22/2024]
Abstract
Anxiety is a prominent non-motor symptom of Parkinson's disease (PD). Changes in the B-spectrum recordings in PD patients of the prefrontal cortex correlate with increased anxiety. Using a rodent model of PD, we reported alterations in glutamate synapses in the striatum and substantia nigra following dopamine (DA) loss. We hypothesize that DA loss will result in increased anxiety-related behaviours and that this will be associated with alterations in glutamate synapses and transporters within the medial prefrontal cortex (mPFC). Following 4 weeks of progressive 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration, there was an increase in anxiety-related behaviours and a 78% decrease in plasma corticosterone levels versus the vehicle (VEH)-treated mice. This was associated with a 30% decrease in the density of dendritic spines in Layers Il/Ill, and a 53% decrease in the density of glutamate immuno-gold labelling within vesicular glutamate transporter 1 (Vglut1)-labelled nerve terminals and spines, with no change within vesicular glutamate transporter 2 (Vglut2) positive terminals/spines in the MPTP versus VEH groups. Our prior work determined that a decrease in striatal glutamate terminal density was associated with an increase in extracellular glutamate levels. There was an increase in protein expression of Vglut1 (40%), Vglut2 (37%) and glutamate aspartate transporter (GLAST) (225%), and a decrease in glutamate transporter 1 (GLT-1) (50%) and excitatory amino acid carrier 1 (EAAC1) (51%), in the MPTP versus VEH groups within the mPFC. These data suggest that the decrease in dendritic spines within the mPFC following nigrostriatal DA loss may be due to increased extracellular glutamate levels (decrease in glutamate transporters), leading to an increase in anxiety-related behaviours.
Collapse
Affiliation(s)
- Cindy Moore
- VA Medical Center/Portland, Portland, Oregon, USA
| | | | - Michelle A Nipper
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| | | | - Deborah A Finn
- VA Medical Center/Portland, Portland, Oregon, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| | - Charles K Meshul
- VA Medical Center/Portland, Portland, Oregon, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
2
|
Bove F, Angeloni B, Sanginario P, Rossini PM, Calabresi P, Di Iorio R. Neuroplasticity in levodopa-induced dyskinesias: An overview on pathophysiology and therapeutic targets. Prog Neurobiol 2024; 232:102548. [PMID: 38040324 DOI: 10.1016/j.pneurobio.2023.102548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/29/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Levodopa-induced dyskinesias (LIDs) are a common complication in patients with Parkinson's disease (PD). A complex cascade of electrophysiological and molecular events that induce aberrant plasticity in the cortico-basal ganglia system plays a key role in the pathophysiology of LIDs. In the striatum, multiple neurotransmitters regulate the different forms of physiological synaptic plasticity to provide it in a bidirectional and Hebbian manner. In PD, impairment of both long-term potentiation (LTP) and long-term depression (LTD) progresses with disease and dopaminergic denervation of striatum. The altered balance between LTP and LTD processes leads to unidirectional changes in plasticity that cause network dysregulation and the development of involuntary movements. These alterations have been documented, in both experimental models and PD patients, not only in deep brain structures but also at motor cortex. Invasive and non-invasive neuromodulation treatments, as deep brain stimulation, transcranial magnetic stimulation, or transcranial direct current stimulation, may provide strategies to modulate the aberrant plasticity in the cortico-basal ganglia network of patients affected by LIDs, thus restoring normal neurophysiological functioning and treating dyskinesias. In this review, we discuss the evidence for neuroplasticity impairment in experimental PD models and in patients affected by LIDs, and potential neuromodulation strategies that may modulate aberrant plasticity.
Collapse
Affiliation(s)
- Francesco Bove
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Benedetta Angeloni
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Pasquale Sanginario
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Paolo Maria Rossini
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy
| | - Paolo Calabresi
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Riccardo Di Iorio
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
3
|
Holley SM, Reidling JC, Cepeda C, Wu J, Lim RG, Lau A, Moore C, Miramontes R, Fury B, Orellana I, Neel M, Coleal-Bergum D, Monuki ES, Bauer G, Meshul CK, Levine MS, Thompson LM. Transplanted human neural stem cells rescue phenotypes in zQ175 Huntington's disease mice and innervate the striatum. Mol Ther 2023; 31:3545-3563. [PMID: 37807512 PMCID: PMC10727970 DOI: 10.1016/j.ymthe.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/28/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023] Open
Abstract
Huntington's disease (HD), a genetic neurodegenerative disorder, primarily affects the striatum and cortex with progressive loss of medium-sized spiny neurons (MSNs) and pyramidal neurons, disrupting cortico-striatal circuitry. A promising regenerative therapeutic strategy of transplanting human neural stem cells (hNSCs) is challenged by the need for long-term functional integration. We previously described that, with short-term hNSC transplantation into the striatum of HD R6/2 mice, human cells differentiated into electrophysiologically active immature neurons, improving behavior and biochemical deficits. Here, we show that long-term (8 months) implantation of hNSCs into the striatum of HD zQ175 mice ameliorates behavioral deficits, increases brain-derived neurotrophic factor (BDNF) levels, and reduces mutant huntingtin (mHTT) accumulation. Patch clamp recordings, immunohistochemistry, single-nucleus RNA sequencing (RNA-seq), and electron microscopy demonstrate that hNSCs differentiate into diverse neuronal populations, including MSN- and interneuron-like cells, and form connections. Single-nucleus RNA-seq analysis also shows restoration of several mHTT-mediated transcriptional changes of endogenous striatal HD mouse cells. Remarkably, engrafted cells receive synaptic inputs, innervate host neurons, and improve membrane and synaptic properties. Overall, the findings support hNSC transplantation for further evaluation and clinical development for HD.
Collapse
Affiliation(s)
- Sandra M Holley
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jack C Reidling
- Institute for Memory Impairment and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jie Wu
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Ryan G Lim
- Institute for Memory Impairment and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - Alice Lau
- Psychiatry & Human Behavior, University of California Irvine, Irvine, CA 92697, USA
| | - Cindy Moore
- Portland VA Medical Center, Portland, OR 97239, USA
| | - Ricardo Miramontes
- Institute for Memory Impairment and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - Brian Fury
- Institute for Regenerative Cures, University of California Davis, Sacramento, CA 95817, USA
| | - Iliana Orellana
- Institute for Memory Impairment and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - Michael Neel
- Department of Pathology & Laboratory Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Dane Coleal-Bergum
- Institute for Regenerative Cures, University of California Davis, Sacramento, CA 95817, USA
| | - Edwin S Monuki
- Department of Pathology & Laboratory Medicine, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Center, University of California Irvine, Irvine, CA 92697, USA
| | - Gerhard Bauer
- Institute for Regenerative Cures, University of California Davis, Sacramento, CA 95817, USA
| | - Charles K Meshul
- Portland VA Medical Center, Portland, OR 97239, USA; Oregon Health & Science University, Department of Behavioral Neuroscience and Pathology, Portland, OR 97239, USA
| | - Michael S Levine
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Leslie M Thompson
- Institute for Memory Impairment and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA; Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA; Psychiatry & Human Behavior, University of California Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Center, University of California Irvine, Irvine, CA 92697, USA; Department of Neurobiology & Behavior University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
4
|
Xu W, Wang J, Li XN, Liang J, Song L, Wu Y, Liu Z, Sun B, Li WG. Neuronal and synaptic adaptations underlying the benefits of deep brain stimulation for Parkinson's disease. Transl Neurodegener 2023; 12:55. [PMID: 38037124 PMCID: PMC10688037 DOI: 10.1186/s40035-023-00390-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/19/2023] [Indexed: 12/02/2023] Open
Abstract
Deep brain stimulation (DBS) is a well-established and effective treatment for patients with advanced Parkinson's disease (PD), yet its underlying mechanisms remain enigmatic. Optogenetics, primarily conducted in animal models, provides a unique approach that allows cell type- and projection-specific modulation that mirrors the frequency-dependent stimulus effects of DBS. Opto-DBS research in animal models plays a pivotal role in unraveling the neuronal and synaptic adaptations that contribute to the efficacy of DBS in PD treatment. DBS-induced neuronal responses rely on a complex interplay between the distributions of presynaptic inputs, frequency-dependent synaptic depression, and the intrinsic excitability of postsynaptic neurons. This orchestration leads to conversion of firing patterns, enabling both antidromic and orthodromic modulation of neural circuits. Understanding these mechanisms is vital for decoding position- and programming-dependent effects of DBS. Furthermore, patterned stimulation is emerging as a promising strategy yielding long-lasting therapeutic benefits. Research on the neuronal and synaptic adaptations to DBS may pave the way for the development of more enduring and precise modulation patterns. Advanced technologies, such as adaptive DBS or directional electrodes, can also be integrated for circuit-specific neuromodulation. These insights hold the potential to greatly improve the effectiveness of DBS and advance PD treatment to new levels.
Collapse
Affiliation(s)
- Wenying Xu
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jie Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xin-Ni Li
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Jingxue Liang
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Lu Song
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yi Wu
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Zhenguo Liu
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Bomin Sun
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Wei-Guang Li
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China.
- Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
5
|
Denne T, Winfrey LC, Moore C, Whitner C, D'Silva T, Soumyanath A, Shinto L, Hiller A, Meshul CK. Recovery of motor function is associated with rescue of glutamate biomarkers in the striatum and motor cortex following treatment with Mucuna pruriens in a murine model of Parkinsons disease. Mol Cell Neurosci 2023; 126:103883. [PMID: 37527694 DOI: 10.1016/j.mcn.2023.103883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/26/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023] Open
Abstract
There is growing interest in the use of natural products for the treatment of Parkinson's disease (PD). Mucuna pruriens has been used in the treatment of humans with PD. The goal of this study was to determine if daily oral treatment with an extract of Mucuna pruriens, starting after the MPTP-induced loss of nigrostriatal dopamine in male mice, would result in recovery/restoration of motor function, tyrosine hydroxylase (TH) protein expression in the nigrostriatal pathway, or glutamate biomarkers in both the striatum and motor cortex. Following MPTP administration, resulting in an 80 % loss of striatal TH, treatment with Mucuna pruriens failed to rescue either striatal TH or the dopamine transporter back to the control levels, but there was restoration of gait/motor function. There was an MPTP-induced loss of TH-labeled neurons in the substantia nigra pars compacta and in the number of striatal dendritic spines, both of which failed to be recovered following treatment with Mucuna pruriens. This Mucuna pruriens-induced locomotor recovery following MPTP was associated with restoration of two striatal glutamate transporter proteins, GLAST (EAAT1) and EAAC1 (EAAT3), and the vesicular glutamate transporter 2 (Vglut2) within the motor cortex. Post-MPTP treatment with Mucuna pruriens, results in locomotor improvement that is associated with recovery of striatal and motor cortex glutamate transporters but is independent of nigrostriatal TH restoration.
Collapse
Affiliation(s)
| | | | - Cindy Moore
- VA Medical Center/Portland, Portland, OR, USA
| | | | | | - Amala Soumyanath
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Lynne Shinto
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Amie Hiller
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA; VA Medical Center/Portland, Portland, OR, USA
| | - Charles K Meshul
- Department of Behavioral Neuroscience and Pathology, Oregon Health & Science University, Portland, OR, USA; VA Medical Center/Portland, Portland, OR, USA.
| |
Collapse
|
6
|
Gergin S, Kirazlı Ö, Boracı H, Yıldız SD, Yananlı HR, Şehirli ÜS. The effects of regular swimming exercise and melatonin on the neurons localized in the striatum of hemiparkinsonian rats. Anat Sci Int 2023; 98:204-219. [PMID: 36223003 DOI: 10.1007/s12565-022-00688-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 09/27/2022] [Indexed: 02/07/2023]
Abstract
Parkinson's disease is a progressive neurodegenerative movement disorder. We aimed to investigate the effects of regular swimming exercise and melatonin applied in the 6-Hydroxydopamine-induced Parkinson's disease rats by analysing dendritic spine of striatal neurons. Twenty-four male Wistar albino rats were used. 6-Hydroxydopamine unilaterally injected four (control, exercise, melatonin and exercise + melatonin) groups were included in the study. Tyrosine hydroxylase expression was detected by immunohistochemistry. Neurons and structures were identified from three-dimensional images by Neurolucida software. There was not any apparent difference for tyrosine hydroxylase positive neurons in the substantia nigra pars compacta and fibres in the striatum between the lesion sides of hemiparkinsonian groups. The treatment groups blocked the apomorphine-induced increase in rotations compared to the control group. In stepping test, the treatment groups prevented the loss of stepping in the contralateral side of hemiparkinsonian groups. The melatonin mostly had a positive effect on motor activity tests. In morphological analyses, the 6-Hydroxydopamine-induced lesion led to the reduction of the total dendritic length and number of branches. In the treatment groups, the reduction of the dendritic parameters was not observed. 6-Hydroxydopamine lesion led to a decrease in the total spine density, spine densities of thin and mushroom types. The exercise and melatonin treatments prevented the loss of spine density. The exercise treatment prevented the loss of spine density of mushroom type spines. The melatonin treatment blocked the loss of spine density of stubby type. In conclusion, these results provide evidence for effective additional protective therapeutic strategies for Parkinson's disease. In conclusion, results from the current study provide evidence for swimming exercise and melatonin as a promising candidate for effective additional protective strategies for PD.
Collapse
Affiliation(s)
- Sinem Gergin
- Department of Anatomy, Marmara University School of Medicine, Istanbul, Turkey.,, Istanbul, Turkey.,Marmara University Institute of Health Sciences, Istanbul, Turkey
| | - Özlem Kirazlı
- Department of Anatomy, Marmara University School of Medicine, Istanbul, Turkey.,Marmara University Institute of Health Sciences, Istanbul, Turkey
| | - Hatice Boracı
- Department of Anatomy, Marmara University School of Medicine, Istanbul, Turkey.,Marmara University Institute of Health Sciences, Istanbul, Turkey
| | - Sercan Doğukan Yıldız
- Department of Anatomy, Marmara University School of Medicine, Istanbul, Turkey.,Marmara University Institute of Health Sciences, Istanbul, Turkey.,Faculty of Dentistry, Department of Anatomy, Istanbul Kent University, Istanbul, Turkey
| | - Hasan Raci Yananlı
- Department of Medical Pharmacology, Marmara University School of Medicine, Istanbul, Turkey
| | | |
Collapse
|
7
|
Nozaki T, Sugiyama K, Asakawa T, Namba H, Yokokura M, Terada T, Bunai T, Ouchi Y. Increased anteroventral striatal dopamine transporter and motor recovery after subthalamic deep brain stimulation in Parkinson's disease. J Neurosurg 2022; 137:468-478. [PMID: 34972089 DOI: 10.3171/2021.10.jns211364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 10/06/2021] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Subthalamic nucleus deep brain stimulation (STN-DBS) in Parkinson's disease is effective; however, its mechanism is unclear. To investigate the degree of neuronal terminal survival after STN-DBS, the authors examined the striatal dopamine transporter levels before and after treatment in association with clinical improvement using PET with [11C]2β-carbomethoxy-3β-(4-fluorophenyl)tropane ([11C]CFT). METHODS Ten patients with Parkinson's disease who had undergone bilateral STN-DBS were scanned twice with [11C]CFT PET just before and 1 year after surgery. Correlation analysis was conducted between [11C]CFT binding and off-period Unified Parkinson's Disease Rating Scale (UPDRS) scores assessed preoperatively and postoperatively. RESULTS [11C]CFT uptake reduced significantly in the posterodorsal putamen contralateral to the parkinsonism-dominant side after 1 year; however, an increase was noted in the contralateral anteroventral putamen and ipsilateral ventral caudate postoperatively (p < 0.05). The percentage increase in [11C]CFT binding was inversely correlated with the preoperative binding level in the bilateral anteroventral putamen, ipsilateral ventral caudate, contralateral anterodorsal putamen, contralateral posteroventral putamen, and contralateral nucleus accumbens. The percentage reduction in UPDRS-II score was significantly correlated with the percentage increase in [11C]CFT binding in the ipsilateral anteroventral putamen (p < 0.05). The percentage reduction in UPDRS-III score was significantly correlated with the percentage increase in [11C]CFT binding in the ipsilateral anteroventral putamen, ventral caudate, and nucleus accumbens (p < 0.05). CONCLUSIONS STN-DBS increases dopamine transporter levels in the anteroventral striatum, which is correlated with the motor recovery and possibly suggests the neuromodulatory effect of STN-DBS on dopaminergic terminals in Parkinson's disease patients. A preoperative level of anterior striatal dopamine transporter may predict reserve capacity of STN-DBS on motor recovery.
Collapse
Affiliation(s)
- Takao Nozaki
- 1Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kenji Sugiyama
- 2Department of Neurosurgery, Toyoda Eisei Hospital, Iwata, Japan
| | - Tetsuya Asakawa
- 3Department of Neurology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Hiroki Namba
- 4Department of Neurosurgery, JA Shizuoka Kohseiren Enshu Hospital, Hamamatsu, Japan
| | - Masamichi Yokokura
- 5Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tatsuhiro Terada
- 6Department of Neurology, Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan
- 9Department of Biofunctional Imaging, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomoyasu Bunai
- 7Department of Neurology, Hamamatsu University School of Medicine, Hamamatsu, Japan
- 9Department of Biofunctional Imaging, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yasuomi Ouchi
- 8Hamamatsu PET Imaging Center, Hamamatsu Medical Photonics Foundation, Hamamatsu, Japan; and
- 9Department of Biofunctional Imaging, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
8
|
Churchill MJ, du Bois H, Heim TA, Mudianto T, Steele MM, Nolz JC, Lund AW. Infection-induced lymphatic zippering restricts fluid transport and viral dissemination from skin. J Exp Med 2022; 219:e20211830. [PMID: 35353138 PMCID: PMC8972184 DOI: 10.1084/jem.20211830] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 01/19/2022] [Accepted: 03/14/2022] [Indexed: 01/13/2023] Open
Abstract
Lymphatic vessels are often considered passive conduits that flush antigenic material, pathogens, and cells to draining lymph nodes. Recent evidence, however, suggests that lymphatic vessels actively regulate diverse processes from antigen transport to leukocyte trafficking and dietary lipid absorption. Here we tested the hypothesis that infection-induced changes in lymphatic transport actively contribute to innate host defense. We demonstrate that cutaneous vaccinia virus infection by scarification activates dermal lymphatic capillary junction tightening (zippering) and lymph node lymphangiogenesis, which are associated with reduced fluid transport and cutaneous viral sequestration. Lymphatic-specific deletion of VEGFR2 prevented infection-induced lymphatic capillary zippering, increased fluid flux out of tissue, and allowed lymphatic dissemination of virus. Further, a reduction in dendritic cell migration to lymph nodes in the absence of lymphatic VEGFR2 associated with reduced antiviral CD8+ T cell expansion. These data indicate that VEGFR2-driven lymphatic remodeling is a context-dependent, active mechanism of innate host defense that limits viral dissemination and facilitates protective, antiviral CD8+ T cell responses.
Collapse
Affiliation(s)
- Madeline J. Churchill
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR
| | - Haley du Bois
- Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, NY
| | - Taylor A. Heim
- Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, NY
| | - Tenny Mudianto
- Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, NY
| | - Maria M. Steele
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR
- Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, NY
| | - Jeffrey C. Nolz
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR
| | - Amanda W. Lund
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR
- Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, NY
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY
| |
Collapse
|
9
|
The effects of melatonin on the striatum. MARMARA MEDICAL JOURNAL 2021. [DOI: 10.5472/marumj.1012077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Bentea E, Villers A, Moore C, Funk AJ, O’Donovan SM, Verbruggen L, Lara O, Janssen P, De Pauw L, Declerck NB, DePasquale EAK, Churchill MJ, Sato H, Hermans E, Arckens L, Meshul CK, Ris L, McCullumsmith RE, Massie A. Corticostriatal dysfunction and social interaction deficits in mice lacking the cystine/glutamate antiporter. Mol Psychiatry 2021; 26:4754-4769. [PMID: 32366950 PMCID: PMC7609546 DOI: 10.1038/s41380-020-0751-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/07/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022]
Abstract
The astrocytic cystine/glutamate antiporter system xc- represents an important source of extracellular glutamate in the central nervous system, with potential impact on excitatory neurotransmission. Yet, its function and importance in brain physiology remain incompletely understood. Employing slice electrophysiology and mice with a genetic deletion of the specific subunit of system xc-, xCT (xCT-/- mice), we uncovered decreased neurotransmission at corticostriatal synapses. This effect was partly mitigated by replenishing extracellular glutamate levels, indicating a defect linked with decreased extracellular glutamate availability. We observed no changes in the morphology of striatal medium spiny neurons, the density of dendritic spines, or the density or ultrastructure of corticostriatal synapses, indicating that the observed functional defects are not due to morphological or structural abnormalities. By combining electron microscopy with glutamate immunogold labeling, we identified decreased intracellular glutamate density in presynaptic terminals, presynaptic mitochondria, and in dendritic spines of xCT-/- mice. A proteomic and kinomic screen of the striatum of xCT-/- mice revealed decreased expression of presynaptic proteins and abnormal kinase network signaling, that may contribute to the observed changes in postsynaptic responses. Finally, these corticostriatal deregulations resulted in a behavioral phenotype suggestive of autism spectrum disorder in the xCT-/- mice; in tests sensitive to corticostriatal functioning we recorded increased repetitive digging behavior and decreased sociability. To conclude, our findings show that system xc- plays a previously unrecognized role in regulating corticostriatal neurotransmission and influences social preference and repetitive behavior.
Collapse
Affiliation(s)
- Eduard Bentea
- grid.8767.e0000 0001 2290 8069Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Agnès Villers
- grid.8364.90000 0001 2184 581XDepartment of Neurosciences, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Cynthia Moore
- grid.410404.50000 0001 0165 2383Research Services, Neurocytology Laboratory, Veterans Affairs Medical Center, Portland, OR USA
| | - Adam J. Funk
- grid.267337.40000 0001 2184 944XDepartment of Neurosciences, University of Toledo College of Medicine, Toledo, OH USA
| | - Sinead M. O’Donovan
- grid.267337.40000 0001 2184 944XDepartment of Neurosciences, University of Toledo College of Medicine, Toledo, OH USA
| | - Lise Verbruggen
- grid.8767.e0000 0001 2290 8069Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Olaya Lara
- grid.8767.e0000 0001 2290 8069Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Pauline Janssen
- grid.8767.e0000 0001 2290 8069Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Laura De Pauw
- grid.8767.e0000 0001 2290 8069Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Noemi B. Declerck
- grid.8767.e0000 0001 2290 8069Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Erica A. K. DePasquale
- grid.239573.90000 0000 9025 8099Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Department of Biomedical Informatics, University of Cincinnati, Cincinnati, OH USA
| | - Madeline J. Churchill
- grid.410404.50000 0001 0165 2383Research Services, Neurocytology Laboratory, Veterans Affairs Medical Center, Portland, OR USA
| | - Hideyo Sato
- grid.260975.f0000 0001 0671 5144Department of Medical Technology, Faculty of Medicine, Laboratory of Biochemistry and Molecular Biology, Niigata University, Niigata, Japan
| | - Emmanuel Hermans
- grid.7942.80000 0001 2294 713XInstitute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Lutgarde Arckens
- grid.5596.f0000 0001 0668 7884Laboratory of Neuroplasticity and Neuroproteomics, and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, Leuven, Belgium
| | - Charles K. Meshul
- grid.410404.50000 0001 0165 2383Research Services, Neurocytology Laboratory, Veterans Affairs Medical Center, Portland, OR USA ,grid.5288.70000 0000 9758 5690Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR USA
| | - Laurence Ris
- grid.8364.90000 0001 2184 581XDepartment of Neurosciences, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Robert E. McCullumsmith
- grid.267337.40000 0001 2184 944XDepartment of Neurosciences, University of Toledo College of Medicine, Toledo, OH USA
| | - Ann Massie
- Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium.
| |
Collapse
|
11
|
Early life sleep disruption alters glutamate and dendritic spines in prefrontal cortex and impairs cognitive flexibility in prairie voles. CURRENT RESEARCH IN NEUROBIOLOGY 2021; 2. [PMID: 35505895 PMCID: PMC9060254 DOI: 10.1016/j.crneur.2021.100020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Early life experiences are crucial for proper organization of excitatory synapses within the brain, with outsized effects on late-maturing, experience-dependent regions such as the medial prefrontal cortex (mPFC). Previous work in our lab showed that early life sleep disruption (ELSD) from postnatal days 14–21 in the highly social prairie vole results in long lasting impairments in social behavior. Here, we further hypothesized that ELSD alters glutamatergic synapses in mPFC, thereby affecting cognitive flexibility, an mPFC-dependent behavior. ELSD caused impaired cued fear extinction (indicating cognitive inflexibility), increased dendritic spine density, and decreased glutamate immunogold-labeling in vesicular glutamate transporter 1 (vGLUT1)-labeled presynaptic nerve terminals within mPFC. Our results have profound implications for neurodevelopmental disorders in humans such as autism spectrum disorder that also show poor sleep, impaired social behavior, cognitive inflexibility, as well as altered dendritic spine density and glutamate changes in mPFC, and imply that poor sleep may cause these changes. Early Life Sleep Disruption impairs prefrontal cortex-dependent glutamate and behavior in prairie voles. Sleep during postnatal week 3 is important for social and cognitive development. Long-term effects of early life sleep disruption include increased dendritic spine density and alterations in glutamate.
Collapse
|
12
|
Faust K, Vajkoczy P, Xi B, Harnack D. The Effects of Deep Brain Stimulation of the Subthalamic Nucleus on Vascular Endothelial Growth Factor, Brain-Derived Neurotrophic Factor, and Glial Cell Line-Derived Neurotrophic Factor in a Rat Model of Parkinson's Disease. Stereotact Funct Neurosurg 2020; 99:256-266. [PMID: 33152730 DOI: 10.1159/000511121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/23/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Deep brain stimulation (DBS) of the subthalamic nucleus (STN) has evolved as a powerful therapeutic alternative for the treatment of Parkinson's disease (PD). Despite its clinical efficacy, the mechanisms of action have remained poorly understood. In addition to the immediate symptomatic effects, long-term neuroprotective effects have been suggested. Those may be mediated through neurotrophic factors (NFs) like vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), and glial cell line-derived neurotrophic factor (GDNF). Here, the impact of DBS on the expression of NFs was analysed in a rat model of PD. METHODS Unilateral 6-hydroxydopamine (6-OHDA) lesioned rats received DBS in the STN using an implantable microstimulation system, sham DBS in the STN, or no electrode placement. Continuous unilateral STN-DBS (current intensity 50 µA, frequency 130 Hz, and pulse width 52 µs) was conducted for 14 days. Rats were then sacrificed and brains shock frozen. Striata and motor cortices were dissected with a cryostat. Levels of VEGF, BDNF, and GDNF were analysed, both by quantitative PCR and colorimetric ELISA. RESULTS PCR revealed a significant upregulation of only BDNF mRNA in the ipsilateral striata of the DBS group, when compared to the sham-stimulated group. There was no significant increase in VEGF mRNA or GDNF mRNA. ELISA analysis showed augmentations of BDNF, VEGF, as well as GDNF protein in the ipsilateral striata after DBS compared to sham stimulation. In the motor cortex, significant increases after DBS were observed for BDNF only, not for the other 2 NFs. CONCLUSIONS The upregulation of trophic factors induced by STN-DBS may participate in its long-term therapeutic efficacy and potentially neuroprotective effects.
Collapse
Affiliation(s)
- Katharina Faust
- Department of Neurosurgery, Charité University Hospital, Berlin, Germany,
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité University Hospital, Berlin, Germany
| | - Bai Xi
- Department of Neurosurgery, Charité University Hospital, Berlin, Germany
| | - Daniel Harnack
- Beelitz Neurology, Rehabilitation Clinic, Berlin, Germany
| |
Collapse
|
13
|
Schaser AJ, Stackhouse TL, Weston LJ, Kerstein PC, Osterberg VR, López CS, Dickson DW, Luk KC, Meshul CK, Woltjer RL, Unni VK. Trans-synaptic and retrograde axonal spread of Lewy pathology following pre-formed fibril injection in an in vivo A53T alpha-synuclein mouse model of synucleinopathy. Acta Neuropathol Commun 2020; 8:150. [PMID: 32859276 PMCID: PMC7456087 DOI: 10.1186/s40478-020-01026-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/19/2020] [Indexed: 12/20/2022] Open
Abstract
It is necessary to develop an understanding of the specific mechanisms involved in alpha-synuclein aggregation and propagation to develop disease modifying therapies for age-related synucleinopathies, including Parkinson's disease and Dementia with Lewy Bodies. To adequately address this question, we developed a new transgenic mouse model of synucleinopathy that expresses human A53T SynGFP under control of the mouse prion protein promoter. Our characterization of this mouse line demonstrates that it exhibits several distinct advantages over other, currently available, mouse models. This new model allows rigorous study of the initial location of Lewy pathology formation and propagation in the living brain, and strongly suggests that aggregation begins in axonal structures with retrograde propagation to the cell body. This model also shows expeditious development of alpha-synuclein pathology following induction with small, in vitro-generated alpha-synuclein pre-formed fibrils (PFFs), as well as accelerated cell death of inclusion-bearing cells. Using this model, we found that aggregated alpha-synuclein somatic inclusions developed first in neurons, but later showed a second wave of inclusion formation in astrocytes. Interestingly, astrocytes appear to survive much longer after inclusion formation than their neuronal counterparts. This model also allowed careful study of peripheral-to-central spread of Lewy pathology after PFF injection into the hind limb musculature. Our results clearly show evidence of progressive, retrograde trans-synaptic spread of Lewy pathology through known neuroanatomically connected pathways in the motor system. As such, we have developed a promising tool to understand the biology of neurodegeneration associated with alpha-synuclein aggregation and to discover new treatments capable of altering the neurodegenerative disease course of synucleinopathies.
Collapse
Affiliation(s)
- Allison J Schaser
- Department of Neurology and Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Teresa L Stackhouse
- Department of Neurology and Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Leah J Weston
- Department of Neurology and Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Patrick C Kerstein
- Vollum Institute, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Valerie R Osterberg
- Department of Neurology and Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Claudia S López
- Multiscale Microscopy Core, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Kelvin C Luk
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Charles K Meshul
- Research Services, Veterans Affairs Medical Center, Portland, OR, 97239, USA
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Randall L Woltjer
- Department of Pathology, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Vivek K Unni
- Department of Neurology and Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, OR, 97239, USA.
- Parkinson Center, Department of Neurology, Oregon Health and Science University, Portland, OR, 97239, USA.
| |
Collapse
|
14
|
Moore C, Xu M, Bohlen JK, Meshul CK. Differential ultrastructural alterations in the Vglut2 glutamatergic input to the substantia nigra pars compacta/pars reticulata following nigrostriatal dopamine loss in a progressive mouse model of Parkinson’s disease. Eur J Neurosci 2020; 53:2061-2077. [DOI: 10.1111/ejn.14894] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Cynthia Moore
- Research ServicesVA Medical Center/Portland Portland OR USA
| | - Mo Xu
- Research ServicesVA Medical Center/Portland Portland OR USA
| | | | - Charles K. Meshul
- Research ServicesVA Medical Center/Portland Portland OR USA
- Department of Behavioral Neuroscience and Pathology Oregon Heath & Science University Portland OR USA
| |
Collapse
|
15
|
Tsai ST, Chen SY, Lin SZ, Tseng GF. Rostral intralaminar thalamic deep brain stimulation ameliorates memory deficits and dendritic regression in β-amyloid-infused rats. Brain Struct Funct 2020; 225:751-761. [PMID: 32036422 DOI: 10.1007/s00429-020-02033-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/22/2020] [Indexed: 10/25/2022]
Abstract
Rostral intralaminar thalamic deep brain stimulation (ILN-DBS) has been shown to enhance attention and cognition through neuronal activation and brain plasticity. We examined whether rostral ILN-DBS can also attenuate memory deficits and impaired synaptic plasticity and protect glutamatergic transmission in the rat intraventricular β-amyloid (Aβ) infusion model of Alzheimer's disease (AD). Spatial memory was tested in the Morris water maze (MWM), while structural synaptic plasticity and glutamatergic transmission strength were estimated by measuring dendritic spine densities in dye-injected neurons and tissue expression levels of postsynaptic density protein 95 (PSD-95) in medial prefrontal cortex (mPFC) and hippocampus. All these assessments were compared among the naïve control rats, AD rats, and AD rats with ILN-DBS. We found that a single rostral ILN-DBS treatment significantly improved MWM performance and reversed PSD-95 expression reductions in the mPFC and hippocampal region of Aβ-infused rats. In addition, ILN-DBS preserved dendritic spine densities on mPFC and hippocampal pyramidal neurons. In fact, MWM performance, PSD-95 expression levels, and dendritic spine densities did not differ between naïve control and rostral ILN-DBS treatment groups, indicating near complete amelioration of Aβ-induced spatial memory impairments and dendritic regression. These findings suggest that the ILN is critical for modulating glutamatergic transmission, neural plasticity, and spatial memory functions through widespread effects on distributed brain regions. Further, these findings provide a rationale for examining the therapeutic efficacy of ILN-DBS in AD patients.
Collapse
Affiliation(s)
- Sheng-Tzung Tsai
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation/Tzu Chi University, Hualien, Taiwan.,Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Shin-Yuan Chen
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation/Tzu Chi University, Hualien, Taiwan.,Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Shinn-Zong Lin
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation/Tzu Chi University, Hualien, Taiwan
| | - Guo-Fang Tseng
- Department of Anatomy, College of Medicine, Tzu-Chi University, No. 701, Section 3, Jhongyang Road, Hualien, 970, Taiwan.
| |
Collapse
|
16
|
Jakobs M, Fomenko A, Lozano AM, Kiening KL. Cellular, molecular, and clinical mechanisms of action of deep brain stimulation-a systematic review on established indications and outlook on future developments. EMBO Mol Med 2019; 11:e9575. [PMID: 30862663 PMCID: PMC6460356 DOI: 10.15252/emmm.201809575] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/23/2018] [Accepted: 02/20/2019] [Indexed: 12/31/2022] Open
Abstract
Deep brain stimulation (DBS) has been successfully used to treat movement disorders, such as Parkinson's disease, for more than 25 years and heralded the advent of electrical neuromodulation to treat diseases with dysregulated neuronal circuits. DBS is now superseding ablative techniques, such as stereotactic radiofrequency lesions. While serendipity has played a role in developing DBS as a therapy, research during the past two decades has shown that electrical neuromodulation is far more than a functional lesion that can be switched on and off. This understanding broadens the field to enable new types of stimulation, clinical indications, and research. This review highlights the complex effects of DBS from the single cell to the neuronal network. Specifically, we examine the electrical, cellular, molecular, and neurochemical mechanisms of DBS as applied to Parkinson's disease and other emerging applications.
Collapse
Affiliation(s)
- Martin Jakobs
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Anton Fomenko
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Karl L Kiening
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
17
|
Shimamoto A, Rappeneau V, Munjal H, Farris T, Davis C, Wilson A, Edwards M, Moore C, Reynolds C, Meshul CK. Glutamate-Glutamine Transfer and Chronic Stress-Induced Sex Differences in Cocaine Responses. Neuroscience 2018; 391:104-119. [DOI: 10.1016/j.neuroscience.2018.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 01/16/2023]
|
18
|
Elliott JE, De Luche SE, Churchill MJ, Moore C, Cohen AS, Meshul CK, Lim MM. Dietary therapy restores glutamatergic input to orexin/hypocretin neurons after traumatic brain injury in mice. Sleep 2018; 41:4791165. [PMID: 29315422 PMCID: PMC6454530 DOI: 10.1093/sleep/zsx212] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/27/2017] [Indexed: 02/06/2023] Open
Abstract
Study Objectives In previous work, dietary branched-chain amino acid (BCAA) supplementation, precursors to de novo glutamate and γ-aminobutyric acid (GABA) synthesis, restored impaired sleep-wake regulation and orexin neuronal activity following traumatic brain injury (TBI) in mice. TBI was speculated to reduce orexin neuronal activity through decreased regional excitatory (glutamate) and/or increased inhibitory (GABA) input. Therefore, we hypothesized that TBI would decrease synaptic glutamate and/or increase synaptic GABA in nerve terminals contacting orexin neurons, and BCAA supplementation would restore TBI-induced changes in synaptic glutamate and/or GABA. Methods Brain tissue was processed for orexin pre-embed diaminobenzidine labeling and glutamate or GABA postembed immunogold labeling. The density of glutamate and GABA immunogold within presynaptic nerve terminals contacting orexin-positive lateral hypothalamic neurons was quantified using electron microscopy in three groups of mice (n = 8 per group): Sham/noninjured controls, TBI without BCAA supplementation, and TBI with BCAA supplementation (given for 5 days, 48 hr post-TBI). Glutamate and GABA were also quantified within the cortical penumbral region (layer VIb) adjacent to the TBI lesion. Results In the hypothalamus and cortex, TBI decreased relative glutamate density in presynaptic terminals making axodendritic contacts. However, BCAA supplementation only restored relative glutamate density within presynaptic terminals contacting orexin-positive hypothalamic neurons. BCAA supplementation did not change relative glutamate density in presynaptic terminals making axosomatic contacts, or relative GABA density in presynaptic terminals making axosomatic or axodendritic contacts, within either the hypothalamus or cortex. Conclusions These results suggest TBI compromises orexin neuron function via decreased glutamate density and highlight BCAA supplementation as a potential therapy to restore glutamate density to orexin neurons.
Collapse
Affiliation(s)
- Jonathan E Elliott
- VA Portland Health Care System, Portland, OR
- Department of Neurology, Oregon Health and Science University, Portland, OR
| | | | | | - Cindy Moore
- VA Portland Health Care System, Portland, OR
| | - Akiva S Cohen
- Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Anesthesiology, Joseph Stokes Research Institute, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Charles K Meshul
- VA Portland Health Care System, Portland, OR
- Department of Behavioral Neuroscience and Pathology, Oregon Health and Science University, Portland, OR
| | - Miranda M Lim
- VA Portland Health Care System, Portland, OR
- Department of Neurology, Oregon Health and Science University, Portland, OR
- Department of Medicine and Behavioral Neuroscience, Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR
| |
Collapse
|
19
|
Reidling JC, Relaño-Ginés A, Holley SM, Ochaba J, Moore C, Fury B, Lau A, Tran AH, Yeung S, Salamati D, Zhu C, Hatami A, Cepeda C, Barry JA, Kamdjou T, King A, Coleal-Bergum D, Franich NR, LaFerla FM, Steffan JS, Blurton-Jones M, Meshul CK, Bauer G, Levine MS, Chesselet MF, Thompson LM. Human Neural Stem Cell Transplantation Rescues Functional Deficits in R6/2 and Q140 Huntington's Disease Mice. Stem Cell Reports 2017; 10:58-72. [PMID: 29233555 PMCID: PMC5768890 DOI: 10.1016/j.stemcr.2017.11.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 11/03/2017] [Accepted: 11/03/2017] [Indexed: 01/01/2023] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder with no disease-modifying treatment. Expansion of the glutamine-encoding repeat in the Huntingtin (HTT) gene causes broad effects that are a challenge for single treatment strategies. Strategies based on human stem cells offer a promising option. We evaluated efficacy of transplanting a good manufacturing practice (GMP)-grade human embryonic stem cell-derived neural stem cell (hNSC) line into striatum of HD modeled mice. In HD fragment model R6/2 mice, transplants improve motor deficits, rescue synaptic alterations, and are contacted by nerve terminals from mouse cells. Furthermore, implanted hNSCs are electrophysiologically active. hNSCs also improved motor and late-stage cognitive impairment in a second HD model, Q140 knockin mice. Disease-modifying activity is suggested by the reduction of aberrant accumulation of mutant HTT protein and expression of brain-derived neurotrophic factor (BDNF) in both models. These findings hold promise for future development of stem cell-based therapies.
Collapse
Affiliation(s)
- Jack C Reidling
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, 3400 Biological Sciences III, Irvine, CA 92697-4545, USA
| | - Aroa Relaño-Ginés
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Sandra M Holley
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Joseph Ochaba
- Department of Neurobiology & Behavior, University of California, Irvine, 3400 Biological Sciences III, Irvine, CA 92697-4545, USA
| | - Cindy Moore
- Portland VA Medical Center, 3710 SW US Veterans Hospital Road, Portland, OR 97239, USA
| | - Brian Fury
- Institute for Regenerative Cures, University of California, Davis, 2921 Stockton Boulevard, Sacramento, CA 95817, USA
| | - Alice Lau
- Department of Psychiatry & Human Behavior, University of California, Irvine, 3400 Biological Sciences III, Irvine, CA 92697-4545, USA
| | - Andrew H Tran
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, 3400 Biological Sciences III, Irvine, CA 92697-4545, USA
| | - Sylvia Yeung
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, 3400 Biological Sciences III, Irvine, CA 92697-4545, USA
| | - Delaram Salamati
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, 3400 Biological Sciences III, Irvine, CA 92697-4545, USA
| | - Chunni Zhu
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Asa Hatami
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Joshua A Barry
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Talia Kamdjou
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Alvin King
- Department of Neurobiology & Behavior, University of California, Irvine, 3400 Biological Sciences III, Irvine, CA 92697-4545, USA
| | - Dane Coleal-Bergum
- Institute for Regenerative Cures, University of California, Davis, 2921 Stockton Boulevard, Sacramento, CA 95817, USA
| | - Nicholas R Franich
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Frank M LaFerla
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, 3400 Biological Sciences III, Irvine, CA 92697-4545, USA; Department of Neurobiology & Behavior, University of California, Irvine, 3400 Biological Sciences III, Irvine, CA 92697-4545, USA
| | - Joan S Steffan
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, 3400 Biological Sciences III, Irvine, CA 92697-4545, USA; Department of Psychiatry & Human Behavior, University of California, Irvine, 3400 Biological Sciences III, Irvine, CA 92697-4545, USA
| | - Mathew Blurton-Jones
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, 3400 Biological Sciences III, Irvine, CA 92697-4545, USA; Department of Neurobiology & Behavior, University of California, Irvine, 3400 Biological Sciences III, Irvine, CA 92697-4545, USA; Sue and Bill Gross Stem Cell Center, University of California, Irvine, Gross Hall, Room 3219, 845 Health Sciences Road, Irvine, CA 92697, USA
| | - Charles K Meshul
- Portland VA Medical Center, 3710 SW US Veterans Hospital Road, Portland, OR 97239, USA; Oregon Health & Science University, Department of Behavioral Neuroscience, 3181 SW Sam Jackson Park Road, L470, Portland, OR 97239, USA
| | - Gerhard Bauer
- Institute for Regenerative Cures, University of California, Davis, 2921 Stockton Boulevard, Sacramento, CA 95817, USA
| | - Michael S Levine
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90095, USA; Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Marie-Francoise Chesselet
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Leslie M Thompson
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, 3400 Biological Sciences III, Irvine, CA 92697-4545, USA; Department of Neurobiology & Behavior, University of California, Irvine, 3400 Biological Sciences III, Irvine, CA 92697-4545, USA; Department of Psychiatry & Human Behavior, University of California, Irvine, 3400 Biological Sciences III, Irvine, CA 92697-4545, USA; Sue and Bill Gross Stem Cell Center, University of California, Irvine, Gross Hall, Room 3219, 845 Health Sciences Road, Irvine, CA 92697, USA.
| |
Collapse
|
20
|
Parievsky A, Moore C, Kamdjou T, Cepeda C, Meshul CK, Levine MS. Differential electrophysiological and morphological alterations of thalamostriatal and corticostriatal projections in the R6/2 mouse model of Huntington's disease. Neurobiol Dis 2017; 108:29-44. [PMID: 28757327 DOI: 10.1016/j.nbd.2017.07.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 07/10/2017] [Accepted: 07/26/2017] [Indexed: 01/18/2023] Open
Abstract
Huntington's disease (HD) is a fatal genetic disorder characterized by cell death of medium-sized spiny neurons (MSNs) in the striatum, traditionally attributed to excessive glutamate inputs and/or receptor sensitivity. While changes in corticostriatal projections have typically been studied in mouse models of HD, morphological and functional alterations in thalamostriatal projections have received less attention. In this study, an adeno-associated virus expressing channelrhodopsin-2 under the calcium/calmodulin-dependent protein kinase IIα promoter was injected into the sensorimotor cortex or the thalamic centromedian-parafascicular nuclear complex in the R6/2 mouse model of HD, to permit selective activation of corticostriatal or thalamostriatal projections, respectively. In symptomatic R6/2 mice, peak amplitudes and areas of corticostriatal glutamate AMPA and NMDA receptor-mediated responses were reduced. In contrast, although peak amplitudes of AMPA and NMDA receptor-mediated thalamostriatal responses also were reduced, the areas remained unchanged due to an increase in response decay times. Blockade of glutamate reuptake further increased response areas and slowed rise and decay times of NMDA responses. These effects appeared more pronounced at thalamostriatal synapses of R6/2 mice, suggesting increased activation of extrasynaptic NMDA receptors. In addition, the probability of glutamate release was higher at thalamostriatal than corticostriatal synapses, particularly in R6/2 mice. Morphological studies indicated that the density of all excitatory synaptic contacts onto MSNs was reduced, which matches the basic electrophysiological findings of reduced amplitudes. There was a consistent reduction in the area of spines but little change in presynaptic terminal size, indicating that the postsynaptic spine may be more significantly affected than presynaptic terminals. These results highlight the significant and differential contribution of the thalamostriatal projection to glutamate excitotoxicity in HD.
Collapse
Affiliation(s)
- Anna Parievsky
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Cindy Moore
- Research Services, VA Portland Health Care System, Oregon Health & Science University, Portland, OR, USA
| | - Talia Kamdjou
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Charles K Meshul
- Research Services, VA Portland Health Care System, Oregon Health & Science University, Portland, OR, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Michael S Levine
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
21
|
Exercise in an animal model of Parkinson's disease: Motor recovery but not restoration of the nigrostriatal pathway. Neuroscience 2017; 359:224-247. [PMID: 28754312 DOI: 10.1016/j.neuroscience.2017.07.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 11/23/2022]
Abstract
Many clinical studies have reported on the benefits of exercise therapy in patients with Parkinson's disease (PD). Exercise cannot stop the progression of PD or facilitate the recovery of dopamine (DA) neurons in the substantia nigra pars compacta (SNpc) (Bega et al., 2014). To tease apart this paradox, we utilized a progressive MPTP (1-methyl-4-phenyl-1,2,3,6-tetra-hydropyridine) mouse model in which we initiated 4weeks of treadmill exercise after the completion of toxin administration (i.e., restoration). We found in our MPTP/exercise (MPTP+EX) group several measures of gait function that recovered compared to the MPTP only group. Although there was a small recovery of tyrosine hydroxylase (TH) positive DA neurons in the SNpc and terminals in the striatum, this increase was not statistically significant. These small changes in TH could not explain the improvement of motor function. The MPTP group had a significant 170% increase in the glycosylated/non-glycosylated dopamine transporter (DAT) and a 200% increase in microglial marker, IBA-1, in the striatum. The MPTP+EX group showed a nearly full recovery of these markers back to the vehicle levels. There was an increase in GLT-1 levels in the striatum due to exercise, with no change in striatal BDNF protein expression. Our data suggest that motor recovery was not prompted by any significant restoration of DA neurons or terminals, but rather the recovery of DAT and dampening the inflammatory response. Although exercise does not promote recovery of nigrostriatal DA, it should be used in conjunction with pharmaceutical methods for controlling PD symptoms.
Collapse
|
22
|
Bentea E, Moore C, Deneyer L, Verbruggen L, Churchill MJ, Hood RL, Meshul CK, Massie A. Plastic changes at corticostriatal synapses predict improved motor function in a partial lesion model of Parkinson’s disease. Brain Res Bull 2017; 130:257-267. [DOI: 10.1016/j.brainresbull.2017.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/16/2017] [Indexed: 12/15/2022]
|
23
|
Aroso M, Ferreira R, Freitas A, Vitorino R, Gomez-Lazaro M. New insights on the mitochondrial proteome plasticity in Parkinson's disease. Proteomics Clin Appl 2016; 10:416-29. [PMID: 26749507 DOI: 10.1002/prca.201500092] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 12/09/2015] [Accepted: 01/04/2016] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases whose relentless progression results in severe disability. Although PD aetiology is unknown, growing evidences point to the mitochondrial involvement in the pathobiology of this disorder. So, it seems imperative to understand the means by which the molecular pathways harboured in this organelle are regulated. With the advances in MS-based proteomics, there is a substantial expectation in the increased knowledge of mitochondrial protein dynamics. Still, few studies have been performed on mitochondrial protein profiling in the context of PD. In order to integrate data from these studies, network analyses were performed taking into consideration variables such as model of PD, cell line, or tissue origin. Overall, data retrieved from these analyses highlighted the modulation of the biological processes related with "generation of energy," "cellular metabolism," and "mitochondrial transport" in PD. However, it was noted that the impact of sample type and/or PD model on the biological processes was modulated by the disease. Moreover, technical considerations related to protein characterization using gel-based or gel-free MS approaches should be considered in data comparison among different studies. Data from the present review will help to envisage future studies targeting these mechanisms.
Collapse
Affiliation(s)
- Miguel Aroso
- Department of Medical Sciences, iBiMED, University of Aveiro, Aveiro, Portugal
| | - Rita Ferreira
- Department of Chemistry, QOPNA, Mass Spectrometry Center, University of Aveiro, Aveiro, Portugal
| | - Ana Freitas
- Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, University of Porto, Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| | - Rui Vitorino
- Department of Medical Sciences, iBiMED, University of Aveiro, Aveiro, Portugal.,Department of Chemistry, QOPNA, Mass Spectrometry Center, University of Aveiro, Aveiro, Portugal.,Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.,Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Maria Gomez-Lazaro
- Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, University of Porto, Porto, Portugal
| |
Collapse
|
24
|
Chassain C, Melon C, Salin P, Vitale F, Couraud S, Durif F, Kerkerian-Le Goff L, Gubellini P. Metabolic, synaptic and behavioral impact of 5-week chronic deep brain stimulation in hemiparkinsonian rats. J Neurochem 2015; 136:1004-16. [PMID: 26576509 DOI: 10.1111/jnc.13438] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/26/2015] [Accepted: 11/05/2015] [Indexed: 01/19/2023]
Abstract
The long-term effects and action mechanisms of subthalamic nucleus (STN) high-frequency stimulation (HFS) for Parkinson's disease still remain poorly characterized, mainly due to the lack of experimental models relevant to clinical application. To address this issue, we performed a multilevel study in freely moving hemiparkinsonian rats undergoing 5-week chronic STN HFS, using a portable constant-current microstimulator. In vivo metabolic neuroimaging by (1) H-magnetic resonance spectroscopy (11.7 T) showed that STN HFS normalized the tissue levels of the neurotransmission-related metabolites glutamate, glutamine and GABA in both the striatum and substantia nigra reticulata (SNr), which were significantly increased in hemiparkinsonian rats, but further decreased nigral GABA levels below control values; taurine levels, which were not affected in hemiparkinsonian rats, were significantly reduced. Slice electrophysiological recordings revealed that STN HFS was, uniquely among antiparkinsonian treatments, able to restore both forms of corticostriatal synaptic plasticity, i.e. long-term depression and potentiation, which were impaired in hemiparkinsonian rats. Behavior analysis (staircase test) showed a progressive recovery of motor skill during the stimulation period. Altogether, these data show that chronic STN HFS efficiently counteracts metabolic and synaptic defects due to dopaminergic lesion in both the striatum and SNr. Comparison of chronic STN HFS with acute and subchronic treatment further suggests that the long-term benefits of this treatment rely both on the maintenance of acute effects and on delayed actions on the basal ganglia network. We studied the effects of chronic (5 weeks) continuous subthalamic nucleus (STN) high-frequency stimulation (HFS) in hemiparkinsonian rats. The levels of glutamate and GABA in the striatum () and substantia nigra reticulata (SNr) (), measured by in vivo proton magnetic resonance spectroscopy ((1) H-MRS), were increased by 6-hydroxydopamine (6-OHDA) lesion, which also disrupted corticostriatal synaptic plasticity () and impaired forepaw skill () in the staircase test. Five-week STN HFS normalized glutamate and GABA levels and restored both synaptic plasticity and motor function. A partial behavioral recovery was observed at 2-week STN HFS.
Collapse
Affiliation(s)
- Carine Chassain
- Centre Hospitalier Universitaire (CHU) Clermont-Ferrand and Université d'Auvergne, Clermont-Ferrand, France
| | - Christophe Melon
- Institut de Biologie du Développement de Marseille (IBDM) UMR7288, Aix-Marseille Université, CNRS, Marseille, France
| | - Pascal Salin
- Institut de Biologie du Développement de Marseille (IBDM) UMR7288, Aix-Marseille Université, CNRS, Marseille, France
| | - Flora Vitale
- Institut de Biologie du Développement de Marseille (IBDM) UMR7288, Aix-Marseille Université, CNRS, Marseille, France
| | - Sébastien Couraud
- Institut de Biologie du Développement de Marseille (IBDM) UMR7288, Aix-Marseille Université, CNRS, Marseille, France
| | - Franck Durif
- Centre Hospitalier Universitaire (CHU) Clermont-Ferrand and Université d'Auvergne, Clermont-Ferrand, France
| | - Lydia Kerkerian-Le Goff
- Institut de Biologie du Développement de Marseille (IBDM) UMR7288, Aix-Marseille Université, CNRS, Marseille, France
| | - Paolo Gubellini
- Institut de Biologie du Développement de Marseille (IBDM) UMR7288, Aix-Marseille Université, CNRS, Marseille, France
| |
Collapse
|
25
|
Jimenez VA, Helms CM, Cornea A, Meshul CK, Grant KA. An ultrastructural analysis of the effects of ethanol self-administration on the hypothalamic paraventricular nucleus in rhesus macaques. Front Cell Neurosci 2015; 9:260. [PMID: 26236193 PMCID: PMC4500925 DOI: 10.3389/fncel.2015.00260] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/23/2015] [Indexed: 01/29/2023] Open
Abstract
A bidirectional relationship between stress and ethanol exists whereby stressful events are comorbid with problematic ethanol use and prolonged ethanol exposure results in adaptations of the physiological stress response. Endocrine response to stress is initiated in the hypothalamic paraventricular nucleus (PVN) with the synthesis and release of corticotropin-releasing hormone (CRH) and arginine-vasopressin (AVP). Alterations in CRH and AVP following long-term ethanol exposure in rodents is well demonstrated, however little is known about the response to ethanol in primates or the mechanisms of adaptation. We hypothesized that long-term ethanol self-administration in nonhuman primates would lead to ultrastructural changes in the PVN underlying adaptation to chronic ethanol. Double-label immunogold electron microscopy (EM) was used to measure presynaptic gamma-aminobutyric acid (GABA) and glutamate density within synaptic terminals contacting CRH- and AVP-immunoreactive dendrites. Additionally, pituitary-adrenal hormones (ACTH, cortisol, DHEA-s and aldosterone) under two conditions (low and mild stress) were compared before and after self-administration. All hormones were elevated in response to the mild stressor independent of ethanol consumption. The presynaptic glutamate density in recurrent (i.e., intra-hypothalamic) CRH terminals was highly related to ethanol intake, and may be a permissive factor in increased drinking due to stress. Conversely, glutamate density within recurrent AVP terminals showed a trend-level increase following ethanol, but was not related to average daily consumption. Glutamate density in non-recurrent AVP terminals was related to aldosterone under the low stress condition while GABAergic density in this terminal population was related to water consumption. The results reveal distinct populations of presynaptic terminals whose glutamatergic or GABAergic density were uniquely related to water and ethanol consumption and circulating hormones.
Collapse
Affiliation(s)
- Vanessa A Jimenez
- Behavioral Neuroscience, Oregon Health and Science University Portland, OR, USA ; Division of Neuroscience, Oregon National Primate Research Center Beaverton, OR, USA
| | - Christa M Helms
- Division of Neuroscience, Oregon National Primate Research Center Beaverton, OR, USA
| | - Anda Cornea
- Division of Neuroscience, Oregon National Primate Research Center Beaverton, OR, USA
| | - Charles K Meshul
- Behavioral Neuroscience, Oregon Health and Science University Portland, OR, USA ; Research Services, Veterans Affairs Medical Center Portland, OR, USA
| | - Kathleen A Grant
- Behavioral Neuroscience, Oregon Health and Science University Portland, OR, USA ; Division of Neuroscience, Oregon National Primate Research Center Beaverton, OR, USA
| |
Collapse
|
26
|
Wang P, Eshaq RS, Meshul CK, Moore C, Hood RL, Leidenheimer NJ. Neuronal gamma-aminobutyric acid (GABA) type A receptors undergo cognate ligand chaperoning in the endoplasmic reticulum by endogenous GABA. Front Cell Neurosci 2015; 9:188. [PMID: 26041994 PMCID: PMC4435044 DOI: 10.3389/fncel.2015.00188] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/28/2015] [Indexed: 01/01/2023] Open
Abstract
GABAA receptors mediate fast inhibitory neurotransmission in the brain. Dysfunction of these receptors is associated with various psychiatric/neurological disorders and drugs targeting this receptor are widely used therapeutic agents. Both the efficacy and plasticity of GABAA receptor-mediated neurotransmission depends on the number of surface GABAA receptors. An understudied aspect of receptor cell surface expression is the post-translational regulation of receptor biogenesis within the endoplasmic reticulum (ER). We have previously shown that exogenous GABA can act as a ligand chaperone of recombinant GABAA receptors in the early secretory pathway leading us to now investigate whether endogenous GABA facilitates the biogenesis of GABAA receptors in primary cerebral cortical cultures. In immunofluorescence labeling experiments, we have determined that neurons expressing surface GABAA receptors contain both GABA and its degradative enzyme GABA transaminase (GABA-T). Treatment of neurons with GABA-T inhibitors, a treatment known to increase intracellular GABA levels, decreases the interaction of the receptor with the ER quality control protein calnexin, concomittantly increasing receptor forward-trafficking and plasma membrane insertion. The effect of GABA-T inhibition on the receptor/calnexin interaction is not due to the activation of surface GABAA or GABAB receptors. Consistent with our hypothesis that GABA acts as a cognate ligand chaperone in the ER, immunogold-labeling of rodent brain slices reveals the presence of GABA within the rough ER. The density of this labeling is similar to that present in mitochondria, the organelle in which GABA is degraded. Lastly, the effect of GABA-T inhibition on the receptor/calnexin interaction was prevented by pretreatment with a GABA transporter inhibitor. Together, these data indicate that endogenous GABA acts in the rough ER as a cognate ligand chaperone to facilitate the biogenesis of neuronal GABAA receptors.
Collapse
Affiliation(s)
- Ping Wang
- Department of Biochemistry and Molecular Biology, Louisiana State University, Health Sciences Center-Shreveport Shreveport, LA, USA
| | - Randa S Eshaq
- Department of Biochemistry and Molecular Biology, Louisiana State University, Health Sciences Center-Shreveport Shreveport, LA, USA
| | - Charles K Meshul
- Veterans Hospital Portland/Research Services/Neurocytology Laboratory and Department of Behavioral Neuroscience, Oregon Health & Science University Portland, OR, USA
| | - Cynthia Moore
- Veterans Hospital Portland/Research Services/Neurocytology Laboratory and Department of Behavioral Neuroscience, Oregon Health & Science University Portland, OR, USA
| | - Rebecca L Hood
- Veterans Hospital Portland/Research Services/Neurocytology Laboratory and Department of Behavioral Neuroscience, Oregon Health & Science University Portland, OR, USA
| | - Nancy J Leidenheimer
- Department of Biochemistry and Molecular Biology, Louisiana State University, Health Sciences Center-Shreveport Shreveport, LA, USA
| |
Collapse
|
27
|
Melon C, Chassain C, Bielicki G, Renou JP, Kerkerian-Le Goff L, Salin P, Durif F. Progressive brain metabolic changes under deep brain stimulation of subthalamic nucleus in parkinsonian rats. J Neurochem 2015; 132:703-12. [PMID: 25533782 DOI: 10.1111/jnc.13015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/05/2014] [Accepted: 12/10/2014] [Indexed: 01/08/2023]
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an efficient neurosurgical treatment for advanced Parkinson's disease. Non-invasive metabolic neuroimaging during the course of DBS in animal models may contribute to our understanding of its action mechanisms. Here, DBS was adapted to in vivo proton magnetic resonance spectroscopy at 11.7 T in the rat to follow metabolic changes in main basal ganglia structures, the striatum, and the substantia nigra pars reticulata (SNr). Measurements were repeated OFF and ON acute and subchronic (7 days) STN-DBS in control and parkinsonian (6-hydroxydopamine lesion) conditions. Acute DBS reversed the increases in glutamate, glutamine, and GABA levels induced by the dopamine lesion in the striatum but not in the SNr. Subchronic DBS normalized GABA in both the striatum and SNr, and glutamate in the striatum. Taurine levels were markedly decreased under subchronic DBS in the striatum and SNr in both lesioned and unlesioned rats. Microdialysis in the striatum further showed that extracellular taurine was increased. These data reveal that STN-DBS has duration-dependent metabolic effects in the basal ganglia, consistent with development of adaptive mechanisms. In addition to counteracting defects induced by the dopamine lesion, prolonged DBS has proper effects independent of the pathological condition. Non-invasive metabolic neuroimaging might be useful to understand the physiological mechanisms of deep brain stimulation (DBS). Here, we demonstrate the feasibility of repeated high-field proton magnetic resonance spectroscopy of basal ganglia structures under subthalamic nucleus DBS in control and parkinsonian rats. Results show that DBS has both rapid and delayed effects either dependent or independent of disease state.
Collapse
Affiliation(s)
- Christophe Melon
- Aix Marseille Université, CNRS, IBDM UMR 7288, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
28
|
Wang M, Zhu J, Pan Y, Dong J, Zhang L, Zhang X, Zhang L. Hydrogen sulfide functions as a neuromodulator to regulate striatal neurotransmission in a mouse model of Parkinson's disease. J Neurosci Res 2014; 93:487-94. [PMID: 25388401 DOI: 10.1002/jnr.23504] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/24/2014] [Accepted: 09/24/2014] [Indexed: 01/09/2023]
Abstract
Hydrogen sulfide (H2S), a novel endogenous gasotransmitter, has been considered a neuromodulator to enhance hippocampal long-term potentiation and exerts neuroprotective effects against neurotoxin-induced neurodegeneration in rodent models of Parkinson's disease (PD). However, whether H2S can function as a neuromodulator to regulate the levels of nigrostriatal neurotransmitters and then impact the vulnerability of dopaminergic (DA) neurons in response to neurotoxins remains unknown. For this study, we prepared a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine plus probenecid (MPTP/p)-induced mouse subacute model of PD to explore the modulatory effect of H2S on monoamine and amino acid neurotransmitters in the striatum of MPTP-treated mice. This study shows that NaHS (an H2S donor, 5.6 mg/kg/day, i.p.) administration improves the survival rate and significantly ameliorates the weight loss of MPTP-treated mice. NaHS treatment attenuated MPTP-induced neuronal damage, restored the diminution of DA neurons, and suppressed the overactivation of astrocytes in the mouse striatum. Additionally, NaHS upregulated striatal serotonin levels and modulated the balance of excitatory glutamate and the inhibitory γ-aminobutyric acid system in response to MPTP challenge. The current study indicates that H2S may function as an effective neuromodulator to regulate striatal neurotransmission and provides insight into the potential of H2S for PD therapy.
Collapse
Affiliation(s)
- Min Wang
- Department of Geriatric Neurology, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Parkinson's disease and dementia with Lewy bodies are associated with abnormal neuronal aggregation of α-synuclein. However, the mechanisms of aggregation and their relationship to disease are poorly understood. We developed an in vivo multiphoton imaging paradigm to study α-synuclein aggregation in mouse cortex with subcellular resolution. We used a green fluorescent protein-tagged human α-synuclein mouse line that has moderate overexpression levels mimicking human disease. Fluorescence recovery after photobleaching (FRAP) of labeled protein demonstrated that somatic α-synuclein existed primarily in an unbound, soluble pool. In contrast, α-synuclein in presynaptic terminals was in at least three different pools: (1) as unbound, soluble protein; (2) bound to presynaptic vesicles; and (3) as microaggregates. Serial imaging of microaggregates over 1 week demonstrated a heterogeneous population with differing α-synuclein exchange rates. The microaggregate species were resistant to proteinase K, phosphorylated at serine-129, oxidized, and associated with a decrease in the presynaptic vesicle protein synapsin and glutamate immunogold labeling. Multiphoton FRAP provided the specific binding constants for α-synuclein's binding to synaptic vesicles and its effective diffusion coefficient in the soma and axon, setting the stage for future studies targeting synuclein modifications and their effects. Our in vivo results suggest that, under moderate overexpression conditions, α-synuclein aggregates are selectively found in presynaptic terminals.
Collapse
|
30
|
Kahan J, Urner M, Moran R, Flandin G, Marreiros A, Mancini L, White M, Thornton J, Yousry T, Zrinzo L, Hariz M, Limousin P, Friston K, Foltynie T. Resting state functional MRI in Parkinson's disease: the impact of deep brain stimulation on 'effective' connectivity. ACTA ACUST UNITED AC 2014; 137:1130-44. [PMID: 24566670 PMCID: PMC3959559 DOI: 10.1093/brain/awu027] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Deep brain stimulation is an established therapy for Parkinson’s disease, although its mechanism of action remains unclear. Kahan et al. use resting state fMRI and dynamic causal modelling to study changes in ‘effective’ connectivity within the basal ganglia. Analyses implicate subthalamic afferents and the direct pathway in the clinical response. Depleted of dopamine, the dynamics of the parkinsonian brain impact on both ‘action’ and ‘resting’ motor behaviour. Deep brain stimulation has become an established means of managing these symptoms, although its mechanisms of action remain unclear. Non-invasive characterizations of induced brain responses, and the effective connectivity underlying them, generally appeals to dynamic causal modelling of neuroimaging data. When the brain is at rest, however, this sort of characterization has been limited to correlations (functional connectivity). In this work, we model the ‘effective’ connectivity underlying low frequency blood oxygen level-dependent fluctuations in the resting Parkinsonian motor network—disclosing the distributed effects of deep brain stimulation on cortico-subcortical connections. Specifically, we show that subthalamic nucleus deep brain stimulation modulates all the major components of the motor cortico-striato-thalamo-cortical loop, including the cortico-striatal, thalamo-cortical, direct and indirect basal ganglia pathways, and the hyperdirect subthalamic nucleus projections. The strength of effective subthalamic nucleus afferents and efferents were reduced by stimulation, whereas cortico-striatal, thalamo-cortical and direct pathways were strengthened. Remarkably, regression analysis revealed that the hyperdirect, direct, and basal ganglia afferents to the subthalamic nucleus predicted clinical status and therapeutic response to deep brain stimulation; however, suppression of the sensitivity of the subthalamic nucleus to its hyperdirect afferents by deep brain stimulation may subvert the clinical efficacy of deep brain stimulation. Our findings highlight the distributed effects of stimulation on the resting motor network and provide a framework for analysing effective connectivity in resting state functional MRI with strong a priori hypotheses.
Collapse
Affiliation(s)
- Joshua Kahan
- 1 Sobell Department for Motor Neurosciences and Movement Disorders, UCL Institute of Neurology, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Favier M, Carcenac C, Drui G, Boulet S, El Mestikawy S, Savasta M. High-frequency stimulation of the subthalamic nucleus modifies the expression of vesicular glutamate transporters in basal ganglia in a rat model of Parkinson's disease. BMC Neurosci 2013; 14:152. [PMID: 24308494 PMCID: PMC4234365 DOI: 10.1186/1471-2202-14-152] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 11/27/2013] [Indexed: 11/18/2022] Open
Abstract
Background It has been suggested that glutamatergic system hyperactivity may be related to the pathogenesis of Parkinson’s disease (PD). Vesicular glutamate transporters (VGLUT1-3) import glutamate into synaptic vesicles and are key anatomical and functional markers of glutamatergic excitatory transmission. Both VGLUT1 and VGLUT2 have been identified as definitive markers of glutamatergic neurons, but VGLUT 3 is also expressed by non glutamatergic neurons. VGLUT1 and VGLUT2 are thought to be expressed in a complementary manner in the cortex and the thalamus (VL/VM), in glutamatergic neurons involved in different physiological functions. Chronic high-frequency stimulation (HFS) of the subthalamic nucleus (STN) is the neurosurgical therapy of choice for the management of motor deficits in patients with advanced PD. STN-HFS is highly effective, but its mechanisms of action remain unclear. This study examines the effect of STN-HFS on VGLUT1-3 expression in different brain nuclei involved in motor circuits, namely the basal ganglia (BG) network, in normal and 6-hydroxydopamine (6-OHDA) lesioned rats. Results Here we report that: 1) Dopamine(DA)-depletion did not affect VGLUT1 and VGLUT3 expression but significantly decreased that of VGLUT2 in almost all BG structures studied; 2) STN-HFS did not change VGLUT1-3 expression in the different brain areas of normal rats while, on the contrary, it systematically induced a significant increase of their expression in DA-depleted rats and 3) STN-HFS reversed the decrease in VGLUT2 expression induced by the DA-depletion. Conclusions These results show for the first time a comparative analysis of changes of expression for the three VGLUTs induced by STN-HFS in the BG network of normal and hemiparkinsonian rats. They provide evidence for the involvement of VGLUT2 in the modulation of BG cicuits and in particular that of thalamostriatal and thalamocortical pathways suggesting their key role in its therapeutic effects for alleviating PD motor symptoms.
Collapse
Affiliation(s)
- Mathieu Favier
- Institut National de la Santé et de la Recherche Médicale, Unité 836, Grenoble Institut des Neurosciences, Equipe Dynamique et Physiopathologie des Ganglions de la Base, Grenoble F-38043, Cedex 9, France.
| | | | | | | | | | | |
Collapse
|
32
|
Baptista MAS, Dave KD, Frasier MA, Sherer TB, Greeley M, Beck MJ, Varsho JS, Parker GA, Moore C, Churchill MJ, Meshul CK, Fiske BK. Loss of leucine-rich repeat kinase 2 (LRRK2) in rats leads to progressive abnormal phenotypes in peripheral organs. PLoS One 2013; 8:e80705. [PMID: 24244710 PMCID: PMC3828242 DOI: 10.1371/journal.pone.0080705] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 10/12/2013] [Indexed: 01/14/2023] Open
Abstract
The objective of this study was to evaluate the pathology time course of the LRRK2 knockout rat model of Parkinson’s disease at 1-, 2-, 4-, 8-, 12-, and 16-months of age. The evaluation consisted of histopathology and ultrastructure examination of selected organs, including the kidneys, lungs, spleen, heart, and liver, as well as hematology, serum, and urine analysis. The LRRK2 knockout rat, starting at 2-months of age, displayed abnormal kidney staining patterns and/or morphologic changes that were associated with higher serum phosphorous, creatinine, cholesterol, and sorbitol dehydrogenase, and lower serum sodium and chloride compared to the LRRK2 wild-type rat. Urinalysis indicated pronounced changes in LRRK2 knockout rats in urine specific gravity, total volume, urine potassium, creatinine, sodium, and chloride that started as early as 1- to 2-months of age. Electron microscopy of 16-month old LRRK2 knockout rats displayed an abnormal kidney, lung, and liver phenotype. In contrast, there were equivocal or no differences in the heart and spleen of LRRK2 wild-type and knockout rats. These findings partially replicate data from a recent study in 4-month old LRRK2 knockout rats [1] and expand the analysis to demonstrate that the renal and possibly lung and liver abnormalities progress with age. The characterization of LRRK2 knockout rats may prove to be extremely valuable in understanding potential safety liabilities of LRRK2 kinase inhibitor therapeutics for treating Parkinson’s disease.
Collapse
Affiliation(s)
- Marco A. S. Baptista
- Research Programs, The Michael J. Fox Foundation for Parkinson’s Research, New York, New York, United States of America
- * E-mail:
| | - Kuldip D. Dave
- Research Programs, The Michael J. Fox Foundation for Parkinson’s Research, New York, New York, United States of America
| | - Mark A. Frasier
- Research Programs, The Michael J. Fox Foundation for Parkinson’s Research, New York, New York, United States of America
| | - Todd B. Sherer
- Research Programs, The Michael J. Fox Foundation for Parkinson’s Research, New York, New York, United States of America
| | | | | | | | | | - Cindy Moore
- Research Services, VA Medical Center/Portland and the Department of Behavioral Neuroscience and Pathology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Madeline J. Churchill
- Research Services, VA Medical Center/Portland and the Department of Behavioral Neuroscience and Pathology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Charles K. Meshul
- Research Services, VA Medical Center/Portland and the Department of Behavioral Neuroscience and Pathology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Brian K. Fiske
- Research Programs, The Michael J. Fox Foundation for Parkinson’s Research, New York, New York, United States of America
| |
Collapse
|
33
|
García MR, Pearlmutter BA, Wellstead PE, Middleton RH. A slow axon antidromic blockade hypothesis for tremor reduction via deep brain stimulation. PLoS One 2013; 8:e73456. [PMID: 24066049 PMCID: PMC3774723 DOI: 10.1371/journal.pone.0073456] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 07/22/2013] [Indexed: 01/08/2023] Open
Abstract
Parkinsonian and essential tremor can often be effectively treated by deep brain stimulation. We propose a novel explanation for the mechanism by which this technique ameliorates tremor: a reduction of the delay in the relevant motor control loops via preferential antidromic blockade of slow axons. The antidromic blockade is preferential because the pulses more rapidly clear fast axons, and the distribution of axonal diameters, and therefore velocities, in the involved tracts, is sufficiently long-tailed to make this effect quite significant. The preferential blockade of slow axons, combined with gain adaptation, results in a reduction of the mean delay in the motor control loop, which serves to stabilize the feedback system, thus ameliorating tremor. This theory, without any tuning, accounts for several previously perplexing phenomena, and makes a variety of novel predictions.
Collapse
Affiliation(s)
- Míriam R. García
- Hamilton Institute, National University of Ireland Maynooth, Co. Kildare, Ireland
| | - Barak A. Pearlmutter
- Hamilton Institute, National University of Ireland Maynooth, Co. Kildare, Ireland
- Department of Computer Science, National University of Ireland Maynooth, Co. Kildare, Ireland
- * E-mail:
| | - Peter E. Wellstead
- Hamilton Institute, National University of Ireland Maynooth, Co. Kildare, Ireland
| | - Richard H. Middleton
- Hamilton Institute, National University of Ireland Maynooth, Co. Kildare, Ireland
- Centre for Complex Dynamic Systems & Control, The University of Newcastle, Newcastle, Australia
| |
Collapse
|
34
|
Villalba RM, Smith Y. Differential striatal spine pathology in Parkinson's disease and cocaine addiction: a key role of dopamine? Neuroscience 2013; 251:2-20. [PMID: 23867772 DOI: 10.1016/j.neuroscience.2013.07.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 07/03/2013] [Indexed: 01/19/2023]
Abstract
In the striatum, the dendritic tree of the two main populations of projection neurons, called "medium spiny neurons (MSNs)", are covered with spines that receive glutamatergic inputs from the cerebral cortex and thalamus. In Parkinson's disease (PD), striatal MSNs undergo an important loss of dendritic spines, whereas aberrant overgrowth of striatal spines occurs following chronic cocaine exposure. This review examines the possibility that opposite dopamine dysregulation is one of the key factors that underlies these structural changes. In PD, nigrostriatal dopamine degeneration results in a significant loss of dendritic spines in the dorsal striatum, while rodents chronically exposed to cocaine and other psychostimulants, display an increase in the density of "thin and immature" spines in the nucleus accumbens (NAc). In rodent models of PD, there is evidence that D2 dopamine receptor-containing MSNs are preferentially affected, while D1-positive cells are the main targets of increased spine density in models of addiction. However, such specificity remains to be established in primates. Although the link between the extent of striatal spine changes and the behavioral deficits associated with these disorders remains controversial, there is unequivocal evidence that glutamatergic synaptic transmission is significantly altered in both diseased conditions. Recent studies have suggested that opposite calcium-mediated regulation of the transcription factor myocyte enhancer factor 2 (MEF2) function induces these structural defects. In conclusion, there is strong evidence that dopamine is a major, but not the sole, regulator of striatal spine pathology in PD and addiction to psychostimulants. Further studies of the role of glutamate and other genes associated with spine plasticity in mediating these effects are warranted.
Collapse
Affiliation(s)
- R M Villalba
- Yerkes National Primate Research Center, Emory University, 954, Gatewood Road NE, Atlanta, GA 30329, USA; UDALL Center of Excellence for Parkinson's Disease, Emory University, 954, Gatewood Road NE, Atlanta, GA 30329, USA.
| | | |
Collapse
|
35
|
di Michele F, Luchetti S, Bernardi G, Romeo E, Longone P. Neurosteroid and neurotransmitter alterations in Parkinson's disease. Front Neuroendocrinol 2013; 34:132-42. [PMID: 23563222 DOI: 10.1016/j.yfrne.2013.03.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 02/17/2013] [Accepted: 03/25/2013] [Indexed: 01/13/2023]
Abstract
Parkinson's disease (PD) is associated with a massive loss of dopaminergic cells in the substantia nigra leading to dopamine hypofunction and alteration of the basal ganglia circuitry. These neurons, are under the control, among others, of the excitatory glutamatergic and inhibitory γ-aminobutyric acid (GABA) systems. An imbalance between these systems may contribute to excitotoxicity and dopaminergic cell death. Neurosteroids, a group of steroid hormones synthesized in the brain, modulate the function of several neurotransmitter systems. The substantia nigra of the human brain expresses high concentrations of allopregnanolone (3α, 5αtetrahydroprogesterone), a neurosteroid that positively modulates the action of GABA at GABAA receptors and of 5α-dihydroprogesterone, a neurosteroid acting at the genomic level. This article reviews the roles of NS acting as neuroprotectants and as GABAA receptor agonists in the physiology and pathophysiology of the basal ganglia, their impact on dopaminergic cell activity and survival, and potential therapeutic application in PD.
Collapse
|
36
|
|
37
|
Sutton AC, Yu W, Calos ME, Smith AB, Ramirez-Zamora A, Molho ES, Pilitsis JG, Brotchie JM, Shin DS. Deep brain stimulation of the substantia nigra pars reticulata improves forelimb akinesia in the hemiparkinsonian rat. J Neurophysiol 2012; 109:363-74. [PMID: 23076106 DOI: 10.1152/jn.00311.2012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Deep brain stimulation (DBS) employing high-frequency stimulation (HFS) is commonly used in the globus pallidus interna (GPi) and the subthalamic nucleus (STN) for treating motor symptoms of patients with Parkinson's disease (PD). Although DBS improves motor function in most PD patients, disease progression and stimulation-induced nonmotor complications limit DBS in these areas. In this study, we assessed whether stimulation of the substantia nigra pars reticulata (SNr) improved motor function. Hemiparkinsonian rats predominantly touched with their unimpaired forepaw >90% of the time in the stepping and limb-use asymmetry tests. After SNr-HFS (150 Hz), rats touched equally with both forepaws, similar to naive and sham-lesioned rats. In vivo, SNr-HFS decreased beta oscillations (12-30 Hz) in the SNr of freely moving hemiparkinsonian rats and decreased SNr neuronal spiking activity from 28 ± 1.9 Hz before stimulation to 0.8 ± 1.9 Hz during DBS in anesthetized animals; also, neuronal spiking activity increased from 7 ± 1.6 to 18 ± 1.6 Hz in the ventromedial portion of the thalamus (VM), the primary SNr efferent. In addition, HFS of the SNr in brain slices from normal and reserpine-treated rat pups resulted in a depolarization block of SNr neuronal activity. We demonstrate improvement of forelimb akinesia with SNr-HFS and suggest that this motor effect may have resulted from the attenuation of SNr neuronal activity, decreased SNr beta oscillations, and increased activity of VM thalamic neurons, suggesting that the SNr may be a plausible DBS target for treating motor symptoms of DBS.
Collapse
Affiliation(s)
- Alexander C Sutton
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208, USA
| | | | | | | | | | | | | | | | | |
Collapse
|