1
|
Newell ME, Aravindan A, Babbrah A, Halden RU. Epigenetic Biomarkers Driven by Environmental Toxins Associated with Alzheimer's Disease, Parkinson's Disease, and Amyotrophic Lateral Sclerosis in the United States: A Systematic Review. TOXICS 2025; 13:114. [PMID: 39997929 PMCID: PMC11860158 DOI: 10.3390/toxics13020114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/18/2025] [Accepted: 01/28/2025] [Indexed: 02/26/2025]
Abstract
Environmental toxins and epigenetic changes have been linked to neurodegenerative diseases, including Alzheimer's Disease (AD), Parkinson's Disease (PD), and amyotrophic lateral sclerosis (ALS). This paper aimed to (i) identify environmental toxins associated with AD, PD, and ALS, (ii) locate potential industrial sources of toxins in the United States (U.S.), and (iii) assess epigenetic changes driven by exposure to toxins reported by patients. Environmental factors and epigenetic biomarkers of neurodegeneration were compiled from 69 studies in the literature using Preferred Reporting Items for Systematic Reviews and Meta Analyses (PRISMA) and geographic information system approaches. Some 127 environmental toxins have been associated or putatively associated with AD, PD, or ALS, with four toxic metals (As, Cd, Mn, and Hg) common to all three of these neurodegenerative diseases. Environmental toxins associated with epigenetic changes (e.g., DNA methylation) in patients include air pollutants, metals, and organic chemicals (e.g., pesticides, mycotoxins, and cyanotoxins). Geographic analysis showed that study locations (e.g., U.S., Europe, and East Asia) were selected by researchers based on convenience of access rather than exposure risk and disease prevalence. We conclude that several toxins and epigenetic markers shared among neurodegenerative diseases could serve as attractive future targets guiding environmental quality improvements and aiding in early disease detection.
Collapse
Affiliation(s)
- Melanie Engstrom Newell
- Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- Biodesign Center for Environmental Health Engineering, Tempe, AZ 85287, USA
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, USA
| | - Anumitha Aravindan
- Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- Biodesign Center for Environmental Health Engineering, Tempe, AZ 85287, USA
- Barrett, The Honors College, Arizona State University, Tempe, AZ 85287, USA
| | - Ayesha Babbrah
- Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- Biodesign Center for Environmental Health Engineering, Tempe, AZ 85287, USA
- Barrett, The Honors College, Arizona State University, Tempe, AZ 85287, USA
| | - Rolf U. Halden
- Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- Biodesign Center for Environmental Health Engineering, Tempe, AZ 85287, USA
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, USA
- Barrett, The Honors College, Arizona State University, Tempe, AZ 85287, USA
- School of Sustainable Engineering and The Built Environment, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
2
|
Hanske A, Nazaré M, Grether U. Chemical Probes for Investigating the Endocannabinoid System. Curr Top Behav Neurosci 2025. [PMID: 39747798 DOI: 10.1007/7854_2024_563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Cannabis sativa has been used therapeutically since early civilizations, with key cannabinoids Δ9-tetrahydrocannabinol (THC) 3.1 and cannabidiol characterized in the 1960s, leading to the discovery of cannabinoid receptors type 1 (CB1R) and type 2 (CB2R) and the endocannabinoid system (ECS) in the 1990s. The ECS, involving endogenous ligands like 2-arachidonoylglycerol (2-AG) 1.1, anandamide (N-arachidonoylethanolamine (AEA)) 1.2, and various proteins, regulates vital processes such as sleep, appetite, and memory, and holds significant therapeutic potential, especially for neurological disorders. Small molecule-derived pharmacological tools, or chemical probes, target key components of the ECS and are crucial for target validation, mechanistic studies, pathway elucidation, phenotypic screening, and drug discovery. These probes selectively interact with specific proteins or pathways, enabling researchers to modulate target activity and observe biological effects. When they carry an additional reporter group, they are referred to as labeled chemical probes. Developed through medicinal chemistry, structural biology, and high-throughput screening, effective chemical probes must be selective, potent, and depending on their purpose meet additional criteria such as cell permeability and metabolic stability.This chapter describes high-quality labeled and unlabeled chemical probes targeting ECS constituents that have been successfully applied for various research purposes. CB1R and CB2R, class A G protein-coupled receptors, are activated by 2-AG 1.1, AEA 1.2, and THC 3.1, with numerous ligands developed for these receptors. Imaging techniques like single-photon emission computed tomography, positron emission tomography, and fluorescently labeled CB1R and CB2R probes have enhanced CB receptor studies. CB2R activation generally results in immunosuppressive effects, limiting tissue injury. AEA 1.2 is mainly degraded by fatty acid amide hydrolase (FAAH) or N-acylethanolamine acid amidase (NAAA) into ethanolamine and arachidonic acid (AA) 1.3. FAAH inhibitors increase endogenous fatty acid amides, providing analgesic effects without adverse effects. NAAA inhibitors reduce inflammation and pain in animal models. Diacylglycerol lipase (DAGL) is essential for 2-AG 1.1 biosynthesis, while monoacylglycerol lipase (MAGL) degrades 2-AG 1.1 into AA 1.3, thus regulating cannabinoid signaling. Multiple inhibitors targeting FAAH and MAGL have been generated, though NAAA and DAGL probe development lags behind. Similarly, advancements in inhibitors targeting endocannabinoid (eCB) cellular uptake or trafficking proteins like fatty acid-binding proteins have been slower. The endocannabinoidome (eCBome) includes the ECS and related molecules and receptors, offering therapeutic opportunities from non-THC cannabinoids and eCBome mediators. Ongoing research aims to refine chemical tools for ECS and eCBome study, addressing unmet medical needs in central nervous system disorders and beyond.
Collapse
Affiliation(s)
- Annaleah Hanske
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP, Berlin, Germany
| | - Marc Nazaré
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP, Berlin, Germany
| | - Uwe Grether
- Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| |
Collapse
|
3
|
Kumar U. Cannabinoids: Role in Neurological Diseases and Psychiatric Disorders. Int J Mol Sci 2024; 26:152. [PMID: 39796008 PMCID: PMC11720483 DOI: 10.3390/ijms26010152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
An impact of legalization and decriminalization of marijuana is the gradual increase in the use of cannabis for recreational purposes, which poses a potential threat to society and healthcare systems worldwide. However, the discovery of receptor subtypes, endogenous endocannabinoids, and enzymes involved in synthesis and degradation, as well as pharmacological characterization of receptors, has led to exploration of the use of cannabis in multiple peripheral and central pathological conditions. The role of cannabis in the modulation of crucial events involving perturbed physiological functions and disease progression, including apoptosis, inflammation, oxidative stress, perturbed mitochondrial function, and the impaired immune system, indicates medicinal values. These events are involved in most neurological diseases and prompt the gradual progression of the disease. At present, several synthetic agonists and antagonists, in addition to more than 70 phytocannabinoids, are available with distinct efficacy as a therapeutic alternative in different pathological conditions. The present review aims to describe the use of cannabis in neurological diseases and psychiatric disorders.
Collapse
Affiliation(s)
- Ujendra Kumar
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
4
|
Liu Y, Xing H, Zhang Y, Song Y. The Endocannabinoid System in Alzheimer's Disease: A Network Meta-Analysis. J Neurosci Res 2024; 102:e25380. [PMID: 39245959 DOI: 10.1002/jnr.25380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 08/03/2024] [Accepted: 08/17/2024] [Indexed: 09/10/2024]
Abstract
The findings concerning the association between endocannabinoid system (ECS) and Alzheimer's disease (AD) exhibited inconsistencies when examining the expression levels of endocannabinoids. This study aimed to provide a comprehensive summary of the studies regarding alterations of the ECS in AD. Six databases were thoroughly searched for literature to select relevant studies investigating the ECS in AD, including changes in cannabinoid receptors (CB1R and CB2R), endocannabinoids (2-AG and AEA), and their associated enzymes (FAAH and MAGL). Traditional meta-analysis evaluated the expression levels of the ECS in AD, and the results showed no significant differences in ECS components between healthy controls and AD patients. However, subgroup analysis revealed significantly lower expression levels of CB1R in AD than in controls, particularly in studies using western blot (SMD = -0.88, p < 0.01) and in studies testing CB1R of frontal cortex (SMD = -1.09, p < 0.01). For studies using HPLC, the subgroup analysis indicated significantly higher 2-AG levels in AD than in controls (SMD = 0.46, p = 0.02). Network meta-analysis examined the rank of ECS alterations in AD compared to controls, and the findings revealed that 2-AG and MAGL exhibited the largest increase and CB1R showed the largest decrease relative to the control group. Based on the findings of traditional meta-analysis and network meta-analysis, we proposed that AD patients may present decreased expression levels of CB1R and increased expression levels of 2-AG and its degrading enzyme MAGL. Our results may contribute to the growing body of research supporting the therapeutic potential of ECS modulation in the management of AD.
Collapse
Affiliation(s)
- Yu Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hang Xing
- Department of Surgery, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Yan Zhang
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Song
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Bellia F, Girella A, Annunzi E, Benatti B, Vismara M, Priori A, Festucci F, Fanti F, Compagnone D, Adriani W, Dell'Osso B, D'Addario C. Selective alterations of endocannabinoid system genes expression in obsessive compulsive disorder. Transl Psychiatry 2024; 14:118. [PMID: 38409080 PMCID: PMC10897168 DOI: 10.1038/s41398-024-02829-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/28/2024] Open
Abstract
Obsessive Compulsive Disorder (OCD) is listed as one of the top 10 most disabling neuropsychiatric conditions in the world. The neurobiology of OCD has not been completely understood and efforts are needed in order to develop new treatments. Beside the classical neurotransmitter systems and signalling pathways implicated in OCD, the possible involvement of the endocannabinoid system (ECS) has emerged in pathophysiology of OCD. We report here selective downregulation of the genes coding for enzymes allowing the synthesis of the endocannabinoids. We found reduced DAGLα and NAPE-PLD in blood samples of individuals with OCD (when compared to healthy controls) as well as in the amygdala complex and prefrontal cortex of dopamine transporter (DAT) heterozygous rats, manifesting compulsive behaviours. Also mRNA levels of the genes coding for cannabinoid receptors type 1 and type 2 resulted downregulated, respectively in the rat amygdala and in human blood. Moreover, NAPE-PLD changes in gene expression resulted to be associated with an increase in DNA methylation at gene promoter, and the modulation of this gene in OCD appears to be correlated to the progression of the disease. Finally, the alterations observed in ECS genes expression appears to be correlated with the modulation in oxytocin receptor gene expression, consistently with what recently reported. Overall, we confirm here a role for ECS in OCD at both preclinical and clinical level. Many potential biomarkers are suggested among its components, in particular NAPE-PLD, that might be of help for a prompt and clear diagnosis.
Collapse
Affiliation(s)
- Fabio Bellia
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
- Center for Advanced Studies and Technology (CAST), University "G. D'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
| | - Antonio Girella
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Eugenia Annunzi
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d' Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
| | - Beatrice Benatti
- Department of Psychiatry, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, ASST Fatebenefratelli-Sacco, 20019, Milan, Italy
- "Aldo Ravelli" Center for Nanotechnology and Neurostimulation, University of Milan, Milan, Italy
| | - Matteo Vismara
- Department of Psychiatry, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, ASST Fatebenefratelli-Sacco, 20019, Milan, Italy
| | - Alberto Priori
- Department of Psychiatry, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, ASST Fatebenefratelli-Sacco, 20019, Milan, Italy
| | - Fabiana Festucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Federico Fanti
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Dario Compagnone
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Walter Adriani
- Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, I-00161, Rome, Italy
| | - Bernardo Dell'Osso
- Department of Psychiatry, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, ASST Fatebenefratelli-Sacco, 20019, Milan, Italy.
- "Aldo Ravelli" Center for Nanotechnology and Neurostimulation, University of Milan, Milan, Italy.
| | - Claudio D'Addario
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy.
- Department of Clinical Neuroscience, Karolinska Institute, 10316, Stockholm, Sweden.
| |
Collapse
|
6
|
Coelho A, Lima-Bastos S, Gobira P, Lisboa S. Endocannabinoid signaling and epigenetics modifications in the neurobiology of stress-related disorders. Neuronal Signal 2023; 7:NS20220034. [PMID: 37520658 PMCID: PMC10372471 DOI: 10.1042/ns20220034] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023] Open
Abstract
Stress exposure is associated with psychiatric conditions, such as depression, anxiety, and post-traumatic stress disorder (PTSD). It is also a vulnerability factor to developing or reinstating substance use disorder. Stress causes several changes in the neuro-immune-endocrine axis, potentially resulting in prolonged dysfunction and diseases. Changes in several transmitters, including serotonin, dopamine, glutamate, gamma-aminobutyric acid (GABA), glucocorticoids, and cytokines, are associated with psychiatric disorders or behavioral alterations in preclinical studies. Complex and interacting mechanisms make it very difficult to understand the physiopathology of psychiatry conditions; therefore, studying regulatory mechanisms that impact these alterations is a good approach. In the last decades, the impact of stress on biology through epigenetic markers, which directly impact gene expression, is under intense investigation; these mechanisms are associated with behavioral alterations in animal models after stress or drug exposure, for example. The endocannabinoid (eCB) system modulates stress response, reward circuits, and other physiological functions, including hypothalamus-pituitary-adrenal axis activation and immune response. eCBs, for example, act retrogradely at presynaptic neurons, limiting the release of neurotransmitters, a mechanism implicated in the antidepressant and anxiolytic effects after stress. Epigenetic mechanisms can impact the expression of eCB system molecules, which in turn can regulate epigenetic mechanisms. This review will present evidence of how the eCB system and epigenetic mechanisms interact and the consequences of this interaction in modulating behavioral changes after stress exposure in preclinical studies or psychiatric conditions. Moreover, evidence that correlates the involvement of the eCB system and epigenetic mechanisms in drug abuse contexts will be discussed.
Collapse
Affiliation(s)
- Arthur A. Coelho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Brazil
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | - Sávio Lima-Bastos
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Brazil
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | - Pedro H. Gobira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | - Sabrina F. Lisboa
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| |
Collapse
|
7
|
Milicic L, Porter T, Vacher M, Laws SM. Utility of DNA Methylation as a Biomarker in Aging and Alzheimer's Disease. J Alzheimers Dis Rep 2023; 7:475-503. [PMID: 37313495 PMCID: PMC10259073 DOI: 10.3233/adr-220109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/23/2023] [Indexed: 06/15/2023] Open
Abstract
Epigenetic mechanisms such as DNA methylation have been implicated in a number of diseases including cancer, heart disease, autoimmune disorders, and neurodegenerative diseases. While it is recognized that DNA methylation is tissue-specific, a limitation for many studies is the ability to sample the tissue of interest, which is why there is a need for a proxy tissue such as blood, that is reflective of the methylation state of the target tissue. In the last decade, DNA methylation has been utilized in the design of epigenetic clocks, which aim to predict an individual's biological age based on an algorithmically defined set of CpGs. A number of studies have found associations between disease and/or disease risk with increased biological age, adding weight to the theory of increased biological age being linked with disease processes. Hence, this review takes a closer look at the utility of DNA methylation as a biomarker in aging and disease, with a particular focus on Alzheimer's disease.
Collapse
Affiliation(s)
- Lidija Milicic
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- Collaborative Genomics and Translation Group, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Tenielle Porter
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- Collaborative Genomics and Translation Group, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
| | - Michael Vacher
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- CSIRO Health and Biosecurity, Australian e-Health Research Centre, Floreat, Western Australia
| | - Simon M. Laws
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- Collaborative Genomics and Translation Group, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
| |
Collapse
|
8
|
Zobdeh F, Eremenko II, Akan MA, Tarasov VV, Chubarev VN, Schiöth HB, Mwinyi J. The Epigenetics of Migraine. Int J Mol Sci 2023; 24:ijms24119127. [PMID: 37298078 DOI: 10.3390/ijms24119127] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 06/12/2023] Open
Abstract
Migraine is a complex neurological disorder and a major cause of disability. A wide range of different drug classes such as triptans, antidepressants, anticonvulsants, analgesics, and beta-blockers are used in acute and preventive migraine therapy. Despite a considerable progress in the development of novel and targeted therapeutic interventions during recent years, e.g., drugs that inhibit the calcitonin gene-related peptide (CGRP) pathway, therapy success rates are still unsatisfactory. The diversity of drug classes used in migraine therapy partly reflects the limited perception of migraine pathophysiology. Genetics seems to explain only to a minor extent the susceptibility and pathophysiological aspects of migraine. While the role of genetics in migraine has been extensively studied in the past, the interest in studying the role of gene regulatory mechanisms in migraine pathophysiology is recently evolving. A better understanding of the causes and consequences of migraine-associated epigenetic changes could help to better understand migraine risk, pathogenesis, development, course, diagnosis, and prognosis. Additionally, it could be a promising avenue to discover new therapeutic targets for migraine treatment and monitoring. In this review, we summarize the state of the art regarding epigenetic findings in relation to migraine pathogenesis and potential therapeutic targets, with a focus on DNA methylation, histone acetylation, and microRNA-dependent regulation. Several genes and their methylation patterns such as CALCA (migraine symptoms and age of migraine onset), RAMP1, NPTX2, and SH2D5 (migraine chronification) and microRNA molecules such as miR-34a-5p and miR-382-5p (treatment response) seem especially worthy of further study regarding their role in migraine pathogenesis, course, and therapy. Additionally, changes in genes including COMT, GIT2, ZNF234, and SOCS1 have been linked to migraine progression to medication overuse headache (MOH), and several microRNA molecules such as let-7a-5p, let-7b-5p, let-7f-5p, miR-155, miR-126, let-7g, hsa-miR-34a-5p, hsa-miR-375, miR-181a, let-7b, miR-22, and miR-155-5p have been implicated with migraine pathophysiology. Epigenetic changes could be a potential tool for a better understanding of migraine pathophysiology and the identification of new therapeutic possibilities. However, further studies with larger sample sizes are needed to verify these early findings and to be able to establish epigenetic targets as disease predictors or therapeutic targets.
Collapse
Affiliation(s)
- Farzin Zobdeh
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Husargatan 3, P.O. Box 593, 75124 Uppsala, Sweden
| | - Ivan I Eremenko
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Husargatan 3, P.O. Box 593, 75124 Uppsala, Sweden
- Advanced Molecular Technology, LLC, 354340 Moscow, Russia
| | - Mikail A Akan
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Husargatan 3, P.O. Box 593, 75124 Uppsala, Sweden
- Advanced Molecular Technology, LLC, 354340 Moscow, Russia
| | | | | | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Husargatan 3, P.O. Box 593, 75124 Uppsala, Sweden
| | - Jessica Mwinyi
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Husargatan 3, P.O. Box 593, 75124 Uppsala, Sweden
| |
Collapse
|
9
|
Peng X, Zhang W, Cui W, Ding B, Lyu Q, Wang J. ADmeth: A Manually Curated Database for the Differential Methylation in Alzheimer's Disease. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:843-851. [PMID: 35617175 DOI: 10.1109/tcbb.2022.3178087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease. More and more evidence show that DNA methylation is closely related to the pathological mechanism of AD. Many AD-associated differentially methylated genes, regions and CpG sites have been identified in recent researches, which may have great potential in clinical research. However, there is no dedicated database to collect AD-related differential methylation up to now. To provide a reference to researchers, we design a database named ADmeth by manually curating relevant articles, which contains a total of 16,709 AD-related differentially methylated items identified from different brain regions and different cell types in the blood, involving 209 genes, 2,229 regions and 14,271 CpG sites. The ADmeth database provides user-friendly pages to search, submit and download data. We hope that the ADmeth database can facilitate researchers to select candidate AD-associated methylation markers in revealing the pathological mechanism of AD and promote the cell-free DNA based non-invasive diagnosis of AD. The ADmeth database is available at http://www.biobdlab.cn/ADmeth.
Collapse
|
10
|
Santoso AD, De Ridder D. Fatty Acid Amide Hydrolase: An Integrative Clinical Perspective. Cannabis Cannabinoid Res 2023; 8:56-76. [PMID: 35900294 DOI: 10.1089/can.2021.0237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction: Fatty acid amide hydrolase (FAAH) is one of the main terminating enzymes of the endocannabinoid system (ECS). Since being discovered in 1996, the modulation of FAAH has been viewed as a compelling alternative strategy to obtain the beneficial effect of the ECS. With a considerable amount of FAAH-related publication over time, the next step would be to comprehend the proximity of this evidence for clinical application. Objective: This review intends to highlight the rationale of FAAH modulation and provide the latest evidence from clinical studies. Methods: Publication searches were conducted to gather information focused on FAAH-related clinical evidence with an extension to the experimental research to understand the biological plausibility. The subtopics were selected to be multidisciplinary to offer more perspective on the current state of the arts. Discussion: Experimental and clinical studies have demonstrated that FAAH was highly expressed not only in the central nervous system but also in the peripheral tissues. As the key regulator of endocannabinoid signaling, it would appear that FAAH plays a role in the modulation of mood and emotional response, reward system, pain perception, energy metabolism and appetite regulation, inflammation, and other biological processes. Genetic variants may be associated with some conditions such as substance/alcohol use disorders, obesity, and eating disorder. The advancement of functional neuroimaging has enabled the evaluation of the neurochemistry of FAAH in brain tissues and this can be incorporated into clinical trials. Intriguingly, the application of FAAH inhibitors in clinical trials seems to provide less striking results in comparison with the animal models, although some potential still can be seen. Conclusion: Modulation of FAAH has an immense potential to be a new therapeutic candidate for several disorders. Further exploration, however, is still needed to ensure who is the best candidate for the treatment strategy.
Collapse
Affiliation(s)
- Anugrah D Santoso
- Laboratory of Experimental Urology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Urology, Faculty of Medicine Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Dirk De Ridder
- Laboratory of Experimental Urology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Farvadi F, Hashemi F, Amini A, Alsadat Vakilinezhad M, Raee MJ. Early Diagnosis of Alzheimer's Disease with Blood Test; Tempting but Challenging. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2023; 12:172-210. [PMID: 38313372 PMCID: PMC10837916 DOI: 10.22088/ijmcm.bums.12.2.172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 11/25/2023] [Accepted: 12/13/2023] [Indexed: 02/06/2024]
Abstract
The increasing prevalence of Alzheimer's disease (AD) has led to a health crisis. According to official statistics, more than 55 million people globally have AD or other types of dementia, making it the sixth leading cause of death. It is still difficult to diagnose AD and there is no definitive diagnosis yet; post-mortem autopsy is still the only definite method. Moreover, clinical manifestations occur very late in the course of disease progression; therefore, profound irreversible changes have already occurred when the disease manifests. Studies have shown that in the preclinical stage of AD, changes in some biomarkers are measurable prior to any neurological damage or other symptoms. Hence, creating a reliable, fast, and affordable method capable of detecting AD in early stage has attracted the most attention. Seeking clinically applicable, inexpensive, less invasive, and much more easily accessible biomarkers for early diagnosis of AD, blood-based biomarkers (BBBs) seem to be an ideal option. This review is an inclusive report of BBBs that have been shown to be altered in the course of AD progression. The aim of this report is to provide comprehensive insight into the research status of early detection of AD based on BBBs.
Collapse
Affiliation(s)
- Fakhrossadat Farvadi
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Hashemi
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, the University of Newcastle, Newcastle, Australia
| | - Azadeh Amini
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical sciences, Tehran, Iran
| | | | - Mohammad Javad Raee
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
12
|
Endocannabinoid System Regulation in Female Rats with Recurrent Episodes of Binge Eating. Int J Mol Sci 2022; 23:ijms232315228. [PMID: 36499556 PMCID: PMC9738776 DOI: 10.3390/ijms232315228] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Recurrent Binge Eating (BE) episodes characterize several eating disorders. Here, we attempted to reassemble a condition closer to BE disorder, and we analyzed whether recurrent episodes might evoke molecular alterations in the hypothalamus of rats. The hypothalamus is a brain region which is sensitive to stress and relevant in motivated behaviors, such as food intake. A well-characterized animal model of BE, in which a history of intermittent food restriction and stress induce binge-like palatable food consumption, was used to analyze the transcriptional regulation of the endocannabinoid system (ECS). We detected, in rats showing the BE behavior, an up-regulated gene expression of cannabinoid type-1 receptor (CB1), sn-1-specific diacylglycerol lipase, as well as fatty acid amide hydrolase (Faah) and monoacylglycerol lipase. A selective reduction in DNA methylation was also observed at the promoter of Faah, which is consistent with the changes in the gene expression. Moreover, BE behavior in rats was associated with an increase in anandamide (AEA) levels. Our findings support the relevant role of the ECS in the regulation of food intake in rats subjected to repeated BE episodes, and, in particular, on AEA signaling, acting via CB1 and FAAH modulation. Notably, the epigenetic regulation of the Faah gene might suggest this enzyme as a possible target for developing new therapeutical approaches.
Collapse
|
13
|
Dasram MH, Walker RB, Khamanga SM. Recent Advances in Endocannabinoid System Targeting for Improved Specificity: Strategic Approaches to Targeted Drug Delivery. Int J Mol Sci 2022; 23:13223. [PMID: 36362014 PMCID: PMC9658826 DOI: 10.3390/ijms232113223] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/26/2022] Open
Abstract
Opportunities for developing innovative and intelligent drug delivery technologies by targeting the endocannabinoid system are becoming more apparent. This review provides an overview of strategies to develop targeted drug delivery using the endocannabinoid system (ECS). Recent advances in endocannabinoid system targeting showcase enhanced pharmaceutical therapy specificity while minimizing undesirable side effects and overcoming formulation challenges associated with cannabinoids. This review identifies advances in targeted drug delivery technologies that may permit access to the full pharmacotherapeutic potential of the ECS. The design of optimized nanocarriers that target specific tissues can be improved by understanding the nature of the signaling pathways, distribution in the mammalian body, receptor structure, and enzymatic degradation of the ECS. A closer look at ligand-receptor complexes, endocannabinoid tone, tissue distribution, and G-protein activity leads to a better understanding of the potential of the ECS toolkit for therapeutics. The signal transduction pathways examine the modulation of downstream effector proteins, desensitization, signaling cascades, and biased signaling. An in-depth and overall view of the targeted system is achieved through homology modeling where mutagenesis and ligand binding examine the binding site and allow sequence analysis and the formation of libraries for molecular docking and molecular dynamic simulations. Internalization routes exploring receptor-mediated endocytosis and lipid rafts are also considered for explicit signaling. Furthermore, the review highlights nanotechnology and surface modification aspects as a possible future approach for specific targeting.
Collapse
Affiliation(s)
| | | | - Sandile M. Khamanga
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6139, South Africa
| |
Collapse
|
14
|
Leung HW, Foo G, VanDongen A. Arc Regulates Transcription of Genes for Plasticity, Excitability and Alzheimer’s Disease. Biomedicines 2022; 10:biomedicines10081946. [PMID: 36009494 PMCID: PMC9405677 DOI: 10.3390/biomedicines10081946] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 02/06/2023] Open
Abstract
The immediate early gene Arc is a master regulator of synaptic function and a critical determinant of memory consolidation. Here, we show that Arc interacts with dynamic chromatin and closely associates with histone markers for active enhancers and transcription in cultured rat hippocampal neurons. Both these histone modifications, H3K27Ac and H3K9Ac, have recently been shown to be upregulated in late-onset Alzheimer’s disease (AD). When Arc induction by pharmacological network activation was prevented using a short hairpin RNA, the expression profile was altered for over 1900 genes, which included genes associated with synaptic function, neuronal plasticity, intrinsic excitability, and signalling pathways. Interestingly, about 100 Arc-dependent genes are associated with the pathophysiology of AD. When endogenous Arc expression was induced in HEK293T cells, the transcription of many neuronal genes was increased, suggesting that Arc can control expression in the absence of activated signalling pathways. Taken together, these data establish Arc as a master regulator of neuronal activity-dependent gene expression and suggest that it plays a significant role in the pathophysiology of AD.
Collapse
Affiliation(s)
| | - Gabriel Foo
- Duke-NUS Medical School, Singapore 169857, Singapore
| | - Antonius VanDongen
- Duke-NUS Medical School, Singapore 169857, Singapore
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
- Correspondence:
| |
Collapse
|
15
|
Varsha KK, Nagarkatti M, Nagarkatti P. Role of Gut Microbiota in Cannabinoid-Mediated Suppression of Inflammation. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2022; 2:10550. [PMID: 36776218 PMCID: PMC9910956 DOI: 10.3389/adar.2022.10550] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022]
Abstract
Cannabinoids and the endocannabinoid system have been well established to play a crucial role in the regulation of the immune response. Also, emerging data from numerous investigations unravel the imperative role of gut microbiota and their metabolites in the maintenance of immune homeostasis and gut barrier integrity. In this review, we concisely report the immunosuppressive mechanisms triggered by cannabinoids, and how they are closely associated with the alterations in the gut microbiome and metabolome following exposure to endogenous or exogenous cannabinoids. We discuss how cannabinoid-mediated induction of microbial secondary bile acids, short chain fatty acids, and indole metabolites, produced in the gut, can suppress inflammation even in distal organs. While clearly, more clinical studies are necessary to establish the cross talk between exo- or endocannabinoid system with the gut microbiome and the immune system, the current evidence opens a new avenue of cannabinoid-gut-microbiota-based therapeutics to regulate immunological disorders.
Collapse
Affiliation(s)
| | | | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
16
|
Molecular Alterations of the Endocannabinoid System in Psychiatric Disorders. Int J Mol Sci 2022; 23:ijms23094764. [PMID: 35563156 PMCID: PMC9104141 DOI: 10.3390/ijms23094764] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 02/07/2023] Open
Abstract
The therapeutic benefits of the current medications for patients with psychiatric disorders contrast with a great variety of adverse effects. The endocannabinoid system (ECS) components have gained high interest as potential new targets for treating psychiatry diseases because of their neuromodulator role, which is essential to understanding the regulation of many brain functions. This article reviewed the molecular alterations in ECS occurring in different psychiatric conditions. The methods used to identify alterations in the ECS were also described. We used a translational approach. The animal models reproducing some behavioral and/or neurochemical aspects of psychiatric disorders and the molecular alterations in clinical studies in post-mortem brain tissue or peripheral tissues were analyzed. This article reviewed the most relevant ECS changes in prevalent psychiatric diseases such as mood disorders, schizophrenia, autism, attentional deficit, eating disorders (ED), and addiction. The review concludes that clinical research studies are urgently needed for two different purposes: (1) To identify alterations of the ECS components potentially useful as new biomarkers relating to a specific disease or condition, and (2) to design new therapeutic targets based on the specific alterations found to improve the pharmacological treatment in psychiatry.
Collapse
|
17
|
Martín Giménez VM, Chuffa LGA, Simão VA, Reiter RJ, Manucha W. Protective actions of vitamin D, anandamide and melatonin during vascular inflammation: Epigenetic mechanisms involved. Life Sci 2022; 288:120191. [PMID: 34856208 DOI: 10.1016/j.lfs.2021.120191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/13/2021] [Accepted: 11/26/2021] [Indexed: 12/11/2022]
Abstract
Vascular inflammation is one of the main activating stimuli of cardiovascular disease and its uncontrolled development may worsen the progression and prognosis of these pathologies. Therefore, the search for new therapeutic options to treat this condition is undoubtedly needed. In this regard, it may be better to repurpose endogenous anti-inflammatory compounds already known, in addition to synthesizing new compounds for therapeutic purposes. It is well known that vitamin D, anandamide, and melatonin are promising endogenous substances with powerful and wide-spread anti-inflammatory properties. Currently, the epigenetic mechanisms underlying these effects are often unknown. This review summarizes the potential epigenetic mechanisms by which vitamin D, anandamide, and melatonin attenuate vascular inflammation. This information could contribute to the improvement in the therapeutic management of multiple pathologies associated with blood vessel inflammation, through the pharmacological manipulation of new target sites that until now have not been addressed.
Collapse
Affiliation(s)
- Virna Margarita Martín Giménez
- Instituto de Investigaciones en Ciencias Químicas, Facultad de Ciencias Químicas y Tecnológicas, Universidad Católica de Cuyo, Sede San Juan, Argentina
| | - Luiz Gustavo A Chuffa
- Department of Structural and Functional Biology, UNESP-São Paulo State University, Institute of Biosciences, Botucatu 18618-689, São Paulo, Brazil
| | - Vinícius Augusto Simão
- Department of Structural and Functional Biology, UNESP-São Paulo State University, Institute of Biosciences, Botucatu 18618-689, São Paulo, Brazil
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX, USA
| | - Walter Manucha
- Laboratorio de Farmacología Experimental Básica y Traslacional. Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina; Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigación Científica y Tecnológica (IMBECU-CONICET), Argentina.
| |
Collapse
|
18
|
Jain S, Bisht A, Verma K, Negi S, Paliwal S, Sharma S. The role of fatty acid amide hydrolase enzyme inhibitors in Alzheimer's disease. Cell Biochem Funct 2021; 40:106-117. [PMID: 34931308 DOI: 10.1002/cbf.3680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/27/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022]
Abstract
Fatty acid amide hydrolase (FAAH) is a prominent enzyme of the endocannabinoid system that degrades endogenous cannabinoid anandamide and oleamide. These lipid amides are involved in reducing neuroinflammation, pain and regulation of other neurological-related activities including feeding behaviours, sleep patterns, body temperature, memory processes and locomotory activity. Many of these activities are affected in most neurological disorders. Increased levels of brain FAAH expressions are speculated to correlate with decreased levels of lipid amides and increased AD-related symptoms. Thus, inhibition of FAAH shows promising potential in amelioration of symptoms associated with Alzheimer's disease (AD). The review aims at establishing the detrimental role of increased FAAH expression in AD and highlights the translational potential and therapeutic application of FAAH inhibitors in AD.
Collapse
Affiliation(s)
- Smita Jain
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | - Akansha Bisht
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | - Kanika Verma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | - Swarnima Negi
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | - Sarvesh Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| |
Collapse
|
19
|
Armeli F, Bonucci A, Maggi E, Pinto A, Businaro R. Mediterranean Diet and Neurodegenerative Diseases: The Neglected Role of Nutrition in the Modulation of the Endocannabinoid System. Biomolecules 2021; 11:biom11060790. [PMID: 34073983 PMCID: PMC8225112 DOI: 10.3390/biom11060790] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/17/2022] Open
Abstract
Neurodegenerative disorders are a widespread cause of morbidity and mortality worldwide, characterized by neuroinflammation, oxidative stress and neuronal depletion. The broad-spectrum neuroprotective activity of the Mediterranean diet is widely documented, but it is not yet known whether its nutritional and caloric balance can induce a modulation of the endocannabinoid system. In recent decades, many studies have shown how endocannabinoid tone enhancement may be a promising new therapeutic strategy to counteract the main hallmarks of neurodegeneration. From a phylogenetic point of view, the human co-evolution between the endocannabinoid system and dietary habits could play a key role in the pro-homeostatic activity of the Mediterranean lifestyle: this adaptive balance among our ancestors has been compromised by the modern Western diet, resulting in a “clinical endocannabinoid deficiency syndrome”. This review aims to evaluate the evidence accumulated in the literature on the neuroprotective, immunomodulatory and antioxidant properties of the Mediterranean diet related to the modulation of the endocannabinoid system, suggesting new prospects for research and clinical interventions against neurodegenerative diseases in light of a nutraceutical paradigm.
Collapse
Affiliation(s)
- Federica Armeli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 79, 04100 Latina, Italy; (F.A.); (A.B.); (E.M.)
| | - Alessio Bonucci
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 79, 04100 Latina, Italy; (F.A.); (A.B.); (E.M.)
| | - Elisa Maggi
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 79, 04100 Latina, Italy; (F.A.); (A.B.); (E.M.)
| | - Alessandro Pinto
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Rita Businaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 79, 04100 Latina, Italy; (F.A.); (A.B.); (E.M.)
- Correspondence:
| |
Collapse
|
20
|
Anti-Inflammatory Effects of Fatty Acid Amide Hydrolase Inhibition in Monocytes/Macrophages from Alzheimer's Disease Patients. Biomolecules 2021; 11:biom11040502. [PMID: 33810505 PMCID: PMC8066292 DOI: 10.3390/biom11040502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/19/2022] Open
Abstract
Growing evidence shows that the immune system is critically involved in Alzheimer’s disease (AD) pathogenesis and progression. The modulation and targeting of peripheral immune mechanisms are thus promising therapeutic or preventive strategies for AD. Given the critical involvement of the endocannabinoid (eCB) system in modulating immune functions, we investigated the potential role of the main elements of such a system, namely type-1 and type-2 cannabinoid receptors (CB1 and CB2), and fatty acid amide hydrolase (FAAH), in distinct immune cell populations of the peripheral blood of AD patients. We found that, compared to healthy controls, CB1 and CB2 expression was significantly lower in the B-lymphocytes of AD patients. Moreover, we found that CB2 was significantly lower and FAAH was significantly higher in monocytes of the same subjects. In contrast, T-lymphocytes and NK cells did not show any variation in any of these proteins. Of note, monocytic CB2 and FAAH levels significantly correlated with clinical scores. Furthermore, the pharmacological inactivation of FAAH in monocytes and monocyte-derived macrophages obtained from AD patients was able to modulate their immune responses, by reducing production of pro-inflammatory cytokines such as TNF-α, IL-6 and IL-12, and enhancing that of the anti-inflammatory cytokine IL-10. Furthermore, FAAH blockade skewed AD monocyte-derived macrophages towards a more anti-inflammatory and pro-resolving phenotype. Collectively, our findings highlight a central role of FAAH in regulating AD monocytes/macrophages that could be of value in developing novel monocyte-centered therapeutic approaches aimed at promoting a neuroprotective environment.
Collapse
|
21
|
Elevated Brain Fatty Acid Amide Hydrolase Induces Depressive-Like Phenotypes in Rodent Models: A Review. Int J Mol Sci 2021; 22:ijms22031047. [PMID: 33494322 PMCID: PMC7864498 DOI: 10.3390/ijms22031047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/17/2022] Open
Abstract
Altered activity of fatty acid amide hydrolase (FAAH), an enzyme of the endocannabinoid system, has been implicated in several neuropsychiatric disorders, including major depressive disorder (MDD). It is speculated that increased brain FAAH expression is correlated with increased depressive symptoms. The aim of this scoping review was to establish the role of FAAH expression in animal models of depression to determine the translational potential of targeting FAAH in clinical studies. A literature search employing multiple databases was performed; all original articles that assessed FAAH expression in animal models of depression were considered. Of the 216 articles that were screened for eligibility, 24 articles met inclusion criteria and were included in this review. Three key findings emerged: (1) FAAH expression is significantly increased in depressive-like phenotypes; (2) genetic knockout or pharmacological inhibition of FAAH effectively reduces depressive-like behavior, with a dose-dependent effect; and (3) differences in FAAH expression in depressive-like phenotypes were largely localized to animal prefrontal cortex, hippocampus and striatum. We conclude, based on the animal literature, that a positive relationship can be established between brain FAAH level and expression of depressive symptoms. In summary, we suggest that FAAH is a tractable target for developing novel pharmacotherapies for MDD.
Collapse
|
22
|
Greco R, Demartini C, Zanaboni AM, Tumelero E, Icco RD, Sances G, Allena M, Tassorelli C. Peripheral changes of endocannabinoid system components in episodic and chronic migraine patients: A pilot study. Cephalalgia 2020; 41:185-196. [PMID: 32967434 DOI: 10.1177/0333102420949201] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Preclinical and clinical evidence suggests a role for the dysregulation of the endocannabinoid system in migraine pain, particularly in subjects with chronic migraine. METHODS The gene expression of endocannabinoid system components was assayed in peripheral blood mononuclear cells of 25 subjects with episodic migraine, 26 subjects with chronic migraine with medication overuse (CM-MO) and 24 age-matched healthy controls. We also evaluated the protein expression of cannabinoid receptors 1 and 2 as well as DNA methylation changes in genes involved in endocannabinoid system components. RESULTS Both episodic migraine and CM-MO subjects showed higher cannabinoid receptor 1 and cannabinoid receptor 2 gene and protein expression compared to controls. Fatty acid amide hydrolase gene expression, involved in anandamide degradation, was lower in migraine groups compared to healthy control subjects. N-arachidonoyl phosphatidylethanolamine phospholipase D gene expression was significantly higher in all migraineurs, as were monoacylglycerol lipase and diacylglycerol lipase gene expressions. The above markers significantly correlated with the number of migraine days and with the days of acute drug intake. CONCLUSION The findings point to transcriptional changes in endocannabinoid system components occurring in migraineurs. These changes were detected peripherally, which make them amenable for a wider adoption to further investigate their role and applicability in the clinical field.clinicaltrials.gov NTC04324710.
Collapse
Affiliation(s)
- Rosaria Greco
- Headache Science Centre, IRCCS Mondino Foundation, Pavia, Italy
| | | | - Anna Maria Zanaboni
- Headache Science Centre, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Elena Tumelero
- Headache Science Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Roberto De Icco
- Headache Science Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Grazia Sances
- Headache Science Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Marta Allena
- Headache Science Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Cristina Tassorelli
- Headache Science Centre, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
23
|
Uddin MS, Mamun AA, Sumsuzzman DM, Ashraf GM, Perveen A, Bungau SG, Mousa SA, El-Seedi HR, Bin-Jumah MN, Abdel-Daim MM. Emerging Promise of Cannabinoids for the Management of Pain and Associated Neuropathological Alterations in Alzheimer's Disease. Front Pharmacol 2020; 11:1097. [PMID: 32792944 PMCID: PMC7387504 DOI: 10.3389/fphar.2020.01097] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is an irreversible chronic neurodegenerative disorder that occurs when neurons in the brain degenerate and die. Pain frequently arises in older patients with neurodegenerative diseases including AD. However, the presence of pain in older people is usually overlooked with cognitive dysfunctions. Most of the times dementia patients experience moderate to severe pain but the development of severe cognitive dysfunctions tremendously affects their capability to express the presence of pain. Currently, there are no effective treatments against AD that emphasize the necessity for increasing research to develop novel drugs for treating or preventing the disease process. Furthermore, the prospective therapeutic use of cannabinoids in AD has been studied for the past few years. In this regard, targeting the endocannabinoid system has considered as a probable therapeutic strategy to control several associated pathological pathways, such as mitochondrial dysfunction, excitotoxicity, oxidative stress, and neuroinflammation for the management of AD. In this review, we focus on recent studies about the role of cannabinoids for the treatment of pain and related neuropathological changes in AD.
Collapse
Affiliation(s)
- Md. Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Abdullah Al Mamun
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | | | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, India
| | - Simona G. Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, New York, NY, United States
| | - Hesham R. El-Seedi
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Koom, Egypt
| | - May N. Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohamed M. Abdel-Daim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
24
|
Cannabinoid receptor CNR1 expression and DNA methylation in human prefrontal cortex, hippocampus and caudate in brain development and schizophrenia. Transl Psychiatry 2020; 10:158. [PMID: 32433545 PMCID: PMC7237456 DOI: 10.1038/s41398-020-0832-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/24/2020] [Accepted: 04/30/2020] [Indexed: 12/22/2022] Open
Abstract
Beyond being one the most widely used psychoactive drugs in the world, cannabis has been identified as an environmental risk factor for psychosis. Though the relationship between cannabis use and psychiatric disorders remains controversial, consistent association between early adolescent cannabis use and the subsequent risk of psychosis suggested adolescence may be a particularly vulnerable period. Previous findings on gene by environment interactions indicated that cannabis use may only increase the risk for psychosis in the subjects who have a specific genetic vulnerability. The type 1 cannabinoid receptor (CB1), encoded by the CNR1 gene, is a key component of the endocannabinoid system. As the primary endocannabinoid receptor in the brain, CB1 is the main molecular target of the endocannabinoid ligand, as well as tetrahydrocannabinol (THC), the principal psychoactive ingredient of cannabis. In this study, we have examined mRNA expression and DNA methylation of CNR1 in human prefrontal cortex (PFC), hippocampus, and caudate samples. The expression of CNR1 is higher in fetal PFC and hippocampus, then drops down dramatically after birth. The lifespan trajectory of CNR1 expression in the DLPFC differentially correlated with age by allelic variation at rs4680, a functional polymorphism in the COMT gene. Compared with COMT methionine158 carriers, Caucasian carriers of the COMT valine158 allele have a stronger negative correlation between the expression of CNR1 in DLPFC and age. In contrast, the methylation level of cg02498983, which is negatively correlated with the expression of CNR1 in PFC, showed the strongest positive correlation with age in PFC of Caucasian carriers of COMT valine158. Additionally, we have observed decreased mRNA expression of CNR1 in the DLPFC of patients with schizophrenia. Further analysis revealed a positive eQTL SNP, rs806368, which predicted the expression of a novel transcript of CNR1 in human DLPFC, hippocampus and caudate. This SNP has been associated with addiction and other psychiatric disorders. THC or ethanol are each significantly associated with dysregulated expression of CNR1 in the PFC of patients with affective disorder, and the expression of CNR1 is significantly upregulated in the PFC of schizophrenia patients who completed suicide. Our results support previous studies that have implicated the endocannabinoid system in the pathology of schizophrenia and provided additional insight into the mechanism of increasing risk for schizophrenia in the adolescent cannabis users.
Collapse
|
25
|
The Epigenetics of the Endocannabinoid System. Int J Mol Sci 2020; 21:ijms21031113. [PMID: 32046164 PMCID: PMC7037698 DOI: 10.3390/ijms21031113] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/14/2022] Open
Abstract
The endocannabinoid system (ES) is a cell-signalling system widely distributed in biological tissues that includes endogenous ligands, receptors, and biosynthetic and hydrolysing machineries. The impairment of the ES has been associated to several pathological conditions like behavioural, neurological, or metabolic disorders and infertility, suggesting that the modulation of this system may be critical for the maintenance of health status and disease treatment. Lifestyle and environmental factors can exert long-term effects on gene expression without any change in the nucleotide sequence of DNA, affecting health maintenance and influencing both disease load and resistance. This potentially reversible "epigenetic" modulation of gene expression occurs through the chemical modification of DNA and histone protein tails or the specific production of regulatory non-coding RNA (ncRNA). Recent findings demonstrate the epigenetic modulation of the ES in biological tissues; in the same way, endocannabinoids, phytocannabinoids, and cannabinoid receptor agonists and antagonists induce widespread or gene-specific epigenetic changes with the possibility of trans-generational epigenetic inheritance in the offspring explained by the transmission of deregulated epigenetic marks in the gametes. Therefore, this review provides an update on the epigenetics of the ES, with particular attention on the emerging role in reproduction and fertility.
Collapse
|
26
|
Murillo-Rodríguez E, Budde H, Veras AB, Rocha NB, Telles-Correia D, Monteiro D, Cid L, Yamamoto T, Machado S, Torterolo P. The Endocannabinoid System May Modulate Sleep Disorders in Aging. Curr Neuropharmacol 2020; 18:97-108. [PMID: 31368874 PMCID: PMC7324886 DOI: 10.2174/1570159x17666190801155922] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022] Open
Abstract
Aging is an inevitable process that involves changes across life in multiple neurochemical, neuroanatomical, hormonal systems, and many others. In addition, these biological modifications lead to an increase in age-related sickness such as cardiovascular diseases, osteoporosis, neurodegenerative disorders, and sleep disturbances, among others that affect activities of daily life. Demographic projections have demonstrated that aging will increase its worldwide rate in the coming years. The research on chronic diseases of the elderly is important to gain insights into this growing global burden. Novel therapeutic approaches aimed for treatment of age-related pathologies have included the endocannabinoid system as an effective tool since this biological system shows beneficial effects in preclinical models. However, and despite these advances, little has been addressed in the arena of the endocannabinoid system as an option for treating sleep disorders in aging since experimental evidence suggests that some elements of the endocannabinoid system modulate the sleep-wake cycle. This article addresses this less-studied field, focusing on the likely perspective of the implication of the endocannabinoid system in the regulation of sleep problems reported in the aged. We conclude that beneficial effects regarding the putative efficacy of the endocannabinoid system as therapeutic tools in aging is either inconclusive or still missing.
Collapse
Affiliation(s)
- Eric Murillo-Rodríguez
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud, Universidad Anáhuac Mayab, Mérida, Yucatán, México
- Intercontinental Neuroscience Research Group
| | - Henning Budde
- Intercontinental Neuroscience Research Group
- Faculty of Human Sciences, Medical School Hamburg, Hamburg, Germany
| | - André Barciela Veras
- Intercontinental Neuroscience Research Group
- Dom Bosco Catholic University, Campo Grande, Mato Grosso do Sul, Brazil
| | - Nuno Barbosa Rocha
- Intercontinental Neuroscience Research Group
- School of Health, Polytechnic Institute of Porto, Porto, Portugal
| | - Diogo Telles-Correia
- Intercontinental Neuroscience Research Group
- University of Lisbon, Faculty of Medicine, Lisbon, Portugal
| | - Diogo Monteiro
- Intercontinental Neuroscience Research Group
- Sport Science School of Rio Maior-Polytechnic Institute of Santarém, Rio Maior, Portugal
- Research Center in Sport, Health and Human Development-CIDESD, Vila Real, Portugal
| | - Luis Cid
- Intercontinental Neuroscience Research Group
- Sport Science School of Rio Maior-Polytechnic Institute of Santarém, Rio Maior, Portugal
- Research Center in Sport, Health and Human Development-CIDESD, Vila Real, Portugal
| | - Tetsuya Yamamoto
- Intercontinental Neuroscience Research Group
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan
| | - Sérgio Machado
- Intercontinental Neuroscience Research Group
- Laboratory of Physical Activity Neuroscience, Physical Activity Sciences Postgraduate Program, Salgado de Oliveira University, Niterói, Brazil
| | - Pablo Torterolo
- Intercontinental Neuroscience Research Group
- Laboratorio de Neurobiología del Sueño, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
27
|
Cannabinoids and the expanded endocannabinoid system in neurological disorders. Nat Rev Neurol 2019; 16:9-29. [PMID: 31831863 DOI: 10.1038/s41582-019-0284-z] [Citation(s) in RCA: 543] [Impact Index Per Article: 90.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2019] [Indexed: 12/13/2022]
|
28
|
Pucci M, Micioni Di Bonaventura MV, Zaplatic E, Bellia F, Maccarrone M, Cifani C, D'Addario C. Transcriptional regulation of the endocannabinoid system in a rat model of binge-eating behavior reveals a selective modulation of the hypothalamic fatty acid amide hydrolase gene. Int J Eat Disord 2019; 52:51-60. [PMID: 30578649 DOI: 10.1002/eat.22989] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/24/2018] [Accepted: 11/13/2018] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Binge-eating episodes are recurrent and are defining features of several eating disorders. Thus binge-eating episodes might influence eating disorder development of which exact underlying mechanisms are still largely unknown. METHODS Here we focused on the transcriptional regulation of the endocannabinoid system, a potent regulator of feeding behavior, in relevant rat brain regions, using a rat model in which a history of intermittent food restriction and a frustration stress induce binge-like palatable food consumption. RESULTS We observed a selective down-regulation of fatty acid amide hydrolase (faah) gene expression in the hypothalamus of rats showing the binge-eating behavior with a consistent reduction in histone 3 acetylation at lysine 4 of the gene promoter. No relevant changes were detected for any other endocannabinoid system components in any brain regions under study, as well as for the other epigenetic mechanisms investigated (DNA methylation and histone 3 lysine 27 methylation) at the faah gene promoter. DISCUSSION Our findings suggest that faah transcriptional regulation is a potential biomarker of binge-eating episodes, with a relevant role in the homeostatic regulation of food intake.
Collapse
Affiliation(s)
- Mariangela Pucci
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | | | - Elizabeta Zaplatic
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Fabio Bellia
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Mauro Maccarrone
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy.,European Center for Brain Research (CERC)/Santa Lucia Foundation, Rome, Italy
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Claudio D'Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy.,Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
29
|
Paloczi J, Varga ZV, Hasko G, Pacher P. Neuroprotection in Oxidative Stress-Related Neurodegenerative Diseases: Role of Endocannabinoid System Modulation. Antioxid Redox Signal 2018; 29:75-108. [PMID: 28497982 PMCID: PMC5984569 DOI: 10.1089/ars.2017.7144] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Redox imbalance may lead to overproduction of reactive oxygen and nitrogen species (ROS/RNS) and subsequent oxidative tissue damage, which is a critical event in the course of neurodegenerative diseases. It is still not fully elucidated, however, whether oxidative stress is the primary trigger or a consequence in the process of neurodegeneration. Recent Advances: Increasing evidence suggests that oxidative stress is involved in the propagation of neuronal injury and consequent inflammatory response, which in concert promote development of pathological alterations characteristic of most common neurodegenerative diseases. CRITICAL ISSUES Accumulating recent evidence also suggests that there is an important interplay between the lipid endocannabinoid system [ECS; comprising the main cannabinoid 1 and 2 receptors (CB1 and CB2), endocannabinoids, and their synthetic and metabolizing enzymes] and various key inflammatory and redox-dependent processes. FUTURE DIRECTIONS Targeting the ECS to modulate redox state-dependent cell death and to decrease consequent or preceding inflammatory response holds therapeutic potential in a multitude of oxidative stress-related acute or chronic neurodegenerative disorders from stroke and traumatic brain injury to Alzheimer's and Parkinson's diseases and multiple sclerosis, just to name a few, which will be discussed in this overview. Antioxid. Redox Signal. 29, 75-108.
Collapse
Affiliation(s)
- Janos Paloczi
- 1 Laboratory of Cardiovascular Physiology and Tissue Injury (LCPTI), National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH) , Bethesda, Maryland
| | - Zoltan V Varga
- 1 Laboratory of Cardiovascular Physiology and Tissue Injury (LCPTI), National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH) , Bethesda, Maryland
| | - George Hasko
- 2 Department of Surgery, Rutgers New Jersey Medical School , Newark, New Jersey
| | - Pal Pacher
- 1 Laboratory of Cardiovascular Physiology and Tissue Injury (LCPTI), National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH) , Bethesda, Maryland
| |
Collapse
|
30
|
Karl T, Garner B, Cheng D. The therapeutic potential of the phytocannabinoid cannabidiol for Alzheimer's disease. Behav Pharmacol 2018; 28:142-160. [PMID: 27471947 DOI: 10.1097/fbp.0000000000000247] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, characterized by progressive loss of cognition. Over 35 million individuals currently have AD worldwide. Unfortunately, current therapies are limited to very modest symptomatic relief. The brains of AD patients are characterized by the deposition of amyloid-β and hyperphosphorylated forms of tau protein. AD brains also show neurodegeneration and high levels of oxidative stress and inflammation. The phytocannabinoid cannabidiol (CBD) possesses neuroprotective, antioxidant and anti-inflammatory properties and reduces amyloid-β production and tau hyperphosphorylation in vitro. CBD has also been shown to be effective in vivo making the phytocannabinoid an interesting candidate for novel therapeutic interventions in AD, especially as it lacks psychoactive or cognition-impairing properties. CBD treatment would be in line with preventative, multimodal drug strategies targeting a combination of pathological symptoms, which might be ideal for AD therapy. Thus, this review will present a brief introduction to AD biology and current treatment options before outlining comprehensively CBD biology and pharmacology, followed by in-vitro and in-vivo evidence for the therapeutic potential of CBD. We will also discuss the role of the endocannabinioid system in AD before commenting on the potential future of CBD for AD therapy (including safety aspects).
Collapse
Affiliation(s)
- Tim Karl
- aSchool of Medicine, Western Sydney University, Campbelltown bNeuroscience Research Australia (NeuRA), Randwick cIllawarra Health and Medical Research Institute dSchool of Biological Sciences, University of Wollongong, Wollongong eVictor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | | | | |
Collapse
|
31
|
Chiurchiù V, van der Stelt M, Centonze D, Maccarrone M. The endocannabinoid system and its therapeutic exploitation in multiple sclerosis: Clues for other neuroinflammatory diseases. Prog Neurobiol 2018; 160:82-100. [DOI: 10.1016/j.pneurobio.2017.10.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 10/23/2017] [Accepted: 10/28/2017] [Indexed: 12/11/2022]
|
32
|
Fransquet PD, Lacaze P, Saffery R, McNeil J, Woods R, Ryan J. Blood DNA methylation as a potential biomarker of dementia: A systematic review. Alzheimers Dement 2017; 14:81-103. [PMID: 29127806 DOI: 10.1016/j.jalz.2017.10.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/27/2017] [Accepted: 10/07/2017] [Indexed: 01/22/2023]
Abstract
Dementia is a major public health issue with rising prevalence rates, but many individuals remain undiagnosed. Accurate and timely diagnosis is key for the optimal targeting of interventions. A noninvasive, easily measurable peripheral biomarker would have greatest utility in population-wide diagnostic screening. Epigenetics, including DNA methylation, is implicated in dementia; however, it is unclear whether epigenetic changes can be detected in peripheral tissue. This study aimed to systematically review the evidence for an association between dementia and peripheral DNA methylation. Forty-eight studies that measured DNA methylation in peripheral blood were identified, and 67% reported significant associations with dementia. However, most studies were underpowered and limited by their case-control design. We emphasize the need for future longitudinal studies on large well-characterized populations, measuring epigenetic patterns in asymptomatic individuals. A biomarker detectable in the preclinical stages of the disease would have the greatest utility in future intervention and treatment trials.
Collapse
Affiliation(s)
- Peter D Fransquet
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia; Disease Epigenetics, Murdoch Children's Research Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Paul Lacaze
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Richard Saffery
- Disease Epigenetics, Murdoch Children's Research Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - John McNeil
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Robyn Woods
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Joanne Ryan
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia; Disease Epigenetics, Murdoch Children's Research Institute, The University of Melbourne, Parkville, Victoria, Australia; INSERM, Neuropsychiatry: Epidemiological and Clinical Research, University of Montpellier, Montpellier, France.
| |
Collapse
|
33
|
Llorente-Ovejero A, Manuel I, Giralt MT, Rodríguez-Puertas R. Increase in cortical endocannabinoid signaling in a rat model of basal forebrain cholinergic dysfunction. Neuroscience 2017; 362:206-218. [PMID: 28827178 DOI: 10.1016/j.neuroscience.2017.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/20/2017] [Accepted: 08/03/2017] [Indexed: 12/24/2022]
Abstract
The basal forebrain cholinergic pathways progressively degenerate during the progression of Alzheimer's disease, leading to an irreversible impairment of memory and thinking skills. The stereotaxic lesion with 192IgG-saporin in the rat brain has been used to eliminate basal forebrain cholinergic neurons and is aimed at emulating the cognitive damage described in this disease in order to explore its effects on behavior and on neurotransmission. Learning and memory processes that are controlled by cholinergic neurotransmission are also modulated by the endocannabinoid (eCB) system. The objective of the present study is to evaluate the eCB signaling in relation to the memory impairment induced in adult rats following a specific cholinergic lesion of the basal forebrain. Therefore, CB1 receptor-mediated signaling was analyzed using receptor and functional autoradiography, and cellular distribution by immunofluorescence. The passive avoidance test and histochemical data revealed a relationship between impaired behavioral responses and a loss of approximately 75% of cholinergic neurons in the nucleus basalis magnocellularis (NBM), accompanied by cortical cholinergic denervation. The decrease in CB1 receptor density observed in the hippocampus, together with hyperactivity of eCB signaling in the NBM and cortex, suggest an interaction between the eCB and cholinergic systems. Moreover, following basal forebrain cholinergic denervation, the presynaptic GABAergic immunoreactivity was reduced in cortical areas. In conclusion, CB1 receptors present in presynaptic GABAergic terminals in the hippocampus are down regulated, but not those in cortical glutamatergic synapses.
Collapse
Affiliation(s)
- Alberto Llorente-Ovejero
- Department of Pharmacology, Faculty of Medicine and Nursing. University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain
| | - Iván Manuel
- Department of Pharmacology, Faculty of Medicine and Nursing. University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain
| | - Maria Teresa Giralt
- Department of Pharmacology, Faculty of Medicine and Nursing. University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain
| | - Rafael Rodríguez-Puertas
- Department of Pharmacology, Faculty of Medicine and Nursing. University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain.
| |
Collapse
|
34
|
Basavarajappa BS, Shivakumar M, Joshi V, Subbanna S. Endocannabinoid system in neurodegenerative disorders. J Neurochem 2017; 142:624-648. [PMID: 28608560 DOI: 10.1111/jnc.14098] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/22/2017] [Accepted: 06/02/2017] [Indexed: 12/19/2022]
Abstract
Most neurodegenerative disorders (NDDs) are characterized by cognitive impairment and other neurological defects. The definite cause of and pathways underlying the progression of these NDDs are not well-defined. Several mechanisms have been proposed to contribute to the development of NDDs. These mechanisms may proceed concurrently or successively, and they differ among cell types at different developmental stages in distinct brain regions. The endocannabinoid system, which involves cannabinoid receptors type 1 (CB1R) and type 2 (CB2R), endogenous cannabinoids and the enzymes that catabolize these compounds, has been shown to contribute to the development of NDDs in several animal models and human studies. In this review, we discuss the functions of the endocannabinoid system in NDDs and converse the therapeutic efficacy of targeting the endocannabinoid system to rescue NDDs.
Collapse
Affiliation(s)
- Balapal S Basavarajappa
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, USA.,New York State Psychiatric Institute, New York City, New York, USA.,Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York City, New York, USA.,Department of Psychiatry, New York University Langone Medical Center, New York City, New York, USA
| | - Madhu Shivakumar
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | - Vikram Joshi
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | - Shivakumar Subbanna
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| |
Collapse
|
35
|
Maccarrone M. Metabolism of the Endocannabinoid Anandamide: Open Questions after 25 Years. Front Mol Neurosci 2017; 10:166. [PMID: 28611591 PMCID: PMC5447297 DOI: 10.3389/fnmol.2017.00166] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/12/2017] [Indexed: 02/06/2023] Open
Abstract
Cannabis extracts have been used for centuries, but its main active principle ∆9-tetrahydrocannabinol (THC) was identified about 50 years ago. Yet, it is only 25 years ago that the first endogenous ligand of the same receptors engaged by the cannabis agents was discovered. This “endocannabinoid (eCB)” was identified as N-arachidonoylethanolamine (or anandamide (AEA)), and was shown to have several receptors, metabolic enzymes and transporters that altogether drive its biological activity. Here I report on the latest advances about AEA metabolism, with the aim of focusing open questions still awaiting an answer for a deeper understanding of AEA activity, and for translating AEA-based drugs into novel therapeutics for human diseases.
Collapse
Affiliation(s)
- Mauro Maccarrone
- Department of Medicine, Campus Bio-Medico University of RomeRome, Italy.,European Center for Brain Research, IRCCS Santa Lucia FoundationRome, Italy
| |
Collapse
|
36
|
Chronic stress leads to epigenetic dysregulation in the neuropeptide-Y and cannabinoid CB1 receptor genes in the mouse cingulate cortex. Neuropharmacology 2017; 113:301-313. [DOI: 10.1016/j.neuropharm.2016.10.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 10/06/2016] [Accepted: 10/08/2016] [Indexed: 12/16/2022]
|
37
|
Smith RG, Lunnon K. DNA Modifications and Alzheimer's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 978:303-319. [PMID: 28523553 DOI: 10.1007/978-3-319-53889-1_16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disease, affecting millions of people worldwide. While a number of studies have focused on identifying genetic variants that contribute to the development and progression of late-onset AD, the majority of these only have a relatively small effect size. There are also a number of other risk factors, for example, age, gender, and other comorbidities; however, how these influence disease risk is not known. Therefore, in recent years, research has begun to investigate epigenetic mechanisms for a potential role in disease etiology. In this chapter, we discuss the current state of play for research into DNA modifications in AD, the most well studied being 5-methylcytosine (5-mC). We describe the earlier studies of candidate genes and global measures of DNA modifications in human AD samples, in addition to studies in mouse models of AD. We focus on recent epigenome-wide association studies (EWAS) in human AD, using microarray technology, examining a number of key study design issues pertinent to such studies. Finally, we discuss how new technological advances could further progress the research field.
Collapse
Affiliation(s)
- Rebecca G Smith
- University of Exeter Medical School, RILD, Barrack Road, Exeter, Devon, UK
| | - Katie Lunnon
- University of Exeter Medical School, RILD, Barrack Road, Exeter, Devon, UK.
| |
Collapse
|
38
|
Wen KX, Miliç J, El-Khodor B, Dhana K, Nano J, Pulido T, Kraja B, Zaciragic A, Bramer WM, Troup J, Chowdhury R, Ikram MA, Dehghan A, Muka T, Franco OH. The Role of DNA Methylation and Histone Modifications in Neurodegenerative Diseases: A Systematic Review. PLoS One 2016; 11:e0167201. [PMID: 27973581 PMCID: PMC5156363 DOI: 10.1371/journal.pone.0167201] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 11/10/2016] [Indexed: 12/11/2022] Open
Abstract
IMPORTANCE Epigenetic modifications of the genome, such as DNA methylation and histone modifications, have been reported to play a role in neurodegenerative diseases (ND) such as Alzheimer's disease (AD) and Parkinson's disease (PD). OBJECTIVE To systematically review studies investigating epigenetic marks in AD or PD. METHODS Eleven bibliographic databases (Embase.com, Medline (Ovid), Web-of-Science, Scopus, PubMed, Cinahl (EBSCOhost), Cochrane Central, ProQuest, Lilacs, Scielo and Google Scholar) were searched until July 11th 2016 to identify relevant articles. We included all randomized controlled trials, cohort, case-control and cross-sectional studies in humans that examined associations between epigenetic marks and ND. Two independent reviewers, with a third reviewer available for disagreements, performed the abstract and full text selection. Data was extracted using a pre-designed data collection form. RESULTS Of 6,927 searched references, 73 unique case-control studies met our inclusion criteria. Overall, 11,453 individuals were included in this systematic review (2,640 AD and 2,368 PD outcomes). There was no consistent association between global DNA methylation pattern and any ND. Studies reported epigenetic regulation of 31 genes (including cell communication, apoptosis, and neurogenesis genes in blood and brain tissue) in relation to AD and PD. Methylation at the BDNF, SORBS3 and APP genes in AD were the most consistently reported associations. Methylation of α-synuclein gene (SNCA) was also found to be associated with PD. Seven studies reported histone protein alterations in AD and PD. CONCLUSION Many studies have investigated epigenetics and ND. Further research should include larger cohort or longitudinal studies, in order to identify clinically significant epigenetic changes. Identifying relevant epigenetic changes could lead to interventional strategies in ND.
Collapse
Affiliation(s)
- Ke-xin Wen
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Jelena Miliç
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Bassem El-Khodor
- Research and Development, Metagenics, Inc, United States of America
| | - Klodian Dhana
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Jana Nano
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Tammy Pulido
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Bledar Kraja
- Department of Biomedical Sciences, Faculty of Medicine, University of Medicine, Tirana, Albania
- University Clinic of Gastrohepatology, University Hospital Center Mother Teresa, Tirana, Albania
| | - Asija Zaciragic
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | | | - John Troup
- Research and Development, Metagenics, Inc, United States of America
| | - Rajiv Chowdhury
- Department of Public Health & Primary Care, Cardiovascular Epidemiology Unit, University of Cambridge, Cambridge, CB1 8RN, United Kingdom
| | - M. Arfam Ikram
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Abbas Dehghan
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Taulant Muka
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Oscar H. Franco
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| |
Collapse
|
39
|
Orefice NS, Alhouayek M, Carotenuto A, Montella S, Barbato F, Comelli A, Calignano A, Muccioli GG, Orefice G. Oral Palmitoylethanolamide Treatment Is Associated with Reduced Cutaneous Adverse Effects of Interferon-β1a and Circulating Proinflammatory Cytokines in Relapsing-Remitting Multiple Sclerosis. Neurotherapeutics 2016; 13:428-38. [PMID: 26857391 PMCID: PMC4824021 DOI: 10.1007/s13311-016-0420-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Palmitoylethanolamide (PEA) is an endogenous lipid mediator known to reduce pain and inflammation. However, only limited clinical studies have evaluated the effects of PEA in neuroinflammatory and neurodegenerative diseases. Multiple sclerosis (MS) is a chronic autoimmune and inflammatory disease of the central nervous system. Although subcutaneous administration of interferon (IFN)-β1a is approved as first-line therapy for the treatment of relapsing-remitting MS (RR-MS), its commonly reported adverse events (AEs) such as pain, myalgia, and erythema at the injection site, deeply affect the quality of life (QoL) of patients with MS. In this randomized, double-blind, placebo-controlled study, we tested the effect of ultramicronized PEA (um-PEA) added to IFN-β1a in the treatment of clinically defined RR-MS. The primary objectives were to estimate whether, with um-PEA treatment, patients with MS perceived an improvement in pain and a decrease of the erythema width at the IFN-β1a injection site in addition to an improvement in their QoL. The secondary objectives were to evaluate the effects of um-PEA on circulating interferon-γ, tumor necrosis factor-α, and interleukin-17 serum levels, N-acylethanolamine plasma levels, Expanded Disability Status Scale (EDSS) progression, and safety and tolerability after 1 year of treatment. Patients with MS receiving um-PEA perceived an improvement in pain sensation without a reduction of the erythema at the injection site. A significant improvement in QoL was observed. No significant difference was reported in EDSS score, and um-PEA was well tolerated. We found a significant increase of palmitoylethanolamide, anandamide and oleoylethanolamide plasma levels, and a significant reduction of interferon-γ, tumor necrosis factor-α, and interleukin-17 serum profile compared with the placebo group. Our results suggest that um-PEA may be considered as an appropriate add-on therapy for the treatment of IFN-β1a-related adverse effects in RR-MS.
Collapse
Affiliation(s)
- Nicola S Orefice
- Department of Pharmacy, "Federico II" University, 80131, Naples, Italy
| | - Mireille Alhouayek
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, 1200, Brussels, Belgium
| | - Antonio Carotenuto
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, "Federico II" University of Naples, Naples, Italy
| | - Silvana Montella
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, "Federico II" University of Naples, Naples, Italy
| | - Franscesco Barbato
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, "Federico II" University of Naples, Naples, Italy
| | - Albert Comelli
- Department of Biopathology and Medical Biotechnologies, Section of Radiological Sciences, University of Palermo, 90129, Palermo, Italy
| | - Antonio Calignano
- Department of Pharmacy, "Federico II" University, 80131, Naples, Italy
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, 1200, Brussels, Belgium
| | - Giuseppe Orefice
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, "Federico II" University of Naples, Naples, Italy.
| |
Collapse
|
40
|
Catanzaro G, Pucci M, Viscomi MT, Lanuti M, Feole M, Angeletti S, Grasselli G, Mandolesi G, Bari M, Centonze D, D'Addario C, Maccarrone M. Epigenetic modifications of Dexras 1 along the nNOS pathway in an animal model of multiple sclerosis. J Neuroimmunol 2016; 294:32-40. [PMID: 27138096 DOI: 10.1016/j.jneuroim.2016.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 10/22/2022]
Abstract
The development of multiple sclerosis, a major neurodegenerative disease, is due to both genetic and environmental factors that might trigger aberrant epigenetic changes of the genome. In this study, we analysed global DNA methylation in the brain of mice upon induction of experimental autoimmune encephalomyelitis (EAE), and the effect of environmental enrichment (EE). We demonstrate that global DNA methylation decreased in the striatum, but not in the cortex, of EAE mice compared to healthy controls, in particular in neuronal nitric oxide synthase (nNOS)-positive interneurons of this brain area. Also, in the striatum but again not in the cortex, decreased DNA methylation of the nNOS downstream effector, dexamethasone-induced Ras protein 1 (Dexras 1), was observed in EAE mice, and was paralleled by an increase in its mRNA. Interestingly, EE was able to revert EAE effects on mRNA expression and DNA methylation levels of Dexras 1 and reduced gene expression of nNOS and 5-lipoxygenase (Alox5). Conversely, interleukin-1β (IL-1β) gene expression was found up-regulated in EAE mice compared to controls and was not affected by EE. Taken together, these data demonstrate an unprecedented epigenetic modulation of nNOS-signaling in the pathogenesis of multiple sclerosis, and show that EE can specifically revert EAE effects on Dexras 1 along this pathway.
Collapse
Affiliation(s)
- G Catanzaro
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy; European Center for Brain Research, IRCCS Santa Lucia Foundation, Rome, Italy
| | - M Pucci
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - M T Viscomi
- European Center for Brain Research, IRCCS Santa Lucia Foundation, Rome, Italy
| | - M Lanuti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy; European Center for Brain Research, IRCCS Santa Lucia Foundation, Rome, Italy
| | - M Feole
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - S Angeletti
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - G Grasselli
- European Center for Brain Research, IRCCS Santa Lucia Foundation, Rome, Italy; Department of Neurobiology, University of Chicago, Chicago, IL, USA
| | - G Mandolesi
- European Center for Brain Research, IRCCS Santa Lucia Foundation, Rome, Italy
| | - M Bari
- Department of Experimental Medicine and Biochemical Sciences, Tor Vergata University of Rome, Rome, Italy
| | - D Centonze
- Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy & IRCCS Neuromed, Pozzilli (IS), Italy
| | - C D'Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy; European Center for Brain Research, IRCCS Santa Lucia Foundation, Rome, Italy.
| | - M Maccarrone
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy; European Center for Brain Research, IRCCS Santa Lucia Foundation, Rome, Italy.
| |
Collapse
|
41
|
Gomes AVBT, de Souza Morais SM, Menezes-Filho SL, de Almeida LGN, Rocha RP, Ferreira JMS, Dos Santos LL, Malaquias LCC, Coelho LFL. Demethylation profile of the TNF-α promoter gene is associated with high expression of this cytokine in Dengue virus patients. J Med Virol 2016; 88:1297-302. [PMID: 26792115 DOI: 10.1002/jmv.24478] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2016] [Indexed: 11/09/2022]
Abstract
Dengue is the most prevalent arthropod-borne viral illness in humans. The overexpression of cytokines by Dengue virus (DENV) infected cells is associated with the most severe forms of the disease. Unmethylated CpG islands are related to a transcriptionally active structure, whereas methylated DNA recruits methyl-binding proteins that inhibit gene expression. Several studies have described the importance of epigenetic events in the regulation and expression of many cytokines. The purpose of the present study was to evaluate the methylation status of the IFN-γ and TNF-α promoters in DNA extracted from dengue infected patients using methylation-specific polymerase chain reaction. A high frequency of demethylation was observed in the TNF-α promoter of DENV infected patients when compared to non-infected controls. The patients with an unmethylated profile showed higher expression of TNF-α mRNA than patients with the methylated status. No difference was found in the methylation frequency between the two analyzed groups regarding the IFN-γ promoter or in the expression of IFN-γ transcripts. The present study provides the first association of TNF-α promoter demethylation in DENV infected individuals and demonstrates a correlation between the methylation status of the region analyzed and the expression of TNF-α transcripts in DENV infected patients. J. Med. Virol. 88:1297-1302, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Stella Maria de Souza Morais
- Laboratório de Vacinas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, Minas Gerais, Brazil
| | - Sergio Luiz Menezes-Filho
- Laboratório de Vacinas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, Minas Gerais, Brazil
| | | | - Raissa Prado Rocha
- Laboratório de Vacinas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, Minas Gerais, Brazil
| | | | - Luciana Lara Dos Santos
- Campus Centro-Oeste Dona Lindu, Universidade Federal de São João Del-Rei, Divinópolis, Brazil
| | - Luiz Cosme Cotta Malaquias
- Laboratório de Vacinas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, Minas Gerais, Brazil
| | - Luiz Felipe Leomil Coelho
- Laboratório de Vacinas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, Minas Gerais, Brazil
| |
Collapse
|
42
|
Fernández-Ruiz J, Romero J, Ramos JA. Endocannabinoids and Neurodegenerative Disorders: Parkinson's Disease, Huntington's Chorea, Alzheimer's Disease, and Others. Handb Exp Pharmacol 2015; 231:233-59. [PMID: 26408163 DOI: 10.1007/978-3-319-20825-1_8] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review focuses on the role of the endocannabinoid signaling system in controlling neuronal survival, an extremely important issue to be considered when developing new therapies for neurodegenerative disorders. First, we will describe the cellular and molecular mechanisms, and the signaling pathways, underlying these neuroprotective properties, including the control of glutamate homeostasis, calcium influx, the toxicity of reactive oxygen species, glial activation and other inflammatory events; and the induction of autophagy. We will then concentrate on the preclinical studies and the few clinical trials that have been carried out targeting endocannabinoid signaling in three important chronic progressive neurodegenerative disorders (Parkinson's disease, Huntington's chorea, and Alzheimer's disease), as well as in other less well-studied disorders. We will end by offering some ideas and proposals for future research that should be carried out to optimize endocannabinoid-based treatments for these disorders. Such studies will strengthen the possibility that these therapies will be investigated in the clinical scenario and licensed for their use in specific disorders.
Collapse
Affiliation(s)
- Javier Fernández-Ruiz
- Facultad de Medicina, Departamento de Bioquímica y Biología Molecular III, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense, Ciudad Universitaria s/n, 28040, Madrid, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| | - Julián Romero
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Madrid, Spain
- Departamento de Ciencias Biosanitarias, Universidad Francisco de Vitoria, Madrid, Spain
| | - José A Ramos
- Facultad de Medicina, Departamento de Bioquímica y Biología Molecular III, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense, Ciudad Universitaria s/n, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| |
Collapse
|
43
|
Gasperi V, Evangelista D, Savini I, Del Principe D, Avigliano L, Maccarrone M, Catani MV. Downstream effects of endocannabinoid on blood cells: implications for health and disease. Cell Mol Life Sci 2015; 72:3235-52. [PMID: 25957591 PMCID: PMC11113859 DOI: 10.1007/s00018-015-1924-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 04/22/2015] [Accepted: 05/05/2015] [Indexed: 01/02/2023]
Abstract
Endocannabinoids (eCBs), among which N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG) are the most biologically active members, are polyunsaturated lipids able to bind cannabinoid, vanilloid and peroxisome proliferator-activated receptors. Depending on the target engaged, these bioactive mediators can regulate different signalling pathways, at both central and peripheral levels. The biological action of eCBs is tightly controlled by a plethora of metabolic enzymes which, together with the molecular targets of these substances, form the so-called "endocannabinoid system". The ability of eCBs to control manifold peripheral functions has received a great deal of attention, especially in the light of their widespread distribution in the body. In particular, eCBs are important regulators in blood, where they modulate haematopoiesis, platelet aggregation and apoptosis, as well as chemokine release and migration of immunocompetent cells. Here, we shall review the current knowledge on the pathophysiological roles of eCBs in blood. We shall also discuss the involvement of eCBs in those disorders affecting the haematological system, including cancer and inflammation. Knowledge gained to date underlines a fundamental role of the eCB system in blood, thus suggesting that it may represent a therapeutic promise for a broad range of diseases involving impaired hematopoietic cell functions.
Collapse
Affiliation(s)
- Valeria Gasperi
- Department of Experimental Medicine and Surgery, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Daniela Evangelista
- Department of Experimental Medicine and Surgery, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Isabella Savini
- Department of Experimental Medicine and Surgery, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | | | - Luciana Avigliano
- Department of Experimental Medicine and Surgery, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Mauro Maccarrone
- Center of Integrated Research, Campus Bio-Medico University of Rome, Rome, Italy
- European Center for Brain Research (CERC)/Santa Lucia Foundation, Rome, Italy
| | - Maria Valeria Catani
- Department of Experimental Medicine and Surgery, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
44
|
Di Francesco A, Arosio B, Falconi A, Micioni Di Bonaventura MV, Karimi M, Mari D, Casati M, Maccarrone M, D'Addario C. Global changes in DNA methylation in Alzheimer's disease peripheral blood mononuclear cells. Brain Behav Immun 2015; 45:139-44. [PMID: 25452147 DOI: 10.1016/j.bbi.2014.11.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 10/24/2014] [Accepted: 11/04/2014] [Indexed: 11/21/2022] Open
Abstract
Changes in epigenetic marks may help explain the late onset of Alzheimer's disease (AD). In this study we measured genome-wide DNA methylation by luminometric methylation assay, a quantitative measurement of genome-wide DNA methylation, on DNA isolated from peripheral blood mononuclear cells of 37 subjects with late-onset AD (LOAD) and 44 healthy controls (CT). We found an increase in global DNA methylation in LOAD subjects compared to CT (p=0.0122), associated with worse cognitive performances (p=0.0002). DNA hypermethylation in LOAD group was paralleled by higher DNA methyltransferase 1 (DNMT1) gene expression and protein levels. When data were stratified on the basis of the APOE polymorphisms, higher DNA methylation levels were associated with the presence of APOE ε4 allele (p=0.0043) in the global population. Among the APOE ε3 carriers, a significant increase of DNA methylation was still observed in LOAD patients compared to healthy controls (p=0.05). Our data suggest global DNA methylation in peripheral samples as a useful marker for screening individuals at risk of developing AD.
Collapse
Affiliation(s)
- Andrea Di Francesco
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy.
| | - Beatrice Arosio
- Geriatric Unit, Department of Medical Sciences and Community Health, University of Milan, Milan, Italy; Fondazione Ca' Granda, IRCCS, Ospedale Maggiore Policlinico, Milan, Italy
| | - Anastasia Falconi
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | | | - Mohsen Karimi
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
| | - Daniela Mari
- Geriatric Unit, Department of Medical Sciences and Community Health, University of Milan, Milan, Italy; Fondazione Ca' Granda, IRCCS, Ospedale Maggiore Policlinico, Milan, Italy
| | - Martina Casati
- Fondazione Ca' Granda, IRCCS, Ospedale Maggiore Policlinico, Milan, Italy
| | - Mauro Maccarrone
- Center of Integrated Research, Campus Bio-Medico University of Rome, Italy; European Center for Brain Research, Santa Lucia Foundation, IRCCS, Rome, Italy
| | - Claudio D'Addario
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy; Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
45
|
Bennett DA, Yu L, Yang J, Srivastava GP, Aubin C, De Jager PL. Epigenomics of Alzheimer's disease. Transl Res 2015; 165:200-20. [PMID: 24905038 PMCID: PMC4233194 DOI: 10.1016/j.trsl.2014.05.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 05/08/2014] [Accepted: 05/10/2014] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a large and growing public health problem. It is characterized by the accumulation of amyloid β peptides and abnormally phosphorylated tau proteins that are associated with cognitive decline and dementia. Much has been learned about the genomics of AD from linkage analyses and, more recently, genome-wide association studies. Several but not all aspects of the genomic landscape are involved in amyloid β metabolism. The moderate concordance of disease among twins suggests other factors, potentially epigenomic factors, are related to AD. We are at the earliest stages of examining the relation of the epigenome to the clinical and pathologic phenotypes that characterize AD. Our literature review suggests that there is some evidence of age-related changes in human brain methylation. Unfortunately, studies of AD have been relatively small with limited coverage of methylation sites and microRNA, let alone other epigenomic marks. We are in the midst of 2 large studies of human brains including coverage of more than 420,000 autosomal cytosine-guanine dinucleotides with the Illumina Infinium HumanMethylation450 BeadArray, and histone acetylation with chromatin immunoprecipitation sequencing. We present descriptive data to help inform other researchers what to expect from these approaches to better design and power their studies. We then discuss future directions to inform on the epigenomic architecture of AD.
Collapse
Affiliation(s)
- David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Ill.
| | - Lei Yu
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Ill
| | - Jingyun Yang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Ill
| | - Gyan P Srivastava
- Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass; Program in Medical and Population Genetics, Broad Institute, Cambridge, Mass
| | - Cristin Aubin
- Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass; Program in Medical and Population Genetics, Broad Institute, Cambridge, Mass
| | - Philip L De Jager
- Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass; Program in Medical and Population Genetics, Broad Institute, Cambridge, Mass
| |
Collapse
|
46
|
Pascual A, Martín-Moreno A, Giusto N, de Ceballos M, Pasquaré S. Normal aging in rats and pathological aging in human Alzheimer’s disease decrease FAAH activity: Modulation by cannabinoid agonists. Exp Gerontol 2014; 60:92-9. [DOI: 10.1016/j.exger.2014.10.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 10/15/2014] [Accepted: 10/16/2014] [Indexed: 12/21/2022]
|
47
|
Pucci M, Rapino C, Di Francesco A, Dainese E, D'Addario C, Maccarrone M. Epigenetic control of skin differentiation genes by phytocannabinoids. Br J Pharmacol 2014; 170:581-91. [PMID: 23869687 DOI: 10.1111/bph.12309] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 06/28/2013] [Accepted: 07/03/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Endocannabinoid signalling has been shown to have a role in the control of epidermal physiology, whereby anandamide is able to regulate the expression of skin differentiation genes through DNA methylation. Here, we investigated the possible epigenetic regulation of these genes by several phytocannabinoids, plant-derived cannabinoids that have the potential to be novel therapeutics for various human diseases. EXPERIMENTAL APPROACH The effects of cannabidiol, cannabigerol and cannabidivarin on the expression of skin differentiation genes keratins 1 and 10, involucrin and transglutaminase 5, as well as on DNA methylation of keratin 10 gene, were investigated in human keratinocytes (HaCaT cells). The effects of these phytocannabinoids on global DNA methylation and the activity and expression of four major DNA methyltransferases (DNMT1, 3a, 3b and 3L) were also examined. KEY RESULTS Cannabidiol and cannabigerol significantly reduced the expression of all the genes tested in differentiated HaCaT cells, by increasing DNA methylation of keratin 10 gene, but cannabidivarin was ineffective. Remarkably, cannabidiol reduced keratin 10 mRNA through a type-1 cannabinoid (CB1 ) receptor-dependent mechanism, whereas cannabigerol did not affect either CB1 or CB2 receptors of HaCaT cells. In addition, cannabidiol, but not cannabigerol, increased global DNA methylation levels by selectively enhancing DNMT1 expression, without affecting DNMT 3a, 3b or 3L. CONCLUSIONS AND IMPLICATIONS These findings show that the phytocannabinoids cannabidiol and cannabigerol are transcriptional repressors that can control cell proliferation and differentiation. This indicates that they (especially cannabidiol) have the potential to be lead compounds for the development of novel therapeutics for skin diseases.
Collapse
Affiliation(s)
- Mariangela Pucci
- Department of Biomedical Sciences, University of Teramo, Teramo, Italy
| | | | | | | | | | | |
Collapse
|
48
|
Peripheral blood mononuclear cells as a laboratory to study dementia in the elderly. BIOMED RESEARCH INTERNATIONAL 2014; 2014:169203. [PMID: 24877062 PMCID: PMC4022117 DOI: 10.1155/2014/169203] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/28/2014] [Indexed: 02/08/2023]
Abstract
The steady and dramatic increase in the incidence of Alzheimer's disease (AD) and the lack of effective treatments have stimulated the search for strategies to prevent or delay its onset and/or progression. Since the diagnosis of dementia requires a number of established features that are present when the disease is fully developed, but not always in the early stages, the need for a biological marker has proven to be urgent, in terms of both diagnosis and monitoring of AD. AD has been shown to affect peripheral blood mononuclear cells (PBMCs) that are a critical component of the immune system which provide defence against infection. Although studies are continuously supplying additional data that emphasize the central role of inflammation in AD, PBMCs have not been sufficiently investigated in this context. Delineating biochemical alterations in AD blood constituents may prove valuable in identifying accessible footprints that reflect degenerative processes within the Central Nervous System (CNS). In this review, we address the role of biomarkers in AD with a focus on the notion that PBMCs may serve as a peripheral laboratory to find molecular signatures that could aid in differential diagnosis with other forms of dementia and in monitoring of disease progression.
Collapse
|
49
|
Koppel J, Vingtdeux V, Marambaud P, d'Abramo C, Jimenez H, Stauber M, Friedman R, Davies P. CB2 receptor deficiency increases amyloid pathology and alters tau processing in a transgenic mouse model of Alzheimer's disease. Mol Med 2014; 20:29-36. [PMID: 24722782 DOI: 10.2119/molmed.2013.00140.revised] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 10/29/2013] [Indexed: 11/06/2022] Open
Abstract
The endocannabinoid CB2 receptor system has been implicated in the neuropathology of Alzheimer's disease (AD). In order to investigate the impact of the CB2 receptor system on AD pathology, a colony of mice with a deleted CB2 receptor gene, CNR2, was established on a transgenic human mutant APP background for pathological comparison with CB2 receptor-sufficient transgenic mice. J20 APP (PDGFB-APPSwInd) mice were bred over two generations with CNR2(-/-) (Cnr2(tm1Dgen)/J) mice to produce a colony of J20 CNR2(+/+) and J20 CNR2(-/-) mice. Seventeen J20 CNR2(+/+) mice (12 females, 5 males) and 16 J20 CNR2(-/-) mice (11 females, 5 males) were killed at 12 months, and their brains were interrogated for AD-related pathology with both biochemistry and immunocytochemistry (ICC). In addition to amyloid-dependent endpoints such as soluble Aβ production and plaque deposition quantified with 6E10 staining, the effect of CB2 receptor deletion on total soluble mouse tau production was assayed by using a recently developed high-sensitivity assay. Results revealed that soluble Aβ42 and plaque deposition were significantly increased in J20 CNR2(-/-) mice relative to CNR2(+/+) mice. Microgliosis, quantified with ionized calcium-binding adapter molecule 1 (Iba-1) staining, did not differ between groups, whereas plaque associated microglia was more abundant in J20 CNR2(-/-) mice. Total tau was significantly suppressed in J20 CNR2(-/-) mice relative to J20 CNR2(+/+) mice. The results confirm the constitutive role of the CB2 receptor system both in reducing amyloid plaque pathology in AD and also support tehpotential of cannabinoid therapies targeting CB2 to reduce Aβ; however, the results suggest that interventions may have a divergent effect on tau pathology.
Collapse
Affiliation(s)
- Jeremy Koppel
- Litwin-Zucker Research Center, Feinstein Institute for Medical Research, North-Shore Long Island Jewish Health System, Manhasset, New York, United States of America
| | - Valerie Vingtdeux
- Litwin-Zucker Research Center, Feinstein Institute for Medical Research, North-Shore Long Island Jewish Health System, Manhasset, New York, United States of America
| | - Philippe Marambaud
- Litwin-Zucker Research Center, Feinstein Institute for Medical Research, North-Shore Long Island Jewish Health System, Manhasset, New York, United States of America
| | - Cristina d'Abramo
- Litwin-Zucker Research Center, Feinstein Institute for Medical Research, North-Shore Long Island Jewish Health System, Manhasset, New York, United States of America
| | - Heidy Jimenez
- Litwin-Zucker Research Center, Feinstein Institute for Medical Research, North-Shore Long Island Jewish Health System, Manhasset, New York, United States of America
| | - Mark Stauber
- Yeshiva University, New York, New York, United States of America
| | - Rachel Friedman
- Queens College, New York, New York, United States of America
| | - Peter Davies
- Litwin-Zucker Research Center, Feinstein Institute for Medical Research, North-Shore Long Island Jewish Health System, Manhasset, New York, United States of America
| |
Collapse
|
50
|
Aso E, Ferrer I. Cannabinoids for treatment of Alzheimer's disease: moving toward the clinic. Front Pharmacol 2014; 5:37. [PMID: 24634659 PMCID: PMC3942876 DOI: 10.3389/fphar.2014.00037] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 02/19/2014] [Indexed: 01/17/2023] Open
Abstract
The limited effectiveness of current therapies against Alzheimer’s disease (AD) highlights the need for intensifying research efforts devoted to developing new agents for preventing or retarding the disease process. During the last few years, targeting the endogenous cannabinoid system has emerged as a potential therapeutic approach to treat Alzheimer. The endocannabinoid system is composed by a number of cannabinoid receptors, including the well-characterized CB1 and CB2 receptors, with their endogenous ligands and the enzymes related to the synthesis and degradation of these endocannabinoid compounds. Several findings indicate that the activation of both CB1 and CB2 receptors by natural or synthetic agonists, at non-psychoactive doses, have beneficial effects in Alzheimer experimental models by reducing the harmful β-amyloid peptide action and tau phosphorylation, as well as by promoting the brain’s intrinsic repair mechanisms. Moreover, endocannabinoid signaling has been demonstrated to modulate numerous concomitant pathological processes, including neuroinflammation, excitotoxicity, mitochondrial dysfunction, and oxidative stress. The present paper summarizes the main experimental studies demonstrating the polyvalent properties of cannabinoid compounds for the treatment of AD, which together encourage progress toward a clinical trial.
Collapse
Affiliation(s)
- Ester Aso
- Institut de Neuropatologia, Servei d'Anatomia Patològica, Institut d'Investigació Biomèdica de Bellvitge-Hospital Universitari de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat Spain ; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto Carlos III Spain
| | - Isidre Ferrer
- Institut de Neuropatologia, Servei d'Anatomia Patològica, Institut d'Investigació Biomèdica de Bellvitge-Hospital Universitari de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat Spain ; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto Carlos III Spain
| |
Collapse
|