1
|
Perez-Quintero LA, Abidin BM, Tremblay ML. Immunotherapeutic implications of negative regulation by protein tyrosine phosphatases in T cells: the emerging cases of PTP1B and TCPTP. Front Med (Lausanne) 2024; 11:1364778. [PMID: 38707187 PMCID: PMC11066278 DOI: 10.3389/fmed.2024.1364778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/27/2024] [Indexed: 05/07/2024] Open
Abstract
In the context of inflammation, T cell activation occurs by the concerted signals of the T cell receptor (TCR), co-stimulatory receptors ligation, and a pro-inflammatory cytokine microenvironment. Fine-tuning these signals is crucial to maintain T cell homeostasis and prevent self-reactivity while offering protection against infectious diseases and cancer. Recent developments in understanding the complex crosstalk between the molecular events controlling T cell activation and the balancing regulatory cues offer novel approaches for the development of T cell-based immunotherapies. Among the complex regulatory processes, the balance between protein tyrosine kinases (PTK) and the protein tyrosine phosphatases (PTPs) controls the transcriptional and metabolic programs that determine T cell function, fate decision, and activation. In those, PTPs are de facto regulators of signaling in T cells acting for the most part as negative regulators of the canonical TCR pathway, costimulatory molecules such as CD28, and cytokine signaling. In this review, we examine the function of two close PTP homologs, PTP1B (PTPN1) and T-cell PTP (TCPTP; PTPN2), which have been recently identified as promising candidates for novel T-cell immunotherapeutic approaches. Herein, we focus on recent studies that examine the known contributions of these PTPs to T-cell development, homeostasis, and T-cell-mediated immunity. Additionally, we describe the signaling networks that underscored the ability of TCPTP and PTP1B, either individually and notably in combination, to attenuate TCR and JAK/STAT signals affecting T cell responses. Thus, we anticipate that uncovering the role of these two PTPs in T-cell biology may lead to new treatment strategies in the field of cancer immunotherapy. This review concludes by exploring the impacts and risks that pharmacological inhibition of these PTP enzymes offers as a therapeutic approach in T-cell-based immunotherapies.
Collapse
Affiliation(s)
- Luis Alberto Perez-Quintero
- Rosalind and Morris Goodman Cancer Institute, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Belma Melda Abidin
- Rosalind and Morris Goodman Cancer Institute, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Michel L. Tremblay
- Rosalind and Morris Goodman Cancer Institute, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| |
Collapse
|
2
|
LaFleur MW, Lemmen AM, Streeter ISL, Nguyen TH, Milling LE, Derosia NM, Hoffman ZM, Gillis JE, Tjokrosurjo Q, Markson SC, Huang AY, Anekal PV, Montero Llopis P, Haining WN, Doench JG, Sharpe AH. X-CHIME enables combinatorial, inducible, lineage-specific and sequential knockout of genes in the immune system. Nat Immunol 2024; 25:178-188. [PMID: 38012416 PMCID: PMC10881062 DOI: 10.1038/s41590-023-01689-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/20/2023] [Indexed: 11/29/2023]
Abstract
Annotation of immunologic gene function in vivo typically requires the generation of knockout mice, which is time consuming and low throughput. We previously developed CHimeric IMmune Editing (CHIME), a CRISPR-Cas9 bone marrow delivery system for constitutive, ubiquitous deletion of single genes. Here we describe X-CHIME, four new CHIME-based systems for modular and rapid interrogation of gene function combinatorially (C-CHIME), inducibly (I-CHIME), lineage-specifically (L-CHIME) or sequentially (S-CHIME). We use C-CHIME and S-CHIME to assess the consequences of combined deletion of Ptpn1 and Ptpn2, an embryonic lethal gene pair, in adult mice. We find that constitutive deletion of both PTPN1 and PTPN2 leads to bone marrow hypoplasia and lethality, while inducible deletion after immune development leads to enteritis and lethality. These findings demonstrate that X-CHIME can be used for rapid mechanistic evaluation of genes in distinct in vivo contexts and that PTPN1 and PTPN2 have some functional redundancy important for viability in adult mice.
Collapse
Affiliation(s)
- Martin W LaFleur
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ashlyn M Lemmen
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ivy S L Streeter
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Thao H Nguyen
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lauren E Milling
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Nicole M Derosia
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Zachary M Hoffman
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jacob E Gillis
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Qin Tjokrosurjo
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Samuel C Markson
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Amy Y Huang
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | | | - John G Doench
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
3
|
Spalinger MR, Canale V, Becerra A, Shawki A, Crawford M, Santos AN, Chatterjee P, Li J, Nair MG, McCole DF. PTPN2 regulates bacterial clearance in a mouse model of enteropathogenic and enterohemorrhagic E. coli infection. JCI Insight 2023; 8:156909. [PMID: 36810248 PMCID: PMC9977497 DOI: 10.1172/jci.insight.156909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/11/2023] [Indexed: 02/23/2023] Open
Abstract
Macrophages intimately interact with intestinal epithelial cells, but the consequences of defective macrophage-epithelial cell interactions for protection against enteric pathogens are poorly understood. Here, we show that in mice with a deletion in protein tyrosine phosphatase nonreceptor type 2 (PTPN2) in macrophages, infection with Citrobacter rodentium, a model of enteropathogenic and enterohemorrhagic E. coli infection in humans, promoted a strong type 1/IL-22-driven immune response, culminating in accelerated disease but also faster clearance of the pathogen. In contrast, deletion of PTPN2 specifically in epithelial cells rendered the epithelium unable to upregulate antimicrobial peptides and consequently resulted in a failure to eliminate the infection. The ability of PTPN2-deficient macrophages to induce faster recovery from C. rodentium was dependent on macrophage-intrinsic IL-22 production, which was highly increased in macrophages deficient in PTPN2. Our findings demonstrate the importance of macrophage-mediated factors, and especially macrophage-derived IL-22, for the induction of protective immune responses in the intestinal epithelium, and show that normal PTPN2 expression in the epithelium is crucial to allow for protection against enterohemorrhagic E. coli and other intestinal pathogens.
Collapse
Affiliation(s)
- Marianne R Spalinger
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA.,Department for Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Vinicius Canale
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Anica Becerra
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Ali Shawki
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Meli'sa Crawford
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Alina N Santos
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Pritha Chatterjee
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Jiang Li
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Meera G Nair
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Declan F McCole
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| |
Collapse
|
4
|
Goh PK, Wiede F, Zeissig MN, Britt KL, Liang S, Molloy T, Goode N, Xu R, Loi S, Muller M, Humbert PO, McLean C, Tiganis T. PTPN2 elicits cell autonomous and non-cell autonomous effects on antitumor immunity in triple-negative breast cancer. SCIENCE ADVANCES 2022; 8:eabk3338. [PMID: 35196085 PMCID: PMC8865802 DOI: 10.1126/sciadv.abk3338] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 12/24/2021] [Indexed: 05/22/2023]
Abstract
The tumor-suppressor PTPN2 is diminished in a subset of triple-negative breast cancers (TNBCs). Paradoxically, PTPN2-deficiency in tumors or T cells in mice can facilitate T cell recruitment and/or activation to promote antitumor immunity. Here, we explored the therapeutic potential of targeting PTPN2 in tumor cells and T cells. PTPN2-deficiency in TNBC associated with T cell infiltrates and PD-L1 expression, whereas low PTPN2 associated with improved survival. PTPN2 deletion in murine mammary epithelial cells TNBC models, did not promote tumorigenicity but increased STAT-1-dependent T cell recruitment and PD-L1 expression to repress tumor growth and enhance the efficacy of anti-PD-1. Furthermore, the combined deletion of PTPN2 in tumors and T cells facilitated T cell recruitment and activation and further repressed tumor growth or ablated tumors already predominated by exhausted T cells. Thus, PTPN2-targeting in tumors and/or T cells facilitates T cell recruitment and/or alleviates inhibitory constraints on T cells to combat TNBC.
Collapse
Affiliation(s)
- Pei Kee Goh
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Florian Wiede
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Mara N. Zeissig
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Kara L. Britt
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Shuwei Liang
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Tim Molloy
- St. Vincent’s Centre for Applied Medical Research, Darlinghurst, New South Wales 2010, Australia
| | - Nathan Goode
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Rachel Xu
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Sherene Loi
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Mathias Muller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Patrick O. Humbert
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
- Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, Victoria 3086, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Catriona McLean
- Anatomical Pathology, Alfred Hospital, Prahran, Victoria 3004, Australia
| | - Tony Tiganis
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Corresponding author.
| |
Collapse
|
5
|
Beddows CA, Dodd GT. Insulin on the brain: The role of central insulin signalling in energy and glucose homeostasis. J Neuroendocrinol 2021; 33:e12947. [PMID: 33687120 DOI: 10.1111/jne.12947] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/26/2022]
Abstract
Insulin signals to the brain where it coordinates multiple physiological processes underlying energy and glucose homeostasis. This review explores where and how insulin interacts within the brain parenchyma, how brain insulin signalling functions to coordinate energy and glucose homeostasis and how this contributes to the pathogenesis of metabolic disease.
Collapse
Affiliation(s)
- Cait A Beddows
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Garron T Dodd
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Wang YN, Liu S, Jia T, Feng Y, Zhang W, Xu X, Zhang D. T Cell Protein Tyrosine Phosphatase in Osteoimmunology. Front Immunol 2021; 12:620333. [PMID: 33692794 PMCID: PMC7938726 DOI: 10.3389/fimmu.2021.620333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/04/2021] [Indexed: 12/23/2022] Open
Abstract
Osteoimmunology highlights the two-way communication between bone and immune cells. T cell protein tyrosine phosphatase (TCPTP), also known as protein-tyrosine phosphatase non-receptor 2 (PTPN2), is an intracellular protein tyrosine phosphatase (PTP) essential in regulating immune responses and bone metabolism via dephosphorylating target proteins. Tcptp knockout in systemic or specific immune cells can seriously damage the immune function, resulting in bone metabolism disorders. This review provided fresh insights into the potential role of TCPTP in osteoimmunology. Overall, the regulation of osteoimmunology by TCPTP is extremely complicated. TCPTP negatively regulates macrophages activation and inflammatory factors secretion to inhibit bone resorption. TCPTP regulates T lymphocytes differentiation and T lymphocytes-related cytokines signaling to maintain bone homeostasis. TCPTP is also expected to regulate bone metabolism by targeting B lymphocytes under certain time and conditions. This review offers a comprehensive update on the roles of TCPTP in osteoimmunology, which can be a promising target for the prevention and treatment of inflammatory bone loss.
Collapse
Affiliation(s)
- Ya-Nan Wang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Shiyue Liu
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China.,Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tingting Jia
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Yao Feng
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Wenjing Zhang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Xin Xu
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Dongjiao Zhang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| |
Collapse
|
7
|
Spalinger MR, Sayoc-Becerra A, Santos AN, Shawki A, Canale V, Krishnan M, Niechcial A, Obialo N, Scharl M, Li J, Nair MG, McCole DF. PTPN2 Regulates Interactions Between Macrophages and Intestinal Epithelial Cells to Promote Intestinal Barrier Function. Gastroenterology 2020; 159:1763-1777.e14. [PMID: 32652144 PMCID: PMC7680443 DOI: 10.1053/j.gastro.2020.07.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS The mechanisms by which macrophages regulate intestinal epithelial cell (IEC) barrier properties are poorly understood. Protein tyrosine phosphatase non-receptor type 2 (PTPN2) protects the IEC barrier from inflammation-induced disruption and regulates macrophage functions. We investigated whether PTPN2 controls interactions between IECs and macrophages to maintain intestinal barrier function. METHODS Human IEC (Caco-2BBe/HT-29.cl19a cells) and mouse enteroid monolayers were cocultured with human macrophages (THP-1, U937, primary monocyte-derived macrophages from patients with inflammatory bowel disease [IBD]) or mouse macrophages, respectively. We assessed barrier function (transepithelial electrical resistance [TEER] and permeability to 4-kDa fluorescently labeled dextran or 70-kDa rhodamine B-dextran) and macrophage polarization. We analyzed intestinal tissues from mice with myeloid cell-specific deletion of PTPN2 (Ptpn2-LysMCre mice) and mice without disruption of Ptpn2 (controls); some mice were given injections of a neutralizing antibody against interleukin (IL) 6. Proteins were knocked down in macrophages and/or IECs with small hairpin RNAs. RESULTS Knockdown of PTPN2 in either macrophages and/or IECs increased the permeability of IEC monolayers, had a synergistic effect when knocked down from both cell types, and increased the development of inflammatory macrophages in macrophage-IEC cocultures. Colon lamina propria from Ptpn2-LysMCre mice had significant increases in inflammatory macrophages; these mice had increased in vivo and ex vivo colon permeability to 4-kDa fluorescently labeled dextran and reduced ex vivo colon TEER. Nanostring analysis showed significant increases in the expression of IL6 in colon macrophages from Ptpn2-LysMCre mice. An IL6-blocking antibody reversed the effects of PTPN2-deficient macrophages, reducing the permeability of IEC monolayers in culture and in Ptpn2-LysMCre mice. Macrophages from patients with IBD carrying a single-nucleotide polymorphism associated with the disease (PTPN2 rs1893217) had the same features of PTPN2-deficient macrophages from mice, including reduced TEER and increased permeability in cocultures with human IEC or mouse enteroid monolayers, which were restored by anti-IL6. CONCLUSIONS PTPN2 is required for interactions between macrophages and IECs; loss of PTPN2 from either cell type results in intestinal barrier defects, and loss from both cell types has a synergistic effect. We provide a mechanism by which the PTPN2 gene variants compromise intestinal epithelial barrier function and increase the risk of inflammatory disorders such as IBD.
Collapse
Affiliation(s)
- Marianne R Spalinger
- Division of Biomedical Sciences, University of California Riverside, Riverside, California
| | - Anica Sayoc-Becerra
- Division of Biomedical Sciences, University of California Riverside, Riverside, California
| | - Alina N Santos
- Division of Biomedical Sciences, University of California Riverside, Riverside, California
| | - Ali Shawki
- Division of Biomedical Sciences, University of California Riverside, Riverside, California
| | - Vinicius Canale
- Division of Biomedical Sciences, University of California Riverside, Riverside, California
| | - Moorthy Krishnan
- Division of Biomedical Sciences, University of California Riverside, Riverside, California
| | - Anna Niechcial
- Department of Gastroenterology and Hepatology, University Hospital Zurich, and University of Zurich, Zurich, Switzerland
| | - Nicole Obialo
- Department of Gastroenterology and Hepatology, University Hospital Zurich, and University of Zurich, Zurich, Switzerland
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, and University of Zurich, Zurich, Switzerland
| | - Jiang Li
- Division of Biomedical Sciences, University of California Riverside, Riverside, California
| | - Meera G Nair
- Division of Biomedical Sciences, University of California Riverside, Riverside, California
| | - Declan F McCole
- Division of Biomedical Sciences, University of California Riverside, Riverside, California.
| |
Collapse
|
8
|
Dodd GT, Xirouchaki CE, Eramo M, Mitchell CA, Andrews ZB, Henry BA, Cowley MA, Tiganis T. Intranasal Targeting of Hypothalamic PTP1B and TCPTP Reinstates Leptin and Insulin Sensitivity and Promotes Weight Loss in Obesity. Cell Rep 2020; 28:2905-2922.e5. [PMID: 31509751 DOI: 10.1016/j.celrep.2019.08.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/29/2019] [Accepted: 08/02/2019] [Indexed: 12/11/2022] Open
Abstract
The importance of hypothalamic leptin and insulin resistance in the development and maintenance of obesity remains unclear. The tyrosine phosphatases protein tyrosine phosphatase 1B (PTP1B) and T cell protein tyrosine phosphatase (TCPTP) attenuate leptin and insulin signaling and are elevated in the hypothalami of obese mice. We report that elevated PTP1B and TCPTP antagonize hypothalamic leptin and insulin signaling and contribute to the maintenance of obesity. Deletion of PTP1B and TCPTP in the hypothalami of obese mice enhances CNS leptin and insulin sensitivity, represses feeding, and increases browning, to decrease adiposity and improve glucose metabolism. The daily intranasal administration of a PTP1B inhibitor, plus the glucocorticoid antagonist RU486 that decreases TCPTP expression, represses feeding, increases browning, promotes weight loss, and improves glucose metabolism in obese mice. Our findings causally link heightened hypothalamic PTP1B and TCPTP with leptin and insulin resistance and the maintenance of obesity and define a viable pharmacological approach by which to promote weight loss in obesity.
Collapse
Affiliation(s)
- Garron T Dodd
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Chrysovalantou E Xirouchaki
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Matthew Eramo
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Christina A Mitchell
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Zane B Andrews
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Department of Physiology, Monash University, VIC 3800, Australia
| | - Belinda A Henry
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Department of Physiology, Monash University, VIC 3800, Australia
| | - Michael A Cowley
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Department of Physiology, Monash University, VIC 3800, Australia
| | - Tony Tiganis
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; Monash Metabolic Phenotyping Facility, Monash University, VIC, Australia; Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.
| |
Collapse
|
9
|
Wiede F, Lu K, Du X, Liang S, Hochheiser K, Dodd GT, Goh PK, Kearney C, Meyran D, Beavis PA, Henderson MA, Park SL, Waithman J, Zhang S, Zhang Z, Oliaro J, Gebhardt T, Darcy PK, Tiganis T. PTPN2 phosphatase deletion in T cells promotes anti-tumour immunity and CAR T-cell efficacy in solid tumours. EMBO J 2020; 39:e103637. [PMID: 31803974 PMCID: PMC6960448 DOI: 10.15252/embj.2019103637] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/04/2019] [Accepted: 11/08/2019] [Indexed: 12/18/2022] Open
Abstract
Although adoptive T-cell therapy has shown remarkable clinical efficacy in haematological malignancies, its success in combating solid tumours has been limited. Here, we report that PTPN2 deletion in T cells enhances cancer immunosurveillance and the efficacy of adoptively transferred tumour-specific T cells. T-cell-specific PTPN2 deficiency prevented tumours forming in aged mice heterozygous for the tumour suppressor p53. Adoptive transfer of PTPN2-deficient CD8+ T cells markedly repressed tumour formation in mice bearing mammary tumours. Moreover, PTPN2 deletion in T cells expressing a chimeric antigen receptor (CAR) specific for the oncoprotein HER-2 increased the activation of the Src family kinase LCK and cytokine-induced STAT-5 signalling, thereby enhancing both CAR T-cell activation and homing to CXCL9/10-expressing tumours to eradicate HER-2+ mammary tumours in vivo. Our findings define PTPN2 as a target for bolstering T-cell-mediated anti-tumour immunity and CAR T-cell therapy against solid tumours.
Collapse
Affiliation(s)
- Florian Wiede
- Monash Biomedicine Discovery InstituteMonash UniversityClaytonVic.Australia
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVic.Australia
- Peter MacCallum Cancer CentreMelbourneVic.Australia
| | - Kun‐Hui Lu
- Peter MacCallum Cancer CentreMelbourneVic.Australia
| | - Xin Du
- Peter MacCallum Cancer CentreMelbourneVic.Australia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneVic.Australia
| | - Shuwei Liang
- Monash Biomedicine Discovery InstituteMonash UniversityClaytonVic.Australia
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVic.Australia
- Peter MacCallum Cancer CentreMelbourneVic.Australia
| | - Katharina Hochheiser
- Peter MacCallum Cancer CentreMelbourneVic.Australia
- Department of Microbiology and ImmunologyThe University of MelbourneMelbourneVic.Australia
- Peter Doherty Institute for Infection and ImmunityMelbourneVic.Australia
| | - Garron T Dodd
- Monash Biomedicine Discovery InstituteMonash UniversityClaytonVic.Australia
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVic.Australia
| | - Pei K Goh
- Monash Biomedicine Discovery InstituteMonash UniversityClaytonVic.Australia
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVic.Australia
- Peter MacCallum Cancer CentreMelbourneVic.Australia
| | | | | | - Paul A Beavis
- Peter MacCallum Cancer CentreMelbourneVic.Australia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneVic.Australia
| | | | - Simone L Park
- Department of Microbiology and ImmunologyThe University of MelbourneMelbourneVic.Australia
- Peter Doherty Institute for Infection and ImmunityMelbourneVic.Australia
| | - Jason Waithman
- Telethon Kids InstituteUniversity of Western AustraliaPerthWAAustralia
| | - Sheng Zhang
- Department of Medicinal Chemistry and Molecular PharmacologyInstitute for Drug DiscoveryPurdue UniversityWest LafayetteINUSA
| | - Zhong‐Yin Zhang
- Department of Medicinal Chemistry and Molecular PharmacologyInstitute for Drug DiscoveryPurdue UniversityWest LafayetteINUSA
| | - Jane Oliaro
- Peter MacCallum Cancer CentreMelbourneVic.Australia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneVic.Australia
| | - Thomas Gebhardt
- Department of Microbiology and ImmunologyThe University of MelbourneMelbourneVic.Australia
- Peter Doherty Institute for Infection and ImmunityMelbourneVic.Australia
| | - Phillip K Darcy
- Peter MacCallum Cancer CentreMelbourneVic.Australia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneVic.Australia
| | - Tony Tiganis
- Monash Biomedicine Discovery InstituteMonash UniversityClaytonVic.Australia
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVic.Australia
- Peter MacCallum Cancer CentreMelbourneVic.Australia
| |
Collapse
|
10
|
Kramer F, Dernedde J, Mezheyeuski A, Tauber R, Micke P, Kappert K. Platelet-derived growth factor receptor β activation and regulation in murine myelofibrosis. Haematologica 2019; 105:2083-2094. [PMID: 31672904 PMCID: PMC7395273 DOI: 10.3324/haematol.2019.226332] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/29/2019] [Indexed: 12/17/2022] Open
Abstract
There is prevailing evidence to suggest a decisive role for platelet-derived growth factors (PDGF) and their receptors in primary myelofibrosis. While PDGF receptor β (PDGFRβ) expression is increased in bone marrow stromal cells of patients correlating with the grade of myelofibrosis, knowledge on the precise role of PDGFRβ signaling in myelofibrosis is sparse. Using the Gata-1low mouse model for myelofibrosis, we applied RNA sequencing, protein expression analyses, multispectral imaging and, as a novel approach in bone marrow tissue, an in situ proximity ligation assay to provide a detailed characterization of PDGFRβ signaling and regulation during development of myelofibrosis. We observed an increase in PDGFRβ and PDGF-B protein expression in overt fibrotic bone marrow, along with an increase in PDGFRβ–PDGF-B interaction, analyzed by proximity ligation assay. However, PDGFRβ tyrosine phosphorylation levels were not increased. We therefore focused on regulation of PDGFRβ by protein tyrosine phosphatases as endogenous PDGFRβ antagonists. Gene expression analyses showed distinct expression dynamics among PDGFRβ-targeting phosphatases. In particular, we observed enhanced T-cell protein tyrosine phosphatase protein expression and PDGFRβ–T-cell protein tyrosine phosphatase interaction in early and overt fibrotic bone marrow of Gata-1low mice. In vitro, T-cell protein tyrosine phosphatase (Ptpn2) knockdown increased PDGFRβ phosphorylation at Y751 and Y1021, leading to enhanced downstream signaling in fibroblasts. Furthermore, Ptpn2 knockdown cells showed increased growth rates when exposed to low-serum growth medium. Taken together, PDGF signaling is differentially regulated during myelofibrosis. Protein tyrosine phosphatases, which have so far not been examined during disease progression, are novel and hitherto unrecognized components in myelofibrosis.
Collapse
Affiliation(s)
- Frederike Kramer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Berlin, Germany.,Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Center for Cardiovascular Research (CCR), Berlin, Germany
| | - Jens Dernedde
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Berlin, Germany
| | - Artur Mezheyeuski
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Rudolf Tauber
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Berlin, Germany
| | - Patrick Micke
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Kai Kappert
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Berlin, Germany .,Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Center for Cardiovascular Research (CCR), Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| |
Collapse
|
11
|
Morales LD, Archbold AK, Olivarez S, Slaga TJ, DiGiovanni J, Kim DJ. The role of T-cell protein tyrosine phosphatase in epithelial carcinogenesis. Mol Carcinog 2019; 58:1640-1647. [PMID: 31264291 PMCID: PMC6692238 DOI: 10.1002/mc.23078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 02/06/2023]
Abstract
T-cell protein tyrosine phosphatase (TC-PTP, encoded by PTPN2) is a nonreceptor PTP that is most highly expressed in hematopoietic tissues. TC-PTP modulates a variety of physiological functions including cell cycle progression, cell survival and proliferation, and hematopoiesis through tyrosine dephosphorylation of its target substrates, such as EGFR, JAK1, JAK3, STAT1, and STAT3. Studies with whole or tissue-specific loss of TC-PTP function transgenic mice have shown that TC-PTP has crucial roles in the regulation of the immune response, insulin signaling, and oncogenic signaling. More recently, the generation of epidermal-specific TC-PTP-deficient mice for use in multistage skin carcinogenesis bioassays demonstrated that TC-PTP suppresses skin tumor formation by negatively regulating STAT3 and AKT signaling. Further investigation showed that TC-PTP also minimizes UVB-induced epidermal cell damage by promoting apoptosis through the negative regulation of Flk-1/JNK signaling. These findings provide major evidence for a tumor suppressive function for TC-PTP against environment-induced skin cancer. Here, we will discuss TC-PTP, its substrates, and its functions with an emphasis on its role in skin carcinogenesis.
Collapse
Affiliation(s)
- Liza D. Morales
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78541, USA
- South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78541, USA
| | - Anna K. Archbold
- Department of Molecular Science, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78541, USA
| | - Serena Olivarez
- Department of Molecular Science, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78541, USA
| | - Thomas J. Slaga
- Department of Pharmacology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - John DiGiovanni
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78723, USA
| | - Dae Joon Kim
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78541, USA
- Department of Molecular Science, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78541, USA
| |
Collapse
|
12
|
Nian Q, Berthelet J, Zhang W, Bui LC, Liu R, Xu X, Duval R, Ganesan S, Leger T, Chomienne C, Busi F, Guidez F, Dupret JM, Rodrigues Lima F. T-Cell Protein Tyrosine Phosphatase Is Irreversibly Inhibited by Etoposide-Quinone, a Reactive Metabolite of the Chemotherapy Drug Etoposide. Mol Pharmacol 2019; 96:297-306. [PMID: 31221825 DOI: 10.1124/mol.119.116319] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/07/2019] [Indexed: 02/14/2025] Open
Abstract
Etoposide is a widely prescribed anticancer drug that is, however, associated with an increased risk of secondary leukemia. Although the molecular basis underlying the development of these leukemias remains poorly understood, increasing evidence implicates the interaction of etoposide metabolites [i.e., etoposide quinone (EQ)] with topoisomerase II enzymes. However, effects of etoposide quinone on other cellular targets could also be at play. We investigated whether T-cell protein tyrosine phosphatase (TCPTP), a protein tyrosine phosphatase that plays a key role in normal and malignant hematopoiesis through regulation of Janus kinase/signal transducer and activator of transcription signaling, could be a target of EQ. We report here that EQ is an irreversible inhibitor of TCPTP phosphatase (IC50 = ∼7 μM, second-order rate inhibition constant of ∼810 M-1⋅min-1). No inhibition was observed with the parent drug. The inhibition by EQ was found to be due to the formation of a covalent adduct at the catalytic cysteine residue in the active site of TCPTP. Exposure of human hematopoietic cells (HL60 and Jurkat) to EQ led to inhibition of endogenous TCPTP and concomitant increase in STAT1 tyrosine phosphorylation. Our results suggest that in addition to alteration of topoisomerase II functions, EQ could also contribute to etoposide-dependent leukemogenesis through impairment of key hematopoietic signaling enzymes, such as TCPTP.
Collapse
Affiliation(s)
- Qing Nian
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France (Q.N., J.B., W.Z., L.-C.B., R.L., F.B., J.-M.D., F.R.L.); Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China (X.X.); Université de Paris, BIGR, UMRS 1134, INSERM, Paris, France (R.D.); Université de Paris, Institut de Recherche Saint-Louis, UMRS 1131, INSERM, Paris, France (S.G., C.C., F.G.); Université de Paris, IJM, UMR 7592, CNRS, Paris, France (T.L.); and Service de Biologie Cellulaire, Assistance Publique des Hôpitaux de Paris, Hôpital Saint Louis, Paris, France (C.C.)
| | - Jérémy Berthelet
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France (Q.N., J.B., W.Z., L.-C.B., R.L., F.B., J.-M.D., F.R.L.); Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China (X.X.); Université de Paris, BIGR, UMRS 1134, INSERM, Paris, France (R.D.); Université de Paris, Institut de Recherche Saint-Louis, UMRS 1131, INSERM, Paris, France (S.G., C.C., F.G.); Université de Paris, IJM, UMR 7592, CNRS, Paris, France (T.L.); and Service de Biologie Cellulaire, Assistance Publique des Hôpitaux de Paris, Hôpital Saint Louis, Paris, France (C.C.)
| | - Wenchao Zhang
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France (Q.N., J.B., W.Z., L.-C.B., R.L., F.B., J.-M.D., F.R.L.); Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China (X.X.); Université de Paris, BIGR, UMRS 1134, INSERM, Paris, France (R.D.); Université de Paris, Institut de Recherche Saint-Louis, UMRS 1131, INSERM, Paris, France (S.G., C.C., F.G.); Université de Paris, IJM, UMR 7592, CNRS, Paris, France (T.L.); and Service de Biologie Cellulaire, Assistance Publique des Hôpitaux de Paris, Hôpital Saint Louis, Paris, France (C.C.)
| | - Linh-Chi Bui
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France (Q.N., J.B., W.Z., L.-C.B., R.L., F.B., J.-M.D., F.R.L.); Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China (X.X.); Université de Paris, BIGR, UMRS 1134, INSERM, Paris, France (R.D.); Université de Paris, Institut de Recherche Saint-Louis, UMRS 1131, INSERM, Paris, France (S.G., C.C., F.G.); Université de Paris, IJM, UMR 7592, CNRS, Paris, France (T.L.); and Service de Biologie Cellulaire, Assistance Publique des Hôpitaux de Paris, Hôpital Saint Louis, Paris, France (C.C.)
| | - Rongxing Liu
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France (Q.N., J.B., W.Z., L.-C.B., R.L., F.B., J.-M.D., F.R.L.); Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China (X.X.); Université de Paris, BIGR, UMRS 1134, INSERM, Paris, France (R.D.); Université de Paris, Institut de Recherche Saint-Louis, UMRS 1131, INSERM, Paris, France (S.G., C.C., F.G.); Université de Paris, IJM, UMR 7592, CNRS, Paris, France (T.L.); and Service de Biologie Cellulaire, Assistance Publique des Hôpitaux de Paris, Hôpital Saint Louis, Paris, France (C.C.)
| | - Ximing Xu
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France (Q.N., J.B., W.Z., L.-C.B., R.L., F.B., J.-M.D., F.R.L.); Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China (X.X.); Université de Paris, BIGR, UMRS 1134, INSERM, Paris, France (R.D.); Université de Paris, Institut de Recherche Saint-Louis, UMRS 1131, INSERM, Paris, France (S.G., C.C., F.G.); Université de Paris, IJM, UMR 7592, CNRS, Paris, France (T.L.); and Service de Biologie Cellulaire, Assistance Publique des Hôpitaux de Paris, Hôpital Saint Louis, Paris, France (C.C.)
| | - Romain Duval
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France (Q.N., J.B., W.Z., L.-C.B., R.L., F.B., J.-M.D., F.R.L.); Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China (X.X.); Université de Paris, BIGR, UMRS 1134, INSERM, Paris, France (R.D.); Université de Paris, Institut de Recherche Saint-Louis, UMRS 1131, INSERM, Paris, France (S.G., C.C., F.G.); Université de Paris, IJM, UMR 7592, CNRS, Paris, France (T.L.); and Service de Biologie Cellulaire, Assistance Publique des Hôpitaux de Paris, Hôpital Saint Louis, Paris, France (C.C.)
| | - Saravanan Ganesan
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France (Q.N., J.B., W.Z., L.-C.B., R.L., F.B., J.-M.D., F.R.L.); Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China (X.X.); Université de Paris, BIGR, UMRS 1134, INSERM, Paris, France (R.D.); Université de Paris, Institut de Recherche Saint-Louis, UMRS 1131, INSERM, Paris, France (S.G., C.C., F.G.); Université de Paris, IJM, UMR 7592, CNRS, Paris, France (T.L.); and Service de Biologie Cellulaire, Assistance Publique des Hôpitaux de Paris, Hôpital Saint Louis, Paris, France (C.C.)
| | - Thibaut Leger
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France (Q.N., J.B., W.Z., L.-C.B., R.L., F.B., J.-M.D., F.R.L.); Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China (X.X.); Université de Paris, BIGR, UMRS 1134, INSERM, Paris, France (R.D.); Université de Paris, Institut de Recherche Saint-Louis, UMRS 1131, INSERM, Paris, France (S.G., C.C., F.G.); Université de Paris, IJM, UMR 7592, CNRS, Paris, France (T.L.); and Service de Biologie Cellulaire, Assistance Publique des Hôpitaux de Paris, Hôpital Saint Louis, Paris, France (C.C.)
| | - Christine Chomienne
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France (Q.N., J.B., W.Z., L.-C.B., R.L., F.B., J.-M.D., F.R.L.); Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China (X.X.); Université de Paris, BIGR, UMRS 1134, INSERM, Paris, France (R.D.); Université de Paris, Institut de Recherche Saint-Louis, UMRS 1131, INSERM, Paris, France (S.G., C.C., F.G.); Université de Paris, IJM, UMR 7592, CNRS, Paris, France (T.L.); and Service de Biologie Cellulaire, Assistance Publique des Hôpitaux de Paris, Hôpital Saint Louis, Paris, France (C.C.)
| | - Florent Busi
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France (Q.N., J.B., W.Z., L.-C.B., R.L., F.B., J.-M.D., F.R.L.); Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China (X.X.); Université de Paris, BIGR, UMRS 1134, INSERM, Paris, France (R.D.); Université de Paris, Institut de Recherche Saint-Louis, UMRS 1131, INSERM, Paris, France (S.G., C.C., F.G.); Université de Paris, IJM, UMR 7592, CNRS, Paris, France (T.L.); and Service de Biologie Cellulaire, Assistance Publique des Hôpitaux de Paris, Hôpital Saint Louis, Paris, France (C.C.)
| | - Fabien Guidez
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France (Q.N., J.B., W.Z., L.-C.B., R.L., F.B., J.-M.D., F.R.L.); Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China (X.X.); Université de Paris, BIGR, UMRS 1134, INSERM, Paris, France (R.D.); Université de Paris, Institut de Recherche Saint-Louis, UMRS 1131, INSERM, Paris, France (S.G., C.C., F.G.); Université de Paris, IJM, UMR 7592, CNRS, Paris, France (T.L.); and Service de Biologie Cellulaire, Assistance Publique des Hôpitaux de Paris, Hôpital Saint Louis, Paris, France (C.C.)
| | - Jean-Marie Dupret
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France (Q.N., J.B., W.Z., L.-C.B., R.L., F.B., J.-M.D., F.R.L.); Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China (X.X.); Université de Paris, BIGR, UMRS 1134, INSERM, Paris, France (R.D.); Université de Paris, Institut de Recherche Saint-Louis, UMRS 1131, INSERM, Paris, France (S.G., C.C., F.G.); Université de Paris, IJM, UMR 7592, CNRS, Paris, France (T.L.); and Service de Biologie Cellulaire, Assistance Publique des Hôpitaux de Paris, Hôpital Saint Louis, Paris, France (C.C.)
| | - Fernando Rodrigues Lima
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France (Q.N., J.B., W.Z., L.-C.B., R.L., F.B., J.-M.D., F.R.L.); Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China (X.X.); Université de Paris, BIGR, UMRS 1134, INSERM, Paris, France (R.D.); Université de Paris, Institut de Recherche Saint-Louis, UMRS 1131, INSERM, Paris, France (S.G., C.C., F.G.); Université de Paris, IJM, UMR 7592, CNRS, Paris, France (T.L.); and Service de Biologie Cellulaire, Assistance Publique des Hôpitaux de Paris, Hôpital Saint Louis, Paris, France (C.C.)
| |
Collapse
|
13
|
Duval R, Bui LC, Mathieu C, Nian Q, Berthelet J, Xu X, Haddad I, Vinh J, Dupret JM, Busi F, Guidez F, Chomienne C, Rodrigues-Lima F. Benzoquinone, a leukemogenic metabolite of benzene, catalytically inhibits the protein tyrosine phosphatase PTPN2 and alters STAT1 signaling. J Biol Chem 2019; 294:12483-12494. [PMID: 31248982 DOI: 10.1074/jbc.ra119.008666] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/21/2019] [Indexed: 12/12/2022] Open
Abstract
Protein tyrosine phosphatase, nonreceptor type 2 (PTPN2) is mainly expressed in hematopoietic cells, where it negatively regulates growth factor and cytokine signaling. PTPN2 is an important regulator of hematopoiesis and immune/inflammatory responses, as evidenced by loss-of-function mutations of PTPN2 in leukemia and lymphoma and knockout mice studies. Benzene is an environmental chemical that causes hematological malignancies, and its hematotoxicity arises from its bioactivation in the bone marrow to electrophilic metabolites, notably 1,4-benzoquinone, a major hematotoxic benzene metabolite. Although the molecular bases for benzene-induced leukemia are not well-understood, it has been suggested that benzene metabolites alter topoisomerases II function and thereby significantly contribute to leukemogenesis. However, several studies indicate that benzene and its hematotoxic metabolites may also promote the leukemogenic process by reacting with other targets and pathways. Interestingly, alterations of cell-signaling pathways, such as Janus kinase (JAK)/signal transducer and activator of transcription (STAT), have been proposed to contribute to benzene-induced malignant blood diseases. We show here that 1,4-benzoquinone directly impairs PTPN2 activity. Mechanistic and kinetic experiments with purified human PTPN2 indicated that this impairment results from the irreversible formation (k inact = 645 m-1·s-1) of a covalent 1,4-benzoquinone adduct at the catalytic cysteine residue of the enzyme. Accordingly, cell experiments revealed that 1,4-benzoquinone exposure irreversibly inhibits cellular PTPN2 and concomitantly increases tyrosine phosphorylation of STAT1 and expression of STAT1-regulated genes. Our results provide molecular and cellular evidence that 1,4-benzoquinone covalently modifies key signaling enzymes, implicating it in benzene-induced malignant blood diseases.
Collapse
Affiliation(s)
- Romain Duval
- Université de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, France
| | - Linh-Chi Bui
- Université de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, France
| | - Cécile Mathieu
- Université de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, France
| | - Qing Nian
- Université de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, France
| | | | - Ximing Xu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Iman Haddad
- ESPCI Paris, PSL Université, USR 3149, CNRS, F-75005 Paris, France
| | - Joelle Vinh
- ESPCI Paris, PSL Université, USR 3149, CNRS, F-75005 Paris, France
| | | | - Florent Busi
- Université de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, France
| | - Fabien Guidez
- Université de Paris, Institut de Recherche Saint-Louis, UMRS 1131, INSERM, F-75010 Paris, France
| | - Christine Chomienne
- Université de Paris, Institut de Recherche Saint-Louis, UMRS 1131, INSERM, F-75010 Paris, France; Service de Biologie Cellulaire, Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Saint Louis, F-75010 Paris, France
| | | |
Collapse
|
14
|
Wiede F, Brodnicki TC, Goh PK, Leong YA, Jones GW, Yu D, Baxter AG, Jones SA, Kay TWH, Tiganis T. T-Cell-Specific PTPN2 Deficiency in NOD Mice Accelerates the Development of Type 1 Diabetes and Autoimmune Comorbidities. Diabetes 2019; 68:1251-1266. [PMID: 30936146 DOI: 10.2337/db18-1362] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 03/17/2019] [Indexed: 11/13/2022]
Abstract
Genome-wide association studies have identified PTPN2 as an important non-MHC gene for autoimmunity. Single nucleotide polymorphisms that reduce PTPN2 expression have been linked with the development of various autoimmune disorders, including type 1 diabetes. The tyrosine phosphatase PTPN2 attenuates T-cell receptor and cytokine signaling in T cells to maintain peripheral tolerance, but the extent to which PTPN2 deficiency in T cells might influence type 1 diabetes onset remains unclear. NOD mice develop spontaneous autoimmune type 1 diabetes similar to that seen in humans. In this study, T-cell PTPN2 deficiency in NOD mice markedly accelerated the onset and increased the incidence of type 1 diabetes as well as that of other disorders, including colitis and Sjögren syndrome. Although PTPN2 deficiency in CD8+ T cells alone was able to drive the destruction of pancreatic β-cells and the onset of diabetes, T-cell-specific PTPN2 deficiency was also accompanied by increased CD4+ T-helper type 1 differentiation and T-follicular-helper cell polarization and increased the abundance of B cells in pancreatic islets as seen in human type 1 diabetes. These findings causally link PTPN2 deficiency in T cells with the development of type 1 diabetes and associated autoimmune comorbidities.
Collapse
Affiliation(s)
- Florian Wiede
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Thomas C Brodnicki
- St. Vincent's Institute, Fitzroy, Victoria, Australia
- Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Pei Kee Goh
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Yew A Leong
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Gareth W Jones
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, U.K
- Systems Immunity University Research Institute, Cardiff University, Cardiff, U.K
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, U.K
| | - Di Yu
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Alan G Baxter
- Comparative Genomics Centre, James Cook University, Townsville, Queensland, Australia
| | - Simon A Jones
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, U.K
- Systems Immunity University Research Institute, Cardiff University, Cardiff, U.K
| | - Thomas W H Kay
- St. Vincent's Institute, Fitzroy, Victoria, Australia
- Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Tony Tiganis
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| |
Collapse
|
15
|
Kyriakou E, Schmidt S, Dodd GT, Pfuhlmann K, Simonds SE, Lenhart D, Geerlof A, Schriever SC, De Angelis M, Schramm KW, Plettenburg O, Cowley MA, Tiganis T, Tschöp MH, Pfluger PT, Sattler M, Messias AC. Celastrol Promotes Weight Loss in Diet-Induced Obesity by Inhibiting the Protein Tyrosine Phosphatases PTP1B and TCPTP in the Hypothalamus. J Med Chem 2018; 61:11144-11157. [PMID: 30525586 DOI: 10.1021/acs.jmedchem.8b01224] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Celastrol is a natural pentacyclic triterpene used in traditional Chinese medicine with significant weight-lowering effects. Celastrol-administered mice at 100 μg/kg decrease food consumption and body weight via a leptin-dependent mechanism, yet its molecular targets in this pathway remain elusive. Here, we demonstrate in vivo that celastrol-induced weight loss is largely mediated by the inhibition of leptin negative regulators protein tyrosine phosphatase (PTP) 1B (PTP1B) and T-cell PTP (TCPTP) in the arcuate nucleus (ARC) of the hypothalamus. We show in vitro that celastrol binds reversibly and inhibits noncompetitively PTP1B and TCPTP. NMR data map the binding site to an allosteric site in the catalytic domain that is in proximity of the active site. By using a panel of PTPs implicated in hypothalamic leptin signaling, we show that celastrol additionally inhibited PTEN and SHP2 but had no activity toward other phosphatases of the PTP family. These results suggest that PTP1B and TCPTP in the ARC are essential for celastrol's weight lowering effects in adult obese mice.
Collapse
Affiliation(s)
- Eleni Kyriakou
- Institute of Structural Biology , Helmholtz Zentrum München , 85764 Neuherberg , Germany.,Biomolecular NMR and Center for Integrated Protein Science Munich at Department of Chemistry , Technical University of Munich , 85747 Garching , Germany
| | - Stefanie Schmidt
- Institute of Structural Biology , Helmholtz Zentrum München , 85764 Neuherberg , Germany.,Biomolecular NMR and Center for Integrated Protein Science Munich at Department of Chemistry , Technical University of Munich , 85747 Garching , Germany
| | - Garron T Dodd
- Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology , Monash University , Victoria 3800 , Australia
| | - Katrin Pfuhlmann
- Research Unit Neurobiology of Diabetes , Helmholtz Zentrum München , 85764 Neuherberg , Germany.,Institute for Diabetes and Obesity , Helmholtz Zentrum München , 85764 Neuherberg , Germany.,Division of Metabolic Diseases , Technische Universität München , 80333 Munich , Germany.,German Center for Diabetes Research (DZD) , 85764 Neuherberg , Germany
| | - Stephanie E Simonds
- Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, and Department of Physiology , Monash University , Victoria 3800 , Australia
| | - Dominik Lenhart
- Institute of Structural Biology , Helmholtz Zentrum München , 85764 Neuherberg , Germany.,Biomolecular NMR and Center for Integrated Protein Science Munich at Department of Chemistry , Technical University of Munich , 85747 Garching , Germany.,Institute of Medicinal Chemistry , Helmholtz Zentrum München , 85764 Neuherberg , Germany
| | - Arie Geerlof
- Institute of Structural Biology , Helmholtz Zentrum München , 85764 Neuherberg , Germany
| | - Sonja C Schriever
- Research Unit Neurobiology of Diabetes , Helmholtz Zentrum München , 85764 Neuherberg , Germany.,Institute for Diabetes and Obesity , Helmholtz Zentrum München , 85764 Neuherberg , Germany.,German Center for Diabetes Research (DZD) , 85764 Neuherberg , Germany
| | - Meri De Angelis
- Molecular EXposomics , Helmholtz Zentrum München , 85764 Neuherberg , Germany
| | - Karl-Werner Schramm
- Molecular EXposomics , Helmholtz Zentrum München , 85764 Neuherberg , Germany
| | - Oliver Plettenburg
- Institute of Medicinal Chemistry , Helmholtz Zentrum München , 85764 Neuherberg , Germany.,Institute of Organic Chemistry , Leibniz Universität Hannover , 30167 Hannover , Germany
| | - Michael A Cowley
- Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, and Department of Physiology , Monash University , Victoria 3800 , Australia
| | - Tony Tiganis
- Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology , Monash University , Victoria 3800 , Australia.,Peter MacCallum Cancer Centre , Melbourne , Victoria 3000 , Australia
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity , Helmholtz Zentrum München , 85764 Neuherberg , Germany.,Division of Metabolic Diseases , Technische Universität München , 80333 Munich , Germany.,German Center for Diabetes Research (DZD) , 85764 Neuherberg , Germany
| | - Paul T Pfluger
- Research Unit Neurobiology of Diabetes , Helmholtz Zentrum München , 85764 Neuherberg , Germany.,Institute for Diabetes and Obesity , Helmholtz Zentrum München , 85764 Neuherberg , Germany.,German Center for Diabetes Research (DZD) , 85764 Neuherberg , Germany
| | - Michael Sattler
- Institute of Structural Biology , Helmholtz Zentrum München , 85764 Neuherberg , Germany.,Biomolecular NMR and Center for Integrated Protein Science Munich at Department of Chemistry , Technical University of Munich , 85747 Garching , Germany
| | - Ana C Messias
- Institute of Structural Biology , Helmholtz Zentrum München , 85764 Neuherberg , Germany.,Biomolecular NMR and Center for Integrated Protein Science Munich at Department of Chemistry , Technical University of Munich , 85747 Garching , Germany
| |
Collapse
|
16
|
Zheng L, Zhang W, Li A, Liu Y, Yi B, Nakhoul F, Zhang H. PTPN2 Downregulation Is Associated with Albuminuria and Vitamin D Receptor Deficiency in Type 2 Diabetes Mellitus. J Diabetes Res 2018; 2018:3984797. [PMID: 30246029 PMCID: PMC6136551 DOI: 10.1155/2018/3984797] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 04/06/2018] [Accepted: 07/29/2018] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE Inflammation plays a major role in albuminuria in type 2 diabetes mellitus (T2DM). Our previous studies have shown that the expression of vitamin D receptor (VDR) is downregulated in T2DM which is closely associated with the severity of albuminuria. In this study, we investigated the expression of anti-inflammatory cytokine protein tyrosine phosphatase nonreceptor type 2 (PTPN2) in T2DM and explored its relationship to albuminuria and VDR. METHODS 101 T2DM patients were divided into three groups based on urinary albumin-to-creatinine ratio (uACR): normal albuminuria (uACR < 30 mg/g, n = 29), microalbuminuria (30 mg/g ≤ uACR < 300 mg/g, n = 34), and macroalbuminuria (uACR ≥ 300 mg/g, n = 38). Thirty healthy individuals were included as controls. Serum was analyzed for PTPN2 and IL-6 expression, and peripheral blood mononuclear cells (PBMCs) were analyzed for PTPN2 and VDR expression. THP-1 cells were incubated with high glucose and further treated with or without paricalcitol, a vitamin D analog. The levels of PTPN2, VDR, IL-6, TNFα, and MCP-1 were analyzed. In addition, anti-inflammatory activities of PTPN2 were further explored in THP-1 cells stimulated with high glucose after PTPN2 silencing or overexpression. RESULTS PTPN2 expression was downregulated in T2DM with the lowest level observed in macroalbuminuria patients. PTPN2 level positively correlated with VDR but negatively correlated with uACR and IL-6. When stimulated with high glucose, there was an increase in inflammatory factors and a decrease in PTPN2 expression. Treatment with paricalcitol reversed these effects. However, paricalcitol failed to exert anti-inflammatory effects in the setting of PTPN2 knockdown. Thus, low levels of PTPN2 aggravated glucose-stimulated inflammation, while high levels of PTPN2 reduced it. CONCLUSION PTPN2, an anti-inflammatory factor regulated by VDR, was reduced in T2DM CKD stages 1-2. Taken together, our results suggest that therapeutic strategies that enhance PTPN2 may be beneficial for controlling inflammation in T2DM.
Collapse
MESH Headings
- Adult
- Aged
- Albuminuria/blood
- Albuminuria/diagnosis
- Albuminuria/etiology
- Albuminuria/urine
- Biomarkers/blood
- Biomarkers/urine
- Case-Control Studies
- Chemokine CCL2/metabolism
- Creatinine/urine
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/diagnosis
- Diabetes Mellitus, Type 2/urine
- Diabetic Nephropathies/blood
- Diabetic Nephropathies/diagnosis
- Diabetic Nephropathies/etiology
- Diabetic Nephropathies/urine
- Down-Regulation
- Female
- Humans
- Inflammation/blood
- Inflammation/diagnosis
- Inflammation/etiology
- Inflammation/urine
- Interleukin-6/blood
- Male
- Middle Aged
- Monocytes/metabolism
- Protein Tyrosine Phosphatase, Non-Receptor Type 2/blood
- Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics
- Receptors, Calcitriol/blood
- Receptors, Calcitriol/deficiency
- Renal Insufficiency, Chronic/blood
- Renal Insufficiency, Chronic/diagnosis
- Renal Insufficiency, Chronic/etiology
- Renal Insufficiency, Chronic/urine
- THP-1 Cells
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Li Zheng
- Department of Nephrology, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, Hunan, China
| | - Wei Zhang
- Department of Nephrology, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, Hunan, China
| | - Aimei Li
- Department of Nephrology, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, Hunan, China
| | - Yan Liu
- Department of Nephrology, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, Hunan, China
| | - Bin Yi
- Department of Nephrology, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, Hunan, China
| | - Farid Nakhoul
- Diabetic Nephropathy Lab, Baruch Padeh Poriya Medical Center Affiliated to the Faculty of Medicine in Galilee, 15208 Lower Galilee, Israel
| | - Hao Zhang
- Department of Nephrology, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, Hunan, China
| |
Collapse
|
17
|
Wiede F, Dudakov JA, Lu KH, Dodd GT, Butt T, Godfrey DI, Strasser A, Boyd RL, Tiganis T. PTPN2 regulates T cell lineage commitment and αβ versus γδ specification. J Exp Med 2017; 214:2733-2758. [PMID: 28798028 PMCID: PMC5584121 DOI: 10.1084/jem.20161903] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 05/26/2017] [Accepted: 06/28/2017] [Indexed: 01/18/2023] Open
Abstract
During early thymocyte development, coordinated JAK/STAT5 and SFK/pre-TCR signaling is critical for T cell lineage commitment and αβ versus γδ specification. Wiede et al. show a role for the tyrosine phosphatase PTPN2 in attenuating SRC family kinase LCK and STAT5 signaling to regulate αβ and γδ T cell development. In the thymus, hematopoietic progenitors commit to the T cell lineage and undergo sequential differentiation to generate diverse T cell subsets, including major histocompatibility complex (MHC)–restricted αβ T cell receptor (TCR) T cells and non–MHC-restricted γδ TCR T cells. The factors controlling precursor commitment and their subsequent maturation and specification into αβ TCR versus γδ TCR T cells remain unclear. Here, we show that the tyrosine phosphatase PTPN2 attenuates STAT5 (signal transducer and activator of transcription 5) signaling to regulate T cell lineage commitment and SRC family kinase LCK and STAT5 signaling to regulate αβ TCR versus γδ TCR T cell development. Our findings identify PTPN2 as an important regulator of critical checkpoints that dictate the commitment of multipotent precursors to the T cell lineage and their subsequent maturation into αβ TCR or γδ TCR T cells.
Collapse
Affiliation(s)
- Florian Wiede
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia .,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Jarrod A Dudakov
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Kun-Hui Lu
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Garron T Dodd
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Tariq Butt
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Dale I Godfrey
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia.,Department of Microbiology and Immunology and Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Andreas Strasser
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.,The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Richard L Boyd
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Tony Tiganis
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia .,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.,Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| |
Collapse
|
18
|
Dodd GT, Andrews ZB, Simonds SE, Michael NJ, DeVeer M, Brüning JC, Spanswick D, Cowley MA, Tiganis T. A Hypothalamic Phosphatase Switch Coordinates Energy Expenditure with Feeding. Cell Metab 2017; 26:375-393.e7. [PMID: 28768176 DOI: 10.1016/j.cmet.2017.07.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 04/13/2017] [Accepted: 07/17/2017] [Indexed: 12/17/2022]
Abstract
Beige adipocytes can interconvert between white and brown-like states and switch between energy storage versus expenditure. Here we report that beige adipocyte plasticity is important for feeding-associated changes in energy expenditure and is coordinated by the hypothalamus and the phosphatase TCPTP. A fasting-induced and glucocorticoid-mediated induction of TCPTP, inhibited insulin signaling in AgRP/NPY neurons, repressed the browning of white fat and decreased energy expenditure. Conversely feeding reduced hypothalamic TCPTP, to increase AgRP/NPY neuronal insulin signaling, white adipose tissue browning and energy expenditure. The feeding-induced repression of hypothalamic TCPTP was defective in obesity. Mice lacking TCPTP in AgRP/NPY neurons were resistant to diet-induced obesity and had increased beige fat activity and energy expenditure. The deletion of hypothalamic TCPTP in obesity restored feeding-induced browning and increased energy expenditure to promote weight loss. Our studies define a hypothalamic switch that coordinates energy expenditure with feeding for the maintenance of energy balance.
Collapse
Affiliation(s)
- Garron T Dodd
- Metabolic Disease and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia; Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Zane B Andrews
- Metabolic Disease and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia; Department of Physiology, Monash University, Victoria 3800, Australia
| | - Stephanie E Simonds
- Metabolic Disease and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia; Department of Physiology, Monash University, Victoria 3800, Australia
| | - Natalie J Michael
- Metabolic Disease and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia; Department of Physiology, Monash University, Victoria 3800, Australia
| | - Michael DeVeer
- Monash Biomedical Imaging, Monash University, Victoria 3168, Australia
| | - Jens C Brüning
- Max Plank Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes, and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Str. 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany; National Center for Diabetes Research (DZD), Ingolstädter Land Str. 1, 85764 Neuherberg, Germany
| | - David Spanswick
- Metabolic Disease and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia; Department of Physiology, Monash University, Victoria 3800, Australia
| | - Michael A Cowley
- Metabolic Disease and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia; Department of Physiology, Monash University, Victoria 3800, Australia
| | - Tony Tiganis
- Metabolic Disease and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia; Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia.
| |
Collapse
|
19
|
Wiede F, Sacirbegovic F, Leong YA, Yu D, Tiganis T. PTPN2-deficiency exacerbates T follicular helper cell and B cell responses and promotes the development of autoimmunity. J Autoimmun 2016; 76:85-100. [PMID: 27658548 DOI: 10.1016/j.jaut.2016.09.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/08/2016] [Accepted: 09/11/2016] [Indexed: 02/07/2023]
Abstract
Non-coding single nucleotide polymorphisms that repress PTPN2 expression have been linked with the development of type 1 diabetes, rheumatoid arthritis and Crohn's disease. PTPN2 attenuates CD8+ T cell responses to self and prevents overt autoreactivity in the context of T cell homeostasis and antigen cross-presentation. The role of PTPN2 in other immune subsets in the development of autoimmunity remains unclear. Here we show that the inducible deletion of PTPN2 in hematopoietic compartment of adult non-autoimmune prone mice results in systemic inflammation and autoimmunity. PTPN2-deficient mice had increased inflammatory monocytes, B cells and effector T cells in lymphoid and non-lymphoid tissues and exhibited symptoms of dermatitis, glomerulonephritis, pancreatitis and overt liver disease. Autoimmunity was characterised by the formation of germinal centers in the spleen and associated with markedly increased germinal center B cells and T follicular helper (Tfh) cells and circulating anti-nuclear antibodies, inflammatory cytokines and immunoglobulins. CD8+ T cell proliferative responses were enhanced, and interleukin-21-induced STAT-3 signalling in Tfh cells and B cells was increased and accompanied by enhanced B cell proliferation ex vivo. These results indicate that deficiencies in PTPN2 across multiple immune lineages, including naive T cells, Tfh cells and B cells, contribute to the development of autoimmunity.
Collapse
Affiliation(s)
- Florian Wiede
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia
| | - Faruk Sacirbegovic
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia
| | - Yew Ann Leong
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia
| | - Di Yu
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia
| | - Tony Tiganis
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia.
| |
Collapse
|
20
|
Spalinger MR, McCole DF, Rogler G, Scharl M. Protein tyrosine phosphatase non-receptor type 2 and inflammatory bowel disease. World J Gastroenterol 2016; 22:1034-1044. [PMID: 26811645 PMCID: PMC4716018 DOI: 10.3748/wjg.v22.i3.1034] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 08/31/2015] [Accepted: 11/19/2015] [Indexed: 02/06/2023] Open
Abstract
Genome wide association studies have associated single nucleotide polymorphisms within the gene locus encoding protein tyrosine phosphatase non-receptor type 2 (PTPN2) with the onset of inflammatory bowel disease (IBD) and other inflammatory disorders. Expression of PTPN2 is enhanced in actively inflamed intestinal tissue featuring a marked up-regulation in intestinal epithelial cells. PTPN2 deficient mice suffer from severe intestinal and systemic inflammation and display aberrant innate and adaptive immune responses. In particular, PTPN2 is involved in the regulation of inflammatory signalling cascades, and critical for protecting intestinal epithelial barrier function, regulating innate and adaptive immune responses, and finally for maintaining intestinal homeostasis. On one hand, dysfunction of PTPN2 has drastic effects on innate host defence mechanisms, including increased secretion of pro-inflammatory cytokines, limited autophagosome formation in response to invading pathogens, and disruption of the intestinal epithelial barrier. On the other hand, PTPN2 function is crucial for controlling adaptive immune functions, by regulating T cell proliferation and differentiation as well as maintaining T cell tolerance. In this way, dysfunction of PTPN2 contributes to the manifestation of IBD. The aim of this review is to present an overview of recent findings on the role of PTPN2 in intestinal homeostasis and the impact of dysfunctional PTPN2 on intestinal inflammation.
Collapse
|
21
|
PTPN2 attenuates T-cell lymphopenia-induced proliferation. Nat Commun 2015; 5:3073. [PMID: 24445916 DOI: 10.1038/ncomms4073] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 12/06/2013] [Indexed: 12/19/2022] Open
Abstract
When the peripheral T-cell pool is depleted, T cells undergo homoeostatic expansion. This expansion is reliant on the recognition of self-antigens and/or cytokines, in particular interleukin-7. The T cell-intrinsic mechanisms that prevent excessive homoeostatic T-cell responses and consequent overt autoreactivity remain poorly defined. Here we show that protein tyrosine phosphatase N2 (PTPN2) is elevated in naive T cells leaving the thymus to restrict homoeostatic T-cell proliferation and prevent excess responses to self-antigens in the periphery. PTPN2-deficient CD8(+) T cells undergo rapid lymphopenia-induced proliferation (LIP) when transferred into lymphopenic hosts and acquire the characteristics of antigen-experienced effector T cells. The enhanced LIP is attributed to elevated T-cell receptor-dependent, but not interleukin-7-dependent responses, results in a skewed T-cell receptor repertoire and the development of autoimmunity. Our results identify a major mechanism by which homoeostatic T-cell responses are tuned to prevent the development of autoimmune and inflammatory disorders.
Collapse
|
22
|
A RP-UFLC Assay for Protein Tyrosine Phosphatases: Focus on Protein Tyrosine Phosphatase Non-Receptor Type 2 (PTPN2). Sci Rep 2015; 5:10750. [PMID: 26040922 PMCID: PMC4455150 DOI: 10.1038/srep10750] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/30/2015] [Indexed: 11/08/2022] Open
Abstract
Protein tyrosine phosphatases (PTPs) are involved in numerous signaling pathways and dysfunctions of certain of these enzymes have been linked to several human diseases including cancer and autoimmune diseases. PTPN2 is a PTP mainly expressed in hematopoietic cells and involved in growth factor and JAK/STAT signaling pathways. Loss of function analyses in patients with mutation/deletion of the PTPN2 gene and knock-out mouse models indicate that PTPN2 acts as a tumor suppressor in T-cell malignancies and as a regulator of inflammation and immunity. The use of sensitive and quantitative assays is of prime importance to better characterize the biochemical properties of PTPN2 and its biological roles. We report a highly sensitive non-radioactive assay that allows the measurement of the activity of purified PTPN2 and of endogenous PTPN2 immunoprecipitated on agarose beads. The assay relies on separation and quantitation by reverse-phase ultra fast liquid chromatography (RP-UFLC) of a fluorescein-labeled phosphotyrosine peptide substrate derived from the sequence of STAT1. The applicability and reliability of this approach is supported by kinetic and mechanistic studies using PTP inhibitors. More broadly, our PTPN2 assay provides the basis for the design of flexible methods for the measurement of other PTPs.
Collapse
|
23
|
Role of protein tyrosine phosphatases in regulating the immune system: implications for chronic intestinal inflammation. Inflamm Bowel Dis 2015; 21:645-55. [PMID: 25581833 PMCID: PMC4329025 DOI: 10.1097/mib.0000000000000297] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Current hypothesis suggests that genetic, immunological, and bacterial factors contribute essentially to the pathogenesis of inflammatory bowel disease. Variations within the gene loci encoding protein tyrosine phosphatases (PTPs) have been associated with the onset of inflammatory bowel disease. PTPs modulate the activity of their substrates by dephosphorylation of tyrosine residues and are critical for the regulation of fundamental cellular signaling processes. Evidence emerges that expression levels of PTPN2, PTPN11, and PTPN22 are altered in actively inflamed intestinal tissue. PTPN2 seems to be critical for protecting intestinal epithelial barrier function, regulating innate and adaptive immune responses and finally for maintaining intestinal homeostasis. These observations have been confirmed in PTPN2 knockout mice in vivo. Those animals are clearly more susceptible to intestinal and systemic inflammation and feature alterations in innate and adaptive immune responses. PTPN22 controls inflammatory signaling in lymphocytes and mononuclear cells resulting in aberrant cytokine secretion pattern and autophagosome formation. PTPN22 deficiency in vivo results in more severe colitis demonstrating the relevance of PTPN22 for intestinal homeostasis in vivo. Of note, loss of PTPN22 promotes mitogen-activated protein kinase-induced cytokine secretion but limits secretion of nuclear factor κB-associated cytokines and autophagy in mononuclear cells. Loss of PTPN11 is also associated with increased colitis severity in vivo. In summary, dysfunction of those PTPs results in aberrant and uncontrolled immune responses that result in chronic inflammatory conditions. This way, it becomes more and more evident that dysfunction of PTPs displays an important factor in the pathogenesis of chronic intestinal inflammation, in particular inflammatory bowel disease.
Collapse
|
24
|
Abstract
Technological advances in the large scale analysis of human genetics have generated profound insights into possible genetic contributions to chronic diseases including the inflammatory bowel diseases (IBDs), Crohn's disease and ulcerative colitis. To date, 163 distinct genetic risk loci have been associated with either Crohn's disease or ulcerative colitis, with a substantial degree of genetic overlap between these 2 conditions. Although many risk variants show a reproducible correlation with disease, individual gene associations only affect a subset of patients, and the functional contribution(s) of these risk variants to the onset of IBD is largely undetermined. Although studies in twins have demonstrated that the development of IBD is not mediated solely by genetic risk, it is nevertheless important to elucidate the functional consequences of risk variants for gene function in relevant cell types known to regulate key physiological processes that are compromised in IBD. This article will discuss IBD candidate genes that are known to be, or are suspected of being, involved in regulating the intestinal epithelial barrier and several of the physiological processes presided over by this dynamic and versatile layer of cells. This will include assembly and regulation of tight junctions, cell adhesion and polarity, mucus and glycoprotein regulation, bacterial sensing, membrane transport, epithelial differentiation, and restitution.
Collapse
|
25
|
Bettaieb A, Xi Y, Hosein E, Coggins N, Bachaalany S, Wiede F, Perez S, Griffey SM, Sastre J, Tiganis T, Haj FG. Pancreatic T cell protein-tyrosine phosphatase deficiency ameliorates cerulein-induced acute pancreatitis. Cell Commun Signal 2014; 12:13. [PMID: 24606867 PMCID: PMC4016516 DOI: 10.1186/1478-811x-12-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 02/20/2014] [Indexed: 12/19/2022] Open
Abstract
Background Acute pancreatitis (AP) is a common clinical problem whose incidence has been progressively increasing in recent years. Onset of the disease is trigged by intra-acinar cell activation of digestive enzyme zymogens that induce autodigestion, release of pro-inflammatory cytokines and acinar cell injury. T-cell protein tyrosine phosphatase (TCPTP) is implicated in inflammatory signaling but its significance in AP remains unclear. Results In this study we assessed the role of pancreatic TCPTP in cerulein-induced AP. TCPTP expression was increased at the protein and messenger RNA levels in the early phase of AP in mice and rats. To directly determine whether TCPTP may have a causal role in AP we generated mice with pancreatic TCPTP deletion (panc-TCPTP KO) by crossing TCPTP floxed mice with Pdx1-Cre transgenic mice. Amylase and lipase levels were lower in cerulein-treated panc-TCPTP KO mice compared with controls. In addition, pancreatic mRNA and serum concentrations of the inflammatory cytokines TNFα and IL-6 were lower in panc-TCPTP KO mice. At the molecular level, panc-TCPTP KO mice exhibited enhanced cerulein-induced STAT3 Tyr705 phosphorylation accompanied by a decreased cerulein-induced NF-κB inflammatory response, and decreased ER stress and cell death. Conclusion These findings revealed a novel role for pancreatic TCPTP in the progression of cerulein-induced AP.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Fawaz G Haj
- Department of Nutrition, University of California Davis, One Shields Ave, 3135 Meyer Hall, Davis, CA 95616, USA.
| |
Collapse
|
26
|
McCole DF. Phosphatase regulation of intercellular junctions. Tissue Barriers 2013; 1:e26713. [PMID: 24868494 DOI: 10.4161/tisb.26713] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 10/03/2013] [Accepted: 10/04/2013] [Indexed: 02/06/2023] Open
Abstract
Intercellular junctions represent the key contact points and sites of communication between neighboring cells. Assembly of these junctions is absolutely essential for the structural integrity of cell monolayers, tissues and organs. Disruption of junctions can have severe consequences such as diarrhea, edema and sepsis, and contribute to the development of chronic inflammatory diseases. Cell junctions are not static structures, but rather they represent highly dynamic micro-domains that respond to signals from the intracellular and extracellular environments to modify their composition and function. This review article will focus on the regulation of tight junctions and adherens junctions by phosphatase enzymes that play an essential role in preserving and modulating the properties of intercellular junction proteins.
Collapse
Affiliation(s)
- Declan F McCole
- Division of Biomedical Sciences; University of California, Riverside; Riverside, CA USA
| |
Collapse
|
27
|
Hendriks WJAJ, Pulido R. Protein tyrosine phosphatase variants in human hereditary disorders and disease susceptibilities. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1673-96. [PMID: 23707412 DOI: 10.1016/j.bbadis.2013.05.022] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/14/2013] [Accepted: 05/16/2013] [Indexed: 12/18/2022]
Abstract
Reversible tyrosine phosphorylation of proteins is a key regulatory mechanism to steer normal development and physiological functioning of multicellular organisms. Phosphotyrosine dephosphorylation is exerted by members of the super-family of protein tyrosine phosphatase (PTP) enzymes and many play such essential roles that a wide variety of hereditary disorders and disease susceptibilities in man are caused by PTP alleles. More than two decades of PTP research has resulted in a collection of PTP genetic variants with corresponding consequences at the molecular, cellular and physiological level. Here we present a comprehensive overview of these PTP gene variants that have been linked to disease states in man. Although the findings have direct bearing for disease diagnostics and for research on disease etiology, more work is necessary to translate this into therapies that alleviate the burden of these hereditary disorders and disease susceptibilities in man.
Collapse
Affiliation(s)
- Wiljan J A J Hendriks
- Department of Cell Biology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | |
Collapse
|
28
|
Shields BJ, Wiede F, Gurzov EN, Wee K, Hauser C, Zhu HJ, Molloy TJ, O'Toole SA, Daly RJ, Sutherland RL, Mitchell CA, McLean CA, Tiganis T. TCPTP regulates SFK and STAT3 signaling and is lost in triple-negative breast cancers. Mol Cell Biol 2013; 33:557-70. [PMID: 23166300 PMCID: PMC3554209 DOI: 10.1128/mcb.01016-12] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 11/12/2012] [Indexed: 01/08/2023] Open
Abstract
Tyrosine phosphorylation-dependent signaling, as mediated by members of the epidermal growth factor receptor (EGFR) family (ErbB1 to -4) of protein tyrosine kinases (PTKs), Src family PTKs (SFKs), and cytokines such as interleukin-6 (IL-6) that signal via signal transducer and activator of transcription 3 (STAT3), is critical to the development and progression of many human breast cancers. EGFR, SFKs, and STAT3 can serve as substrates for the protein tyrosine phosphatase TCPTP (PTPN2). Here we report that TCPTP protein levels are decreased in a subset of breast cancer cell lines in vitro and that TCPTP protein is absent in a large proportion of "triple-negative" primary human breast cancers. Homozygous TCPTP deficiency in murine mammary fat pads in vivo is associated with elevated SFK and STAT3 signaling, whereas TCPTP deficiency in human breast cancer cell lines enhances SFK and STAT3 signaling. On the other hand, TCPTP reconstitution in human breast cancer cell lines severely impaired cell proliferation and suppressed anchorage-independent growth in vitro and xenograft growth in vivo. These studies establish TCPTP's potential to serve as a tumor suppressor in human breast cancer.
Collapse
Affiliation(s)
- Benjamin J. Shields
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Florian Wiede
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Esteban N. Gurzov
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Kenneth Wee
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Christine Hauser
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Hong-Jian Zhu
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Timothy J. Molloy
- The Kinghorn Cancer Centre & Cancer Research Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Sandra A. O'Toole
- The Kinghorn Cancer Centre & Cancer Research Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
- Central Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Roger J. Daly
- The Kinghorn Cancer Centre & Cancer Research Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of NSW, Kensington, New South Wales, Australia
| | - Robert L. Sutherland
- The Kinghorn Cancer Centre & Cancer Research Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of NSW, Kensington, New South Wales, Australia
| | - Christina A. Mitchell
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Catriona A. McLean
- Department of Anatomical Pathology, Alfred Hospital, Prahran, Victoria, Australia
| | - Tony Tiganis
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
29
|
Cerosaletti K, Buckner JH. Protein tyrosine phosphatases and type 1 diabetes: genetic and functional implications of PTPN2 and PTPN22. Rev Diabet Stud 2012; 9:188-200. [PMID: 23804260 DOI: 10.1900/rds.2012.9.188] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Protein tyrosine phosphatases (PTPs) play a central role in modulating the transduction of cellular signals, including the cells of the immune system. Several PTPs, PTPN22, PTPN2, and UBASH3A, have been associated with risk of type 1 diabetes (T1D) by genome wide association studies. Based on the current understanding of PTPs, it is clear that these variants impact antigen receptor signaling and cytokine signaling. This impact likely contributes to the development and progression of autoimmunity through multiple mechanisms, including failures of central and peripheral tolerance and the promotion of proinflammatory T cell responses. In this review, we discuss the genetic and functional implications of two of these PTPs, PTPN22 and PTPN2, in the development of T1D. We describe the known roles of these proteins in immune function, and how the expression and function of these proteins is altered by the genetic variants associated with T1D. Yet, there are still controversies in the field that require further study and the development of new approaches to extend our understanding of these PTP variants, with the goal of using the information gained to improve our ability to predict and cure T1D.
Collapse
Affiliation(s)
- Karen Cerosaletti
- Translational Research Program, Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, USA
| | | |
Collapse
|