1
|
Bach ML, Laftih S, Andresen JK, Pedersen RM, Andersen TE, Madsen LW, Madsen K, Hinrichs GR, Zachar R, Svenningsen P, Lund L, Johansen IS, Hansen LF, Palarasah Y, Jensen BL. ACE2 and TMPRSS2 in human kidney tissue and urine extracellular vesicles with age, sex, and COVID-19. Pflugers Arch 2024:10.1007/s00424-024-03022-y. [PMID: 39382598 DOI: 10.1007/s00424-024-03022-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024]
Abstract
SARS-CoV-2 virus infects cells by engaging with ACE2 requiring protease TMPRSS2. ACE2 is highly expressed in kidneys. Predictors for severe disease are high age and male sex. We hypothesized that ACE2 and TMPRSS2 proteins are more abundant (1) in males and with increasing age in kidney and (2) in urine and extracellular vesicles (EVs) from male patients with COVID-19 and (3) SARS-CoV-2 is present in urine and EVs during infection. Kidney cortex samples from patients subjected to cancer nephrectomy (male/female; < 50 years/˃75 years, n = 24; ˃80 years, n = 15) were analyzed for ACE2 and TMPRSS2 protein levels. Urine from patients hospitalized with SARS-CoV-2 infection was analyzed for ACE2 and TMPRSS2. uEVs were used for immunoblotting and SARS-CoV-2 mRNA and antigen detection. Tissue ACE2 and TMPRSS2 protein levels did not change with age. ACE2 was not more abundant in male kidneys in any age group. ACE2 protein was associated with proximal tubule apical membranes in cortex. TMPRSS2 was observed predominantly in the medulla. ACE2 was elevated significantly in uEVs and urine from patients with COVID-19 with no sex difference compared with urine from controls w/wo albuminuria. TMPRSS2 was elevated in uEVs from males compared to female. ACE2 and TMPRSS2 did not co-localize in uEVs/apical membranes. SARS-CoV-2 nucleoprotein and mRNA were not detected in urine. Higher kidney ACE2 protein abundance is unlikely to explain higher susceptibility to SARS-CoV-2 infection in males. Kidney tubular cells appear not highly susceptible to SARS-CoV-2 infection. Loss of ACE2 into urine in COVID could impact susceptibility and angiotensin metabolism.
Collapse
Affiliation(s)
- Marie Lykke Bach
- Unit of Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
| | - Sara Laftih
- Unit of Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Jesper K Andresen
- Unit of Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Rune M Pedersen
- Department of Clinical Microbiology, Odense University Hospital, and Research Unit for Clinical Microbiology, University of Southern Denmark, Odense, Denmark
| | - Thomas Emil Andersen
- Department of Clinical Microbiology, Odense University Hospital, and Research Unit for Clinical Microbiology, University of Southern Denmark, Odense, Denmark
| | - Lone W Madsen
- Department of Infectious Diseases, Odense University Hospital, and Research Unit for Infectious Diseases, University of Southern Denmark, Odense, Denmark
- Unit for Infectious Diseases, Department of Medicine, Sygehus Lillebælt, Kolding, Denmark
| | - Kirsten Madsen
- Unit of Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Gitte R Hinrichs
- Unit of Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - Rikke Zachar
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - Per Svenningsen
- Unit of Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Lars Lund
- Department of Urology, Odense University Hospital, Odense, Denmark
| | - Isik S Johansen
- Department of Infectious Diseases, Odense University Hospital, and Research Unit for Infectious Diseases, University of Southern Denmark, Odense, Denmark
| | | | - Yaseelan Palarasah
- Unit of Inflammation and Cancer Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Boye L Jensen
- Unit of Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
2
|
Vishwanath S, Carnell GW, Billmeier M, Ohlendorf L, Neckermann P, Asbach B, George C, Sans MS, Chan A, Olivier J, Nadesalingam A, Einhauser S, Temperton N, Cantoni D, Grove J, Jordan I, Sandig V, Tonks P, Geiger J, Dohmen C, Mummert V, Samuel AR, Plank C, Kinsley R, Wagner R, Heeney JL. Computationally designed Spike antigens induce neutralising responses against the breadth of SARS-COV-2 variants. NPJ Vaccines 2024; 9:164. [PMID: 39251608 PMCID: PMC11384739 DOI: 10.1038/s41541-024-00950-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
Updates of SARS-CoV-2 vaccines are required to generate immunity in the population against constantly evolving SARS-CoV-2 variants of concerns (VOCs). Here we describe three novel in-silico designed spike-based antigens capable of inducing neutralising antibodies across a spectrum of SARS-CoV-2 VOCs. Three sets of antigens utilising pre-Delta (T2_32), and post-Gamma sequence data (T2_35 and T2_36) were designed. T2_32 elicited superior neutralising responses against VOCs compared to the Wuhan-1 spike antigen in DNA prime-boost immunisation regime in guinea pigs. Heterologous boosting with the attenuated poxvirus - Modified vaccinia Ankara expressing T2_32 induced broader neutralising immune responses in all primed animals. T2_32, T2_35 and T2_36 elicited broader neutralising capacity compared to the Omicron BA.1 spike antigen administered by mRNA immunisation in mice. These findings demonstrate the utility of structure-informed computationally derived modifications of spike-based antigens for inducing broad immune responses covering more than 2 years of evolved SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Sneha Vishwanath
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, United Kingdom
| | - George William Carnell
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, United Kingdom
| | - Martina Billmeier
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Luis Ohlendorf
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, United Kingdom
| | - Patrick Neckermann
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Benedikt Asbach
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Charlotte George
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, United Kingdom
| | - Maria Suau Sans
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, United Kingdom
| | - Andrew Chan
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, United Kingdom
| | - Joey Olivier
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, United Kingdom
| | - Angalee Nadesalingam
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, United Kingdom
| | - Sebastian Einhauser
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Chatham, United Kingdom
| | - Diego Cantoni
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Joe Grove
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | | | | | - Paul Tonks
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, United Kingdom
| | | | | | - Verena Mummert
- Ethris GmbH, Semmelweisstraße 3, 82152, Planegg, Germany
| | | | | | - Rebecca Kinsley
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, United Kingdom
- DIOSynVax Ltd, University of Cambridge, Cambridge, United Kingdom
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
- DIOSynVax Ltd, University of Cambridge, Cambridge, United Kingdom
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Jonathan Luke Heeney
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, United Kingdom.
- DIOSynVax Ltd, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
3
|
Magnen M, You R, Rao AA, Davis RT, Rodriguez L, Bernard O, Simoneau CR, Hysenaj L, Hu KH, Maishan M, Conrad C, Gbenedio OM, Samad B, Consortium TUCSFCOMET, Love C, Woodruff PG, Erle DJ, Hendrickson CM, Calfee CS, Matthay MA, Roose JP, Sil A, Ott M, Langelier CR, Krummel MF, Looney MR. Immediate myeloid depot for SARS-CoV-2 in the human lung. SCIENCE ADVANCES 2024; 10:eadm8836. [PMID: 39083602 PMCID: PMC11290487 DOI: 10.1126/sciadv.adm8836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/20/2024] [Indexed: 08/02/2024]
Abstract
In the pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, epithelial populations in the distal lung expressing Angiotensin-converting enzyme 2 (ACE2) are infrequent, and therefore, the model of viral expansion and immune cell engagement remains incompletely understood. Using human lungs to investigate early host-viral pathogenesis, we found that SARS-CoV-2 had a rapid and specific tropism for myeloid populations. Human alveolar macrophages (AMs) reliably expressed ACE2 allowing both spike-ACE2-dependent viral entry and infection. In contrast to Influenza A virus, SARS-CoV-2 infection of AMs was productive, amplifying viral titers. While AMs generated new viruses, the interferon responses to SARS-CoV-2 were muted, hiding the viral dissemination from specific antiviral immune responses. The reliable and veiled viral depot in myeloid cells in the very early phases of SARS-CoV-2 infection of human lungs enables viral expansion in the distal lung and potentially licenses subsequent immune pathologies.
Collapse
Affiliation(s)
- Mélia Magnen
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ran You
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Arjun A. Rao
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
- CoLabs Initiative, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ryan T. Davis
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lauren Rodriguez
- CoLabs Initiative, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Olivier Bernard
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Camille R. Simoneau
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Lisiena Hysenaj
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kenneth H. Hu
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mazharul Maishan
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Catharina Conrad
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Oghenekevwe M. Gbenedio
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Bushra Samad
- CoLabs Initiative, University of California, San Francisco, San Francisco, CA 94143, USA
| | - The UCSF COMET Consortium
- All UCSF COMET Consortium collaborators are affiliated with the University of California, San Francisco, San Francisco, CA 94143, USA
| | - Christina Love
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Prescott G. Woodruff
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David J. Erle
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Carolyn M. Hendrickson
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Carolyn S. Calfee
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michael A. Matthay
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jeroen P. Roose
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Anita Sil
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Melanie Ott
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
- Gladstone Institutes, San Francisco, CA 94158, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Charles R. Langelier
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Matthew F. Krummel
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mark R. Looney
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
4
|
Kocyigit A, Kanımdan E, Yenigun VB, Ozman Z, Balıbey FB, Durmuş E, Yasar O. Olive Leaf Extract Downregulates the Protein Expression of Key SARS-CoV-2 Entry Enzyme ACE-2, TMPRSS2, and Furin. Chem Biodivers 2024; 21:e202400717. [PMID: 38837886 DOI: 10.1002/cbdv.202400717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses ongoing global health challenges due to its propensity for mutations, which can undermine vaccine efficacy. With no definitive treatment available, urgent research into affordable and biocompatible therapeutic agents is extremely urgent. Angiotensin converting enzyme-2 (ACE-2), transmembrane protease serine subtype 2 (TMPRSS2), and Furin enzymes, which allow the virus to enter cells, are particularly important as potential drug targets among scientists. Olive leaf extract (OLE) has garnered attention for its potential against Coronavirus Disease-9 (COVID-19), yet its mechanism remains understudied. In this study, we aimed to investigate the effects of OLE on ACE-2, TMPRSS2, and Furin protein expressions by cell culture study. Total phenol, flavonoid content, and antioxidant capacity were measured by photometric methods, and oleuropein levels were measured by liquid LC-HR-MS. Cell viability was analyzed by ATP levels using a luminometric method. ACE-2, TMPRSS2, and Furin expressions were analyzed by the Western Blotting method. ACE-2, TMPRSS2, and Furin protein expression levels were significantly lower in a dose dependent manner and the highest inhibition was seen at 100 μg/ml OLE. The results showed that OLE may be a promising treatment candidate for COVID-19 disease. However, further studies need to be conducted in cells co-infected with the virus.
Collapse
Affiliation(s)
- Abdurrahim Kocyigit
- Bezmialem Vakıf University, Faculty of Medicine, Department of Medical Biochemistry, Istanbul, Turkey
- Bezmialem Vakif University, Traditional and Complementary Medicine Advanced Research Applications and Research Center, Istanbul, Turkey
| | - Ebru Kanımdan
- Bezmialem Vakıf University, Faculty of Medicine, Department of Medical Biochemistry, Istanbul, Turkey
- Bezmialem Vakif University, Vocational School of Health Services, Istanbul, Turkey
| | - Vildan Betul Yenigun
- Bezmialem Vakıf University, Faculty of Medicine, Department of Medical Biochemistry, Istanbul, Turkey
- Bezmialem Vakif University, Vocational School of Health Services, Istanbul, Turkey
| | - Zeynep Ozman
- Bezmialem Vakıf University, Faculty of Medicine, Department of Medical Biochemistry, Istanbul, Turkey
- Bezmialem Vakıf University, Institute of Health Sciences, Medical Biochemistry, Turkey
| | - Fatmanur Babalı Balıbey
- Bezmialem Vakıf University, Faculty of Medicine, Department of Medical Biochemistry, Istanbul, Turkey
| | - Ezgi Durmuş
- Bezmialem Vakıf University, Faculty of Medicine, Department of Medical Biochemistry, Istanbul, Turkey
- Bezmialem Vakıf University, Institute of Health Sciences, Medical Biochemistry, Turkey
| | - Oznur Yasar
- Bezmialem Vakıf University, Faculty of Medicine, Department of Medical Biochemistry, Istanbul, Turkey
| |
Collapse
|
5
|
Lee JH, LeCher JC, Parigoris E, Shinagawa N, Sentosa J, Manfredi C, Goh SL, De R, Tao S, Zandi K, Amblard F, Sorscher EJ, Spence JR, Tirouvanziam R, Schinazi RF, Takayama S. Development of robust antiviral assays using relevant apical-out human airway organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.02.573939. [PMID: 38260306 PMCID: PMC10802305 DOI: 10.1101/2024.01.02.573939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
While breakthroughs with organoids have emerged as next-generation in vitro tools, standardization for drug discovery remains a challenge. This work introduces human airway organoids with reversed biopolarity (AORBs), cultured and analyzed in a high-throughput, single-organoid-per-well format, enabling milestones towards standardization. AORBs exhibit a spatio-temporally stable apical-out morphology, facilitating high-yield direct intact-organoid virus infection. Single-cell RNA sequencing and immunohistochemistry confirm the physiologically relevant recapitulation of differentiated human airway epithelia. The cellular tropism of five severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains along with host response differences between Delta, Washington, and Omicron variants, as observed in transcriptomic profiles, also suggest clinical relevance. Dose-response analysis of three well-studied SARS-CoV-2 antiviral compounds (remdesivir, bemnifosbuvir, and nirmatrelvir) demonstrates that AORBs efficiently predict human efficacy, comparable to gold-standard air-liquid interface cultures, but with higher throughput (~10-fold) and fewer cells (~100-fold). This combination of throughput and relevance allows AORBs to robustly detect false negative results in efficacy, preventing irretrievable loss of promising lead compounds. While this work leverages the SARS-CoV-2 study as a proof-of-concept application, the standardization capacity of AORB holds broader implications in line with regulatory efforts to push alternatives to animal studies.
Collapse
Affiliation(s)
- Ji-Hoon Lee
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
- The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Julia C. LeCher
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Eric Parigoris
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
- The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Noriyuki Shinagawa
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
| | - Jason Sentosa
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
| | - Candela Manfredi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Shu Ling Goh
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ramyani De
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sijia Tao
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Keivan Zandi
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Franck Amblard
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Eric J. Sorscher
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Jason R. Spence
- Division of Gastroenterology, Department of Internal Medicine, Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA
| | - Rabindra Tirouvanziam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
- Center for Cystic Fibrosis & Airways Disease Research, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Raymond F. Schinazi
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Shuichi Takayama
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
- The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
6
|
Han Y, Ma Y, Wang Z, Feng F, Zhou L, Feng H, Ma J, Ye R, Zhang R. TMPRSS13 promotes the cell entry of swine acute diarrhea syndrome coronavirus. J Med Virol 2024; 96:e29712. [PMID: 38808555 DOI: 10.1002/jmv.29712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/08/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024]
Abstract
Swine acute diarrhea syndrome coronavirus (SADS-CoV) has caused severe intestinal diseases in pigs. It originates from bat coronaviruses HKU2 and has a potential risk of cross-species transmission, raising concerns about its zoonotic potential. Viral entry-related host factors are critical determinants of susceptibility to cells, tissues, or species, and remain to be elucidated for SADS-CoV. Type II transmembrane serine proteases (TTSPs) family is involved in many coronavirus infections and has trypsin-like catalytic activity. Here we examine all 18 members of the TTSPs family through CRISPR-based activation of endogenous protein expression in cells, and find that, in addition to TMPRSS2 and TMPRSS4, TMPRSS13 significantly facilitates SADS-CoV infection. This is confirmed by ectopic expression of TMPRSS13, and specific to trypsin-dependent SADS-CoV. Infection with pseudovirus bearing SADS-CoV spike protein indicates that TMPRSS13 acts at the entry step and is sensitive to serine protease inhibitor Camostat. Moreover, both human and pig TMPRSS13 are able to enhance the cell-cell membrane fusion and cleavage of spike protein. Overall, we demonstrate that TMPRSS13 is another host serine protease promoting the membrane-fusion entry of SADS-CoV, which may expand its host tropism by using diverse TTSPs.
Collapse
Affiliation(s)
- Yutong Han
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanlong Ma
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ziqiao Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fei Feng
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ling Zhou
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Hui Feng
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jingyun Ma
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Rong Ye
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Rong Zhang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Kocabiyik O, Amlashi P, Vo AL, Suh H, Rodriguez-Aponte SA, Dalvie NC, Love JC, Andrabi R, Irvine DJ. Vaccine targeting to mucosal lymphoid tissues promotes humoral immunity in the gastrointestinal tract. SCIENCE ADVANCES 2024; 10:eadn7786. [PMID: 38809992 PMCID: PMC11135404 DOI: 10.1126/sciadv.adn7786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/23/2024] [Indexed: 05/31/2024]
Abstract
Viruses, bacteria, and parasites frequently cause infections in the gastrointestinal tract, but traditional vaccination strategies typically elicit little or no mucosal antibody responses. Here, we report a strategy to effectively concentrate immunogens and adjuvants in gut-draining lymph nodes (LNs) to induce gut-associated mucosal immunity. We prepared nanoemulsions (NEs) based on biodegradable oils commonly used as vaccine adjuvants, which encapsulated a potent Toll-like receptor agonist and displayed antigen conjugated to their surface. Following intraperitoneal administration, these NEs accumulated in gut-draining mesenteric LNs, priming strong germinal center responses and promoting B cell class switching to immunoglobulin A (IgA). Optimized NEs elicited 10- to 1000-fold higher antigen-specific IgG and IgA titers in the serum and feces, respectively, compared to free antigen mixed with NE, and strong neutralizing antibody titers against severe acute respiratory syndrome coronavirus 2. Thus, robust gut humoral immunity can be elicited by exploiting the unique lymphatic collection pathways of the gut with a lymph-targeting vaccine formulation.
Collapse
Affiliation(s)
- Ozgun Kocabiyik
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Parastoo Amlashi
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - A. Lina Vo
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Heikyung Suh
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sergio A. Rodriguez-Aponte
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Neil C. Dalvie
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - J. Christopher Love
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Raiees Andrabi
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Darrell J. Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815 USA
| |
Collapse
|
8
|
Carter T, Iqbal M. The Influenza A Virus Replication Cycle: A Comprehensive Review. Viruses 2024; 16:316. [PMID: 38400091 PMCID: PMC10892522 DOI: 10.3390/v16020316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Influenza A virus (IAV) is the primary causative agent of influenza, colloquially called the flu. Each year, it infects up to a billion people, resulting in hundreds of thousands of human deaths, and causes devastating avian outbreaks with worldwide losses worth billions of dollars. Always present is the possibility that a highly pathogenic novel subtype capable of direct human-to-human transmission will spill over into humans, causing a pandemic as devastating if not more so than the 1918 influenza pandemic. While antiviral drugs for influenza do exist, they target very few aspects of IAV replication and risk becoming obsolete due to antiviral resistance. Antivirals targeting other areas of IAV replication are needed to overcome this resistance and combat the yearly epidemics, which exact a serious toll worldwide. This review aims to summarise the key steps in the IAV replication cycle, along with highlighting areas of research that need more focus.
Collapse
Affiliation(s)
- Toby Carter
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK;
| | | |
Collapse
|
9
|
Rosas-Murrieta NH, Rodríguez-Enríquez A, Herrera-Camacho I, Millán-Pérez-Peña L, Santos-López G, Rivera-Benítez JF. Comparative Review of the State of the Art in Research on the Porcine Epidemic Diarrhea Virus and SARS-CoV-2, Scope of Knowledge between Coronaviruses. Viruses 2024; 16:238. [PMID: 38400014 PMCID: PMC10892376 DOI: 10.3390/v16020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/17/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
This review presents comparative information corresponding to the progress in knowledge of some aspects of infection by the porcine epidemic diarrhea virus (PEDV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) coronaviruses. PEDV is an alphacoronavirus of great economic importance due to the million-dollar losses it generates in the pig industry. PEDV has many similarities to the SARS-CoV-2 betacoronavirus that causes COVID-19 disease. This review presents possible scenarios for SARS-CoV-2 based on the collected literature on PEDV and the tools or strategies currently developed for SARS-CoV-2 that would be useful in PEDV research. The speed of the study of SARS-CoV-2 and the generation of strategies to control the pandemic was possible due to the knowledge derived from infections caused by other human coronaviruses such as severe acute respiratory syndrome (SARS) and middle east respiratory syndrome (MERS). Therefore, from the information obtained from several coronaviruses, the current and future behavior of SARS-CoV-2 could be inferred and, with the large amount of information on the virus that causes COVID-19, the study of PEDV could be improved and probably that of new emerging and re-emerging coronaviruses.
Collapse
Affiliation(s)
- Nora H. Rosas-Murrieta
- Centro de Química, Laboratorio de Bioquímica y Biología Molecular, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (A.R.-E.); (I.H.-C.); (L.M.-P.-P.)
| | - Alan Rodríguez-Enríquez
- Centro de Química, Laboratorio de Bioquímica y Biología Molecular, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (A.R.-E.); (I.H.-C.); (L.M.-P.-P.)
- Posgrado en Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico
| | - Irma Herrera-Camacho
- Centro de Química, Laboratorio de Bioquímica y Biología Molecular, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (A.R.-E.); (I.H.-C.); (L.M.-P.-P.)
| | - Lourdes Millán-Pérez-Peña
- Centro de Química, Laboratorio de Bioquímica y Biología Molecular, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (A.R.-E.); (I.H.-C.); (L.M.-P.-P.)
| | - Gerardo Santos-López
- Centro de Investigación Biomédica de Oriente, Laboratorio de Biología Molecular y Virología, Instituto Mexicano del Seguro Social (IMSS), Metepec 74360, Mexico;
| | - José F. Rivera-Benítez
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Ciudad de México 38110, Mexico;
| |
Collapse
|
10
|
Kellum CL, Kirkland LG, Nelson TK, Jewett SM, Rytkin E, Efimov IR, Hoover DB, Benson PV, Wagener BM. Sympathetic remodeling and altered angiotensin-converting enzyme 2 localization occur in patients with cardiac disease but are not exacerbated by severe COVID-19. Auton Neurosci 2024; 251:103134. [PMID: 38101169 PMCID: PMC10872860 DOI: 10.1016/j.autneu.2023.103134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/08/2023] [Accepted: 11/25/2023] [Indexed: 12/17/2023]
Abstract
PURPOSE Remodeling of sympathetic nerves and ACE2 has been implicated in cardiac pathology, and ACE2 also serves as a receptor for SARS-CoV-2. However, there is limited histological knowledge about the transmural distribution of sympathetic nerves and the cellular localization and distribution of ACE2 in human left ventricles from normal or diseased hearts. Goals of this study were to establish the normal pattern for these parameters and determine changes that occurred in decedents with cardiovascular disease alone compared to those with cardiac pathology and severe COVID-19. METHODS We performed immunohistochemical analysis on sections of left ventricular wall from twenty autopsied human hearts consisting of a control group, a cardiovascular disease group, and COVID-19 ARDS, and COVID-19 non-ARDS groups. RESULTS Using tyrosine hydroxylase as a noradrenergic marker, we found substantial sympathetic nerve loss in cardiovascular disease samples compared to controls. Additionally, we found heterogeneous nerve loss in both COVID-19 groups. Using an ACE2 antibody, we observed robust transmural staining localized to pericytes in the control group. The cardiovascular disease hearts displayed regional loss of ACE2 in pericytes and regional increases in staining of cardiomyocytes for ACE2. Similar changes were observed in both COVID-19 groups. CONCLUSIONS Heterogeneity of sympathetic innervation, which occurs in cardiac disease and is not increased by severe COVID-19, could contribute to arrhythmogenesis. The dominant localization of ACE2 to pericytes suggests that these cells would be the primary target for potential cardiac infection by SARS-CoV-2. Regional changes in ACE2 staining by myocytes and pericytes could have complex effects on cardiac pathophysiology.
Collapse
Affiliation(s)
- Creighton L Kellum
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Logan G Kirkland
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Tasha K Nelson
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Seth M Jewett
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Eric Rytkin
- Department of Biomedical Engineering and Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Igor R Efimov
- Department of Biomedical Engineering and Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Donald B Hoover
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, TN 37614, USA
| | - Paul V Benson
- Department of Pathology, The University of Alabama at Birmingham, Heersink School of Medicine, Birmingham, AL 35294, USA
| | - Brant M Wagener
- Department of Anesthesiology and Perioperative Medicine, The University of Alabama at Birmingham, Heersink School of Medicine, Birmingham, AL 35294, USA.
| |
Collapse
|
11
|
Müller P, Zimmer C, Frey A, Holzmann G, Weldert AC, Schirmeister T. Ligand-Based Design of Selective Peptidomimetic uPA and TMPRSS2 Inhibitors with Arg Bioisosteres. Int J Mol Sci 2024; 25:1375. [PMID: 38338655 PMCID: PMC10855164 DOI: 10.3390/ijms25031375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/20/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Trypsin-like serine proteases are involved in many important physiological processes like blood coagulation and remodeling of the extracellular matrix. On the other hand, they are also associated with pathological conditions. The urokinase-pwlasminogen activator (uPA), which is involved in tissue remodeling, can increase the metastatic behavior of various cancer types when overexpressed and dysregulated. Another member of this protease class that received attention during the SARS-CoV 2 pandemic is TMPRSS2. It is a transmembrane serine protease, which enables cell entry of the coronavirus by processing its spike protein. A variety of different inhibitors have been published against both proteases. However, the selectivity over other trypsin-like serine proteases remains a major challenge. In the current study, we replaced the arginine moiety at the P1 site of peptidomimetic inhibitors with different bioisosteres. Enzyme inhibition studies revealed that the phenylguanidine moiety in the P1 site led to strong affinity for TMPRSS2, whereas the cyclohexylguanidine derivate potently inhibited uPA. Both inhibitors exhibited high selectivity over other structurally similar and physiologically important proteases.
Collapse
Affiliation(s)
| | | | | | | | | | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany; (P.M.); (C.Z.); (A.F.); (G.H.); (A.C.W.)
| |
Collapse
|
12
|
Panagiotides NG, Poledniczek M, Andreas M, Hülsmann M, Kocher AA, Kopp CW, Piechota-Polanczyk A, Weidenhammer A, Pavo N, Wadowski PP. Myocardial Oedema as a Consequence of Viral Infection and Persistence-A Narrative Review with Focus on COVID-19 and Post COVID Sequelae. Viruses 2024; 16:121. [PMID: 38257821 PMCID: PMC10818479 DOI: 10.3390/v16010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Microvascular integrity is a critical factor in myocardial fluid homeostasis. The subtle equilibrium between capillary filtration and lymphatic fluid removal is disturbed during pathological processes leading to inflammation, but also in hypoxia or due to alterations in vascular perfusion and coagulability. The degradation of the glycocalyx as the main component of the endothelial filtration barrier as well as pericyte disintegration results in the accumulation of interstitial and intracellular water. Moreover, lymphatic dysfunction evokes an increase in metabolic waste products, cytokines and inflammatory cells in the interstitial space contributing to myocardial oedema formation. This leads to myocardial stiffness and impaired contractility, eventually resulting in cardiomyocyte apoptosis, myocardial remodelling and fibrosis. The following article reviews pathophysiological inflammatory processes leading to myocardial oedema including myocarditis, ischaemia-reperfusion injury and viral infections with a special focus on the pathomechanisms evoked by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In addition, clinical implications including potential long-term effects due to viral persistence (long COVID), as well as treatment options, are discussed.
Collapse
Affiliation(s)
- Noel G. Panagiotides
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Michael Poledniczek
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria;
| | - Martin Andreas
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (M.A.); (A.A.K.)
| | - Martin Hülsmann
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Alfred A. Kocher
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (M.A.); (A.A.K.)
| | - Christoph W. Kopp
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria;
| | | | - Annika Weidenhammer
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Noemi Pavo
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Patricia P. Wadowski
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
13
|
Tanaka YL, Shofa M, Butlertanaka EP, Niazi AM, Hirai T, Mekata H, Saito A. Generation of a Porcine Cell Line Stably Expressing Pig TMPRSS2 for Efficient Isolation of Swine Influenza Virus. Pathogens 2023; 13:18. [PMID: 38251326 PMCID: PMC10818301 DOI: 10.3390/pathogens13010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Pigs are important animals for meat production but can carry several zoonotic diseases, including the Japanese encephalitis virus, Nipah virus, and influenza viruses. Several Orthomyxoviridae and Coronavirinae respiratory viruses require cleavage of envelope proteins to acquire viral infectivity and consequently, need a host protease or the addition of exogenous trypsin for efficient propagation. Host TMPRSS2 is a key protease responsible for viral cleavage. Stable expression of human TMPRSS2 in African green monkey-derived Vero cells can enhance the porcine epidemic diarrhea virus. However, considering the narrow host tropism of viruses, a porcine cell line expressing pig TMPRSS2 could be optimal for replicating pig-derived viruses. Herein, we generated and evaluated a pig-derived PK-15 cell line stably expressing pig TMPRSS2. This cell line markedly (>1000-fold) and specifically enhanced the growth of influenza viruses. Furthermore, we demonstrated the usefulness of a PK-15 cell line lacking the Stat2 gene with a stable expression of pig TMPRSS2 for efficient virus isolation from clinical samples in the presence of type I interferons. Therefore, PK-15 cells expressing pig TMPRSS2 could be a valuable and promising tool for virus isolation, vaccine production, and virological studies of TMPRSS2-dependent viruses.
Collapse
Affiliation(s)
- Yuri L Tanaka
- Laboratory of Veterinary Microbiology, Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki 8892192, Japan
| | - Maya Shofa
- Laboratory of Veterinary Microbiology, Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki 8892192, Japan
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki 8891692, Japan
| | - Erika P Butlertanaka
- Laboratory of Veterinary Microbiology, Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki 8892192, Japan
| | - Ahmad Massoud Niazi
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki 8891692, Japan
- Laboratory of Veterinary Pathology, Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki 8892192, Japan
| | - Takuya Hirai
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki 8891692, Japan
- Laboratory of Veterinary Pathology, Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki 8892192, Japan
| | - Hirohisa Mekata
- Center for Animal Disease Control, University of Miyazaki, Miyazaki 8892192, Japan
| | - Akatsuki Saito
- Laboratory of Veterinary Microbiology, Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki 8892192, Japan
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki 8891692, Japan
- Center for Animal Disease Control, University of Miyazaki, Miyazaki 8892192, Japan
| |
Collapse
|
14
|
O’Keeffe M, Oterhals Å, Vikøren LAS, Drotningsvik A, Mellgren G, Halstensen A, Gudbrandsen OA. Dietary fish intake increased the concentration of soluble ACE2 in rats: can fish consumption reduce the risk of COVID-19 infection through interception of SARS-CoV-2 by soluble ACE2? Br J Nutr 2023; 130:1712-1719. [PMID: 36946006 PMCID: PMC10587383 DOI: 10.1017/s0007114523000776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters the cells after binding to the membrane-bound receptor angiotensin-converting enzyme 2 (ACE2), but this may be prevented through interception by soluble ACE2 (sACE2) or by inhibition of the ACE2 receptor, thus obstructing cell entry and replication. The main objective of this study was to investigate if fish intake affected the concentration of sACE2 in rats. The secondary aim was to evaluate the in vitro ACE2-inhibiting activity of fish proteins. Rats were fed cod muscle as 25 % of dietary protein, and blood was collected after 4 weeks of intervention. Muscle, backbone, skin, head, stomach, stomach content, intestine and swim bladder from haddock, saithe, cod and redfish were hydrolysed with trypsin before ACE2-inhibiting activity was measured in vitro. In vivo data were compared using unpaired Student's t test, and in vitro data were compared using one-way ANOVA followed by the Tukey HSD post hoc test. The mean sACE2 concentration was 47 % higher in rats fed cod when compared with control rats (P 0·034), whereas serum concentrations of angiotensin II and TNF-α were similar between the two experimental groups. Muscle, backbone, skin and head from all four fish species inhibited ACE2 activity in vitro, whereas the remaining fractions had no effect. To conclude, our novel data demonstrate that fish intake increased the sACE2 concentration in rats and that the hydrolysed fish proteins inhibited ACE2 activity in vitro.
Collapse
Affiliation(s)
- Maria O’Keeffe
- Dietary Protein Research Group, Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen5021, Norway
| | | | - Linn Anja Slåke Vikøren
- Dietary Protein Research Group, Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen5021, Norway
| | - Aslaug Drotningsvik
- Dietary Protein Research Group, Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen5021, Norway
| | - Gunnar Mellgren
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen5021, Norway
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen5021, Norway
| | - Alfred Halstensen
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- K. Halstensen AS, P.O. Box 103, Bekkjarvik5399, Norway
| | - Oddrun Anita Gudbrandsen
- Dietary Protein Research Group, Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen5021, Norway
| |
Collapse
|
15
|
Lewis SA, Cinco IR, Doratt BM, Blanton MB, Hoagland C, Newman N, Davies M, Grant KA, Messaoudi I. Chronic alcohol consumption dysregulates innate immune response to SARS-CoV-2 in the lung. EBioMedicine 2023; 97:104812. [PMID: 37793211 PMCID: PMC10562860 DOI: 10.1016/j.ebiom.2023.104812] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Alcohol consumption is widespread with over half of the individuals over 18 years of age in the U.S. reporting alcohol use in the last 30 days. Moreover, 9 million Americans engaged in binge or chronic heavy drinking (CHD) in 2019. CHD negatively impacts pathogen clearance and tissue repair, including in the respiratory tract, thereby increasing susceptibility to infection. Although, it has been hypothesized that chronic alcohol consumption negatively impacts COVID-19 outcomes; the interplay between chronic alcohol use and SARS-CoV-2 infection outcomes has yet to be elucidated. METHODS In this study we employed luminex, scRNA sequencing, and flow cytometry to investigate the impact of chronic alcohol consumption on SARS-CoV-2 anti-viral responses in bronchoalveolar lavage cell samples from humans with alcohol use disorder and rhesus macaques that engaged in chronic drinking. FINDINGS Our data show that in both humans (n = 6) and macaques (n = 11), the induction of key antiviral cytokines and growth factors was decreased with chronic ethanol consumption. Moreover, in macaques fewer differentially expressed genes mapped to Gene Ontology terms associated with antiviral immunity following 6 month of ethanol consumption while TLR signaling pathways were upregulated. INTERPRETATION These data are indicative of aberrant inflammation and reduced antiviral responses in the lung with chronic alcohol drinking. FUNDING This study was supported by NIH 1R01AA028735-04 (Messaoudi), U01AA013510-20 (Grant), R24AA019431-14 (Grant), R24AA019661 (Burnham), P-51OD011092 (ONPRC core grant support). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.
Collapse
Affiliation(s)
- Sloan A Lewis
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, USA
| | - Isaac R Cinco
- Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky, USA
| | - Brianna M Doratt
- Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky, USA
| | - Madison B Blanton
- Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky, USA; Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, USA
| | - Cherise Hoagland
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, USA
| | - Natali Newman
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, USA
| | - Michael Davies
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, USA
| | - Kathleen A Grant
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, USA
| | - Ilhem Messaoudi
- Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky, USA.
| |
Collapse
|
16
|
Lushington GH, Linde A, Melgarejo T. Bacterial Proteases as Potentially Exploitable Modulators of SARS-CoV-2 Infection: Logic from the Literature, Informatics, and Inspiration from the Dog. BIOTECH 2023; 12:61. [PMID: 37987478 PMCID: PMC10660736 DOI: 10.3390/biotech12040061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/19/2023] [Accepted: 10/18/2023] [Indexed: 11/22/2023] Open
Abstract
(1) Background: The COVID-19 pandemic left many intriguing mysteries. Retrospective vulnerability trends tie as strongly to odd demographics as to exposure profiles, genetics, health, or prior medical history. This article documents the importance of nasal microbiome profiles in distinguishing infection rate trends among differentially affected subgroups. (2) Hypothesis: From a detailed literature survey, microbiome profiling experiments, bioinformatics, and molecular simulations, we propose that specific commensal bacterial species in the Pseudomonadales genus confer protection against SARS-CoV-2 infections by expressing proteases that may interfere with the proteolytic priming of the Spike protein. (3) Evidence: Various reports have found elevated Moraxella fractions in the nasal microbiomes of subpopulations with higher resistance to COVID-19 (e.g., adolescents, COVID-19-resistant children, people with strong dietary diversity, and omnivorous canines) and less abundant ones in vulnerable subsets (the elderly, people with narrower diets, carnivorous cats and foxes), along with bioinformatic evidence that Moraxella bacteria express proteases with notable homology to human TMPRSS2. Simulations suggest that these proteases may proteolyze the SARS-CoV-2 spike protein in a manner that interferes with TMPRSS2 priming.
Collapse
Affiliation(s)
| | - Annika Linde
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Tonatiuh Melgarejo
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| |
Collapse
|
17
|
Riefolo M, Ambrosi F, De Palma A, Gallo C, Damiani S. Management of post-mortem examination in SARS-CoV-19 infections. Pathologica 2023; 115:257-262. [PMID: 38054900 DOI: 10.32074/1591-951x-921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 12/07/2023] Open
Abstract
A brief overview on the management of autopsies during the SARS-CoV-19 epidemic is proposed. In particular, the point is made of the Italian laws on the subject, the characteristics required for the autopsy room and the sampling suggested for the histological examination.
Collapse
Affiliation(s)
- Mattia Riefolo
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Interinstitutional Department of Surgical Pathology (Dipartimento Interaziendale di Anatomia Patologica - DIAP), Bologna, Italy
| | - Francesca Ambrosi
- Interinstitutional Department of Surgical Pathology (Dipartimento Interaziendale di Anatomia Patologica - DIAP), Bologna, Italy
- Pathology Unit, Ospedale Maggiore, AUSL di Bologna, Bologna, Italy
| | - Alessandra De Palma
- Forensic Medicine Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Carmine Gallo
- Interinstitutional Department of Surgical Pathology (Dipartimento Interaziendale di Anatomia Patologica - DIAP), Bologna, Italy
- Pathology Unit, Ospedale Bellaria, AUSL di Bologna, Bologna, Italy
| | - Stefania Damiani
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Interinstitutional Department of Surgical Pathology (Dipartimento Interaziendale di Anatomia Patologica - DIAP), Bologna, Italy
| |
Collapse
|
18
|
Muyayalo KP, Gong GS, Kiyonga Aimeé K, Liao AH. Impaired immune response against SARS-CoV-2 infection is the major factor indirectly altering reproductive function in COVID-19 patients: a narrative review. HUM FERTIL 2023; 26:778-796. [PMID: 37811836 DOI: 10.1080/14647273.2023.2262757] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/25/2023] [Indexed: 10/10/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease affecting multiple systems and organs, including the reproductive system. SARS-CoV-2, the virus that causes COVID-19, can damage reproductive organs through direct (angiotensin converting enzyme-2, ACE-2) and indirect mechanisms. The immune system plays an essential role in the homeostasis and function of the male and female reproductive systems. Therefore, an altered immune response related to infectious and inflammatory diseases can affect reproductive function and fertility in both males and females. This narrative review discussed the dysregulation of innate and adaptive systems induced by SARS-CoV-2 infection. We reviewed the evidence showing that this altered immune response in COVID-19 patients is the major indirect mechanism leading to adverse reproduction outcomes in these patients. We summarized studies reporting the long-term effect of SARS-CoV-2 infection on women's reproductive function and proposed the chronic inflammation and chronic autoimmunity characterizing long COVID as potential underlying mechanisms. Further studies are needed to clarify the role of autoimmunity and chronic inflammation (long COVID) in altered female reproduction function in COVID-19.
Collapse
Affiliation(s)
- Kahindo P Muyayalo
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
- Department of Obstetrics and Gynecology, University of Kinshasa, Kinshasa, D. R. Congo
| | - Guang-Shun Gong
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Kahindo Kiyonga Aimeé
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, People's Republic of China
- Department of Tropical Medicine Infectious and Parasitic Diseases, University of Kinshasa, Kinshasa, D. R. Congo
| | - Ai-Hua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| |
Collapse
|
19
|
Vishwanath S, Carnell GW, Ferrari M, Asbach B, Billmeier M, George C, Sans MS, Nadesalingam A, Huang CQ, Paloniemi M, Stewart H, Chan A, Wells DA, Neckermann P, Peterhoff D, Einhauser S, Cantoni D, Neto MM, Jordan I, Sandig V, Tonks P, Temperton N, Frost S, Sohr K, Ballesteros MTL, Arbabi F, Geiger J, Dohmen C, Plank C, Kinsley R, Wagner R, Heeney JL. A computationally designed antigen eliciting broad humoral responses against SARS-CoV-2 and related sarbecoviruses. Nat Biomed Eng 2023:10.1038/s41551-023-01094-2. [PMID: 37749309 DOI: 10.1038/s41551-023-01094-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 08/23/2023] [Indexed: 09/27/2023]
Abstract
The threat of spillovers of coronaviruses associated with the severe acute respiratory syndrome (SARS) from animals to humans necessitates vaccines that offer broader protection from sarbecoviruses. By leveraging a viral-genome-informed computational method for selecting immune-optimized and structurally engineered antigens, here we show that a single antigen based on the receptor binding domain of the spike protein of sarbecoviruses elicits broad humoral responses against SARS-CoV-1, SARS-CoV-2, WIV16 and RaTG13 in mice, rabbits and guinea pigs. When administered as a DNA immunogen or by a vector based on a modified vaccinia virus Ankara, the optimized antigen induced vaccine protection from the Delta variant of SARS-CoV-2 in mice genetically engineered to express angiotensin-converting enzyme 2 and primed by a viral-vector vaccine (AZD1222) against SARS-CoV-2. A vaccine formulation incorporating mRNA coding for the optimized antigen further validated its broad immunogenicity. Vaccines that elicit broad immune responses across subgroups of coronaviruses may counteract the threat of zoonotic spillovers of betacoronaviruses.
Collapse
Affiliation(s)
- Sneha Vishwanath
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - George William Carnell
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - Benedikt Asbach
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Martina Billmeier
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Charlotte George
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Maria Suau Sans
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Angalee Nadesalingam
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Chloe Qingzhou Huang
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Minna Paloniemi
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Hazel Stewart
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Andrew Chan
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - Patrick Neckermann
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - David Peterhoff
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Sebastian Einhauser
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Diego Cantoni
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Chatham, UK
| | - Martin Mayora Neto
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Chatham, UK
| | | | | | - Paul Tonks
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Chatham, UK
| | - Simon Frost
- DIOSynVax Ltd, University of Cambridge, Cambridge, UK
- London School of Hygiene and Tropical Medicine, London, UK
- Microsoft Health Futures, Redmond, WA, USA
| | | | | | | | | | | | | | - Rebecca Kinsley
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- DIOSynVax Ltd, University of Cambridge, Cambridge, UK
| | - Ralf Wagner
- DIOSynVax Ltd, University of Cambridge, Cambridge, UK
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Jonathan Luke Heeney
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
- DIOSynVax Ltd, University of Cambridge, Cambridge, UK.
| |
Collapse
|
20
|
Lin CW, Wang YH, Li YE, Chiang TY, Chiu LW, Lin HC, Chang CT. COVID-related dysphonia and persistent long-COVID voice sequelae: A systematic review and meta-analysis. Am J Otolaryngol 2023; 44:103950. [PMID: 37354724 PMCID: PMC10250057 DOI: 10.1016/j.amjoto.2023.103950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/04/2023] [Indexed: 06/26/2023]
Abstract
PURPOSE Dysphonia is a common symptom due to the coronavirus disease of the 2019 (COVID-19) infection. Nonetheless, it is often underestimated for its impact on human's health. We conducted this first study to investigate the global prevalence of COVID-related dysphonia as well as related clinical factors during acute COVID-19 infection, and after a mid- to long-term follow-up following the recovery. METHODS Five electronic databases including PubMed, Embase, ScienceDirect, the Cochrane Library, and Web of Science were systematically searched for relevant articles until Dec, 2022, and the reference of the enrolled studies were also reviewed. Dysphonia prevalence during and after COVID-19 infection, and voice-related clinical factors were analyzed; the random-effects model was adopted for meta-analysis. The one-study-removal method was used for sensitivity analysis. Publication bias was determined with funnel plots and Egger's tests. RESULTS Twenty-one articles comprising 13,948 patients were identified. The weighted prevalence of COVID-related dysphonia during infection was 25.1 % (95 % CI: 14.9 to 39.0 %), and male was significantly associated with lower dysphonia prevalence (coefficients: -0.116, 95 % CI: -0.196 to -0.036; P = .004) during this period. Besides, after recovery, the weighted prevalence of COVID-related dysphonia declined to 17.1 % (95 % CI: 11.0 to 25.8 %). 20.1 % (95 % CI: 8.6 to 40.2 %) of the total patients experienced long-COVID dysphonia. CONCLUSIONS A quarter of the COVID-19 patients, especially female, suffered from voice impairment during infection, and approximately 70 % of these dysphonic patients kept experiencing long-lasting voice sequelae, which should be noticed by global physicians.
Collapse
Affiliation(s)
- Chung-Wei Lin
- Department of Education, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yu-Han Wang
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-En Li
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Ting-Yi Chiang
- Department of Education, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Li-Wen Chiu
- Department of Education, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Hsin-Ching Lin
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Business Management, Institute of Healthcare Management and Institute of Biomedical Science, National Sun Yat-sen University, Kaohsiung, Taiwan; Sleep Center, Robotic Surgery Center and Center for Quality Management, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
| | - Chun-Tuan Chang
- Department of Business Management, Institute of Healthcare Management and Institute of Biomedical Science, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
21
|
Sengar A, Cervantes M, Bondalapati ST, Hess T, Kasson PM. Single-Virus Fusion Measurements Reveal Multiple Mechanistically Equivalent Pathways for SARS-CoV-2 Entry. J Virol 2023; 97:e0199222. [PMID: 37133381 PMCID: PMC10231210 DOI: 10.1128/jvi.01992-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/11/2023] [Indexed: 05/04/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binds to cell surface receptors and is activated for membrane fusion and cell entry via proteolytic cleavage. Phenomenological data have shown that SARS-CoV-2 can be activated for entry at either the cell surface or in endosomes, but the relative roles in different cell types and mechanisms of entry have been debated. Here, we used single-virus fusion experiments and exogenously controlled proteases to probe activation directly. We found that plasma membrane and an appropriate protease are sufficient to support SARS-CoV-2 pseudovirus fusion. Furthermore, fusion kinetics of SARS-CoV-2 pseudoviruses are indistinguishable no matter which of a broad range of proteases is used to activate the virus. This suggests that the fusion mechanism is insensitive to protease identity or even whether activation occurs before or after receptor binding. These data support a model for opportunistic fusion by SARS-CoV-2 in which the subcellular location of entry likely depends on the differential activity of airway, cellsurface, and endosomal proteases, but all support infection. Inhibition of any single host protease may thus reduce infection in some cells but may be less clinically robust. IMPORTANCE SARS-CoV-2 can use multiple pathways to infect cells, as demonstrated recently when new viral variants switched dominant infection pathways. Here, we used single-virus fusion experiments together with biochemical reconstitution to show that these multiple pathways coexist simultaneously and specifically that the virus can be activated by different proteases in different cellular compartments with mechanistically identical effects. The consequences of this are that the virus is evolutionarily plastic and that therapies targeting viral entry should address multiple pathways at once to achieve optimal clinical effects.
Collapse
Affiliation(s)
- Anjali Sengar
- Department of Molecular Physiology, Global Infectious Diseases Institute, University of Virginia, Charlottesville, Virginia, USA
- Department of Biomedical Engineering, Global Infectious Diseases Institute, University of Virginia, Charlottesville, Virginia, USA
| | - Marcos Cervantes
- Department of Molecular Physiology, Global Infectious Diseases Institute, University of Virginia, Charlottesville, Virginia, USA
- Department of Biomedical Engineering, Global Infectious Diseases Institute, University of Virginia, Charlottesville, Virginia, USA
| | - Sai T. Bondalapati
- Department of Molecular Physiology, Global Infectious Diseases Institute, University of Virginia, Charlottesville, Virginia, USA
- Department of Biomedical Engineering, Global Infectious Diseases Institute, University of Virginia, Charlottesville, Virginia, USA
| | - Tobin Hess
- Department of Molecular Physiology, Global Infectious Diseases Institute, University of Virginia, Charlottesville, Virginia, USA
- Department of Biomedical Engineering, Global Infectious Diseases Institute, University of Virginia, Charlottesville, Virginia, USA
| | - Peter M. Kasson
- Department of Molecular Physiology, Global Infectious Diseases Institute, University of Virginia, Charlottesville, Virginia, USA
- Department of Biomedical Engineering, Global Infectious Diseases Institute, University of Virginia, Charlottesville, Virginia, USA
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
22
|
Lewis SA, Cinco IR, Doratt BM, Blanton MB, Hoagland C, Davies M, Grant KA, Messaoudi I. Chronic alcohol consumption dysregulates innate immune response to SARS-CoV-2 in the lung. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.539139. [PMID: 37205543 PMCID: PMC10187161 DOI: 10.1101/2023.05.02.539139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Alcohol consumption is widespread with over half of the individuals over 18 years of age in the U.S. reporting alcohol use in the last 30 days. Moreover, 9 million Americans engaged in binge or chronic heavy drinking (CHD) in 2019. CHD negatively impacts pathogen clearance and tissue repair, including in the respiratory tract, thereby increasing susceptibility to infection. Although, it has been hypothesized that chronic alcohol consumption negatively impacts COVID-19 outcomes; the interplay between chronic alcohol use and SARS-CoV-2 infection outcomes has yet to be elucidated. Therefore, in this study we investigated the impact of chronic alcohol consumption on SARS-CoV-2 anti-viral responses in bronchoalveolar lavage cell samples from humans with alcohol use disorder and rhesus macaques that engaged in chronic drinking. Our data show that in both humans and macaques, the induction of key antiviral cytokines and growth factors was decreased with chronic ethanol consumption. Moreover, in macaques fewer differentially expressed genes mapped to Gene Ontology terms associated with antiviral immunity following 6 month of ethanol consumption while TLR signaling pathways were upregulated. These data are indicative of aberrant inflammation and reduced antiviral responses in the lung with chronic alcohol drinking.
Collapse
Affiliation(s)
- Sloan A. Lewis
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine
| | - Isaac R. Cinco
- Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky
| | - Brianna M. Doratt
- Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky
| | - Madison B. Blanton
- Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky
- Pharmaceutical Sciences, College of Pharmacy, University of Kentucky
| | - Cherise Hoagland
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University
| | - Michael Davies
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University
| | - Kathleen A. Grant
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University
| | - Ilhem Messaoudi
- Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky
| |
Collapse
|
23
|
Saleem W, Ren X, Van Den Broeck W, Nauwynck H. Changes in intestinal morphology, number of mucus-producing cells and expression of coronavirus receptors APN, DPP4, ACE2 and TMPRSS2 in pigs with aging. Vet Res 2023; 54:34. [PMID: 37055856 PMCID: PMC10100624 DOI: 10.1186/s13567-023-01169-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/01/2023] [Indexed: 04/15/2023] Open
Abstract
Porcine enteric viral infections cause high morbidity and mortality in young piglets (<3 weeks). Later, these rates decrease with age. This age-dependent infectivity remains largely unexplored. This study investigated the changes in intestinal morphology, number of mucus-producing cells and expression level of coronavirus receptors in three age groups of pigs. Villus height and crypt depth increased with age from 3 days to 3 months in duodenum and ileum but not in mid-jejunum, where the villus height decreased from 580 µm at 3 days to 430 µm at 3 months. Enterocyte length-to-width ratio increased from 3 days to 3 months in all intestinal regions. The number of mucus-producing cells increased with age in the intestinal villi and crypts. The Brunner's glands of the duodenum contained the highest concentration of mucus-producing cells. The expression of coronavirus receptor APN was highest in the small intestinal villi at all ages. DPP4 expression slightly decreased over time in jejunum and ileum; it was highest in the ileal villi of 3-day-old piglets (70.2% of cells). ACE2 and TMPRSS2 positive cells increased with age in jejunal and ileal crypts and were particularly dominant in the ileal crypts (> 45% of cells). Except for the expression of DPP4 in the jejunum and ileum of young pigs, the expression pattern of the selected coronavirus receptors was very different and not correlated with the age-dependent susceptibility to viral infections. In contrast, the number of mucus-producing cells increased over time and may play an essential role in protecting enteric mucosae against intestinal viruses.
Collapse
Affiliation(s)
- Waqar Saleem
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium.
| | - Xiaolei Ren
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Wim Van Den Broeck
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Hans Nauwynck
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| |
Collapse
|
24
|
How the Competition for Cysteine May Promote Infection of SARS-CoV-2 by Triggering Oxidative Stress. Antioxidants (Basel) 2023; 12:antiox12020483. [PMID: 36830041 PMCID: PMC9952211 DOI: 10.3390/antiox12020483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
SARS-CoV-2 induces a broad range of clinical manifestations. Besides the main receptor, ACE2, other putative receptors and co-receptors have been described and could become genuinely relevant to explain the different tropism manifested by new variants. In this study, we propose a biochemical model envisaging the competition for cysteine as a key mechanism promoting the infection and the selection of host receptors. The SARS-CoV-2 infection produces ROS and triggers a massive biosynthesis of proteins rich in cysteine; if this amino acid becomes limiting, glutathione levels are depleted and cannot control oxidative stress. Hence, infection succeeds. A receptor should be recognized as a marker of suitable intracellular conditions, namely the full availability of amino acids except for low cysteine. First, we carried out a comparative investigation of SARS-CoV-2 proteins and human ACE2. Then, using hierarchical cluster protein analysis, we searched for similarities between all human proteins and spike produced by the latest variant, Omicron BA.1. We found 32 human proteins very close to spike in terms of amino acid content. Most of these potential SARS-CoV-2 receptors have less cysteine than spike. We suggest that these proteins could signal an intracellular shortage of cysteine, predicting a burst of oxidative stress when used as viral entry mediators.
Collapse
|
25
|
Hu W, Song X, Yu H, Zhao L, Zhao Y, Zhao Y. Further comments on the role of ACE-2 positive macrophages in human lung. Cytometry A 2023; 103:146-152. [PMID: 34355866 PMCID: PMC8426751 DOI: 10.1002/cyto.a.24484] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/25/2022]
Affiliation(s)
- Wei Hu
- Center for Discovery and InnovationHackensack Meridian HealthNutleyNew JerseyUSA
| | - Xiang Song
- Center for Discovery and InnovationHackensack Meridian HealthNutleyNew JerseyUSA
| | - Haibo Yu
- Center for Discovery and InnovationHackensack Meridian HealthNutleyNew JerseyUSA
| | - Laura Zhao
- Throne Biotechnologies IncParamusNew JerseyUSA
| | - Yeqian Zhao
- Throne Biotechnologies IncParamusNew JerseyUSA
| | - Yong Zhao
- Center for Discovery and InnovationHackensack Meridian HealthNutleyNew JerseyUSA
- Throne Biotechnologies IncParamusNew JerseyUSA
| |
Collapse
|
26
|
Tachoua W, Kabrine M, Mushtaq M, Selmi A, Ul-Haq Z. Highlights in TMPRSS2 inhibition mechanism with guanidine derivatives approved drugs for COVID-19 treatment. J Biomol Struct Dyn 2023; 41:12908-12922. [PMID: 36709428 DOI: 10.1080/07391102.2023.2169762] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/11/2023] [Indexed: 01/30/2023]
Abstract
Transmembrane protease serine 2 (TMPRSS2) has been identified as a critical key for the entry of coronaviruses into human cells by cleaving and activating the spike protein of SARS-CoV-2. To block the TMPRSS2 function, 18 approved drugs, containing the guanidine group were tested against TMPRSS2's ectodomain (7MEQ). Among these drugs, Famotidine, Argatroban, Guanadrel and Guanethidine strongly binds with TMPRSS2 S1 pocket with estimated Fullfitness energies of -1847.12, -1630.87, -1605.81 and -1600.52 kcal/mol, respectively. A significant number of non-covalent interactions such as hydrogen bonding, hydrophobic and electrostatic interactions were detected in protein-ligand complexes. In addition, the ADMET analysis revealed a perfect concurrence with the aptitude of these drugs to be developed as an anti-SARS-CoV-2 therapeutics. Further, MD simulation and binding free energy calculations were performed to evaluate the dynamic behavior and stability of protein-ligand complexes. The results obtained herein highlight the enhanced stability and good binding affinities of the Argatroban and Famotidine towards the target protein, hence might act as new scaffolds for TMPRSS2 inhibition.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Wafa Tachoua
- Nature and Life Sciences department, University of Algiers Benyoucef Benkhedda, Algiers, Algeria
| | - Mohamed Kabrine
- Faculty of Biological Sciences, Cellular and Molecular Biology, University of Science and Technology Houari Boumediene, Algiers, Algeria
| | - Mamona Mushtaq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, ICCBS, University of Karachi, Karachi, Pakistan
| | - Ahmed Selmi
- Faculty of Sciences of Gafsa, University of Gafsa, Gafsa, Tunisia
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, ICCBS, University of Karachi, Karachi, Pakistan
| |
Collapse
|
27
|
Heindl MR, Böttcher-Friebertshäuser E. The role of influenza-A virus and coronavirus viral glycoprotein cleavage in host adaptation. Curr Opin Virol 2023; 58:101303. [PMID: 36753938 PMCID: PMC9847222 DOI: 10.1016/j.coviro.2023.101303] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 01/19/2023]
Abstract
While receptor binding is well recognized as a factor in influenza-A virus (IAV) and coronavirus (CoV) host adaptation, the role of viral glycoprotein cleavage has not been studied in detail so far. Interestingly, recent studies suggest that host species may differ in their protease repertoire available for cleavage. Furthermore, it was shown for certain bat-derived CoVs that proteolytic activation provides a critical barrier to infect human cells. Understanding the role of glycoprotein cleavage in different species and how IAV and CoVs adapt to a new protease repertoire may allow evaluating the zoonotic potential and risk posed by these viruses. Here, we summarize the current knowledge on the emergence of a multibasic cleavage site (CS) in the glycoproteins of IAVs and CoVs in different host species. Additionally, we discuss the role of transmembrane serine protease 2 (TMPRSS2) in virus activation and entry and a role of neuropilin-1 in acquisition of a multibasic CS in different hosts.
Collapse
|
28
|
TMPRSS2 Is Essential for SARS-CoV-2 Beta and Omicron Infection. Viruses 2023; 15:v15020271. [PMID: 36851486 PMCID: PMC9961888 DOI: 10.3390/v15020271] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
The COVID-19 pandemic remains a global health threat and novel antiviral strategies are urgently needed. SARS-CoV-2 employs the cellular serine protease TMPRSS2 for entry into lung cells, and TMPRSS2 inhibitors are being developed for COVID-19 therapy. However, the SARS-CoV-2 Omicron variant, which currently dominates the pandemic, prefers the endo/lysosomal cysteine protease cathepsin L over TMPRSS2 for cell entry, raising doubts as to whether TMPRSS2 inhibitors would be suitable for the treatment of patients infected with the Omicron variant. Nevertheless, the contribution of TMPRSS2 to the spread of SARS-CoV-2 in the infected host is largely unclear. In this study, we show that the loss of TMPRSS2 strongly reduced the replication of the Beta variant in the nose, trachea and lung of C57BL/6 mice, and protected the animals from weight loss and disease. The infection of mice with the Omicron variant did not cause disease, as expected, but again, TMPRSS2 was essential for efficient viral spread in the upper and lower respiratory tract. These results identify the key role of TMPRSS2 in SARS-CoV-2 Beta and Omicron infection, and highlight TMPRSS2 as an attractive target for antiviral intervention.
Collapse
|
29
|
Carnell GW, Billmeier M, Vishwanath S, Suau Sans M, Wein H, George CL, Neckermann P, Del Rosario JMM, Sampson AT, Einhauser S, Aguinam ET, Ferrari M, Tonks P, Nadesalingam A, Schütz A, Huang CQ, Wells DA, Paloniemi M, Jordan I, Cantoni D, Peterhoff D, Asbach B, Sandig V, Temperton N, Kinsley R, Wagner R, Heeney JL. Glycan masking of a non-neutralising epitope enhances neutralising antibodies targeting the RBD of SARS-CoV-2 and its variants. Front Immunol 2023; 14:1118523. [PMID: 36911730 PMCID: PMC9995963 DOI: 10.3389/fimmu.2023.1118523] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
The accelerated development of the first generation COVID-19 vaccines has saved millions of lives, and potentially more from the long-term sequelae of SARS-CoV-2 infection. The most successful vaccine candidates have used the full-length SARS-CoV-2 spike protein as an immunogen. As expected of RNA viruses, new variants have evolved and quickly replaced the original wild-type SARS-CoV-2, leading to escape from natural infection or vaccine induced immunity provided by the original SARS-CoV-2 spike sequence. Next generation vaccines that confer specific and targeted immunity to broadly neutralising epitopes on the SARS-CoV-2 spike protein against different variants of concern (VOC) offer an advance on current booster shots of previously used vaccines. Here, we present a targeted approach to elicit antibodies that neutralise both the ancestral SARS-CoV-2, and the VOCs, by introducing a specific glycosylation site on a non-neutralising epitope of the RBD. The addition of a specific glycosylation site in the RBD based vaccine candidate focused the immune response towards other broadly neutralising epitopes on the RBD. We further observed enhanced cross-neutralisation and cross-binding using a DNA-MVA CR19 prime-boost regime, thus demonstrating the superiority of the glycan engineered RBD vaccine candidate across two platforms and a promising candidate as a broad variant booster vaccine.
Collapse
Affiliation(s)
- George W Carnell
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Martina Billmeier
- Institute of Medical Microbiology & Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
| | - Sneha Vishwanath
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Maria Suau Sans
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Hannah Wein
- Institute of Medical Microbiology & Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
| | - Charlotte L George
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Patrick Neckermann
- Institute of Medical Microbiology & Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
| | | | - Alexander T Sampson
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Sebastian Einhauser
- Institute of Medical Microbiology & Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
| | - Ernest T Aguinam
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Paul Tonks
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Angalee Nadesalingam
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Anja Schütz
- Institute of Medical Microbiology & Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
| | - Chloe Qingzhou Huang
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Minna Paloniemi
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Ingo Jordan
- Applied Science & Technologies, ProBioGen AG, Berlin, Germany
| | - Diego Cantoni
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Chatham, United Kingdom
| | - David Peterhoff
- Institute of Medical Microbiology & Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany.,Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Benedikt Asbach
- Institute of Medical Microbiology & Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
| | - Volker Sandig
- Applied Science & Technologies, ProBioGen AG, Berlin, Germany
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Chatham, United Kingdom
| | - Rebecca Kinsley
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom.,DIOSynVax, Ltd., Cambridge, United Kingdom
| | - Ralf Wagner
- Institute of Medical Microbiology & Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany.,Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Jonathan L Heeney
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom.,DIOSynVax, Ltd., Cambridge, United Kingdom
| |
Collapse
|
30
|
Antigen-Specific T Cells and SARS-CoV-2 Infection: Current Approaches and Future Possibilities. Int J Mol Sci 2022; 23:ijms232315122. [PMID: 36499448 PMCID: PMC9737069 DOI: 10.3390/ijms232315122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022] Open
Abstract
COVID-19, a significant global health threat, appears to be an immune-related disease. Failure of effective immune responses in initial stages of infection may contribute to development of cytokine storm and systemic inflammation with organ damage, leading to poor clinical outcomes. Disease severity and the emergence of new SARS-CoV-2 variants highlight the need for new preventative and therapeutic strategies to protect the immunocompromised population. Available data indicate that these people may benefit from adoptive transfer of allogeneic SARS-CoV-2-specific T cells isolated from convalescent individuals. This review first provides an insight into the mechanism of cytokine storm development, as it is directly related to the exhaustion of T cell population, essential for viral clearance and long-term antiviral immunity. Next, we describe virus-specific T lymphocytes as a promising and efficient approach for the treatment and prevention of severe COVID-19. Furthermore, other potential cell-based therapies, including natural killer cells, regulatory T cells and mesenchymal stem cells are mentioned. Additionally, we discuss fast and effective ways of producing clinical-grade antigen-specific T cells which can be cryopreserved and serve as an effective "off-the-shelf" approach for rapid treatment of SARS-CoV-2 infection in case of sudden patient deterioration.
Collapse
|
31
|
Wu W, Wang S, Zhang L, Mao B, Wang B, Wang X, Zhao D, Zhao P, Mou Y, Yan P. Mechanistic studies of MALAT1 in respiratory diseases. Front Mol Biosci 2022; 9:1031861. [PMID: 36419933 PMCID: PMC9676952 DOI: 10.3389/fmolb.2022.1031861] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/24/2022] [Indexed: 10/11/2023] Open
Abstract
Background: The incidence of respiratory diseases and the respiratory disease mortality rate have increased in recent years. Recent studies have shown that long non-coding RNA (lncRNA) MALAT1 is involved in various respiratory diseases. In vascular endothelial and cancer cells, MALAT1 expression triggers various changes such as proinflammatory cytokine expression, cancer cell proliferation and metastasis, and increased endothelial cell permeability. Methods: In this review, we performed a relative concentration index (RCI) analysis of the lncRNA database to assess differences in MALAT1 expression in different cell lines and at different locations in the same cell, and summarize the molecular mechanisms of MALAT1 in the pathophysiology of respiratory diseases and its potential therapeutic application in these conditions. Results: MALAT1 plays an important regulatory role in lncRNA with a wide range of effects in respiratory diseases. The available evidence shows that MALAT1 plays an important role in the regulation of multiple respiratory diseases. Conclusion: MALAT1 is an important regulatory biomarker for respiratory disease. Targeting the regulation MALAT1 could have important applications for the future treatment of respiratory diseases.
Collapse
Affiliation(s)
- Wenzheng Wu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shihao Wang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lu Zhang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Beibei Mao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bin Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoxu Wang
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dongsheng Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Pan Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yunying Mou
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peizheng Yan
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
32
|
Karimian A, Behjati M, Karimian M. Molecular mechanisms involved in anosmia induced by SARS-CoV-2, with a focus on the transmembrane serine protease TMPRSS2. Arch Virol 2022; 167:1931-1946. [PMID: 35939103 PMCID: PMC9358639 DOI: 10.1007/s00705-022-05545-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/31/2022] [Indexed: 11/26/2022]
Abstract
Since 2020, SARS-CoV-2 has caused a pandemic virus that has posed many challenges worldwide. Infection with this virus can result in a number of symptoms, one of which is anosmia. Olfactory dysfunction can be a temporary or long-term viral complication caused by a disorder of the olfactory neuroepithelium. Processes such as inflammation, apoptosis, and neuronal damage are involved in the development of SARS-CoV-2-induced anosmia. One of the receptors that play a key role in the entry of SARS-CoV-2 into the host cell is the transmembrane serine protease TMPRSS2, which facilitates this process by cleaving the viral S protein. The gene encoding TMPRSS2 is located on chromosome 21. It contains 15 exons and has many genetic variations, some of which increase the risk of disease. Delta strains have been shown to be more dependent on TMPRSS2 for cell entry than Omicron strains. Blockade of this receptor by serine protease inhibitors such as camostat and nafamostat can be helpful for treating SARS-CoV-2 symptoms, including anosmia. Proper understanding of the different functional aspects of this serine protease can help to overcome the therapeutic challenges of SARS-CoV-2 symptoms, including anosmia. In this review, we describe the cellular and molecular events involved in anosmia induced by SARS-CoV-2 with a focus on the function of the TMPRSS2 receptor.
Collapse
Affiliation(s)
- Ali Karimian
- Department of Otorhinolaryngology, School of Medicine, Kashan University of Medical Science, Kashan, Iran
| | - Mohaddeseh Behjati
- Cellular, Molecular and Genetics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, 47416-95447, Iran.
| |
Collapse
|
33
|
ÇETİN H, ATEŞ AŞ, TAYDAŞ O, ELMAS B, GÜÇLÜ E. Magnetic resonance imaging findings in COVID-19-related anosmia. Turk J Med Sci 2022; 52:1506-1512. [PMID: 36422480 PMCID: PMC10395696 DOI: 10.55730/1300-0144.5490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/19/2022] [Accepted: 10/05/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) mostly manifests with fever, shortness of breath, and cough, has also been found to cause some neurological symptoms, such as anosmia and ageusia. The aim of the study was to present the magnetic resonance imaging (MRI) findings of patients with anosmia-hyposmia symptoms and to discuss potential mechanisms in light of these findings. METHODS Of the 2412 patients diagnosed with COVID-19-related pneumonia (RT-PCR at least once + clinically confirmed) between March and December 2020, 15 patients underwent olfactory MRI to investigate the cause of ongoing anosmia/ hyposmia symptoms were included in the study. RESULTS Eleven (73.3%) patients were female and four (26.7%) were male. A total of eight patients (53.3%) showed thickening in the olfactory cleft region, where the olfactory epithelium is located. In nine patients (60%), enhancement was observed in the olfactory cleft region. Diffusion-weighted imaging showed restricted diffusion in three patients (20%) (corpus callosum splenium in one patient, thalamus mediodorsal nucleus in one patient, and mesencephalon in one patient). DISCUSSION This study revealed that there is a relationship between anosmia and MRI findings. Larger studies can enlighten the pathophysiological mechanism and shed light on both diagnosis and new treatments.
Collapse
Affiliation(s)
- Hüseyin ÇETİN
- Department of Radiology, Faculty of Medicine, Ankara Yıldırım Beyazıt University, Ankara,
Turkey
| | - Ayşe Şule ATEŞ
- Department of Chest Diseases, Sakarya University Training and Research Hospital, Sakarya,
Turkey
| | - Ogün TAYDAŞ
- Department of Family Medicine, University of Health Sciences, Haydarpaşa Numune Training and Research Hospital, İstanbul,
Turkey
| | - Bahri ELMAS
- Department of Pediatrics, Faculty of Medicine, Sakarya University, Sakarya,
Turkey
| | - Ertuğrul GÜÇLÜ
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Sakarya University, Sakarya,
Turkey
| |
Collapse
|
34
|
Gut Microbiota Dynamics in Relation to Long-COVID-19 Syndrome: Role of Probiotics to Combat Psychiatric Complications. Metabolites 2022; 12:metabo12100912. [PMID: 36295814 PMCID: PMC9611210 DOI: 10.3390/metabo12100912] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/11/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Increasing numbers of patients who recover from COVID-19 report lasting symptoms, such as fatigue, muscle weakness, dementia, and insomnia, known collectively as post-acute COVID syndrome or long COVID. These lasting symptoms have been examined in different studies and found to influence multiple organs, sometimes resulting in life-threating conditions. In this review, these symptoms are discussed in connection to the COVID-19 and long-COVID-19 immune changes, highlighting oral and psychiatric health, as this work focuses on the gut microbiota’s link to long-COVID-19 manifestations in the liver, heart, kidney, brain, and spleen. A model of this is presented to show the biological and clinical implications of gut microbiota in SARS-CoV-2 infection and how they could possibly affect the therapeutic aspects of the disease. Probiotics can support the body’s systems in fighting viral infections. This review focuses on current knowledge about the use of probiotics as adjuvant therapies for COVID-19 patients that might help to prevent long-COVID-19 complications.
Collapse
|
35
|
Nelli RK, Roth JA, Gimenez-Lirola LG. Distribution of Coronavirus Receptors in the Swine Respiratory and Intestinal Tract. Vet Sci 2022; 9:vetsci9090500. [PMID: 36136717 PMCID: PMC9504008 DOI: 10.3390/vetsci9090500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/06/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Coronaviruses use a broad range of host receptors for binding and cell entry, essential steps in establishing viral infections. This pilot study evaluated the overall distribution of angiotensin-converting enzyme 2 (ACE2), aminopeptidase N (APN), carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), and dipeptidyl peptidase 4 (DPP4) receptors in the pig respiratory and intestinal tract. All the receptors evaluated in this study were expressed and differentially distributed through the respiratory and intestinal tract. The presence and expression levels of these receptors could determine susceptibility to coronavirus infections. This study may have important implications for the development of research models and the assessment of the potential risk and introduction of novel coronaviruses into the swine population.
Collapse
|
36
|
Mitra J, Kodavati M, Provasek VE, Rao KS, Mitra S, Hamilton DJ, Horner PJ, Vahidy FS, Britz GW, Kent TA, Hegde ML. SARS-CoV-2 and the central nervous system: Emerging insights into hemorrhage-associated neurological consequences and therapeutic considerations. Ageing Res Rev 2022; 80:101687. [PMID: 35843590 PMCID: PMC9288264 DOI: 10.1016/j.arr.2022.101687] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/20/2022] [Accepted: 07/07/2022] [Indexed: 01/27/2023]
Abstract
Coronavirus disease 2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) continues to impact our lives by causing widespread illness and death and poses a threat due to the possibility of emerging strains. SARS-CoV-2 targets angiotensin-converting enzyme 2 (ACE2) before entering vital organs of the body, including the brain. Studies have shown systemic inflammation, cellular senescence, and viral toxicity-mediated multi-organ failure occur during infectious periods. However, prognostic investigations suggest that both acute and long-term neurological complications, including predisposition to irreversible neurodegenerative diseases, can be a serious concern for COVID-19 survivors, especially the elderly population. As emerging studies reveal sites of SARS-CoV-2 infection in different parts of the brain, potential causes of chronic lesions including cerebral and deep-brain microbleeds and the likelihood of developing stroke-like pathologies increases, with critical long-term consequences, particularly for individuals with neuropathological and/or age-associated comorbid conditions. Our recent studies linking the blood degradation products to genome instability, leading to cellular senescence and ferroptosis, raise the possibility of similar neurovascular events as a result of SARS-CoV-2 infection. In this review, we discuss the neuropathological consequences of SARS-CoV-2 infection in COVID survivors, focusing on possible hemorrhagic damage in brain cells, its association to aging, and the future directions in developing mechanism-guided therapeutic strategies.
Collapse
Affiliation(s)
- Joy Mitra
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA.
| | - Manohar Kodavati
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Vincent E Provasek
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA; College of Medicine, Texas A&M University, College Station, TX, USA
| | - K S Rao
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation Deemed to be University, Green Fields, Vaddeswaram, Andhra Pradesh 522502, India
| | - Sankar Mitra
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Dale J Hamilton
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX 77030, USA; Weill Cornell Medical College, New York, USA
| | - Philip J Horner
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA; Weill Cornell Medical College, New York, USA
| | - Farhaan S Vahidy
- Center for Outcomes Research, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Gavin W Britz
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA; Weill Cornell Medical College, New York, USA
| | - Thomas A Kent
- Center for Genomics and Precision Medicine, Department of Translational Medical Sciences, Institute of Biosciences and Technology, College of Medicine, Texas A&M Health Science Center, Houston, TX, USA
| | - Muralidhar L Hegde
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA; Weill Cornell Medical College, New York, USA.
| |
Collapse
|
37
|
Ivashchenko AA, Zagribelnyy BA, Ivanenkov YA, Ivashchenko IA, Karapetian RN, Kravchenko DV, Savchuk NP, Yakubova EV, Ivachtchenko AV. The Efficacy of Aprotinin Combinations with Selected Antiviral Drugs in Mouse Models of Influenza Pneumonia and Coronavirus Infection Caused by SARS-CoV-2. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154975. [PMID: 35956925 PMCID: PMC9370800 DOI: 10.3390/molecules27154975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/25/2022] [Accepted: 08/03/2022] [Indexed: 12/15/2022]
Abstract
The efficacy of aprotinin combinations with selected antiviral-drugs treatment of influenza virus and coronavirus (SARS-CoV-2) infection was studied in mice models of influenza pneumonia and COVID-19. The high efficacy of the combinations in reducing virus titer in lungs and body weight loss and in increasing the survival rate were demonstrated. This preclinical study can be considered a confirmatory step before introducing the combinations into clinical assessment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Alexandre V. Ivachtchenko
- ChemDiv Inc., San Diego, CA 92130, USA
- ASAVI LLC, 1835 E. Hallandale Beach Blvd, #442, Hallandale Beach, FL 33009, USA
- Correspondence: (R.N.K.); (A.V.I.)
| |
Collapse
|
38
|
Mishra A, Kaur U, Singh A. Fisetin 8-C-glucoside as entry inhibitor in SARS CoV-2 infection: molecular modelling study. J Biomol Struct Dyn 2022; 40:5128-5137. [PMID: 33382023 PMCID: PMC7784833 DOI: 10.1080/07391102.2020.1868335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 12/18/2020] [Indexed: 11/03/2022]
Abstract
Coronaviruses are RNA viruses that infect varied species including humans. TMPRSS2 is gateway for SARS CoV-2 entry into the host cell. It causes proteolytic activation of spike protein and discharge of the peptide into host cell. The TMPRSS2 inhibition could be one of the approaches to stop the viral entry, therefore, interaction pattern and binding energies for Fisetin and TMPRSS2 have been explored in the present study. TMPRSS2 peptide was used for homology modelling and then for further study. Molecular docking score and MMGBSA Binding energy of Fisetin was better than Nafamostat, a known inhibitor of TMPRSS2. Post docking MM-GBSA free energy for Fisetin and Nafamostat was -42.78 and -21.11 kcal/mol, respectively. Fisetin forms H bond with Val 25, His 41, Lys 42, Lys 45, Glu 44, Ser186. Nafamostat formed H bonds with Lys 85, Asp 90, Asp 203. RMSD plots of TMPRSS2, TMPRSS2-Fisetin and TMPRSS2-Nafamostat complex showed stable profile with very small fluctuation during entire simulation of 150 ns. Significant decrease in TMPRSS2-Fisetin and TMPRSS2-Nafamostat complex fluctuation occurred around His 41, Glu 44, Gly 136, Ser 186 in RMSF study. During simulation Fisetin interaction was observed with residues Val 25, His 41, Glu 44, Lys 45, Lys 87, Gly 136, Gln 183, Ser 186 likewise interaction of Nafamostat with Lys 85, Asp 90, Asn 163, Asp 203 and Ser 205. Post simulation MM-GBSA free energy was found to be -51.87 ± 4.3 and -48.23 ± 4.39 kcal/mol for TMPRSS2 with Fisetin and Nafamostat, respectively.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abha Mishra
- School of Biochemical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Upinder Kaur
- Department of Pharmacology, All India Institute of Medical Sciences, Gorakhpur, India
| | - Amit Singh
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
39
|
Kume Y, Hashimoto K, Shirato K, Norito S, Suwa R, Chishiki M, Ono T, Mashiyama F, Mochizuki I, Sato M, Ishibashi N, Suzuki S, Sakuma H, Takahashi H, Takeda M, Hosoya M. Epidemiological and clinical characteristics of infections with seasonal human coronavirus and respiratory syncytial virus in hospitalized children immediately before the coronavirus disease 2019 pandemic. J Infect Chemother 2022; 28:859-865. [PMID: 35307263 PMCID: PMC8920880 DOI: 10.1016/j.jiac.2022.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Seasonal human coronavirus (HCoV)-229E, -NL63, -OC43, and -HKU1 are seasonal coronaviruses that cause colds in humans. However, the clinical characteristics of pediatric inpatients infected with HCoVs are unclear. This study aimed to compare and clarify the epidemiological and clinical features of HCoVs and respiratory syncytial virus (RSV), which commonly causes severe respiratory infections in children. METHODS Nasopharyngeal swabs were collected from all pediatric inpatients with respiratory symptoms at two secondary medical institutions in Fukushima, Japan. Eighteen respiratory viruses, including RSV and four HCoVs, were detected via reverse transcription-polymerase chain reaction. RESULTS Of the 1757 specimens tested, viruses were detected in 1272 specimens (72.4%), with 789 single (44.9%) and 483 multiple virus detections (27.5%). RSV was detected in 639 patients (36.4%) with no difference in clinical characteristics between RSV-A and RSV-B. HCoV was detected in 84 patients (4.7%): OC43, NL63, HKU1, and 229E in 25 (1.4%), 26 (1.5%), 23 (1.3%), and 16 patients (0.9%), respectively. Patients with HCoV monoinfection (n = 35) had a significantly shorter period from onset to hospitalization (median [interquartile range] days, 2 [1-4.5] vs. 4 [2-5]), significantly shorter hospitalization stays (4 [3-5] vs. 5 [4-6]), and more cases of upper respiratory infections (37.1% vs. 3.9%) and croup (17.1% vs. 0.3%) but less cases of lower respiratory infection (54.3% vs. 94.8%) than patients with RSV monoinfection (n = 362). CONCLUSION Seasonal HCoV-infected patients account for approximately 5% of children hospitalized for respiratory tract infections and have fewer lower respiratory infections and shorter hospital stays than RSV-infected patients.
Collapse
Affiliation(s)
- Yohei Kume
- Department of Pediatrics, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Koichi Hashimoto
- Department of Pediatrics, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan.
| | - Kazuya Shirato
- Department of Virology III, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan
| | - Sakurako Norito
- Department of Pediatrics, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Reiko Suwa
- Department of Virology III, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan
| | - Mina Chishiki
- Department of Pediatrics, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Takashi Ono
- Department of Pediatrics, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Fumi Mashiyama
- Department of Pediatrics, Hoshi General Hospital, 159-1 Mukaigawara, Koriyama, Fukushima, 963-8501, Japan
| | - Izumi Mochizuki
- Department of Pediatrics, Ohara General Hospital, 6-1 Uwamachi, Fukushima, Fukushima, 960-8611, Japan
| | - Masatoki Sato
- Department of Pediatrics, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Naohisa Ishibashi
- Department of Pediatrics, Ohara General Hospital, 6-1 Uwamachi, Fukushima, Fukushima, 960-8611, Japan
| | - Shigeo Suzuki
- Department of Pediatrics, Ohara General Hospital, 6-1 Uwamachi, Fukushima, Fukushima, 960-8611, Japan
| | - Hiroko Sakuma
- Department of Pediatrics, Hoshi General Hospital, 159-1 Mukaigawara, Koriyama, Fukushima, 963-8501, Japan
| | - Hitoshi Takahashi
- Influenza and Respiratory Virus Research Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan
| | - Makoto Takeda
- Department of Virology III, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan
| | - Mitsuaki Hosoya
- Department of Pediatrics, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| |
Collapse
|
40
|
Infection of lung megakaryocytes and platelets by SARS-CoV-2 anticipate fatal COVID-19. Cell Mol Life Sci 2022; 79:365. [PMID: 35708858 PMCID: PMC9201269 DOI: 10.1007/s00018-022-04318-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/01/2022] [Accepted: 04/19/2022] [Indexed: 12/11/2022]
Abstract
SARS-CoV-2, although not being a circulatory virus, spread from the respiratory tract resulting in multiorgan failures and thrombotic complications, the hallmarks of fatal COVID-19. A convergent contributor could be platelets that beyond hemostatic functions can carry infectious viruses. Here, we profiled 52 patients with severe COVID-19 and demonstrated that circulating platelets of 19 out 20 non-survivor patients contain SARS-CoV-2 in robust correlation with fatal outcome. Platelets containing SARS-CoV-2 might originate from bone marrow and lung megakaryocytes (MKs), the platelet precursors, which were found infected by SARS-CoV-2 in COVID-19 autopsies. Accordingly, MKs undergoing shortened differentiation and expressing anti-viral IFITM1 and IFITM3 RNA as a sign of viral sensing were enriched in the circulation of deadly COVID-19. Infected MKs reach the lung concomitant with a specific MK-related cytokine storm rich in VEGF, PDGF and inflammatory molecules, anticipating fatal outcome. Lung macrophages capture SARS-CoV-2-containing platelets in vivo. The virus contained by platelets is infectious as capture of platelets carrying SARS-CoV-2 propagates infection to macrophages in vitro, in a process blocked by an anti-GPIIbIIIa drug. Altogether, platelets containing infectious SARS-CoV-2 alter COVID-19 pathogenesis and provide a powerful fatality marker. Clinical targeting of platelets might prevent viral spread, thrombus formation and exacerbated inflammation at once and increase survival in COVID-19.
Collapse
|
41
|
Shrimp JH, Janiszewski J, Chen CZ, Xu M, Wilson KM, Kales SC, Sanderson PE, Shinn P, Schneider R, Itkin Z, Guo H, Shen M, Klumpp-Thomas C, Michael SG, Zheng W, Simeonov A, Hall MD. Suite of TMPRSS2 Assays for Screening Drug Repurposing Candidates as Potential Treatments of COVID-19. ACS Infect Dis 2022; 8:1191-1203. [PMID: 35648838 PMCID: PMC9172053 DOI: 10.1021/acsinfecdis.2c00172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Indexed: 12/27/2022]
Abstract
SARS-CoV-2 is the causative viral pathogen driving the COVID-19 pandemic that prompted an immediate global response to the development of vaccines and antiviral therapeutics. For antiviral therapeutics, drug repurposing allows for rapid movement of the existing clinical candidates and therapies into human clinical trials to be tested as COVID-19 therapies. One effective antiviral treatment strategy used early in symptom onset is to prevent viral entry. SARS-CoV-2 enters ACE2-expressing cells when the receptor-binding domain of the spike protein on the surface of SARS-CoV-2 binds to ACE2 followed by cleavage at two cut sites by TMPRSS2. Therefore, a molecule capable of inhibiting the protease activity of TMPRSS2 could be a valuable antiviral therapy. Initially, we used a fluorogenic high-throughput screening assay for the biochemical screening of 6030 compounds in NCATS annotated libraries. Then, we developed an orthogonal biochemical assay that uses mass spectrometry detection of product formation to ensure that hits from the primary screen are not assay artifacts from the fluorescent detection of product formation. Finally, we assessed the hits from the biochemical screening in a cell-based SARS-CoV-2 pseudotyped particle entry assay. Of the six molecules advanced for further studies, two are approved drugs in Japan (camostat and nafamostat), two have entered clinical trials (PCI-27483 and otamixaban), while the other two molecules are peptidomimetic inhibitors of TMPRSS2 taken from the literature that have not advanced into clinical trials (compounds 92 and 114). This work demonstrates a suite of assays for the discovery and development of new inhibitors of TMPRSS2.
Collapse
Affiliation(s)
- Jonathan H. Shrimp
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| | - John Janiszewski
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| | - Catherine Z. Chen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| | - Miao Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| | - Kelli M. Wilson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| | - Stephen C. Kales
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| | - Philip E. Sanderson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| | - Paul Shinn
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| | - Rick Schneider
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| | - Zina Itkin
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| | - Hui Guo
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| | - Min Shen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| | - Carleen Klumpp-Thomas
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| | - Samuel G. Michael
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| | - Matthew D. Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| |
Collapse
|
42
|
Mitchell M, Buras M, Shutter M, Wieters JS. Breakthrough COVID-19 infection inducing acute epiglottitis in an immunized host. Proc AMIA Symp 2022; 35:658-660. [DOI: 10.1080/08998280.2022.2079343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Matthew Mitchell
- College of Medicine, Texas A&M Health Science Center, College Station, Texas
| | - Madison Buras
- Department of Otolaryngology, Baylor Scott & White Medical Center – Temple, Temple, Texas
| | - Mollie Shutter
- Department of Emergency Medicine, Baylor Scott & White Medical Center – Temple, Temple, Texas
| | - J. Scott Wieters
- Department of Emergency Medicine, Baylor Scott & White Medical Center – Temple, Temple, Texas
| |
Collapse
|
43
|
Kuklina EM. T Lymphocytes as Targets for SARS-CoV-2. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:566-576. [PMID: 35790412 PMCID: PMC9201263 DOI: 10.1134/s0006297922060086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 01/11/2023]
Abstract
Despite numerous data on the absence or weak expression of the main functional receptor of SARS-CoV-2 angiotensin-converting enzyme 2 (ACE2) by T cells, it was recently demonstrated that the new coronavirus can efficiently infect T lymphocytes. Here, we analyze the data on the alternative (ACE2-independent) pathways of cell infection, identified T cell subpopulations that serve as the most plausible targets of SARS-CoV-2, discuss the mechanisms of virus-cell interaction, including both infectious and non-infectious pathways of T lymphocyte regulation, and estimate the role of the virus-dependent damage of T lymphocytes in COVID-19 pathogenesis. Particular attention is paid to regulatory T cells as potential targets of SARS-CoV-2, as well as to the possible involvement of exosomes in the sensitivity of peripheral T cells to the virus.
Collapse
Affiliation(s)
- Elena M Kuklina
- Perm Federal Research Center, Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Perm, 614081, Russia.
| |
Collapse
|
44
|
Nayebi A, Navashenaq JG, Soleimani D, Nachvak SM. Probiotic supplementation: A prospective approach in the treatment of COVID-19. Nutr Health 2022; 28:163-175. [PMID: 34747257 PMCID: PMC9160438 DOI: 10.1177/02601060211049631] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background: Despite strategies based on social distancing, the coronavirus disease 2019 (COVID-19) expands globally, and so far, many attempts have been made to achieve effective treatment for patients with COVID-19. This disease infects the lower respiratory tract and may lead to severe acute respiratory syndrome coronavirus (SARS-CoV). COVID-19 also can cause gastrointestinal infections. Therefore, COVID-19 patients with gastrointestinal symptoms are more likely to be complicated by SARS-CoV. In this disease, acquired immune responses are impaired, and uncontrolled inflammatory responses result in cytokine storms, leading to acute lung injury and thrombus formation. Probiotics are living microorganisms that contribute to the health of the host if administered in appropriate doses. Aim: This study aimed to provide evidence to show the importance of gut dysbiosis in viral disease, especially COVID-19. Therefore, we have focused on the impact of probiotics consumption on preventing severe symptoms of the disease. Methods: We have entirely searched SCOPUS, PubMed, and Google Scholar databases to collect evidence regarding the relationship between probiotics and viral infections to expand this relationship to the COVID-19. Results: It has been shown that probiotics directly counteract SARS-CoV in the gastrointestinal and respiratory tracts. Moreover, probiotics suppress severe immune responses and prevent cytokine storms to inhibit pathologic inflammatory conditions in the body via modulation of immune responses. Conclusion: According to available evidence based on their antiviral and respiratory activities, using probiotics might be an adjuvant therapy to reduce the burden and severity of this disease.
Collapse
Affiliation(s)
- Atiyeh Nayebi
- Student Research Committee, Nutritional Sciences Department, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Nutritional Sciences Department, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Davood Soleimani
- Student Research Committee, Nutritional Sciences Department, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyyed Mostafa Nachvak
- Student Research Committee, Nutritional Sciences Department, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Nutritional Sciences Department, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
45
|
Gorący A, Rosik J, Szostak B, Ustianowski Ł, Ustianowska K, Gorący J. Human Cell Organelles in SARS-CoV-2 Infection: An Up-to-Date Overview. Viruses 2022; 14:v14051092. [PMID: 35632833 PMCID: PMC9144443 DOI: 10.3390/v14051092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 12/10/2022] Open
Abstract
Since the end of 2019, the whole world has been struggling with the life-threatening pandemic amongst all age groups and geographic areas caused by Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2). The Coronavirus Disease 2019 (COVID-19) pandemic, which has led to more than 468 million cases and over 6 million deaths reported worldwide (as of 20 March 2022), is one of the greatest threats to human health in history. Meanwhile, the lack of specific and irresistible treatment modalities provoked concentrated efforts in scientists around the world. Various mechanisms of cell entry and cellular dysfunction were initially proclaimed. Especially, mitochondria and cell membrane are crucial for the course of infection. The SARS-CoV-2 invasion depends on angiotensin converting enzyme 2 (ACE2), transmembrane serine protease 2 (TMPRSS2), and cluster of differentiation 147 (CD147), expressed on host cells. Moreover, in this narrative review, we aim to discuss other cell organelles targeted by SARS-CoV-2. Lastly, we briefly summarize the studies on various drugs.
Collapse
Affiliation(s)
- Anna Gorący
- Independent Laboratory of Invasive Cardiology, Pomeranian Medical University, 70-204 Szczecin, Poland; (A.G.); (J.G.)
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University, 70-204 Szczecin, Poland
| | - Jakub Rosik
- Independent Laboratory of Invasive Cardiology, Pomeranian Medical University, 70-204 Szczecin, Poland; (A.G.); (J.G.)
- Department of Physiology, Pomeranian Medical University, 70-204 Szczecin, Poland; (B.S.); (Ł.U.); (K.U.)
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Correspondence:
| | - Bartosz Szostak
- Department of Physiology, Pomeranian Medical University, 70-204 Szczecin, Poland; (B.S.); (Ł.U.); (K.U.)
| | - Łukasz Ustianowski
- Department of Physiology, Pomeranian Medical University, 70-204 Szczecin, Poland; (B.S.); (Ł.U.); (K.U.)
| | - Klaudia Ustianowska
- Department of Physiology, Pomeranian Medical University, 70-204 Szczecin, Poland; (B.S.); (Ł.U.); (K.U.)
| | - Jarosław Gorący
- Independent Laboratory of Invasive Cardiology, Pomeranian Medical University, 70-204 Szczecin, Poland; (A.G.); (J.G.)
| |
Collapse
|
46
|
Yang Y, Yan M. Mechanisms of Cardiovascular System Injury Induced by COVID-19 in Elderly Patients With Cardiovascular History. Front Cardiovasc Med 2022; 9:859505. [PMID: 35600485 PMCID: PMC9116509 DOI: 10.3389/fcvm.2022.859505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
The coronavirus disease-2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2), represents a great threat to healthcare and socioeconomics worldwide. In addition to respiratory manifestations, COVID-19 promotes cardiac injuries, particularly in elderly patients with cardiovascular history, leading to a higher risk of progression to critical conditions. The SARS-CoV-2 infection is initiated as virus binding to angiotensin-converting enzyme 2 (ACE2), which is highly expressed in the heart, resulting in direct infection and dysregulation of the renin-angiotensin system (RAS). Meanwhile, immune response and hyper-inflammation, as well as endothelial dysfunction and thrombosis implicate in COVID-19 infection. Herein, we provide an overview of the proposed mechanisms of cardiovascular injuries in COVID-19, particularly in elderly patients with pre-existing cardiovascular diseases, aiming to set appropriate management and improve their clinical outcomes.
Collapse
|
47
|
Mateus D, Sebastião AI, Carrascal MA, do Carmo A, Matos AM, Cruz MT. Crosstalk between estrogen, dendritic cells, and SARS-CoV-2 infection. Rev Med Virol 2022; 32:e2290. [PMID: 34534372 PMCID: PMC8646421 DOI: 10.1002/rmv.2290] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022]
Abstract
The novel coronavirus disease 2019 (Covid-19) first appeared in Wuhan and has so far killed more than four million people worldwide. Men are more affected than women by Covid-19, but the cellular and molecular mechanisms behind these differences are largely unknown. One plausible explanation is that differences in sex hormones could partially account for this distinct prevalence in both sexes. Accordingly, several papers have reported a protective role of 17β-estradiol during Covid-19, which might help explain why women appear less likely to die from Covid-19 than men. 17β-estradiol is the predominant and most biologically active endogenous estrogen, which signals through estrogen receptor α, estrogen receptor β, and G protein-coupled estrogen receptor 1. These receptors are expressed in mature cells from the innate and the adaptive immune system, particularly on dendritic cells (DCs), suggesting that estrogens could modulate their effector functions. DCs are the most specialized and proficient antigen-presenting cells, acting at the interface of innate and adaptive immunity with a powerful capacity to prime antigen-specific naive CD8+ T cells. DCs are richly abundant in the lung where they respond to viral infection. A relative increase of mature DCs in broncho-alveolar lavage fluids from Covid-19 patients has already been reported. Here we will describe how SARS-CoV-2 acts on DCs, the role of estrogen on DC immunobiology, summarise the impact of sex hormones on the immune response against Covid-19, and explore clinical trials regarding Covid-19.
Collapse
Affiliation(s)
- Daniela Mateus
- Faculty of Pharmacy—FFUCUniversity of CoimbraCoimbraPortugal
| | | | - Mylène A. Carrascal
- Center for Neuroscience and Cell Biology—CNCUniversity of CoimbraCoimbraPortugal
- UpCellsTecnimed GroupSintraPortugal
| | - Anália do Carmo
- Clinical Pathology DepartmentCentro Hospitalar e Universitário de CoimbraCoimbraPortugal
| | - Ana Miguel Matos
- Faculty of Pharmacy—FFUCUniversity of CoimbraCoimbraPortugal
- Chemical Engineering Processes and Forest Products Research Center, CIEPQPFFaculty of Sciences and Technology, University of CoimbraCoimbraPortugal
| | - Maria Teresa Cruz
- Faculty of Pharmacy—FFUCUniversity of CoimbraCoimbraPortugal
- Center for Neuroscience and Cell Biology—CNCUniversity of CoimbraCoimbraPortugal
| |
Collapse
|
48
|
Chauhan RP, Gordon ML. An overview of influenza A virus genes, protein functions, and replication cycle highlighting important updates. Virus Genes 2022; 58:255-269. [PMID: 35471490 DOI: 10.1007/s11262-022-01904-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
Abstract
The recent research findings on influenza A virus (IAV) genome biology prompted us to present a comprehensive overview of IAV genes, protein functions, and replication cycle. The eight gene segments of the IAV genome encode 17 proteins, each having unique functions contributing to virus fitness in the host. The polymerase genes are essential determinants of IAV pathogenicity and virulence; however, other viral components also play crucial roles in the IAV replication, transmission, and adaptation. Specific adaptive mutations within polymerase (PB2, PB1, and PA) and glycoprotein-hemagglutinin (HA) and neuraminidase (NA) genes, may facilitate interspecies transmission and adaptation of IAV. The HA-NA interplay is essential for establishing the IAV infection; the low pH triggers the inactivation of HA-receptor binding, leading to significantly lower NA activities, indicating that the enzymatic function of NA is dependent on HA binding. While the HA and NA glycoproteins are required to initiate infection, M1, M2, NS1, and NEP proteins are essential for cytoplasmic trafficking of viral ribonucleoproteins (vRNPs) and the assembly of the IAV virions. The mechanisms that enable IAV to exploit the host cell resources to advance the infection are discussed. A comprehensive understanding of IAV genome biology is essential for developing antivirals to combat the IAV disease burden.
Collapse
Affiliation(s)
- Ravendra P Chauhan
- School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, College of Health Sciences, University of KwaZulu-Natal, 719 Umbilo Road, Durban, 4001, South Africa
| | - Michelle L Gordon
- School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, College of Health Sciences, University of KwaZulu-Natal, 719 Umbilo Road, Durban, 4001, South Africa.
| |
Collapse
|
49
|
Vasconcelos CCF, Hammerle MB, Sales DS, Rueda Lopes FC, Pinheiro PG, Gouvea EG, Alves MCDF, Pereira TV, Schmidt SL, Alvarenga RMP, Pires KL. Post-COVID-19 olfactory dysfunction: carbamazepine as a treatment option in a series of cases. J Neurovirol 2022; 28:312-318. [PMID: 35366736 PMCID: PMC8976535 DOI: 10.1007/s13365-022-01066-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/24/2022]
Abstract
Olfactory dysfunction is reported frequently in patients with coronavirus disease 2019. However, an effective treatment for this dysfunction is unknown. The present study evaluated carbamazepine as a treatment option for olfactory dysfunction based on its use in cases of neuralgia, especially of the V cranial nerve. The study included 10 patients with coronavirus disease with olfactory complaints who were part of a cohort of 172 coronavirus disease patients monitored for late neurological manifestations. Carbamazepine was administered for 11 weeks. The adverse effects reported were drowsiness (9/10) and dizziness (2/10); 9 of the 10 patients reported improved olfactory function after carbamazepine treatment. While the role of carbamazepine in the control of post-coronavirus disease olfactory dysfunction could not be confirmed in this study, the satisfactory response observed in most patients in this series suggests that further studies are warranted.
Collapse
Affiliation(s)
- Claudia Cristina Ferreira Vasconcelos
- Departamento de Neurologia, Hospital Universitário Gaffrée E Guinle/HUGG Programa de Pós Graduação Em Neurologia da Universidade Federal Do Estado Do Rio de Janeiro (UNIRIO), 775 Mariz e Barros St, Tijuca, Rio de Janeiro, RJ, 22.270-004, Brazil
| | - Mariana Beiral Hammerle
- Departamento de Neurologia, Hospital Universitário Gaffrée E Guinle/HUGG Programa de Pós Graduação Em Neurologia da Universidade Federal Do Estado Do Rio de Janeiro (UNIRIO), 775 Mariz e Barros St, Tijuca, Rio de Janeiro, RJ, 22.270-004, Brazil.
| | - Deborah Santos Sales
- Departamento de Neurologia, Hospital Universitário Gaffrée E Guinle/HUGG Programa de Pós Graduação Em Neurologia da Universidade Federal Do Estado Do Rio de Janeiro (UNIRIO), 775 Mariz e Barros St, Tijuca, Rio de Janeiro, RJ, 22.270-004, Brazil
| | - Fernanda Cristina Rueda Lopes
- Departamento de Radiologia, Universidade Federal Fluminense (UFF), Rio de Janeiro, Brazil
- Diagnósticos da América S/A (DASA), São Paulo, Brazil
| | - Patricia Gomes Pinheiro
- Departamento de Neurologia, Hospital Universitário Gaffrée E Guinle/HUGG Programa de Pós Graduação Em Neurologia da Universidade Federal Do Estado Do Rio de Janeiro (UNIRIO), 775 Mariz e Barros St, Tijuca, Rio de Janeiro, RJ, 22.270-004, Brazil
| | - Elisa Gutman Gouvea
- Departamento de Neurologia, Hospital Universitário Gaffrée E Guinle/HUGG Programa de Pós Graduação Em Neurologia da Universidade Federal Do Estado Do Rio de Janeiro (UNIRIO), 775 Mariz e Barros St, Tijuca, Rio de Janeiro, RJ, 22.270-004, Brazil
| | - Manuella Caroline Dutra Frazão Alves
- Departamento de Neurologia, Hospital Universitário Gaffrée E Guinle/HUGG Programa de Pós Graduação Em Neurologia da Universidade Federal Do Estado Do Rio de Janeiro (UNIRIO), 775 Mariz e Barros St, Tijuca, Rio de Janeiro, RJ, 22.270-004, Brazil
| | - Tayane Vasconcellos Pereira
- Departamento de Neurologia, Hospital Universitário Gaffrée E Guinle/HUGG Programa de Pós Graduação Em Neurologia da Universidade Federal Do Estado Do Rio de Janeiro (UNIRIO), 775 Mariz e Barros St, Tijuca, Rio de Janeiro, RJ, 22.270-004, Brazil
| | - Sergio Luis Schmidt
- Departamento de Neurologia, Hospital Universitário Gaffrée E Guinle/HUGG Programa de Pós Graduação Em Neurologia da Universidade Federal Do Estado Do Rio de Janeiro (UNIRIO), 775 Mariz e Barros St, Tijuca, Rio de Janeiro, RJ, 22.270-004, Brazil
| | - Regina Maria Papais Alvarenga
- Departamento de Neurologia, Hospital Universitário Gaffrée E Guinle/HUGG Programa de Pós Graduação Em Neurologia da Universidade Federal Do Estado Do Rio de Janeiro (UNIRIO), 775 Mariz e Barros St, Tijuca, Rio de Janeiro, RJ, 22.270-004, Brazil
| | - Karina Lebeis Pires
- Departamento de Neurologia, Hospital Universitário Gaffrée E Guinle/HUGG Programa de Pós Graduação Em Neurologia da Universidade Federal Do Estado Do Rio de Janeiro (UNIRIO), 775 Mariz e Barros St, Tijuca, Rio de Janeiro, RJ, 22.270-004, Brazil
| |
Collapse
|
50
|
Kirtipal N, Kumar S, Dubey SK, Dwivedi VD, Gireesh Babu K, Malý P, Bharadwaj S. Understanding on the possible routes for SARS CoV-2 invasion via ACE2 in the host linked with multiple organs damage. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 99:105254. [PMID: 35217145 PMCID: PMC8863418 DOI: 10.1016/j.meegid.2022.105254] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/12/2022] [Accepted: 02/19/2022] [Indexed: 02/07/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), accountable for causing the coronavirus diseases 2019 (COVID-19), is already declared as a pandemic disease globally. Like previously reported SARS-CoV strain, the novel SARS-CoV-2 also initiates the viral pathogenesis via docking viral spike-protein with the membranal angiotensin-converting enzyme 2 (ACE2) - a receptor on variety of cells in the human body. Therefore, COVID-19 is broadly characterized as a disease that targets multiple organs, particularly causing acute complications via organ-specific pathogenesis accompanied by destruction of ACE2+ cells, including alveolus, cardiac microvasculature, endothelium, and glomerulus. Under such circumstances, the high expression of ACE2 in predisposing individuals associated with anomalous production of the renin-angiotensin system (RAS) may promote enhanced viral load in COVID-19, which comparatively triggers excessive apoptosis. Furthermore, multi-organ injuries were found linked to altered ACE2 expression and inequality between the ACE2/angiotensin-(1-7)/mitochondrial Ang system (MAS) and renin-angiotensin-system (RAS) in COVID-19 patients. However, the exact pathogenesis of multi-organ damage in COVID-19 is still obscure, but several perspectives have been postulated, involving altered ACE2 expression linked with direct/indirect damages by the virus-induced immune responses, such as cytokinin storm. Thus, insights into the invasion of a virus with respect to ACE2 expression site can be helpful to simulate or understand the possible complications in the targeted organ during viral infection. Hence, this review summarizes the multiple organs invasion by SARS CoV-2 linked with ACE2 expression and their consequences, which can be helpful in the management of the COVID-19 pathogenesis under life-threatening conditions.
Collapse
Affiliation(s)
- Nikhil Kirtipal
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Sanjay Kumar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India; Centre for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India
| | | | - Vivek Dhar Dwivedi
- Centre for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India.
| | - K Gireesh Babu
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Limda, Vadodara, India.
| | - Petr Malý
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences v.v.i., BIOCEV Research Center, Vestec, Czech Republic.
| | - Shiv Bharadwaj
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences v.v.i., BIOCEV Research Center, Vestec, Czech Republic.
| |
Collapse
|