1
|
Zur Nedden S, Safari MS, Weber D, Kuenkel L, Garmsiri C, Lang L, Orset C, Freret T, Haelewyn B, Hotze M, Kwiatkowski M, Sarg B, Faserl K, Savic D, Skvortsova II, Krogsdam A, Carollo S, Trajanoski Z, Oberacher H, Zlotek D, Ostermaier F, Cameron A, Baier G, Baier-Bitterlich G. Protein kinase N1 deficiency results in upregulation of cerebral energy metabolism and is highly protective in in vivo and in vitro stroke models. Metabolism 2024; 161:156039. [PMID: 39332493 DOI: 10.1016/j.metabol.2024.156039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/06/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
BACKGROUND AND AIM We recently identified protein kinase N1 (PKN1) as a master regulator of brain development. However, its function in the adult brain has not been clearly established. In this study, we assessed the cerebral energetic phenotype of wildtype (WT) and global Pkn1 knockout (Pkn1-/-) animals under physiological and pathophysiological conditions. METHODS Cerebral energy metabolism was analyzed by 13C6-glucose tracing in vivo and real time seahorse analysis of extracellular acidification rates as well as mitochondrial oxygen consumption rates (OCR) of brain slice punches in vitro. Isolated WT and Pkn1-/- brain mitochondria were tested for differences in OCR with different substrates. Metabolite levels were determined by mass spectrometric analysis in brain slices under control and energetic stress conditions, induced by oxygen-glucose deprivation and reperfusion, an in vitro model of ischemic stroke. Differences in enzyme activities were assessed by enzymatic assays, western blotting and bulk RNA sequencing. A middle cerebral artery occlusion stroke model was used to analyze lesion volumes and functional recovery in WT and Pkn1-/- mice. RESULTS Pkn1 deficiency resulted in a remarkable upregulation of cerebral energy metabolism, in vivo and in vitro. This was due to two separate mechanisms involving an enhanced glycolytic flux and higher pyruvate-induced mitochondrial OCR. Mechanistically we show that Pkn1-/- brain tissue exhibits an increased activity of the glycolysis rate-limiting enzyme phosphofructokinase. Additionally, glucose-1,6-bisphosphate levels, a metabolite that increases mitochondrial pyruvate uptake, were elevated upon Pkn1 deficiency. Consequently, Pkn1-/- brain slices had more ATP and a greater accumulation of ATP degradation metabolites during energetic stress. This translated into increased phosphorylation and activity of adenosine monophosphate (AMP)-activated protein kinase (AMPK) during in vitro stroke. Accordingly, Pkn1-/- brain slices showed a post-ischemic transcriptional upregulation of energy metabolism pathways and Pkn1 deficiency was strongly protective in in vitro and in vivo stroke models. While inhibition of mitochondrial pyruvate uptake only moderately affected the protective phenotype, inhibition of AMPK in Pkn1-/- slices increased post-ischemic cell death in vitro. CONCLUSION This is the first study to comprehensively demonstrate an essential and unique role of PKN1 in cerebral energy metabolism, regulating glycolysis and mitochondrial pyruvate-induced respiration. We further uncovered a highly protective phenotype of Pkn1 deficiency in both, in vitro and in vivo stroke models, validating inhibition of PKN1 as a promising new therapeutic target for the development of novel stroke therapies.
Collapse
Affiliation(s)
- Stephanie Zur Nedden
- Medical University of Innsbruck, CCB-Biocenter, Institute of Neurobiochemistry, Innrain 80-82, A-6020 Innsbruck, Austria.
| | - Motahareh S Safari
- Medical University of Innsbruck, CCB-Biocenter, Institute of Neurobiochemistry, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Dido Weber
- Medical University of Innsbruck, CCB-Biocenter, Institute of Neurobiochemistry, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Louisa Kuenkel
- Medical University of Innsbruck, CCB-Biocenter, Institute of Neurobiochemistry, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Carolin Garmsiri
- Medical University of Innsbruck, CCB-Biocenter, Institute of Neurobiochemistry, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Luisa Lang
- Medical University of Innsbruck, CCB-Biocenter, Institute of Neurobiochemistry, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Cyrille Orset
- Normandie University, UNICAEN, ESR3P, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Institute of Blood and Brain @ Caen-Normandie (BB@C), GIP Cyceron, Caen, France
| | - Tom Freret
- Normandie University, UNICAEN, ESR3P, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Institute of Blood and Brain @ Caen-Normandie (BB@C), GIP Cyceron, Caen, France
| | - Benoît Haelewyn
- Normandie University, UNICAEN, ESR3P, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Institute of Blood and Brain @ Caen-Normandie (BB@C), GIP Cyceron, Caen, France
| | - Madlen Hotze
- University of Innsbruck, Department of Biochemistry, Institute of Bioanalytic & Intermediary Metabolism, 6020 Innsbruck, Austria
| | - Marcel Kwiatkowski
- University of Innsbruck, Department of Biochemistry, Institute of Bioanalytic & Intermediary Metabolism, 6020 Innsbruck, Austria
| | - Bettina Sarg
- Medical University of Innsbruck, CCB-Biocenter, Institute of Medical Biochemistry, Protein Core Facility, 6020 Innsbruck, Austria
| | - Klaus Faserl
- Medical University of Innsbruck, CCB-Biocenter, Institute of Medical Biochemistry, Protein Core Facility, 6020 Innsbruck, Austria
| | - Dragana Savic
- Medical University of Innsbruck, Laboratory for Experimental and Translational Research on Radiation Oncology (EXTRO-Lab), Department of Therapeutic Radiology and Oncology, 6020 Innsbruck, Austria; Tyrolean Cancer Research Institute, Innsbruck A-6020, Austria
| | - Ira-Ida Skvortsova
- Medical University of Innsbruck, Laboratory for Experimental and Translational Research on Radiation Oncology (EXTRO-Lab), Department of Therapeutic Radiology and Oncology, 6020 Innsbruck, Austria; Tyrolean Cancer Research Institute, Innsbruck A-6020, Austria
| | - Anne Krogsdam
- Medical University of Innsbruck, CCB-Biocenter, Institute of Bioinformatics, 6020 Innsbruck, Austria
| | - Sandro Carollo
- Medical University of Innsbruck, CCB-Biocenter, Institute of Bioinformatics, 6020 Innsbruck, Austria
| | - Zlatko Trajanoski
- Medical University of Innsbruck, CCB-Biocenter, Institute of Bioinformatics, 6020 Innsbruck, Austria
| | - Herbert Oberacher
- Medical University of Innsbruck, Institute of Legal Medicine and Core Facility Metabolomics, 6020 Innsbruck, Austria
| | - Dominik Zlotek
- Medical University of Innsbruck, CCB-Biocenter, Institute of Neurobiochemistry, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Florian Ostermaier
- Medical University of Innsbruck, CCB-Biocenter, Institute of Neurobiochemistry, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Angus Cameron
- Kinase Biology Laboratory, John Vane Science Centre, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Gottfried Baier
- Medical University of Innsbruck, Institute for Cell Genetics, 6020 Innsbruck, Austria
| | - Gabriele Baier-Bitterlich
- Medical University of Innsbruck, CCB-Biocenter, Institute of Neurobiochemistry, Innrain 80-82, A-6020 Innsbruck, Austria
| |
Collapse
|
2
|
Gross LZF, Winkel AF, Galceran F, Schulze JO, Fröhner W, Cämmerer S, Zeuzem S, Engel M, Leroux AE, Biondi RM. Molecular insights into the regulatory landscape of PKC-related kinase-2 (PRK2/PKN2) using targeted small compounds. J Biol Chem 2024; 300:107550. [PMID: 39002682 PMCID: PMC11357854 DOI: 10.1016/j.jbc.2024.107550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/07/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024] Open
Abstract
The PKC-related kinases (PRKs, also termed PKNs) are important in cell migration, cancer, hepatitis C infection, and nutrient sensing. They belong to a group of protein kinases called AGC kinases that share common features like a C-terminal extension to the catalytic domain comprising a hydrophobic motif. PRKs are regulated by N-terminal domains, a pseudosubstrate sequence, Rho-binding domains, and a C2 domain involved in inhibition and dimerization, while Rho and lipids are activators. We investigated the allosteric regulation of PRK2 and its interaction with its upstream kinase PDK1 using a chemical biology approach. We confirmed the phosphoinositide-dependent protein kinase 1 (PDK1)-interacting fragment (PIF)-mediated docking interaction of PRK2 with PDK1 and showed that this interaction can be modulated allosterically. We showed that the polypeptide PIFtide and a small compound binding to the PIF-pocket of PRK2 were allosteric activators, by displacing the pseudosubstrate PKL region from the active site. In addition, a small compound binding to the PIF-pocket allosterically inhibited the catalytic activity of PRK2. Together, we confirmed the docking interaction and allostery between PRK2 and PDK1 and described an allosteric communication between the PIF-pocket and the active site of PRK2, both modulating the conformation of the ATP-binding site and the pseudosubstrate PKL-binding site. Our study highlights the allosteric modulation of the activity and the conformation of PRK2 in addition to the existence of at least two different complexes between PRK2 and its upstream kinase PDK1. Finally, the study highlights the potential for developing allosteric drugs to modulate PRK2 kinase conformations and catalytic activity.
Collapse
Affiliation(s)
| | - Angelika F Winkel
- Department of Internal Medicine I, Universitätsklinikum Frankfurt, Frankfurt, Germany
| | | | - Jörg O Schulze
- Department of Internal Medicine I, Universitätsklinikum Frankfurt, Frankfurt, Germany
| | - Wolfgang Fröhner
- Department of Pharmaceutical and Medicinal Chemistry, University of Saarland, Saarbrücken, Germany
| | - Simon Cämmerer
- Department of Pharmaceutical and Medicinal Chemistry, University of Saarland, Saarbrücken, Germany
| | - Stefan Zeuzem
- Department of Internal Medicine I, Universitätsklinikum Frankfurt, Frankfurt, Germany
| | - Matthias Engel
- Department of Pharmaceutical and Medicinal Chemistry, University of Saarland, Saarbrücken, Germany
| | | | - Ricardo M Biondi
- IBioBA-CONICET-MPSP, Buenos Aires, Argentina; Department of Internal Medicine I, Universitätsklinikum Frankfurt, Frankfurt, Germany.
| |
Collapse
|
3
|
Gao J, Shi W, Wang J, Guan C, Dong Q, Sheng J, Zou X, Xu Z, Ge Y, Yang C, Li J, Bao H, Zhong X, Cui Y. Research progress and applications of epigenetic biomarkers in cancer. Front Pharmacol 2024; 15:1308309. [PMID: 38681199 PMCID: PMC11048075 DOI: 10.3389/fphar.2024.1308309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/25/2024] [Indexed: 05/01/2024] Open
Abstract
Epigenetic changes are heritable changes in gene expression without changes in the nucleotide sequence of genes. Epigenetic changes play an important role in the development of cancer and in the process of malignancy metastasis. Previous studies have shown that abnormal epigenetic changes can be used as biomarkers for disease status and disease prediction. The reversibility and controllability of epigenetic modification changes also provide new strategies for early disease prevention and treatment. In addition, corresponding drug development has also reached the clinical stage. In this paper, we will discuss the recent progress and application status of tumor epigenetic biomarkers from three perspectives: DNA methylation, non-coding RNA, and histone modification, in order to provide new opportunities for additional tumor research and applications.
Collapse
Affiliation(s)
- Jianjun Gao
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wujiang Shi
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiangang Wang
- Department of General Surgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Canghai Guan
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qingfu Dong
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jialin Sheng
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinlei Zou
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhaoqiang Xu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yifei Ge
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chengru Yang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiehan Li
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haolin Bao
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangyu Zhong
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
4
|
Ang GCK, Gupta A, Surana U, Yap SXL, Taneja R. Potential Therapeutics Targeting Upstream Regulators and Interactors of EHMT1/2. Cancers (Basel) 2022; 14:2855. [PMID: 35740522 PMCID: PMC9221123 DOI: 10.3390/cancers14122855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
Euchromatin histone lysine methyltransferases (EHMTs) are epigenetic regulators responsible for silencing gene transcription by catalyzing H3K9 dimethylation. Dysregulation of EHMT1/2 has been reported in multiple cancers and is associated with poor clinical outcomes. Although substantial insights have been gleaned into the downstream targets and pathways regulated by EHMT1/2, few studies have uncovered mechanisms responsible for their dysregulated expression. Moreover, EHMT1/2 interacting partners, which can influence their function and, therefore, the expression of target genes, have not been extensively explored. As none of the currently available EHMT inhibitors have made it past clinical trials, understanding upstream regulators and EHMT protein complexes may provide unique insights into novel therapeutic avenues in EHMT-overexpressing cancers. Here, we review our current understanding of the regulators and interacting partners of EHMTs. We also discuss available therapeutic drugs that target the upstream regulators and binding partners of EHMTs and could potentially modulate EHMT function in cancer progression.
Collapse
Affiliation(s)
- Gareth Chin Khye Ang
- Healthy Longevity Translational Research Program, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (G.C.K.A.); (A.G.)
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research A*STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Amogh Gupta
- Healthy Longevity Translational Research Program, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (G.C.K.A.); (A.G.)
| | - Uttam Surana
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research A*STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Shirlyn Xue Ling Yap
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Reshma Taneja
- Healthy Longevity Translational Research Program, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (G.C.K.A.); (A.G.)
| |
Collapse
|
5
|
Wu S, Liu S, Li Y, Liu C, Pan H. Lestaurtinib Has the Potential to Inhibit the Proliferation of Hepatocellular Carcinoma Uncovered by Bioinformatics Analysis and Pharmacological Experiments. Front Cell Dev Biol 2022; 10:837428. [PMID: 35646925 PMCID: PMC9136166 DOI: 10.3389/fcell.2022.837428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Patients diagnosed with hepatocellular carcinoma (HCC) seek a satisfactory prognosis. However, most HCC patients present a risk of recurrence, thus highlighting the lack of effectiveness of current treatments and the urgent need for improved treatment options. The purpose of this study was to identify new candidate factors in the STAT family, which is involved in hepatocellular carcinogenesis, and new targets for the treatment of HCC. Bioinformatics web resources, including Oncomine, Gene Expression Profiling Interactive Analysis (GEPIA), The Human Protein Atlas (HPA), Tumor Immune Estimation Resource (TIMER), and GSCALite, were used to identify candidate genes among the STAT family in HCC. STAT1 was significantly overexpressed in hepatocellular carcinoma. More meaningfully, the high STAT1 expression was significantly associated with poor prognosis. Therefore, STAT1 is expected to be a therapeutic target. The JAK2 inhibitor lestaurtinib was screened by the Genomics of Cancer Drug Sensitivity Project (GDSC) analysis. Pharmacological experiments showed that lestaurtinib has the ability to prevent cell migration and colony formation from single cells. We also found that STAT1 is involved in inflammatory responses and immune cell infiltration. Immune infiltration analysis revealed a strong association between STAT1 levels and immune cell abundance, immune biomarker levels, and immune checkpoints. This study suggests that STAT1 may be a key oncogene in hepatocellular carcinoma and provides evidence that the JAK2 inhibitor lestaurtinib is a potent antiproliferative agent that warrants further investigation as a targeted therapy for HCC.
Collapse
Affiliation(s)
- Shuang Wu
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Medicine, Qingdao University, Qingdao, China
| | - Shihai Liu
- Medical Animal Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Li
- Department of Operation Room, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Changchang Liu
- Medical Animal Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Huazheng Pan
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Huazheng Pan,
| |
Collapse
|
6
|
Transcriptional signatures in prefrontal cortex confer vulnerability versus resilience to food and cocaine addiction-like behavior. Sci Rep 2021; 11:9076. [PMID: 33907201 PMCID: PMC8079697 DOI: 10.1038/s41598-021-88363-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/26/2021] [Indexed: 11/12/2022] Open
Abstract
Addiction is a chronic relapsing brain disease characterized by compulsive reward-seeking despite harmful consequences. The mechanisms underlying addiction are orchestrated by transcriptional reprogramming in the reward system of vulnerable subjects. This study aims at revealing gene expression alterations across different types of addiction. We analyzed publicly available transcriptome datasets of the prefrontal cortex (PFC) from a palatable food and a cocaine addiction study. We found 56 common genes upregulated in the PFC of addicted mice in these two studies, whereas most of the differentially expressed genes were exclusively linked to either palatable food or cocaine addiction. Gene ontology analysis of shared genes revealed that these genes contribute to learning and memory, dopaminergic synaptic transmission, and histone phosphorylation. Network analysis of shared genes revealed a protein–protein interaction node among the G protein-coupled receptors (Drd2, Drd1, Adora2a, Gpr6, Gpr88) and downstream targets of the cAMP signaling pathway (Ppp1rb1, Rgs9, Pde10a) as a core network in addiction. Upon extending the analysis to a cell-type specific level, some of these common molecular players were selectively expressed in excitatory neurons, oligodendrocytes, and endothelial cells. Overall, computational analysis of publicly available whole transcriptome datasets provides new insights into the molecular basis of addiction-like behaviors in PFC.
Collapse
|
7
|
The structure and function of protein kinase C-related kinases (PRKs). Biochem Soc Trans 2021; 49:217-235. [PMID: 33522581 PMCID: PMC7925014 DOI: 10.1042/bst20200466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/29/2020] [Accepted: 01/07/2021] [Indexed: 11/17/2022]
Abstract
The protein kinase C-related kinase (PRK) family of serine/threonine kinases, PRK1, PRK2 and PRK3, are effectors for the Rho family small G proteins. An array of studies have linked these kinases to multiple signalling pathways and physiological roles, but while PRK1 is relatively well-characterized, the entire PRK family remains understudied. Here, we provide a holistic overview of the structure and function of PRKs and describe the molecular events that govern activation and autoregulation of catalytic activity, including phosphorylation, protein interactions and lipid binding. We begin with a structural description of the regulatory and catalytic domains, which facilitates the understanding of their regulation in molecular detail. We then examine their diverse physiological roles in cytoskeletal reorganization, cell adhesion, chromatin remodelling, androgen receptor signalling, cell cycle regulation, the immune response, glucose metabolism and development, highlighting isoform redundancy but also isoform specificity. Finally, we consider the involvement of PRKs in pathologies, including cancer, heart disease and bacterial infections. The abundance of PRK-driven pathologies suggests that these enzymes will be good therapeutic targets and we briefly report some of the progress to date.
Collapse
|
8
|
Huelse J, Fridlyand D, Earp S, DeRyckere D, Graham DK. MERTK in cancer therapy: Targeting the receptor tyrosine kinase in tumor cells and the immune system. Pharmacol Ther 2020; 213:107577. [PMID: 32417270 PMCID: PMC9847360 DOI: 10.1016/j.pharmthera.2020.107577] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The receptor tyrosine kinase MERTK is aberrantly expressed in numerous human malignancies, and is a novel target in cancer therapeutics. Physiologic roles of MERTK include regulation of tissue homeostasis and repair, innate immune control, and platelet aggregation. However, aberrant expression in a wide range of liquid and solid malignancies promotes neoplasia via growth factor independence, cell cycle progression, proliferation and tumor growth, resistance to apoptosis, and promotion of tumor metastases. Additionally, MERTK signaling contributes to an immunosuppressive tumor microenvironment via induction of an anti-inflammatory cytokine profile and regulation of the PD-1 axis, as well as regulation of macrophage, myeloid-derived suppressor cell, natural killer cell and T cell functions. Various MERTK-directed therapies are in preclinical development, and clinical trials are underway. In this review we discuss MERTK inhibition as an emerging strategy for cancer therapy, focusing on MERTK expression and function in neoplasia and its role in mediating resistance to cytotoxic and targeted therapies as well as in suppressing anti-tumor immunity. Additionally, we review preclinical and clinical pharmacological strategies to target MERTK.
Collapse
Affiliation(s)
- Justus Huelse
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Diana Fridlyand
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Shelton Earp
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | - Deborah DeRyckere
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Douglas K. Graham
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, Georgia
| |
Collapse
|
9
|
Huelse JM, Fridlyand DM, Earp S, DeRyckere D, Graham DK. MERTK in cancer therapy: Targeting the receptor tyrosine kinase in tumor cells and the immune system. Pharmacol Ther 2020. [PMID: 32417270 DOI: 10.1016/j.pharmthera.2020.107577107577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
The receptor tyrosine kinase MERTK is aberrantly expressed in numerous human malignancies, and is a novel target in cancer therapeutics. Physiologic roles of MERTK include regulation of tissue homeostasis and repair, innate immune control, and platelet aggregation. However, aberrant expression in a wide range of liquid and solid malignancies promotes neoplasia via growth factor independence, cell cycle progression, proliferation and tumor growth, resistance to apoptosis, and promotion of tumor metastases. Additionally, MERTK signaling contributes to an immunosuppressive tumor microenvironment via induction of an anti-inflammatory cytokine profile and regulation of the PD-1 axis, as well as regulation of macrophage, myeloid-derived suppressor cell, natural killer cell and T cell functions. Various MERTK-directed therapies are in preclinical development, and clinical trials are underway. In this review we discuss MERTK inhibition as an emerging strategy for cancer therapy, focusing on MERTK expression and function in neoplasia and its role in mediating resistance to cytotoxic and targeted therapies as well as in suppressing anti-tumor immunity. Additionally, we review preclinical and clinical pharmacological strategies to target MERTK.
Collapse
Affiliation(s)
- Justus M Huelse
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Diana M Fridlyand
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Shelton Earp
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Deborah DeRyckere
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Douglas K Graham
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA, USA.
| |
Collapse
|
10
|
Saha B, Parks RJ. Identification of human adenovirus replication inhibitors from a library of small molecules targeting cellular epigenetic regulators. Virology 2020; 555:102-110. [PMID: 33032802 PMCID: PMC7382930 DOI: 10.1016/j.virol.2020.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/17/2022]
Abstract
Human adenovirus (HAdV) can cause severe disease in certain at-risk populations such as newborns, young children, the elderly and individuals with a compromised immune system. Unfortunately, no FDA-approved antiviraldrug is currently available for the treatment of HAdV infections. Within the nucleus of infected cells, the HAdV genome associates with histones and forms a chromatin-like structure during early infection, and viral gene expression appears to be regulated by cellular epigenetic processes. Thus, one potential therapeutic strategy to combat HAdV disease may be to target the cellular proteins involved in modifying the viral nucleoprotein structure and facilitating HAdV gene expression and replication. We have screened a panel of small molecules that modulate the activity of epigenetic regulatory proteins for compounds affecting HAdV gene expression. Several of the compounds, specifically chaetocin, gemcitabine and lestaurtinib, reduced HAdV recovery by 100- to 1000-fold, while showing limited effects on cell health, suggesting that these compounds may indeed be promising as anti-HAdV therapeutics.
Collapse
Affiliation(s)
- Bratati Saha
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Robin J Parks
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada; Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada; Department of Medicine, The Ottawa Hospital, Ottawa, Ontario, Canada.
| |
Collapse
|
11
|
Zitoun OA, Farhat AM, Mohamed MA, Hamad MR, Aramini B, Haider KH. Management of benign prostate hyperplasia (BPH) by combinatorial approach using alpha-1-adrenergic antagonists and 5-alpha-reductase inhibitors. Eur J Pharmacol 2020; 883:173301. [PMID: 32592768 DOI: 10.1016/j.ejphar.2020.173301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/23/2022]
Abstract
Currently, the main available treatments for benign prostate hyperplasia (BPH) are alpha-1 adrenergic receptor antagonists (ARAs), 5-alpha reductase inhibitors (5-αRI), anticholinergics, and Phosphodiesterase-5 inhibitors. Recent studies support the combined therapy approach using ARAs with 5-αRI for lower urinary tract symptoms (LUTS) in BPH patients at risk of clinical progression. We aimed to review BPH management in select group of randomized controlled trials by combination therapy with ARAs and 5-αRIs compared to monotherapy with either drug with respect to the safety and efficacy. A total of 6 randomized controlled trials (RCTs) involving comparison of combination therapy with monotherapy using ARAs and 5-αRIs were retrieved from PubMed Central and reviewed for international prostate symptom score (IPSS), quality of life (QoL), post-residual urinary flow rate (PUF), and clinical progression. The results significantly favour the treatment group that received the combination therapy in comparison with the groups receiving monotherapy. However, outcome with regard to prostate volume showed insignificant improvement when the combination therapy is compared with 5- αRIs alone, rather than ARAs. In conclusion, combination therapy using ARAs and 5-αRI is better than monotherapy in the patients of BPH. Fixed dose combination (FDC), a type of combination, is also cost-effective and its side-effects profile resembles to that of monotherapy.
Collapse
Affiliation(s)
- Osama A Zitoun
- Sulaiman AlRajhi University, Al Bukairiyah, Kingdom of Saudi Arabia.
| | | | - Mohamed A Mohamed
- Sulaiman AlRajhi University, Al Bukairiyah, Kingdom of Saudi Arabia.
| | - Mohammad R Hamad
- Sulaiman AlRajhi University, Al Bukairiyah, Kingdom of Saudi Arabia.
| | - Beatrice Aramini
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy.
| | | |
Collapse
|
12
|
Liu D, Shoag JE, Poliak D, Goueli RS, Ravikumar V, Redmond D, Vosoughi A, Fontugne J, Pan H, Lee D, Thomas D, Salari K, Wang Z, Romanel A, Te A, Lee R, Chughtai B, Olumi AF, Mosquera JM, Demichelis F, Elemento O, Rubin MA, Sboner A, Barbieri CE. Integrative multiplatform molecular profiling of benign prostatic hyperplasia identifies distinct subtypes. Nat Commun 2020; 11:1987. [PMID: 32332823 PMCID: PMC7181734 DOI: 10.1038/s41467-020-15913-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/23/2020] [Indexed: 12/15/2022] Open
Abstract
Benign prostatic hyperplasia (BPH), a nonmalignant enlargement of the prostate, is among the most common diseases affecting aging men, but the underlying molecular features remain poorly understood, and therapeutic options are limited. Here we employ a comprehensive molecular investigation of BPH, including genomic, transcriptomic and epigenetic profiling. We find no evidence of neoplastic features in BPH: no evidence of driver genomic alterations, including low coding mutation rates, mutational signatures consistent with aging tissues, minimal copy number alterations, and no genomic rearrangements. At the epigenetic level, global hypermethylation is the dominant process. Integrating transcriptional and methylation signatures identifies two BPH subgroups with distinct clinical features and signaling pathways, validated in two independent cohorts. Finally, mTOR inhibitors emerge as a potential subtype-specific therapeutic option, and men exposed to mTOR inhibitors show a significant decrease in prostate size. We conclude that BPH consists of distinct molecular subgroups, with potential for subtype-specific precision therapy.
Collapse
Affiliation(s)
- Deli Liu
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Urology, Weill Cornell Medicine, New York, NY, USA
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY, USA
- Englander Institute for Precision Medicine of Weill Cornell Medicine and NewYork-Presbyterian Hospital, New York, NY, USA
| | - Jonathan E Shoag
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Urology, Weill Cornell Medicine, New York, NY, USA
| | - Daniel Poliak
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Ramy S Goueli
- Department of Urology, Weill Cornell Medicine, New York, NY, USA
| | | | - David Redmond
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Aram Vosoughi
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Jacqueline Fontugne
- Englander Institute for Precision Medicine of Weill Cornell Medicine and NewYork-Presbyterian Hospital, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Heng Pan
- Englander Institute for Precision Medicine of Weill Cornell Medicine and NewYork-Presbyterian Hospital, New York, NY, USA
| | - Daniel Lee
- Department of Urology, Weill Cornell Medicine, New York, NY, USA
| | - Domonique Thomas
- Department of Urology, Weill Cornell Medicine, New York, NY, USA
| | - Keyan Salari
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Zongwei Wang
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alessandro Romanel
- Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, Italy
| | - Alexis Te
- Department of Urology, Weill Cornell Medicine, New York, NY, USA
| | - Richard Lee
- Department of Urology, Weill Cornell Medicine, New York, NY, USA
| | - Bilal Chughtai
- Department of Urology, Weill Cornell Medicine, New York, NY, USA
| | - Aria F Olumi
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Juan Miguel Mosquera
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY, USA
- Englander Institute for Precision Medicine of Weill Cornell Medicine and NewYork-Presbyterian Hospital, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Francesca Demichelis
- Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, Italy
| | - Olivier Elemento
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY, USA
- Englander Institute for Precision Medicine of Weill Cornell Medicine and NewYork-Presbyterian Hospital, New York, NY, USA
| | - Mark A Rubin
- Englander Institute for Precision Medicine of Weill Cornell Medicine and NewYork-Presbyterian Hospital, New York, NY, USA
- Department of BioMedical Research, University of Bern and Inselspital, Bern, Switzerland
| | - Andrea Sboner
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY, USA.
- Englander Institute for Precision Medicine of Weill Cornell Medicine and NewYork-Presbyterian Hospital, New York, NY, USA.
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - Christopher E Barbieri
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Department of Urology, Weill Cornell Medicine, New York, NY, USA.
- Englander Institute for Precision Medicine of Weill Cornell Medicine and NewYork-Presbyterian Hospital, New York, NY, USA.
| |
Collapse
|
13
|
Hosseini A, Gharibi T, Marofi F, Javadian M, Babaloo Z, Baradaran B. Janus kinase inhibitors: A therapeutic strategy for cancer and autoimmune diseases. J Cell Physiol 2020; 235:5903-5924. [DOI: 10.1002/jcp.29593] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Arezoo Hosseini
- Immunology Research CenterTabriz University of Medical SciencesTabriz Iran
- Department of Immunology, School of MedicineTabriz University of Medical SciencesTabriz Iran
- Student Research CommitteeTabriz University of Medical SciencesTabriz Iran
- Aging Research InstituteTabriz University of Medical SciencesTabriz Iran
| | - Tohid Gharibi
- Immunology Research CenterTabriz University of Medical SciencesTabriz Iran
- Department of Immunology, School of MedicineTabriz University of Medical SciencesTabriz Iran
- Student Research CommitteeTabriz University of Medical SciencesTabriz Iran
- Aging Research InstituteTabriz University of Medical SciencesTabriz Iran
| | - Faroogh Marofi
- Department of Immunology, School of MedicineTabriz University of Medical SciencesTabriz Iran
| | - Mahsa Javadian
- Department of Immunology, School of MedicineTabriz University of Medical SciencesTabriz Iran
| | - Zohreh Babaloo
- Immunology Research CenterTabriz University of Medical SciencesTabriz Iran
- Department of Immunology, School of MedicineTabriz University of Medical SciencesTabriz Iran
| | - Behzad Baradaran
- Immunology Research CenterTabriz University of Medical SciencesTabriz Iran
- Department of Immunology, School of MedicineTabriz University of Medical SciencesTabriz Iran
| |
Collapse
|
14
|
Mehruba M, Siddique SM, Mukai H. PKN1 controls the aggregation, spheroid formation, and viability of mouse embryonic fibroblasts in suspension culture. Biochem Biophys Res Commun 2019; 523:398-404. [PMID: 31870546 DOI: 10.1016/j.bbrc.2019.12.069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 12/15/2019] [Indexed: 01/04/2023]
Abstract
The role of protein kinase N1 (PKN1) in cell aggregation and spheroid formation was investigated using mouse embryonic fibroblasts (MEFs) deficient in kinase activity caused by a point mutation (T778A) in the activation loop. Wild type (WT) MEFs formed cell aggregates within a few hours in suspension cultures placed in poly-2-hydroxyethylmethacrylate (poly-HEMA) coated flat-bottom dishes. By contrast, PKN1[T778A] (PKN1 T778A/T778A homozygous knock-in) MEFs showed significantly delayed aggregate formation and higher susceptibility to cell death. Video analysis of suspension cultures revealed decreased cell motility and lesser frequency of cell-cell contact in PKN1[T778A] MEFs compared to that in WT MEFs. Aggregate formation of PKN1[T778A] MEFs was compensated by shaking the cell suspension. When cultured in U-shaped ultra-low attachment well plates, initially larger-sized and loosely packed aggregates of WT MEFs underwent compaction resulting in a single round spheroid. On the other hand, image-based quantitative analysis of PKN1[T778A] MEFs revealed irregular compaction with decreased roundness, solidity, and sphericity within 24 h. Flow cytometry of PKN1[T778A] MEFs revealed decreased surface-expression of N-cadherin and integrins α5 and αV. These results suggest that kinase activity of PKN1 controls cell aggregation and spheroid compaction in MEF suspension culture, possibly by regulating the cell migration and cell-surface expression of N-cadherin and integrins.
Collapse
Affiliation(s)
- Mona Mehruba
- Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan
| | | | - Hideyuki Mukai
- Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan; Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan.
| |
Collapse
|
15
|
Venkadakrishnan VB, DePriest AD, Kumari S, Senapati D, Ben-Salem S, Su Y, Mudduluru G, Hu Q, Cortes E, Pop E, Mohler JL, Azabdaftari G, Attwood K, Shah RB, Jamieson C, Dehm SM, Magi-Galluzzi C, Klein E, Sharifi N, Liu S, Heemers HV. Protein Kinase N1 control of androgen-responsive serum response factor action provides rationale for novel prostate cancer treatment strategy. Oncogene 2019; 38:4496-4511. [PMID: 30742064 PMCID: PMC6771259 DOI: 10.1038/s41388-019-0732-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 01/11/2019] [Accepted: 01/23/2019] [Indexed: 12/15/2022]
Abstract
Sustained reliance on androgen receptor (AR) after failure of AR-targeting androgen deprivation therapy (ADT) prevents effective treatment of castration-recurrent (CR) prostate cancer (CaP). Interfering with the molecular machinery by which AR drives CaP progression may be an alternative therapeutic strategy but its feasibility remains to be tested. Here, we explore targeting the mechanism by which AR, via RhoA, conveys androgen-responsiveness to serum response factor (SRF), which controls aggressive CaP behavior and is maintained in CR-CaP. Following a siRNA screen and candidate gene approach, RNA-Seq studies confirmed that the RhoA effector Protein Kinase N1 (PKN1) transduces androgen-responsiveness to SRF. Androgen treatment induced SRF-PKN1 interaction, and PKN1 knockdown or overexpression severely impaired or stimulated, respectively, androgen regulation of SRF target genes. PKN1 overexpression occurred during clinical CR-CaP progression, and hastened CaP growth and shortened CR-CaP survival in orthotopic CaP xenografts. PKN1's effects on SRF relied on its kinase domain. The multikinase inhibitor lestaurtinib inhibited PKN1 action and preferentially affected androgen regulation of SRF over direct AR target genes. In a CR-CaP patient-derived xenograft, expression of SRF target genes was maintained while AR target gene expression declined and proliferative gene expression increased. PKN1 inhibition decreased viability of CaP cells before and after ADT. In patient-derived CaP explants, lestaurtinib increased AR target gene expression but did not significantly alter SRF target gene or proliferative gene expression. These results provide proof-of-principle for selective forms of ADT that preferentially target different fractions of AR's transcriptional output to inhibit CaP growth.
Collapse
Affiliation(s)
- Varadha Balaji Venkadakrishnan
- Department of Cancer Biology, Cleveland Clinic, Cleveland, OH, USA
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH, USA
| | - Adam D DePriest
- Department of Cancer Genetics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Sangeeta Kumari
- Department of Cancer Biology, Cleveland Clinic, Cleveland, OH, USA
| | | | - Salma Ben-Salem
- Department of Cancer Biology, Cleveland Clinic, Cleveland, OH, USA
| | - Yixue Su
- Department of Cancer Biology, Cleveland Clinic, Cleveland, OH, USA
| | | | - Qiang Hu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Eduardo Cortes
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Elena Pop
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - James L Mohler
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Gissou Azabdaftari
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Kristopher Attwood
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Rajal B Shah
- Department of Anatomic Pathology, Cleveland Clinic, Cleveland, OH, USA
| | - Christina Jamieson
- Department of Urology, University of California, San Diego, LaJolla, CA, USA
| | - Scott M Dehm
- Masonic Cancer Center and Departments of Laboratory Medicine and Pathology and Urology, University of Minnesota, Minneapolis, MN, USA
| | | | - Eric Klein
- Department of Urology, Cleveland Clinic, Cleveland, OH, USA
| | - Nima Sharifi
- Department of Cancer Biology, Cleveland Clinic, Cleveland, OH, USA
- Department of Urology, Cleveland Clinic, Cleveland, OH, USA
- Department of Hematology/Medical Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Hannelore V Heemers
- Department of Cancer Biology, Cleveland Clinic, Cleveland, OH, USA.
- Department of Urology, Cleveland Clinic, Cleveland, OH, USA.
- Department of Hematology/Medical Oncology, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
16
|
Exome-wide analysis identifies three low-frequency missense variants associated with pancreatic cancer risk in Chinese populations. Nat Commun 2018; 9:3688. [PMID: 30206226 PMCID: PMC6134090 DOI: 10.1038/s41467-018-06136-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 07/30/2018] [Indexed: 12/15/2022] Open
Abstract
Germline coding variants have not been systematically investigated for pancreatic ductal adenocarcinoma (PDAC). Here we report an exome-wide investigation using the Illumina Human Exome Beadchip with 943 PDAC cases and 3908 controls in the Chinese population, followed by two independent replicate samples including 2142 cases and 4697 controls. We identify three low-frequency missense variants associated with the PDAC risk: rs34309238 in PKN1 (OR = 1.77, 95% CI: 1.48–2.12, P = 5.35 × 10−10), rs2242241 in DOK2 (OR = 1.85, 95% CI: 1.50–2.27, P = 4.34 × 10−9), and rs183117027 in APOB (OR = 2.34, 95% CI: 1.72–3.16, P = 4.21 × 10−8). Functional analyses show that the PKN1 rs34309238 variant significantly increases the level of phosphorylated PKN1 and thus enhances PDAC cells' proliferation by phosphorylating and activating the FAK/PI3K/AKT pathway. These findings highlight the significance of coding variants in the development of PDAC and provide more insights into the prevention of this disease. Pancreatic ductal adenocarcinoma is a lethal human cancer with a poor 5-year overall survival rate. Here the authors perform an exome-wide analysis in a cohort of PDAC patients to identify three novel missense variants in PKN1, DOK2, and APOB genes, that are associated with PDAC risk.
Collapse
|
17
|
Mashud R, Nomachi A, Hayakawa A, Kubouchi K, Danno S, Hirata T, Matsuo K, Nakayama T, Satoh R, Sugiura R, Abe M, Sakimura K, Wakana S, Ohsaki H, Kamoshida S, Mukai H. Impaired lymphocyte trafficking in mice deficient in the kinase activity of PKN1. Sci Rep 2017; 7:7663. [PMID: 28794483 PMCID: PMC5550459 DOI: 10.1038/s41598-017-07936-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/05/2017] [Indexed: 12/11/2022] Open
Abstract
Knock-in mice lacking PKN1 kinase activity were generated by introducing a T778A point mutation in the catalytic domain. PKN1[T778A] mutant mice developed to adulthood without apparent external abnormalities, but exhibited lower T and B lymphocyte counts in the peripheral blood than those of wild-type (WT) mice. T and B cell development proceeded in an apparently normal fashion in bone marrow and thymus of PKN1[T778A] mice, however, the number of T and B cell counts were significantly higher in the lymph nodes and spleen of mutant mice in those of WT mice. After transfusion into WT recipients, EGFP-labelled PKN1[T778A] donor lymphocytes were significantly less abundant in the peripheral circulation and more abundant in the spleen and lymph nodes of recipient mice compared with EGFP-labelled WT donor lymphocytes, likely reflecting lymphocyte sequestration in the spleen and lymph nodes in a cell-autonomous fashion. PKN1[T778A] lymphocytes showed significantly lower chemotaxis towards chemokines and sphingosine 1-phosphate (S1P) than WT cells in vitro. The biggest migration defect was observed in response to S1P, which is essential for lymphocyte egress from secondary lymphoid organs. These results reveal a novel role of PKN1 in lymphocyte migration and localization.
Collapse
Affiliation(s)
- Rana Mashud
- Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan
| | - Akira Nomachi
- Center for Innovation in Immunoregulative Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akihide Hayakawa
- Graduate School of Science and Technology, Kobe University, Kobe, 657-8501, Japan
| | - Koji Kubouchi
- Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan
| | - Sally Danno
- Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan
| | - Takako Hirata
- Department of Fundamental Biosciences, Shiga University of Medical Science, Seta-Tsukinowa-cho Otsu, Shiga, 520-2192, Japan
| | - Kazuhiko Matsuo
- Division of Chemotherapy, Kindai University School of Pharmacy, Kowakae, Higashi-Osaka, 577-8502, Japan
| | - Takashi Nakayama
- Division of Chemotherapy, Kindai University School of Pharmacy, Kowakae, Higashi-Osaka, 577-8502, Japan
| | - Ryosuke Satoh
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, 577-8502, Japan
| | - Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, 577-8502, Japan
| | - Manabu Abe
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Shigeharu Wakana
- Japan Mouse Clinic, RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba-shi, Ibaraki, 305-0074, Japan
| | - Hiroyuki Ohsaki
- Laboratory of Pathology, Department of Medical Biophysics, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma, Kobe, Hyogo, 654-0142, Japan
| | - Shingo Kamoshida
- Laboratory of Pathology, Department of Medical Biophysics, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma, Kobe, Hyogo, 654-0142, Japan
| | - Hideyuki Mukai
- Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan.
- Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan.
| |
Collapse
|
18
|
Kumar R, Deivendran S, Santhoshkumar TR, Pillai MR. Signaling coupled epigenomic regulation of gene expression. Oncogene 2017. [DOI: 10.1038/onc.2017.201] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Baumgart SJ, Haendler B. Exploiting Epigenetic Alterations in Prostate Cancer. Int J Mol Sci 2017; 18:ijms18051017. [PMID: 28486411 PMCID: PMC5454930 DOI: 10.3390/ijms18051017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/04/2017] [Accepted: 05/04/2017] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer affects an increasing number of men worldwide and is a leading cause of cancer-associated deaths. Beside genetic mutations, many epigenetic alterations including DNA and histone modifications have been identified in clinical prostate tumor samples. They have been linked to aberrant activity of enzymes and reader proteins involved in these epigenetic processes, leading to the search for dedicated inhibitory compounds. In the wake of encouraging anti-tumor efficacy results in preclinical models, epigenetic modulators addressing different targets are now being tested in prostate cancer patients. In addition, the assessment of microRNAs as stratification biomarkers, and early clinical trials evaluating suppressor microRNAs as potential prostate cancer treatment are being discussed.
Collapse
Affiliation(s)
- Simon J Baumgart
- Drug Discovery, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany.
| | - Bernard Haendler
- Drug Discovery, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany.
| |
Collapse
|
20
|
Danno S, Kubouchi K, Mehruba M, Abe M, Natsume R, Sakimura K, Eguchi S, Oka M, Hirashima M, Yasuda H, Mukai H. PKN2 is essential for mouse embryonic development and proliferation of mouse fibroblasts. Genes Cells 2017; 22:220-236. [PMID: 28102564 DOI: 10.1111/gtc.12470] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 12/21/2016] [Indexed: 12/17/2022]
Abstract
PKN2, a member of the protein kinase N (PKN) family, has been suggested by in vitro culture cell experiments to bind to Rho/Rac GTPases and contributes to cell-cell contact and cell migration. To unravel the in vivo physiological function of PKN2, we targeted the PKN2 gene. Constitutive disruption of the mouse PKN2 gene resulted in growth retardation and lethality before embryonic day (E) 10.5. PKN2-/- embryo did not undergo axial turning and showed insufficient closure of the neural tube. Mouse embryonic fibroblasts (MEFs) derived from PKN2-/- embryos at E9.5 failed to grow. Cre-mediated ablation of PKN2 in PKN2flox/flox MEFs obtained from E14.5 embryos showed impaired cell proliferation, and cell cycle analysis of these MEFs showed a decrease in S-phase population. Our results show that PKN2 is essential for mouse embryonic development and cell-autonomous proliferation of primary MEFs in culture. Comparison of the PKN2-/- phenotype with the phenotypes of PKN1 and PKN3 knockout strains suggests that PKN2 has distinct nonredundant functions in vivo, despite the structural similarity and evolutionary relationship among the three isoforms.
Collapse
Affiliation(s)
- Sally Danno
- Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan
| | - Koji Kubouchi
- Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan
| | - Mona Mehruba
- Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan
| | - Manabu Abe
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Rie Natsume
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Satoshi Eguchi
- Department of Medical Biology, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| | - Masahiro Oka
- Division of Dermatology, Tohoku Medical and Pharmaceutical University, 1-12-1 Fukumuro, Miyagino-ku, Sendai, 983-8512, Japan
| | | | - Hiroki Yasuda
- Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan
| | - Hideyuki Mukai
- Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan
| |
Collapse
|
21
|
O'Sullivan AG, Mulvaney EP, Kinsella BT. Regulation of protein kinase C-related kinase (PRK) signalling by the TPα and TPβ isoforms of the human thromboxane A 2 receptor: Implications for thromboxane- and androgen- dependent neoplastic and epigenetic responses in prostate cancer. Biochim Biophys Acta Mol Basis Dis 2017; 1863:838-856. [PMID: 28108419 DOI: 10.1016/j.bbadis.2017.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/11/2017] [Accepted: 01/16/2017] [Indexed: 12/11/2022]
Abstract
The prostanoid thromboxane (TX) A2 and its T Prostanoid receptor (the TP) are increasingly implicated in prostate cancer (PCa). Mechanistically, we recently discovered that both TPα and TPβ form functional signalling complexes with members of the protein kinase C-related kinase (PRK) family, AGC- kinases essential for the epigenetic regulation of androgen receptor (AR)-dependent transcription and promising therapeutic targets for treatment of castrate-resistant prostate cancer (CRPC). Critically, similar to androgens, activation of the PRKs through the TXA2/TP signalling axis induces phosphorylation of histone H3 at Thr11 (H3Thr11), a marker of androgen-induced chromatin remodelling and transcriptional activation, raising the possibility that TXA2-TP signalling can mimic and/or enhance AR-induced cellular changes even in the absence of circulating androgens such as in CRPC. Hence the aim of the current study was to investigate whether TXA2/TP-induced PRK activation can mimic and/or enhance AR-mediated cellular responses in the model androgen-responsive prostate adenocarcinoma LNCaP cell line. We reveal that TXA2/TP signalling can act as a neoplastic- and epigenetic-regulator, promoting and enhancing both AR-associated chromatin remodelling (H3Thr11 phosphorylation, WDR5 recruitment and acetylation of histone H4 at lysine 16) and AR-mediated transcriptional activation (e.g of the KLK3/prostate-specific antigen and TMPRSS2 genes) through mechanisms involving TPα/TPβ mediated-PRK1 and PRK2, but not PRK3, signalling complexes. Overall, these data demonstrate that TPα/TPβ can act as neoplastic and epigenetic regulators by mimicking and/or enhancing the actions of androgens within the prostate and provides further mechanistic insights into the role of the TXA2/TP signalling axis in PCa, including potentially in CRPC.
Collapse
Affiliation(s)
- Aine G O'Sullivan
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Eamon P Mulvaney
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - B Therese Kinsella
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
22
|
Abstract
AIM The histone kinase PRK1 has been identified as a potential target to combat prostate cancer but selective PRK1 inhibitors are lacking. The US FDA -approved JAK1-3 inhibitor tofacitinib also potently inhibits PRK1 in vitro. RESULTS We show that tofacitinib also inhibits PRK1 in a cellular setting. Using tofacitinib as a starting point for structure-activity relationship studies, we identified a more potent and another more selective PRK1 inhibitor compared with tofacitinib. Furthermore, we found two potential PRK1/JAK3-selectivity hotspots. CONCLUSION The identified inhibitors and the selectivity hotspots lay the basis for the development of selective PRK1 inhibitors. The identification of PRK1, but also of other cellular tofacitinib targets, has implications on its clinical use and on future development of tofacitinib-like JAK inhibitors. [Formula: see text].
Collapse
|
23
|
Slynko I, Schmidtkunz K, Rumpf T, Klaeger S, Heinzlmeir S, Najar A, Metzger E, Kuster B, Schüle R, Jung M, Sippl W. Identification of Highly Potent Protein Kinase C-Related Kinase 1 Inhibitors by Virtual Screening, Binding Free Energy Rescoring, and in vitro Testing. ChemMedChem 2016; 11:2084-94. [PMID: 27472906 DOI: 10.1002/cmdc.201600284] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/11/2016] [Indexed: 11/11/2022]
Abstract
Despite the considerable interest in protein kinase C-related kinase 1 (PRK1) as a target in cancer research, there is still a lack of PRK1 inhibitors with suitable selectivity profiles and physicochemical properties. To identify new PRK1 inhibitors we applied a virtual screening approach, which combines ensemble docking, minimization of the protein-ligand complex, binding free energy calculations, and application of quantitative structure-activity relationship (QSAR) models for predicting in vitro activity. The developed approach was then applied in a prospective manner to screen available libraries of kinase inhibitors from Selleck and GlaxoSmithKline (GSK). Compounds that showed favorable prediction were then tested in vitro for PRK1 inhibition. Some of the hits were found to inhibit PRK1 in the low-nanomolar range. Three in vitro hits were additionally tested in a mass-spectrometry-based cellular kinase profiling assay to examine selectivity. Our findings show that nanomolar and drug-like inhibitors can be identified by the virtual screening approach presented herein. The identified inhibitors are valuable tools for gaining a better understanding of PRK1 inhibition, and the identified hits can serve as starting points for further chemical optimization.
Collapse
Affiliation(s)
- Inna Slynko
- Institute of Pharmacy, Martin Luther University of Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120, Halle/Saale, Germany.,Division of Medicinal Chemistry, Vrije UniversiteitAmsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, Netherlands
| | - Karin Schmidtkunz
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstr. 25, 79104, Freiburg, Germany
| | - Tobias Rumpf
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstr. 25, 79104, Freiburg, Germany
| | - Susan Klaeger
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Emil-Erlenmeyer-Forum 5, 85354, Freising, Germany.,German Cancer Consortium (DKTK), Munich, Germany
| | - Stephanie Heinzlmeir
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Emil-Erlenmeyer-Forum 5, 85354, Freising, Germany.,German Cancer Consortium (DKTK), Munich, Germany
| | - Abdulkarim Najar
- Institute of Pharmacy, Martin Luther University of Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120, Halle/Saale, Germany
| | - Eric Metzger
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Urology, Women's Hospital and, Center for Clinical Research, University of Freiburg Medical Center, Breisacher Str. 66, 79106, Freiburg, Germany.,German Cancer Consortium (DKTK), Freiburg, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Emil-Erlenmeyer-Forum 5, 85354, Freising, Germany.,German Cancer Consortium (DKTK), Munich, Germany.,Bavarian Biomolecular Mass Spectrometry Center, Technical University of Munich, Gregor-Mendel-Str. 4, 85354, Freising, Germany
| | - Roland Schüle
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Urology, Women's Hospital and, Center for Clinical Research, University of Freiburg Medical Center, Breisacher Str. 66, 79106, Freiburg, Germany.,German Cancer Consortium (DKTK), Freiburg, Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstr. 25, 79104, Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Freiburg, Germany
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin Luther University of Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120, Halle/Saale, Germany.
| |
Collapse
|
24
|
Protein kinase C-related kinase 1 and 2 play an essential role in thromboxane-mediated neoplastic responses in prostate cancer. Oncotarget 2016; 6:26437-56. [PMID: 26296974 PMCID: PMC4694913 DOI: 10.18632/oncotarget.4664] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/06/2015] [Indexed: 01/03/2023] Open
Abstract
The prostanoid thromboxane (TX) A2 is increasingly implicated in neoplastic progression, including prostate cancer (PCa). Mechanistically, we recently identified protein kinase C-related kinase (PRK) 1 as a functional interactant of both the TPα and TPβ isoforms of the human T prostanoid receptor (TP). The interaction with PRK1 was not only essential for TPα/TPβ-induced PCa cell migration but also enabled the TXA2-TP axis to induce phosphorylation of histone H3 at Thr11 (H3Thr11), an epigenetic marker both essential for and previously exclusively associated with androgen-induced chromatin remodelling and transcriptional activation. PRK1 is a member of a subfamily of three structurally related kinases comprising PRK1/PKNα, PRK2/PKNγ and PRK3/PKNβ that are widely yet differentially implicated in various cancers. Hence, focusing on the setting of prostate cancer, this study investigated whether TPα and/or TPβ might also complex with PRK2 and PRK3 to regulate their activity and neoplastic responses. While TPα and TPβ were found in immune complexes with PRK1, PRK2 and PRK3 to regulate their activation and signalling, they do so differentially and in a TP agonist-regulated manner dependent on the T-loop activation status of the PRKs but independent of their kinase activity. Furthermore, TXA2-mediated neoplastic responses in prostate adenocarcinoma PC-3 cells, including histone H3Thr11 phosphorylation, was found to occur through a PRK1- and PRK2-, but not PRK3-, dependent mechanism. Collectively, these data suggest that TXA2 acts as both a neoplastic and epigenetic regulator and provides a mechanistic explanation, at least in part, for the prophylactic benefits of Aspirin in reducing the risk of certain cancers.
Collapse
|
25
|
PRK1/PKN1 controls migration and metastasis of androgen-independent prostate cancer cells. Oncotarget 2015; 5:12646-64. [PMID: 25504435 PMCID: PMC4350344 DOI: 10.18632/oncotarget.2653] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/26/2014] [Indexed: 12/20/2022] Open
Abstract
The major threat in prostate cancer is the occurrence of metastases in androgen-independent tumor stage, for which no causative cure is available. Here we show that metastatic behavior of androgen-independent prostate tumor cells requires the protein-kinase-C-related kinase (PRK1/PKN1) in vitro and in vivo. PRK1 regulates cell migration and gene expression through its kinase activity, but does not affect cell proliferation. Transcriptome and interactome analyses uncover that PRK1 regulates expression of migration-relevant genes by interacting with the scaffold protein sperm-associated antigen 9 (SPAG9/JIP4). SPAG9 and PRK1 colocalize in human cancer tissue and are required for p38-phosphorylation and cell migration. Accordingly, depletion of either ETS domain-containing protein Elk-1 (ELK1), an effector of p38-signalling or p38 depletion hinders cell migration and changes expression of migration-relevant genes as observed upon PRK1-depletion. Importantly, a PRK1 inhibitor prevents metastases in mice, showing that the PRK1-pathway is a promising target to hamper prostate cancer metastases in vivo.
Collapse
|
26
|
Chamberlain P, Delker S, Pagarigan B, Mahmoudi A, Jackson P, Abbasian M, Muir J, Raheja N, Cathers B. Crystal structures of PRK1 in complex with the clinical compounds lestaurtinib and tofacitinib reveal ligand induced conformational changes. PLoS One 2014; 9:e103638. [PMID: 25111382 PMCID: PMC4128815 DOI: 10.1371/journal.pone.0103638] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 06/30/2014] [Indexed: 11/20/2022] Open
Abstract
Protein kinase C related kinase 1 (PRK1) is a component of Rho-GTPase, androgen receptor, histone demethylase and histone deacetylase signaling pathways implicated in prostate and ovarian cancer. Herein we describe the crystal structure of PRK1 in apo form, and also in complex with a panel of literature inhibitors including the clinical candidates lestaurtinib and tofacitinib, as well as the staurosporine analog Ro-31-8220. PRK1 is a member of the AGC-kinase class, and as such exhibits the characteristic regulatory sequence at the C-terminus of the catalytic domain – the ‘C-tail’. The C-tail fully encircles the catalytic domain placing a phenylalanine in the ATP-binding site. Our inhibitor structures include examples of molecules which both interact with, and displace the C-tail from the active site. This information may assist in the design of inhibitors targeting both PRK and other members of the AGC kinase family.
Collapse
Affiliation(s)
- Philip Chamberlain
- Celgene Corporation, San Diego, California, United States of America
- Department of Biochemistry and Structural Biology, Celgene Corporation, San Diego, California, United States of America
- * E-mail:
| | - Silvia Delker
- Celgene Corporation, San Diego, California, United States of America
| | - Barbra Pagarigan
- Celgene Corporation, San Diego, California, United States of America
| | - Afshin Mahmoudi
- Celgene Corporation, San Diego, California, United States of America
| | - Pilgrim Jackson
- Celgene Corporation, San Diego, California, United States of America
| | - Mahan Abbasian
- Celgene Corporation, San Diego, California, United States of America
| | - Jeff Muir
- Celgene Corporation, San Diego, California, United States of America
| | - Neil Raheja
- Celgene Corporation, San Diego, California, United States of America
| | - Brian Cathers
- Celgene Corporation, San Diego, California, United States of America
| |
Collapse
|
27
|
Vazquez-Ortiz G, Chisholm C, Xu X, Lahusen TJ, Li C, Sakamuru S, Huang R, Thomas CJ, Xia M, Deng C. Drug repurposing screen identifies lestaurtinib amplifies the ability of the poly (ADP-ribose) polymerase 1 inhibitor AG14361 to kill breast cancer associated gene-1 mutant and wild type breast cancer cells. Breast Cancer Res 2014; 16:R67. [PMID: 24962108 PMCID: PMC4229979 DOI: 10.1186/bcr3682] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 05/12/2014] [Indexed: 12/11/2022] Open
Abstract
Introduction Breast cancer is a devastating disease that results in approximately 40,000 deaths each year in the USA. Current drug screening and chemopreventatitive methods are suboptimal, due in part to the poor specificity of compounds for cancer cells. Poly (ADP-ribose) polymerase 1 (PARP1) inhibitor (PARPi)-mediated therapy is a promising approach for familial breast cancers caused by mutations of breast cancer-associated gene-1 and -2 (BRCA1/2), yet drug resistance frequently occurs during the treatment. Moreover, PARPis exhibit very little effect on cancers that are proficient for DNA repair and clinical efficacy for PARPis as single-agent therapies has yet to be illustrated. Methods Using a quantitative high-throughput screening approach, we screened a library containing 2,816 drugs, most of which are approved for human or animal use by the Food and Drug Administration (FDA) or other countries, to identify compounds that sensitize breast cancer cells to PARPi. After initial screening, we performed further cellular and molecular analysis on lestaurtinib, which is an orally bioavailable multikinase inhibitor and has been used in clinical trials for myeloproliferative disorders and acute myelogenous leukemia. Results Our study indicated that lestaurtinib is highly potent against breast cancers as a mono-treatment agent. It also strongly enhanced the activity of the potent PARPi AG14361 on breast cancer cell growth both in vitro and in vivo conditions. The inhibition of cancer growth is measured by increased apoptosis and reduced cell proliferation. Consistent with this, the treatment results in activation of caspase 3/7, and accumulation of cells in the G2 phase of the cell cycle, irrespective of their BRCA1 status. Finally, we demonstrated that AG14361 inhibits NF-κB signaling, which is further enhanced by lestaurtinib treatment. Conclusions Lestaurtinib amplifies the ability of the PARP1 inhibitor AG14361 to kill BRCA1 mutant and wild-type breast cancer cells, at least in part, by inhibiting NF-κB signaling. Each of these drugs has been approved for clinical trials for several different cancers, thus, their combination treatment should be applicable for a breast cancer trial in the future.
Collapse
|
28
|
The Multifaceted Roles of STAT3 Signaling in the Progression of Prostate Cancer. Cancers (Basel) 2014; 6:829-59. [PMID: 24722453 PMCID: PMC4074806 DOI: 10.3390/cancers6020829] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 03/11/2014] [Accepted: 03/17/2014] [Indexed: 01/09/2023] Open
Abstract
The signal transducer and activator of transcription (STAT)3 governs essential functions of epithelial and hematopoietic cells that are often dysregulated in cancer. While the role for STAT3 in promoting the progression of many solid and hematopoietic malignancies is well established, this review will focus on the importance of STAT3 in prostate cancer progression to the incurable metastatic castration-resistant prostate cancer (mCRPC). Indeed, STAT3 integrates different signaling pathways involved in the reactivation of androgen receptor pathway, stem like cells and the epithelial to mesenchymal transition that drive progression to mCRPC. As equally important, STAT3 regulates interactions between tumor cells and the microenvironment as well as immune cell activation. This makes it a major factor in facilitating prostate cancer escape from detection of the immune response, promoting an immunosuppressive environment that allows growth and metastasis. Based on the multifaceted nature of STAT3 signaling in the progression to mCRPC, the promise of STAT3 as a therapeutic target to prevent prostate cancer progression and the variety of STAT3 inhibitors used in cancer therapies is discussed.
Collapse
|
29
|
Tong S, Sun C, Cao X, Zheng Q, Zhang H, Firempong CK, Feng Y, Yang Y, Yu J, Xu X. Development and thermodynamic evaluation of novel lipid raft stationary phase chromatography for screening potential antitumor agents. Biomed Chromatogr 2014; 28:1615-23. [PMID: 24706535 DOI: 10.1002/bmc.3189] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 02/13/2014] [Accepted: 02/21/2014] [Indexed: 11/06/2022]
Abstract
Novel lipid raft stationary phase chromatography (LRSC), with lipid rafts that contain abundant tropomyosin-related tyrosine kinase A receptors immobilized on the stationary phase, was developed for a high-throughput screening of potentially active antitumor agents. Lestaurtinib was used as a model compound to determine the operational parameters of the LRSC. Of all the factors considered, the particle size of column packing, the column temperature and the flow rate were of immense importance in determining the performance of the established LRSC system. In order to profoundly comprehend the binding interaction between the model drug and the receptors on the column, thermodynamic studies were employed. The results revealed that the interaction was spontaneous and exothermic, a typical enthalpy-driven process. Additionally, the primary forces were hydrogen bonding and van der Waals forces. In evaluating the applicability of the method, active extracts from Albizziae Cortex were screened out using the LRSC system under the optimized conditions. The bioactive components were successfully confirmed by the MTT assay. In conclusion, it could be said that the LRSC is a good model for screening potential antitumor agents because of its viability, rapid response and scalable features.
Collapse
Affiliation(s)
- Shanshan Tong
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Slynko I, Scharfe M, Rumpf T, Eib J, Metzger E, Schüle R, Jung M, Sippl W. Virtual screening of PRK1 inhibitors: ensemble docking, rescoring using binding free energy calculation and QSAR model development. J Chem Inf Model 2014; 54:138-50. [PMID: 24377786 DOI: 10.1021/ci400628q] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Protein kinase C Related Kinase 1 (PRK1) has been shown to be involved in the regulation of androgen receptor signaling and has been identified as a novel potential drug target for prostate cancer therapy. Since there is no PRK1 crystal structure available to date, multiple PRK1 homology models were generated in order to address the protein flexibility. An in-house library of compounds tested on PRK1 was docked into the ATP binding site of the generated models. In most cases a correct pose of the inhibitors could be identified by ensemble docking, while there is still a challenge of finding a reasonable scoring function that is able to rank compounds according to their biological activity. We estimated the binding free energy for our data set of structurally diverse PRK1 inhibitors using the MM-PB(GB)SA and QM/MM-GBSA methods. The obtained results demonstrate that a correlation between calculated binding free energies and experimental IC50 values was found to be usually higher than using docking scores. Furthermore, the developed approach was tested on a set of diverse PRK1 inhibitors taken from literature, which resulted in a significant correlation. The developed method is computationally inexpensive and can be applied as a postdocking filter in virtual screening as well as for optimization of PRK1 inhibitors in order to prioritize compounds for further biological characterization.
Collapse
Affiliation(s)
- Inna Slynko
- Institute of Pharmacy, MLU Halle-Wittenberg , 06120 Halle (Saale), Germany
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Bharate SB, Sawant SD, Singh PP, Vishwakarma RA. Kinase inhibitors of marine origin. Chem Rev 2013; 113:6761-815. [PMID: 23679846 DOI: 10.1021/cr300410v] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sandip B Bharate
- Medicinal Chemistry Division, Indian Institute of Integrative Medicine (Council of Scientific and Industrial Research), Canal Road, Jammu-180001, India
| | | | | | | |
Collapse
|
32
|
Abstract
Epigenetics is a major field of biomedical research, and epigenetic drug discovery shows great promise for new drugs. The first epigenetic inhibitors are already approved for human treatment. Here, we review a number of case studies that cover different aspects of epigenetic drug discovery spanning from sequencing of epigenetic modifications, assays development over screening to medicinal chemistry, in vivo testing and clinical application.
Collapse
|