1
|
Park W, Park H, Park S, Lim W, Song G. Bifenox compromises porcine trophectoderm and luminal epithelial cells in early pregnancy by arresting cell cycle progression and impairing mitochondrial and calcium homeostasis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105628. [PMID: 37945262 DOI: 10.1016/j.pestbp.2023.105628] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/29/2023] [Accepted: 09/18/2023] [Indexed: 11/12/2023]
Abstract
Bifenox is a widely used herbicide that contains a diphenyl ether group. However its global usage, the cell physiological effects that induce toxicity have not been elucidated. In this study, the effect of bifenox was examined in porcine trophectoderm and uterine epithelial cells to investigate the potential toxicity of the implantation process. To uncover the toxic effects of bifenox, cell viability and apoptosis following treatment with bifenox were evaluated. To investigate the underlying cellular mechanisms, mitochondrial and calcium homeostasis were investigated in both cell lines. In addition, the dysregulation of cell signal transduction and transcriptional alterations were also demonstrated. Bifenox reduced cell viability and significantly increased the number of cells arrested at the sub-G1 stage. Moreover, bifenox depolarized the mitochondrial membrane and upregulated the calcium flux into the mitochondria in both cell lines. Cytosolic calcium flux increased in porcine trophectoderm (pTr) cells and decreased in porcine luminal epithelium (pLE) cells. In addition, bifenox activated the mitogen-activated protein kinase and phosphoinositide 3-kinase signaling pathways. Furthermore, bifenox inhibited the expression of retinoid receptor genes, such as RXRA, RXRB, and RXRG. Chemokine CCL8 was also downregulated at the mRNA level, whereas CCL5 expression remained unchanged. Overall, the results of this study suggest that bifenox deteriorates cell viability by arresting cell cycle progression, damaging mitochondria, and controlling calcium levels in pTr and pLE cells. The present study indicates the toxic potential of bifenox in the trophectoderm and luminal epithelial cells, which can lead to implantation disorders in early pregnancy.
Collapse
Affiliation(s)
- Wonhyoung Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hahyun Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Sunwoo Park
- Department of Plant & Biomaterials Science, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
2
|
Lv J, Gao R, Wang Y, Huang C, Wu R. Protective effect of leukemia inhibitory factor on the retinal injury induced by acute ocular hypertension in rats. Exp Ther Med 2022; 25:19. [PMID: 36561619 PMCID: PMC9748713 DOI: 10.3892/etm.2022.11717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/04/2022] [Indexed: 11/23/2022] Open
Abstract
Glaucoma is one of the leading causes of irreversible blindness worldwide. As such, neuroprotective therapy is essential for the treatment of this disease. Leukemia inhibitory factor (LIF) is a member of the IL-6 cytokine family and the LIF signaling pathway is considered to be one of the major endogenous factors mediating neuroprotection in the retina. Therefore, the present study aimed to investigate the possible effects of LIF in acute ocular hypertension (AOH). The intraocular pressure in rat eyes was raised to 110 mmHg for 1 h by infusing the anterior chamber with normal saline to establish the AOH model. In the treatment group, LIF was then injected into the vitreous cavity after AOH was ceased. The retinal tissues were obtained after the termination of AOH, and H&E staining was conducted to assess the morphological damage. The number of retinal ganglion cells (RGCs) was counted using the Fluoro-Gold retrograde staining method. TUNEL staining was used to determine the extent of apoptosis among the retinal cells. In addition, the protein expression levels of cleaved caspase-3, poly (ADP-ribose) polymerase (PARP), STAT3 and components of the AKT/mTOR/70-kDa ribosomal protein S6 kinase (p70S6K) signaling pathway were examined by western blotting. The results showed that AOH induced tissue swelling and structural damage in the retina, which were reversed by LIF injection. In the LIF treatment group, RGC loss was significantly inhibited and the quantity of TUNEL-stained cells was also significantly reduced, whereas the expression of cleaved caspase-3 and PARP was decreased. Furthermore, increased phosphorylation of STAT3, AKT, mTOR and p70S6K was observed after LIF treatment. By contrast, pretreatment with the STAT3 inhibitor C188-9 or the PI3K/AKT/mTOR inhibitor LY3023414 reversed the LIF-induced inhibition of RGC loss. These results suggested that exogenous LIF treatment inhibited the retinal damage induced by AOH, which was associated with the activation of STAT3 and mTOR/p70S6K signaling. Therefore, LIF may serve a role in neuroprotection for glaucoma treatment.
Collapse
Affiliation(s)
- Jiexuan Lv
- Eye Institute and Affiliated Xiamen Eye Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361001, P.R. China
| | - Ruxin Gao
- Eye Institute and Affiliated Xiamen Eye Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361001, P.R. China
| | - Yao Wang
- Shaanxi Provincial Key Laboratory of Ophthalmology, Shaanxi Institute of Ophthalmology, Shaanxi Clinical Study Center for Ocular Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Medical School, Northwest University, Xi'an, Shaanxi 710002, P.R. China
| | - Changquan Huang
- Eye Institute and Affiliated Xiamen Eye Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361001, P.R. China,Fujian Provincial Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian 361001, P.R. China
| | - Renyi Wu
- Eye Institute and Affiliated Xiamen Eye Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361001, P.R. China,Fujian Provincial Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian 361001, P.R. China,Department of Glaucoma, Shanghai Peace Eye Hospital, Shanghai 200437, P.R. China,Correspondence to: Professor Renyi Wu, Eye Institute and Affiliated Xiamen Eye Center of Xiamen University, School of Medicine, Xiamen University, 336 Xiahe Road, Xiamen, Fujian 361001, P.R. China
| |
Collapse
|
3
|
Feng T, Xiao L, Bai J, Ding H, Pang L, Song Y, Qin Y, Xu X, Wang J, Liu Y. N-Carbamylglutamate Improves Reproductive Performance and Alters Fecal Microbiota and Serum Metabolites of Primiparous Sows during Gestation after Fixed-Time Artificial Insemination. BIOLOGY 2022; 11:biology11101432. [PMID: 36290336 PMCID: PMC9598523 DOI: 10.3390/biology11101432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022]
Abstract
N-carbamylglutamate (NCG) supplementation during gestation improves reproductive performance in sows after conventional artificial insemination. However, whether NCG can improve reproductive performance and change fecal microbiota and serum metabolite levels during pregnancy in sows after fixed-time artificial insemination (FTAI) remains unclear. Two hundred multiparous sows were assigned a diet from mating until farrowing: control (corn−soybean meal) or NCG supplementation (0.05% NCG). At days 30, 70, and 110 of gestation and after farrowing, maternal microbial diversity and serum metabolites were studied. Supplementation of NCG increased the number of piglets born alive and the litter weight (all p < 0.05) and altered the fetal microbial community during gestation. Some genera were particularly abundant at different time points during gestation and after farrowing, but none were commonly abundant across all four time points. Metabolic analysis revealed that NCG supplementation significantly increased the serum concentrations of NCG, ferulic acid, cinnamoylglycine, 3-phenyllactic acid, and gamma-glutamylglutamic acid in the NCG group compared with levels in the control group. Our results reveal that NCG supplementation during gestation improves reproductive performance in sows after FTAI, exerting both direct (increased serum NCG levels) and indirect effects (altered intestinal microbiome and serum metabolites) on sow reproduction and, ultimately, improving placental and fetal development.
Collapse
Affiliation(s)
- Tao Feng
- Institute of Animal Husbandry and Veterinary Medicine (IAHVM), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China
- Joint Laboratory of Animal Science between IAHVM of BAAFS and Division of Agricultural Science and Natural Resource of Oklahoma State University, Beijing 100097, China
- Correspondence: (T.F.); (Y.L.)
| | - Linli Xiao
- Institute of Animal Husbandry and Veterinary Medicine (IAHVM), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China
- Joint Laboratory of Animal Science between IAHVM of BAAFS and Division of Agricultural Science and Natural Resource of Oklahoma State University, Beijing 100097, China
| | - Jiahua Bai
- Institute of Animal Husbandry and Veterinary Medicine (IAHVM), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China
- Joint Laboratory of Animal Science between IAHVM of BAAFS and Division of Agricultural Science and Natural Resource of Oklahoma State University, Beijing 100097, China
| | - Hongxiang Ding
- Institute of Animal Husbandry and Veterinary Medicine (IAHVM), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China
- Joint Laboratory of Animal Science between IAHVM of BAAFS and Division of Agricultural Science and Natural Resource of Oklahoma State University, Beijing 100097, China
| | - Liyan Pang
- Institute of Animal Husbandry and Veterinary Medicine (IAHVM), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China
- Joint Laboratory of Animal Science between IAHVM of BAAFS and Division of Agricultural Science and Natural Resource of Oklahoma State University, Beijing 100097, China
| | - Yuqing Song
- Institute of Animal Husbandry and Veterinary Medicine (IAHVM), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China
- Joint Laboratory of Animal Science between IAHVM of BAAFS and Division of Agricultural Science and Natural Resource of Oklahoma State University, Beijing 100097, China
| | - Yusheng Qin
- Institute of Animal Husbandry and Veterinary Medicine (IAHVM), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China
- Joint Laboratory of Animal Science between IAHVM of BAAFS and Division of Agricultural Science and Natural Resource of Oklahoma State University, Beijing 100097, China
| | - Xiaoling Xu
- Institute of Animal Husbandry and Veterinary Medicine (IAHVM), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China
- Joint Laboratory of Animal Science between IAHVM of BAAFS and Division of Agricultural Science and Natural Resource of Oklahoma State University, Beijing 100097, China
| | - Jing Wang
- Institute of Animal Husbandry and Veterinary Medicine (IAHVM), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China
- Joint Laboratory of Animal Science between IAHVM of BAAFS and Division of Agricultural Science and Natural Resource of Oklahoma State University, Beijing 100097, China
| | - Yan Liu
- Institute of Animal Husbandry and Veterinary Medicine (IAHVM), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China
- Joint Laboratory of Animal Science between IAHVM of BAAFS and Division of Agricultural Science and Natural Resource of Oklahoma State University, Beijing 100097, China
- Correspondence: (T.F.); (Y.L.)
| |
Collapse
|
4
|
Lee H, Jung KB, Kwon O, Son YS, Choi E, Yu WD, Son N, Jeon JH, Jo H, Yang H, Son YR, Yun CS, Cho HS, Kim SK, Kim DS, Park DS, Son MY. Limosilactobacillus reuteri DS0384 promotes intestinal epithelial maturation via the postbiotic effect in human intestinal organoids and infant mice. Gut Microbes 2022; 14:2121580. [PMID: 36130031 PMCID: PMC9519030 DOI: 10.1080/19490976.2022.2121580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Little is known about the modulatory capacity of the microbiota in early intestinal development. We examined various intestinal models that respond to gut microbial metabolites based on human pluripotent stem cell-derived human intestinal organoids (hIOs): physiologically relevant in vitro fetal-like intestine, intestinal stem cell, and intestinal disease models. We found that a newly isolated Limosilactobacillus reuteri strain DS0384 accelerated maturation of the fetal intestine using 3D hIO with immature fetal characteristics. Comparative metabolomic profiling analysis revealed that the secreted metabolite N-carbamyl glutamic acid (NCG) is involved in the beneficial effect of DS0384 cell-free supernatants on the intestinal maturation of hIOs. Experiments in an intestinal stem cell spheroid model and hIO-based intestinal inflamed model revealed that the cell-free supernatant from DS0384 comprising NCG promoted intestinal stem cell proliferation and was important for intestinal protection against cytokine-induced intestinal epithelial injury. The probiotic properties of DS0384 were also evaluated, including acid and bile tolerance and ability to adhere to human intestinal cells. Seven-day oral administration of DS0384 and cell-free supernatant promoted the intestinal development of newborn mice. Moreover, NCG exerted a protective effect on experimental colitis in mice. These results suggest that DS0384 is a useful agent for probiotic applications and therapeutic treatment for disorders of early gut development and for preventing intestinal barrier dysfunction.
Collapse
Affiliation(s)
- Hana Lee
- Stem Cell Research Convergence Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Kwang Bo Jung
- Stem Cell Research Convergence Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Ohman Kwon
- Stem Cell Research Convergence Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Ye Seul Son
- Stem Cell Research Convergence Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Eunho Choi
- Stem Cell Research Convergence Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea,KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Won Dong Yu
- Stem Cell Research Convergence Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea,KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Naeun Son
- Stem Cell Research Convergence Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea,KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Jun Hyoung Jeon
- Korean Collection for Type Cultures, Biological Resource Center, KRIBB, Jeongeup, Republic of Korea
| | - Hana Jo
- Korean Collection for Type Cultures, Biological Resource Center, KRIBB, Jeongeup, Republic of Korea
| | - Haneol Yang
- Korean Collection for Type Cultures, Biological Resource Center, KRIBB, Jeongeup, Republic of Korea
| | - Yeong Rak Son
- Korean Collection for Type Cultures, Biological Resource Center, KRIBB, Jeongeup, Republic of Korea
| | - Chan-Seok Yun
- Korean Collection for Type Cultures, Biological Resource Center, KRIBB, Jeongeup, Republic of Korea
| | - Hyun-Soo Cho
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea,Digital Biotech Innovation Center, KRIBB, Daejeon, Republic of Korea
| | - Sang Kyu Kim
- Laboratory of Efficacy Research, Korea Ginseng Corp., Daejeon, Republic of Korea
| | - Dae-Soo Kim
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea,Digital Biotech Innovation Center, KRIBB, Daejeon, Republic of Korea
| | - Doo-Sang Park
- Korean Collection for Type Cultures, Biological Resource Center, KRIBB, Jeongeup, Republic of Korea,Doo-Sang Park Korean Collection for Type Cultures, Biological Resource Center, KRIBB, Jeongeup, 56212, Republic of Korea
| | - Mi-Young Son
- Stem Cell Research Convergence Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea,KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea,CONTACT Mi-Young Son Stem Cell Research Convergence Center, KRIBB, Daejeon, 34141, Republic of Korea
| |
Collapse
|
5
|
Dietary provision of N-carbamoylglutamate to Holstein cows: A strategy to enhance the productive and reproductive efficiency during summer. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.104905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Tan C, Huang Z, Xiong W, Ye H, Deng J, Yin Y. A review of the amino acid metabolism in placental function response to fetal loss and low birth weight in pigs. J Anim Sci Biotechnol 2022; 13:28. [PMID: 35232472 PMCID: PMC8889744 DOI: 10.1186/s40104-022-00676-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/09/2022] [Indexed: 11/10/2022] Open
Abstract
The fertility of sows mainly depends on the embryo losses during gestation and the survival rate of the post-farrowing piglets. The selection of highly-prolific sows has been mainly focused on the selection of genotypes with high ovulatory quota. However, in the early- and post-implantation stages, the rate of embryo losses was increased with the increase of zygotes. Among the various factors, placental growth and development is the vital determinant for fetal survival, growth, and development. Despite the potential survival of fetuses with deficient placental development, their life-conditions and growth can be damaged by a process termed intrauterine growth retardation (IUGR). The newborn piglets affected by IUGR are prone to increased morbidity and mortality rates; meanwhile, the growth, health and welfare of the surviving piglets will remain hampered by these conditions, with a tendency to exacerbate with age. Functional amino acids such as glycine, proline, and arginine continue to increase with the development of placenta, which are not only essential to placental growth (including vascular growth) and development, but can also be used as substrates for the production of glutathione, polyamines and nitric oxide to benefit placental function in many ways. However, the exact regulation mechanism of these amino acids in placental function has not yet been clarified. In this review, we provide evidence from literature and our own work for the role and mechanism of dietary functional amino acids during pregnancy in regulating the placental functional response to fetal loss and birth weight of piglets. This review will provide novel insights into the response of nutritionally nonessential amino acids (glycine and proline) to placental development as well as feasible strategies to enhance the fertility of sows.
Collapse
Affiliation(s)
- Chengquan Tan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Zihao Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Wenyu Xiong
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Hongxuan Ye
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| | - Yulong Yin
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China.
| |
Collapse
|
7
|
Zhang H, Liu X, Zheng Y, Zhang Y, Loor JJ, Wang H, Wang M. Dietary N-carbamylglutamate or L-arginine improves fetal intestinal amino acid profiles during intrauterine growth restriction in undernourished ewes. ANIMAL NUTRITION 2022; 8:341-349. [PMID: 35059512 PMCID: PMC8740449 DOI: 10.1016/j.aninu.2021.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 11/28/2021] [Accepted: 12/02/2021] [Indexed: 01/29/2023]
Abstract
Our previous studies demonstrated that prenatal in utero growth restriction impairs postnatal intestinal function. Thus, improving postpartal intestinal absorption capacity and growth by manipulating the maternal diet prepartum is of importance. This work was conducted to determine whether supplementation of N-carbamylglutamate (NCG) or rumen-protected L-arginine (RP-Arg) increased fetal intestinal amino acid (AA) profiles in intrauterine growth retardation (IUGR) fetuses. On d 35 of gestation, Hu ewes (n = 32) carrying twin fetuses were randomized into 4 groups (8 ewes and 16 fetuses in each group), where diets were as follows: 100% of nutrient requirements recommended by National Research Council (NRC, 2007) (CON); 50% of nutrient requirements recommended by NRC (2007) (RES); RES + RP-Arg (20 g/d), (RES + ARG); and RES + NCG (5 g/d), (RES + NCG). On d 110 of gestation, both fetal and maternal tissues were collected and weighed. Compared with RES, solute carrier family 1, member 5 (SLC1A5) was upregulated (P < 0.05) within fetal jejunum, duodenum and ileum when supplementing NCG and RP-Arg. Relative to RES, RP-Arg or NCG supplementation to RES resulted in upregulation (P < 0.05) of peptide transporter 1 protein abundance within the fetal ileum. NCG or RP-Arg supplementation to RES also upregulated phosphorylated mechanistic target of rapamycin (pmTOR)-to-mTOR ratio in the fetal ileum induced by IUGR (P < 0.05). As a result, during IUGR, supplementation of Arg or NCG affected intestinal AA profiles in the fetus in part through controlling mTOR signal transduction as well as AA and peptide transport. Future studies should be conducted to understand the role (if any) of the placenta on the improvement of growth and AA profiles independent of the fetal intestine. This would help demonstrate the relative contribution of intestinal uptake in fetal life.
Collapse
|
8
|
Zhang H, Zhang Y, Ma Y, Elsabagh M, Wang H, Wang M. Dietary rumen-protected L-arginine or N-carbamylglutamate attenuated fetal hepatic inflammation in undernourished ewes suffering from intrauterine growth restriction. ACTA ACUST UNITED AC 2021; 7:1095-1104. [PMID: 34738040 PMCID: PMC8545652 DOI: 10.1016/j.aninu.2021.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 06/19/2021] [Accepted: 06/28/2021] [Indexed: 11/29/2022]
Abstract
This study aimed to explore whether dietary rumen-protected L-arginine (RP-Arg) or N-carbamylglutamate (NCG) supplementation to feed-restricted pregnant ewes counteracts fetal hepatic inflammation and innate immune dysfunction associated with intrauterine growth retardation (IUGR) in ovine fetuses. On d 35 of pregnancy, twin-bearing Hu ewes (n = 32) were randomly assigned to 4 treatment groups (8 ewes and 16 fetuses per group) and fed diets containing 100% of the NRC requirements (CON), 50% of the NRC requirements (RES), RES + RP-Arg (20 g/d) (RESA), or RES + NCG (5 g/d) (RESN). At 08:00 on d 110 of gestation, fetal blood and liver tissue samples were collected. The levels of triglyceride, free fatty acid, cholesterol and β-hydroxybutyrate in the fetal blood of RESA and RESN groups were lower (P < 0.05) than those of the RES group, but were higher (P < 0.05) than those of the CON group. The interleukin (IL)-6 and IL-1 levels in fetal blood and liver tissue as well as the myeloid differentiation primary response 88 (MyD88), transforming growth factor β (TGFβ), and nuclear factor kappa B (NF-κB) mRNA levels in the fetal liver were decreased (P < 0.05) by the NCG or RP-Arg supplementation compared to the RES treatment. Similarly, the toll-like receptor (TLR)-4, MyD88, TGFβ, and p-c-Jun N-terminal kinase (JNK) protein levels in the fetal liver were reduced (P < 0.05) in the NCG and RP-Arg -supplemented groups compared to the RES group. These results showed that dietary supplementation of RP-Arg or NCG to underfed pregnant ewes could protect against IUGR fetal hepatic inflammation via improving lipid metabolism, down-regulating the TLR-4 and the inflammatory JNK and NF-κB signaling pathways, and decreasing cytokine production in ovine fetal blood and liver tissue.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, 832000, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.,Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Ying Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.,Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yi Ma
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.,Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Mabrouk Elsabagh
- Department of Animal Production and Technology, Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Nigde, 51240, Turkey.,Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Hongrong Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.,Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Mengzhi Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.,Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
9
|
Dahlen CR, Borowicz PP, Ward AK, Caton JS, Czernik M, Palazzese L, Loi P, Reynolds LP. Programming of Embryonic Development. Int J Mol Sci 2021; 22:11668. [PMID: 34769097 PMCID: PMC8583791 DOI: 10.3390/ijms222111668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 01/01/2023] Open
Abstract
Assisted reproductive techniques (ART) and parental nutritional status have profound effects on embryonic/fetal and placental development, which are probably mediated via "programming" of gene expression, as reflected by changes in their epigenetic landscape. Such epigenetic changes may underlie programming of growth, development, and function of fetal organs later in pregnancy and the offspring postnatally, and potentially lead to long-term changes in organ structure and function in the offspring as adults. This latter concept has been termed developmental origins of health and disease (DOHaD), or simply developmental programming, which has emerged as a major health issue in animals and humans because it is associated with an increased risk of non-communicable diseases in the offspring, including metabolic, behavioral, and reproductive dysfunction. In this review, we will briefly introduce the concept of developmental programming and its relationship to epigenetics. We will then discuss evidence that ART and periconceptual maternal and paternal nutrition may lead to epigenetic alterations very early in pregnancy, and how each pregnancy experiences developmental programming based on signals received by and from the dam. Lastly, we will discuss current research on strategies designed to overcome or minimize the negative consequences or, conversely, to maximize the positive aspects of developmental programming.
Collapse
Affiliation(s)
- Carl R. Dahlen
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA; (C.R.D.); (P.P.B.); (A.K.W.); (J.S.C.)
| | - Pawel P. Borowicz
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA; (C.R.D.); (P.P.B.); (A.K.W.); (J.S.C.)
| | - Alison K. Ward
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA; (C.R.D.); (P.P.B.); (A.K.W.); (J.S.C.)
| | - Joel S. Caton
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA; (C.R.D.); (P.P.B.); (A.K.W.); (J.S.C.)
| | - Marta Czernik
- Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy; (M.C.); (P.L.)
| | - Luca Palazzese
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Warsaw, Jastrzębiec, 05-552 Magdalenka, Poland;
| | - Pasqualino Loi
- Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy; (M.C.); (P.L.)
| | - Lawrence P. Reynolds
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA; (C.R.D.); (P.P.B.); (A.K.W.); (J.S.C.)
| |
Collapse
|
10
|
Rasool A, Alvarado-Flores F, O'Tierney-Ginn P. Placental Impact of Dietary Supplements: More Than Micronutrients. Clin Ther 2020; 43:226-245. [PMID: 33358257 DOI: 10.1016/j.clinthera.2020.11.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/31/2022]
Abstract
PURPOSE Maternal nutrition is a key modifier of fetal growth and development. However, many maternal diets in the United States do not meet nutritional recommendations. Dietary supplementation is therefore necessary to meet nutritional goals. The effects of many supplements on placental development and function are poorly understood. In this review, we address the therapeutic potential of maternal dietary supplementation on placental development and function in both healthy and complicated pregnancies. METHODS This is a narrative review of original research articles published between February 1970 and July 2020 on dietary supplements consumed during pregnancy and placental outcomes (including nutrient uptake, metabolism and delivery, as well as growth and efficiency). Impacts of placental changes on fetal outcomes were also reviewed. Both human and animal studies were included. FINDINGS We found evidence of a potential therapeutic benefit of several supplements on maternal and fetal outcomes via their placental impacts. Our review supports a role for probiotics as a placental therapeutic, with effects that include improved inflammation and lipid metabolism, which may prevent preterm birth and poor placental efficiency. Supplementation with omega-3 fatty acids (as found in fish oil) during pregnancy tempers the negative effects of maternal obesity but may have little placental impact in healthy lean women. The beneficial effects of choline supplementation on maternal health and fetal growth are largely attributable to its placental impacts. l-arginine supplementation has a potent provascularization effect on the placenta, which may underlie its fetal growth-promoting properties. IMPLICATIONS The placenta is exquisitely sensitive to dietary supplements. Pregnant women should consult their health care practitioner before continuing or initiating use of a dietary supplement. Because little is known about impacts of many supplements on placental and long-term offspring health, more research is required before robust clinical recommendations can be made.
Collapse
Affiliation(s)
- Aisha Rasool
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA, USA
| | | | | |
Collapse
|
11
|
Hussain T, Tan B, Murtaza G, Metwally E, Yang H, Kalhoro MS, Kalhoro DH, Chughtai MI, Yin Y. Role of Dietary Amino Acids and Nutrient Sensing System in Pregnancy Associated Disorders. Front Pharmacol 2020; 11:586979. [PMID: 33414718 PMCID: PMC7783402 DOI: 10.3389/fphar.2020.586979] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022] Open
Abstract
Defective implantation is related to pregnancy-associated disorders such as spontaneous miscarriage, intrauterine fetal growth restriction and others. Several factors proclaimed to be involved such as physiological, nutritional, environmental and managemental that leads to cause oxidative stress. Overloading of free radicals promotes oxidative stress, and the internal body system could not combat its ability to encounter the damaging effects and subsequently leading to pregnancy-related disorders. During pregnancy, essential amino acids display important role for optimum fetal growth and other necessary functions for continuing fruitful pregnancy. In this context, dietary amino acids have received much attention regarding the nutritional concerns during pregnancy. Arginine, glutamine, tryptophan and taurine play a crucial role in fetal growth, development and survival while ornithine and proline are important players for the regulation of gene expression, protein synthesis and angiogenesis. Moreover, amino acids also stimulate the mammalian target of rapamycin (mTOR) signaling pathway which plays a central role in the synthesis of proteins in placenta, uterus and fetus. This review article explores the significances of dietary amino acids in pregnancy development, regulation of nutrient-sensing pathways such as mTOR, peroxisome proliferator-activated receptors (PPARs), insulin/insulin-like growth factor signaling pathway (IIS) and 5' adenosine monophosphate-activated protein kinase (AMPK) which exhibit important role in reproduction and its related problems. In addition, the antioxidant function of dietary amino acids against oxidative stress triggering pregnancy disorders and their possible outcomes will also be enlightened. Dietary supplementation of amino acids during pregnancy could help mitigate reproductive disorders and thereby improving fertility in animals as well as humans.
Collapse
Affiliation(s)
- Tarique Hussain
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Animal Sciences Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C,PIEAS), Faisalabad, Pakistan
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Ghulam Murtaza
- Department of Animal Reproduction, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Sindh, Pakistan
| | - Elsayed Metwally
- Department of Cytology & Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Huansheng Yang
- Hunan International Joint laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Muhammad Saleem Kalhoro
- Department of Animal Products Technology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Sindh, Pakistan
| | - Dildar Hussain Kalhoro
- Department of Veterinary Microbiology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Sindh, Pakistan
| | - Muhammad Ismail Chughtai
- Animal Sciences Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C,PIEAS), Faisalabad, Pakistan
| | - Yulong Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
12
|
Dietary N-Carbamylglutamate supplementation enhances myofiber development and intramuscular fat deposition in growing-finishing pigs. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.104310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Macamides: A review of structures, isolation, therapeutics and prospects. Food Res Int 2020; 138:109819. [DOI: 10.1016/j.foodres.2020.109819] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022]
|
14
|
Cai S, Ye Q, Zeng X, Yang G, Ye C, Chen M, Yu H, Wang Y, Wang G, Huang S, Quan S, Zeng X, Qiao S. CBS and MAT2A improve methionine-mediated DNA synthesis through SAMTOR/mTORC1/S6K1/CAD pathway during embryo implantation. Cell Prolif 2020; 54:e12950. [PMID: 33179842 PMCID: PMC7791180 DOI: 10.1111/cpr.12950] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/08/2020] [Accepted: 10/14/2020] [Indexed: 01/06/2023] Open
Abstract
Objectives Early pregnancy loss is a major clinical concern in animal and human reproduction, which is largely influenced by embryo implantation. The importance of methionine for embryo implantation is widely neglected. Materials and methods We performed a series of experiments with primiparous rats fed diets containing different levels of methionine during early pregnancy to investigate the role of methionine in embryonic implantation and pregnancy outcomes, and used them to perform in vivo metabolic assessments and in vitro uterine explant culture. In addition, through transcriptome analysis and silencing the expression of cystathionine β‐synthase (CBS, the key enzyme in transsulfuration pathway) and cell adhesion assay, we measured signalling within Ishikawa, pTr and JAR cells. Results We determined the relevance and underlying mechanism of methionine on embryo implantation. We showed that methionine deprivation sharply decreased embryo implantation sites, expression of CBS and transsulfuration pathway end products, which were reversed by maternal methionine supplementation during early pregnancy. Moreover, we found CBS improved methionine‐mediated cell proliferation and DNA synthesis by CBS inhibition or interference. In addition, transcriptome analysis also revealed that CBS influenced the signalling pathway‐associated cell proliferation and DNA synthesis, as well as a correlation between CBS and methionine adenosyltransferase 2A (MAT2A), implying that MAT2A was possibly involved in cell proliferation and DNA synthesis. Further analysis revealed that MAT2A influenced S‐adenosylmethionine receptor SAMTOR expression, and SAMTOR activated mTORC1 and its downstream S6K1 and CAD, ultimately enhancing DNA synthesis in the embryo and uterus. Conclusions Taken together, these studies demonstrate that CBS and MAT2A improve methionine‐mediated DNA synthesis through SAMTOR/mTORC1/S6K1/CAD pathway during embryo implantation.
Collapse
Affiliation(s)
- Shuang Cai
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Qianhong Ye
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Xiangzhou Zeng
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Guangxin Yang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Changchuan Ye
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Meixia Chen
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Haitao Yu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Yuming Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Gang Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Shuo Huang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Shuang Quan
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
Gootwine E, Rosov A, Alon T, Stenhouse C, Halloran KM, Wu G, Bazer FW. Effect of supplementation of unprotected or protected arginine to prolific ewes on maternal amino acids profile, lamb survival at birth, and pre- and post-weaning lamb growth. J Anim Sci 2020; 98:skaa284. [PMID: 32860700 PMCID: PMC7694597 DOI: 10.1093/jas/skaa284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/21/2020] [Indexed: 12/17/2022] Open
Abstract
This research determined the effects of dietary supplementation with rumen-protected arginine (Pro-Arg) on metabolites and amino acids in maternal plasma and lamb survival rate at birth (LSRAB) in prolific Afec-Assaf ewes. The hypothesis was that Pro-Arg, the precursor for nitric oxide and polyamines, would increase placental development and vascularity, uteroplacental blood flow, and nutrient transport and reduce oxidative stress to increase LSRAB. Ewes were fed either their basal diet, basal diet with Pro-Arg, or basal diet with unprotected arginine (Unp-Arg; 18 g/head/d). The supplemental arginine was about 1% of the dry matter intake from day 40 or 60 of gestation until parturition. Ninety-two of 98 ewes produced live lambs. Ewes fed Pro-Arg had greater (P = 0.002) concentrations of arginine and other amino acids in plasma, whereas Unp-Arg did not affect concentrations of arginine, but decreased (P < 0.05) concentrations of some amino acids. There was no effect of treatments on gestation length (144 ± 2 d), prolificacy (2.65 lambs born per ewe), LSRAB (0.80), body weight (88.8 ± 10.8 kg), and body condition score (2.8 ± 0.6) of ewes, or birth weight and crown-rump length of lambs. The GI (BW/CRL1.5) was affected by sex of lamb (P = 0.008), parity of ewe (P = 0.002), litter size (P = 0.0001), and lamb status (P = 0.003). Of 229 lambs born, 32 were dead and 16 died before 5 mo of age, leaving 181 lambs with records on weights at birth and 5 mo of age. Interestingly, lambs born to ewes fed the Unp-Arg and Pro-Arg weighed 3.6 kg less at postnatal day 150 than lambs from control ewes.
Collapse
Affiliation(s)
- Elisha Gootwine
- Department of Ruminant Science, Institute of Animal Science, The Volcani Center for Research and Development, Bet Dagan, Israel
| | - Alexander Rosov
- Department of Ruminant Science, Institute of Animal Science, The Volcani Center for Research and Development, Bet Dagan, Israel
| | - Tamir Alon
- Department of Ruminant Science, Institute of Animal Science, The Volcani Center for Research and Development, Bet Dagan, Israel
| | - Claire Stenhouse
- Department of Animal Science, Texas A&M University, College Station, TX
| | | | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX
| |
Collapse
|
16
|
Prenatal Amino Acid Supplementation to Improve Fetal Growth: A Systematic Review and Meta-Analysis. Nutrients 2020; 12:nu12092535. [PMID: 32825593 PMCID: PMC7551332 DOI: 10.3390/nu12092535] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/16/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
Aberrant fetal growth remains a leading cause of perinatal morbidity and mortality and is associated with a risk of developing non-communicable diseases later in life. We performed a systematic review and meta-analysis combining human and animal studies to assess whether prenatal amino acid (AA) supplementation could be a promising approach to promote healthy fetal growth. PubMed, Embase, and Cochrane libraries were searched to identify studies orally supplementing the following AA groups during gestation: (1) arginine family, (2) branched chain (BCAA), and (3) methyl donors. The primary outcome was fetal/birth weight. Twenty-two human and 89 animal studies were included in the systematic review. The arginine family and, especially, arginine itself were studied the most. Our meta-analysis showed beneficial effects of arginine and (N-Carbamyl) glutamate (NCG) but not aspartic acid and citrulline on fetal/birth weight. However, no effects were reported when an isonitrogenous control diet was included. BCAA and methyl donor supplementation did not affect fetal/birth weight. Arginine family supplementation, in particular arginine and NCG, improves fetal growth in complicated pregnancies. BCAA and methyl donor supplementation do not seem to be as promising in targeting fetal growth. Well-controlled research in complicated pregnancies is needed before ruling out AA supplements or preferring arginine above other AAs.
Collapse
|
17
|
Jena MK, Sharma NR, Petitt M, Maulik D, Nayak NR. Pathogenesis of Preeclampsia and Therapeutic Approaches Targeting the Placenta. Biomolecules 2020; 10:biom10060953. [PMID: 32599856 PMCID: PMC7357118 DOI: 10.3390/biom10060953] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/20/2020] [Accepted: 06/21/2020] [Indexed: 02/07/2023] Open
Abstract
Preeclampsia (PE) is a serious pregnancy complication, affecting about 5–7% of pregnancies worldwide and is characterized by hypertension and damage to multiple maternal organs, primarily the liver and kidneys. PE usually begins after 20 weeks’ gestation and, if left untreated, can lead to serious complications and lifelong disabilities—even death—in both the mother and the infant. As delivery is the only cure for the disease, treatment is primarily focused on the management of blood pressure and other clinical symptoms. The pathogenesis of PE is still not clear. Abnormal spiral artery remodeling, placental ischemia and a resulting increase in the circulating levels of vascular endothelial growth factor receptor-1 (VEGFR-1), also called soluble fms-like tyrosine kinase-1 (sFlt-1), are believed to be among the primary pathologies associated with PE. sFlt-1 is produced mainly in the placenta during pregnancy and acts as a decoy receptor, binding to free VEGF (VEGF-A) and placental growth factor (PlGF), resulting in the decreased bioavailability of each to target cells. Despite the pathogenic effects of increased sFlt-1 on the maternal vasculature, recent studies from our laboratory and others have strongly indicated that the increase in sFlt-1 in PE may fulfill critical protective functions in preeclamptic pregnancies. Thus, further studies on the roles of sFlt-1 in normal and preeclamptic pregnancies are warranted for the development of therapeutic strategies targeting VEGF signaling for the treatment of PE. Another impediment to the treatment of PE is the lack of suitable methods for delivery of cargo to placental cells, as PE is believed to be of placental origin and most available therapies for PE adversely impact both the mother and the fetus. The present review discusses the pathogenesis of PE, the complex role of sFlt-1 in maternal disease and fetal protection, and the recently developed placenta-targeted drug delivery system for the potential treatment of PE with candidate therapeutic agents.
Collapse
Affiliation(s)
- Manoj Kumar Jena
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University (LPU), Phagwara, Punjab 144411, India;
- Correspondence:
| | - Neeta Raj Sharma
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University (LPU), Phagwara, Punjab 144411, India;
| | - Matthew Petitt
- Redwood Biomedical Editing, Redwood City, CA 94061, USA;
| | - Devika Maulik
- Department of Obstetrics and Gynecology, UMKC School of Medicine, Kansas City, MO 64108, USA; (D.M.); (N.R.N.)
| | - Nihar Ranjan Nayak
- Department of Obstetrics and Gynecology, UMKC School of Medicine, Kansas City, MO 64108, USA; (D.M.); (N.R.N.)
| |
Collapse
|
18
|
Huang F, Wu Y, Zhang D, Liu X, Wang Z. Carbon disulfide induced decidualization disorder in the mice uterus at the window of implantation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110069. [PMID: 31841894 DOI: 10.1016/j.ecoenv.2019.110069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
Carbon disulfide (CS2) is regarded as a common occupational poison that is widely used in the textile industry in China. Our previous research suggests that CS2 can induce significant implantation disorders in pregnant mice; however, the specific mechanism remains unclear. Uterine conception in mice must undergo decidualization, which is the prerequisite for propitious blastocyst implantation into the endometrium. Therefore, in this study, we established models of pregnant mice to explore the toxic effects of CS2 on decidualization to elucidate the basic mechanism of implantation disorder after CS2 exposure. The uterine tissues were immediately collected according to the predetermined endpoints to measure the expression levels of IGFBP1 and PRL (markers of decidualization differentiation), IL-11 (representing the secretory function of decidual cells), AKT and pAKT by western blotting, RT-PCR, immunohistochemical staining, H&E staining and ELISA. N-carbamoyl glutamic acid (NCG) acted as an agonist of AKT to verify the upstream regulatory mechanism of decidualization disorder by CS2. The results showed that the normal reaction of decidual transformation was obviously disrupted by CS2 upon 3.5 dpc and 4.5 dpc exposure. The blastocyst did not adhere to the epithelium after 3.5 dpc-exposure and did not invade the endometrium after 4.5 dpc-exposure, resulting in its suspension in the uterine cavity, stagnation and eventual loss. The proteins expression levels were decreased by 95.2% for IGFBP1 and 76.2% for PRL at the 4.5 dpc endpoint after 3.5 dpc CS2 exposure compared with the control. Simultaneously, the mRNA and protein expression levels of IL-11 in uterine tissues were significantly reduced by CS2, and consistent decreasing trends over time were observed for IGFBP1 and PRL, compared with the control. Additionally, the ratio of pAKT/AKT protein expression was decreased by 72.2% and 94.8% at 12 h and 18 h after 3.5 dpc exposure and by 53.3% and 74.3% at 6 h and 12 h after 4.5 dpc exposure, respectively, compared with the corresponding controls. Furthermore, NCG could recover the IGFBP1 and PRL protein expression, which was increased by 27.5% and 52.3% at 4.5 dpc and 6.5 dpc, respectively, after 3.5 dpc exposure for IGFBP1 and by 30.3% at 6.5 dpc after 4.5 dpc exposure for PRL, compared with CS2 exposure alone. Collectively, this study suggested that the decidualization disorder caused by CS2 at the window of implantation in pregnant mice, which is triggered by pAKT, contributed to the implantation disorder and eventually led to embryo loss. It is worth noting that our study may provide a new perspective and reference for exploring the toxic mechanism of implantation disorder and even infertility in harmful circumstances.
Collapse
Affiliation(s)
- Fengyan Huang
- School of Public Health, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, PR China
| | - Yanling Wu
- School of Public Health, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, PR China
| | - Danhua Zhang
- School of Public Health, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, PR China; Zhengzhou Eighth People's Hospital, PR China
| | - Xinai Liu
- School of Public Health, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, PR China
| | - Zhiping Wang
- School of Public Health, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, PR China.
| |
Collapse
|
19
|
Sánchez JM, Passaro C, Forde N, Browne JA, Behura SK, Fernández-Fuertes B, Mathew DJ, Kelly AK, Butler ST, Spencer TE, Lonergan P. Do differences in the endometrial transcriptome between uterine horns ipsilateral and contralateral to the corpus luteum influence conceptus growth to day 14 in cattle? Biol Reprod 2020; 100:86-100. [PMID: 30137215 DOI: 10.1093/biolre/ioy185] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/16/2018] [Indexed: 12/31/2022] Open
Abstract
Embryo transfer to the uterine horn contralateral to the ovary containing the corpus luteum (CL) negatively impacts pregnancy establishment in cattle. Our aim was to compare the transcriptome and ability of the ipsilateral and contralateral uterine horns to support preimplantation conceptus survival and growth to day 14. In experiment 1, endometrial samples from both horns were collected from synchronized heifers slaughtered on day 5, 7, 13, or 16 post-estrus (n = 5 per time) and subjected to RNA sequencing. In experiment 2, 10 day 7 in vitro produced blastocysts were transferred into the uterine horn ipsilateral (n = 9) or contralateral to the CL (n = 8) or into both horns (i.e., bilateral, n = 9) of synchronized recipient heifers. Reproductive tracts were recovered at slaughter on day 14, and the number and dimensions of recovered conceptuses were recorded for each horn. A total of 217, 54, 14, and 18 differentially expressed genes (>2-fold change, FDR P < 0.05) were detected between ipsilateral and contralateral horns on days 5, 7, 13, and 16, respectively, with signaling pathways regulating pluripotency of stem cells, ErbB signaling pathway, and mTOR signaling pathway amongst the top canonical pathways. Site of embryo transfer did not affect recovery rate (48.0%, 168/350) or length of conceptuses (mean ± SE 2.85 ± 0.27 mm). Although differences in gene expression exist between the endometrium of uterine horns ipsilateral and contralateral to the CL in cattle, they do not impact conceptus survival or length between day 7 and 14.
Collapse
Affiliation(s)
- José María Sánchez
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Claudia Passaro
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Niamh Forde
- School of Medicine, University of Leeds, Leeds, UK
| | - John A Browne
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Susanta K Behura
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | | | - Daniel J Mathew
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Alan K Kelly
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Stephen T Butler
- Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Pat Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
20
|
Ma Y, Zhou S, Lin X, Zeng W, Mi Y, Zhang C. Effect of dietary N-carbamylglutamate on development of ovarian follicles via enhanced angiogenesis in the chicken. Poult Sci 2019; 99:578-589. [PMID: 32416844 PMCID: PMC7587619 DOI: 10.3382/ps/pez545] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/08/2019] [Indexed: 12/13/2022] Open
Abstract
N-carbamylglutamate (NCG), an analogue of N-acetyl-L-glutamate (NAG), can increase arginine synthesis in mammals and improve the reproductive performance. However, the effect of NCG on poultry laying performance is still unclear. This study investigated the effect of dietary NCG on development of chicken ovarian follicles. The dosage and timing for NCG administration were evaluated for its effect on follicular development. Results showed that supplementation with 1% NCG in the diet for 14 D led to accelerated development of growing follicles (over 60 μm in oocyte diameter) and significantly increased feed intake and feed efficiency. Plasma amino acids (AA) analysis showed that feeding with 1% NCG significantly increased of plasma AA levels. RNA-seq analysis revealed that NCG supplementation upregulated expression of genes related to angiogenesis and cell proliferation, but downregulated expression of apoptosis-related genes. Meanwhile, RT-qPCR and Western blot analysis validated the RNA-seq results. Moreover, NCG enhanced plasma NO level; upregulated expression of PKG-I, Raf1, and p-p38; and increased angiogenesis of the ovaries. In conclusion, dietary NCG (1% for 14 D) can promote development of ovarian follicles by increasing angiogenesis in ovaries of the chicken.
Collapse
Affiliation(s)
- Yanfen Ma
- College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou 310058, P.R. China
| | - Shuo Zhou
- College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou 310058, P.R. China
| | - Xin Lin
- College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou 310058, P.R. China
| | - Weidong Zeng
- College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou 310058, P.R. China
| | - Yuling Mi
- College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou 310058, P.R. China
| | - Caiqiao Zhang
- College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou 310058, P.R. China.
| |
Collapse
|
21
|
Liu X, Wang S, Sun Y, Zhang T, Wang Z. The suppressed autophagy induced by carbon disulfide could be rescued by N-carbamoyl glutamate during the window of embryo implantation in mice. Chem Biol Interact 2019; 312:108751. [PMID: 31369747 DOI: 10.1016/j.cbi.2019.108751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/18/2019] [Accepted: 07/15/2019] [Indexed: 12/01/2022]
Abstract
OBJECTIVES To explore the effects of carbon disulfide (CS2) and N-carbamoyl glutamate (NCG) on autophagy during the window of embryo implantation in mice and whether dietary NCG supplementation can promote embryo implantation in case of CS2 exposure. METHODS Pregnant mice that received single intraperitoneal injection of CS2 on Gestational day (GD)4 were fed basal diet with or without NCG supplementation from GD1 to endpoints. The control mice were injected solvents. There were four endpoints (GD5, GD6, GD7 and GD9 endpoints) in each group. The uterus was collected on endpoints to detect autophagy-related markers by using the methods of transmission electron microscopy (TEM), immunohistochemistry (IHC), quantitative real-time polymerase chain reaction (qRT-PCR) and ELISA. RESULTS The P62 brown punctate staining increased in CS2 exposure group and reduced after dietary NCG supplementation, which was opposite with LC3B, Beclin1 and ATG5 on GD5 endpoint. Simultaneously, P62 protein expression raised 43.33% on GD5 endpoint (p < 0.01) when exposed to CS2 and descended to the control level after NCG supplementation. The rate of decline of LC3B and Beclin1 proteins were 27.04% (p < 0.01) and 23.27% (p < 0.05) on GD5 endpoint, 20.20% (p < 0.05) and 11.30% on GD7 endpoint in CS2 exposure group, respectively, then NCG supplementation caused the LC3B and Beclin1 protein expression to rise in different degrees. Comparatively, the mRNA expression of all autophagy-related gene changed more apparently on three endpoints than the protein expression. The images of TEM showed that nearly no autophagosome could be seen in CS2 exposure group, while dietary NCG supplementation increased the number of autophagosome obviously on GD5 endpoint. The number of implanted embryos which declined due to CS2 exposure returned to normal in NCG supplementation group. CONCLUSIONS Dietary NCG supplementation could rescue the suppressed autophagy induced by CS2 in the window of implantation and increase the number of implanted embryos.
Collapse
Affiliation(s)
- Xiaojing Liu
- School of Public Health, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, PR China
| | - Shuting Wang
- School of Public Health, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, PR China
| | - Yuan Sun
- School of Public Health, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, PR China
| | - Tongchao Zhang
- School of Public Health, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, PR China
| | - Zhiping Wang
- School of Public Health, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, PR China.
| |
Collapse
|
22
|
Zhang H, Zhao F, Nie H, Ma T, Wang Z, Wang F, Loor JJ. Dietary N-carbamylglutamate and rumen-protected L-arginine supplementation during intrauterine growth restriction in undernourished ewes improve fetal thymus development and immune function. Reprod Fertil Dev 2019; 30:1522-1531. [PMID: 31039948 DOI: 10.1071/rd18047] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/23/2018] [Indexed: 12/15/2022] Open
Abstract
The aims of the present study were to determine whether dietary supplementation with N-carbamylglutamate (NCG) and rumen-protected l-arginine (RP-Arg) to underfed Hu sheep would improve fetal thymus development and immune function. From Day 35 to Day 110 of gestation, 32 Hu ewes carrying twin fetuses were randomly allocated to one of four groups (n=8 per group): 100% National Research Council (NRC)-recommended nutrient requirements (CON), 50% NRC recommendations (RES), 50% NRC recommendations supplemented with 20gday-1 RP-Arg (RES+ARG), and 50% NRC recommendations supplemented with 5gday-1 NCG (RES+NCG). Medullary thickness was increased (P<0.05) in RES compared with CON ewes, but was reduced (P<0.05) in both RES+ARG and RES+NCG ewes compared with RES ewes. There were no differences in superoxide dismutase and glutathione peroxidase activity or malondialdehyde levels in the RES+ARG and RES+NCG groups compared with the CON group (P>0.05). Concentrations of IgA, interleukin (IL)-1β and IL-10 in fetal umbilical cord blood were reduced (P<0.05) in RES compared with CON ewes, but were increased (P<0.05) in both RES+ARG and RES+NCG ewes. Expression of Bax, Fas and p53 mRNA was increased (P<0.05) in RES compared with CON ewes, but were reduced (P>0.05) in both RES+ARG and RES+NCG ewes. These results indicate that dietary supplementation with NCG and RP-Arg could help alleviate the negative effects of intrauterine growth restriction on fetal thymus development and immune function.
Collapse
Affiliation(s)
- Hao Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, #48, Weihui Road,Yangzhou 225009, P.R. China
| | - Fangfang Zhao
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, #48, Weihui Road,Yangzhou 225009, P.R. China
| | - Haitao Nie
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, #1, Tongwei Road, Nanjing 210095, P.R. China
| | - Tiewei Ma
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, #1, Tongwei Road, Nanjing 210095, P.R. China
| | - Ziyu Wang
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, #1, Tongwei Road, Nanjing 210095, P.R. China
| | - Feng Wang
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, #1, Tongwei Road, Nanjing 210095, P.R. China
| | - Juan J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| |
Collapse
|
23
|
Liu Y, Bai JH, Xu XL, Chen ZL, Spicer LJ, Feng T. Effects of N-carbamylglutamate and L-arginine on gonadotrophin-releasing hormone (GnRH) gene expression and secretion in GT1-7 cells. Reprod Fertil Dev 2019; 30:759-765. [PMID: 29121483 DOI: 10.1071/rd17265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/04/2017] [Indexed: 01/17/2023] Open
Abstract
Recent studies have shown that N-carbamylglutamate (NCG) and arginine (ARG) supplementation improves reproductive performance in livestock. The objectives of the present study were to evaluate the effects of NCG and ARG on GT1-7 cell gonadotrophin-releasing hormone (GnRH) secretion, gene expression and cell proliferation. GT1-7 cells were treated in vitro with different concentrations of NCG (0-1.0mM) or ARG (0-4.0mM) in serum-free medium for 12 or 24h. For GnRH secretion and cell proliferation, GT1-7 cells were more sensitive to NCG than ARG. NCG treatment after 12h increased cell numbers and inhibited GnRH secretion in a dose-dependent manner (P<0.05), although there was no significant effect of NCG on these parameters after 24h culture. ARG treatment decreased GnRH secretion after 24h (P<0.05), whereas it had no effect after 12h. GT1-7 cells express GnRH, Kiss-1 metastasis-suppressor (Kiss1), G-protein coupled receptor 54 (GPR54), neuronal nitric oxide synthase (nNOS) and estrogen receptor α (ERα) genes. High concentrations of NCG (1.0mM) and ARG (4.0mM) inhibited (P<0.05) GnRH and nNOS mRNA abundance in GT1-7 cells. ARG treatment decreased Kiss1 and increased ERα mRNA abundance. Thus, high concentrations of NCG (1.0mM) and ARG (4.0mM) may act both directly and indirectly to regulate GnRH neuron function by downregulating genes related to GnRH synthesis and secretion to slow GnRH production while stimulating GT1-7 cell proliferation.
Collapse
Affiliation(s)
- Y Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - J H Bai
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - X L Xu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Z L Chen
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - L J Spicer
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, USA
| | - T Feng
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
24
|
Feng T, DeVore AA, Perego MC, Morrell BC, Spicer LJ. Effects of N-carbamylglutamate and arginine on steroidogenesis and proliferation of pig granulosa cells in vitro. Anim Reprod Sci 2019; 209:106138. [PMID: 31514935 DOI: 10.1016/j.anireprosci.2019.106138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/24/2019] [Accepted: 07/25/2019] [Indexed: 01/26/2023]
Abstract
Results of in vivo studies indicate dietary N-carbamylglutamate (NCG) and arginine (ARG) can enhance reproductive performance in gilts. It was hypothesized that both NCG and ARG will alter hormone-induced estradiol (E2) production by granulosa cells (GC), explaining why these compounds could improve reproductive performance in pigs. The objective of these studies, therefore, was to evaluate the direct effects of NCG and ARG on porcine GC proliferation and steroidogenesis, using an in vitro cell culture system. The GC from small (SM; 1-5 mm) and large (LG; >5 mm) pig follicles were cultured for 2 days in 5% fetal bovine serum and 5% porcine serum-containing medium followed by 2 days in serum-free medium containing 500 ng/mL of testosterone (as an E2 precursor), and NCG or ARG at various doses in the presence of either follicle-stimulating hormone (FSH; 30 ng/mL), insulin-like growth factor-1 (IGF1; 30 ng/mL), or both. Numbers of GC were determined at the end of the experiment and concentrations of progesterone (P4) and E2 in culture medium were determined. Results indicated that LG-follicle GC were more responsive to NCG and ARG than SM-follicle GC. Specifically, in LG-follicle GC, NCG inhibited (P < 0.05) basal and FSH-induced P4 and E2 production but stimulated cell numbers; whereas ARG inhibited FSH-induced E2 production and cell numbers. In SM-follicle GC, treatment with NCG and ARG decreased IGF1 plus FSH induced P4 production, but E2 production and cell proliferation were not affected. These studies indicate that NCG and ARG may directly affect follicular function in pigs.
Collapse
Affiliation(s)
- T Feng
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - A A DeVore
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - M C Perego
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - B C Morrell
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - L J Spicer
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
25
|
Hu Y, Shao D, Wang Q, Xiao Y, Zhao X, Shen Y, Zhang S, Tong H, Shi S. Effects of dietary N-carbamylglutamate supplementation on growth performance, tissue development and blood parameters of yellow-feather broilers. Poult Sci 2019; 98:2241-2249. [PMID: 30668818 DOI: 10.3382/ps/pey591] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 01/17/2019] [Indexed: 11/20/2022] Open
Abstract
The effects of N-carbamylglutamate (NCG) on the growth performance, tissue development, and blood parameters of broilers are unknown. In this study, 2 linked experiments were conducted to investigate the effects of 4 graded dietary levels and 3 dietary stages of NCG in a Chinese indigenous yellow-feather broiler breed during 2 growth phases: 1 to 18 d and 19 to 36 d. The dietary levels of NCG were 0.05%, 0.10%, 0.15%, and 0.20%, and dietary stages were designed to add NCG during the starter stage or grower stage or throughout the experimental period. At the age of 18 d, graded doses of NCG from 0.05 to 0.20% in the diet produced quadratic (P < 0.05) positive responses in body weight, width of intermuscular fat cingulum, liver weight, serum blood urea nitrogen, and serum low-density lipoprotein as well as linear (P < 0.05) positive responses in albumin serum concentration. The average feed per gain and mortality were unaffected by dietary NCG levels. Among 3 dietary treatments, only NCG dietary treatments throughout the experimental period improved the body weight and daily weight gain linearly (P < 0.05). The daily weight gain under the 3 dietary treatments used indicated that the most fitting dose is 0.1% NCG among the 4 dietary levels of NCG (P < 0.05). At this dose, muscle weight increased, whereas subcutaneous adipose as well as the serum contents of uric acid, triglyceride, and albumin decreased. Considering the growth performance and tissue development under the conditions used in this study, the best-fit model for NCG requirements of Chinese yellow-feather broilers was estimated from regression analysis to be 0.09 to 0.12% dietary NCG treatments during the grower stage. The modified blood parameters indicated that NCG dietary effects on broiler growth may be accompanied by modified homeostasis of arginine metabolism, lipid deposition, protein synthesis, and immune response.
Collapse
Affiliation(s)
- Yan Hu
- Poultry Institute, Chinese Academy of Agriculture Science, Yangzhou, Jiangsu, 225125, China.,Center of Effective Evaluation of Feed and Feed Additive (Poultry institute), Ministry of Agriculture, Yangzhou, Jiangsu, 225125, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225000, China
| | - Dan Shao
- Poultry Institute, Chinese Academy of Agriculture Science, Yangzhou, Jiangsu, 225125, China.,Center of Effective Evaluation of Feed and Feed Additive (Poultry institute), Ministry of Agriculture, Yangzhou, Jiangsu, 225125, China
| | - Qiang Wang
- Poultry Institute, Chinese Academy of Agriculture Science, Yangzhou, Jiangsu, 225125, China.,Center of Effective Evaluation of Feed and Feed Additive (Poultry institute), Ministry of Agriculture, Yangzhou, Jiangsu, 225125, China
| | - Yunqi Xiao
- Poultry Institute, Chinese Academy of Agriculture Science, Yangzhou, Jiangsu, 225125, China.,Center of Effective Evaluation of Feed and Feed Additive (Poultry institute), Ministry of Agriculture, Yangzhou, Jiangsu, 225125, China
| | - Xu Zhao
- Poultry Institute, Chinese Academy of Agriculture Science, Yangzhou, Jiangsu, 225125, China.,Center of Effective Evaluation of Feed and Feed Additive (Poultry institute), Ministry of Agriculture, Yangzhou, Jiangsu, 225125, China
| | - Yiru Shen
- Poultry Institute, Chinese Academy of Agriculture Science, Yangzhou, Jiangsu, 225125, China.,Center of Effective Evaluation of Feed and Feed Additive (Poultry institute), Ministry of Agriculture, Yangzhou, Jiangsu, 225125, China
| | - Shan Zhang
- Poultry Institute, Chinese Academy of Agriculture Science, Yangzhou, Jiangsu, 225125, China.,Center of Effective Evaluation of Feed and Feed Additive (Poultry institute), Ministry of Agriculture, Yangzhou, Jiangsu, 225125, China
| | - Haibing Tong
- Poultry Institute, Chinese Academy of Agriculture Science, Yangzhou, Jiangsu, 225125, China.,Center of Effective Evaluation of Feed and Feed Additive (Poultry institute), Ministry of Agriculture, Yangzhou, Jiangsu, 225125, China
| | - Shourong Shi
- Poultry Institute, Chinese Academy of Agriculture Science, Yangzhou, Jiangsu, 225125, China.,Center of Effective Evaluation of Feed and Feed Additive (Poultry institute), Ministry of Agriculture, Yangzhou, Jiangsu, 225125, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225000, China
| |
Collapse
|
26
|
Lai WS, Ding YL. GNG7 silencing promotes the proliferation and differentiation of placental cytotrophoblasts in preeclampsia rats through activation of the mTOR signaling pathway. Int J Mol Med 2019; 43:1939-1950. [PMID: 30864685 PMCID: PMC6443336 DOI: 10.3892/ijmm.2019.4129] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 02/08/2019] [Indexed: 12/25/2022] Open
Abstract
Preeclampsia (PE) is a pathological condition that manifests during pregnancy as the occurrence of an abnormal urine protein level and increased blood pressure due to inadequate cytotrophoblast invasion. To elucidate the mechanism underlying PE, the present study primarily focused on the regulatory effects and mechanism of the G protein γ 7 (GNG7) on placental cytotrophoblasts in a rat PE model. Initially, the PE model was established with 45 specific pathogen‑free Sprague‑Dawley rats (30 females and 15 males). The expression patterns of GNG7, 4E‑binding protein 1 (4E‑BP1), phosphoprotein 70 ribosomal protein S6 kinase (p70S6K) and mammalian target of rapamycin (mTOR) were examined in the PE rats. Placental cytotrophoblasts isolated from normal and PE rats were treated with a small interfering RNA against GNG7, mTOR signaling pathway activator (HIV‑1 Tat) or inhibitor (rapamycin). Following treatment, cell proliferation, differentiation and apoptosis were evaluated, and mTOR signaling pathway‑related factors (4E‑BP1, p70S6K and mTOR), cell proliferation‑related factors (vascular endothelial growth factor and transforming growth factor‑β1), differentiation‑related factors [activator protein‑2 (AP‑2)α and AP‑2γ], and apoptosis‑related factors [B‑cell lymphoma 2 (Bcl‑2) and Bcl‑2‑associated X protein] were determined. Finally, soluble fms‑like tyrosine kinase 1 (sFlt‑1) and soluble endoglin (sEng) levels were measured via enzyme‑linked immunosorbent assay. Initially, the mTOR signaling pathway was inactivated in the placental tissues and cytotrophoblasts in the PE rats. Silencing GNG7 reduced the levels of sFlt‑1 and sEng and activated the mTOR signaling pathway. Silencing of GNG7 or activation of the mTOR signaling pathway enhanced cell proliferation and differentiation, but inhibited the apoptosis of placental cytotrophoblasts in the PE rats. Taken together, the results showed that GNG7 silencing repressed apoptosis and enhanced the proliferation and differentiation of placental cytotrophoblasts in PE rats through activation of the mTOR signaling pathway.
Collapse
Affiliation(s)
- Wei-Si Lai
- Department of Obstetrics and Gynecology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Yi-Ling Ding
- Department of Obstetrics and Gynecology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
27
|
Huang F, Sun Y, Gao H, Wu H, Wang Z. Carbon disulfide induces embryo loss by perturbing the expression of the mTOR signalling pathway in uterine tissue in mice. Chem Biol Interact 2019; 300:8-17. [DOI: 10.1016/j.cbi.2018.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/12/2018] [Accepted: 12/02/2018] [Indexed: 12/17/2022]
|
28
|
Wang L, Li J, Wang C, Zhao Z, Luo L, Du X, Xu Q. Effect of N-carbamoylglutamate supplementation on the growth performance, antioxidant status and immune response of mirror carp (Cyprinus carpio) fed an arginine-deficient diet. FISH & SHELLFISH IMMUNOLOGY 2019; 84:280-289. [PMID: 30291983 DOI: 10.1016/j.fsi.2018.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/30/2018] [Accepted: 10/03/2018] [Indexed: 06/08/2023]
Abstract
The present study was conducted to determine the effect of dietary N-carbamoylglutamate (NCG) supplementation on the growth performance, antioxidant capability and immune responses of mirror carp (Cyprinus carpio) fed an arginine (Arg)-deficient diet. A total of 630 mirror carp (41.65 ± 0.14 g) were fed diets (Arg 1.24% of the diet) that were supplemented with 0.50% Arg (control diet) or graded levels of NCG at 0 (Arg deficiency diet), 0.04%, 0.08%, 0.12%, 0.16% and 0.20% for 8 weeks. The results showed that, compared with the control diet, the Arg-deficient diet supplementation with 0 NCG (1) decreased the final body weight (FWB), the weight gain rate (WGR) or the protein efficiency ratio (PER) and increased the feed conversion ratio (FCR); (2) decreased the concentration of Arg and nitric oxide (NO) and the activity of total nitric oxide synthetase (T-NOS) in the plasma; (3) decreased the activities of superoxide dismutase (SOD) in the proximal intestine (PI), catalase (CAT) in the PI and distal intestine (DI), and glutathione peroxidase (GPx) in PI and mid-intestine (MI) and increased the concentration of malondialdehyde (MDA) in the PI, MI and DI; and (4) decreased the activity of lysozyme in the plasma, increased the relative mRNA expression of tumor necrosis factor-α (TNF-α), interleukin1β (IL-1β) and interleukin 8 (IL-8) in the PI, MI and DI, and decreased the relative mRNA expression of interleukin 10 (IL-10) in the PI and MI, and transforming growth factor β2 (TGF-β2) in the PI, MI and DI. Compared with the Arg deficient-diet supplementation with 0 NCG, (1) 0.12% or 0.16% NCG increased the FBW, WGR and PER, and 0.16% NCG increased the FCR; (2) 0.08%-0.20% NCG increased the concentration of Arg, NO and the activity of T-NOS; (3) 0.08% NCG increased the activities of SOD in the PI and MI, and 0.12% NCG increased activities of CAT and GPx in the PI, MI and DI; and (4) 0.04%-0.20% NCG increased the activity of lysozyme, 0.04%-0.20% NCG decreased the relative mRNA expression of TNF-α, IL-1β and IL-8 in the PI and MI, and 0.04%-0.20% NCG increased the relative mRNA expression of IL-10 and TGF-β2 in the PI and MI. The present results indicated that dietary 0.12% or 0.16% NCG improved the growth performance, feed utilization, intestinal antioxidant capacity and immune response of mirror carp fed an Arg-deficient diet.
Collapse
Affiliation(s)
- Liansheng Wang
- Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, PR China
| | - Jinnan Li
- Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, PR China
| | - Chang'an Wang
- Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, PR China
| | - Zhigang Zhao
- Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, PR China
| | - Liang Luo
- Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, PR China
| | - Xue Du
- Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, PR China
| | - Qiyou Xu
- Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, PR China.
| |
Collapse
|
29
|
Palencia JYP, Saraiva A, Abreu MLT, Zangeronimo MG, Schinckel AP, Pospissil Garbossa CA. Effectiveness of citrulline and N-carbamoyl glutamate as arginine precursors on reproductive performance in mammals: A systematic review. PLoS One 2018; 13:e0209569. [PMID: 30571792 PMCID: PMC6301651 DOI: 10.1371/journal.pone.0209569] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 12/07/2018] [Indexed: 12/31/2022] Open
Abstract
The use of functional nutrients has been proposed to reduce the occurrence of intrauterine growth retardation in animals at birth in several mammalian species. The objective of this study was to verify the effectiveness of citrulline and N-carbamylglutamate (NCG) dietary supplementation as arginine precursors for mammalian species, and the effects on fetal development through a systematic review. The search for studies was performed during August 2018 in the PubMed, ISI Web of Science, Science Direct, and Scopus databases. The literature search was conducted using "arginine precursor", "citrulline", or "N-carbamylglutamate" as keywords, combined with "gestation", "pregnancy", "fetus", "newborn", or "reproduction". Studies in which arginine precursors were evaluated in gestating mammals and their effects on parameters related to the intrauterine development of the conceptus were selected. Of 1,379 articles, 18 were selected, primarily based on the title and the abstract. Supplementation with NCG (0.5 g to 2 g/kg of feed) increased maternal plasma arginine concentrations in all studies that evaluated this variable. Fetal number increased in 55.56% of the studies that evaluated it, and fetal weight increased in the majority (62.5%) of the studies evaluating this variable. By supplementing citrulline, only fetal weight was improved, with an increase in maternal plasma arginine in 40% of the studies. In conclusion, N-carbamoyl glutamate seems to be an arginine precursor more effective than L-citrulline during gestation; however, both precursors, beside L-Arginine, should be evaluated in similar conditions to confirm the existence of specific particularities such as periods and levels of supplementation, which need to be considered for different species of animals. The supplementation of NCG increases arginine concentrations in maternal plasma, thus improving mammalian reproductive efficiency and fetal development, mainly by promoting higher birth weight.
Collapse
Affiliation(s)
- Jorge Y. P. Palencia
- Department of Animal Science, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | - Alysson Saraiva
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Marcio G. Zangeronimo
- Department of Veterinary Medicine, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | - Allan P. Schinckel
- Animal Science Department, Purdue University, West Lafayette, Indiana, United States of America
| | - Cesar Augusto Pospissil Garbossa
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Sciences, University of São Paulo, Pirassununga, São Paulo, Brazil
| |
Collapse
|
30
|
Wang Y, Zhou J, Wang G, Cai S, Zeng X, Qiao S. Advances in low-protein diets for swine. J Anim Sci Biotechnol 2018; 9:60. [PMID: 30034802 PMCID: PMC6052556 DOI: 10.1186/s40104-018-0276-7] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 06/21/2018] [Indexed: 12/20/2022] Open
Abstract
Recent years have witnessed the great advantages of reducing dietary crude protein (CP) with free amino acids (AA) supplementation for sustainable swine industry, including saving protein ingredients, reducing nitrogen excretion, feed costs and the risk of gut disorders without impairing growth performance compared to traditional diets. However, a tendency toward increased fatness is a matter of concern when pigs are fed low-protein (LP) diets. In response, the use of the net energy system and balanced AA for formulation of LP diets has been proposed as a solution. Moreover, the extent to which dietary CP can be reduced is complicated. Meanwhile, the requirements for the first five limiting AA (lysine, threonine, sulfur-containing AA, tryptophan, and valine) that growing-finishing pigs fed LP diets were higher than pigs fed traditional diets, because the need for nitrogen for endogenous synthesis of non-essential AA to support protein synthesis may be increased when dietary CP is lowered. Overall, to address these concerns and give a better understanding of this nutritional strategy, this paper reviews recent advances in the study of LP diets for swine and provides some insights into future research directions.
Collapse
Affiliation(s)
- Yuming Wang
- 1State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China.,2Beijing Key Laboratory of Biological Feed Additive, China Agricultural University, Beijing, 100193 China
| | - Junyan Zhou
- 1State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China.,2Beijing Key Laboratory of Biological Feed Additive, China Agricultural University, Beijing, 100193 China
| | - Gang Wang
- 1State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China.,2Beijing Key Laboratory of Biological Feed Additive, China Agricultural University, Beijing, 100193 China
| | - Shuang Cai
- 1State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China.,2Beijing Key Laboratory of Biological Feed Additive, China Agricultural University, Beijing, 100193 China
| | - Xiangfang Zeng
- 1State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China.,2Beijing Key Laboratory of Biological Feed Additive, China Agricultural University, Beijing, 100193 China
| | - Shiyan Qiao
- 1State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China.,2Beijing Key Laboratory of Biological Feed Additive, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
31
|
Cai S, Zhu J, Zeng X, Ye Q, Ye C, Mao X, Zhang S, Qiao S, Zeng X. Maternal N-Carbamylglutamate Supply during Early Pregnancy Enhanced Pregnancy Outcomes in Sows through Modulations of Targeted Genes and Metabolism Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:5845-5852. [PMID: 29804448 DOI: 10.1021/acs.jafc.8b01637] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Reducing pregnancy loss is important for improving reproductive efficiency for both human and mammalian animals. Our previous study demonstrates that maternal N-carbamylglutamate (NCG) supply during early pregnancy enhances embryonic survival in gilts. However, whether maternal NCG supply improves the pregnancy outcomes is still not known. Here we found maternal NCG supply during early pregnancy in sows significantly increased the numbers of total piglets born alive per litter ( P < 0.05) and significantly changed the levels of metabolites in amniotic fluid and serum involved in metabolism of energy, lipid, and glutathione and immunological regulation. The expression of endometrial progesterone receptor membrane component 1 (PGRMC1) was significantly increased by NCG supplementation ( P < 0.05) as well as the expression of PGRMC1, endothelial nitric oxide synthesases (eNOS), and lamin A/C in fetuses and placentae ( P < 0.05). Among the NCG-associated amino acids, arginine and glutamine, markedly increased PGRMC1 and eNOS expression in porcine trophectoderm cells ( P < 0.05), whereas glutamate could stimulate the expression of vimentin and lamin A/C in porcine trophectoderm (pTr) cells ( P < 0.05) and proline stimulated lamin A/C expression ( P < 0.05). Collectively, these data reveal the mechanisms of NCG in reducing early embryo loss. These findings have important implications that NCG has great potential to improve pregnancy outcomes in human and mammalian animals.
Collapse
Affiliation(s)
- Shuang Cai
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre , China Agricultural University , Beijing 100193 , China
| | - Jinlong Zhu
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre , China Agricultural University , Beijing 100193 , China
| | - Xiangzhou Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre , China Agricultural University , Beijing 100193 , China
| | - Qianhong Ye
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre , China Agricultural University , Beijing 100193 , China
| | - Changchuan Ye
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre , China Agricultural University , Beijing 100193 , China
| | - Xiangbing Mao
- Animal Nutrition Institute , Sichuan Agricultural University , No. 211, Gongpinghuimin Road , Wenjiang District, Chengdu 611130 , China
| | - Shihai Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science , South China Agricultural University , Guangzhou 510642 , China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre , China Agricultural University , Beijing 100193 , China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre , China Agricultural University , Beijing 100193 , China
| |
Collapse
|
32
|
Zhang H, Zhao F, Peng A, Dong L, Wang M, Yu L, Loor JJ, Wang H. Effects of Dietary l-Arginine and N-Carbamylglutamate Supplementation on Intestinal Integrity, Immune Function, and Oxidative Status in Intrauterine-Growth-Retarded Suckling Lambs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4145-4154. [PMID: 29595256 DOI: 10.1021/acs.jafc.8b00726] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This study investigated the effects of dietary l-arginine (Arg) and N-carbamylglutamate (NCG) supplementation on intestinal integrity, immune function, and oxidative status in intrauterine-growth-retarded (IUGR) suckling lambs. A total of 48 newborn Hu lambs of normal birth weight (CON) and IUGR were allocated randomly into four groups of 12 animals each: CON, IUGR, IUGR + 1% Arg, or IUGR + 0.1% NCG. All lambs were raised for a period of 21 days from 7 to 28 days after birth. The Arg or NCG group exhibited improved ( p < 0.05) final body weights compared to that of the IUGR group. In comparison to the IUGR lambs, the apoptotic percentage was lower ( p < 0.05) in the ileum of IUGR lambs supplemented with Arg and NCG. In addition, in comparison to IUGR, the concentrations of protein carbonyl and malondialdehyde were lower ( p < 0.05) and the reduced glutathione (GSH) concentration and ratio of GSH/oxidized glutathione were greater ( p < 0.05) in the jejunum, duodenum, and ileum of IUGR + 1% Arg or 0.1% NCG lambs. In comparison to the IUGR group, the mRNA abundance of myeloid differentiation factor 88, toll-like receptor 9, toll-like receptor 4, interleukin 6, and fuclear factor-κB was lower ( p < 0.05) and the mRNA abundance of superoxide dismutase 1, B-cell lymphoma/leukaemia 2, zonula occludens-1 (ZO-1), and occludin was greater in the ileum of the IUGR lambs supplemented with Arg or NCG. Furthermore, the protein abundance of ZO-1 and claudin-1 in the ileum was greater ( p < 0.05) in the IUGR + 1% Arg or 0.1% NCG lambs. The results show that Arg or NCG supplementation improves the growth, intestinal integrity, immune function, and oxidative status in IUGR Hu suckling lambs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Juan J Loor
- Department of Animal Sciences and Division of Nutritional Sciences , University of Illinois , Urbana , Illinois 61801 , United States
| | | |
Collapse
|
33
|
Feng T, Bai J, Xu X, Guo Y, Huang Z, Liu Y. Supplementation with N-carbamylglutamate and vitamin C: improving gestation and lactation outcomes in sows under heat stress. ANIMAL PRODUCTION SCIENCE 2018. [DOI: 10.1071/an15562] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The objective of the study was to determine the effects of dietary supplementation with N-carbamylglutamate (NCG) or NCG in combination with vitamin C on the gestation and lactation of sows under heat stress during summer. The experiment lasted 51 days from the last month of gestation to weaning (Day 21 of lactation) and involved 100 Yorkshire sows, divided into four groups, fed as follows: (1) Control diet, (2) Control diet plus 0.05% NCG, (3) Control diet plus 0.05% vitamin C, and (4) Control diet plus 0.05% NCG and 0.05% vitamin C. The reproductive performances and partial serum indicators of sows were measured. The results indicated that either NCG or vitamin C administration can ameliorate heat stress and improve the reproductive performance of sows during summer. When administering NCG and vitamin C, litter weights (16.12/13.86 kg, P < 0.05) and average weights of living piglets (1.56/1.34 kg, P < 0.05), rather than numbers born alive (10.47/10.30 head, P > 0.05), were greatly increased at farrowing, and subsequently litter weights (59.69/48.61 kg, P < 0.05) and average weights of living piglets (6.00/5.16 kg, P < 0.05) at weaning were greatly increased in comparison with Controls. The combinational additives can decrease malonaldehyde and cortisol levels, and enhance immunoglobulin G level in the maternal circulation, as well as decrease the respiration rate and increase feed intake of sows. The results demonstrate that NCG in combination with vitamin C can enhance piglet weight rather than number during gestation and lactation and has important implications for anti-heat stress during summer.
Collapse
|
34
|
Feng T, Schütz LF, Morrell BC, Perego MC, Spicer LJ. Effects of N-carbamylglutamate and L-arginine on steroidogenesis and gene expression in bovine granulosa cells. Anim Reprod Sci 2017; 188:85-92. [PMID: 29150243 DOI: 10.1016/j.anireprosci.2017.11.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 12/13/2022]
Abstract
Feeding N-carbamylglutamate (NCG) and arginine (ARG) improves reproductive measures in pigs and reduces systemic steroid levels in pregnant ewes. We hypothesized that the effects of NCG and ARG on reproduction were due to direct effects on the ovary. Thus, the objectives of this study were to investigate the effects of NCG and ARG on granulosa cell (GC) steroidogenesis, gene expression, and cell proliferation in vitro. GC were collected from small (1-5mm) bovine follicles and treated in vitro with NCG or ARG in serum-free medium for 24h to 48h. Both NCG and ARG inhibited (P<0.05) IGF1- and FSH-induced GC estradiol production but only NCG inhibited (P<0.05) progesterone production. In contrast, NCG and ARG increased (P<0.05) GC numbers induced by IGF1 and FSH. NCG inhibited (P<0.05) StAR, CYP11A1 and CYP19A1 mRNA abundance in small-follicle GC, whereas ARG had no effect (P>0.10) on StAR, CYP11A1 or CYP19A1 mRNA abundance. We conclude that NCG and ARG may act directly on GC and therefore may regulate ovarian function by slowing follicular differentiation via inhibiting IGF1 action, and steroid synthesis while stimulating GC proliferation in cattle.
Collapse
Affiliation(s)
- T Feng
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - L F Schütz
- Department of Animal Science, Oklahoma State University, Stillwater, OK, 74078, USA
| | - B C Morrell
- Department of Animal Science, Oklahoma State University, Stillwater, OK, 74078, USA
| | - M C Perego
- Department of Animal Science, Oklahoma State University, Stillwater, OK, 74078, USA
| | - L J Spicer
- Department of Animal Science, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
35
|
Menni C, Zierer J, Pallister T, Jackson MA, Long T, Mohney RP, Steves CJ, Spector TD, Valdes AM. Omega-3 fatty acids correlate with gut microbiome diversity and production of N-carbamylglutamate in middle aged and elderly women. Sci Rep 2017; 7:11079. [PMID: 28894110 PMCID: PMC5593975 DOI: 10.1038/s41598-017-10382-2] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 08/07/2017] [Indexed: 12/30/2022] Open
Abstract
Omega-3 fatty acids may influence human physiological parameters in part by affecting the gut microbiome. The aim of this study was to investigate the links between omega-3 fatty acids, gut microbiome diversity and composition and faecal metabolomic profiles in middle aged and elderly women. We analysed data from 876 twins with 16S microbiome data and DHA, total omega-3, and other circulating fatty acids. Estimated food intake of omega-3 fatty acids were obtained from food frequency questionnaires. Both total omega-3and DHA serum levels were significantly correlated with microbiome alpha diversity (Shannon index) after adjusting for confounders (DHA Beta(SE) = 0.13(0.04), P = 0.0006 total omega-3: 0.13(0.04), P = 0.001). These associations remained significant after adjusting for dietary fibre intake. We found even stronger associations between DHA and 38 operational taxonomic units (OTUs), the strongest ones being with OTUs from the Lachnospiraceae family (Beta(SE) = 0.13(0.03), P = 8 × 10-7). Some of the associations with gut bacterial OTUs appear to be mediated by the abundance of the faecal metabolite N-carbamylglutamate. Our data indicate a link between omega-3 circulating levels/intake and microbiome composition independent of dietary fibre intake, particularly with bacteria of the Lachnospiraceae family. These data suggest the potential use of omega-3 supplementation to improve the microbiome composition.
Collapse
Affiliation(s)
- Cristina Menni
- Department of Twin Research, King's College London, London, UK
| | - Jonas Zierer
- Department of Twin Research, King's College London, London, UK.,Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Tess Pallister
- Department of Twin Research, King's College London, London, UK
| | | | - Tao Long
- Sanford Burnham Prebys, La Jolla, USA
| | | | - Claire J Steves
- Department of Twin Research, King's College London, London, UK
| | - Tim D Spector
- Department of Twin Research, King's College London, London, UK
| | - Ana M Valdes
- Department of Twin Research, King's College London, London, UK. .,School of Medicine, Nottingham City Hospital, Hucknall Road, Nottingham, UK. .,NIHR Nottingham Biomedical Research Centre, Nottingham, UK.
| |
Collapse
|
36
|
Ma Q, Yu Y, Dai L, Qu X, Cong S, Liang H. Effect of TERT on the growth of fibrosarcoma via caspase-3, survivin and PKB. Oncol Lett 2017; 14:1939-1942. [PMID: 28789428 DOI: 10.3892/ol.2017.6373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/06/2017] [Indexed: 01/17/2023] Open
Abstract
The present study explored the effect of telomerase reverse transcriptase (TERT) on the growth and apoptosis of fibrosarcoma, and investigated the potential molecular signalling pathways underlying its effect. A plasmid was constructed in order to overexpress TERT and siRNA was used to knockdown TERT. The effect of TERT on fibrosarcoma cells in vitro was studied by performing reverse transcription-quantitative PCR and western blotting to determine the expression of p53, survivin, caspase-3, caspase-7 and PKB. Knockdown of TERT suppressed cell growth, decreased fibrosarcoma volume, decreased survivin and PKB expression, and increased caspase-3 expression. The results of the present study suggest that TERT regulates the growth of fibrosarcoma in vitro and in vivo, and that this is associated with the expression of caspase-3 and survivin, in addition to the PKB signalling pathway.
Collapse
Affiliation(s)
- Qiuye Ma
- Department of Orthopedics, Chinese Medicine Hospital of Jiulongpo, Chongqing 400080, P.R. China
| | - Yidong Yu
- Department of Orthopedics, Chinese Medicine Hospital of Jiulongpo, Chongqing 400080, P.R. China
| | - Linlin Dai
- Department of Orthopedics, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Helongjiang 150001, P.R. China
| | - Xuehua Qu
- Department of Orthopedics, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Helongjiang 150001, P.R. China
| | - Shan Cong
- Department of Orthopedics, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Helongjiang 150001, P.R. China
| | - Hongsuo Liang
- Department of Orthopedics, Nanning Second People's Hospital, Nanning, Guangxi 530031, P.R. China
| |
Collapse
|
37
|
Zhang H, Sun LW, Wang ZY, Deng MT, Zhang GM, Guo RH, Ma TW, Wang F. Dietary -carbamylglutamate and rumen-protected -arginine supplementation ameliorate fetal growth restriction in undernourished ewes. J Anim Sci 2017; 94:2072-85. [PMID: 27285704 DOI: 10.2527/jas.2015-9587] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study was conducted with an ovine intrauterine growth restriction (IUGR) model to test the hypothesis that dietary -carbamylglutamate (NCG) and rumen-protected -Arg (RP-Arg) supplementation are effective in ameliorating fetal growth restriction in undernourished ewes. Beginning on d 35 of gestation, ewes were fed a diet providing 100% of NRC-recommended nutrient requirements, 50% of NRC recommendations (50% NRC), 50% of NRC recommendations supplemented with 20 g/d RP-Arg (providing 10 g/d of Arg), and 50% of NRC recommendations supplemented with 5 g/d NCG product (providing 2.5 g/d of NCG). On d 110, maternal, fetal, and placental tissues and fluids were collected and weighed. Ewe weights were lower ( < 0.05) in nutrient-restricted ewes compared with adequately fed ewes. Maternal RP-Arg or NCG supplementation did not alter ( = 0.26) maternal BW in nutrient-restricted ewes. Weights of most fetal organs were increased ( < 0.05) in RP-Arg-treated and NCG-treated underfed ewes compared with 50% NRC-fed ewes. Supplementation of RP-Arg or NCG reduced ( < 0.05) concentrations of β-hydroxybutyrate, triglycerides, and ammonia in serum of underfed ewes but had no effect on concentrations of lactate and GH. Maternal RP-Arg or NCG supplementation markedly improved ( < 0.05) concentrations of AA (particularly arginine-family AA and branched-chain AA) and polyamines in maternal and fetal plasma and in fetal allantoic and amniotic fluids within nutrient-restricted ewes. These novel results indicate that dietary NCG and RP-Arg supplementation to underfed ewes ameliorated fetal growth restriction, at least in part, by increasing the availability of AA in the conceptus and provide support for its clinical use to ameliorate IUGR in humans and sheep industry production.
Collapse
|
38
|
Liu G, Xiao L, Cao W, Fang T, Jia G, Chen X, Zhao H, Wu C, Wang J. Changes in the metabolome of rats after exposure to arginine and N-carbamylglutamate in combination with diquat, a compound that causes oxidative stress, assessed by 1H NMR spectroscopy. Food Funct 2016; 7:964-74. [PMID: 26732548 DOI: 10.1039/c5fo01486g] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Numerous factors can induce oxidative stress in animal production and lead to growth retardation, disease, and even death. Arginine and N-carbamylglutamate can alleviate the effects of oxidative stress. However, the systematic changes in metabolic biochemistry linked to oxidative stress and arginine and N-carbamylglutamate treatment remain largely unknown. This study aims to examine the effects of arginine and N-carbamylglutamate on rat metabolism under oxidative stress. Thirty rats were randomly divided into three dietary groups (n = 10 each). The rats were fed a basal diet supplemented with 0 (control), 1% arginine, or 0.1% N-carbamylglutamate for 30 days. On day 28, the rats in each treatment were intraperitoneally injected with diquat at 12 mg per kg body weight or sterile solution. Urine and plasma samples were analyzed by metabolomics. Compared with the diquat group, the arginine + diquat group had significantly lower levels of acetamide, alanine, lysine, pyruvate, tyrosine, α-glucose, and β-glucose in plasma; N-carbamylglutamate + diquat had higher levels of 3-hydroxybutyrate, 3-methylhistidine, acetone, allantoin, asparagine, citrate, phenylalanine, trimethylamine-N-oxide, and tyrosine, and lower levels of low density lipoprotein, lipid, lysine, threonine, unsaturated lipid, urea, and very low density lipoprotein (P < 0.05) in plasma. Compared with the diquat group, the arginine + diquat group had significantly higher levels of citrate, creatinine, homogentisate, and α-ketoglutarate while lower levels of acetamide, citrulline, ethanol, glycine, isobutyrate, lactate, malonate, methymalonate, N-acetylglutamate, N-methylnicotinamide, propionate, and β-glucose (P < 0.05) in urine. Compared with the diquat group, the N-carbamylglutamate + diquat group had significantly higher levels of allantoin, citrate, homogentisate, phenylacetylglycine, α-ketoglutarate, and β-glucose while lower levels of acetamide, acetate, acetone, benzoate, citrulline, ethanol, hippurate, lactate, N-acetylglutamate, nicotinamide, ornithine, and trigonelline (P < 0.05) in urine. Overall, these results suggest that arginine and N-carbamylglutamate can alter the metabolome associated with energy metabolism, amino acid metabolism, and gut microbiota metabolism under oxidative stress.
Collapse
Affiliation(s)
- Guangmang Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China. and Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, Sichuan, China
| | - Liang Xiao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China. and Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, Sichuan, China
| | - Wei Cao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China. and Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, Sichuan, China
| | - Tingting Fang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China. and Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, Sichuan, China
| | - Gang Jia
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China. and Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, Sichuan, China
| | - Xiaoling Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China. and Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, Sichuan, China
| | - Hua Zhao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China. and Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, Sichuan, China
| | - Caimei Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China. and Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, Sichuan, China
| | - Jing Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| |
Collapse
|
39
|
Liu G, Cao W, Fang T, Jia G, Zhao H, Chen X, Wu C, Wang J. Urinary Metabolomic Approach Provides New Insights into Distinct Metabolic Profiles of Glutamine and N-Carbamylglutamate Supplementation in Rats. Nutrients 2016; 8:nu8080478. [PMID: 27527211 PMCID: PMC4997391 DOI: 10.3390/nu8080478] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/13/2016] [Accepted: 07/28/2016] [Indexed: 01/15/2023] Open
Abstract
Glutamine and N-carbamylglutamate can enhance growth performance and health in animals, but the underlying mechanisms are not yet elucidated. This study aimed to investigate the effect of glutamine and N-carbamylglutamate supplementation in rat metabolism. Thirty rats were fed a control, glutamine, or N-carbamylglutamate diet for four weeks. Urine samples were analyzed by nuclear magnetic resonance (NMR)-based metabolomics, specifically high-resolution 1H NMR metabolic profiling combined with multivariate data analysis. Glutamine significantly increased the urine levels of acetamide, acetate, citrulline, creatinine, and methymalonate, and decreased the urine levels of ethanol and formate (p < 0.05). Moreover, N-carbamylglutamate significantly increased the urine levels of creatinine, ethanol, indoxyl sulfate, lactate, methymalonate, acetoacetate, m-hydroxyphenylacetate, and sarcosine, and decreased the urine levels of acetamide, acetate, citrulline, creatine, glycine, hippurate, homogentisate, N-acetylglutamate, phenylacetyglycine, acetone, and p-hydroxyphenylacetate (p < 0.05). Results suggested that glutamine and N-carbamylglutamate could modify urinary metabolome related to nitrogen metabolism and gut microbiota metabolism. Moreover, N-carbamylglutamate could alter energy and lipid metabolism. These findings indicate that different arginine precursors may lead to differences in the biofluid profile in rats.
Collapse
Affiliation(s)
- Guangmang Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, Sichuan, China.
| | - Wei Cao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, Sichuan, China.
| | - Tingting Fang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, Sichuan, China.
| | - Gang Jia
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, Sichuan, China.
| | - Hua Zhao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, Sichuan, China.
| | - Xiaoling Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, Sichuan, China.
| | - Caimei Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, Sichuan, China.
| | - Jing Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
40
|
Zhang H, Sun L, Wang Z, Deng M, Nie H, Zhang G, Ma T, Wang F. N-carbamylglutamate and L-arginine improved maternal and placental development in underfed ewes. Reproduction 2016; 151:623-35. [DOI: 10.1530/rep-16-0067] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 03/15/2016] [Indexed: 11/08/2022]
Abstract
AbstractThe objectives of this study were to determine how dietary supplementation ofN-carbamylglutamate (NCG) and rumen-protected L-arginine (RP-Arg) in nutrient-restricted pregnant Hu sheep would affect (1) maternal endocrine status; (2) maternal, fetal, and placental antioxidation capability; and (3) placental development. From day 35 to day 110 of gestation, 32 Hu ewes carrying twin fetuses were allocated randomly into four groups: 100% of NRC-recommended nutrient requirements, 50% of NRC recommendations, 50% of NRC recommendations supplemented with 20g/day RP-Arg, and 50% of NRC recommendations supplemented with 5g/day NCG product. The results showed that in maternal and fetal plasma and placentomes, the activities of total antioxidant capacity and superoxide dismutase were increased (P<0.05); however, the activity of glutathione peroxidase and the concentration of maleic dialdehyde were decreased (P<0.05) in both NCG- and RP-Arg-treated underfed ewes. The mRNA expression of vascular endothelial growth factor and Fms-like tyrosine kinase 1 was increased (P<0.05) in 50% NRC ewes than in 100% NRC ewes, and had no effect (P>0.05) in both NCG- and RP-Arg-treated underfed ewes. A supplement of RP-Arg and NCG reduced (P<0.05) the concentrations of progesterone, cortisol, and estradiol-17β; had no effect on T4/T3; and improved (P<0.05) the concentrations of leptin, insulin-like growth factor 1, tri-iodothyronine (T3), and thyroxine (T4) in serum from underfed ewes. These results indicate that dietary supplementation of NCG and RP-Arg in underfed ewes could influence maternal endocrine status, improve the maternal–fetal–placental antioxidation capability, and promote fetal and placental development during early-to-late gestation.
Collapse
|
41
|
Cao W, Xiao L, Liu G, Fang T, Wu X, Jia G, Zhao H, Chen X, Wu C, Cai J, Wang J. Dietary arginine and N-carbamylglutamate supplementation enhances the antioxidant statuses of the liver and plasma against oxidative stress in rats. Food Funct 2016; 7:2303-11. [PMID: 27109002 DOI: 10.1039/c5fo01194a] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
N-Carbamylglutamate (NCG), an effective precursor of arginine (ARG), can enhance ARG synthesis, increase intestinal growth, and improve reproductive performance. However, the antioxidant effect of NCG remains largely unknown. This study aims to survey the effects of ARG and NCG supplementation on the antioxidant statuses of the liver and plasma in rats under oxidative stress. Rats were fed for 30 days with one of the three iso-nitrogenous diets: basal diet (BD), BD plus 1% ARG, and BD plus 0.1% NCG. On day 28, half of the rats fed with BD were intraperitoneally injected with 12 mg per kg body weight of diquat (diquat group) and the other half was injected intraperitoneally with sterile 0.9% NaCl solution (control group). The other diet groups also received an intraperitoneal injection of 12 mg per kg body weight of diquat, as follows: diquat + 1% ARG (DT + ARG), and diquat + 0.1% NCG (DT + NCG). Rat liver and plasma samples obtained 48 h after diquat injection were analyzed. Results indicated that diquat significantly affected the plasma conventional biochemical components (relative to the controls), which were partially alleviated in both the DT + ARG and DT + NCG groups (P < 0.05). Diquat also significantly decreased the glutathione (GSH) content (by 30.0%), and decreased anti-superoxide anion (ASA; by 13.8%) and anti-hydroxyl radical (AHR; by 38.9%) abilities in the plasma, and also decreased catalase (CAT) activity both in the liver (by 17.5%) and plasma (by 33.4%) compared with the control group. By contrast, diquat increased the malondialdehyde (MDA) content (by 23.0%) in the plasma (P < 0.05) compared with the control group. Relative to those of the diquat group, higher CAT activity and GSH content were noted in the plasma of the DT + ARG group and in the liver of both DT + ARG and DT + NCG groups (P < 0.05). Furthermore, the DT + ARG group exhibited significantly enhanced plasma ASA activity (P < 0.05). The DT + NCG group showed significantly improved total antioxidant capacity (T-AOC) in the liver and plasma (P < 0.05). Increased GSH content and elevated ASA and AHR activities were also found, but the MDA content in the plasma was depleted (P < 0.05). Compared with the DT + ARG group, the DT + NCG group showed increased liver and plasma T-AOC, enhanced plasma AHR activity, increased liver ASA activity, and decreased plasma MDA content (P < 0.05). Overall, supplementation of 1% ARG and 0.1% NCG can partially protect the liver and plasma from oxidative stress. Furthermore, compared with 1% ARG, 0.1% NCG more effectively alleviated oxidative stress.
Collapse
Affiliation(s)
- Wei Cao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Xiao L, Cao W, Liu G, Fang T, Wu X, Jia G, Chen X, Zhao H, Wang J, Wu C, Cai J. Arginine, N-carbamylglutamate, and glutamine exert protective effects against oxidative stress in rat intestine. ACTA ACUST UNITED AC 2016; 2:242-248. [PMID: 29767095 PMCID: PMC5941035 DOI: 10.1016/j.aninu.2016.04.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/12/2016] [Accepted: 04/18/2016] [Indexed: 12/21/2022]
Abstract
The objective of the current study is to evaluate the effects of dietary supplementation with arginine (ARG), N-carbamylglutamate (NCG), and glutamine (GLN) on rat intestinal morphology and antioxidant status under oxidative stress. Rats were fed for 30 d with one of the following iso-nitrogenous diets: basal diet (BD), BD plus 1% ARG, BD plus 0.1% NCG, and BD plus 1% GLN. On day 28, half of the rats fed BD were intraperitoneally injected with 12 mg/kg body weight of diquat (DT; i.e., the DT group) and the other half was intraperitoneally injected with sterile solution (i.e., the control group). The other diet groups were intraperitoneally injected with 12 mg/kg body weight of DT (i.e., DT + 1% GLN [DT + GLN], DT + 1% ARG [DT + ARG], and DT + 0.1% NCG [DT + NCG]). Rat jejunum samples obtained at 48 h after DT injection were analyzed. Results showed that DT significantly decreased catalase (CAT) activity and glutathione (GSH) content by 58.25% and 56.57%, respectively, and elevated malondialdehyde (MDA) content and crypt depth (CD) by 19.39% and 22.13%, respectively, in the jejunum (P < 0.05, relative to the control group). Compared with the DT group, the DT + GLN group exhibited significantly improved villus height (VH), villus width (VW), villus surface area (VSA), CD and total antioxidant capacity (T-AOC) activity (P < 0.05); the DT + ARG group exhibited significantly increased the ratio of VH to CD (H:D) and T-AOC activity (P < 0.05); the DT + GLN, DT + ARG and DT + NCG groups exhibited significantly enhanced CAT activity and GSH content as well as decreased MDA content (P < 0.05). Moreover, VH, VW, VSA, CD and GSH content in the DT + GLN group were higher whereas MDA content was lower compared with the corresponding values observed in both the DT + ARG and the DT + NCG groups (P < 0.05). The H:D ratio in the DT + ARG group significantly increased compared with that in the DT + NCG and DT + GLN groups (P < 0.05). Collectively, this study suggested that dietary supplementation with 1% GLN, 0.1% NCG, and 1% ARG was effective in enhancing the antioxidant status and maintaining the morphological structure of rat jejunum under oxidative stress; of these supplements, 1% GLN exerted the greatest effects on mitigating oxidative stress.
Collapse
Affiliation(s)
- Liang Xiao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
| | - Wei Cao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
| | - Guangmang Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
| | - Tingting Fang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
| | - Xianjian Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
| | - Gang Jia
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
| | - Xiaoling Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
| | - Hua Zhao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
| | - Jing Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Caimei Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
| | - Jingyi Cai
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
| |
Collapse
|
43
|
Zeng X, Huang Z, Zhang F, Mao X, Zhang S, Qiao S. Oral administration of N-carbamylglutamate might improve growth performance and intestinal function of suckling piglets. Livest Sci 2015. [DOI: 10.1016/j.livsci.2015.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Zhu J, Zeng X, Peng Q, Zeng S, Zhao H, Shen H, Qiao S. Maternal N-Carbamylglutamate Supplementation during Early Pregnancy Enhances Embryonic Survival and Development through Modulation of the Endometrial Proteome in Gilts. J Nutr 2015; 145:2212-20. [PMID: 26290006 DOI: 10.3945/jn.115.216333] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/22/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Early pregnancy loss is a major concern in humans and animals. N-carbamylglutamate (NCG) has been found to enhance embryonic survival during early pregnancy in rats. However, little is known about the key factors in the endometrium involved in the improvement of embryonic implantation and development induced by maternal NCG supplementation. OBJECTIVES Our objectives were to investigate whether NCG supplementation during early gestation enhanced embryonic survival and development in gilts and to uncover the related factors using the approach of endometrium proteome analysis with isobaric tags for relative and absolute quantification (iTRAQ). METHODS Uteruses and embryos/fetuses were obtained on days 14 and 28 of gestation from gilts fed a basal diet that was or was not supplemented with 0.05% NCG. The iTRAQ-based quantitative proteomics approach was performed to explore the endometrium proteome altered by NCG supplementation. RESULTS Maternal NCG supplementation significantly increased the number of total fetuses and live fetuses on day 28 of gestation by 1.32 and 1.29, respectively (P < 0.05), with a significant decrease in embryonic mortality (P < 0.05). iTRAQ results indicated that a total of 59 proteins showed at least 2-fold differences (P < 0.05), including 52 proteins that were present at higher abundance and 7 proteins present at lower abundance in NCG-supplemented gilts. The differentially expressed proteins primarily are involved in cell adhesion, energy metabolism, lipid metabolism, protein metabolism, antioxidative stress, and immune response. On day 14 of gestation, several proteins closely related to embryonic implantation and development, such as integrin-αv, integrin-β3, talin, and endothelial nitric oxide synthase, were upregulated (3.7-, 4.1-, 2.4-, and 5.4-fold increases, respectively) by NCG supplementation. CONCLUSION To our knowledge, our results provide the first evidence that altered abundance of the endometrial proteome induced by NCG supplementation is highly associated with the improvement of embryonic survival and development in gilts.
Collapse
Affiliation(s)
- Jinlong Zhu
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, and
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, and
| | - Qian Peng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, and
| | - Shenming Zeng
- Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China; and
| | - Haiyi Zhao
- Genecreate Biological Engineering Co., Ltd., National Bio-industry Base, Wuhan, China
| | - Hexiao Shen
- Genecreate Biological Engineering Co., Ltd., National Bio-industry Base, Wuhan, China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, and
| |
Collapse
|
45
|
Bazer FW, Wang X, Johnson GA, Wu G. Select nutrients and their effects on conceptus development in mammals. ACTA ACUST UNITED AC 2015; 1:85-95. [PMID: 29767122 PMCID: PMC5945975 DOI: 10.1016/j.aninu.2015.07.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 07/30/2015] [Indexed: 11/30/2022]
Abstract
The dialogue between the mammalian conceptus (embryo/fetus and associated membranes) involves signaling for pregnancy recognition and maintenance of pregnancy during the critical peri-implantation period of pregnancy when the stage is set for implantation and placentation that precedes fetal development. Uterine epithelial cells secrete and/or transport a wide range of molecules, including nutrients, collectively referred to as histotroph that are transported into the fetal-placental vascular system to support growth and development of the conceptus. The availability of uterine-derived histotroph has long-term consequences for the health and well-being of the fetus and the prevention of adult onset of metabolic diseases. Histotroph includes numerous amino acids, but arginine plays a particularly important role as a source of nitric oxide and polyamines required for fetal-placental development in rodents, swine and humans through mechanisms that remain to be fully elucidated. Mechanisms whereby arginine regulates expression of genes via the mechanistic target of rapamycin cell signaling pathways critical to conceptus development, implantation and placentation are discussed in detail in this review.
Collapse
Affiliation(s)
- Fuller W Bazer
- Departments of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| | - Xiaoqiu Wang
- Departments of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| | - Greg A Johnson
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458, USA
| | - Guoyao Wu
- Departments of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| |
Collapse
|
46
|
Lin G, Wang X, Wu G, Feng C, Zhou H, Li D, Wang J. Improving amino acid nutrition to prevent intrauterine growth restriction in mammals. Amino Acids 2015; 46:1605-23. [PMID: 24658999 DOI: 10.1007/s00726-014-1725-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 03/06/2014] [Indexed: 12/18/2022]
Abstract
Intrauterine growth restriction (IUGR) is one of the most common concerns in human obstetrics and domestic animal production. It is usually caused by placental insufficiency, which decreases fetal uptake of nutrients (especially amino acids) from the placenta. Amino acids are not only building blocks for protein but also key regulators of metabolic pathways in fetoplacental development. The enhanced demands of amino acids by the developing conceptus must be met via active transport systems across the placenta as normal pregnancy advances. Growing evidence indicates that IUGR is associated with a reduction in placental amino acid transport capacity and metabolic pathways within the embryonic/fetal development. The positive relationships between amino acid concentrations in circulating maternal blood and placental amino acid transport into fetus encourage designing new therapies to prevent or treat IUGR by enhancing amino acid availability in maternal diets or maternal circulation. Despite the positive effects of available dietary interventions, nutritional therapy for IUGR is still in its infancy. Based on understanding of the underlying mechanisms whereby amino acids promote fetal growth and of their dietary requirements by IUGR, supplementation with functional amino acids (e.g., arginine and glutamine) hold great promise for preventing fetal growth restriction and improving health and growth of IUGR offspring.
Collapse
|
47
|
Bazer FW, Johnson GA, Wu G. Amino Acids and Conceptus Development During the Peri-Implantation Period of Pregnancy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 843:23-52. [DOI: 10.1007/978-1-4939-2480-6_2] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
48
|
Beymer M, Negrón AL, Yu G, Wu S, Mayer C, Lin RZ, Boehm U, Acosta-Martínez M. Kisspeptin cell-specific PI3K signaling regulates hypothalamic kisspeptin expression and participates in the regulation of female fertility. Am J Physiol Endocrinol Metab 2014; 307:E969-82. [PMID: 25269483 PMCID: PMC4254985 DOI: 10.1152/ajpendo.00385.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypothalamic kisspeptin neurons integrate and translate cues from the internal and external environments that regulate gonadotropin-releasing hormone (GnRH) secretion and maintain fertility in mammals. However, the intracellular signaling pathways utilized to translate such information into changes in kisspeptin expression, release, and ultimately activation of the kisspeptin-receptive GnRH network have not yet been identified. PI3K is an important signaling node common to many peripheral factors known to regulate kisspeptin expression and GnRH release. We investigated whether PI3K signaling regulates hypothalamic kisspeptin expression, pubertal development, and adult fertility in mice. We generated mice with a kisspeptin cell-specific deletion of the PI3K catalytic subunits p110α and p110β (kiss-p110α/β-KO). Using in situ hybridization, we examined Kiss1 mRNA expression in gonad-intact, gonadectomized (Gdx), and Gdx + steroid-replaced mice. Kiss1 cell number in the anteroventral periventricular hypothalamus (AVPV) was significantly reduced in intact females but not in males. In contrast, compared with WT and regardless of steroid hormone status, Kiss1 cell number was lower in the arcuate (ARC) of kiss-p110α/β-KO males, but it was unaffected in females. Both intact Kiss-p110α/β-KO males and females had reduced ARC kisspeptin-immunoreactive (IR) fibers compared with WT animals. Adult kiss-p110α/β-KO males had significantly lower circulating luteinizing hormone (LH) levels, whereas pubertal development and fertility were unaffected in males. Kiss-p110α/β-KO females exhibited a reduction in fertility despite normal pubertal development, LH levels, and estrous cyclicity. Our data show that PI3K signaling is important for the regulation of hypothalamic kisspeptin expression and contributes to normal fertility in females.
Collapse
Affiliation(s)
- Matthew Beymer
- Department of Physiology and Biophysics, Stony Brook University Medical Center, Stony Brook, New York; Graduate Program in Genetics, Stony Brook University, Stony Brook, New York
| | - Ariel L Negrón
- Department of Physiology and Biophysics, Stony Brook University Medical Center, Stony Brook, New York; Graduate Program in Neuroscience, Stony Brook University, Stony Brook, New York
| | - Guiqin Yu
- Department of Physiology and Biophysics, Stony Brook University Medical Center, Stony Brook, New York
| | - Samuel Wu
- Department of Physiology and Biophysics, Stony Brook University Medical Center, Stony Brook, New York
| | - Christian Mayer
- Department of Pharmacology and Toxicology, University of Saarland School of Medicine, Homburg, Germany
| | - Richard Z Lin
- Department of Physiology and Biophysics, Stony Brook University Medical Center, Stony Brook, New York; Institute of Molecular Cardiology, Stony Brook, New York; and Veterans Affairs Medical Center, Northport, New York
| | - Ulrich Boehm
- Department of Pharmacology and Toxicology, University of Saarland School of Medicine, Homburg, Germany
| | - Maricedes Acosta-Martínez
- Department of Physiology and Biophysics, Stony Brook University Medical Center, Stony Brook, New York;
| |
Collapse
|
49
|
Gao H, Liebenthal DA, Yallampalli U, Yallampalli C. Adrenomedullin promotes rat trophoblast stem cell differentiation. Biol Reprod 2014; 91:65. [PMID: 25061099 DOI: 10.1095/biolreprod.114.120378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Accumulating data suggest that adrenomedullin (ADM) regulates the trophoblast cell growth, migration, and invasion. However, the effect of ADM on trophoblast differentiation is poorly understood. In this study, we hypothesized that ADM promotes the differentiation of trophoblast stem cells (TSCs) into trophoblast giant cells (TGCs). Using rat TSCs, Rcho-1 cells, we investigated the effect of ADM on TSC differentiation into TGCs in differentiation or stem cell media, respectively, and explored the effect of ADM on the mechanistic target of rapamycin (MTOR) signaling in trophoblast cell differentiation. The results include: 1) in the presence of differentiation medium, 10⁻⁷ M ADM, but not lower doses, elevated (P < 0.05) Prl3b1/Esrrb (i.e., the ratio of mRNA levels) by 1.7-fold compared to that in control; 2) the supplementation of ADM antagonist, regardless of the concentration of ADM, reduced (P < 0.05) Prl3b1/Esrrb by 2-fold, compared to control group, while the supplementation of CGRP antagonist, regardless of the concentration of ADM, did not change Prl3b1/Esrrb; 3) in the presence of stem cell medium, ADM did not alter the expression of TSC and TGC marker genes, however, the ratio of Prl3b1/Esrrb was reduced (P < 0.05) by ADM antagonist compared to that in control; and 4) ADM increased (P < 0.05) phosphorylated MTOR proteins and the ratio of phosphorylated to total MTOR proteins by 2.0- and 1.7-fold, respectively. The results indicate that ADM promotes but does not induce the differentiation of TSCs to TGCs in a dose-dependent manner and MTOR signaling may play a role in this process.
Collapse
Affiliation(s)
- Haijun Gao
- Department of Obstetrics & Gynecology, Baylor College of Medicine, Houston, Texas
| | - Daniel A Liebenthal
- Department of Obstetrics & Gynecology, Baylor College of Medicine, Houston, Texas
| | - Uma Yallampalli
- Department of Obstetrics & Gynecology, Baylor College of Medicine, Houston, Texas
| | - Chandra Yallampalli
- Department of Obstetrics & Gynecology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
50
|
Zhang B, Che LQ, Lin Y, Zhuo Y, Fang ZF, Xu SY, Song J, Wang YS, Liu Y, Wang P, Wu D. Effect of Dietary N-Carbamylglutamate Levels on Reproductive Performance of Gilts. Reprod Domest Anim 2014; 49:740-5. [DOI: 10.1111/rda.12358] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 05/21/2014] [Indexed: 12/01/2022]
Affiliation(s)
- B Zhang
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science; Institute of Animal Nutrition; Sichuan Agricultural University; Ya'an China
| | - LQ Che
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science; Institute of Animal Nutrition; Sichuan Agricultural University; Ya'an China
| | - Y Lin
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science; Institute of Animal Nutrition; Sichuan Agricultural University; Ya'an China
| | - Y Zhuo
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science; Institute of Animal Nutrition; Sichuan Agricultural University; Ya'an China
| | - ZF Fang
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science; Institute of Animal Nutrition; Sichuan Agricultural University; Ya'an China
| | - SY Xu
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science; Institute of Animal Nutrition; Sichuan Agricultural University; Ya'an China
| | - J Song
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science; Institute of Animal Nutrition; Sichuan Agricultural University; Ya'an China
| | - YS Wang
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science; Institute of Animal Nutrition; Sichuan Agricultural University; Ya'an China
| | - Y Liu
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science; Institute of Animal Nutrition; Sichuan Agricultural University; Ya'an China
| | - P Wang
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science; Institute of Animal Nutrition; Sichuan Agricultural University; Ya'an China
| | - D Wu
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science; Institute of Animal Nutrition; Sichuan Agricultural University; Ya'an China
| |
Collapse
|