1
|
Delabays B, Trajanoska K, Walonoski J, Mooser V. Cardiovascular Pharmacogenetics: From Discovery of Genetic Association to Clinical Adoption of Derived Test. Pharmacol Rev 2024; 76:791-827. [PMID: 39122647 DOI: 10.1124/pharmrev.123.000750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 04/24/2024] [Accepted: 05/28/2024] [Indexed: 08/12/2024] Open
Abstract
Recent breakthroughs in human genetics and in information technologies have markedly expanded our understanding at the molecular level of the response to drugs, i.e., pharmacogenetics (PGx), across therapy areas. This review is restricted to PGx for cardiovascular (CV) drugs. First, we examined the PGx information in the labels approved by regulatory agencies in Europe, Japan, and North America and related recommendations from expert panels. Out of 221 marketed CV drugs, 36 had PGx information in their labels approved by one or more agencies. The level of annotations and recommendations varied markedly between agencies and expert panels. Clopidogrel is the only CV drug with consistent PGx recommendation (i.e., "actionable"). This situation prompted us to dissect the steps from discovery of a PGx association to clinical translation. We found 101 genome-wide association studies that investigated the response to CV drugs or drug classes. These studies reported significant associations for 48 PGx traits mapping to 306 genes. Six of these 306 genes are mentioned in the corresponding PGx labels or recommendations for CV drugs. Genomic analyses also highlighted the wide between-population differences in risk allele frequencies and the individual load of actionable PGx variants. Given the high attrition rate and the long road to clinical translation, additional work is warranted to identify and validate PGx variants for more CV drugs across diverse populations and to demonstrate the utility of PGx testing. To that end, pre-emptive PGx combining genomic profiling with electronic medical records opens unprecedented opportunities to improve healthcare, for CV diseases and beyond. SIGNIFICANCE STATEMENT: Despite spectacular breakthroughs in human molecular genetics and information technologies, consistent evidence supporting PGx testing in the cardiovascular area is limited to a few drugs. Additional work is warranted to discover and validate new PGx markers and demonstrate their utility. Pre-emptive PGx combining genomic profiling with electronic medical records opens unprecedented opportunities to improve healthcare, for CV diseases and beyond.
Collapse
Affiliation(s)
- Benoît Delabays
- Canada Excellence Research Chair in Genomic Medicine, Victor Phillip Dahdaleh Institute of Genomic Medicine, Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada (B.D., K.T., V.M.); and Medeloop Inc., Palo Alto, California, and Montreal, QC, Canada (J.W.)
| | - Katerina Trajanoska
- Canada Excellence Research Chair in Genomic Medicine, Victor Phillip Dahdaleh Institute of Genomic Medicine, Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada (B.D., K.T., V.M.); and Medeloop Inc., Palo Alto, California, and Montreal, QC, Canada (J.W.)
| | - Joshua Walonoski
- Canada Excellence Research Chair in Genomic Medicine, Victor Phillip Dahdaleh Institute of Genomic Medicine, Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada (B.D., K.T., V.M.); and Medeloop Inc., Palo Alto, California, and Montreal, QC, Canada (J.W.)
| | - Vincent Mooser
- Canada Excellence Research Chair in Genomic Medicine, Victor Phillip Dahdaleh Institute of Genomic Medicine, Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada (B.D., K.T., V.M.); and Medeloop Inc., Palo Alto, California, and Montreal, QC, Canada (J.W.)
| |
Collapse
|
2
|
Trompet S, Postmus I, Warren HR, Noordam R, Smit RAJ, Theusch E, Li X, Arsenault B, Chasman DI, Hitman GA, Munroe PB, Rotter JI, Psaty BM, Caulfield MJ, Krauss RM, Cupples AL, Jukema WJ. The Pharmacogenetics of Statin Therapy on Clinical Events: No Evidence that Genetic Variation Affects Statin Response on Myocardial Infarction. Front Pharmacol 2022; 12:679857. [PMID: 35069183 PMCID: PMC8769168 DOI: 10.3389/fphar.2021.679857] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/01/2021] [Indexed: 01/02/2023] Open
Abstract
Background: The pharmacogenetic effect on cardiovascular disease reduction in response to statin treatment has only been assessed in small studies. In a pharmacogenetic genome wide association study (GWAS) analysis within the Genomic Investigation of Statin Therapy (GIST) consortium, we investigated whether genetic variation was associated with the response of statins on cardiovascular disease risk reduction. Methods: The investigated endpoint was incident myocardial infarction (MI) defined as coronary heart disease death and definite and suspect non-fatal MI. For imputed single nucleotide polymorphisms (SNPs), regression analysis was performed on expected allelic dosage and meta-analysed with a fixed-effects model, inverse variance weighted meta-analysis. All SNPs with p-values <5.0 × 10−4 in stage 1 GWAS meta-analysis were selected for further investigation in stage-2. As a secondary analysis, we extracted SNPs from the Stage-1 GWAS meta-analysis results based on predefined hypotheses to possibly modifying the effect of statin therapy on MI. Results: In stage-1 meta-analysis (eight studies, n = 10,769, 4,212 cases), we observed no genome-wide significant results (p < 5.0 × 10−8). A total of 144 genetic variants were followed-up in the second stage (three studies, n = 1,525, 180 cases). In the combined meta-analysis, no genome-wide significant hits were identified. Moreover, none of the look-ups of SNPs known to be associated with either CHD or with statin response to cholesterol levels reached Bonferroni level of significance within our stage-1 meta-analysis. Conclusion: This GWAS analysis did not provide evidence that genetic variation affects statin response on cardiovascular risk reduction. It does not appear likely that genetic testing for predicting effects of statins on clinical events will become a useful tool in clinical practice.
Collapse
Affiliation(s)
- Stella Trompet
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, Netherlands.,Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Iris Postmus
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Helen R Warren
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, United Kingdom.,Barts NIHR Biomedical Research Unit, London, United Kingdom
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, Netherlands.,Department of Epidemiology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Roelof A J Smit
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Elizabeth Theusch
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Xiaohui Li
- Institute for Translational Genomics and Population Sciences, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Benoit Arsenault
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec City, QC, Canada.,Department of Medicine, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Graham A Hitman
- Blizard institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Patricia B Munroe
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, United Kingdom.,Barts NIHR Biomedical Research Unit, London, United Kingdom
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, United States.,Department of Epidemiology, University of Washington, Seattle, WA, United States.,Department of Health Services University of Washington, Seattle, WA, United States
| | - Mark J Caulfield
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, United Kingdom.,Barts NIHR Biomedical Research Unit, London, United Kingdom
| | - Ron M Krauss
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Adrienne L Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, United States.,NHLBI Framingham Heart Study, Framingham, MA, United States
| | - Wouter J Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands.,Netherlands Heart Institute, Utrecht, Netherlands
| |
Collapse
|
3
|
Naseri N, Sharma M, Velinov M. Autosomal dominant neuronal ceroid lipofuscinosis: Clinical features and molecular basis. Clin Genet 2020; 99:111-118. [PMID: 32783189 DOI: 10.1111/cge.13829] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 11/26/2022]
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are at least 13 distinct progressive neurodegenerative disorders unified by the accumulation of lysosomal auto-fluorescent material called lipofuscin. The only form that occurs via autosomal-dominant inheritance exhibits adult onset and is sometimes referred to as Parry type NCL. The manifestations may include behavioral symptoms followed by seizures, ataxia, dementia, and early death. Mutations in the gene DNAJC5 that codes for the presynaptic co-chaperone cysteine string protein-α (CSPα) were recently reported in sporadic adult-onset cases and in families with dominant inheritance. The mutant CSPα protein may lead to disease progression by both loss and gain of function mechanisms. Iron chelation therapy may be considered as a possible pharmaceutical intervention based on our recent mechanism-based proposal of CSPα oligomerization via ectopic Fe-S cluster-binding, summarized in this review.
Collapse
Affiliation(s)
- Nima Naseri
- Appel Institute for Alzheimer's Disease Research, and Brain & Mind Research Institute, Weill Cornell Medicine, New York City, New York, USA
| | - Manu Sharma
- Appel Institute for Alzheimer's Disease Research, and Brain & Mind Research Institute, Weill Cornell Medicine, New York City, New York, USA
| | - Milen Velinov
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| |
Collapse
|
4
|
Gundersen CB. Cysteine string proteins. Prog Neurobiol 2020; 188:101758. [DOI: 10.1016/j.pneurobio.2020.101758] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 01/06/2020] [Accepted: 01/13/2020] [Indexed: 12/17/2022]
|
5
|
Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Delling FN, Djousse L, Elkind MSV, Ferguson JF, Fornage M, Khan SS, Kissela BM, Knutson KL, Kwan TW, Lackland DT, Lewis TT, Lichtman JH, Longenecker CT, Loop MS, Lutsey PL, Martin SS, Matsushita K, Moran AE, Mussolino ME, Perak AM, Rosamond WD, Roth GA, Sampson UKA, Satou GM, Schroeder EB, Shah SH, Shay CM, Spartano NL, Stokes A, Tirschwell DL, VanWagner LB, Tsao CW. Heart Disease and Stroke Statistics-2020 Update: A Report From the American Heart Association. Circulation 2020; 141:e139-e596. [PMID: 31992061 DOI: 10.1161/cir.0000000000000757] [Citation(s) in RCA: 4995] [Impact Index Per Article: 1248.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The American Heart Association, in conjunction with the National Institutes of Health, annually reports on the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The American Heart Association, through its Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update. The 2020 Statistical Update is the product of a full year's worth of effort by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. This year's edition includes data on the monitoring and benefits of cardiovascular health in the population, metrics to assess and monitor healthy diets, an enhanced focus on social determinants of health, a focus on the global burden of cardiovascular disease, and further evidence-based approaches to changing behaviors, implementation strategies, and implications of the American Heart Association's 2020 Impact Goals. RESULTS Each of the 26 chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policy makers, media professionals, clinicians, healthcare administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
6
|
Heliste J, Chheda H, Paatero I, Salminen TA, Akimov Y, Paavola J, Elenius K, Aittokallio T. Genetic and functional implications of an exonic TRIM55 variant in heart failure. J Mol Cell Cardiol 2019; 138:222-233. [PMID: 31866377 DOI: 10.1016/j.yjmcc.2019.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND To tackle the missing heritability of sporadic heart failure, we screened for novel heart failure-associated genetic variants in the Finnish population and functionally characterized a novel variant in vitro and in vivo. METHODS AND RESULTS Heart failure-associated variants were screened in genotyping array data of the FINRISK study, consisting of 994 cases and 20,118 controls. Based on logistic regression analysis, a potentially damaging variant in TRIM55 (rs138811034), encoding an E140K variant, was selected for validations. In HL-1 cardiomyocytes, we used CRISPR/Cas9 technology to introduce the variant in the endogenous locus, and additionally TRIM55 wildtype or E140K was overexpressed from plasmid. Functional responses were profiled using whole-genome RNA sequencing, RT-PCR and Western analyses, cell viability and cell cycle assays and cell surface area measurements. In zebrafish embryos, cardiac contractility was measured using videomicroscopy after CRISPR-mediated knockout of trim55a or plasmid overexpression of TRIM55 WT or E140K. Genes related to muscle contraction and cardiac stress were highly regulated in Trim55 E140K/- cardiomyocytes. When compared to the WT/WT cells, the variant cells demonstrated reduced viability, significant hypertrophic response to isoproterenol, p21 protein overexpression and impaired cell cycle progression. In zebrafish embryos, the deletion of trim55a or overexpression of TRIM55 E140K reduced cardiac contractility as compared to embryos with wildtype genotype or overexpression of WT TRIM55, respectively. CONCLUSIONS A previously uncharacterized TRIM55 E140K variant demonstrated a number of functional implications for cardiomyocyte functions in vitro and in vivo. These findings suggest a novel role for TRIM55 polymorphism in predisposing to heart failure.
Collapse
Affiliation(s)
- Juho Heliste
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Biomedicum 2U, Tukholmankatu 8, FI-00290 Helsinki, Finland; Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FI-20014 Turku, Finland; Turku Doctoral Programme of Molecular Medicine, University of Turku, Turku, Finland
| | - Himanshu Chheda
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Biomedicum 2U, Tukholmankatu 8, FI-00290 Helsinki, Finland
| | - Ilkka Paatero
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, FI-20520 Turku, Finland
| | - Tiina A Salminen
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6, FI-20520 Turku, Finland
| | - Yevhen Akimov
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Biomedicum 2U, Tukholmankatu 8, FI-00290 Helsinki, Finland
| | - Jere Paavola
- Unit of Cardiovascular Research, Minerva Foundation Institute for Medical Research, Biomedicum 2U, Tukholmankatu 8, FI-00290 Helsinki, Finland
| | - Klaus Elenius
- Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FI-20014 Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, FI-20520 Turku, Finland; Medicity Research Laboratories, University of Turku, Tykistökatu 6, FI-20520 Turku, Finland; Department of Oncology, Turku University Hospital, PO Box 52, FI-20521 Turku, Finland
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Biomedicum 2U, Tukholmankatu 8, FI-00290 Helsinki, Finland; Department of Mathematics and Statistics, University of Turku, Vesilinnantie 5, FI-20014 Turku, Finland.
| |
Collapse
|
7
|
Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Das SR, Delling FN, Djousse L, Elkind MSV, Ferguson JF, Fornage M, Jordan LC, Khan SS, Kissela BM, Knutson KL, Kwan TW, Lackland DT, Lewis TT, Lichtman JH, Longenecker CT, Loop MS, Lutsey PL, Martin SS, Matsushita K, Moran AE, Mussolino ME, O'Flaherty M, Pandey A, Perak AM, Rosamond WD, Roth GA, Sampson UKA, Satou GM, Schroeder EB, Shah SH, Spartano NL, Stokes A, Tirschwell DL, Tsao CW, Turakhia MP, VanWagner LB, Wilkins JT, Wong SS, Virani SS. Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation 2019; 139:e56-e528. [PMID: 30700139 DOI: 10.1161/cir.0000000000000659] [Citation(s) in RCA: 5463] [Impact Index Per Article: 1092.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Gardiner SL, Trompet S, Sabayan B, Boogaard MW, Jukema JW, Slagboom PE, Roos RAC, van der Grond J, Aziz NA. Repeat variations in polyglutamine disease-associated genes and cognitive function in old age. Neurobiol Aging 2019; 84:236.e17-236.e28. [PMID: 31522753 DOI: 10.1016/j.neurobiolaging.2019.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/03/2019] [Accepted: 08/04/2019] [Indexed: 02/03/2023]
Abstract
Although the heritability of cognitive function in old age is substantial, genome-wide association studies have had limited success in elucidating its genetic basis, leaving a considerable amount of "missing heritability." Aside from single nucleotide polymorphisms, genome-wide association studies are unable to assess other large sources of genetic variation, such as tandem repeat polymorphisms. Therefore, here, we studied the association of cytosine-adenine-guanine (CAG) repeat variations in polyglutamine disease-associated genes (PDAGs) with cognitive function in older adults. In a large cohort consisting of 5786 participants, we found that the CAG repeat number in 3 PDAGs (TBP, HTT, and AR) were significantly associated with the decline in cognitive function, which together accounted for 0.49% of the variation. Furthermore, in an magnetic resonance imaging substudy, we found that CAG repeat polymorphisms in 4 PDAGs (ATXN2, CACNA1A, ATXN7, and AR) were associated with different imaging characteristics, including brain stem, putamen, globus pallidus, thalamus, and amygdala volumes. Our findings indicate that tandem repeat polymorphisms are associated with cognitive function in older adults and highlight the importance of PDAGs in elucidating its missing heritability.
Collapse
Affiliation(s)
- Sarah L Gardiner
- Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands; Department of Human Genetics, Leiden University Medical Centre, Leiden, the Netherlands.
| | - Stella Trompet
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Behnam Sabayan
- The Ken and Ruth Davee Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Merel W Boogaard
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - P Eline Slagboom
- Department of Molecular Epidemiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Raymund A C Roos
- Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Jeroen van der Grond
- Department of Radiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - N Ahmad Aziz
- Population Health Sciences, German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department of Neurology, University of Bonn, Bonn, Germany
| |
Collapse
|
9
|
Ruiz-Iruela C, Padró-Miquel A, Pintó-Sala X, Baena-Díez N, Caixàs-Pedragós A, Güell-Miró R, Navarro-Badal R, Jusmet-Miguel X, Calmarza P, Puzo-Foncilla JL, Alía-Ramos P, Candás-Estébanez B. KIF6 gene as a pharmacogenetic marker for lipid-lowering effect in statin treatment. PLoS One 2018; 13:e0205430. [PMID: 30304062 PMCID: PMC6179259 DOI: 10.1371/journal.pone.0205430] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/25/2018] [Indexed: 01/24/2023] Open
Abstract
INTRODUCTION The therapeutic response to statins has a high interindividual variability with respect to reductions in plasma LDL-cholesterol (c-LDL) and increases in HDL cholesterol (c-HDL). Many studies suggest that there is a relationship between the rs20455 KIF6 gene variant (c.2155T> C, Trp719Arg) and a lower risk of cardiovascular disease in patients being treated with statins. AIM The aim of this study was to investigate whether or not the c.2155T> C KIF6 gene variant modulates the hypercholesteremic effects of treatment with simvastatin, atorvastatin, or rosuvastatin. MATERIALS AND METHODS This was a prospective, observational and multicenter study. Three hundred and forty-four patients who had not undergone prior lipid-lowering treatment were recruited. Simvastatin, atorvastatin or rosuvastatin were administered. Lipid profiles and multiple clinical and biochemical variables were assessed before and after treatment. RESULTS The c.2155T> C variant of the KIF6 gene was shown to influence physiological responses to treatment with simvastatin and atorvastatin. Patients who were homozygous for the c.2155T> C variant (CC genotype, ArgArg) had a 7.0% smaller reduction of LDL cholesterol levels (p = 0.015) in response to hypolipidemic treatment compared to patients with the TT (TrpTrp) or CT (TrpArg) genotype. After pharmacological treatment with rosuvastatin, patients carrying the genetic variant had an increase in c-HDL that was 21.9% lower compared to patients who did not carry the variant (p = 0.008). CONCLUSION Being a carrier of the c.2155T> C variant of the KIF6 gene negatively impacts patient responses to simvastatin, atorvastatin or rosuvastatin in terms of lipid lowering effect. Increasing the intensity of hypolipidemic therapy may be advisable for patients who are positive for the c.2155T> C variant.
Collapse
Affiliation(s)
- Cristina Ruiz-Iruela
- Clinical laboratory, IDIBELL-Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ariadna Padró-Miquel
- Clinical laboratory, IDIBELL-Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Xavier Pintó-Sala
- Cardiovascular unit, IDIBELL-Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Neus Baena-Díez
- Genetics laboratory, Corporació Sanitari Parc Tauli, Sabadell, Barcelona, Spain
| | | | - Roser Güell-Miró
- Hospitalet Clinical laboratory, Centre Atenció Primària Just Oliveras, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Rosa Navarro-Badal
- Hospitalet Clinical laboratory, Centre Atenció Primària Just Oliveras, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Xavier Jusmet-Miguel
- Family medicine, Centre Atenció Primària Just Oliveras, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Pilar Calmarza
- Clinical laboratory, Hospital Miguel Servet, Zaragoza, Spain
| | | | - Pedro Alía-Ramos
- Clinical laboratory, IDIBELL-Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Beatriz Candás-Estébanez
- Clinical laboratory, IDIBELL-Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
10
|
Repeat length variations in polyglutamine disease-associated genes affect body mass index. Int J Obes (Lond) 2018; 43:440-449. [PMID: 30120431 DOI: 10.1038/s41366-018-0161-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 05/15/2018] [Accepted: 06/15/2018] [Indexed: 11/08/2022]
Abstract
BACKGROUND The worldwide prevalence of obesity, a major risk factor for numerous debilitating chronic disorders, is increasing rapidly. Although a substantial amount of the variation in body mass index (BMI) is estimated to be heritable, the largest meta-analysis of genome-wide association studies (GWAS) to date explained only ~2.7% of the variation. To tackle this 'missing heritability' problem of obesity, here we focused on the contribution of DNA repeat length polymorphisms which are not detectable by GWAS. SUBJECTS AND METHODS We determined the cytosine-adenine-guanine (CAG) repeat length in the nine known polyglutamine disease-associated genes (ATXN1, ATXN2, ATXN3, CACNA1A, ATXN7, TBP, HTT, ATN1 and AR) in two large cohorts consisting of 12,457 individuals and analyzed their association with BMI, using generalized linear mixed-effect models. RESULTS We found a significant association between BMI and the length of CAG repeats in seven polyglutamine disease-associated genes (including ATXN1, ATXN2, ATXN3, CACNA1A, ATXN7, TBP and AR). Importantly, these repeat variations could account for 0.75% of the total BMI variation. CONCLUSIONS Our findings incriminate repeat polymorphisms as an important novel class of genetic risk factors of obesity and highlight the role of the brain in its pathophysiology.
Collapse
|
11
|
Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, Chiuve SE, Cushman M, Delling FN, Deo R, de Ferranti SD, Ferguson JF, Fornage M, Gillespie C, Isasi CR, Jiménez MC, Jordan LC, Judd SE, Lackland D, Lichtman JH, Lisabeth L, Liu S, Longenecker CT, Lutsey PL, Mackey JS, Matchar DB, Matsushita K, Mussolino ME, Nasir K, O'Flaherty M, Palaniappan LP, Pandey A, Pandey DK, Reeves MJ, Ritchey MD, Rodriguez CJ, Roth GA, Rosamond WD, Sampson UKA, Satou GM, Shah SH, Spartano NL, Tirschwell DL, Tsao CW, Voeks JH, Willey JZ, Wilkins JT, Wu JH, Alger HM, Wong SS, Muntner P. Heart Disease and Stroke Statistics-2018 Update: A Report From the American Heart Association. Circulation 2018; 137:e67-e492. [PMID: 29386200 DOI: 10.1161/cir.0000000000000558] [Citation(s) in RCA: 4566] [Impact Index Per Article: 761.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Smit RAJ, Noordam R, le Cessie S, Trompet S, Jukema JW. A critical appraisal of pharmacogenetic inference. Clin Genet 2018; 93:498-507. [PMID: 29136278 DOI: 10.1111/cge.13178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/25/2017] [Accepted: 11/09/2017] [Indexed: 01/06/2023]
Abstract
In essence, pharmacogenetic research is aimed at discovering variants of importance to gene-treatment interaction. However, epidemiological studies are rarely set up with this goal in mind. It is therefore of great importance that researchers clearly communicate which assumptions they have had to make, and which inherent limitations apply to the interpretation of their results. This review discusses considerations of, and the underlying assumptions for, utilizing different response phenotypes and study designs popular in pharmacogenetic research to infer gene-treatment interaction effects, with a special focus on those dealing with of clinical effects of drug treatment.
Collapse
Affiliation(s)
- R A J Smit
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands.,Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - R Noordam
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - S le Cessie
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.,Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, the Netherlands
| | - S Trompet
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands.,Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - J W Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
13
|
Mehdar A, Hegele RA, Kim RB, Gryn SE. Statin therapy: time for a precision medicine approach? EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2017. [DOI: 10.1080/23808993.2017.1356685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Albayda Mehdar
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Robert A Hegele
- Schulich School of Medicine and Dentistry and Robarts Research Institute, Western University, London, ON, Canada
| | - Richard B. Kim
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Steven E. Gryn
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
14
|
En route to precision medicine through the integration of biological sex into pharmacogenomics. Clin Sci (Lond) 2017; 131:329-342. [PMID: 28159880 DOI: 10.1042/cs20160379] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 10/15/2016] [Accepted: 11/07/2016] [Indexed: 12/14/2022]
Abstract
Frequently, pharmacomechanisms are not fully elucidated. Therefore, drug use is linked to an elevated interindividual diversity of effects, whether therapeutic or adverse, and the role of biological sex has as yet unrecognized and underestimated consequences. A pharmacogenomic approach could contribute towards the development of an adapted therapy for each male and female patient, considering also other fundamental features, such as age and ethnicity. This would represent a crucial step towards precision medicine and could be translated into clinical routine. In the present review, we consider recent results from pharmacogenomics and the role of sex in studies that are relevant to cardiovascular therapy. We focus on genome-wide analyses, because they have obvious advantages compared with targeted single-candidate gene studies. For instance, genome-wide approaches do not necessarily depend on prior knowledge of precise molecular mechanisms of drug action. Such studies can lead to findings that can be classified into three categories: first, effects occurring in the pharmacokinetic properties of the drug, e.g. through metabolic and transporter differences; second, a pharmacodynamic or drug target-related effect; and last diverse adverse effects. We conclude that the interaction of sex with genetic determinants of drug response has barely been tested in large, unbiased, pharmacogenomic studies. We put forward the theory that, to contribute towards the realization of precision medicine, it will be necessary to incorporate sex into pharmacogenomics.
Collapse
|
15
|
Arrigoni E, Del Re M, Fidilio L, Fogli S, Danesi R, Di Paolo A. Pharmacogenetic Foundations of Therapeutic Efficacy and Adverse Events of Statins. Int J Mol Sci 2017; 18:ijms18010104. [PMID: 28067828 PMCID: PMC5297738 DOI: 10.3390/ijms18010104] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/29/2016] [Accepted: 12/30/2016] [Indexed: 12/11/2022] Open
Abstract
Background: In the era of precision medicine, more attention is paid to the search for predictive markers of treatment efficacy and tolerability. Statins are one of the classes of drugs that could benefit from this approach because of their wide use and their incidence of adverse events. Methods: Literature from PubMed databases and bibliography from retrieved publications have been analyzed according to terms such as statins, pharmacogenetics, epigenetics, toxicity and drug–drug interaction, among others. The search was performed until 1 October 2016 for articles published in English language. Results: Several technical and methodological approaches have been adopted, including candidate gene and next generation sequencing (NGS) analyses, the latter being more robust and reliable. Among genes identified as possible predictive factors associated with statins toxicity, cytochrome P450 isoforms, transmembrane transporters and mitochondrial enzymes are the best characterized. Finally, the solute carrier organic anion transporter family member 1B1 (SLCO1B1) transporter seems to be the best target for future studies. Moreover, drug–drug interactions need to be considered for the best approach to personalized treatment. Conclusions: Pharmacogenetics of statins includes several possible genes and their polymorphisms, but muscular toxicities seem better related to SLCO1B1 variant alleles. Their analysis in the general population of patients taking statins could improve treatment adherence and efficacy; however, the cost–efficacy ratio should be carefully evaluated.
Collapse
Affiliation(s)
- Elena Arrigoni
- Clinical Pharmacology and Pharmacogenetic Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| | - Marzia Del Re
- Clinical Pharmacology and Pharmacogenetic Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| | - Leonardo Fidilio
- Clinical Pharmacology and Pharmacogenetic Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| | - Stefano Fogli
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy.
| | - Romano Danesi
- Clinical Pharmacology and Pharmacogenetic Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| | - Antonello Di Paolo
- Clinical Pharmacology and Pharmacogenetic Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| |
Collapse
|
16
|
de Vries MA, Trompet S, Mooijaart SP, Smit RAJ, Böhringer S, Castro Cabezas M, Jukema JW. Complement receptor 1 gene polymorphisms are associated with cardiovascular risk. Atherosclerosis 2016; 257:16-21. [PMID: 28033544 PMCID: PMC7094315 DOI: 10.1016/j.atherosclerosis.2016.12.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/27/2016] [Accepted: 12/14/2016] [Indexed: 11/30/2022]
Abstract
Background and aims Inflammation plays a key role in atherosclerosis. The complement system is involved in atherogenesis, and the complement receptor 1 (CR1) plays a role facilitating the clearance of immune complexes from the circulation. Limited evidence suggests that CR1 may be involved in cardiovascular disease. We investigated the relationship between CR1 gene polymorphisms and cardiovascular risk. Methods Single nucleotide polymorphisms (SNPs) within the CR1 region (n = 73) on chromosome 1 were assessed in 5244 participants in PROSPER (PROspective Study of Pravastatin in the Elderly at Risk) (mean age 75.3 years), who had been randomized to pravastatin 40 mg/day or placebo and followed for a mean of 3.2 years. Logistic regression, adjusted for gender, age, country and use of pravastatin, was used to assess the association between the SNPs and cardiovascular disease. Results All 73 SNPs within the genomic region of the CR1 gene on chromosome 1 were extracted. In this region, strong LD was present leading to the occurrence of two haploblocks. Twelve of the 73 investigated CR1 SNPs were significantly associated with the risk of fatal or nonfatal myocardial infarction (all p < 0.05). Moreover, most of the associated SNPs were also associated with levels of serum C-reactive protein (CRP). The global p-value for the tail strength method to control for multiple testing was 0.0489, implying that the null hypothesis of no associated SNPs can be rejected. Conclusions These data indicate that genetic variation within the CR1 gene is associated with inflammation and the risk of incident coronary artery disease. The complement receptor 1 (CR1) may be involved in atherosclerosis. 12 SNPs within the CR1 region were associated with myocardial infarction. 7 SNPs were also associated with levels of C-reactive protein. These results imply that CR1 may be involved in atherogenesis.
Collapse
Affiliation(s)
- Marijke A de Vries
- Department of Internal Medicine, Center for Diabetes and Vascular Medicine, Franciscus Gasthuis, Rotterdam, The Netherlands.
| | - Stella Trompet
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands; Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Simon P Mooijaart
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands; Institute of Evidence Based Medicine at Old Age, Leiden, The Netherlands
| | - Roelof A J Smit
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands; Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Stefan Böhringer
- Department of Medical Biostatistics, Leiden University Medical Center, Leiden, The Netherlands
| | - Manuel Castro Cabezas
- Department of Internal Medicine, Center for Diabetes and Vascular Medicine, Franciscus Gasthuis, Rotterdam, The Netherlands
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
17
|
Abstract
Lipid-lowering medications, particularly statins, have been a popular target for pharmacogenetic studies. A handful of genes have shown promise for predicting response to therapy from the perspective of lipid lowering, as well as myopathy. A number of genes have been implicated and have biological plausibility based on their involvement with the pharmacokinetics or pharmacodynamics of statins or other lipid-lowering medications. The level of confidence and replication of these findings varies, although several associations are likely true. Novel classes of lipid-lowering therapy have opened up new possibilities in the treatment of severe inherited forms of dyslipidemia, making the identification of such mutations an important pharmacogenetic predictor of failure of standard therapy, with potential response to novel therapy. Advances in next-generation sequencing technology bring the application of pharmacogenetics even closer to routine clinical practice.
Collapse
|
18
|
Leusink M, Onland-Moret NC, de Bakker PIW, de Boer A, Maitland-van der Zee AH. Seventeen years of statin pharmacogenetics: a systematic review. Pharmacogenomics 2015; 17:163-80. [PMID: 26670324 DOI: 10.2217/pgs.15.158] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AIM We evaluated the evidence of pharmacogenetic associations with statins in a systematic review. METHODS Two separate outcomes were considered of interest: modification of low-density lipoprotein cholesterol (LDL-C) response and modification of risk for cardiovascular events. RESULTS In candidate gene studies, 141 loci were claimed to be associated with LDL-C response. Only 5% of these associations were positively replicated. In addition, six genome-wide association studies of LDL-C response identified common SNPs in APOE, LPA, SLCO1B1, SORT1 and ABCG2 at genome-wide significance. None of the investigated SNPs consistently affected the risk reduction for cardiovascular events. CONCLUSION Only five genetic loci were consistently associated with LDL-C response. However, as effect sizes are modest, there is no evidence for the value of genetic testing in clinical practice.
Collapse
Affiliation(s)
- Maarten Leusink
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands.,Julius Center for Health Sciences & Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - N Charlotte Onland-Moret
- Julius Center for Health Sciences & Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paul I W de Bakker
- Julius Center for Health Sciences & Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Medical Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anthonius de Boer
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Anke H Maitland-van der Zee
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
19
|
Mega JL, Stitziel NO, Smith JG, Chasman DI, Caulfield M, Devlin JJ, Nordio F, Hyde C, Cannon CP, Sacks F, Poulter N, Sever P, Ridker PM, Braunwald E, Melander O, Kathiresan S, Sabatine MS. Genetic risk, coronary heart disease events, and the clinical benefit of statin therapy: an analysis of primary and secondary prevention trials. Lancet 2015; 385:2264-2271. [PMID: 25748612 PMCID: PMC4608367 DOI: 10.1016/s0140-6736(14)61730-x] [Citation(s) in RCA: 475] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Genetic variants have been associated with the risk of coronary heart disease. In this study, we tested whether or not a composite of these variants could ascertain the risk of both incident and recurrent coronary heart disease events and identify those individuals who derive greater clinical benefit from statin therapy. METHODS A community-based cohort study (the Malmo Diet and Cancer Study) and four randomised controlled trials of both primary prevention (JUPITER and ASCOT) and secondary prevention (CARE and PROVE IT-TIMI 22) with statin therapy, comprising a total of 48,421 individuals and 3477 events, were included in these analyses. We studied the association of a genetic risk score based on 27 genetic variants with incident or recurrent coronary heart disease, adjusting for traditional clinical risk factors. We then investigated the relative and absolute risk reductions in coronary heart disease events with statin therapy stratified by genetic risk. We combined data from the different studies using a meta-analysis. FINDINGS When individuals were divided into low (quintile 1), intermediate (quintiles 2-4), and high (quintile 5) genetic risk categories, a significant gradient in risk for incident or recurrent coronary heart disease was shown. Compared with the low genetic risk category, the multivariable-adjusted hazard ratio for coronary heart disease for the intermediate genetic risk category was 1·34 (95% CI 1·22-1·47, p<0·0001) and that for the high genetic risk category was 1·72 (1·55-1·92, p<0·0001). In terms of the benefit of statin therapy in the four randomised trials, we noted a significant gradient (p=0·0277) of increasing relative risk reductions across the low (13%), intermediate (29%), and high (48%) genetic risk categories. Similarly, we noted greater absolute risk reductions in those individuals in higher genetic risk categories (p=0·0101), resulting in a roughly threefold decrease in the number needed to treat to prevent one coronary heart disease event in the primary prevention trials. Specifically, in the primary prevention trials, the number needed to treat to prevent one such event in 10 years was 66 in people at low genetic risk, 42 in those at intermediate genetic risk, and 25 in those at high genetic risk in JUPITER, and 57, 47, and 20, respectively, in ASCOT. INTERPRETATION A genetic risk score identified individuals at increased risk for both incident and recurrent coronary heart disease events. People with the highest burden of genetic risk derived the largest relative and absolute clinical benefit from statin therapy. FUNDING National Institutes of Health.
Collapse
Affiliation(s)
- J L Mega
- TIMI Study Group, Cardiovascular Division, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - N O Stitziel
- Cardiovascular Division, Department of Medicine and Division of Statistical Genomics, Washington University School of Medicine, Saint Louis, MO
| | - J G Smith
- Department of Cardiology, Clinical Sciences, Lund University and Skåne University Hospital, Lund, Sweden
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT; Center for Human Genetic Research and Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - D I Chasman
- Center for Cardiovascular Disease Prevention, Divisions of Preventive Medicine and Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - M Caulfield
- William Harvey Research Institute, Queen Mary University of London and Barts NIHR CV Biomedical Research Institute, London, United Kingdom
| | | | - F Nordio
- TIMI Study Group, Cardiovascular Division, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - C Hyde
- Pfizer Research Laboratory, Groton, CT
| | - C P Cannon
- TIMI Study Group, Cardiovascular Division, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - F Sacks
- Department of Nutrition, Harvard School of Public Health and Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA
| | - N Poulter
- International Centre for Circulatory Health, National Heart & Lung Institute, Imperial College London, United Kingdom
| | - P Sever
- International Centre for Circulatory Health, National Heart & Lung Institute, Imperial College London, United Kingdom
| | - P M Ridker
- Center for Cardiovascular Disease Prevention, Divisions of Preventive Medicine and Cardiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - E Braunwald
- TIMI Study Group, Cardiovascular Division, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - O Melander
- Department of Clinical Sciences, Faculty of Medicine, Lund University and Department of Internal Medicine, Skåne University Hospital, Malmö, Sweden
| | - S Kathiresan
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT; Center for Human Genetic Research and Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - M S Sabatine
- TIMI Study Group, Cardiovascular Division, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
20
|
Shahabi P, Dubé MP. Cardiovascular pharmacogenomics; state of current knowledge and implementation in practice. Int J Cardiol 2015; 184:772-795. [DOI: 10.1016/j.ijcard.2015.02.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 02/17/2015] [Accepted: 02/21/2015] [Indexed: 02/07/2023]
|
21
|
Tintle NL, Pottala JV, Lacey S, Ramachandran V, Westra J, Rogers A, Clark J, Olthoff B, Larson M, Harris W, Shearer GC. A genome-wide association study of saturated, mono- and polyunsaturated red blood cell fatty acids in the Framingham Heart Offspring Study. Prostaglandins Leukot Essent Fatty Acids 2015; 94:65-72. [PMID: 25500335 PMCID: PMC4339483 DOI: 10.1016/j.plefa.2014.11.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 11/14/2014] [Accepted: 11/17/2014] [Indexed: 01/06/2023]
Abstract
Most genome-wide association studies have explored relationships between genetic variants and plasma phospholipid fatty acid proportions, but few have examined apparent genetic influences on the membrane fatty acid profile of red blood cells (RBC). Using RBC fatty acid data from the Framingham Offspring Study, we analyzed over 2.5 million single nucleotide polymorphisms (SNPs) for association with 14 RBC fatty acids identifying 191 different SNPs associated with at least 1 fatty acid. Significant associations (p<1×10(-8)) were located within five distinct 1MB regions. Of particular interest were novel associations between (1) arachidonic acid and PCOLCE2 (regulates apoA-I maturation and modulates apoA-I levels), and (2) oleic and linoleic acid and LPCAT3 (mediates the transfer of fatty acids between glycerolipids). We also replicated previously identified strong associations between SNPs in the FADS (chromosome 11) and ELOVL (chromosome 6) regions. Multiple SNPs explained 8-14% of the variation in 3 high abundance (>11%) fatty acids, but only 1-3% in 4 low abundance (<3%) fatty acids, with the notable exception of dihomo-gamma linolenic acid with 53% of variance explained by SNPs. Further studies are needed to determine the extent to which variations in these genes influence tissue fatty acid content and pathways modulated by fatty acids.
Collapse
Affiliation(s)
- N L Tintle
- Department of Mathematics, Statistics and Computer Science, Dordt College, Sioux Center, IA 51250, USA.
| | - J V Pottala
- Health Diagnostic Laboratory, Richmond, VA, USA; Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| | - S Lacey
- Department of Biostatistics, Boston University School of Public Health, 801 Massachusetts Ave., Boston, MA, USA
| | - V Ramachandran
- Framingham Heart Study, 73 Mt. Wayte Ave., Framingham, MA 01702, USA; Boston University School of Medicine, 72 E. Concord St., Boston, MA 02118, USA
| | - J Westra
- Department of Mathematics, Statistics and Computer Science, Dordt College, Sioux Center, IA 51250, USA
| | - A Rogers
- Department of Mathematics, Statistics and Computer Science, Dordt College, Sioux Center, IA 51250, USA
| | - J Clark
- Department of Mathematics, Statistics and Computer Science, Dordt College, Sioux Center, IA 51250, USA
| | - B Olthoff
- Department of Mathematics, Statistics and Computer Science, Dordt College, Sioux Center, IA 51250, USA
| | - M Larson
- Department of Biostatistics, Boston University School of Public Health, 801 Massachusetts Ave., Boston, MA, USA; Boston University School of Medicine, 72 E. Concord St., Boston, MA 02118, USA; Department of Mathematics and Statistics, Boston University, 111 Cummington St., Boston, MA, USA
| | - W Harris
- Health Diagnostic Laboratory, Richmond, VA, USA; Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA; OmegaQuant, Sioux Falls, SD, USA
| | - G C Shearer
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
22
|
Peprah E, Xu H, Tekola-Ayele F, Royal CD. Genome-wide association studies in Africans and African Americans: expanding the framework of the genomics of human traits and disease. Public Health Genomics 2014; 18:40-51. [PMID: 25427668 DOI: 10.1159/000367962] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 08/29/2014] [Indexed: 01/11/2023] Open
Abstract
Genomic research is one of the tools for elucidating the pathogenesis of diseases of global health relevance and paving the research dimension to clinical and public health translation. Recent advances in genomic research and technologies have increased our understanding of human diseases, genes associated with these disorders, and the relevant mechanisms. Genome-wide association studies (GWAS) have proliferated since the first studies were published several years ago and have become an important tool in helping researchers comprehend human variation and the role genetic variants play in disease. However, the need to expand the diversity of populations in GWAS has become increasingly apparent as new knowledge is gained about genetic variation. Inclusion of diverse populations in genomic studies is critical to a more complete understanding of human variation and elucidation of the underpinnings of complex diseases. In this review, we summarize the available data on GWAS in recent African ancestry populations within the western hemisphere (i.e. African Americans and peoples of the Caribbean) and continental African populations. Furthermore, we highlight ways in which genomic studies in populations of recent African ancestry have led to advances in the areas of malaria, HIV, prostate cancer, and other diseases. Finally, we discuss the advantages of conducting GWAS in recent African ancestry populations in the context of addressing existing and emerging global health conditions.
Collapse
|
23
|
Wang H, Blumberg JB, Chen CYO, Choi SW, Corcoran MP, Harris SS, Jacques PF, Kristo AS, Lai CQ, Lamon-Fava S, Matthan NR, McKay DL, Meydani M, Parnell LD, Prokopy MP, Scott TM, Lichtenstein AH. Dietary modulators of statin efficacy in cardiovascular disease and cognition. Mol Aspects Med 2014; 38:1-53. [PMID: 24813475 DOI: 10.1016/j.mam.2014.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/14/2014] [Accepted: 04/14/2014] [Indexed: 12/21/2022]
Abstract
Cardiovascular disease remains the leading cause of morbidity and mortality in the United States and other developed countries, and is fast growing in developing countries, particularly as life expectancy in all parts of the world increases. Current recommendations for the prevention of cardiovascular disease issued jointly from the American Academy of Cardiology and American Heart Association emphasize that lifestyle modification should be incorporated into any treatment plan, including those on statin drugs. However, there is a dearth of data on the interaction between diet and statins with respect to additive, complementary or antagonistic effects. This review collates the available data on the interaction of statins and dietary patterns, cognition, genetics and individual nutrients, including vitamin D, niacin, omega-3 fatty acids, fiber, phytochemicals (polyphenols and stanols) and alcohol. Of note, although the available data is summarized, the scope is limited, conflicting and disparate. In some cases it is likely there is unrecognized synergism. Virtually no data are available describing the interactions of statins with dietary components or dietary pattern in subgroups of the population, particularly those who may benefit most were positive effects identified. Hence, it is virtually impossible to draw any firm conclusions at this time. Nevertheless, this area is important because were the effects of statins and diet additive or synergistic harnessing the effect could potentially lead to the use of a lower intensity statin or dose.
Collapse
Affiliation(s)
- Huifen Wang
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Jeffrey B Blumberg
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - C-Y Oliver Chen
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Sang-Woon Choi
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA.
| | - Michael P Corcoran
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Susan S Harris
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Paul F Jacques
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Aleksandra S Kristo
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Chao-Qiang Lai
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Stefania Lamon-Fava
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Nirupa R Matthan
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Diane L McKay
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Mohsen Meydani
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Laurence D Parnell
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Max P Prokopy
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Tammy M Scott
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Alice H Lichtenstein
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| |
Collapse
|
24
|
Postmus I, Johnson PCD, Trompet S, de Craen AJM, Slagboom PE, Devlin JJ, Shiffman D, Sacks FM, Kearney PM, Stott DJ, Buckley BM, Sattar N, Ford I, Westendorp RGJ, Jukema JW. In search for genetic determinants of clinically meaningful differential cardiovascular event reduction by pravastatin in the PHArmacogenetic study of Statins in the Elderly at risk (PHASE)/PROSPER study. Atherosclerosis 2014; 235:58-64. [PMID: 24816038 DOI: 10.1016/j.atherosclerosis.2014.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 02/12/2014] [Accepted: 04/07/2014] [Indexed: 12/26/2022]
Abstract
BACKGROUND Statin therapy is widely used in the prevention and treatment of cardiovascular events and is associated with significant risk reductions. However, there is considerable variation in response to statin therapy both in terms of LDL cholesterol reduction and clinical outcomes. It has been hypothesized that genetic variation contributes importantly to this individual drug response. METHODS AND RESULTS We investigated the interaction between genetic variants and pravastatin or placebo therapy on the incidence of cardiovascular events by performing a genome-wide association study in the participants of the PROspective Study of Pravastatin in the Elderly at Risk for vascular disease--PHArmacogenetic study of Statins in the Elderly at risk (PROSPER/PHASE) study (n = 5244). We did not observe genome-wide significant associations with a clinically meaningful differential cardiovascular event reduction by pravastatin therapy. In addition, SNPs with p-values lower than 1 × 10(-4) were assessed for replication in a case-only analysis within two randomized placebo controlled pravastatin trials, CARE (n = 711) and WOSCOPS (n = 522). rs7102569, on chromosome 11 near the ODZ4 gene, was replicated in the CARE study (p = 0.008), however the direction of effect was opposite. This SNP was not associated in WOSCOPS. In addition, none of the SNPs replicated significantly after correcting for multiple testing. CONCLUSIONS We could not identify genetic variation that was significantly associated at genome-wide level with a clinically meaningful differential event reduction by pravastatin treatment in a large prospective study. We therefore assume that in daily practice the use of genetic characteristics to personalize pravastatin treatment to improve prevention of cardiovascular disease will be limited.
Collapse
Affiliation(s)
- Iris Postmus
- Department of Gerontology and Geriatrics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands; Netherlands Consortium for Healthy Ageing, PO Box 9600, 2300 RC Leiden, The Netherlands.
| | - Paul C D Johnson
- Robertson Center for Biostatistics, University of Glasgow, United Kingdom.
| | - Stella Trompet
- Department of Gerontology and Geriatrics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands; Netherlands Consortium for Healthy Ageing, PO Box 9600, 2300 RC Leiden, The Netherlands; Department of Cardiology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands.
| | - Anton J M de Craen
- Department of Gerontology and Geriatrics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands; Netherlands Consortium for Healthy Ageing, PO Box 9600, 2300 RC Leiden, The Netherlands.
| | - P Eline Slagboom
- Netherlands Consortium for Healthy Ageing, PO Box 9600, 2300 RC Leiden, The Netherlands; Department of Molecular Epidemiology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands.
| | | | | | - Frank M Sacks
- Department of Nutrition, Harvard School of Public Health, Boston, MA, United States; Channing Division of Network Medicine, Brigham & Women's Hospital, Boston, MA, United States.
| | - Patricia M Kearney
- Department of Epidemiology and Public Health, University College Cork, Ireland.
| | - David J Stott
- Institute of Cardiovascular and Medical Sciences, Faculty of Medicine, University of Glasgow, United Kingdom.
| | - Brendan M Buckley
- Department of Pharmacology and Therapeutics, University College Cork, Ireland.
| | - Naveed Sattar
- BHF Glasgow Cardiovascular Research Centre, Faculty of Medicine, Glasgow, United Kingdom.
| | - Ian Ford
- Robertson Center for Biostatistics, University of Glasgow, United Kingdom.
| | - Rudi G J Westendorp
- Department of Gerontology and Geriatrics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands; Netherlands Consortium for Healthy Ageing, PO Box 9600, 2300 RC Leiden, The Netherlands; Leyden Academy of Vitality and Ageing, Leiden, The Netherlands.
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands; Durrer Center for Cardiogenetic Research, Amsterdam, The Netherlands; Interuniversity Cardiology Institute of the Netherlands, Utrecht, The Netherlands.
| |
Collapse
|
25
|
Pharmacogenomics, lipid disorders, and treatment options. Clin Pharmacol Ther 2014; 96:36-47. [PMID: 24722394 DOI: 10.1038/clpt.2014.82] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 04/07/2014] [Indexed: 01/14/2023]
Abstract
Statins form the backbone of lipid-lowering therapy in the prevention of cardiovascular disease. Numerous studies have evaluated the effect of genomics on the clinical efficacy and adverse effects of statins. Several gene variants that can be linked to either the pharmacokinetics or pharmacodynamics of statins have been identified as potentially important, although there are some discrepant findings among studies. Effect sizes are modest for lipid-lowering efficacy and perhaps somewhat larger for risk of myopathy, although results are inconsistent. Pharmacogenomics of nonstatin lipid-lowering agents have not been evaluated to the same extent, given their relatively limited use, although there are some promising candidate genes for further study. Finally, with several new classes of lipid-lowering therapies soon becoming available, there may be a potential application for pharmacogenomics to identify patients ideally suited to receive-or those who should avoid-specific medications.
Collapse
|
26
|
Ioannidis JPA. To replicate or not to replicate: the case of pharmacogenetic studies: Have pharmacogenomics failed, or do they just need larger-scale evidence and more replication? ACTA ACUST UNITED AC 2014; 6:413-8; discussion 418. [PMID: 23963161 DOI: 10.1161/circgenetics.113.000106] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- John P A Ioannidis
- Stanford Prevention Research Center, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
27
|
Postmus I, Trompet S, Wouter Jukema J. Statins work around the world. Curr Med Res Opin 2013; 29:747-9. [PMID: 23614629 DOI: 10.1185/03007995.2013.799392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Abstract
Statins are the most widely used group of lipid-lowering drugs and they have been shown to be effective in the prevention of cardiovascular disease, primarily by reducing plasma low-density lipoprotein cholesterol concentrations and possibly through other pleiotropic effects. However, there are large variations in lipid responses to statins and some patients have intolerable muscle adverse drug reactions, which may in part be related to genetic factors. In the last decade, pharmacogenetic studies on statins ranging from the candidate gene approach to the more recent genome-wide association studies have provided evidence that genetic variations play an important role in determining statin responses. This review summarizes the current understanding on the pharmacogenomics of statins and other lipid-lowering drugs in current use.
Collapse
Affiliation(s)
- Miao Hu
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR
| | - Brian Tomlinson
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR.
| |
Collapse
|
29
|
Johnson JA, Cavallari LH. Pharmacogenetics and cardiovascular disease--implications for personalized medicine. Pharmacol Rev 2013; 65:987-1009. [PMID: 23686351 DOI: 10.1124/pr.112.007252] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The past decade has seen tremendous advances in our understanding of the genetic factors influencing response to a variety of drugs, including those targeted at treatment of cardiovascular diseases. In the case of clopidogrel, warfarin, and statins, the literature has become sufficiently strong that guidelines are now available describing the use of genetic information to guide treatment with these therapies, and some health centers are using this information in the care of their patients. There are many challenges in moving from research data to translation to practice; we discuss some of these barriers and the approaches some health systems are taking to overcome them. The body of literature that has led to the clinical implementation of CYP2C19 genotyping for clopidogrel, VKORC1, CYP2C9; and CYP4F2 for warfarin; and SLCO1B1 for statins is comprehensively described. We also provide clarity for other genes that have been extensively studied relative to these drugs, but for which the data are conflicting. Finally, we comment briefly on pharmacogenetics of other cardiovascular drugs and highlight β-blockers as the drug class with strong data that has not yet seen clinical implementation. It is anticipated that genetic information will increasingly be available on patients, and it is important to identify those examples where the evidence is sufficiently robust and predictive to use genetic information to guide clinical decisions. The review herein provides several examples of the accumulation of evidence and eventual clinical translation in cardiovascular pharmacogenetics.
Collapse
Affiliation(s)
- Julie A Johnson
- Center for Pharmacogenomics, Department of Pharmacotherapy and Translational Research, University of Florida, Box 100486, Gainesville, FL 32610-0486, USA.
| | | |
Collapse
|