1
|
Jeon D, Hill E, McNeel DG. Toll-like receptor agonists as cancer vaccine adjuvants. Hum Vaccin Immunother 2024; 20:2297453. [PMID: 38155525 PMCID: PMC10760790 DOI: 10.1080/21645515.2023.2297453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/16/2023] [Indexed: 12/30/2023] Open
Abstract
Cancer immunotherapy has emerged as a promising strategy to treat cancer patients. Among the wide range of immunological approaches, cancer vaccines have been investigated to activate and expand tumor-reactive T cells. However, most cancer vaccines have not shown significant clinical benefit as monotherapies. This is likely due to the antigen targets of vaccines, "self" proteins to which there is tolerance, as well as to the immunosuppressive tumor microenvironment. To help circumvent immune tolerance and generate effective immune responses, adjuvants for cancer vaccines are necessary. One representative adjuvant family is Toll-Like receptor (TLR) agonists, synthetic molecules that stimulate TLRs. TLRs are the largest family of pattern recognition receptors (PRRs) that serve as the sensors of pathogens or cellular damage. They recognize conserved foreign molecules from pathogens or internal molecules from cellular damage and propel innate immune responses. When used with vaccines, activation of TLRs signals an innate damage response that can facilitate the development of a strong adaptive immune response against the target antigen. The ability of TLR agonists to modulate innate immune responses has positioned them to serve as adjuvants for vaccines targeting infectious diseases and cancers. This review provides a summary of various TLRs, including their expression patterns, their functions in the immune system, as well as their ligands and synthetic molecules developed as TLR agonists. In addition, it presents a comprehensive overview of recent strategies employing different TLR agonists as adjuvants in cancer vaccine development, both in pre-clinical models and ongoing clinical trials.
Collapse
Affiliation(s)
- Donghwan Jeon
- Department of Oncology, University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Ethan Hill
- Department of Medicine, University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Douglas G. McNeel
- Department of Medicine, University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| |
Collapse
|
2
|
Al Madhoun A. MicroRNA-630: A potential guardian against inflammation in diabetic kidney disease. World J Diabetes 2024; 15:1837-1841. [PMID: 39280181 PMCID: PMC11372643 DOI: 10.4239/wjd.v15.i9.1837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/20/2024] [Accepted: 06/17/2024] [Indexed: 08/27/2024] Open
Abstract
In this editorial, we comment on the article by Wu et al published "MicroRNA-630 alleviates inflammatory reactions in rats with diabetic kidney disease by targeting toll-like receptor 4". Diabetic kidney disease (DKD) stands as a significant complication occurring from diabetes mellitus, which contributes substantially to the morbidity and mortality rates worldwide. Renal tubular epithelial cell da-mage, often accompanied by inflammatory responses and mesenchymal trans-differentiation, plays a pivotal role in the progression of DKD. Despite extensive research, the intricate molecular mechanisms underlying these processes remain to be determined. Wu et al remarkable work identifies microRNA-630 (miR-630) as an emerging potential regulator of cell migration, apoptosis, and autophagy, prompting investigation into its association with DKD pathogenesis. This study endeavors to elucidate the impact of miR-630 on TEC injury and the inflammatory response in DKD rats. The role of miR-630 in human DKD will be of interest for future studies.
Collapse
Affiliation(s)
- Ashraf Al Madhoun
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15400, Kuwait
| |
Collapse
|
3
|
Chinunga TT, Chahroudi A, Ribeiro SP. Pediatric immunotherapy and HIV control. Curr Opin HIV AIDS 2024; 19:201-211. [PMID: 38841850 PMCID: PMC11155294 DOI: 10.1097/coh.0000000000000857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
PURPOSE OF REVIEW Highlighting opportunities/potential for immunotherapy by understanding dynamics of HIV control during pediatric HIV infection with and without antiretroviral therapy (ART), as modeled in Simian immunodeficiency virus (SIV) and Simian-human immunodeficiency virus (SHIV)-infected rhesus macaques and observed in clinical trials. This review outlines mode of transmission, pathogenesis of pediatric HIV, unique aspects of the infant immune system, infant macaque models and immunotherapies. RECENT FINDINGS During the earliest stages of perinatal HIV infection, the infant immune system is characterized by a unique environment defined by immune tolerance and lack of HIV-specific T cell responses which contribute to disease progression. Moreover, primary lymphoid organs such as the thymus appear to play a distinct role in HIV pathogenesis in children living with HIV (CLWH). Key components of the immune system determine the degree of viral control, targets for strategies to induce viral control, and the response to immunotherapy. The pursuit of highly potent broadly neutralizing antibodies (bNAbs) and T cell vaccines has revolutionized the approach to HIV cure. Administration of HIV-1-specific bNAbs, targeting the highly variable envelope improves humoral immunity, and T cell vaccines induce or improve T cell responses such as the cytotoxic effects of HIV-1-specific CD8+ T cells, both of which are promising options towards virologic control and ART-free remission as evidenced by completed and ongoing clinical trials. SUMMARY Understanding early events during HIV infection and disease progression in CLWH serves as a foundation for predicting or targeting later outcomes by harnessing the immune system's natural responses. The developing pediatric immune system offers multiple opportunities for specific long-term immunotherapies capable of improving quality of life during adolescence and adulthood.
Collapse
Affiliation(s)
- Tehillah T. Chinunga
- Program in Immunology and Molecular Pathogenesis, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta and Emory University
| | - Susan P. Ribeiro
- Pathology Advanced Translational Research Unit (PATRU), Department of Pathology and Laboratory Medicine, Emory University School of Medicine
- Emory Vaccine Center
- Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Varma VP, Kadivella M, Kavela S, Faisal SM. Leptospira Lipid A Is a Potent Adjuvant That Induces Sterilizing Immunity against Leptospirosis. Vaccines (Basel) 2023; 11:1824. [PMID: 38140228 PMCID: PMC10748165 DOI: 10.3390/vaccines11121824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/16/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Leptospirosis is a globally significant zoonotic disease. The current inactivated vaccine offers protection against specific serovars but does not provide complete immunity. Various surface antigens, such as Leptospira immunoglobulin-like proteins (LigA and LigB), have been identified as potential subunit vaccine candidates. However, these antigens require potent adjuvants for effectiveness. Bacterial lipopolysaccharides (LPSs), including lipid A, are a well-known immunostimulant, and clinical adjuvants often contain monophosphoryl lipid A (MPLA). Being less endotoxic, we investigated the adjuvant properties of lipid A isolated from L. interrogans serovar Pomona (PLA) in activating innate immunity and enhancing antigen-specific adaptive immune responses. PLA activated macrophages to a similar degree as MPLA, albeit at a higher dose, suggesting that it is less potent in stimulation than MPLA. Mice immunized with a variable portion of LigA (LAV) combined with alum and PLA (LAV-alum-PLA) exhibited significantly higher levels of LAV-specific humoral and cellular immune responses compared to alum alone but similar to those induced by alum-MPLA. The adjuvant activity of PLA resembles that of MPLA and is primarily achieved through the increased recruitment, activation, and uptake of antigens by innate immune cells. Furthermore, like MPLA, PLA formulation establishes a long-lasting memory response. Notably, PLA demonstrated superior potency than MPLA formulation and provided sterilizing immunity against the leptospirosis in a hamster model. Overall, our study sheds light on the adjuvant properties of Leptospira lipid A and offers promising avenues for developing LPS-based vaccines against this devastating zoonotic disease.
Collapse
Affiliation(s)
- Vivek P. Varma
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad 500032, India; (V.P.V.); (M.K.); (S.K.)
- Graduate Studies, Manipal Academy of Higher Education, Manipal 576104, India
| | - Mohammad Kadivella
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad 500032, India; (V.P.V.); (M.K.); (S.K.)
- Regional Centre for Biotechnology, Faridabad 121001, India
| | - Sridhar Kavela
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad 500032, India; (V.P.V.); (M.K.); (S.K.)
| | - Syed M. Faisal
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad 500032, India; (V.P.V.); (M.K.); (S.K.)
- Regional Centre for Biotechnology, Faridabad 121001, India
| |
Collapse
|
5
|
Dotiwala F, Upadhyay AK. Next Generation Mucosal Vaccine Strategy for Respiratory Pathogens. Vaccines (Basel) 2023; 11:1585. [PMID: 37896988 PMCID: PMC10611113 DOI: 10.3390/vaccines11101585] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Inducing humoral and cytotoxic mucosal immunity at the sites of pathogen entry has the potential to prevent the infection from getting established. This is different from systemic vaccination, which protects against the development of systemic symptoms. The field of mucosal vaccination has seen fewer technological advances compared to nucleic acid and subunit vaccine advances for injectable vaccine platforms. The advent of the next-generation adenoviral vectors has given a boost to mucosal vaccine research. Basic research into the mechanisms regulating innate and adaptive mucosal immunity and the discovery of effective and safe mucosal vaccine adjuvants will continue to improve mucosal vaccine design. The results from clinical trials of inhaled COVID-19 vaccines demonstrate their ability to induce the proliferation of cytotoxic T cells and the production of secreted IgA and IgG antibodies locally, unlike intramuscular vaccinations. However, these mucosal vaccines induce systemic immune responses at par with systemic vaccinations. This review summarizes the function of the respiratory mucosa-associated lymphoid tissue and the advantages that the adenoviral vectors provide as inhaled vaccine platforms.
Collapse
Affiliation(s)
- Farokh Dotiwala
- Ocugen Inc., 11 Great Valley Parkway, Malvern, PA 19355, USA
| | | |
Collapse
|
6
|
Ren H, Jia W, Xie Y, Yu M, Chen Y. Adjuvant physiochemistry and advanced nanotechnology for vaccine development. Chem Soc Rev 2023; 52:5172-5254. [PMID: 37462107 DOI: 10.1039/d2cs00848c] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Vaccines comprising innovative adjuvants are rapidly reaching advanced translational stages, such as the authorized nanotechnology adjuvants in mRNA vaccines against COVID-19 worldwide, offering new strategies to effectively combat diseases threatening human health. Adjuvants are vital ingredients in vaccines, which can augment the degree, extensiveness, and longevity of antigen specific immune response. The advances in the modulation of physicochemical properties of nanoplatforms elevate the capability of adjuvants in initiating the innate immune system and adaptive immunity, offering immense potential for developing vaccines against hard-to-target infectious diseases and cancer. In this review, we provide an essential introduction of the basic principles of prophylactic and therapeutic vaccination, key roles of adjuvants in augmenting and shaping immunity to achieve desired outcomes and effectiveness, and the physiochemical properties and action mechanisms of clinically approved adjuvants for humans. We particularly focus on the preclinical and clinical progress of highly immunogenic emerging nanotechnology adjuvants formulated in vaccines for cancer treatment or infectious disease prevention. We deliberate on how the immune system can sense and respond to the physicochemical cues (e.g., chirality, deformability, solubility, topology, and chemical structures) of nanotechnology adjuvants incorporated in the vaccines. Finally, we propose possible strategies to accelerate the clinical implementation of nanotechnology adjuvanted vaccines, such as in-depth elucidation of nano-immuno interactions, antigen identification and optimization by the deployment of high-dimensional multiomics analysis approaches, encouraging close collaborations among scientists from different scientific disciplines and aggressive exploration of novel nanotechnologies.
Collapse
Affiliation(s)
- Hongze Ren
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Wencong Jia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Yujie Xie
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Meihua Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
7
|
Brai A, Poggialini F, Pasqualini C, Trivisani CI, Vagaggini C, Dreassi E. Progress towards Adjuvant Development: Focus on Antiviral Therapy. Int J Mol Sci 2023; 24:9225. [PMID: 37298177 PMCID: PMC10253057 DOI: 10.3390/ijms24119225] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
In recent decades, vaccines have been extraordinary resources to prevent pathogen diffusion and cancer. Even if they can be formed by a single antigen, the addition of one or more adjuvants represents the key to enhance the response of the immune signal to the antigen, thus accelerating and increasing the duration and the potency of the protective effect. Their use is of particular importance for vulnerable populations, such as the elderly or immunocompromised people. Despite their importance, only in the last forty years has the search for novel adjuvants increased, with the discovery of novel classes of immune potentiators and immunomodulators. Due to the complexity of the cascades involved in immune signal activation, their mechanism of action remains poorly understood, even if significant discovery has been recently made thanks to recombinant technology and metabolomics. This review focuses on the classes of adjuvants under research, recent mechanism of action studies, as well as nanodelivery systems and novel classes of adjuvants that can be chemically manipulated to create novel small molecule adjuvants.
Collapse
Affiliation(s)
- Annalaura Brai
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy; (A.B.); (F.P.); (C.P.); (C.V.)
| | - Federica Poggialini
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy; (A.B.); (F.P.); (C.P.); (C.V.)
| | - Claudia Pasqualini
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy; (A.B.); (F.P.); (C.P.); (C.V.)
| | - Claudia Immacolata Trivisani
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy; (A.B.); (F.P.); (C.P.); (C.V.)
- Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria
| | - Chiara Vagaggini
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy; (A.B.); (F.P.); (C.P.); (C.V.)
| | - Elena Dreassi
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy; (A.B.); (F.P.); (C.P.); (C.V.)
| |
Collapse
|
8
|
Sanchez MV, Ebensen T, Schulze K, Cargnelutti DE, Scodeller EA, Guzmán CA. Protective Efficacy of a Mucosal Influenza Vaccine Formulation Based on the Recombinant Nucleoprotein Co-Administered with a TLR2/6 Agonist BPPcysMPEG. Pharmaceutics 2023; 15:pharmaceutics15030912. [PMID: 36986773 PMCID: PMC10057018 DOI: 10.3390/pharmaceutics15030912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 03/16/2023] Open
Abstract
Current influenza vaccines target highly variable surface glycoproteins; thus, mismatches between vaccine strains and circulating strains often diminish vaccine protection. For this reason, there is still a critical need to develop effective influenza vaccines able to protect also against the drift and shift of different variants of influenza viruses. It has been demonstrated that influenza nucleoprotein (NP) is a strong candidate for a universal vaccine, which contributes to providing cross-protection in animal models. In this study, we developed an adjuvanted mucosal vaccine using the recombinant NP (rNP) and the TLR2/6 agonist S-[2,3-bispalmitoyiloxy-(2R)-propyl]-R-cysteinyl-amido-monomethoxyl-poly-ethylene-glycol (BPPcysMPEG). The vaccine efficacy was compared with that observed following parenteral vaccination of mice with the same formulation. Mice vaccinated with 2 doses of rNP alone or co-administered with BPPcysMPEG by the intranasal (i.n.) route showed enhanced antigen-specific humoral and cellular responses. Moreover, NP-specific humoral immune responses, characterized by significant NP-specific IgG and IgG subclass titers in sera and NP-specific IgA titers in mucosal territories, were remarkably increased in mice vaccinated with the adjuvanted formulation as compared with those of the non-adjuvanted vaccination group. The addition of BPPcysMPEG also improved NP-specific cellular responses in vaccinated mice, characterized by robust lymphoproliferation and mixed Th1/Th2/Th17 immune profiles. Finally, it is notable that the immune responses elicited by the novel formulation administered by the i.n. route were able to confer protection against the influenza H1N1 A/Puerto Rico/8/1934 virus.
Collapse
Affiliation(s)
- Maria Victoria Sanchez
- Laboratorio de Inmunología y Desarrollo de Vacunas, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CCT-CONICET, Universidad Nacional de Cuyo, Mendoza M5500, Argentina; (M.V.S.); (D.E.C.); (E.A.S.)
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (T.E.); (K.S.)
| | - Thomas Ebensen
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (T.E.); (K.S.)
| | - Kai Schulze
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (T.E.); (K.S.)
| | - Diego Esteban Cargnelutti
- Laboratorio de Inmunología y Desarrollo de Vacunas, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CCT-CONICET, Universidad Nacional de Cuyo, Mendoza M5500, Argentina; (M.V.S.); (D.E.C.); (E.A.S.)
| | - Eduardo A. Scodeller
- Laboratorio de Inmunología y Desarrollo de Vacunas, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CCT-CONICET, Universidad Nacional de Cuyo, Mendoza M5500, Argentina; (M.V.S.); (D.E.C.); (E.A.S.)
| | - Carlos A. Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (T.E.); (K.S.)
- Correspondence: ; Tel.: +49-531-61814600; Fax: +49-531-618414699
| |
Collapse
|
9
|
Romerio A, Gotri N, Franco AR, Artusa V, Shaik MM, Pasco ST, Atxabal U, Matamoros-Recio A, Mínguez-Toral M, Zalamea JD, Franconetti A, Abrescia NGA, Jimenez-Barbero J, Anguita J, Martín-Santamaría S, Peri F. New Glucosamine-Based TLR4 Agonists: Design, Synthesis, Mechanism of Action, and In Vivo Activity as Vaccine Adjuvants. J Med Chem 2023; 66:3010-3029. [PMID: 36728697 PMCID: PMC9969399 DOI: 10.1021/acs.jmedchem.2c01998] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We disclose here a panel of small-molecule TLR4 agonists (the FP20 series) whose structure is derived from previously developed TLR4 ligands (FP18 series). The new molecules have increased chemical stability and a shorter, more efficient, and scalable synthesis. The FP20 series showed selective activity as TLR4 agonists with a potency similar to FP18. Interestingly, despite the chemical similarity with the FP18 series, FP20 showed a different mechanism of action and immunofluorescence microscopy showed no NF-κB nor p-IRF-3 nuclear translocation but rather MAPK and NLRP3-dependent inflammasome activation. The computational studies related a 3D shape of FP20 series with agonist binding properties inside the MD-2 pocket. FP20 displayed a CMC value lower than 5 μM in water, and small unilamellar vesicle (SUV) formation was observed in the biological activity concentration range. FP20 showed no toxicity in mouse vaccination experiments with OVA antigen and induced IgG production, thus indicating a promising adjuvant activity.
Collapse
Affiliation(s)
- Alessio Romerio
- Department
of Biotechnology and Biosciences, University
of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy
| | - Nicole Gotri
- Department
of Biotechnology and Biosciences, University
of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy
| | - Ana Rita Franco
- Department
of Biotechnology and Biosciences, University
of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy
| | - Valentina Artusa
- Department
of Biotechnology and Biosciences, University
of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy
| | - Mohammed Monsoor Shaik
- Department
of Biotechnology and Biosciences, University
of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy
| | - Samuel T. Pasco
- Center
for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Unai Atxabal
- Center
for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Alejandra Matamoros-Recio
- Centro
de Investigaciones Biológicas Margarita Salas CSIC, C/Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Marina Mínguez-Toral
- Centro
de Investigaciones Biológicas Margarita Salas CSIC, C/Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Juan Diego Zalamea
- Center
for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Antonio Franconetti
- Center
for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Nicola G. A. Abrescia
- Center
for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain,Ikerbasque,
Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Bizkaia, Spain
| | - Jesus Jimenez-Barbero
- Center
for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain,Ikerbasque,
Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Bizkaia, Spain,Department
of Organic Chemistry, II Faculty of Science and Technology, EHU-UPV, 48940 Leioa, Spain,Centro
de Investigación Biomédica En Red de Enfermedades Respiratorias, 28029 Madrid, Spain
| | - Juan Anguita
- Center
for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain,Ikerbasque,
Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Bizkaia, Spain
| | | | - Francesco Peri
- Department
of Biotechnology and Biosciences, University
of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy,
| |
Collapse
|
10
|
Garcia-Vello P, Di Lorenzo F, Zucchetta D, Zamyatina A, De Castro C, Molinaro A. Lipopolysaccharide lipid A: A promising molecule for new immunity-based therapies and antibiotics. Pharmacol Ther 2022; 230:107970. [PMID: 34454000 DOI: 10.1016/j.pharmthera.2021.107970] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/24/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022]
Abstract
Lipopolysaccharides (LPS) are the main components of the external leaflet of the Gram-negative outer membrane and consist of three different moieties: lipid A, core oligosaccharide, and O-polysaccharide. The lipid A is a glucosamine disaccharide with different levels of acylation and phosphorylation, beside carrying, in certain cases, additional substituents on the sugar backbone. It is also the main immunostimulatory part of the LPS, as its recognition by the host immune system represents a fundamental event for detection of perilous microorganisms. Moreover, an uncontrolled immune response caused by a large amount of circulating LPS can lead to dramatic outcomes for human health, such as septic shock. The immunostimulant properties of an LPS incredibly vary depending on lipid A chemical structure, and for this reason, natural and synthetic variants of the lipid A are under study to develop new drugs that mimic or antagonise its natural effects. Here, we review past and recent findings on the lipid A as an antibiotic target and immune-therapeutic molecule, with a special attention on the crucial role of the chemical structure and its exploitation for conceiving novel strategies for treatment of several immune-related pathologies.
Collapse
Affiliation(s)
- Pilar Garcia-Vello
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy.
| | - Flaviana Di Lorenzo
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - Daniele Zucchetta
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Alla Zamyatina
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Cristina De Castro
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy.
| |
Collapse
|
11
|
Firdaus FZ, Skwarczynski M, Toth I. Developments in Vaccine Adjuvants. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2412:145-178. [PMID: 34918245 DOI: 10.1007/978-1-0716-1892-9_8] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vaccines, including subunit, recombinant, and conjugate vaccines, require the use of an immunostimulator/adjuvant for maximum efficacy. Adjuvants not only enhance the strength and longevity of immune responses but may also influence the type of response. In this chapter, we review the adjuvants that are available for use in human vaccines, such as alum, MF59, AS03, and AS01. We extensively discuss their composition, characteristics, mechanism of action, and effects on the immune system. Additionally, we summarize recent trends in adjuvant discovery, providing a brief overview of saponins, TLRs agonists, polysaccharides, nanoparticles, cytokines, and mucosal adjuvants.
Collapse
Affiliation(s)
- Farrhana Ziana Firdaus
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia. .,Institute of Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia. .,School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia.
| |
Collapse
|
12
|
Xu H, Cai L, Hufnagel S, Cui Z. Intranasal vaccine: Factors to consider in research and development. Int J Pharm 2021; 609:121180. [PMID: 34637935 DOI: 10.1016/j.ijpharm.2021.121180] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 01/01/2023]
Abstract
Most existing vaccines for human use are administered by needle-based injection. Administering vaccines needle-free intranasally has numerous advantages over by needle-based injection, but there are only a few intranasal vaccines that are currently approved for human use, and all of them are live attenuated influenza virus vaccines. Clearly, there are immunological as well as non-immunological challenges that prevent vaccine developers from choosing the intranasal route of administration. We reviewed current approved intranasal vaccines and pipelines and described the target of intranasal vaccines, i.e. nose and lymphoid tissues in the nasal cavity. We then analyzed factors unique to intranasal vaccines that need to be considered when researching and developing new intranasal vaccines. We concluded that while the choice of vaccine formulations, mucoadhesives, mucosal and epithelial permeation enhancers, and ligands that target M-cells are important, safe and effective intranasal mucosal vaccine adjuvants are needed to successfully develop an intranasal vaccine that is not based on live-attenuated viruses or bacteria. Moreover, more effective intranasal vaccine application devices that can efficiently target a vaccine to lymphoid tissues in the nasal cavity as well as preclinical animal models that can better predict intranasal vaccine performance in clinical trials are needed to increase the success rate of intranasal vaccines in clinical trials.
Collapse
Affiliation(s)
- Haiyue Xu
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States
| | - Lucy Cai
- University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Stephanie Hufnagel
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States
| | - Zhengrong Cui
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States.
| |
Collapse
|
13
|
Rossi I, Spagnoli G, Buttini F, Sonvico F, Stellari F, Cavazzini D, Chen Q, Müller M, Bolchi A, Ottonello S, Bettini R. A respirable HPV-L2 dry-powder vaccine with GLA as amphiphilic lubricant and immune-adjuvant. J Control Release 2021; 340:209-220. [PMID: 34740725 DOI: 10.1016/j.jconrel.2021.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/16/2021] [Accepted: 11/01/2021] [Indexed: 11/19/2022]
Abstract
Vaccines not requiring cold-chain storage/distribution and suitable for needle-free delivery are urgently needed. Pulmonary administration is one of the most promising non-parenteral routes for vaccine delivery. Through a multi-component excipient and spray-drying approach, we engineered highly respirable dry-powder vaccine particles containing a three-fold repeated peptide epitope derived from human papillomavirus (HPV16) minor capsid protein L2 displayed on Pyrococcus furious thioredoxin as antigen. A key feature of our engineering approach was the use of the amphiphilic endotoxin derivative glucopyranosyl lipid A (GLA) as both a coating agent enhancing particle de-aggregation and respirability as well as a built-in immune-adjuvant. Following an extensive characterization of the in vitro aerodynamic performance, lung deposition was verified in vivo by intratracheal administration in mice of a vaccine powder containing a fluorescently labeled derivative of the antigen. This was followed by a short-term immunization study that highlighted the ability of the GLA-adjuvanted vaccine powder to induce an anti-L2 systemic immune response comparable to (or even better than) that of the subcutaneously administered liquid-form vaccine. Despite the very short-term immunization conditions employed for this preliminary vaccination experiment, the intratracheally administered dry-powder, but not the subcutaneously injected liquid-state, vaccine induced consistent HPV neutralizing responses. Overall, the present data provide proof-of-concept validation of a new formulation design to produce a dry-powder vaccine that may be easily transferred to other antigens.
Collapse
Affiliation(s)
- Irene Rossi
- Department of Food and Drug Sciences, University of Parma, Parco Area delle Scienze Parma, Italy; Interdepartmental Center Biopharmanet-tec, University of Parma, Parco Area delle Scienze Parma, Italy
| | - Gloria Spagnoli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze Parma, Italy; Interdepartmental Center Biopharmanet-tec, University of Parma, Parco Area delle Scienze Parma, Italy
| | - Francesca Buttini
- Department of Food and Drug Sciences, University of Parma, Parco Area delle Scienze Parma, Italy; Interdepartmental Center Biopharmanet-tec, University of Parma, Parco Area delle Scienze Parma, Italy
| | - Fabio Sonvico
- Department of Food and Drug Sciences, University of Parma, Parco Area delle Scienze Parma, Italy; Interdepartmental Center Biopharmanet-tec, University of Parma, Parco Area delle Scienze Parma, Italy
| | - Fabio Stellari
- Chiesi Farmaceutici SpA, Largo Belloli 11a, Parma, Italy
| | - Davide Cavazzini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze Parma, Italy
| | - Quigxin Chen
- German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Martin Müller
- German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Angelo Bolchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze Parma, Italy; Interdepartmental Center Biopharmanet-tec, University of Parma, Parco Area delle Scienze Parma, Italy
| | - Simone Ottonello
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze Parma, Italy; Interdepartmental Center Biopharmanet-tec, University of Parma, Parco Area delle Scienze Parma, Italy.
| | - Ruggero Bettini
- Department of Food and Drug Sciences, University of Parma, Parco Area delle Scienze Parma, Italy; Interdepartmental Center Biopharmanet-tec, University of Parma, Parco Area delle Scienze Parma, Italy.
| |
Collapse
|
14
|
Protective Efficacy in a Hamster Model of a Multivalent Vaccine for Human Visceral Leishmaniasis (MuLeVaClin) Consisting of the KMP11, LEISH-F3+, and LJL143 Antigens in Virosomes, Plus GLA-SE Adjuvant. Microorganisms 2021; 9:microorganisms9112253. [PMID: 34835379 PMCID: PMC8618729 DOI: 10.3390/microorganisms9112253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/12/2021] [Accepted: 10/26/2021] [Indexed: 11/25/2022] Open
Abstract
Visceral leishmaniasis (VL) is the most severe clinical form of leishmaniasis, fatal if untreated. Vaccination is the most cost-effective approach to disease control; however, to date, no vaccines against human VL have been made available. This work examines the efficacy of a novel vaccine consisting of the Leishmania membrane protein KMP11, LEISH-F3+ (a recombinant fusion protein, composed of epitopes of the parasite proteins nucleoside hydrolase, sterol-24-c-methyltransferase, and cysteine protease B), and the sand fly salivary protein LJL143, in two dose ratios. The inclusion of the TLR4 agonist GLA-SE as an adjuvant, and the use of virosomes (VS) as a delivery system, are also examined. In a hamster model of VL, the vaccine elicited antigen-specific immune responses prior to infection with Leishmania infantum. Of note, the responses were greater when higher doses of KMP11 and LEISH-F3+ proteins were administered along with the GLA-SE adjuvant and/or when delivered within VS. Remarkably, hamsters immunized with the complete combination (i.e., all antigens in VS + GLA-SE) showed significantly lower parasite burdens in the spleen compared to those in control animals. This protection was underpinned by a more intense, specific humoral response against the KMP11, LEISH-F3+, and LJL143 antigens in vaccinated animals, but a significantly less intense antibody response to the pool of soluble Leishmania antigens (SLA). Overall, these results indicate that this innovative vaccine formulation confers protection against L. infantum infection, supporting the advancement of the vaccine formulation into process development and manufacturing and the conduction of toxicity studies towards future phase I human clinical trials.
Collapse
|
15
|
Adeleke VT, Adeniyi AA, Adeleke MA, Okpeku M, Lokhat D. The design of multiepitope vaccines from plasmids of diarrheagenic Escherichia coli against diarrhoea infection: Immunoinformatics approach. INFECTION GENETICS AND EVOLUTION 2021; 91:104803. [PMID: 33684568 DOI: 10.1016/j.meegid.2021.104803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 02/19/2021] [Accepted: 03/02/2021] [Indexed: 01/19/2023]
Abstract
Diarrhoea infection is a major global health public problem and is caused by many organisms including diarrheagenic Escherichia coli pathotypes. The common problem with diarrhoea is the drug resistance of pathogenic bacteria, the most promising alternative means of preventing drug resistance is vaccination. However, there has not been any significant success in the prevention of diarrhoea caused by E. coli through vaccination. Epitope-based vaccine is gaining more attention due to its safety and specificity. Sequence variation of protective antigens of the pathogen has posed a new challenge in the development of epitope-based vaccines against the infection, leading to the necessity of multiepitope based design. In this study, immunoinformatics tools were used to design multiepitope vaccine candidates from plasmid genome sequences of multiple pathotypes of E. coli species involved in diarrhoea infections. The ability of the identified epitopes to be used as a cross-protect multiepitope vaccine was achieved by identifying conserved, immunogenic and antigenic peptides that can elicit CD4+ T-cell, CD8+ T-cell and B-cell and bind to MHC I and II HLA alleles. The molecular docking results of T-cell epitopes showed their well binding affinity to receptive protein and with a wider population coverage. The different multiepitope-based vaccines (MEVCs) candidates were constructed and based on the types of epitope linker they contained. The MEVCs exhibited very good binding interactions with the human immune receptor. Among multiepitope vaccines constructed, MEVC6, MEVCA and MEVCB are more promising as potential vaccine candidates for cross-protection against gastrointestinal infections according to the computational study. It is also hoped that after validation and testing, the predicted multiepitope-based vaccine candidates will probably resolve the challenge of immunological heterogeneity facing enteric vaccine development.
Collapse
Affiliation(s)
- Victoria T Adeleke
- Discipline of Chemical Engineering, University of KwaZulu-Natal, Howard Campus, Durban 4041, South Africa.
| | - Adebayo A Adeniyi
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa; Department of Industrial Chemistry, Federal University, Oye, Ekiti, Nigeria
| | - Matthew A Adeleke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, P/Bag X54001, Durban 4000, South Africa
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, P/Bag X54001, Durban 4000, South Africa
| | - David Lokhat
- Discipline of Chemical Engineering, University of KwaZulu-Natal, Howard Campus, Durban 4041, South Africa
| |
Collapse
|
16
|
Bruxelle JF, Kirilenko T, Trattnig N, Yang Y, Cattin M, Kosma P, Pantophlet R. A glycoside analog of mammalian oligomannose formulated with a TLR4-stimulating adjuvant elicits HIV-1 cross-reactive antibodies. Sci Rep 2021; 11:4637. [PMID: 33633304 PMCID: PMC7907241 DOI: 10.1038/s41598-021-84116-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/12/2021] [Indexed: 01/31/2023] Open
Abstract
The occurrence of oligomannose-specific broadly neutralizing antibodies (bnAbs) has spurred efforts to develop immunogens that can elicit similar antibodies. Here, we report on the antigenicity and immunogenicity of a CRM197-conjugate of a previously reported oligomannose mimetic. Oligomannose-specific bnAbs that are less dependent on interactions with the HIV envelope protein sequence showed strong binding to the glycoconjugates, with affinities approximating those reported for their cognate epitope. The glycoconjugate is also recognized by inferred germline precursors of oligomannose-specific bnAbs, albeit with the expected low avidity, supporting its potential as an immunogen. Immunization of human-antibody transgenic mice revealed that only a TLR4-stimulating adjuvant formulation resulted in antibodies able to bind a panel of recombinant HIV trimers. These antibodies bound at relatively modest levels, possibly explaining their inability to neutralize HIV infectivity. Nevertheless, these findings contribute further to understanding conditions for eliciting HIV-cross-reactive oligomannose-specific antibodies and inform on next steps for improving on the elicited response.
Collapse
Affiliation(s)
- Jean-François Bruxelle
- grid.61971.380000 0004 1936 7494Faculty of Health Sciences, Simon Fraser University, Burnaby, BC Canada
| | - Tess Kirilenko
- grid.61971.380000 0004 1936 7494Faculty of Health Sciences, Simon Fraser University, Burnaby, BC Canada ,grid.479077.aPresent Address: AbCellera Biologics Inc., Vancouver, BC Canada
| | - Nino Trattnig
- grid.5173.00000 0001 2298 5320Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria ,grid.5477.10000000120346234Present Address: Department of Chemical Biology and Drug Discovery, Utrecht University, Utrecht, The Netherlands
| | - Yiqiu Yang
- grid.61971.380000 0004 1936 7494Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC Canada
| | - Matteo Cattin
- grid.5173.00000 0001 2298 5320Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Paul Kosma
- grid.5173.00000 0001 2298 5320Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Ralph Pantophlet
- grid.61971.380000 0004 1936 7494Faculty of Health Sciences, Simon Fraser University, Burnaby, BC Canada ,grid.61971.380000 0004 1936 7494Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC Canada
| |
Collapse
|
17
|
Wei W, Behloul N, Wang W, Baha S, Liu Z, Shi R, Meng J. Chitosan Nanoparticles Loaded with Truncated ORF2 Protein as an Oral Vaccine Candidate against Hepatitis E. Macromol Biosci 2021; 21:e2000375. [PMID: 33624916 DOI: 10.1002/mabi.202000375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/05/2021] [Indexed: 12/21/2022]
Abstract
In a continuous effort to develop effective vaccines against hepatitis E (HE), oral vaccine nanoparticles using the truncated capsid protein p146 (aa460-605) are formulated and characterized. To improve the immunogenicity of p146, chitosan nanoparticles (CSNPs) are used as a mucosal delivery system. Next, the physical-chemical properties, cytotoxic effects in vitro, and immunogenicity in mice of the produced NPs are analyzed. The results show that the produced CS/p146 NPs are stable and well dispersive and display a near-spherical shape with a mean size of 200-300 nm. The findings also demonstrate high encapsulation efficiency (65-73.9%) and loading capacity (27.7-67.5%) of the formulated nanoparticles. Further, the CS/p146 NPs exhibit low cytotoxicity and an obvious sustained-release effect in vitro. Immunogenicity experiments in mice indicate that CS/p146 NPs can induce antigen-specific systemic and mucosal immune responses higher than the purified p146 do. Besides, the expression levels and mRNA transcription of Interleukin (IL)-4 in spleen cells of CS/p146 NPs-immunized mice are higher than those of p146, indicating that a Th2-mediated cellular immune response is activated by the CS/p146 NPs. Overall, the synthesized CS/p146 NPs display promising properties as a potential HE oral vaccine candidate.
Collapse
Affiliation(s)
- Wenjuan Wei
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 210029, China.,Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Nouredine Behloul
- College of Basic Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Weiqi Wang
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Sarra Baha
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Zhenzhen Liu
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Ruihua Shi
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Jihong Meng
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, 210009, China.,College of Basic Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| |
Collapse
|
18
|
Patil V, Renu S, Feliciano-Ruiz N, Han Y, Ramesh A, Schrock J, Dhakal S, HogenEsch H, Renukaradhya GJ. Intranasal Delivery of Inactivated Influenza Virus and Poly(I:C) Adsorbed Corn-Based Nanoparticle Vaccine Elicited Robust Antigen-Specific Cell-Mediated Immune Responses in Maternal Antibody Positive Nursery Pigs. Front Immunol 2020; 11:596964. [PMID: 33391267 PMCID: PMC7772411 DOI: 10.3389/fimmu.2020.596964] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022] Open
Abstract
We designed the killed swine influenza A virus (SwIAV) H1N2 antigen (KAg) with polyriboinosinic:polyribocytidylic acid [(Poly(I:C)] adsorbed corn-derived Nano-11 particle based nanovaccine called Nano-11-KAg+Poly(I:C), and evaluated its immune correlates in maternally derived antibody (MDA)-positive pigs against a heterologous H1N1 SwIAV infection. Immunologically, in tracheobronchial lymph nodes (TBLN) detected enhanced H1N2-specific cytotoxic T-lymphocytes (CTLs) in Nano-11-KAg+Poly(I:C) vaccinates, and in commercial vaccinates detected CTLs with mainly IL-17A+ and early effector phenotypes specific to both H1N2 and H1N1 SwAIV. In commercial vaccinates, activated H1N2- and H1N1-specific IFNγ+&TNFα+, IL-17A+ and central memory T-helper/Memory cells, and in Nano-11-KAg+Poly(I:C) vaccinates H1N2-specific central memory, IFNγ+ and IFNγ+&TNFα+, and H1N1-specific IL-17A+ T-helper/Memory cells were observed. Systemically, Nano-11-KAg+Poly(I:C) vaccine augmented H1N2-specific IFNγ+ CTLs and H1N1-specific IFNγ+ T-helper/Memory cells, and commercial vaccine boosted H1N2- specific early effector CTLs and H1N1-specific IFNγ+&TNFα+ CTLs, as well as H1N2- and H1N1-specific T-helper/Memory cells with central memory, IFNγ+&TNFα+, and IL-17A+ phenotypes. Remarkably, commercial vaccine induced an increase in H1N1-specific T-helper cells in TBLN and naive T-helper cells in both TBLN and peripheral blood mononuclear cells (PBMCs), while H1N1- and H1N2-specific only T-helper cells were augmented in Nano-11-KAg+Poly(I:C) vaccinates in both TBLN and PBMCs. Furthermore, the Nano-11-KAg+Poly(I:C) vaccine stimulated robust cross-reactive IgG and secretory IgA (SIgA) responses in lungs, while the commercial vaccine elicited high levels of serum and lung IgG and serum hemagglutination inhibition (HI) titers. In conclusion, despite vast genetic difference (77% in HA gene identity) between the vaccine H1N2 and H1N1 challenge viruses in Nano-11-KAg+Poly(I:C) vaccinates, compared to over 95% identity between H1N1 of commercial vaccine and challenge viruses, the virus load and macroscopic lesions in the lungs of both types of vaccinates were comparable, but the Nano-11-KAg+Poly(I:C) vaccine cleared the virus from the nasal passage better. These data suggested the important role played by Nano-11 and Poly(I:C) in the induction of polyfunctional, cross-protective cell-mediated immunity against SwIAV in MDA-positive pigs.
Collapse
Affiliation(s)
- Veerupaxagouda Patil
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, Wooster, OH, United States.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Sankar Renu
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, Wooster, OH, United States.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Ninoshkaly Feliciano-Ruiz
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, Wooster, OH, United States.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Yi Han
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, Wooster, OH, United States.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Anikethana Ramesh
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, Wooster, OH, United States.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Jennifer Schrock
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, Wooster, OH, United States.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Santosh Dhakal
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, Wooster, OH, United States.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Harm HogenEsch
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Gourapura J Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, Wooster, OH, United States.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
19
|
Verpalen ECJM, Brouwer AJ, Boons GJ. Synthesis of monophosphoryl lipid A using 2-naphtylmethyl ethers as permanent protecting groups. Carbohydr Res 2020; 498:108152. [PMID: 33032087 DOI: 10.1016/j.carres.2020.108152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 11/18/2022]
Abstract
Lipid A, which is a conserved component of lipopolysaccharides of gram-negative bacteria, has attracted considerable interest for the development of immuno-adjuvants. Most approaches for lipid A synthesis rely on the use of benzyl ethers as permanent protecting groups. Due to the amphiphilic character of lipid A, these compounds aggregate during the hydrogenation step to remove benzyl ethers, resulting in a sluggish reaction and by-product formation. To address this problem, we have developed a synthetic approach based on the use of 2-naphtylmethyl ether (Nap) ethers as permanent protecting group for hydroxyls. At the end of a synthetic sequence, multiple of these protecting groups can readily be removed by oxidation with 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ). Di-allyl N,N-diisopropylphosphoramidite was employed to install the phosphate ester and the resulting allyl esters were cleaved using palladium tetrakistriphenylphosphine. The synthetic strategy allows late stage introduction of different fatty acids at the amines of the target compound, which is facilitated by Troc and Fmoc as orthogonal amino-protecting groups.
Collapse
Affiliation(s)
- Enrico C J M Verpalen
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, the Netherlands
| | - Arwin J Brouwer
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, the Netherlands
| | - Geert-Jan Boons
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, the Netherlands; Complex Carbohydrate Research Center and Department of Chemistry, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
20
|
Romerio A, Peri F. Increasing the Chemical Variety of Small-Molecule-Based TLR4 Modulators: An Overview. Front Immunol 2020; 11:1210. [PMID: 32765484 PMCID: PMC7381287 DOI: 10.3389/fimmu.2020.01210] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/15/2020] [Indexed: 12/17/2022] Open
Abstract
Toll-Like Receptor 4 (TLR4) is one of the receptors of innate immunity. It is activated by Pathogen- and Damage-Associated Molecular Patterns (PAMPs and DAMPs) and triggers pro-inflammatory responses that belong to the repertoire of innate immune responses, consequently protecting against infectious challenges and boosting adaptive immunity. Mild TLR4 stimulation by non-toxic molecules resembling its natural agonist (lipid A) provided efficient vaccine adjuvants. The non-toxic TLR4 agonist monophosphoryl lipid A (MPLA) has been approved for clinical use. This suggests the development of other TLR4 agonists as adjuvants or drugs for cancer immunotherapy. TLR4 excessive activation by a Gram-negative bacteria lipopolysaccharide (LPS) leads to sepsis, while TLR4 stimulation by DAMPs is a common mechanism in several inflammatory and autoimmune diseases. TLR4 inhibition by small molecules and antibodies could therefore provide access to innovative therapeutics targeting sepsis as well as acute and chronic inflammations. The potential use of TLR4 antagonists as anti-inflammatory drugs with unique selectivity and a new mechanism of action compared to corticosteroids or other non-steroid anti-inflammatory drugs fueled the search for compounds of natural or synthetic origin able to block or inhibit TLR4 activation and signaling. The wide spectrum of clinical settings to which TLR4 inhibitors can be applied include autoimmune diseases (rheumatoid arthritis, inflammatory bowel diseases), vascular inflammation, neuroinflammations, and neurodegenerative diseases. The last advances (from 2017) in TLR4 activation or inhibition by small molecules (molecular weight <2 kDa) are reviewed here. Studies on pre-clinical validation of new chemical entities (drug hits) on cellular or animal models as well as new clinical studies on previously developed TLR4 modulators are reported. Innovative TLR4 modulators discovered by computer-assisted drug design and an artificial intelligence approach are described. Some "old" TLR4 agonists or antagonists such as MPLA or Eritoran are under study for repositioning in different pharmacological contexts. The mechanism of action of the molecules and the level of TLR4 involvement in their biological activity are critically discussed.
Collapse
Affiliation(s)
- Alessio Romerio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Francesco Peri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
21
|
Ain QU, Batool M, Choi S. TLR4-Targeting Therapeutics: Structural Basis and Computer-Aided Drug Discovery Approaches. Molecules 2020; 25:molecules25030627. [PMID: 32023919 PMCID: PMC7037830 DOI: 10.3390/molecules25030627] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 02/06/2023] Open
Abstract
The integration of computational techniques into drug development has led to a substantial increase in the knowledge of structural, chemical, and biological data. These techniques are useful for handling the big data generated by empirical and clinical studies. Over the last few years, computer-aided drug discovery methods such as virtual screening, pharmacophore modeling, quantitative structure-activity relationship analysis, and molecular docking have been employed by pharmaceutical companies and academic researchers for the development of pharmacologically active drugs. Toll-like receptors (TLRs) play a vital role in various inflammatory, autoimmune, and neurodegenerative disorders such as sepsis, rheumatoid arthritis, inflammatory bowel disease, Alzheimer's disease, multiple sclerosis, cancer, and systemic lupus erythematosus. TLRs, particularly TLR4, have been identified as potential drug targets for the treatment of these diseases, and several relevant compounds are under preclinical and clinical evaluation. This review covers the reported computational studies and techniques that have provided insights into TLR4-targeting therapeutics. Furthermore, this article provides an overview of the computational methods that can benefit a broad audience in this field and help with the development of novel drugs for TLR-related disorders.
Collapse
Affiliation(s)
| | | | - Sangdun Choi
- Correspondence: ; Tel.: +82-31-219-2600; Fax: +82-31-219-1615
| |
Collapse
|
22
|
Toll-Like Receptors and Relevant Emerging Therapeutics with Reference to Delivery Methods. Pharmaceutics 2019; 11:pharmaceutics11090441. [PMID: 31480568 PMCID: PMC6781272 DOI: 10.3390/pharmaceutics11090441] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/24/2019] [Accepted: 08/28/2019] [Indexed: 02/06/2023] Open
Abstract
The built-in innate immunity in the human body combats various diseases and their causative agents. One of the components of this system is Toll-like receptors (TLRs), which recognize structurally conserved molecules derived from microbes and/or endogenous molecules. Nonetheless, under certain conditions, these TLRs become hypofunctional or hyperfunctional, thus leading to a disease-like condition because their normal activity is compromised. In this regard, various small-molecule drugs and recombinant therapeutic proteins have been developed to treat the relevant diseases, such as rheumatoid arthritis, psoriatic arthritis, Crohn’s disease, systemic lupus erythematosus, and allergy. Some drugs for these diseases have been clinically approved; however, their efficacy can be enhanced by conventional or targeted drug delivery systems. Certain delivery vehicles such as liposomes, hydrogels, nanoparticles, dendrimers, or cyclodextrins can be employed to enhance the targeted drug delivery. This review summarizes the TLR signaling pathway, associated diseases and their treatments, and the ways to efficiently deliver the drugs to a target site.
Collapse
|
23
|
Keshwara R, Hagen KR, Abreu-Mota T, Papaneri AB, Liu D, Wirblich C, Johnson RF, Schnell MJ. A Recombinant Rabies Virus Expressing the Marburg Virus Glycoprotein Is Dependent upon Antibody-Mediated Cellular Cytotoxicity for Protection against Marburg Virus Disease in a Murine Model. J Virol 2019; 93:e01865-18. [PMID: 30567978 PMCID: PMC6401435 DOI: 10.1128/jvi.01865-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/10/2018] [Indexed: 12/14/2022] Open
Abstract
Marburg virus (MARV) is a filovirus related to Ebola virus (EBOV) associated with human hemorrhagic disease. Outbreaks are sporadic and severe, with a reported case mortality rate of upward of 88%. There is currently no antiviral or vaccine available. Given the sporadic nature of outbreaks, vaccines provide the best approach for long-term control of MARV in regions of endemicity. We have developed an inactivated rabies virus-vectored MARV vaccine (FILORAB3) to protect against Marburg virus disease. Immunogenicity studies in our labs have shown that a Th1-biased seroconversion to both rabies virus and MARV glycoproteins (GPs) is beneficial for protection in a preclinical murine model. As such, we adjuvanted FILORAB3 with glucopyranosyl lipid adjuvant (GLA), a Toll-like receptor 4 agonist, in a squalene-in-water emulsion. Across two different BALB/c mouse challenge models, we achieved 92% protection against murine-adapted Marburg virus (ma-MARV). Although our vaccine elicited strong MARV GP antibodies, it did not strongly induce neutralizing antibodies. Through both in vitro and in vivo approaches, we elucidated a critical role for NK cell-dependent antibody-mediated cellular cytotoxicity (ADCC) in vaccine-induced protection. Overall, these findings demonstrate that FILORAB3 is a promising vaccine candidate for Marburg virus disease.IMPORTANCE Marburg virus (MARV) is a virus similar to Ebola virus and also causes a hemorrhagic disease which is highly lethal. In contrast to EBOV, only a few vaccines have been developed against MARV, and researchers do not understand what kind of immune responses are required to protect from MARV. Here we show that antibodies directed against MARV after application of our vaccine protect in an animal system but fail to neutralize the virus in a widely used virus neutralization assay against MARV. This newly discovered activity needs to be considered more when analyzing MARV vaccines or infections.
Collapse
Affiliation(s)
- Rohan Keshwara
- Department of Microbiology and Immunology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Katie R Hagen
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Maryland, USA
| | - Tiago Abreu-Mota
- Department of Microbiology and Immunology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Life and Health Sciences Research Institute (ICVS) School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Amy B Papaneri
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - David Liu
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Maryland, USA
| | - Christoph Wirblich
- Department of Microbiology and Immunology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Reed F Johnson
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Matthias J Schnell
- Department of Microbiology and Immunology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Jefferson Vaccine Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
24
|
Weinberg A, Lambert SL, Canniff J, Yu L, Lang N, Esser MT, Falloon J, Levin MJ. Antibody and B cell responses to an investigational adjuvanted RSV vaccine for older adults. Hum Vaccin Immunother 2019; 15:2466-2474. [PMID: 30852939 DOI: 10.1080/21645515.2019.1589282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Infections with respiratory syncytial virus (RSV) cause significant morbidity and hospitalization in older adults. We studied the humoral, mucosal and B cell responses of an investigational adjuvanted RSV sF vaccine, MEDI7510, in older adults. Methods: In a substudy of a randomized (1:1), double-blind, placebo-controlled study of MEDI7510 in adults ≥60 years of age, we collected blood and nasal secretions at days 0, 8, 29, 91 and 180 post-vaccination to measure F-specific IgG and IgA antibodies by ELISA, and plasmablasts and memory B cells by IgA/IgG dual-color fluorospot. Results: The 27 vaccine- and 18 placebo-recipients had a mean age of 73 years and included 24 women. Among vaccinees, 93% had significant increases in F-specific plasma IgG 85% had increased plasma IgA; 74% had increased nasal IgG and 26% nasal IgA; 93% had IgG and 89% IgA plasmablasts on Day 8 post-immunization; and 82% had IgG and 7.4% IgA memory B cell responses to the vaccine. Vaccinees <70 years of age and women had the highest responses to the vaccine. Conclusions: This adjuvanted vaccine generated robust humoral immune responses in older adults, including RSV F-specific systemic and mucosal antibodies and memory B cells. Nevertheless, age ≥70 years was associated with decreased immunogenicity of the adjuvanted vaccine.
Collapse
Affiliation(s)
- Adriana Weinberg
- Departments of Pediatrics, University of Colorado Denver School of Medicine, Anschutz Medical Center , Aurora, CO , USA.,Medicine, University of Colorado Denver School of Medicine, Anschutz Medical Center , Aurora, CO , USA.,Pathology of the University of Colorado Denver School of Medicine, Anschutz Medical Center , Aurora , CO , USA
| | | | - Jennifer Canniff
- Departments of Pediatrics, University of Colorado Denver School of Medicine, Anschutz Medical Center , Aurora, CO , USA
| | - Li Yu
- Statistical Sciences, MedImmune , Gaithersburg , MD , USA
| | - Nancy Lang
- Departments of Pediatrics, University of Colorado Denver School of Medicine, Anschutz Medical Center , Aurora, CO , USA
| | - Mark T Esser
- Translational Medicine, MedImmune , Gaithersburg , MD , USA
| | - Judith Falloon
- Clinical Development, MedImmune , Gaithersburg , MD , USA
| | - Myron J Levin
- Departments of Pediatrics, University of Colorado Denver School of Medicine, Anschutz Medical Center , Aurora, CO , USA.,Medicine, University of Colorado Denver School of Medicine, Anschutz Medical Center , Aurora, CO , USA
| |
Collapse
|
25
|
Kozlowski PA, Aldovini A. Mucosal Vaccine Approaches for Prevention of HIV and SIV Transmission. CURRENT IMMUNOLOGY REVIEWS 2019; 15:102-122. [PMID: 31452652 PMCID: PMC6709706 DOI: 10.2174/1573395514666180605092054] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 04/19/2018] [Accepted: 05/30/2018] [Indexed: 02/06/2023]
Abstract
Optimal protective immunity to HIV will likely require that plasma cells, memory B cells and memory T cells be stationed in mucosal tissues at portals of viral entry. Mucosal vaccine administration is more effective than parenteral vaccine delivery for this purpose. The challenge has been to achieve efficient vaccine uptake at mucosal surfaces, and to identify safe and effective adjuvants, especially for mucosally administered HIV envelope protein immunogens. Here, we discuss strategies used to deliver potential HIV vaccine candidates in the intestine, respiratory tract, and male and female genital tract of humans and nonhuman primates. We also review mucosal adjuvants, including Toll-like receptor agonists, which may adjuvant both mucosal humoral and cellular immune responses to HIV protein immunogens.
Collapse
Affiliation(s)
- Pamela A. Kozlowski
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Anna Aldovini
- Department of Medicine, and Harvard Medical School, Boston Children’s Hospital, Department of Pediatrics, Boston MA, 02115, USA
| |
Collapse
|
26
|
Anwar MA, Shah M, Kim J, Choi S. Recent clinical trends in Toll-like receptor targeting therapeutics. Med Res Rev 2018; 39:1053-1090. [PMID: 30450666 PMCID: PMC6587958 DOI: 10.1002/med.21553] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 10/18/2018] [Accepted: 10/21/2018] [Indexed: 12/13/2022]
Abstract
Toll‐like receptors (TLRs) are germline‐encoded receptors that are central to innate and adaptive immune responses. Owing to their vital role in inflammation, TLRs are rational targets in clinics; thus, many ligands and biologics have been reported to overcome the progression of various inflammatory and malignant conditions and support the immune system. For each TLR, at least one, and often many, drug formulations are being evaluated. Ligands reported as stand‐alone drugs may also be reported based on their use in combinatorial therapeutics as adjuvants. Despite their profound efficacy in TLR‐modulation in preclinical studies, multiple drugs have been terminated at different stages of clinical trials. Here, TLR modulating drugs that have been evaluated in clinical trials are discussed, along with their mode of action, suggestive failure reasons, and ways to improve the clinical outcomes. This review presents recent advances in TLR‐targeting drugs and provides directions for more successful immune system manipulation.
Collapse
Affiliation(s)
- Muhammad Ayaz Anwar
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Masaud Shah
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | | | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| |
Collapse
|
27
|
Tandon A, Pathak M, Harioudh MK, Ahmad S, Sayeed M, Afshan T, Siddiqi MI, Mitra K, Bhattacharya SM, Ghosh JK. A TLR4-derived non-cytotoxic, self-assembling peptide functions as a vaccine adjuvant in mice. J Biol Chem 2018; 293:19874-19885. [PMID: 30385503 DOI: 10.1074/jbc.ra118.002768] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 09/01/2018] [Indexed: 12/18/2022] Open
Abstract
Vaccination is devised/formulated to stimulate specific and prolonged immune responses for long-term protection against infection or disease. A vaccine component, namely adjuvant, enhances antigen recognition by the host immune system and thereby stimulates its cellular and adaptive responses. Especially synthetic Toll-like receptor (TLR) agonists having self-assembling properties are considered as good candidates for adjuvant development. Here, a human TLR4-derived 20-residue peptide (TR-433), present in the dimerization interface of the TLR4-myeloid differentiation protein-2 (MD2) complex, displayed self-assembly and adopted a nanostructure. Both in vitro studies and in vivo experiments in mice indicated that TR-433 is nontoxic. TR-433 induced pro-inflammatory responses in THP-1 monocytes and HEK293T cells that were transiently transfected with TLR4/CD14/MD2 and also in BALB/c mice. In light of the self-assembly and pro-inflammatory properties of TR-433, we immunized with a mixture of TR-433 and either ovalbumin or filarial antigen trehalose-6-phosphate phosphatase (TPP). A significant amount of IgG titers was produced, suggesting adjuvanting capability of TR-433 that was comparable with that of Freund's complete adjuvant (FCA) and appreciably higher than that of alum. We found that TR-433 preferentially activates type 1 helper T cell (Th1) response rather than type 2 helper T cell (Th2) response. To our knowledge, this is the first report on the identification of a short TLR4-derived peptide that possesses both self-assembling and pro-inflammatory properties and has significant efficacy as an adjuvant, capable of activating cellular responses in mice. These results indicate that TR-433 possesses significant potential for development as a new adjuvant in therapeutic application.
Collapse
Affiliation(s)
| | | | | | | | - Mohd Sayeed
- From the Molecular and Structural Biology Division
| | | | - M I Siddiqi
- From the Molecular and Structural Biology Division
| | - Kalyan Mitra
- Electron Microscopy Unit, SAIF Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road Lucknow-226 031, India
| | | | | |
Collapse
|
28
|
Carter D, van Hoeven N, Baldwin S, Levin Y, Kochba E, Magill A, Charland N, Landry N, Nu K, Frevol A, Ashman J, Sagawa ZK, Beckmann AM, Reed SG. The adjuvant GLA-AF enhances human intradermal vaccine responses. SCIENCE ADVANCES 2018; 4:eaas9930. [PMID: 30221194 PMCID: PMC6136895 DOI: 10.1126/sciadv.aas9930] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 07/26/2018] [Indexed: 05/02/2023]
Abstract
Adjuvants are key to shaping the immune response to vaccination, but to date, no adjuvant suitable for human use has been developed for intradermal vaccines. These vaccines could be self-administered and sent through the mail as they do not require long needles or technical expertise in immunization. In the event of a pandemic outbreak, this approach could alleviate the congregation of patients in health centers and thus reduce the potential of these centers to enhance the spread of lethal infection. A reliable and potent vaccine system for self-administration would provide an effective countermeasure for delivery through existing product distribution infrastructure. We report results from preclinical and clinical trials that demonstrate the feasibility of an adjuvanted, intradermal vaccine that induced single shot protection in ferrets and seroprotection in humans against one of the more lethal strains of pandemic flu, Indonesia H5N1. In the human trial, the vaccine was safe and clinical responses were above approvable endpoints for a protective flu vaccine. Inclusion of a modern TLR4 (Toll-like receptor 4) agonist-based adjuvant was critical to the development of the response in the intradermal groups. In humans, this is the first report of a safe and effective intradermal adjuvant, GLA-AF (aqueous formulation of glucopyranosyl lipid adjuvant), and provides a future path for developing a vaccine-device combination for distribution by mail and self-administration in case of a pandemic.
Collapse
MESH Headings
- 1,2-Dipalmitoylphosphatidylcholine/adverse effects
- 1,2-Dipalmitoylphosphatidylcholine/immunology
- 1,2-Dipalmitoylphosphatidylcholine/pharmacology
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/adverse effects
- Adjuvants, Immunologic/pharmacology
- Adult
- Animals
- Drug Combinations
- Female
- Ferrets
- Guinea Pigs
- Humans
- Influenza A Virus, H5N1 Subtype/genetics
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza A Virus, H5N1 Subtype/pathogenicity
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/adverse effects
- Influenza Vaccines/pharmacology
- Injections, Intradermal
- Lipid A/adverse effects
- Lipid A/analogs & derivatives
- Lipid A/immunology
- Lipid A/pharmacology
- Male
- Mice, Inbred C57BL
- Toll-Like Receptor 4/agonists
Collapse
Affiliation(s)
- Darrick Carter
- Infectious Diseases Research Institute, Seattle, WA
98102, USA
- PAI Life Sciences Inc., Seattle, WA 98102, USA
- Corresponding author.
| | - Neal van Hoeven
- Infectious Diseases Research Institute, Seattle, WA
98102, USA
| | - Susan Baldwin
- Infectious Diseases Research Institute, Seattle, WA
98102, USA
| | - Yotam Levin
- NanoPass Technologies Ltd., Nes Ziona, Israel
| | | | - Al Magill
- Defense Advanced Research Projects Agency, Arlington,
VA 22203, USA
| | | | | | - Khin Nu
- Infectious Diseases Research Institute, Seattle, WA
98102, USA
| | - Aude Frevol
- Infectious Diseases Research Institute, Seattle, WA
98102, USA
| | - Jill Ashman
- Infectious Diseases Research Institute, Seattle, WA
98102, USA
| | | | | | - Steven G. Reed
- Infectious Diseases Research Institute, Seattle, WA
98102, USA
| |
Collapse
|
29
|
Chauhan N, Khatri V, Banerjee P, Kalyanasundaram R. Evaluating the Vaccine Potential of a Tetravalent Fusion Protein ( rBmHAXT) Vaccine Antigen Against Lymphatic Filariasis in a Mouse Model. Front Immunol 2018; 9:1520. [PMID: 30013570 PMCID: PMC6036175 DOI: 10.3389/fimmu.2018.01520] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/19/2018] [Indexed: 12/22/2022] Open
Abstract
Lymphatic filariasis (LF) is a tropical parasitic infection of human transmitted by mosquitoes. Chronic infection results in severe physical disability in the infected patients. Although several potential vaccine antigens were identified by several groups, there are no licensed prophylactic vaccine to date against this infection in the human. Previous attempts from our laboratory to develop a trivalent prophylactic vaccine against LF showed that >90% protection could be achieved in rodent models. However, this trivalent vaccine gave only 35% protection in non-human primates. The major focus of this study was to develop a tetravalent prophylactic vaccine (rBmHAXT) and test the vaccine potential in a mouse model. We evaluated three different adjuvant formulations; alum, glucopyranosyl lipid adjuvant in stable emulsion (GLA/SE) alum (AL019), and mannosylated chitosan (MCA) to determine the optimum adjuvant formulation for rBmHAXT. Results presented in this study show that rBmHAXT + AL019 gave the highest rate of protection (>88%) against challenge infection, compared to rBmHAXT + AL007 (79%), rBmHAXT + MCA (79%) and controls. Analysis of the immune correlates of protection showed that all three adjuvants elicited high titer of antigen-specific IgG1, IgG2a, and IgG2b antibodies. High number of IFN-γ-producing antigen-specific memory cells were generated in the vaccinated animals irrespective of the adjuvants used. Similarly, spleen cells from rBmHAXT-vaccinated animals secreted IL-4, IL-10, and IFN-γ in response to rBmHAXT suggesting the generation of a balanced Th1/Th2 response. There was also an increase in IL-17-secreting cells in rBmHAXT-vaccinated animals. These findings thus suggest that rBmHAXT + AL019 is a better prophylactic formulation for LF.
Collapse
Affiliation(s)
- Nikhil Chauhan
- Department of Biomedical Sciences, University of Illinois, Rockford, IL, United States
| | - Vishal Khatri
- Department of Biomedical Sciences, University of Illinois, Rockford, IL, United States
| | - Priyankana Banerjee
- Department of Biomedical Sciences, University of Illinois, Rockford, IL, United States
| | | |
Collapse
|
30
|
Naturally Derived Anti-HIV Polysaccharide Peptide (PSP) Triggers a Toll-Like Receptor 4-Dependent Antiviral Immune Response. J Immunol Res 2018; 2018:8741698. [PMID: 30116757 PMCID: PMC6079438 DOI: 10.1155/2018/8741698] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/17/2018] [Accepted: 05/27/2018] [Indexed: 12/26/2022] Open
Abstract
Aim Intense interest remains in the identification of compounds to reduce human immunodeficiency virus type 1 (HIV-1) replication. Coriolus versicolor's polysaccharide peptide (PSP) has been demonstrated to possess immunomodulatory properties with the ability to activate an innate immune response through Toll-like receptor 4 (TLR4) showing insignificant toxicity. This study sought to determine the potential use of PSP as an anti-HIV agent and whether its antiviral immune response was TLR4 dependent. Materials and Methods HIV-1 p24 and anti-HIV chemokine release was assessed in HIV-positive (HIV+) THP1 cells and validated in HIV+ peripheral blood mononuclear cells (PBMCs), to determine PSP antiviral activity. The involvement of TLR4 activation in PSP anti-HIV activity was evaluated by inhibition. Results PSP showed a promising potential as an anti-HIV agent, by downregulating viral replication and promoting the upregulation of specific antiviral chemokines (RANTES, MIP-1α/β, and SDF-1α) known to block HIV-1 coreceptors in THP1 cells and human PBMCs. PSP produced a 61% viral inhibition after PSP treatment in HIV-1-infected THP1 cells. Additionally, PSP upregulated the expression of TLR4 and TLR4 inhibition led to countereffects in chemokine expression and HIV-1 replication. Conclusion Taken together, these findings put forward the first evidence that PSP exerts an anti-HIV activity mediated by TLR4 and key antiviral chemokines. Elucidating these new molecular mediators may reveal additional drug targets and open novel therapeutic avenues for HIV-1 infection.
Collapse
|
31
|
Abhyankar MM, Orr MT, Lin S, Suraju MO, Simpson A, Blust M, Pham T, Guderian JA, Tomai MA, Elvecrog J, Pedersen K, Petri WA, Fox CB. Adjuvant composition and delivery route shape immune response quality and protective efficacy of a recombinant vaccine for Entamoeba histolytica. NPJ Vaccines 2018; 3:22. [PMID: 29900011 PMCID: PMC5988657 DOI: 10.1038/s41541-018-0060-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 04/26/2018] [Accepted: 05/03/2018] [Indexed: 12/20/2022] Open
Abstract
Amebiasis caused by Entamoeba histolytica is the third leading cause of parasitic mortality globally, with some 100,000 deaths annually, primarily among young children. Protective immunity to amebiasis is associated with fecal IgA and IFN-γ in humans; however, no vaccine exists. We have previously identified recombinant LecA as a potential protective vaccine antigen. Here we describe the development of a stable, manufacturable PEGylated liposomal adjuvant formulation containing two synthetic Toll-like receptor (TLR) ligands: GLA (TLR4) and 3M-052 (TLR7/8). The liposomes stimulated production of monocyte/macrophage chemoattractants MCP-1 and Mip-1β, and Th1-associated cytokines IL-12p70 and IFN-γ from human whole blood dependent on TLR ligand composition and dose. The liposomes also demonstrated acceptable physicochemical compatibility with the recombinant LecA antigen. Whereas mice immunized with LecA and GLA-liposomes demonstrated enhanced antigen-specific fecal IgA titers, mice immunized with LecA and 3M-052-liposomes showed a stronger Th1 immune profile. Liposomes containing GLA and 3M-052 together elicited both LecA-specific fecal IgA and Th1 immune responses. Furthermore, the quality of the immune response could be modulated with modifications to the liposomal formulation based on PEG length. Compared to subcutaneous administration, the optimized liposome adjuvant composition with LecA antigen administered intranasally resulted in significantly enhanced fecal IgA, serum IgG2a, as well as systemic IFN-γ and IL-17A levels in mice. The optimized intranasal regimen provided greater than 80% protection from disease as measured by parasite antigen in the colon. This work demonstrates the physicochemical and immunological characterization of an optimized mucosal adjuvant system containing a combination of TLR ligands with complementary activities and illustrates the importance of adjuvant composition and route of delivery to enhance a multifaceted and protective immune response to amebiasis.
Collapse
Affiliation(s)
- Mayuresh M. Abhyankar
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA USA
| | - Mark T. Orr
- IDRI, 1616 Eastlake Ave E, Seattle, WA USA
- Department of Global Health, University of Washington, Seattle, WA USA
| | - Susan Lin
- IDRI, 1616 Eastlake Ave E, Seattle, WA USA
| | - Mohammed O. Suraju
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA USA
| | | | | | - Tiep Pham
- IDRI, 1616 Eastlake Ave E, Seattle, WA USA
| | | | - Mark A. Tomai
- 3M Drug Delivery Systems, 3M Center, 275-3E-10, St. Paul, MN USA
| | - James Elvecrog
- 3M Drug Delivery Systems, 3M Center, 275-3E-10, St. Paul, MN USA
| | | | - William A. Petri
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA USA
| | - Christopher B. Fox
- IDRI, 1616 Eastlake Ave E, Seattle, WA USA
- Department of Global Health, University of Washington, Seattle, WA USA
| |
Collapse
|
32
|
Gao Y, Wijewardhana C, Mann JFS. Virus-Like Particle, Liposome, and Polymeric Particle-Based Vaccines against HIV-1. Front Immunol 2018. [PMID: 29541072 PMCID: PMC5835502 DOI: 10.3389/fimmu.2018.00345] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It is acknowledged that vaccines remain the best hope for eliminating the HIV-1 epidemic. However, the failure to produce effective vaccine immunogens and the inability of conventional delivery strategies to elicit the desired immune responses remains a central theme and has ultimately led to a significant roadblock in HIV vaccine development. Consequently, significant efforts have been applied to generate novel vaccine antigens and delivery agents, which mimic viral structures for optimal immune induction. Here, we review the latest developments that have occurred in the nanoparticle vaccine field, with special emphasis on strategies that are being utilized to attain highly immunogenic, systemic, and mucosal anti-HIV humoral and cellular immune responses. This includes the design of novel immunogens, the central role of antigen-presenting cells, delivery routes, and biodistribution of nanoparticles to lymph nodes. In particular, we will focus on virus-like-particle formulations and their preclinical uses within the HIV prophylactic vaccine setting.
Collapse
Affiliation(s)
- Yong Gao
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| | - Chanuka Wijewardhana
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| | - Jamie F S Mann
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
33
|
Anderson J, Olafsdottir TA, Kratochvil S, McKay PF, Östensson M, Persson J, Shattock RJ, Harandi AM. Molecular Signatures of a TLR4 Agonist-Adjuvanted HIV-1 Vaccine Candidate in Humans. Front Immunol 2018. [PMID: 29535712 PMCID: PMC5834766 DOI: 10.3389/fimmu.2018.00301] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Systems biology approaches have recently provided new insights into the mechanisms of action of human vaccines and adjuvants. Here, we investigated early transcriptional signatures induced in whole blood of healthy subjects following vaccination with a recombinant HIV-1 envelope glycoprotein subunit CN54gp140 adjuvanted with the TLR4 agonist glucopyranosyl lipid adjuvant-aqueous formulation (GLA-AF) and correlated signatures to CN54gp140-specific serum antibody responses. Fourteen healthy volunteers aged 18–45 years were immunized intramuscularly three times at 1-month intervals and whole blood samples were collected at baseline, 6 h, and 1, 3, and 7 days post first immunization. Subtle changes in the transcriptomic profiles were observed following immunization, ranging from over 300 differentially expressed genes (DEGs) at day 1 to nearly 100 DEGs at day 7 following immunization. Functional pathway analysis revealed blood transcription modules (BTMs) related to general cell cycle activation, and innate immune cell activation at early time points, as well as BTMs related to T cells and B cell activation at the later time points post-immunization. Diverse CN54gp140-specific serum antibody responses of the subjects enabled their categorization into high or low responders, at early (<1 month) and late (up to 6 months) time points post vaccination. BTM analyses revealed repression of modules enriched in NK cells, and the mitochondrial electron chain, in individuals with high or sustained antigen-specific antibody responses. However, low responders showed an enhancement of BTMs associated with enrichment in myeloid cells and monocytes as well as integrin cell surface interactions. Flow cytometry analysis of peripheral blood mononuclear cells obtained from the subjects revealed an enhanced frequency of CD56dim NK cells in the majority of vaccines 14 days after vaccination as compared with the baseline. These results emphasize the utility of a systems biology approach to enhance our understanding on the mechanisms of action of TLR4 adjuvanted human vaccines.
Collapse
Affiliation(s)
- Jenna Anderson
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Thorunn A Olafsdottir
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sven Kratochvil
- Department of Medicine, Mucosal Infection and Immunity Group, Section of Virology, Imperial College London, London, United Kingdom
| | - Paul F McKay
- Department of Medicine, Mucosal Infection and Immunity Group, Section of Virology, Imperial College London, London, United Kingdom
| | - Malin Östensson
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Josefine Persson
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Robin J Shattock
- Department of Medicine, Mucosal Infection and Immunity Group, Section of Virology, Imperial College London, London, United Kingdom
| | - Ali M Harandi
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
34
|
Makinde J, Jones C, Bartolf A, Sibeko S, Baden S, Cosgrove C, Shattock RJ. Localized cyclical variations in immunoproteins in the female genital tract and the implications on the design and assessment of mucosal infection and therapies. Am J Reprod Immunol 2017; 79. [PMID: 29286179 DOI: 10.1111/aji.12801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 11/21/2017] [Indexed: 01/07/2023] Open
Abstract
PROBLEM Fluctuating hormones regulate reproductive processes in the female genital tract. Consequent changes in the local immunological environment are likely to affect cellular interaction with infectious agents and the assessment of therapies that target mucosal infections. METHOD OF STUDY We compared Softcup and Weck-Cel sampling protocols and assessed the changes in the concentrations of 39 soluble proteins with menstrual cycle progression in the mucosal and peripheral compartments. RESULTS We demonstrate that the mucosal immunological profile is distinct from serum with inflammatory and migratory signatures that are localized throughout the cycle. The analytes highlighted in the mucosal compartment were generally highest at the follicular phase with a tendency to fall as the cycle progressed through ovulation to the luteal phase. CONCLUSION Our results underscore the need to consider these localized cyclical differences in studies aimed at assessing the outcome of disease and the efficacy of mucosal vaccines and other therapies.
Collapse
Affiliation(s)
- Julia Makinde
- Mucosal Infection & Immunity Group, Division of Infectious Diseases, Department of Medicine, Imperial College London, London, UK
| | - Clifford Jones
- Mucosal Infection & Immunity Group, Division of Infectious Diseases, Department of Medicine, Imperial College London, London, UK
| | - Angela Bartolf
- St George's Vaccine Institute, Institute for Infection and Immunity, St George's University of London, London, UK
| | - Sengeziwe Sibeko
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| | - Susan Baden
- St George's Vaccine Institute, Institute for Infection and Immunity, St George's University of London, London, UK
| | - Catherine Cosgrove
- St George's Vaccine Institute, Institute for Infection and Immunity, St George's University of London, London, UK
| | - Robin J Shattock
- Mucosal Infection & Immunity Group, Division of Infectious Diseases, Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
35
|
Kratochvil S, McKay PF, Chung AW, Kent SJ, Gilmour J, Shattock RJ. Immunoglobulin G1 Allotype Influences Antibody Subclass Distribution in Response to HIV gp140 Vaccination. Front Immunol 2017; 8:1883. [PMID: 29326728 PMCID: PMC5742328 DOI: 10.3389/fimmu.2017.01883] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 12/11/2017] [Indexed: 01/13/2023] Open
Abstract
Antibody subclasses exhibit extensive polymorphisms (allotypes) that could potentially impact the quality of HIV-vaccine induced B cell responses. Allotypes of immunoglobulin (Ig) G1, the most abundant serum antibody, have been shown to display altered functional properties in regard to serum half-life, Fc-receptor binding and FcRn-mediated mucosal transcytosis. To investigate the potential link between allotypic IgG1-variants and vaccine-generated humoral responses in a cohort of 14 HIV vaccine recipients, we developed a novel protocol for rapid IgG1-allotyping. We combined PCR and ELISA assays in a dual approach to determine the IgG1 allotype identity (G1m3 and/or G1m1) of trial participants, using human plasma and RNA isolated from PBMC. The IgG1-allotype distribution of our participants mirrored previously reported results for caucasoid populations. We observed elevated levels of HIV gp140-specific IgG1 and decreased IgG2 levels associated with the G1m1-allele, in contrast to G1m3 carriers. These data suggest that vaccinees homozygous for G1m1 are predisposed to develop elevated Ag-specific IgG1:IgG2 ratios compared to G1m3-carriers. This elevated IgG1:IgG2 ratio was further associated with higher FcγR-dimer engagement, a surrogate for potential antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP) function. Although preliminary, these results suggest that IgG1 allotype may have a significant impact on IgG subclass distribution in response to vaccination and associated Fc-mediated effector functions. These results have important implications for ongoing HIV vaccine efficacy studies predicated on engagement of FcγR-mediated cellular functions including ADCC and ADCP, and warrant further investigation. Our novel allotyping protocol provides new tools to determine the potential impact of IgG1 allotypes on vaccine efficacy.
Collapse
Affiliation(s)
| | - Paul F McKay
- Imperial College London, Medicine, London, United Kingdom
| | - Amy W Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC, Australia.,Melbourne Sexual Health Centre, Department of Infectious Diseases, Alfred Health, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Jill Gilmour
- IAVI Human Immunology Laboratory, Imperial College London, London, United Kingdom
| | | |
Collapse
|
36
|
GI-19007, a Novel Saccharomyces cerevisiae-Based Therapeutic Vaccine against Tuberculosis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00245-17. [PMID: 29046306 PMCID: PMC5717186 DOI: 10.1128/cvi.00245-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/05/2017] [Indexed: 01/05/2023]
Abstract
As yet, very few vaccine candidates with activity in animals against Mycobacterium tuberculosis infection have been tested as therapeutic postexposure vaccines. We recently described two pools of mycobacterial proteins with this activity, and here we describe further studies in which four of these proteins (Rv1738, Rv2032, Rv3130, and Rv3841) were generated as a fusion polypeptide and then delivered in a novel yeast-based platform (Tarmogen) which itself has immunostimulatory properties, including activation of Toll-like receptors. This platform can deliver antigens into both the class I and class II antigen presentation pathways and stimulate strong Th1 and Th17 responses. In mice this fusion vaccine, designated GI-19007, was immunogenic and elicited strong gamma interferon (IFN-γ) and interleukin-17 (IL-17) responses; despite this, they displayed minimal prophylactic activity in mice that were subsequently infected with a virulent clinical strain. In contrast, in a therapeutic model in the guinea pig, GI-19007 significantly reduced the lung bacterial load and reduced lung pathology, particularly in terms of secondary lesion development, while significantly improving survival in one-third of these animals. In further studies in which guinea pigs were vaccinated with BCG before challenge, therapeutic vaccination with GI-19007 initially improved survival versus that of animals given BCG alone, although this protective effect was gradually lost at around 400 days after challenge. Given its apparent ability to substantially limit bacterial dissemination within and from the lungs, GI-19007 potentially can be used to limit lung damage as well as facilitating chemotherapeutic regimens in infected individuals.
Collapse
|
37
|
Cecílio P, Pérez-Cabezas B, Fernández L, Moreno J, Carrillo E, Requena JM, Fichera E, Reed SG, Coler RN, Kamhawi S, Oliveira F, Valenzuela JG, Gradoni L, Glueck R, Gupta G, Cordeiro-da-Silva A. Pre-clinical antigenicity studies of an innovative multivalent vaccine for human visceral leishmaniasis. PLoS Negl Trop Dis 2017; 11:e0005951. [PMID: 29176865 PMCID: PMC5720812 DOI: 10.1371/journal.pntd.0005951] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 12/07/2017] [Accepted: 09/11/2017] [Indexed: 01/18/2023] Open
Abstract
The notion that previous infection by Leishmania spp. in endemic areas leads to robust anti-Leishmania immunity, supports vaccination as a potentially effective approach to prevent disease development. Nevertheless, to date there is no vaccine available for human leishmaniasis. We optimized and assessed in vivo the safety and immunogenicity of an innovative vaccine candidate against human visceral leishmaniasis (VL), consisting of Virus-Like Particles (VLP) loaded with three different recombinant proteins (LJL143 from Lutzomyia longipalpis saliva as the vector-derived (VD) component, and KMP11 and LeishF3+, as parasite-derived (PD) antigens) and adjuvanted with GLA-SE, a TLR4 agonist. No apparent adverse reactions were observed during the experimental time-frame, which together with the normal hematological parameters detected seems to point to the safety of the formulation. Furthermore, measurements of antigen-specific cellular and humoral responses, generally higher in immunized versus control groups, confirmed the immunogenicity of the vaccine formulation. Interestingly, the immune responses against the VD protein were reproducibly more robust than those elicited against leishmanial antigens, and were apparently not caused by immunodominance of the VD antigen. Remarkably, priming with the VD protein alone and boosting with the complete vaccine candidate contributed towards an increase of the immune responses to the PD antigens, assessed in the form of increased ex vivo CD4+ and CD8+ T cell proliferation against both the PD antigens and total Leishmania antigen (TLA). Overall, our immunogenicity data indicate that this innovative vaccine formulation represents a promising anti-Leishmania vaccine whose efficacy deserves to be tested in the context of the "natural infection".
Collapse
Affiliation(s)
- Pedro Cecílio
- Parasite Disease group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- IBMC—Instituto de Biologia Celular e Molecular, Universidade do Porto, Porto, Portugal
- Departamento de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal
| | - Begoña Pérez-Cabezas
- Parasite Disease group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- IBMC—Instituto de Biologia Celular e Molecular, Universidade do Porto, Porto, Portugal
| | - Laura Fernández
- WHO Collaborating Centre for Leishmaniasis, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Moreno
- WHO Collaborating Centre for Leishmaniasis, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Eugenia Carrillo
- WHO Collaborating Centre for Leishmaniasis, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - José M. Requena
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Epifanio Fichera
- Etna Biotech S.R.L, via Vincenzo Lancia, 57—Zona Industriale Blocco Palma 1, Catania, Italy
| | - Steven G. Reed
- Infectious Disease Research Institute (IDRI), Seattle, WA, United States of America
| | - Rhea N. Coler
- Infectious Disease Research Institute (IDRI), Seattle, WA, United States of America
| | - Shaden Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, United States of America
| | - Fabiano Oliveira
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, United States of America
| | - Jesus G. Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, United States of America
| | - Luigi Gradoni
- Unit of Vector-borne Diseases and International Health, Istituto Superiore di Sanità, Rome, Italy
| | - Reinhard Glueck
- Etna Biotech S.R.L, via Vincenzo Lancia, 57—Zona Industriale Blocco Palma 1, Catania, Italy
| | - Gaurav Gupta
- Etna Biotech S.R.L, via Vincenzo Lancia, 57—Zona Industriale Blocco Palma 1, Catania, Italy
| | - Anabela Cordeiro-da-Silva
- Parasite Disease group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- IBMC—Instituto de Biologia Celular e Molecular, Universidade do Porto, Porto, Portugal
- Departamento de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal
| |
Collapse
|
38
|
Yu JS, Liao HX, Pritchett J, Bowman C, Vivian C, Parks R, Xia SM, Cooper M, Williams WB, Bonsignori M, Reed SG, Chen M, Vandergrift N, Rice CM, Haynes BF. Development of a recombinant yellow fever vector expressing a HIV clade C founder envelope gp120. J Virol Methods 2017; 249:85-93. [PMID: 28837840 DOI: 10.1016/j.jviromet.2017.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 11/29/2022]
Abstract
Development of a HIV-1 vaccine is a major global priority. The yellow fever virus (YFV) attenuated vaccine 17D is among the most effective of currently used vaccines. However, the stability of the YFV17D vector when carrying non-flavivirus genes has been problematic. We have constructed and expressed HIV-1 Env in YFV17D with either single transmembrane (STM) or double transmembrane (DTM) YFV E protein domains for the development of anti-HIV antibodies. Here we describe modifications of the YFV17D vector such that HIV-1 Env gp120 is expressed in up to 5 passages in Vero cells. Immunization with recombinant YFV17D vector prime followed by HIV-1 CH505 TF gp120 protein boosts were able to induce neutralizing antibodies for a HIV-1 tier 1 isolate in mice. This modified YFV vector may be a starting point for constructing HIV-1 vaccine candidate priming vectors.
Collapse
Affiliation(s)
- Jae-Sung Yu
- Human Vaccine Institute and Department of Medicine, Duke University Medical Center, Durham, NC 27710, United States.
| | - Hua-Xin Liao
- Human Vaccine Institute and Department of Medicine, Duke University Medical Center, Durham, NC 27710, United States
| | - Jamie Pritchett
- Human Vaccine Institute and Department of Medicine, Duke University Medical Center, Durham, NC 27710, United States
| | - Cindy Bowman
- Human Vaccine Institute and Department of Medicine, Duke University Medical Center, Durham, NC 27710, United States
| | - Callie Vivian
- Human Vaccine Institute and Department of Medicine, Duke University Medical Center, Durham, NC 27710, United States
| | - Robert Parks
- Human Vaccine Institute and Department of Medicine, Duke University Medical Center, Durham, NC 27710, United States
| | - Shi-Mao Xia
- Human Vaccine Institute and Department of Medicine, Duke University Medical Center, Durham, NC 27710, United States
| | - Melissa Cooper
- Human Vaccine Institute and Department of Medicine, Duke University Medical Center, Durham, NC 27710, United States
| | - Wilton B Williams
- Human Vaccine Institute and Department of Medicine, Duke University Medical Center, Durham, NC 27710, United States
| | - Mattia Bonsignori
- Human Vaccine Institute and Department of Medicine, Duke University Medical Center, Durham, NC 27710, United States
| | - Steven G Reed
- Infectious Disease Research Institute, Seattle, WA 98102, United States
| | - Meng Chen
- Human Vaccine Institute and Department of Medicine, Duke University Medical Center, Durham, NC 27710, United States
| | - Nathan Vandergrift
- Human Vaccine Institute and Department of Medicine, Duke University Medical Center, Durham, NC 27710, United States
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, 10065, United States
| | - Barton F Haynes
- Human Vaccine Institute and Department of Medicine, Duke University Medical Center, Durham, NC 27710, United States.
| |
Collapse
|
39
|
Chauhan N, Banerjee P, Khatri VK, Canciamille A, Gilles J, Kalyanasundaram R. Improving the efficacy of a prophylactic vaccine formulation against lymphatic filariasis. Parasitol Res 2017; 116:2821-2830. [PMID: 28828575 DOI: 10.1007/s00436-017-5593-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/10/2017] [Indexed: 12/15/2022]
Abstract
Mass drug administration (MDA) is the current strategy for interrupting the transmission of lymphatic filariasis (LF) infection and control of the disease in endemic areas. However, subject non-compliance has resulted in the presence of several "transmission hotspots" in the endemic regions threatening the reemergence of LF. This situation is further complicated by the fact that the drugs used in MDA are not effective against adult LF worms, a major concern for the control strategy. Thus, there is clearly a need for an effective and sustainable approach to control LF. Prophylactic vaccine combined with targeted treatment of infected patients and vector control is suggested as a more sustainable strategy to eliminate LF infection from endemic regions. A multivalent vaccine (rBmHAT) developed in our laboratory conferred about 90% protection in rodents. However, when we tested the rBmHAT vaccine along with alum in rhesus macaques, only about 40% protection was achieved and the immune response obtained was Th2 biased. In an attempt to improve the vaccine, in this study, we tested two vaccine antigens (rBmHAT and rBmHAX) along with two adjuvant formulations [alum + GLA (AL019) and mannosylated chitosan (MCA)] in a mouse model. Our results show that rBmHAT is a better vaccine antigen than rBmHAX. Combination of rBmHAT with AL019 or MCA adjuvants gave 94 and 88% protection, respectively, against challenge infections. Immunized animals developed antigen-specific memory T cells that secreted significant levels of IL-4, IFN-γ, and IL-17 suggesting the generation of a balanced Th1/Th2 responses following immunization. A major advantage of MCA adjuvant is that the vaccine booster doses can be administered orally. These studies thus showed that rBmHAT is a better vaccine antigen and can be given in combination with AL019 or MCA adjuvant to obtain excellent results.
Collapse
Affiliation(s)
- Nikhil Chauhan
- Department of Biomedical Sciences, University of Illinois College of Medicine, 1601 Parkview Avenue, Rockford, IL, 61107, USA
| | - Priyankana Banerjee
- Department of Biomedical Sciences, University of Illinois College of Medicine, 1601 Parkview Avenue, Rockford, IL, 61107, USA
| | - Vishal K Khatri
- Department of Biomedical Sciences, University of Illinois College of Medicine, 1601 Parkview Avenue, Rockford, IL, 61107, USA
| | - Andrew Canciamille
- Department of Biomedical Sciences, University of Illinois College of Medicine, 1601 Parkview Avenue, Rockford, IL, 61107, USA
| | - Jessica Gilles
- Department of Biomedical Sciences, University of Illinois College of Medicine, 1601 Parkview Avenue, Rockford, IL, 61107, USA
| | - Ramaswamy Kalyanasundaram
- Department of Biomedical Sciences, University of Illinois College of Medicine, 1601 Parkview Avenue, Rockford, IL, 61107, USA.
| |
Collapse
|
40
|
Fischetti L, Zhong Z, Pinder CL, Tregoning JS, Shattock RJ. The synergistic effects of combining TLR ligand based adjuvants on the cytokine response are dependent upon p38/JNK signalling. Cytokine 2017; 99:287-296. [PMID: 28826648 DOI: 10.1016/j.cyto.2017.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 12/17/2022]
Abstract
Toll like receptor (TLR) ligands are important adjuvant candidates, causing antigen presenting cells to release inflammatory mediators, leading to the recruitment and activation of other leukocytes. The aim of this study was to define the response of human blood derived dendritic cells and macrophages to three TLR ligands acting singly or in combination, Poly I:C (TLR3), GLA (TLR4) and R848 (TLR7/8). Combinations of TLR agonists have been shown to have a synergistic effect on individual cytokines, here we look at the global inflammatory response measuring both cytokines and chemokines. Using a custom Luminex assay we saw dose responses in several mediators including CCL3 (MIP1α), IL-1α, IL-1β, IL-12, CXCL10 (IP-10) and IL-6, all of which were significantly increased by the combination of R848 and GLA, even when low dose GLA was added. The synergistic effect was inhibited by specific MAP kinase inhibitors blocking the kinases p38 and JNK but not MEK1. Combining TLR adjuvants also had a synergistic effect on cytokine responses in human mucosal tissue explants. From this we conclude that the combination of R848 and GLA potentiates the inflammatory profile of antigen presenting cells. Since the pattern of inflammatory mediators released can alter the quality and quantity of the adaptive immune response to vaccination, this study informs vaccine adjuvant design.
Collapse
Affiliation(s)
- Lucia Fischetti
- Mucosal Infection & Immunity Group, Section of Virology, Imperial College London, St. Mary's Campus, London W2 1PG, United Kingdom
| | - Ziyun Zhong
- Mucosal Infection & Immunity Group, Section of Virology, Imperial College London, St. Mary's Campus, London W2 1PG, United Kingdom
| | - Christopher L Pinder
- Mucosal Infection & Immunity Group, Section of Virology, Imperial College London, St. Mary's Campus, London W2 1PG, United Kingdom
| | - John S Tregoning
- Mucosal Infection & Immunity Group, Section of Virology, Imperial College London, St. Mary's Campus, London W2 1PG, United Kingdom
| | - Robin J Shattock
- Mucosal Infection & Immunity Group, Section of Virology, Imperial College London, St. Mary's Campus, London W2 1PG, United Kingdom.
| |
Collapse
|
41
|
Monophosphoryl lipid A enhances nontypeable Haemophilus influenzae-specific mucosal and systemic immune responses by intranasal immunization. Int J Pediatr Otorhinolaryngol 2017; 97:5-12. [PMID: 28483250 DOI: 10.1016/j.ijporl.2017.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/11/2017] [Accepted: 03/16/2017] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Acute otitis media (AOM) is one of the most common infectious diseases in children. Nontypeable Haemophilus influenzae (NTHi) is Gram-negative bacteria that are considered major pathogens of AOM and respiratory tract infections. In this study, we used monophosphoryl lipid A (MPL), a toll-like receptor (TLR) 4 agonist, as an adjuvant to induce mucosal immune responses against NTHi to enhance bacterial clearance from the nasopharynx. METHODS Mice were administered 10 μg outer membrane protein (OMP) from NTHi and 0, 10, or 20 μg MPL intranasally once a week for 3 weeks. Control mice were administered phosphate-buffered saline alone. After immunization, these mice were challenged with NTHi. At 6 and 12 h after bacterial challenge, the mice were killed and nasal washes and sera were collected. The numbers of NTHi- and OMP-specific antibodies were quantified by enzyme-linked immunosorbent assay. RESULTS The MPL 10 and 20 μg group produced a significant reduction in the number of bacteria recovered from the nasopharynx at 12 h after bacterial challenge compared to the control group. OMP-specific IgA titers were also augmented in the MPL groups compared to the control and OMP groups. CONCLUSION MPL is suitable for eliciting effective mucosal immune responses against NTHi in the nasopharynx. These results demonstrate the possibility of an adjuvant that involves stimulation of the innate immune system by TLR4 agonists such as MPL for mucosal vaccination.
Collapse
|
42
|
Kratochvil S, McKay PF, Kopycinski JT, Bishop C, Hayes PJ, Muir L, Pinder CL, Cizmeci D, King D, Aldon Y, Wines BD, Hogarth PM, Chung AW, Kent SJ, Held K, Geldmacher C, Dally L, Santos NS, Cole T, Gilmour J, Fidler S, Shattock RJ. A Phase 1 Human Immunodeficiency Virus Vaccine Trial for Cross-Profiling the Kinetics of Serum and Mucosal Antibody Responses to CN54gp140 Modulated by Two Homologous Prime-Boost Vaccine Regimens. Front Immunol 2017; 8:595. [PMID: 28596770 PMCID: PMC5442169 DOI: 10.3389/fimmu.2017.00595] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/05/2017] [Indexed: 12/24/2022] Open
Abstract
A key aspect to finding an efficacious human immunodeficiency virus (HIV) vaccine is the optimization of vaccine schedules that can mediate the efficient maturation of protective immune responses. In the present study, we investigated the effect of alternate booster regimens on the immune responses to a candidate HIV-1 clade C CN54gp140 envelope protein, which was coadministered with the TLR4-agonist glucopyranosyl lipid A-aqueous formulation. Twelve study participants received a common three-dose intramuscular priming series followed by a final booster at either 6 or 12 months. The two homologous prime-boost regimens were well tolerated and induced CN54gp140-specific responses that were observed in both the systemic and mucosal compartments. Levels of vaccine-induced IgG-subclass antibodies correlated significantly with FcγR engagement, and both vaccine regimens were associated with strikingly similar patterns in antibody titer and FcγR-binding profiles. In both groups, identical changes in the antigen (Ag)-specific IgG-subclass fingerprint, leading to a decrease in IgG1 and an increase in IgG4 levels, were modulated by booster injections. Here, the dissection of immune profiles further supports the notion that prime-boost strategies are essential for the induction of diverse Ag-specific HIV-1 responses. The results reported here clearly demonstrate that identical responses were effectively and safely induced by both vaccine regimens, indicating that an accelerated 6-month regimen could be employed for the rapid induction of immune responses against CN54gp140 with no apparent impact on the overall quality of the induced immune response. (This study has been registered at http://ClinicalTrials.gov under registration no. NCT01966900.)
Collapse
Affiliation(s)
| | | | | | - Cynthia Bishop
- Flow Cytometry Core Facility, Biomedical Research Centre, Guy's Hospital, London, UK
| | | | - Luke Muir
- Imperial College London, Medicine, London, UK
| | | | | | | | - Yoann Aldon
- Imperial College London, Medicine, London, UK
| | | | | | - Amy W Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC, Australia.,Melbourne Sexual Health Centre, Department of Infectious Diseases, Alfred Health, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Kathrin Held
- Division of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich (LMU), Munich, Germany
| | - Christof Geldmacher
- Division of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich (LMU), Munich, Germany
| | - Len Dally
- Emmes Corporation, Rockville, MD, USA
| | - Nelson S Santos
- NIHR/Wellcome Trust Imperial Clinical Research Facility Hammersmith Hospital, Imperial College London, London, UK
| | - Tom Cole
- NIHR/Wellcome Trust Imperial Clinical Research Facility Hammersmith Hospital, Imperial College London, London, UK
| | | | | | | |
Collapse
|
43
|
Rao M, Cadieux N, Fitzpatrick M, Reed S, Arsenian S, Valentini D, Parida S, Dodoo E, Zumla A, Maeurer M. Mycobacterium tuberculosis proteins involved in cell wall lipid biosynthesis improve BCG vaccine efficacy in a murine TB model. Int J Infect Dis 2017; 56:274-282. [PMID: 28161464 DOI: 10.1016/j.ijid.2017.01.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/19/2017] [Accepted: 01/22/2017] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVES Advances in tuberculosis (TB) vaccine development are urgently required to enhance global disease management. We evaluated the potential of Mycobacterium tuberculosis (M. tb)-derived protein antigens Rv0447c, Rv2957 and Rv2958c to boost BCG vaccine efficacy in the presence or absence of glucopyranosyl lipid adjuvant formulated in a stable emulsion (GLA-SE) adjuvant. METHODS Mice received the BCG vaccine, followed by Rv0447c, Rv2957 and Rv2958c protein boosting with or without GLA-SE adjuvant 3 and 6 weeks later. Immune responses were examined at given time points. 9 weeks post vaccination, mice were aerosol-challenged with M. tb, and sacrificed at 6 and 12 weeks to assess bacterial burden. RESULTS Vaccination of mice with BCG and M. tb proteins in the presence of GLA-SE adjuvant triggered strong IFN-γ and IL-2 production by splenocytes; more TNF-α was produced without GLA-SE addition. Antibody responses to all three antigens did not differ, with or without GLA-SE adjuvant. Protein boosting without GLA-SE adjuvant resulted in vaccinated animals having better control of pulmonary M. tb load at 6 and 12 weeks post aerosol infection, while animals receiving the protein boost with GLA-SE adjuvant exhibited more bacteria in the lungs. CONCLUSIONS Our data provides evidence for developing Rv2958c, Rv2957 and Rv0447c in a heterologous prime-boost vaccination strategy with BCG.
Collapse
Affiliation(s)
- Martin Rao
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine (LABMED), Karolinska Institutet, Stockholm, Sweden
| | | | | | - Steven Reed
- Infectious Disease Research Institute (IDRI), Seattle, USA
| | - Sergei Arsenian
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine (LABMED), Karolinska Institutet, Stockholm, Sweden
| | - Davide Valentini
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine (LABMED), Karolinska Institutet, Stockholm, Sweden; Centre for Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Shreemanta Parida
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine (LABMED), Karolinska Institutet, Stockholm, Sweden
| | - Ernest Dodoo
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine (LABMED), Karolinska Institutet, Stockholm, Sweden
| | - Alimuddin Zumla
- Division of Infection and Immunity, University College London and the NIHR Biomedical Research centre at UCL Hospitals NHS Foundation Trust London, UK
| | - Markus Maeurer
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine (LABMED), Karolinska Institutet, Stockholm, Sweden; Centre for Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge, Stockholm, Sweden.
| |
Collapse
|
44
|
Veazey RS, Siddiqui A, Klein K, Buffa V, Fischetti L, Doyle-Meyers L, King DF, Tregoning JS, Shattock RJ. Evaluation of mucosal adjuvants and immunization routes for the induction of systemic and mucosal humoral immune responses in macaques. Hum Vaccin Immunother 2016; 11:2913-22. [PMID: 26697975 DOI: 10.1080/21645515.2015.1070998] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Delivering vaccine antigens to mucosal surfaces is potentially very attractive, especially as protection from mucosal infections may be mediated by local immune responses. However, to date mucosal immunization has had limited successes, with issues of both safety and poor immunogenicity. One approach to improve immunogenicity is to develop adjuvants that are effective and safe at mucosal surfaces. Differences in immune responses between mice and men have overstated the value of some experimental adjuvants which have subsequently performed poorly in the clinic. Due to their closer similarity, non-human primates can provide a more accurate picture of adjuvant performance. In this study we immunised rhesus macaques (Macaca mulatta) using a unique matrix experimental design that maximised the number of adjuvants screened while reducing the animal usage. Macaques were immunised by the intranasal, sublingual and intrarectal routes with the model protein antigens keyhole limpet haemocyanin (KLH), β-galactosidase (β-Gal) and ovalbumin (OVA) in combination with the experimental adjuvants Poly(I:C), Pam3CSK4, chitosan, Thymic Stromal Lymphopoietin (TSLP), MPLA and R848 (Resiquimod). Of the routes used, only intranasal immunization with KLH and R848 induced a detectable antibody response. When compared to intramuscular immunization, intranasal administration gave slightly lower levels of antigen specific antibody in the plasma, but enhanced local responses. Following intranasal delivery of R848, we observed a mildly inflammatory response, but no difference to the control. From this we conclude that R848 is able to boost antibody responses to mucosally delivered antigen, without causing excess local inflammation.
Collapse
Affiliation(s)
- Ronald S Veazey
- a Tulane National Primate Research Center; Tulane University School of Medicine ; Covington , LA USA
| | - Asna Siddiqui
- b Mucosal Infection & Immunity Group; Section of Virology; Imperial College London; St. Mary's Campus ; London , UK
| | - Katja Klein
- b Mucosal Infection & Immunity Group; Section of Virology; Imperial College London; St. Mary's Campus ; London , UK.,c Present affiliation: University of Western Ontario ; Ontario , Canada
| | - Viviana Buffa
- b Mucosal Infection & Immunity Group; Section of Virology; Imperial College London; St. Mary's Campus ; London , UK
| | - Lucia Fischetti
- b Mucosal Infection & Immunity Group; Section of Virology; Imperial College London; St. Mary's Campus ; London , UK
| | - Lara Doyle-Meyers
- a Tulane National Primate Research Center; Tulane University School of Medicine ; Covington , LA USA
| | - Deborah F King
- b Mucosal Infection & Immunity Group; Section of Virology; Imperial College London; St. Mary's Campus ; London , UK.,d Present affiliation: IAVI Human Immunology Lab; Chelsea and Westminster; Imperial College London ; London , UK
| | - John S Tregoning
- b Mucosal Infection & Immunity Group; Section of Virology; Imperial College London; St. Mary's Campus ; London , UK
| | - Robin J Shattock
- b Mucosal Infection & Immunity Group; Section of Virology; Imperial College London; St. Mary's Campus ; London , UK
| |
Collapse
|
45
|
Cosgrove CA, Lacey CJ, Cope AV, Bartolf A, Morris G, Yan C, Baden S, Cole T, Carter D, Brodnicki E, Shen X, Joseph S, DeRosa SC, Peng L, Yu X, Ferrari G, Seaman M, Montefiori DC, Frahm N, Tomaras GD, Stöhr W, McCormack S, Shattock RJ. Comparative Immunogenicity of HIV-1 gp140 Vaccine Delivered by Parenteral, and Mucosal Routes in Female Volunteers; MUCOVAC2, A Randomized Two Centre Study. PLoS One 2016; 11:e0152038. [PMID: 27159166 PMCID: PMC4861263 DOI: 10.1371/journal.pone.0152038] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/07/2016] [Indexed: 12/16/2022] Open
Abstract
Background Defining optimal routes for induction of mucosal immunity represents an important research priority for the HIV-1 vaccine field. In particular, it remains unclear whether mucosal routes of immunization can improve mucosal immune responses. Methods In this randomized two center phase I clinical trial we evaluated the systemic and mucosal immune response to a candidate HIV-1 Clade C CN54gp140 envelope glycoprotein vaccine administered by intramuscular (IM), intranasal (IN) and intravaginal (IVAG) routes of administration in HIV negative female volunteers. IM immunizations were co-administered with Glucopyranosyl Lipid Adjuvant (GLA), IN immunizations with 0.5% chitosan and IVAG immunizations were administered in an aqueous gel. Results Three IM immunizations of CN54 gp140 at either 20 or 100 μg elicited significantly greater systemic and mucosal antibodies than either IN or IVAG immunizations. Following additional intramuscular boosting we observed an anamnestic antibody response in nasally primed subjects. Modest neutralizing responses were detected against closely matched tier 1 clade C virus in the IM groups. Interestingly, the strongest CD4 T-cell responses were detected after IN and not IM immunization. Conclusions These data show that parenteral immunization elicits systemic and mucosal antibodies in women. Interestingly IN immunization was an effective prime for IM boost, while IVAG administration had no detectable impact on systemic or mucosal responses despite IM priming. Clinical Trials Registration EudraCT 2010-019103-27 and the UK Clinical Research Network (UKCRN) Number 11679
Collapse
Affiliation(s)
| | - Charles J. Lacey
- Hull York Medical School & Centre for Immunology and Infection, University of York, York, United Kingdom
| | - Alethea V. Cope
- Mucosal Infection & Immunity Group, Division of Infectious Diseases, Department of Medicine, Imperial College London, London, United Kingdom
| | - Angela Bartolf
- Centre for Infection, St George’s, University of London, London, United Kingdom
| | - Georgina Morris
- Hull York Medical School & Centre for Immunology and Infection, University of York, York, United Kingdom
| | - Celine Yan
- Mucosal Infection & Immunity Group, Division of Infectious Diseases, Department of Medicine, Imperial College London, London, United Kingdom
| | - Susan Baden
- Centre for Infection, St George’s, University of London, London, United Kingdom
| | - Tom Cole
- Mucosal Infection & Immunity Group, Division of Infectious Diseases, Department of Medicine, Imperial College London, London, United Kingdom
| | - Darrick Carter
- Infectious Disease Research Institute (IDRI), Seattle, WA, United States of America
| | - Elizabeth Brodnicki
- Medical Research Council, Clinical Trials Unit at UCL, University College London, London, United Kingdom
| | - Xiaoying Shen
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, United States of America
| | - Sarah Joseph
- Medical Research Council, Clinical Trials Unit at UCL, University College London, London, United Kingdom
| | - Stephen C. DeRosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Lili Peng
- Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Xuesong Yu
- Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Guido Ferrari
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, United States of America
- Department of Surgery, Duke University Medical Center, Durham, NC, United States of America
| | - Mike Seaman
- CAVD Neutralizing Antibody Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| | - David C. Montefiori
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, United States of America
- Department of Surgery, Duke University Medical Center, Durham, NC, United States of America
| | - Nicole Frahm
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Georgia D. Tomaras
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, United States of America
- Department of Surgery, Duke University Medical Center, Durham, NC, United States of America
| | - Wolfgang Stöhr
- Medical Research Council, Clinical Trials Unit at UCL, University College London, London, United Kingdom
| | - Sheena McCormack
- Medical Research Council, Clinical Trials Unit at UCL, University College London, London, United Kingdom
| | - Robin J. Shattock
- Mucosal Infection & Immunity Group, Division of Infectious Diseases, Department of Medicine, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
46
|
Molehin AJ, Rojo JU, Siddiqui SZ, Gray SA, Carter D, Siddiqui AA. Development of a schistosomiasis vaccine. Expert Rev Vaccines 2016; 15:619-27. [PMID: 26651503 PMCID: PMC5070536 DOI: 10.1586/14760584.2016.1131127] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Schistosomiasis is a neglected tropical disease (NTD) of public health importance. Despite decades of implementation of mass praziquantel therapy programs and other control measures, schistosomiasis has not been contained and continues to spread to new geographic areas. A schistosomiasis vaccine could play an important role as part of a multifaceted control approach. With regards to vaccine development, many biological bottlenecks still exist: the lack of reliable surrogates of protection in humans; immune interactions in co-infections with other diseases in endemic areas; the potential risk of IgE responses to antigens in endemic populations; and paucity of appropriate vaccine efficacy studies in nonhuman primate models. Research is also needed on the role of modern adjuvants targeting specific parts of the innate immune system to tailor a potent and protective immune response for lead schistosome vaccine candidates with the long-term aim to achieve curative worm reduction. This review summarizes the current status of schistosomiasis vaccine development.
Collapse
Affiliation(s)
- Adebayo J. Molehin
- Department of Internal Medicine, Texas Tech University School of Medicine, Lubbock, Texas, USA
- Center of Tropical Medicine and Infectious Diseases, Texas Tech University School of Medicine, Lubbock, Texas, USA
| | - Juan U. Rojo
- Department of Internal Medicine, Texas Tech University School of Medicine, Lubbock, Texas, USA
- Center of Tropical Medicine and Infectious Diseases, Texas Tech University School of Medicine, Lubbock, Texas, USA
| | - Sabrina Z. Siddiqui
- Department of Internal Medicine, Texas Tech University School of Medicine, Lubbock, Texas, USA
- Center of Tropical Medicine and Infectious Diseases, Texas Tech University School of Medicine, Lubbock, Texas, USA
| | | | - Darrick Carter
- PAI Life Sciences, Washington, USA
- Infectious Disease Research Institute, Seattle, Washington, USA
| | - Afzal A. Siddiqui
- Department of Internal Medicine, Texas Tech University School of Medicine, Lubbock, Texas, USA
- Center of Tropical Medicine and Infectious Diseases, Texas Tech University School of Medicine, Lubbock, Texas, USA
| |
Collapse
|
47
|
Mann JFS, Tregoning JS, Aldon Y, Shattock RJ, McKay PF. CD71 targeting boosts immunogenicity of sublingually delivered influenza haemagglutinin antigen and protects against viral challenge in mice. J Control Release 2016; 232:75-82. [PMID: 27094605 DOI: 10.1016/j.jconrel.2016.04.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/04/2016] [Accepted: 04/07/2016] [Indexed: 12/27/2022]
Abstract
The delivery of vaccines to the sublingual mucosa is an attractive prospect due to the ease and acceptability of such an approach. However, novel adjuvant and delivery approaches are required to optimally vaccinate at this site. We have previously shown that conjugation of protein antigen to the iron transport molecule, transferrin, can significantly enhance mucosal immune responses. We tested whether conjugating influenza haemagglutinin to transferrin could improve the immune response to sublingually delivered antigen. Transferrin conjugated haemagglutinin induced a significant antibody and T cell response in both naïve animals and previously immunized animals. The immune response generated was able to protect mice against influenza virus challenge. Sublingually administered antigen dispersed more widely through the gastro-intestinal tract than intranasally delivered antigen and transferrin conjugation had a more marked effect on sublingually delivered antigen than intranasal immunisation. From these studies we conclude that transferrin conjugation of antigen is effective at boosting immune responses to sublingually delivered antigen and may be an attractive approach for influenza vaccines, particularly when mass campaigns are required.
Collapse
Affiliation(s)
- Jamie F S Mann
- Imperial College London, Mucosal Infection and Immunity, Section of Virology, St Mary's Campus, London W2 1PG, United Kingdom
| | - John S Tregoning
- Imperial College London, Mucosal Infection and Immunity, Section of Virology, St Mary's Campus, London W2 1PG, United Kingdom
| | - Yoann Aldon
- Imperial College London, Mucosal Infection and Immunity, Section of Virology, St Mary's Campus, London W2 1PG, United Kingdom
| | - Robin J Shattock
- Imperial College London, Mucosal Infection and Immunity, Section of Virology, St Mary's Campus, London W2 1PG, United Kingdom
| | - Paul F McKay
- Imperial College London, Mucosal Infection and Immunity, Section of Virology, St Mary's Campus, London W2 1PG, United Kingdom.
| |
Collapse
|
48
|
Use of the Microparticle Nanoscale Silicon Dioxide as an Adjuvant To Boost Vaccine Immune Responses against Influenza Virus in Neonatal Mice. J Virol 2016; 90:4735-4744. [PMID: 26912628 DOI: 10.1128/jvi.03159-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/19/2016] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Neonates are at a high risk of infection, but vaccines are less effective in this age group; tailored adjuvants could potentially improve vaccine efficacy. Increased understanding about danger sensing by the innate immune system has led to the rational design of novel adjuvants. But differences in the neonatal innate immune response, for example, to Toll-like receptor (TLR) agonists, can reduce the efficacy of these adjuvants in early life. We therefore targeted alternative danger-sensing pathways, focusing on a range of compounds described as inflammasome agonists, including nanoscale silicon dioxide (NanoSiO2), calcium pyrophosphate dihydrate (CPPD) crystals, and muramyl tripeptide (M-Tri-DAP), for their ability to act as adjuvants.In vitro, these compounds induced an interleukin 1-beta (IL-1β) response in the macrophage-like cell line THP1.In vivo, adult CB6F1 female mice were immunized intramuscularly with H1N1 influenza vaccine antigens in combination with NanoSiO2, CPPD, or M-Tri-DAP and subsequently challenged with H1N1 influenza virus (A/England/195/2009). The adjuvants boosted anti-hemagglutinin IgG and IgA antibody levels. Both adult and neonatal animals that received NanoSiO2-adjuvanted vaccines lost significantly less weight and recovered earlier after infection than control animals treated with antigen alone. Administration of the adjuvants led to an influx of activated inflammatory cells into the muscle but to little systemic inflammation measured by serum cytokine levels. Blocking IL-1β or caspase 1 in vivo had little effect on NanoSiO2 adjuvant function, suggesting that it may work through pathways other than the inflammasome. Here we demonstrate that NanoSiO2 can act as an adjuvant and is effective in early life. IMPORTANCE Vaccines can fail to protect the most at-risk populations, including the very young, the elderly, and the immunocompromised. There is a gap in neonatal immunity between the waning of maternal protection and routine infant immunization schedules, exacerbated by the failure of vaccines to work in the first months of life. One approach is to design age-specific formulations, with more-effective adjuvants, based on our understanding of the nature of the neonatal immune response. We chose to target the inflammasome, a molecular complex capable of detecting infection and cell damage and of triggering IL-1β-driven inflammation. We screened a range of compounds in vitro and in vivo and identified three lead candidates: NanoSiO2, CPPD, and M-Tri-DAP. Of these, NanoSiO2 was the most effective and boosted the anti-influenza virus response in both adult and neonatal mice. This finding is important for the development of age-specific vaccines, designed using our knowledge of the neonatal immune response.
Collapse
|
49
|
Li M, Jiang Y, Gong T, Zhang Z, Sun X. Intranasal Vaccination against HIV-1 with Adenoviral Vector-Based Nanocomplex Using Synthetic TLR-4 Agonist Peptide as Adjuvant. Mol Pharm 2016; 13:885-94. [PMID: 26824411 DOI: 10.1021/acs.molpharmaceut.5b00802] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Recombinant type 5 adenovirus (rAd5) vaccines hold the promise to prevent HIV-1 infections. Intranasal vaccination not only stimulates systemic immunity but also elicits mucosal immunity that provides first defense for mucosally transmitted diseases like HIV-1. Adjuvants such as TLR agonists are usually codelivered with antigens to enhance the immunogenicity of vaccines. Here, we present a rAd5 vaccine delivery system using DEG-PEI as the carrier. Adenovirus encoding HIV gag was used as antigen, and was complexed with DEG-PEI polymer via electrostatic interaction. A novel synthetic TLR-4 agonist, RS09, was either chemically linked with DEG-PEI (DP-RS09) or physically mixed with it(DP/RS09) to enhance the immunogenticity of rAd5 vaccine. After intranasal immunization, the systemic antigen-specific immune responses and cytotoxicity T lymphocytes responses induced by DP-RS09-rAd5 and DP/RS09-rAd5 were analyzed. The mucosal secretory IgA level was detected in both nasal and vaginal washes to determine the mucosal immunity. Furthermore, cytokine productions on RAW264.7 cells were tested after preincubation with TLR-4 pathway inhibitors. The results indicated that DEG-PEI could facilitate the intranasal delivery of rAd5 vaccine. Both chemically linked (DP-RS09) and physically mixed RS09 (DP/RS09) could further enhance the mucosal immunity of rAd5 vaccine via TLR-4 pathway. This RS09 adjuvanted DEG-PEI polymer represents a potential intranasal vaccine delivery system and may have a wider application for other viral vectors.
Collapse
Affiliation(s)
- Man Li
- Key Laboratory of Drug Targeting, Ministry of Education, West China School of Pharmacy, Sichuan University , Chengdu, 610041, People's Republic of China
| | - Yuhong Jiang
- Key Laboratory of Drug Targeting, Ministry of Education, West China School of Pharmacy, Sichuan University , Chengdu, 610041, People's Republic of China
| | - Tao Gong
- Key Laboratory of Drug Targeting, Ministry of Education, West China School of Pharmacy, Sichuan University , Chengdu, 610041, People's Republic of China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting, Ministry of Education, West China School of Pharmacy, Sichuan University , Chengdu, 610041, People's Republic of China
| | - Xun Sun
- Key Laboratory of Drug Targeting, Ministry of Education, West China School of Pharmacy, Sichuan University , Chengdu, 610041, People's Republic of China
| |
Collapse
|
50
|
TLR4 and TLR7/8 Adjuvant Combinations Generate Different Vaccine Antigen-Specific Immune Outcomes in Minipigs when Administered via the ID or IN Routes. PLoS One 2016; 11:e0148984. [PMID: 26862758 PMCID: PMC4749393 DOI: 10.1371/journal.pone.0148984] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/26/2016] [Indexed: 12/22/2022] Open
Abstract
The induction of high levels of systemic and mucosal humoral immunity is a key goal for many prophylactic vaccines. However, adjuvant strategies developed in mice have often performed poorly in the clinic. Due to their closer similarity to humans, minipigs may provide a more accurate picture of adjuvant performance. Based on their complementary signalling pathways, we assessed humoral immune responses to model antigens after co-administration with the toll-like receptor 4 (TLR4) stimulator glucopyranosyl lipid adjuvant (GLA-AF) or the TLR7/8 agonist resiquimod (R848) (alone and in combination) via the intradermal (ID), intranasal (IN) or combined routes in the Gottingen minipig animal model. Surprisingly, we discovered that while GLA-AF additively enhanced the adjuvant effect of R848 when injected ID, it abrogated the adjuvant activity of R848 after IN inoculation. We then performed a route comparison study using a CN54 gp140 HIV Envelope model antigen adjuvanted with R848 + GLA-AF (ID) or R848 alone (IN). Animals receiving priming inoculations via one route were then boosted by the alternate route. Although differences were observed in the priming phase (IN or ID), responses converged upon boosting by the alternative route with no observable impact resultant from the order of administration (ID/IN vs IN/ID). Specific IgG responses were measured at a distal mucosal site (vaginal), although there was no evidence of mucosal linkage as these closely reflected serum antibody levels. These data indicate that the complex in vivo cross-talk between innate pathways are likely tissue specific and cannot be predicted by simple in vitro models.
Collapse
|