1
|
Haugg A, Frei N, Lutz C, Di Pietro SV, Karipidis II, Brem S. The structural covariance of reading-related brain regions in adults and children with typical or poor reading skills. Dev Cogn Neurosci 2025; 72:101522. [PMID: 39983518 DOI: 10.1016/j.dcn.2025.101522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/09/2024] [Accepted: 01/28/2025] [Indexed: 02/23/2025] Open
Abstract
Structural covariance (SC) is a promising approach for studying brain organization in the context of literacy and developmental disorders, offering insights into both structural and functional underpinnings and potential experience-dependent co-development of functional brain networks. Here, we explore the influence of maturation and reading skill on SC in reading-related brain regions. Whole-brain SC analyses were conducted for six key regions of the reading network, including an anterior and posterior subdivision of the visual word form area (VWFA). To study maturational effects, SC was compared between typical-reading adults (N = 134, 25.3 ± 4 yrs) and children (N = 110, 9.6 ± 1.6 yrs). The impact of reading skills on SC was assessed by comparing typical-reading children (N = 110, 9.6 ± 1.6 yrs) to children with poor reading skills (N = 68, 10.2 ± 1.4 yrs). Our results showed significant SC between reading-related brain regions in typical-reading adults. Further, we observed significant SC between the posterior VWFA and the occipital cortex, and between the anterior VWFA and the superior temporal and inferior frontal gyri. There was no indication of a major change in SC within the reading network related to maturation. However, we observed higher SC between the inferior parietal lobule and other reading-related brain regions in children with typical compared to poor reading skills.
Collapse
Affiliation(s)
- Amelie Haugg
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Zurich, Switzerland.
| | - Nada Frei
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Zurich, Switzerland
| | - Christina Lutz
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Zurich, Switzerland; Faculté de Psychologie et des Sciences de l'Education, Université de Genève, Geneva, Switzerland
| | - Sarah V Di Pietro
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Zurich, Switzerland; University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, Zurich, Switzerland
| | - Iliana I Karipidis
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland; University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, Zurich, Switzerland
| | - Silvia Brem
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland; MR-Center of the Department of Psychiatry, Psychotherapy and Psychosomatics and the Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland; University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Soheili-Nezhad S, Schijven D, Mars RB, Fisher SE, Francks C. Distinct impact modes of polygenic disposition to dyslexia in the adult brain. SCIENCE ADVANCES 2024; 10:eadq2754. [PMID: 39693421 DOI: 10.1126/sciadv.adq2754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024]
Abstract
Dyslexia is a common and partially heritable condition that affects reading ability. In a study of up to 35,231 adults, we explored the structural brain correlates of genetic disposition to dyslexia. Individual dyslexia-disposing genetic variants showed distinct patterns of association with brain structure. Independent component analysis revealed various brain networks that each had their own genomic profiles related to dyslexia susceptibility. Circuits involved in motor coordination, vision, and language were implicated. Polygenic scores for eight traits genetically correlated with dyslexia, including cognitive, behavioral, and reading-related psychometric measures, showed partial similarities to dyslexia in terms of brain-wide associations. Notably, microstructure of the internal capsule was consistently implicated across all of these genetic dispositions, while lower volume of the motor cortex was more specifically associated with dyslexia genetic disposition alone. These findings reveal genetic and neurobiological features that may contribute to dyslexia and its associations with other traits at the population level.
Collapse
Affiliation(s)
- Sourena Soheili-Nezhad
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Dick Schijven
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Rogier B Mars
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Clyde Francks
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
3
|
Ren H, Li YZ, Bi HY, Yang Y. The shared neurobiological basis of developmental dyslexia and developmental stuttering: A meta-analysis of functional and structural MRI studies. Int J Clin Health Psychol 2024; 24:100519. [PMID: 39582485 PMCID: PMC11585698 DOI: 10.1016/j.ijchp.2024.100519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/02/2024] [Indexed: 11/26/2024] Open
Abstract
Background Developmental dyslexia (DD) and persistent developmental stuttering (PDS) are the most representative written and spoken language disorders, respectively, and both significantly hinder life success. Although widespread brain alterations are evident in both DD and PDS, it remains unclear to what extent these two language disorders share common neural substrates. Methods A systematic review and meta-analysis of task-based functional magnetic resonance imaging (fMRI) and voxel-based morphometry (VBM) studies of PDS and DD were conducted to explore the shared functional and anatomical alterations across these disorders. Results The results of fMRI studies indicated shared hypoactivation in the left inferior temporal gyrus and inferior parietal gyrus across PDS and DD compared to healthy controls. When examined separately for children and adults, we found that child participants exhibited reduced activation in the left inferior temporal gyrus, inferior parietal gyrus, precentral gyrus, middle temporal gyrus, and inferior frontal gyrus, possibly reflecting the universal causes of written and spoken language disorders. In contrast, adult participants exhibited hyperactivation in the right precentral gyrus and left cingulate motor cortex, possibly reflecting common compensatory mechanisms. Anatomically, the analysis of VBM studies revealed decreased gray matter volume in the left inferior frontal gyrus across DD and PDS, which was exclusively observed in children. Finally, meta-analytic connectivity modeling and brain-behavior correlation analyses were conducted to explore functional connectivity patterns and related cognitive functions of the brain regions commonly involved in DD and PDS. Conclusions This study identified concordances in brain abnormalities across DD and PDS, suggesting common neural substrates for written and spoken language disorders and providing new insights into the transdiagnostic neural signatures of language disorders.
Collapse
Affiliation(s)
- Huan Ren
- Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi zhen Li
- Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Yan Bi
- Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Yang
- Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen 518057, China
| |
Collapse
|
4
|
Kepinska O, Bouhali F, Degano G, Berthele R, Tanaka H, Hoeft F, Golestani N. Intergenerational transmission of the structure of the auditory cortex and reading skills. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.610780. [PMID: 39314393 PMCID: PMC11419080 DOI: 10.1101/2024.09.11.610780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
High-level cognitive skill development relies on genetic and environmental factors, tied to brain structure and function. Inter-individual variability in language and music skills has been repeatedly associated with the structure of the auditory cortex: the shape, size and asymmetry of the transverse temporal gyrus (TTG) or gyri (TTGs). TTG is highly variable in shape and size, some individuals having one single gyrus (also referred to as Heschl's gyrus, HG) while others presenting duplications (with a common stem or fully separated) or higher-order multiplications of TTG. Both genetic and environmental influences on children's cognition, behavior, and brain can to some to degree be traced back to familial and parental factors. In the current study, using a unique MRI dataset of parents and children (135 individuals from 37 families), we ask whether the anatomy of the auditory cortex is related to reading skills, and whether there are intergenerational effects on TTG(s) anatomy. For this, we performed detailed, automatic segmentations of HG and of additional TTG(s), when present, extracting volume, surface area, thickness and shape of the gyri. We tested for relationships between these and reading skill, and assessed their degree of familial similarity and intergenerational transmission effects. We found that volume and area of all identified left TTG(s) combined was positively related to reading scores, both in children and adults. With respect to intergenerational similarities in the structure of the auditory cortex, we identified structural brain similarities for parent-child pairs of the 1st TTG (Heschl's gyrus, HG) (in terms of volume, area and thickness for the right HG, and shape for the left HG) and of the lateralization of all TTG(s) surface area for father-child pairs. Both the HG and TTG-lateralization findings were significantly more likely for parent-child dyads than for unrelated adult-child pairs. Furthermore, we established characteristics of parents' TTG that are related to better reading abilities in children: fathers' small left HG, and a small ratio of HG to planum temporale. Our results suggest intergenerational transmission of specific structural features of the auditory cortex; these may arise from genetics and/or from shared environment.
Collapse
Affiliation(s)
- Olga Kepinska
- Brain and Language Lab, Cognitive Science Hub, University of Vienna, Vienna, Austria
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | | | - Giulio Degano
- Department of Psychology, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| | - Raphael Berthele
- Institute of Multilingualism, University of Fribourg, Fribourg, Switzerland
| | - Hiroko Tanaka
- Department of Pediatrics, College of Medicine, University of Arizona, Tucson, AZ, USA
- Banner University Medical Center - Tucson, Tucson, AZ, USA
| | - Fumiko Hoeft
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
- Brain Imaging Research Center, University of Connecticut, Storrs, CT, USA
- Departments of Mathematics, Neuroscience, Psychiatry, Educational Psychology, Pediatrics, Computer Science and Engineering, University of Connecticut, Storrs, CT, USA
| | - Narly Golestani
- Brain and Language Lab, Cognitive Science Hub, University of Vienna, Vienna, Austria
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Department of Psychology, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
5
|
Lee MM, Stoodley CJ. Neural bases of reading fluency: A systematic review and meta-analysis. Neuropsychologia 2024; 202:108947. [PMID: 38964441 DOI: 10.1016/j.neuropsychologia.2024.108947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/06/2024]
Abstract
Reading fluency, the ability to read quickly and accurately, is a critical marker of successful reading and is notoriously difficult to improve in reading disabled populations. Despite its importance to functional literacy, fluency is a relatively under-studied aspect of reading, and the neural correlates of reading fluency are not well understood. Here, we review the literature of the neural correlates of reading fluency as well as rapid automatized naming (RAN), a task that is robustly related to reading fluency. In a qualitative review of the neuroimaging literature, we evaluated structural and functional MRI studies of reading fluency in readers from a range of skill levels. This was followed by a quantitative activation likelihood estimate (ALE) meta-analysis of fMRI studies of reading speed and RAN measures. We anticipated that reading speed, relative to untimed reading and reading-related tasks, would harness ventral reading pathways that are thought to enable the fast, visual recognition of words. The qualitative review showed that speeded reading taps the entire canonical reading network. The meta-analysis indicated a stronger role of the ventral reading pathway in rapid reading and rapid naming. Both reviews identified regions outside the canonical reading network that contribute to reading fluency, such as the bilateral insula and superior parietal lobule. We suggest that fluent reading engages both domain-specific reading pathways as well as domain-general regions that support overall task performance and discuss future avenues of research to expand our understanding of the neural bases of fluent reading.
Collapse
Affiliation(s)
- Marissa M Lee
- Department of Neuroscience, American University, USA; Center for Applied Brain and Cognitive Sciences, Tufts University, USA
| | - Catherine J Stoodley
- Department of Neuroscience, American University, USA; Developing Brain Institute, Children's National Hospital, USA; Departments of Neurology and Pediatrics, The George Washington University School of Medicine and Health Sciences, USA.
| |
Collapse
|
6
|
Hauw F, Béranger B, Cohen L. Subtitled speech: the neural mechanisms of ticker-tape synaesthesia. Brain 2024; 147:2530-2541. [PMID: 38620012 PMCID: PMC11224615 DOI: 10.1093/brain/awae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 02/21/2024] [Accepted: 03/21/2024] [Indexed: 04/17/2024] Open
Abstract
The acquisition of reading modifies areas of the brain associated with vision and with language, in addition to their connections. These changes enable reciprocal translation between orthography and the sounds and meaning of words. Individual variability in the pre-existing cerebral substrate contributes to the range of eventual reading abilities, extending to atypical developmental patterns, including dyslexia and reading-related synaesthesias. The present study is devoted to the little-studied but highly informative ticker-tape synaesthesia, in which speech perception triggers the vivid and irrepressible perception of words in their written form in the mind's eye. We scanned a group of 17 synaesthetes and 17 matched controls with functional MRI, while they listened to spoken sentences, words, numbers or pseudowords (Experiment 1), viewed images and written words (Experiment 2) or were at rest (Experiment 3). First, we found direct correlates of the ticker-tape synaesthesia phenomenon: during speech perception, as ticker-tape synaesthesia was active, synaesthetes showed over-activation of left perisylvian regions supporting phonology and of the occipitotemporal visual word form area, where orthography is represented. Second, we provided support to the hypothesis that ticker-tape synaesthesia results from atypical relationships between spoken and written language processing: the ticker-tape synaesthesia-related regions overlap closely with cortices activated during reading, and the overlap of speech-related and reading-related areas is larger in synaesthetes than in controls. Furthermore, the regions over-activated in ticker-tape synaesthesia overlap with regions under-activated in dyslexia. Third, during the resting state (i.e. in the absence of current ticker-tape synaesthesia), synaesthetes showed increased functional connectivity between left prefrontal and bilateral occipital regions. This pattern might reflect a lowered threshold for conscious access to visual mental contents and might imply a non-specific predisposition to all synaesthesias with a visual content. These data provide a rich and coherent account of ticker-tape synaesthesia as a non-detrimental developmental condition created by the interaction of reading acquisition with an atypical cerebral substrate.
Collapse
Affiliation(s)
- Fabien Hauw
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, Institut du Cerveau, ICM, Paris 75013, France
- AP-HP, Hôpital de La Pitié Salpêtrière, Fédération de Neurologie, Paris 75013, France
| | - Benoît Béranger
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, Institut du Cerveau, ICM, Paris 75013, France
| | - Laurent Cohen
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, Institut du Cerveau, ICM, Paris 75013, France
- AP-HP, Hôpital de La Pitié Salpêtrière, Fédération de Neurologie, Paris 75013, France
| |
Collapse
|
7
|
Economou M, Vanden Bempt F, Van Herck S, Glatz T, Wouters J, Ghesquière P, Vanderauwera J, Vandermosten M. Cortical Structure in Pre-Readers at Cognitive Risk for Dyslexia: Baseline Differences and Response to Intervention. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2024; 5:264-287. [PMID: 38832361 PMCID: PMC11093402 DOI: 10.1162/nol_a_00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 09/12/2023] [Indexed: 06/05/2024]
Abstract
Early childhood is a critical period for structural brain development as well as an important window for the identification and remediation of reading difficulties. Recent research supports the implementation of interventions in at-risk populations as early as kindergarten or first grade, yet the neurocognitive mechanisms following such interventions remain understudied. To address this, we investigated cortical structure by means of anatomical MRI before and after a 12-week tablet-based intervention in: (1) at-risk children receiving phonics-based training (n = 29; n = 16 complete pre-post datasets), (2) at-risk children engaging with AC training (n = 24; n = 15 complete pre-post datasets) and (3) typically developing children (n = 25; n = 14 complete pre-post datasets) receiving no intervention. At baseline, we found higher surface area of the right supramarginal gyrus in at-risk children compared to typically developing peers, extending previous evidence that early anatomical differences exist in children who may later develop dyslexia. Our longitudinal analysis revealed significant post-intervention thickening of the left supramarginal gyrus, present exclusively in the intervention group but not the active control or typical control groups. Altogether, this study contributes new knowledge to our understanding of the brain morphology associated with cognitive risk for dyslexia and response to early intervention, which in turn raises new questions on how early anatomy and plasticity may shape the trajectories of long-term literacy development.
Collapse
Affiliation(s)
| | | | | | - Toivo Glatz
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Jan Wouters
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | | | | | | |
Collapse
|
8
|
Olivo G, Persson J, Hedenius M. Exploring brain plasticity in developmental dyslexia through implicit sequence learning. NPJ SCIENCE OF LEARNING 2024; 9:37. [PMID: 38802367 PMCID: PMC11130236 DOI: 10.1038/s41539-024-00250-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
Developmental dyslexia (DD) is defined as difficulties in learning to read even with normal intelligence and adequate educational guidance. Deficits in implicit sequence learning (ISL) abilities have been reported in children with DD. We investigated brain plasticity in a group of 17 children with DD, compared with 18 typically developing (TD) children, after two sessions of training on a serial reaction time (SRT) task with a 24-h interval. Our outcome measures for the task were: a sequence-specific implicit learning measure (ISL), entailing implicit recognition and learning of sequential associations; and a general visuomotor skill learning measure (GSL). Gray matter volume (GMV) increased, and white matter volume (WMV) decreased from day 1 to day 2 in cerebellar areas regardless of group. A moderating effect of group was found on the correlation between WMV underlying the left precentral gyrus at day 2 and the change in ISL performance, suggesting the use of different underlying learning mechanisms in DD and TD children during the ISL task. Moreover, DD had larger WMV in the posterior thalamic radiation compared with TD, supporting previous reports of atypical development of this structure in DD. Further studies with larger sample sizes are warranted to validate these results.
Collapse
Affiliation(s)
- Gaia Olivo
- University of Gothenburg, Department of Psychology, Haraldsgatan 1, 405 03, Göteborg, Sweden.
- Karolinska Institute, Department of Neurobiology, Care Sciences and Society, Aging Research Center, Tomtebodavägen 18a, SE-171 65, Solna, Sweden.
| | - Jonas Persson
- Karolinska Institute, Department of Neurobiology, Care Sciences and Society, Aging Research Center, Tomtebodavägen 18a, SE-171 65, Solna, Sweden
- Center for Life-span Developmental Research (LEADER), School of Law, Psychology, and Social Work, Örebro University, Örebro, Sweden
| | - Martina Hedenius
- Uppsala University, Department of Public Health and Caring Sciences, Biomedical Center, Husargatan 3, 751 22, Uppsala, Sweden
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Gävlegatan 22, 11330, Stockholm, Sweden
| |
Collapse
|
9
|
Ashburn SM, Matejko AA, Eden GF. Activation and functional connectivity of cerebellum during reading and during arithmetic in children with combined reading and math disabilities. Front Neurosci 2024; 18:1135166. [PMID: 38741787 PMCID: PMC11090247 DOI: 10.3389/fnins.2024.1135166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/06/2024] [Indexed: 05/16/2024] Open
Abstract
Background Reading and math constitute important academic skills, and as such, reading disability (RD or developmental dyslexia) and math disability (MD or developmental dyscalculia) can have negative consequences for children's educational progress. Although RD and MD are different learning disabilities, they frequently co-occur. Separate theories have implicated the cerebellum and its cortical connections in RD and in MD, suggesting that children with combined reading and math disability (RD + MD) may have altered cerebellar function and disrupted functional connectivity between the cerebellum and cortex during reading and during arithmetic processing. Methods Here we compared Control and RD + MD groups during a reading task as well as during an arithmetic task on (i) activation of the cerebellum, (ii) background functional connectivity, and (iii) task-dependent functional connectivity between the cerebellum and the cortex. Results The two groups (Control, RD + MD) did not differ for either task (reading, arithmetic) on any of the three measures (activation, background functional connectivity, task-dependent functional connectivity). Conclusion These results do not support theories that children's deficits in reading and math originate in the cerebellum.
Collapse
Affiliation(s)
| | | | - Guinevere F. Eden
- Center for the Study of Learning, Department of Pediatrics, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
10
|
Nisbet K, Kostiw A, Huynh TKT, Saggu SK, Patel D, Cummine J. A volumetric asymmetry study of gray matter in individuals with and without dyslexia. J Neurosci Res 2024; 102:e25305. [PMID: 38361418 DOI: 10.1002/jnr.25305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 01/17/2024] [Accepted: 01/28/2024] [Indexed: 02/17/2024]
Abstract
Brain imaging work aimed at increased classification of dyslexia has underscored an important relationship between anterior (i.e., the inferior frontal gyrus; IFG) and posterior (i.e., superior temporal gyrus and supramarginal gyrus) brain regions. The extent to which the three components of the inferior frontal gyrus, namely the pars orbitalis, triangularis, and opercularis, are differentially related to the posterior regions, namely the superior temporal gyrus and supramarginal gyrus, needs further elucidation. Information about the nature of the anterior-posterior connections would facilitate our understanding of the neural underpinnings associated with dyslexia. Adult participants (N = 38; 16 with dyslexia) took part in an MRI study, whereby high-resolution structural scans were obtained. Volumetric asymmetry of the three regions of the IFG, the superior temporal gyrus, and the supramarginal gyrus was extracted. Significant differences were found for each of the three IFG regions, such that skilled readers had a greater leftward asymmetry of the orbitalis and triangularis, and greater rightward asymmetry of the opercularis, when compared to individuals with dyslexia. Furthermore, the pars triangularis was significantly associated with leftward asymmetry of the superior temporal gyrus for skilled but not dyslexic participants. For individuals with dyslexia, the cortical asymmetry of the IFG, and the corresponding connections with other reading-related brain regions, is inherently different from skilled readers. We discuss our findings in the context of the print-to-speech framework to further our understanding of the neural underpinnings associated with dyslexia.
Collapse
Affiliation(s)
- Kelly Nisbet
- Communication Sciences and Disorders, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Avary Kostiw
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Thi Kim Truc Huynh
- Psychology, Faculty of Science, University of Alberta, Edmonton, Alberta, Canada
| | - Sukhmani Kaur Saggu
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Dev Patel
- Psychology, Faculty of Science, University of Alberta, Edmonton, Alberta, Canada
| | - Jacqueline Cummine
- Communication Sciences and Disorders, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
11
|
Langensee L, Spotorno N, Mårtensson J. Beyond the language network: Associations between reading, receptive vocabulary, and grey matter volume in 10-year-olds. Neuropsychologia 2023; 191:108719. [PMID: 37939873 DOI: 10.1016/j.neuropsychologia.2023.108719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
Most research on the neurostructural basis of language abilities in children stems from small samples and surface-based measures. To complement and expand the existent knowledge, we investigated associations between grey matter volume and language performance in a large sample of 9-to-11-year-old children, using data from the Adolescent Brain Cognitive Development (ABCD) Study (N = 1865) and an alternative measure of grey matter morphology. We estimated whole-brain grey matter volume for one half of the sample (N = 939) and tested for correlations with scores on a picture vocabulary and a letter and word reading test, with and without factoring in general intelligence and total grey matter volume as additional covariates. The initial analyses yielded correlations between grey matter in the right occipital fusiform gyrus, the right lingual gyrus, and the cerebellum for both vocabulary and reading. Employing the significant clusters from the first analyses as regions of interest in the second half of the cohort (N = 926) in correlational and multiple regression analyses suggests the cluster in the right occipital fusiform and lingual gyri to be most robust. Overall, the amount of variance explained by grey matter volume is limited and factoring in additional covariates paints an inconsistent picture. The present findings reinforce existent doubt with respect to explaining individual differences in reading and vocabulary performance based on unique contributions of macrostructural brain features.
Collapse
Affiliation(s)
- Lara Langensee
- Department of Clinical Sciences, Lund University, Lund, Sweden.
| | - Nicola Spotorno
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
| | | |
Collapse
|
12
|
Cummine J, Ngo T, Nisbet K. Characterization of Cortical and Subcortical Structural Brain Asymmetry in Adults with and without Dyslexia. Brain Sci 2023; 13:1622. [PMID: 38137070 PMCID: PMC10741947 DOI: 10.3390/brainsci13121622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/31/2023] [Accepted: 11/16/2023] [Indexed: 12/24/2023] Open
Abstract
Multiple cortical (planum temporale, supramarginal gyrus, fusiform gyrus) and subcortical (caudate, putamen, and thalamus) regions have shown different functional lateralization patterns for skilled vs. dyslexic readers. The extent to which skilled and dyslexic adult readers show differential structural lateralization remains to be seen. Method: Participants included 72 adults (N = 41 skilled; N = 31 dyslexic) who underwent a high-resolution MRI brain scan. The grey matter volume of the cortical and subcortical structures was extracted. Results: While there were clear behavioral differences between the groups, there were no differences in any of the isolated structures (i.e., either total size or asymmetry index) and limited evidence for any brain-behavior relationships. We did find a significant cortical-cortical relationship (p = 0.006) and a subcortical-subcortical relationship (p = 0.008), but not cross-over relationships. Overall, this work provides unique information on neural structures as they relate to reading in skilled and dyslexic readers.
Collapse
Affiliation(s)
- Jacqueline Cummine
- Department of Communication Sciences and Disorders, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB T6G2G4, Canada; (T.N.); (K.N.)
- Neuroscience and Mental Health Institute, Faculty of Medicine, University of Alberta, Edmonton, AB T6G2G4, Canada
| | - Tiffany Ngo
- Department of Communication Sciences and Disorders, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB T6G2G4, Canada; (T.N.); (K.N.)
| | - Kelly Nisbet
- Department of Communication Sciences and Disorders, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB T6G2G4, Canada; (T.N.); (K.N.)
| |
Collapse
|
13
|
Turker S, Kuhnke P, Schmid FR, Cheung VKM, Weise K, Knoke M, Zeidler B, Seidel K, Eckert L, Hartwigsen G. Adaptive short-term plasticity in the typical reading network. Neuroimage 2023; 281:120373. [PMID: 37696425 PMCID: PMC10577446 DOI: 10.1016/j.neuroimage.2023.120373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023] Open
Abstract
The left temporo-parietal cortex (TPC) is crucial for phonological decoding, i.e., for learning and retaining sound-letter mappings, and appears hypoactive in dyslexia. Here, we tested the causal contribution of this area for reading in typical readers with transcranial magnetic stimulation (TMS) and explored the reading network's response with fMRI. By investigating the underlying neural correlates of stimulation-induced modulations of the reading network, we can help improve targeted interventions for individuals with dyslexia. 28 typical adult readers overtly read simple and complex words and pseudowords during fMRI after effective and sham TMS over the left TPC. To explore differences in functional activation and effective connectivity within the reading network, we performed univariate and multivariate analyses, as well as dynamic causal modeling. While TMS-induced effects on reading performance and brain activation showed large individual variability, multivariate analyses revealed a shift in activation in the left inferior frontal cortex for pseudoword reading after effective TMS. Furthermore, TMS increased effective connectivity from the left ventral occipito-temporal cortex to the left TPC. In the absence of effects on reading performance, the observed changes in task-related activity and the increase in functional coupling between the two core reading nodes suggest successful short-term compensatory reorganization in the reading network following TMS-induced disruption. This study is the first to explore neurophysiological changes induced by TMS to a core reading node in typical readers while performing an overt reading task. We provide evidence for remote stimulation effects and emphasize the relevance of functional interactions in the reading network.
Collapse
Affiliation(s)
- S Turker
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, Leipzig 04103, Germany; Wilhelm Wundt Institute for Psychology, University of Leipzig, Germany.
| | - P Kuhnke
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, Leipzig 04103, Germany; Wilhelm Wundt Institute for Psychology, University of Leipzig, Germany
| | - F R Schmid
- CBC Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain
| | - V K M Cheung
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | - K Weise
- Methods and Development Group Brain Networks, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - M Knoke
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, Leipzig 04103, Germany
| | - B Zeidler
- Centre for Systematic Musicology, University of Graz, Austria
| | - K Seidel
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, Leipzig 04103, Germany
| | - L Eckert
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, Leipzig 04103, Germany
| | - G Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, Leipzig 04103, Germany; Wilhelm Wundt Institute for Psychology, University of Leipzig, Germany
| |
Collapse
|
14
|
Ashburn SM, Lynn Flowers D, Eden GF. A comparison of functional activation and connectivity of the cerebellum in adults and children during single word processing. BRAIN AND LANGUAGE 2023; 246:105346. [PMID: 37994829 PMCID: PMC10722870 DOI: 10.1016/j.bandl.2023.105346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/17/2023] [Accepted: 10/10/2023] [Indexed: 11/24/2023]
Abstract
Meta-analyses on reading show cerebellar activation in adults, but not children, suggesting a possible age-dependent role of the cerebellum in reading. However, the few studies that compare adults and children during reading report mixed cerebellar activation results. Here, we studied (i) cerebellar activation during implicit word processing in adults and children and (ii) functional connectivity (FC) between the cerebellum and left cortical regions involved in reading. First, both groups activated bilateral cerebellum for word processing when compared to fixation, but not when compared to the active control. There were no differences between adults and children. Second, we found intrinsic FC between several cerebellar seed regions and cortical target regions in adults and children, as well as between-group differences. However, task-modulated FC specific to word processing revealed no within- nor between-group results. Together this study does not provide support for a role of the cerebellum in word processing at either age.
Collapse
Affiliation(s)
- Sikoya M Ashburn
- Center for the Study of Learning, Department of Pediatrics, Georgetown University Medical Center, Washington, DC, United States
| | - D Lynn Flowers
- Center for the Study of Learning, Department of Pediatrics, Georgetown University Medical Center, Washington, DC, United States
| | - Guinevere F Eden
- Center for the Study of Learning, Department of Pediatrics, Georgetown University Medical Center, Washington, DC, United States.
| |
Collapse
|
15
|
Turesky TK, Luetje MM, Eden GF. An fMRI study of finger movements in children with and without dyslexia. Front Neurosci 2023; 17:1135437. [PMID: 37274202 PMCID: PMC10233035 DOI: 10.3389/fnins.2023.1135437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/24/2023] [Indexed: 06/06/2023] Open
Abstract
Introduction Developmental dyslexia is a language-based reading disability, yet some have reported motor impairments, usually attributed to cerebellar dysfunction. Methods Using fMRI, we compared children with and without dyslexia during irregularly paced, left or right-hand finger tapping. Next, we examined seed-to-voxel intrinsic functional connectivity (iFC) using six seed regions of the motor system (left and right anterior lobe of the cerebellum, SM1 and SMA). Results A whole-brain task-evoked analysis revealed relatively less activation in the group with dyslexia in right anterior cerebellum during right hand tapping. For iFC, we found the group with dyslexia to have greater iFC between the right SM1 seed and a medial aspect of right postcentral gyrus for left hand tapping; and greater iFC between the left SM1 seed and left thalamus, as well as weaker local iFC around the left SM1 seed region for right hand tapping. Lastly, extracted activity and connectivity values that had been identified in these between-group comparisons were not correlated with measures of reading. Discussion We conclude that there are some aberrations in motor system function in children with dyslexia, but these are not tied to reading ability.
Collapse
Affiliation(s)
| | | | - Guinevere F. Eden
- Center for the Study of Learning, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
16
|
Joshi F, Wang JZ, Vaden KI, Eckert MA. Deep Learning Classification of Reading Disability with Regional Brain Volume Features. Neuroimage 2023; 273:120075. [PMID: 37054828 PMCID: PMC10167676 DOI: 10.1016/j.neuroimage.2023.120075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 12/02/2022] [Accepted: 03/30/2023] [Indexed: 04/15/2023] Open
Abstract
Developmental reading disability is a prevalent and often enduring problem with varied mechanisms that contributes to its phenotypic heterogeneity. This mechanistic and phenotypic variation, as well as relatively modest sample sizes, may have limited the development of accurate neuroimaging-based classifiers for reading disability, including because of the large feature space of neuroimaging datasets. An unsupervised learning model was used to reduce deformation-based data to a lower-dimensional manifold and then supervised learning models were used to classify these latent representations in a dataset of 96 reading disability cases and 96 controls (mean age: 9.86 ± 1.56). A combined unsupervised autoencoder and supervised convolutional neural network approach provided an effective classification of cases and controls (accuracy: 77%; precision: 0.75; recall: 0.78). Brain regions that contributed to this classification accuracy were identified by adding noise to the voxel-level image data, which showed that reading disability classification accuracy was most influenced by the superior temporal sulcus, dorsal cingulate, and lateral occipital cortex. Regions that were most important for the accurate classification of controls included the supramarginal gyrus, orbitofrontal, and medial occipital cortex. The contribution of these regions reflected individual differences in reading-related abilities, such as non-word decoding or verbal comprehension. Together, the results demonstrate an optimal deep learning solution for classification using neuroimaging data. In contrast with standard mass-univariate test results, results from the deep learning model also provided evidence for regions that may be specifically affected in reading disability cases.
Collapse
Affiliation(s)
- Foram Joshi
- School of Computing, Clemson University, Clemson, S.C. U.S.A
| | - James Z Wang
- School of Computing, Clemson University, Clemson, S.C. U.S.A
| | - Kenneth I Vaden
- Department of Otolaryngology - Head and Neck Surgery Medical University of South Carolina, Charleston, S.C. U.S.A
| | - Mark A Eckert
- Department of Otolaryngology - Head and Neck Surgery Medical University of South Carolina, Charleston, S.C. U.S.A..
| |
Collapse
|
17
|
Lee MM, Drury BC, McGrath LM, Stoodley CJ. Shared grey matter correlates of reading and attention. BRAIN AND LANGUAGE 2023; 237:105230. [PMID: 36731345 PMCID: PMC10153583 DOI: 10.1016/j.bandl.2023.105230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 05/04/2023]
Abstract
Disorders of reading (developmental dyslexia) and attention (ADHD) have a high rate of comorbidity (25-40%), yet little is known about the neural underpinnings of this phenomenon. The current study investigated the shared and unique neural correlates of reading and attention in 330 typically developing children ages 8-18 from the Philadelphia Neurodevelopmental Cohort. Multiple regression analyses were used to identify regions of the brain where grey matter (GM) volume was associated with reading or attention scores (p < 0.001, cluster FDR p < 0.05). Better attention scores correlated with increased GM in the precuneus and higher reading scores were associated with greater thalamic GM. An exploratory conjunction analysis (p < 0.05, k > 239) found that GM in the caudate and precuneus correlated with both reading and attention scores. These results are consistent with a recent meta-analysis which identified GM reductions in the caudate in both dyslexia and ADHD and reveal potential shared neural correlates of reading and attention.
Collapse
Affiliation(s)
- Marissa M Lee
- Department of Psychology, American University, United States; Department of Neuroscience, American University, United States
| | - Brianne C Drury
- Undergraduate Program in Neuroscience, American University, United States
| | | | - Catherine J Stoodley
- Department of Psychology, American University, United States; Department of Neuroscience, American University, United States.
| |
Collapse
|
18
|
Del Mauro G, Del Maschio N, Abutalebi J. The relationship between reading abilities and the left occipitotemporal sulcus: A dual perspective study. BRAIN AND LANGUAGE 2022; 235:105189. [PMID: 36260960 DOI: 10.1016/j.bandl.2022.105189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Reading activates a region within the left lateral occipitotemporal sulcus (OTS) known as the 'visual word form area' (VWFA). While several studies have investigated the impact of reading on brain structure through neuroplastic mechanisms, it has been recently suggested that individual differences in the pattern of the posterior OTS may predict reading skills in adults. In the present study, we first examined whether the structure and morphology and the anatomical connectivity of the left OTS are associated to reading ability. Second, we explored whether reading skills are predicted by the pattern of the left OTS. We found that reading skills were positively associated with increased connectivity between the left OTS and a network of reading-related regions in the left hemisphere. On the other hand, we did not observe an association between the pattern of the left OTS and reading skills. Finally, we found evidence that the morphology and the connectivity of the left OTS are correlated to its sulcal pattern.
Collapse
Affiliation(s)
- Gianpaolo Del Mauro
- Centre for Neurolinguistics and Psycholinguistics (CNPL), Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| | - Nicola Del Maschio
- Centre for Neurolinguistics and Psycholinguistics (CNPL), Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy; Facultyof Psychology, Vita-Salute San Raffaele University, Milan, Italy
| | - Jubin Abutalebi
- Centre for Neurolinguistics and Psycholinguistics (CNPL), Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy; Facultyof Psychology, Vita-Salute San Raffaele University, Milan, Italy; TheArctic University of Norway, Tromsø, Norway.
| |
Collapse
|
19
|
Schug AK, Brignoni‐Pérez E, Jamal NI, Eden GF. Gray matter volume differences between early bilinguals and monolinguals: A study of children and adults. Hum Brain Mapp 2022; 43:4817-4834. [PMID: 35848371 PMCID: PMC9582359 DOI: 10.1002/hbm.26008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/09/2022] [Accepted: 06/27/2022] [Indexed: 11/21/2022] Open
Abstract
Gray matter has been shown to be greater in early bilingual adults relative to monolingual adults in regions associated with language (Mechelli et al., 2004), and executive control (EC; Olulade et al., 2016). It is not known, however, if language experience-dependent differences in gray matter volume (GMV) exist in children. Further, any such differences are likely not to be the same as those observed in early bilingual adults, as children have had relatively shorter duration of dual-language exposure and/or less development of brain regions serving EC. We tested these predictions by comparing GMV in Spanish-English early bilingual and English monolingual children, and Spanish-English early bilingual and English monolingual adults (n = 122). Comparing only children revealed relatively more GMV in the bilinguals in bilateral frontal, right inferior frontal, and right superior parietal cortices (regions associated with EC). Bilinguals, however, had less GMV in left inferior parietal cortex (region associated with language). An ANOVA including these children with bilingual and monolingual adults revealed interactions of Language Background by Age Group. There were no regions of more GMV in bilinguals relative to monolinguals that were less pronounced in children than adults, despite the children's shorter dual-language experience. There were relative differences between bilingual and monolingual children that were more pronounced than those in adults in left precentral gyrus and right superior parietal lobule (close to, but not directly in areas associated with EC). Together, early bilingual children manifest relative differences in GMV, and, surprisingly, these do not diverge much from those observed in studies of bilingual adults.
Collapse
Affiliation(s)
- Alison K. Schug
- Center for the Study of Learning, Department of PediatricsGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
- Interdisciplinary Program in NeuroscienceGeorgetown UniversityWashingtonDistrict of ColumbiaUSA
| | - Edith Brignoni‐Pérez
- Center for the Study of Learning, Department of PediatricsGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
- Interdisciplinary Program in NeuroscienceGeorgetown UniversityWashingtonDistrict of ColumbiaUSA
| | - Nasheed I. Jamal
- Center for the Study of Learning, Department of PediatricsGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Guinevere F. Eden
- Center for the Study of Learning, Department of PediatricsGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
- Interdisciplinary Program in NeuroscienceGeorgetown UniversityWashingtonDistrict of ColumbiaUSA
| |
Collapse
|
20
|
Liloia D, Crocetta A, Cauda F, Duca S, Costa T, Manuello J. Seeking Overlapping Neuroanatomical Alterations between Dyslexia and Attention-Deficit/Hyperactivity Disorder: A Meta-Analytic Replication Study. Brain Sci 2022; 12:brainsci12101367. [PMID: 36291301 PMCID: PMC9599506 DOI: 10.3390/brainsci12101367] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 01/18/2023] Open
Abstract
The present work is a replication article based on the paper “Are there shared neural correlates between dyslexia and ADHD? A meta-analysis of voxel-based morphometry studies” by McGrath and Stoodley (2019). In the original research, the authors used activation likelihood estimation (ALE), a technique to perform coordinate-based meta-analysis (CBMA), to investigate the existence of brain regions undergoing gray matter alteration in association with both attention-deficit/hyper-activity disorder (ADHD) and dyslexia. Here, the same voxel-based morphometry dataset was analyzed, while using the permutation-subject images version of signed differential mapping (PSI-SDM) in place of ALE. Overall, the replication converged with the original paper in showing a limited overlap between the two conditions. In particular, no significant effect was found for dyslexia, therefore precluding any form of comparison between the two disorders. The possible influences of biological sex, age, and medication status were also ruled out. Our findings are in line with literature about gray matter alteration associated with ADHD and dyslexia, often showing conflicting results. Therefore, although neuropsychological and clinical evidence suggest some convergence between ADHD and dyslexia, more future research is sorely needed to reach a consensus on the neuroimaging domain in terms of patterns of gray matter alteration.
Collapse
Affiliation(s)
- Donato Liloia
- GCS fMRI Koelliker Group, Koelliker Hospital and University of Turin, 10124 Turin, Italy
- FOCUS Laboratory, Department of Psychology, University of Turin, 10124 Turin, Italy
| | - Annachiara Crocetta
- FOCUS Laboratory, Department of Psychology, University of Turin, 10124 Turin, Italy
| | - Franco Cauda
- GCS fMRI Koelliker Group, Koelliker Hospital and University of Turin, 10124 Turin, Italy
- FOCUS Laboratory, Department of Psychology, University of Turin, 10124 Turin, Italy
- Neuroscience Institute of Turin, 10043 Turin, Italy
- Correspondence: ; Tel.: +39-011-670-29-80; Fax: +39-011-814-62-31
| | - Sergio Duca
- GCS fMRI Koelliker Group, Koelliker Hospital and University of Turin, 10124 Turin, Italy
- FOCUS Laboratory, Department of Psychology, University of Turin, 10124 Turin, Italy
| | - Tommaso Costa
- GCS fMRI Koelliker Group, Koelliker Hospital and University of Turin, 10124 Turin, Italy
- FOCUS Laboratory, Department of Psychology, University of Turin, 10124 Turin, Italy
| | - Jordi Manuello
- GCS fMRI Koelliker Group, Koelliker Hospital and University of Turin, 10124 Turin, Italy
- FOCUS Laboratory, Department of Psychology, University of Turin, 10124 Turin, Italy
| |
Collapse
|
21
|
Beyer M, Liebig J, Sylvester T, Braun M, Heekeren HR, Froehlich E, Jacobs AM, Ziegler JC. Structural gray matter features and behavioral preliterate skills predict future literacy - A machine learning approach. Front Neurosci 2022; 16:920150. [PMID: 36248649 PMCID: PMC9558903 DOI: 10.3389/fnins.2022.920150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
When children learn to read, their neural system undergoes major changes to become responsive to print. There seem to be nuanced interindividual differences in the neurostructural anatomy of regions that later become integral parts of the reading network. These differences might affect literacy acquisition and, in some cases, might result in developmental disorders like dyslexia. Consequently, the main objective of this longitudinal study was to investigate those interindividual differences in gray matter morphology that might facilitate or hamper future reading acquisition. We used a machine learning approach to examine to what extent gray matter macrostructural features and cognitive-linguistic skills measured before formal literacy teaching could predict literacy 2 years later. Forty-two native German-speaking children underwent T1-weighted magnetic resonance imaging and psychometric testing at the end of kindergarten. They were tested again 2 years later to assess their literacy skills. A leave-one-out cross-validated machine-learning regression approach was applied to identify the best predictors of future literacy based on cognitive-linguistic preliterate behavioral skills and cortical measures in a priori selected areas of the future reading network. With surprisingly high accuracy, future literacy was predicted, predominantly based on gray matter volume in the left occipito-temporal cortex and local gyrification in the left insular, inferior frontal, and supramarginal gyri. Furthermore, phonological awareness significantly predicted future literacy. In sum, the results indicate that the brain morphology of the large-scale reading network at a preliterate age can predict how well children learn to read.
Collapse
Affiliation(s)
- Moana Beyer
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
| | - Johanna Liebig
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
- Center for Cognitive Neuroscience Berlin, Freie Universität Berlin, Berlin, Germany
| | - Teresa Sylvester
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
- Center for Cognitive Neuroscience Berlin, Freie Universität Berlin, Berlin, Germany
| | - Mario Braun
- Centre for Cognitive Neuroscience, Universität Salzburg, Salzburg, Austria
| | - Hauke R. Heekeren
- Center for Cognitive Neuroscience Berlin, Freie Universität Berlin, Berlin, Germany
- Department of Biological Psychology and Cognitive Neuroscience, Freie Universität Berlin, Berlin, Germany
| | - Eva Froehlich
- Department of Decision Neuroscience and Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Arthur M. Jacobs
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
- Center for Cognitive Neuroscience Berlin, Freie Universität Berlin, Berlin, Germany
| | - Johannes C. Ziegler
- Laboratoire de Psychologie Cognitive, Aix-Marseille Université and Centre National de la Recherche Scientifique, Marseille, France
| |
Collapse
|
22
|
Braid J, Richlan F. The Functional Neuroanatomy of Reading Intervention. Front Neurosci 2022; 16:921931. [PMID: 35784836 PMCID: PMC9243375 DOI: 10.3389/fnins.2022.921931] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/31/2022] [Indexed: 11/29/2022] Open
Abstract
The present article reviews the literature on the brain mechanisms underlying reading improvements following behavioral intervention for reading disability. This includes evidence of neuroplasticity concerning functional brain activation, brain structure, and brain connectivity related to reading intervention. Consequently, the functional neuroanatomy of reading intervention is compared to the existing literature on neurocognitive models and brain abnormalities associated with reading disability. A particular focus is on the left hemisphere reading network including left occipito-temporal, temporo-parietal, and inferior frontal language regions. In addition, potential normalization/compensation mechanisms involving right hemisphere cortical regions, as well as bilateral sub-cortical and cerebellar regions are taken into account. The comparison of the brain systems associated with reading intervention and the brain systems associated with reading disability enhances our understanding of the neurobiological basis of typical and atypical reading development. All in all, however, there is a lack of sufficient evidence regarding rehabilitative brain mechanisms in reading disability, which we discuss in this review.
Collapse
|
23
|
Pereira CLW, Zhou R, Pitt MA, Myung JI, Rossi PJ, Caverzasi E, Rah E, Allen IE, Mandelli ML, Meyer M, Miller ZA, Gorno Tempini ML. Probabilistic Decision-Making in Children With Dyslexia. Front Neurosci 2022; 16:782306. [PMID: 35769704 PMCID: PMC9235406 DOI: 10.3389/fnins.2022.782306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 04/19/2022] [Indexed: 11/24/2022] Open
Abstract
Background Neurocognitive mechanisms underlying developmental dyslexia (dD) remain poorly characterized apart from phonological and/or visual processing deficits. Assuming such deficits, the process of learning complex tasks like reading requires the learner to make decisions (i.e., word pronunciation) based on uncertain information (e.g., aberrant phonological percepts)-a cognitive process known as probabilistic decision making, which has been linked to the striatum. We investigate (1) the relationship between dD and probabilistic decision-making and (2) the association between the volume of striatal structures and probabilistic decision-making in dD and typical readers. Methods Twenty four children diagnosed with dD underwent a comprehensive evaluation and MRI scanning (3T). Children with dD were compared to age-matched typical readers (n = 11) on a probabilistic, risk/reward fishing task that utilized a Bayesian cognitive model with game parameters of risk propensity (γ+) and behavioral consistency (β), as well as an overall adjusted score (average number of casts, excluding forced-fail trials). Volumes of striatal structures (caudate, putamen, and nucleus accumbens) were analyzed between groups and associated with game parameters. Results dD was associated with greater risk propensity and decreased behavioral consistency estimates compared to typical readers. Cognitive model parameters associated with timed pseudoword reading across groups. Risk propensity related to caudate volumes, particularly in the dD group. Conclusion Decision-making processes differentiate dD, associate with the caudate, and may impact learning mechanisms. This study suggests the need for further research into domain-general probabilistic decision-making in dD, neurocognitive mechanisms, and targeted interventions in dD.
Collapse
Affiliation(s)
- Christa L. Watson Pereira
- Department of Neurology, UCSF Dyslexia Center, UCSF Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Ran Zhou
- Department of Psychology, Ohio State University, Columbus, OH, United States
| | - Mark A. Pitt
- Department of Psychology, Ohio State University, Columbus, OH, United States
| | - Jay I. Myung
- Department of Psychology, Ohio State University, Columbus, OH, United States
| | - P. Justin Rossi
- Department of Neurology, UCSF Dyslexia Center, UCSF Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
- Department of Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Eduardo Caverzasi
- Department of Neurology, UCSF Dyslexia Center, UCSF Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Esther Rah
- Department of Neurology, UCSF Dyslexia Center, UCSF Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Isabel E. Allen
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, United States
| | - Maria Luisa Mandelli
- Department of Neurology, UCSF Dyslexia Center, UCSF Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Marita Meyer
- Department of Neurology, UCSF Dyslexia Center, UCSF Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Zachary A. Miller
- Department of Neurology, UCSF Dyslexia Center, UCSF Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Maria Luisa Gorno Tempini
- Department of Neurology, UCSF Dyslexia Center, UCSF Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
24
|
Gagl B, Richlan F, Ludersdorfer P, Sassenhagen J, Eisenhauer S, Gregorova K, Fiebach CJ. The lexical categorization model: A computational model of left ventral occipito-temporal cortex activation in visual word recognition. PLoS Comput Biol 2022; 18:e1009995. [PMID: 35679333 PMCID: PMC9182256 DOI: 10.1371/journal.pcbi.1009995] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 03/07/2022] [Indexed: 11/18/2022] Open
Abstract
To characterize the functional role of the left-ventral occipito-temporal cortex (lvOT) during reading in a quantitatively explicit and testable manner, we propose the lexical categorization model (LCM). The LCM assumes that lvOT optimizes linguistic processing by allowing fast meaning access when words are familiar and filtering out orthographic strings without meaning. The LCM successfully simulates benchmark results from functional brain imaging described in the literature. In a second evaluation, we empirically demonstrate that quantitative LCM simulations predict lvOT activation better than alternative models across three functional magnetic resonance imaging studies. We found that word-likeness, assumed as input into a lexical categorization process, is represented posteriorly to lvOT, whereas a dichotomous word/non-word output of the LCM could be localized to the downstream frontal brain regions. Finally, training the process of lexical categorization resulted in more efficient reading. In sum, we propose that word recognition in the ventral visual stream involves word-likeness extraction followed by lexical categorization before one can access word meaning. Visual word recognition is a critical process for reading and relies on the human brain’s left ventral occipito-temporal (lvOT) regions. However, the lvOTs specific function in visual word recognition is not yet clear. We propose that these occipito-temporal brain systems are critical for lexical categorization, i.e., the process of determining whether an orthographic percept is a known word or not, so that further lexical and semantic processing can be restricted to those percepts that are part of our "mental lexicon". We demonstrate that a computational model implementing this process, the lexical categorization model, can explain seemingly contradictory benchmark results from the published literature. We further use functional magnetic resonance imaging to show that the lexical categorization model successfully predicts brain activation in the left ventral occipito-temporal cortex elicited during a word recognition task. It does so better than alternative models proposed so far. Finally, we provide causal evidence supporting this model by empirically demonstrating that training the process of lexical categorization improves reading performance.
Collapse
Affiliation(s)
- Benjamin Gagl
- Department of Psychology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center for Individual Development and Adaptive Education of Children at Risk (IDeA), Frankfurt am Main, Germany
- Department of Linguistics, University of Vienna, Vienna, Austria
- * E-mail:
| | - Fabio Richlan
- Centre for Cognitive Neuroscience, Paris-Lodron-University of Salzburg, Salzburg, Austria
| | - Philipp Ludersdorfer
- Centre for Cognitive Neuroscience, Paris-Lodron-University of Salzburg, Salzburg, Austria
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, United Kingdom
| | - Jona Sassenhagen
- Department of Psychology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Susanne Eisenhauer
- Department of Psychology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Klara Gregorova
- Department of Psychology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Universitätsklinikum Würzburg, Universität Würzburg, Würzburg, Germany
| | - Christian J. Fiebach
- Department of Psychology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center for Individual Development and Adaptive Education of Children at Risk (IDeA), Frankfurt am Main, Germany
- Brain Imaging Center, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
25
|
Wu CY, Hwang IS. Visual Occlusion Effects On Bipedal Stance Control In Chinese-Speaking Children With Dyslexia. Neurosci Lett 2022; 782:136678. [PMID: 35550402 DOI: 10.1016/j.neulet.2022.136678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 04/21/2022] [Accepted: 05/05/2022] [Indexed: 12/09/2022]
Abstract
Visual processing of complex character configurations is especially challenging for Chinese-speaking children with dyslexia (CSCD). The purpose of this study was to compare the effects of visual occlusion on postural control between dyslexic and non-dyslexic Chinese-speaking children by examining their visual-perceptual capacity and movement coordination with scale measures. Sixteen dyslexic children (10 males and, 6 females, 9.46 ± 1.26 yrs) and sixteen non-dyslexic children (10 males and 6 females, 9.91 ± 1.18 yrs) were recruited from the campus in Taiwan. Motor and visual perceptual performance were assessed with the Movement Assessment Battery for Children, 2nd Edition (MABC-2) and the Test of Visual-Perceptual Skills, 4th Edition (TVPS-4). Root mean square (RMS) and sample entropy (SampEn) of center of pressure (COP) were characterized during a bilateral upright stance with eyes open (EO) and eyes closed (EC). The results showed significant group differences in six of the seven TVPS-4 subscales (P < .001-.017) and one category of the MABC-2 (P = .006). In the EO condition, the children with dyslexia showed a greater RMS of COP specifically in the anterior-posterior (AP) direction than did the non-dyslexic children (P = .029). However, SampEn of COP in the two directions were not group dependent (P > .05). In the EC condition, RMS and SampEn of COP did not vary with group (P > .05). RMS of COP in the AP direction was negatively correlated with the sub-score of visual figure-ground in the TVPS-4 (r = - .381, P = .031). In summary, postural control of Chinese-speaking children with dyslexia is more affected with eyes open than with eyes closed, and the effect is related to visual disturbance of the foreground and background.
Collapse
Affiliation(s)
- Ching-Yi Wu
- Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan City, Taiwan; Physical Therapy Room, Jianan Psychiatric Center, Tainan City, Taiwan
| | - Ing-Shiou Hwang
- Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan City, Taiwan; Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan City, Taiwan.
| |
Collapse
|
26
|
Meisler SL, Gabrieli JDE. A large-scale investigation of white matter microstructural associations with reading ability. Neuroimage 2022; 249:118909. [PMID: 35033675 PMCID: PMC8919267 DOI: 10.1016/j.neuroimage.2022.118909] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 01/18/2023] Open
Abstract
Reading involves the functioning of a widely distributed brain network, and white matter tracts are responsible for transmitting information between constituent network nodes. Several studies have analyzed fiber bundle microstructural properties to shed insights into the neural basis of reading abilities and disabilities. Findings have been inconsistent, potentially due to small sample sizes and varying methodology. To address this, we analyzed a large data set of 686 children ages 5-18 using state-of-the-art neuroimaging acquisitions and processing techniques. We searched for associations between fractional anisotropy (FA) and single-word and single-nonword reading skills in children with diverse reading abilities across multiple tracts previously thought to contribute to reading. We also looked for group differences in tract FA between typically reading children and children with reading disabilities. FA of the white matter increased with age across all participants. There were no significant correlations between overall reading abilities and tract FAs across all children, and no significant group differences in tract FA between children with and without reading disabilities. There were associations between FA and nonword reading ability in older children (ages 9 and above). Higher FA in the right superior longitudinal fasciculus (SLF) and left inferior cerebellar peduncle (ICP) correlated with better nonword reading skills. These results suggest that letter-sound correspondence skills, as measured by nonword reading, are associated with greater white matter coherence among older children in these two tracts, as indexed by higher FA.
Collapse
Affiliation(s)
- Steven L Meisler
- Program in Speech and Hearing Bioscience and Technology, Harvard University, 43 Vassar Street, Bldg. 46, Room 4033 Cambridge, MA, 02139, USA.
| | - John D E Gabrieli
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, 43 Vassar Street, Bldg. 46, Room 4033 Cambridge, MA, 02139, USA.
| |
Collapse
|
27
|
Ligges C, Ligges M, Gaser C. Cross-Sectional Investigation of Brain Volume in Dyslexia. Front Neurol 2022; 13:847919. [PMID: 35350399 PMCID: PMC8957969 DOI: 10.3389/fneur.2022.847919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/04/2022] [Indexed: 01/18/2023] Open
Abstract
The goal of the study was to determine whether dyslexia is associated with differences in local brain volume, and whether these local brain volume differences show cross-sectional age-effects. We investigated the local volume of gray and white brain matter with voxel-based morphometry (VBM) as well as reading performance in three age groups of dyslexic and neurotypical normal reading subjects (children, teenagers and adults). Performance data demonstrate a steady improvement of reading skills in both neurotypical as well as dyslexic readers. However, the pattern of gray matter volumes tell a different story: the children are the only group with significant differences between neurotypical and dyslexic readers in local gray matter brain volume. These differences are localized in brain areas associated with the reading network (angular, middle temporal and inferior temporal gyrus as well as the cerebellum). Yet the comparison of neurotypical and normal readers over the age groups shows that the steady increase in performance in neurotypical readers is accompanied by a steady decrease of gray matter volume, whereas the brain volumes of dyslexic readers do not show this linear correlation between brain volume and performance. This is further evidence that dyslexia is a disorder with a neuroanatomical basis in the form of a lower volume of gray matter in parts of the reading network in early dyslexic readers. The present data point out that network shaping processes in gray matter volume in the reading network does take place over age in dyslexia. Yet this neural foundation does not seem to be sufficient to allow normal reading performances even in adults with dyslexia. Thus dyslexia is a disorder with lifelong consequences, which is why consistent support for affected individuals in their educational and professional careers is of great importance. Longitudinal studies are needed to verify whether this holds as a valid pattern or whether there is evidence of greater interindividual variance in the neuroanatomy of dyslexia.
Collapse
Affiliation(s)
- Carolin Ligges
- Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Marc Ligges
- Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Christian Gaser
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.,Department of Neurology, Jena University Hospital, Jena, Germany
| |
Collapse
|
28
|
Turker S, Hartwigsen G. The use of noninvasive brain stimulation techniques to improve reading difficulties in dyslexia: A systematic review. Hum Brain Mapp 2022; 43:1157-1173. [PMID: 34716977 PMCID: PMC8764483 DOI: 10.1002/hbm.25700] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 02/05/2023] Open
Abstract
Noninvasive brain stimulation (NIBS) allows to actively and noninvasively modulate brain function. Aside from inhibiting specific processes, NIBS may also enhance cognitive functions, which might be used for the prevention and intervention of learning disabilities such as dyslexia. However, despite the growing interest in modulating learning abilities, a comprehensive, up-to-date review synthesizing NIBS studies with dyslexics is missing. Here, we fill this gap and elucidate the potential of NIBS as treatment option in dyslexia. The findings of the 15 included studies suggest that repeated sessions of reading training combined with different NIBS protocols may induce long-lasting improvements of reading performance in child and adult dyslexics, opening promising avenues for future research. In particular, the "classical" reading areas seem to be most successfully modulated through NIBS, and facilitatory protocols can improve various reading-related subprocesses. Moreover, we emphasize the need to further explore the potential to modulate auditory cortex function as a preintervention and intervention approach for affected children, for example, to avoid the development of auditory and phonological difficulties at the core of dyslexia. Finally, we outline how future studies may increase our understanding of the neurobiological basis of NIBS-induced improvements in dyslexia.
Collapse
Affiliation(s)
- Sabrina Turker
- Lise Meitner Research Group Cognition and PlasticityMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Alexander von Humboldt FoundationBerlinGermany
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and PlasticityMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| |
Collapse
|
29
|
Beach SD, Lim SJ, Cardenas-Iniguez C, Eddy MD, Gabrieli JDE, Perrachione TK. Electrophysiological correlates of perceptual prediction error are attenuated in dyslexia. Neuropsychologia 2022; 165:108091. [PMID: 34801517 PMCID: PMC8807066 DOI: 10.1016/j.neuropsychologia.2021.108091] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/09/2021] [Accepted: 11/17/2021] [Indexed: 01/30/2023]
Abstract
A perceptual adaptation deficit often accompanies reading difficulty in dyslexia, manifesting in poor perceptual learning of consistent stimuli and reduced neurophysiological adaptation to stimulus repetition. However, it is not known how adaptation deficits relate to differences in feedforward or feedback processes in the brain. Here we used electroencephalography (EEG) to interrogate the feedforward and feedback contributions to neural adaptation as adults with and without dyslexia viewed pairs of faces and words in a paradigm that manipulated whether there was a high probability of stimulus repetition versus a high probability of stimulus change. We measured three neural dependent variables: expectation (the difference between prestimulus EEG power with and without the expectation of stimulus repetition), feedforward repetition (the difference between event-related potentials (ERPs) evoked by an expected change and an unexpected repetition), and feedback-mediated prediction error (the difference between ERPs evoked by an unexpected change and an expected repetition). Expectation significantly modulated prestimulus theta- and alpha-band EEG in both groups. Unexpected repetitions of words, but not faces, also led to significant feedforward repetition effects in the ERPs of both groups. However, neural prediction error when an unexpected change occurred instead of an expected repetition was significantly weaker in dyslexia than the control group for both faces and words. These results suggest that the neural and perceptual adaptation deficits observed in dyslexia reflect the failure to effectively integrate perceptual predictions with feedforward sensory processing. In addition to reducing perceptual efficiency, the attenuation of neural prediction error signals would also be deleterious to the wide range of perceptual and procedural learning abilities that are critical for developing accurate and fluent reading skills.
Collapse
Affiliation(s)
- Sara D. Beach
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 U.S.A.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 U.S.A.,Program in Speech and Hearing Bioscience and Technology, Harvard University, 260 Longwood Avenue, Boston, MA 02115 U.S.A
| | - Sung-Joo Lim
- Department of Speech, Language, and Hearing Sciences, Boston University, 635 Commonwealth Avenue, Boston, MA 02215 U.S.A
| | - Carlos Cardenas-Iniguez
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 U.S.A
| | - Marianna D. Eddy
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 U.S.A
| | - John D. E. Gabrieli
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 U.S.A.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 U.S.A
| | - Tyler K. Perrachione
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 U.S.A.,Department of Speech, Language, and Hearing Sciences, Boston University, 635 Commonwealth Avenue, Boston, MA 02215 U.S.A.,Correspondence: Tyler K. Perrachione, Ph.D., Department of Speech, Language, and Hearing Sciences, Boston University, 635 Commonwealth Ave., Boston, MA 02215, Phone: +1.617.358.7410,
| |
Collapse
|
30
|
Evidence of graphomotor dysfunction in children with dyslexia A combined behavioural and fMRI experiment. Cortex 2022; 148:68-88. [DOI: 10.1016/j.cortex.2021.11.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 08/19/2021] [Accepted: 11/26/2021] [Indexed: 01/02/2023]
|
31
|
Mundorf A, Peterburs J, Ocklenburg S. Asymmetry in the Central Nervous System: A Clinical Neuroscience Perspective. Front Syst Neurosci 2021; 15:733898. [PMID: 34970125 PMCID: PMC8712556 DOI: 10.3389/fnsys.2021.733898] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/25/2021] [Indexed: 01/20/2023] Open
Abstract
Recent large-scale neuroimaging studies suggest that most parts of the human brain show structural differences between the left and the right hemisphere. Such structural hemispheric asymmetries have been reported for both cortical and subcortical structures. Interestingly, many neurodevelopmental and psychiatric disorders have been associated with altered functional hemispheric asymmetries. However, findings concerning the relation between structural hemispheric asymmetries and disorders have largely been inconsistent, both within specific disorders as well as between disorders. In the present review, we compare structural asymmetries from a clinical neuroscience perspective across different disorders. We focus especially on recent large-scale neuroimaging studies, to concentrate on replicable effects. With the notable exception of major depressive disorder, all reviewed disorders were associated with distinct patterns of alterations in structural hemispheric asymmetries. While autism spectrum disorder was associated with altered structural hemispheric asymmetries in a broader range of brain areas, most other disorders were linked to more specific alterations in brain areas related to cognitive functions that have been associated with the symptomology of these disorders. The implications of these findings are highlighted in the context of transdiagnostic approaches to psychopathology.
Collapse
Affiliation(s)
- Annakarina Mundorf
- Institute for Systems Medicine and Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Jutta Peterburs
- Institute for Systems Medicine and Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Sebastian Ocklenburg
- Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
- Department of Psychology, MSH Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
32
|
Words as Visual Objects: Neural and Behavioral Evidence for High-Level Visual Impairments in Dyslexia. Brain Sci 2021; 11:brainsci11111427. [PMID: 34827427 PMCID: PMC8615820 DOI: 10.3390/brainsci11111427] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 01/23/2023] Open
Abstract
Developmental dyslexia is defined by reading impairments that are disproportionate to intelligence, motivation, and the educational opportunities considered necessary for reading. Its cause has traditionally been considered to be a phonological deficit, where people have difficulties with differentiating the sounds of spoken language. However, reading is a multidimensional skill and relies on various cognitive abilities. These may include high-level vision—the processes that support visual recognition despite innumerable image variations, such as in viewpoint, position, or size. According to our high-level visual dysfunction hypothesis, reading problems of some people with dyslexia can be a salient manifestation of a more general deficit of high-level vision. This paper provides a perspective on how such non-phonological impairments could, in some cases, cause dyslexia. To argue in favor of this hypothesis, we will discuss work on functional neuroimaging, structural imaging, electrophysiology, and behavior that provides evidence for a link between high-level visual impairment and dyslexia.
Collapse
|
33
|
Yan X, Jiang K, Li H, Wang Z, Perkins K, Cao F. Convergent and divergent brain structural and functional abnormalities associated with developmental dyslexia. eLife 2021; 10:e69523. [PMID: 34569931 PMCID: PMC8497057 DOI: 10.7554/elife.69523] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 09/24/2021] [Indexed: 01/18/2023] Open
Abstract
Brain abnormalities in the reading network have been repeatedly reported in individuals with developmental dyslexia (DD); however, it is still not totally understood where the structural and functional abnormalities are consistent/inconsistent across languages. In the current multimodal meta-analysis, we found convergent structural and functional alterations in the left superior temporal gyrus across languages, suggesting a neural signature of DD. We found greater reduction in grey matter volume and brain activation in the left inferior frontal gyrus in morpho-syllabic languages (e.g. Chinese) than in alphabetic languages, and greater reduction in brain activation in the left middle temporal gyrus and fusiform gyrus in alphabetic languages than in morpho-syllabic languages. These language differences are explained as consequences of being DD while learning a specific language. In addition, we also found brain regions that showed increased grey matter volume and brain activation, presumably suggesting compensations and brain regions that showed inconsistent alterations in brain structure and function. Our study provides important insights about the etiology of DD from a cross-linguistic perspective with considerations of consistency/inconsistency between structural and functional alterations.
Collapse
Affiliation(s)
- Xiaohui Yan
- Department of Psychology, Sun Yat-Sen UniversityGuangzhouChina
| | - Ke Jiang
- Department of Psychology, Sun Yat-Sen UniversityGuangzhouChina
| | - Hui Li
- Department of Preschool Education, Anyang Preschool Education CollegeAnyangChina
| | - Ziyi Wang
- School of Foreign Language, Jining UniversityJiningChina
| | - Kyle Perkins
- Florida International University (Retired Professor)MiamiUnited States
| | - Fan Cao
- Department of Psychology, Sun Yat-Sen UniversityGuangzhouChina
| |
Collapse
|
34
|
Borghesani V, Wang C, Watson C, Bouhali F, Caverzasi E, Battistella G, Bogley R, Yabut NA, Deleon J, Miller ZA, Hoeft F, Mandelli ML, Gorno-Tempini ML. Functional and morphological correlates of developmental dyslexia: A multimodal investigation of the ventral occipitotemporal cortex. J Neuroimaging 2021; 31:962-972. [PMID: 34115429 PMCID: PMC10832296 DOI: 10.1111/jon.12892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/03/2021] [Accepted: 05/21/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND PURPOSE The ventral occipitotemporal cortex (vOT) is a region crucial for reading acquisition through selective tuning to printed words. Developmental dyslexia is a disorder of reading with underlying neurobiological bases often associated with atypical neural responses to printed words. Previous studies have discovered anomalous structural development and function of the vOT in individuals with dyslexia. However, it remains unclear if or how structural abnormalities relate to functional alterations. METHODS In this study, we acquired structural, functional (words and faces processing), and diffusion MRI data from 26 children with dyslexia (average age = 10.4 ± 2.0 years) and 14 age-matched typically developing readers (average age = 10.4 ± 1.6 years). Morphological indices of local gyrification, neurite density (i.e., dendritic arborization structure), and orientation dispersion (i.e., dendritic arborization orientation) were analyzed within the vOT region that showed preferential activation in typically developing readers for words (as compared to face stimuli). RESULTS The two cohorts diverged significantly in both functional and structural measures. Compared to typically developing controls, children with dyslexia did not show selectivity for words in the left vOT (contrast: words > false fonts). This lack of tuning to printed words was associated with greater neurite dispersion heterogeneity in the dyslexia cohort, but similar neurite density. These group differences were not present in the homologous contralateral area, the right vOT. CONCLUSIONS Our findings provide new insight into the neurobiology of the lack of vOT word tuning in dyslexia by linking behavior, alterations in functional activation, and neurite organization.
Collapse
Affiliation(s)
- Valentina Borghesani
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Cheng Wang
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
- Dyslexia Center, University of California, San Francisco, San Francisco, California, USA
| | - Christa Watson
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
- Dyslexia Center, University of California, San Francisco, San Francisco, California, USA
| | - Florence Bouhali
- Department of Psychiatry and Behavioral Science, University of California, San Francisco, San Francisco, California, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Eduardo Caverzasi
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
- Dyslexia Center, University of California, San Francisco, San Francisco, California, USA
| | - Giovanni Battistella
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
- Dyslexia Center, University of California, San Francisco, San Francisco, California, USA
| | - Rian Bogley
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
- Dyslexia Center, University of California, San Francisco, San Francisco, California, USA
| | - Nicole A Yabut
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
- Dyslexia Center, University of California, San Francisco, San Francisco, California, USA
| | - Jessica Deleon
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
- Dyslexia Center, University of California, San Francisco, San Francisco, California, USA
| | - Zachary A Miller
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
- Dyslexia Center, University of California, San Francisco, San Francisco, California, USA
| | - Fumiko Hoeft
- Department of Psychiatry and Behavioral Science, University of California, San Francisco, San Francisco, California, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
- Department of Psychological Sciences, University of Connecticut, Mansfield, Connecticut, USA
- Brain Imaging Research Center, University of Connecticut, Mansfield, Connecticut, USA
| | - Maria Luisa Mandelli
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
- Dyslexia Center, University of California, San Francisco, San Francisco, California, USA
| | - Maria Luisa Gorno-Tempini
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
- Dyslexia Center, University of California, San Francisco, San Francisco, California, USA
- Department of Psychiatry and Behavioral Science, University of California, San Francisco, San Francisco, California, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
35
|
Mao J, Liu L, Perkins K, Cao F. Poor reading is characterized by a more connected network with wrong hubs. BRAIN AND LANGUAGE 2021; 220:104983. [PMID: 34174464 DOI: 10.1016/j.bandl.2021.104983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 06/01/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Using graph theory, we examined topological organization of the language network in Chinese children with poor reading during an auditory rhyming task and a visual spelling task, compared to reading-matched controls and age-matched controls. First, poor readers (PR) showed reduced clustering coefficient in the left inferior frontal gyrus (IFG) and higher nodal efficiency in the bilateral superior temporal gyri (STG) during the visual task, indicating a less functionally specialized cluster around the left IFG and stronger functional links between bilateral STGs and other regions. Furthermore, PR adopted additional right-hemispheric hubs in both tasks, which may explain increased global efficiency across both tasks and lower normalized characteristic shortest path length in the visual task for the PR. These results underscore deficits in the left IFG during visual word processing and conform previous findings about compensation in the right hemisphere in children with poor reading.
Collapse
Affiliation(s)
- Jiaqi Mao
- Department of Psychology, Sun Yat-Sen University, China
| | - Lanfang Liu
- Department of Psychology, Sun Yat-Sen University, China
| | - Kyle Perkins
- Department of Teaching and Learning, College of Arts, Sciences and Education, Florida International University, United States
| | - Fan Cao
- Department of Psychology, Sun Yat-Sen University, China.
| |
Collapse
|
36
|
Martins M, Reis AM, Castro SL, Gaser C. Gray matter correlates of reading fluency deficits: SES matters, IQ does not. Brain Struct Funct 2021; 226:2585-2601. [PMID: 34357437 DOI: 10.1007/s00429-021-02353-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 07/26/2021] [Indexed: 02/05/2023]
Abstract
Brain correlates of reading ability have been intensely investigated. Most studies have focused on single-word reading and phonological processing, but the brain basis of reading fluency remains poorly explored to date. Here, in a voxel-based morphometry study with 8-year-old children, we compared fluent readers (n = 18; seven boys) with dysfluent readers with normal IQ (n = 18; six boys) and with low IQ (n = 18; ten boys). Relative to dysfluent readers, fluent readers had larger gray matter volume in the right superior temporal gyrus and the two subgroups of dysfluent readers did not differ from each other, as shown in frequentist and Bayesian analyses. Pairwise comparisons showed that dysfluent readers of normal and low IQ did not differ in core reading regions and that both subgroups had less gray matter volume than fluent readers in occipito-temporal, parieto-temporal and fusiform areas. We also examined gray matter volume in matched subgroups of dysfluent readers differing only in socioeconomic status (SES): lower-SES (n = 14; seven boys) vs. higher-SES (n = 14; seven boys). Higher-SES dysfluent readers had larger gray matter volume in the right angular gyrus than their lower-SES peers, and the volume of this cluster correlated positively with lexico-semantic fluency. Age, sex, IQ, and gray matter volume of the right angular cluster explained 68% of the variance in the reading fluency of higher-SES dysfluent readers. In sum, this study shows that gray matter correlates of dysfluent reading are independent of IQ, and suggests that SES modulates areas sub-serving lexico-semantic processes in dysfluent readers-two findings that may be useful to inform language/reading remediation programs.
Collapse
Affiliation(s)
- Marta Martins
- Instituto Universitário de Lisboa (ISCTE-IUL), Lisboa, Portugal
- Center for Psychology, Faculty of Psychology and Education Sciences, University of Porto, Rua Alfredo Allen, 4200-135, Porto, Portugal
| | | | - São Luís Castro
- Center for Psychology, Faculty of Psychology and Education Sciences, University of Porto, Rua Alfredo Allen, 4200-135, Porto, Portugal.
| | - Christian Gaser
- Department of Psychiatry, Jena University Hospital, Jena, Germany
- Department of Neurology, Jena University Hospital, Jena, Germany
| |
Collapse
|
37
|
Li H, Kepinska O, Caballero JN, Zekelman L, Marks RA, Uchikoshi Y, Kovelman I, Hoeft F. Decoding the role of the cerebellum in the early stages of reading acquisition. Cortex 2021; 141:262-279. [PMID: 34102410 PMCID: PMC8845234 DOI: 10.1016/j.cortex.2021.02.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 01/03/2021] [Accepted: 02/08/2021] [Indexed: 10/21/2022]
Abstract
Numerous studies have consistently reported functional activation of the cerebellum during reading tasks, especially in the right cerebellar hemisphere. However, it remains unclear whether this region is also involved in reading during the earliest stages of reading acquisition. Here, we investigated whether and how the cerebellum contributes to reading acquisition. We tested 80 5-6-year-old kindergarteners, who performed a visual word matching task during which functional MRI (fMRI) data were collected. We found that bilateral cerebellar hemispheres were significantly activated during visual word processing. Moreover, activation of left cerebellar lobule VII extending to lobule VIII negatively and significantly correlated with current reading ability, whereas activation of right cerebellar lobule VII extending to lobule VIII significantly and positively correlated with future reading ability. Functional decoding via functional connectivity patterns further revealed that left and right cerebellar lobules connected with different cerebral cortex regions. Our results suggest a division of labor between the left and right cerebellar lobules in beginning readers.
Collapse
Affiliation(s)
- Hehui Li
- Center for Brain Disorders and Cognitive Science, Shenzhen University, Shenzhen, PR China; Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Olga Kepinska
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA; Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA; Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria; Brain and Language Lab, Cognitive Science Hub, University of Vienna, Austria; Dept of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Austria; Department of Psychology, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| | - Jocelyn N Caballero
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Leo Zekelman
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA; Speech and Hearing Bioscience and Technology, Harvard University, Cambridge, MA, USA
| | - Rebecca A Marks
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Yuuko Uchikoshi
- School of Education, University of California Davis, Davis, CA, USA
| | - Ioulia Kovelman
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Fumiko Hoeft
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA; Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA; Brain Imaging Research Center (BIRC), University of Connecticut, Storrs, CT, USA; Haskins Laboratories, New Haven, CT, USA.
| |
Collapse
|
38
|
Ostertag C, Reynolds JE, Dewey D, Landman B, Huo Y, Lebel C. Altered gray matter development in pre-reading children with a family history of reading disorder. Dev Sci 2021; 25:e13160. [PMID: 34278658 DOI: 10.1111/desc.13160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 12/23/2022]
Abstract
Reading disorders are common in children and can impact academic success, mental health, and career prospects. Reading is supported by network of interconnected left hemisphere brain regions, including temporo-parietal, occipito-temporal, and inferior-frontal circuits. Poor readers often show hypoactivation and reduced gray matter volumes in this reading network, with hyperactivation and increased volumes in the posterior right hemisphere. We assessed gray matter development longitudinally in pre-reading children aged 2-5 years using magnetic resonance imaging (MRI) (N = 32, 110 MRI scans; mean age: 4.40 ± 0.77 years), half of whom had a family history of reading disorder. The family history group showed slower proportional growth (relative to total brain volume) in the left supramarginal and inferior frontal gyri, and faster proportional growth in the right angular, right fusiform, and bilateral lingual gyri. This suggests delayed development of left hemisphere reading areas in children with a family history of dyslexia, along with faster growth in right homologues. This alternate development pattern may predispose the brain to later reading difficulties and may later manifest as the commonly noted compensatory mechanisms. The results of this study further shows our understanding of structural brain alterations that may form the neurological basis of reading difficulties.
Collapse
Affiliation(s)
- Curtis Ostertag
- Department of Radiology, University of Calgary, Calgary, AB, Canada.,Owerko Centre, Alberta Children Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Jess E Reynolds
- Department of Radiology, University of Calgary, Calgary, AB, Canada.,Owerko Centre, Alberta Children Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Deborah Dewey
- Owerko Centre, Alberta Children Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Pediatrics, University of Calgary, Calgary, AB, Canada.,Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada
| | - Bennett Landman
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee, USA
| | - Yuankai Huo
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee, USA
| | - Catherine Lebel
- Department of Radiology, University of Calgary, Calgary, AB, Canada.,Owerko Centre, Alberta Children Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
39
|
Phan TV, Sima D, Smeets D, Ghesquière P, Wouters J, Vandermosten M. Structural brain dynamics across reading development: A longitudinal MRI study from kindergarten to grade 5. Hum Brain Mapp 2021; 42:4497-4509. [PMID: 34197028 PMCID: PMC8410537 DOI: 10.1002/hbm.25560] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/12/2021] [Accepted: 06/04/2021] [Indexed: 01/05/2023] Open
Abstract
Primary education is the incubator for learning academic skills that help children to become a literate, communicative, and independent person. Over this learning period, nonlinear and regional changes in the brain occur, but how these changes relate to academic performance, such as reading ability, is still unclear. In the current study, we analyzed longitudinal T1 MRI data of 41 children in order to investigate typical cortical development during the early reading stage (end of kindergarten-end of grade 2) and advanced reading stage (end of grade 2-middle of grade 5), and to detect putative deviant trajectories in children with dyslexia. The structural brain change was quantified with a reliable measure that directly calculates the local morphological differences between brain images of two time points, while considering the global head growth. When applying this measure to investigate typical cortical development, we observed that left temporal and temporoparietal regions belonging to the reading network exhibited an increase during the early reading stage and stabilized during the advanced reading stage. This suggests that the natural plasticity window for reading is within the first years of primary school, hence earlier than the typical period for reading intervention. Concerning neurotrajectories in children with dyslexia compared to typical readers, we observed no differences in gray matter development of the left reading network, but we found different neurotrajectories in right IFG opercularis (during the early reading stage) and in right isthmus cingulate (during the advanced reading stage), which could reflect compensatory neural mechanisms.
Collapse
Affiliation(s)
- Thanh Van Phan
- icometrix, Research and Development, Leuven, Belgium.,Experimental Oto-rhino-laryngology, Department Neurosciences, KU Leuven, Leuven, Belgium
| | - Diana Sima
- icometrix, Research and Development, Leuven, Belgium
| | - Dirk Smeets
- icometrix, Research and Development, Leuven, Belgium
| | - Pol Ghesquière
- Parenting and Special Education, Faculty of Psychology and Education Sciences, KU Leuven, Leuven, Belgium
| | - Jan Wouters
- Experimental Oto-rhino-laryngology, Department Neurosciences, KU Leuven, Leuven, Belgium
| | - Maaike Vandermosten
- Experimental Oto-rhino-laryngology, Department Neurosciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
40
|
The Neurological Basis of Developmental Dyslexia and Related Disorders: A Reappraisal of the Temporal Hypothesis, Twenty Years on. Brain Sci 2021; 11:brainsci11060708. [PMID: 34071786 PMCID: PMC8229928 DOI: 10.3390/brainsci11060708] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/13/2021] [Accepted: 05/20/2021] [Indexed: 01/10/2023] Open
Abstract
In a now-classic article published a couple of decades ago (Brain, 2000; 123: 2373-2399), I proposed an "extended temporal processing deficit hypothesis of dyslexia", suggesting that a deficit in temporal processing could explain not only language-related peculiarities usually noticed in dyslexic children, but also a wider range of symptoms related to impaired processing of time in general. In the present review paper, I will revisit this "historical" hypothesis both in the light of a new clinical perspective, including the central yet poorly explained notion of comorbidity, and also taking a new look at the most recent experimental work, mainly focusing on brain imaging data. First, consistent with daily clinical practice, I propose to distinguish three groups of children who fail to learn to read, of fairly equal occurrence, who share the same initial presentation (difficulty in mastering the rules of grapheme-phoneme correspondence) but with differing associated signs and/or comorbid conditions (language disorders in the first group, attentional deficits in the second one, and motor coordination problems in the last one), thus suggesting, at least in part, potentially different triggering mechanisms. It is then suggested, in the light of brain imaging information available to date, that the three main clinical presentations/associations of cognitive impairments that compromise reading skills acquisition correspond to three distinct patterns of miswiring or "disconnectivity" in specific brain networks which have in common their involvement in the process of learning and their heavy reliance on temporal features of information processing. With reference to the classic temporal processing deficit of dyslexia and to recent evidence of an inability of the dyslexic brain to achieve adequate coupling of oscillatory brain activity to the temporal features of external events, a general model is proposed according to which a common mechanism of temporal uncoupling between various disconnected-and/or mis-wired-processors may account for distinct forms of specific learning disorders, with reading impairment being a more or less constant feature. Finally, the potential therapeutic implications of such a view are considered, with special emphasis on methods seeking to enhance cross-modal connectivity between separate brain systems, including those using rhythmic and musical training in dyslexic patients.
Collapse
|
41
|
Kujala T, Sihvonen AJ, Thiede A, Palo-Oja P, Virtala P, Numminen J, Laasonen M. Voxel and surface based whole brain analysis shows reading skill associated grey matter abnormalities in dyslexia. Sci Rep 2021; 11:10862. [PMID: 34035329 PMCID: PMC8149879 DOI: 10.1038/s41598-021-89317-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/01/2021] [Indexed: 01/18/2023] Open
Abstract
Developmental dyslexia (DD) is the most prevalent neurodevelopmental disorder with a substantial negative influence on the individual's academic achievement and career. Research on its neuroanatomical origins has continued for half a century, yielding, however, inconsistent results, lowered total brain volume being the most consistent finding. We set out to evaluate the grey matter (GM) volume and cortical abnormalities in adult dyslexic individuals, employing a combination of whole-brain voxel- and surface-based morphometry following current recommendations on analysis approaches, coupled with rigorous neuropsychological testing. Whilst controlling for age, sex, total intracranial volume, and performance IQ, we found both decreased GM volume and cortical thickness in the left insula in participants with DD. Moreover, they had decreased GM volume in left superior temporal gyrus, putamen, globus pallidus, and parahippocampal gyrus. Higher GM volumes and cortical thickness in these areas correlated with better reading and phonological skills, deficits of which are pivotal to DD. Crucially, total brain volume did not influence our results, since it did not differ between the groups. Our findings demonstrating abnormalities in brain areas in individuals with DD, which previously were associated with phonological processing, are compatible with the leading hypotheses on the neurocognitive origins of DD.
Collapse
Affiliation(s)
- Teija Kujala
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3 B, P.O. Box 21, 00014, Helsinki, Finland.
| | - Aleksi J Sihvonen
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3 B, P.O. Box 21, 00014, Helsinki, Finland.,Department of Neurosciences, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anja Thiede
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3 B, P.O. Box 21, 00014, Helsinki, Finland
| | - Peter Palo-Oja
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3 B, P.O. Box 21, 00014, Helsinki, Finland
| | - Paula Virtala
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3 B, P.O. Box 21, 00014, Helsinki, Finland
| | - Jussi Numminen
- Department of Radiology, Töölö Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | - Marja Laasonen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Phoniatrics, Helsinki University Hospital, Helsinki, Finland.,School of Humanities, Philosophical Faculty, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
42
|
Sturm VE, Roy ARK, Datta S, Wang C, Sible IJ, Holley SR, Watson C, Palser ER, Morris NA, Battistella G, Rah E, Meyer M, Pakvasa M, Mandelli ML, Deleon J, Hoeft F, Caverzasi E, Miller ZA, Shapiro KA, Hendren R, Miller BL, Gorno-Tempini ML. Enhanced visceromotor emotional reactivity in dyslexia and its relation to salience network connectivity. Cortex 2021; 134:278-295. [PMID: 33316603 PMCID: PMC7880083 DOI: 10.1016/j.cortex.2020.10.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 08/11/2020] [Accepted: 10/31/2020] [Indexed: 12/30/2022]
Abstract
Dyslexia is a neurodevelopmental disorder mainly defined by reading difficulties. During reading, individuals with dyslexia exhibit hypoactivity in left-lateralized language systems. Lower activity in one brain circuit can be accompanied by greater activity in another, and, here, we examined whether right-hemisphere-based emotional reactivity may be elevated in dyslexia. We measured emotional reactivity (i.e., facial behavior, physiological activity, and subjective experience) in 54 children ages 7-12 with (n = 32) and without (n = 22) dyslexia while they viewed emotion-inducing film clips. Participants also underwent task-free functional magnetic resonance imaging. Parents of children with dyslexia completed the Behavior Assessment System for Children, which assesses real-world behavior. During film viewing, children with dyslexia exhibited significantly greater reactivity in emotional facial behavior, skin conductance level, and respiration rate than those without dyslexia. Across the sample, greater emotional facial behavior correlated with stronger connectivity between right ventral anterior insula and right pregenual anterior cingulate cortex (pFWE<.05), key salience network hubs. In children with dyslexia, greater emotional facial behavior related to better real-world social skills and higher anxiety and depression. Our findings suggest there is heightened visceromotor emotional reactivity in dyslexia, which may lead to interpersonal strengths as well as affective vulnerabilities.
Collapse
Affiliation(s)
- Virginia E Sturm
- Department of Neurology, University of California, UCSF Memory and Aging Center, Sandler Neurosciences Center, San Francisco, CA, USA; Department of Psychiatry, University of California, San Francisco, CA, USA.
| | - Ashlin R K Roy
- Department of Neurology, University of California, UCSF Memory and Aging Center, Sandler Neurosciences Center, San Francisco, CA, USA.
| | - Samir Datta
- Department of Neurology, University of California, UCSF Memory and Aging Center, Sandler Neurosciences Center, San Francisco, CA, USA.
| | - Cheng Wang
- Department of Neurology, University of California, UCSF Memory and Aging Center, Sandler Neurosciences Center, San Francisco, CA, USA.
| | - Isabel J Sible
- Department of Neurology, University of California, UCSF Memory and Aging Center, Sandler Neurosciences Center, San Francisco, CA, USA.
| | - Sarah R Holley
- Department of Psychology, San Francisco State University, San Francisco, CA, USA.
| | - Christa Watson
- Department of Neurology, University of California, UCSF Memory and Aging Center, Sandler Neurosciences Center, San Francisco, CA, USA.
| | - Eleanor R Palser
- Department of Neurology, University of California, UCSF Memory and Aging Center, Sandler Neurosciences Center, San Francisco, CA, USA.
| | - Nathaniel A Morris
- Department of Neurology, University of California, UCSF Memory and Aging Center, Sandler Neurosciences Center, San Francisco, CA, USA.
| | - Giovanni Battistella
- Department of Neurology, University of California, UCSF Memory and Aging Center, Sandler Neurosciences Center, San Francisco, CA, USA.
| | - Esther Rah
- Department of Neurology, University of California, UCSF Memory and Aging Center, Sandler Neurosciences Center, San Francisco, CA, USA.
| | - Marita Meyer
- Department of Neurology, University of California, UCSF Memory and Aging Center, Sandler Neurosciences Center, San Francisco, CA, USA.
| | - Mikhail Pakvasa
- Department of Neurology, University of California, UCSF Memory and Aging Center, Sandler Neurosciences Center, San Francisco, CA, USA.
| | - Maria Luisa Mandelli
- Department of Neurology, University of California, UCSF Memory and Aging Center, Sandler Neurosciences Center, San Francisco, CA, USA.
| | - Jessica Deleon
- Department of Neurology, University of California, UCSF Memory and Aging Center, Sandler Neurosciences Center, San Francisco, CA, USA.
| | - Fumiko Hoeft
- Department of Psychiatry, University of California, San Francisco, CA, USA.
| | - Eduardo Caverzasi
- Department of Neurology, University of California, UCSF Memory and Aging Center, Sandler Neurosciences Center, San Francisco, CA, USA.
| | - Zachary A Miller
- Department of Neurology, University of California, UCSF Memory and Aging Center, Sandler Neurosciences Center, San Francisco, CA, USA.
| | - Kevin A Shapiro
- Department of Neurology, University of California, UCSF Memory and Aging Center, Sandler Neurosciences Center, San Francisco, CA, USA.
| | - Robert Hendren
- Department of Psychiatry, University of California, San Francisco, CA, USA.
| | - Bruce L Miller
- Department of Neurology, University of California, UCSF Memory and Aging Center, Sandler Neurosciences Center, San Francisco, CA, USA.
| | - Maria Luisa Gorno-Tempini
- Department of Neurology, University of California, UCSF Memory and Aging Center, Sandler Neurosciences Center, San Francisco, CA, USA; Department of Psychiatry, University of California, San Francisco, CA, USA.
| |
Collapse
|
43
|
Brem S, Maurer U, Kronbichler M, Schurz M, Richlan F, Blau V, Reithler J, van der Mark S, Schulz E, Bucher K, Moll K, Landerl K, Martin E, Goebel R, Schulte-Körne G, Blomert L, Wimmer H, Brandeis D. Visual word form processing deficits driven by severity of reading impairments in children with developmental dyslexia. Sci Rep 2020; 10:18728. [PMID: 33127943 PMCID: PMC7603304 DOI: 10.1038/s41598-020-75111-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/23/2020] [Indexed: 12/25/2022] Open
Abstract
The visual word form area (VWFA) in the left ventral occipito-temporal (vOT) cortex is key to fluent reading in children and adults. Diminished VWFA activation during print processing tasks is a common finding in subjects with severe reading problems. Here, we report fMRI data from a multicentre study with 140 children in primary school (7.9-12.2 years; 55 children with dyslexia, 73 typical readers, 12 intermediate readers). All performed a semantic task on visually presented words and a matched control task on symbol strings. With this large group of children, including the entire spectrum from severely impaired to highly fluent readers, we aimed to clarify the association of reading fluency and left vOT activation during visual word processing. The results of this study confirm reduced word-sensitive activation within the left vOT in children with dyslexia. Interestingly, the association of reading skills and left vOT activation was especially strong and spatially extended in children with dyslexia. Thus, deficits in basic visual word form processing increase with the severity of reading disability but seem only weakly associated with fluency within the typical reading range suggesting a linear dependence of reading scores with VFWA activation only in the poorest readers.
Collapse
Affiliation(s)
- S Brem
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Neumuensterallee 9, 8032, Zurich, Switzerland.
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.
| | - U Maurer
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Neumuensterallee 9, 8032, Zurich, Switzerland
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong, China
- Brain and Mind Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - M Kronbichler
- Centre for Cognitive Neuroscience and Department of Psychology, University of Salzburg, Salzburg, Austria
- Neuroscience Institute, Christian Doppler Clinic, Paracelsus Medical University, Salzburg, Austria
| | - M Schurz
- Centre for Cognitive Neuroscience and Department of Psychology, University of Salzburg, Salzburg, Austria
| | - F Richlan
- Centre for Cognitive Neuroscience and Department of Psychology, University of Salzburg, Salzburg, Austria
| | - V Blau
- Cognitive Neuroscience Department, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Maastricht Brain Imaging Center (M-BIC), Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - J Reithler
- Cognitive Neuroscience Department, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Maastricht Brain Imaging Center (M-BIC), Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - S van der Mark
- MR-Center, University Children's Hospital, University of Zürich, Zurich, Switzerland
| | - E Schulz
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - K Bucher
- MR-Center, University Children's Hospital, University of Zürich, Zurich, Switzerland
| | - K Moll
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - K Landerl
- Department of Psychology, University of Salzburg, Salzburg, Austria
- Institute of Psychology, University of Graz, Graz, Austria
| | - E Martin
- MR-Center, University Children's Hospital, University of Zürich, Zurich, Switzerland
| | - R Goebel
- Cognitive Neuroscience Department, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Maastricht Brain Imaging Center (M-BIC), Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - G Schulte-Körne
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - L Blomert
- Cognitive Neuroscience Department, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Maastricht Brain Imaging Center (M-BIC), Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - H Wimmer
- Centre for Cognitive Neuroscience and Department of Psychology, University of Salzburg, Salzburg, Austria
| | - D Brandeis
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Neumuensterallee 9, 8032, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
44
|
Feng X, Altarelli I, Monzalvo K, Ding G, Ramus F, Shu H, Dehaene S, Meng X, Dehaene-Lambertz G. A universal reading network and its modulation by writing system and reading ability in French and Chinese children. eLife 2020; 9:54591. [PMID: 33118931 PMCID: PMC7669264 DOI: 10.7554/elife.54591] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 10/26/2020] [Indexed: 01/12/2023] Open
Abstract
Are the brain mechanisms of reading acquisition similar across writing systems? And do similar brain anomalies underlie reading difficulties in alphabetic and ideographic reading systems? In a cross-cultural paradigm, we measured the fMRI responses to words, faces, and houses in 96 Chinese and French 10-year-old children, half of whom were struggling with reading. We observed a reading circuit which was strikingly similar across languages and consisting of the left fusiform gyrus, superior temporal gyrus/sulcus, precentral and middle frontal gyri. Activations in some of these areas were modulated either by language or by reading ability, but without interaction between those factors. In various regions previously associated with dyslexia, reading difficulty affected activation similarly in Chinese and French readers, including the middle frontal gyrus, a region previously described as specifically altered in Chinese. Our analyses reveal a large degree of cross-cultural invariance in the neural correlates of reading acquisition and reading impairment.
Collapse
Affiliation(s)
- Xiaoxia Feng
- Cognitive Neuroimaging Unit, CEA DRF/I2BM, INSERM, NeuroSpin Center, Université Paris-Saclay, Gif-sur-Yvette, France.,State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Irene Altarelli
- Cognitive Neuroimaging Unit, CEA DRF/I2BM, INSERM, NeuroSpin Center, Université Paris-Saclay, Gif-sur-Yvette, France.,Université de Paris, LaPsyDÉ, CNRS, Paris, France
| | - Karla Monzalvo
- Cognitive Neuroimaging Unit, CEA DRF/I2BM, INSERM, NeuroSpin Center, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Guosheng Ding
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Franck Ramus
- Laboratoire de Sciences Cognitives et Psycholinguistique (ENS, CNRS, EHESS), Ecole Normale Supérieure, PSL Research University, Paris, France
| | - Hua Shu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Stanislas Dehaene
- Cognitive Neuroimaging Unit, CEA DRF/I2BM, INSERM, NeuroSpin Center, Université Paris-Saclay, Gif-sur-Yvette, France.,Collège de France, Université PSL Paris Sciences Lettres, Paris, France
| | - Xiangzhi Meng
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China.,PekingU-PolyU Center for Child Development and Learning, Peking University, Beijing, China
| | - Ghislaine Dehaene-Lambertz
- Cognitive Neuroimaging Unit, CEA DRF/I2BM, INSERM, NeuroSpin Center, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
45
|
Chyl K, Kossowski B, Wang S, Dębska A, Łuniewska M, Marchewka A, Wypych M, Bunt MVD, Mencl W, Pugh K, Jednoróg K. The brain signature of emerging reading in two contrasting languages. Neuroimage 2020; 225:117503. [PMID: 33130273 DOI: 10.1016/j.neuroimage.2020.117503] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 11/19/2022] Open
Abstract
Despite dissimilarities among scripts, a universal hallmark of literacy in skilled readers is the convergent brain activity for print and speech. Little is known, however, whether this differs as a function of grapheme to phoneme transparency in beginning readers. Here we compare speech and orthographic processing circuits in two contrasting languages, Polish and English, in 100 7-year-old children performing fMRI language localizer tasks. Results show limited language variation, with speech-print convergence evident mostly in left frontotemporal perisylvian regions. Correlational and intersect analyses revealed subtle differences in the strength of this coupling in several regions of interest. Specifically, speech-print convergence was higher for transparent Polish than opaque English in the right temporal area, associated with phonological processing. Conversely, speech-print convergence was higher for English than Polish in left fusiform, associated with visual word recognition. We conclude that speech-print convergence is a universal marker of reading even at the beginning of reading acquisition with minor variations that can be explained by the differences in grapheme to phoneme transparency. This finding at the earliest stages of reading acquisition conforms well with claims that reading exhibits a good deal of universality despite writing systems differences.
Collapse
Affiliation(s)
- Katarzyna Chyl
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland.
| | - Bartosz Kossowski
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| | - Shuai Wang
- Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, China; CNRS, LPL, Aix Marseille University, Aix-en-Provence, France; Institute of Language, Communication and the Brain, Brain and Language Research Institute, Aix Marseille University, Aix-en-Provence, France
| | - Agnieszka Dębska
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| | - Magdalena Łuniewska
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| | - Artur Marchewka
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| | - Marek Wypych
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| | | | | | - Kenneth Pugh
- Haskins Laboratories, New Haven, CT, USA; Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, CT, USA; Department of Psychology, University of Connecticut, Storrs, CT, USA
| | - Katarzyna Jednoróg
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland.
| |
Collapse
|
46
|
Functional connectivity alterations associated with literacy difficulties in early readers. Brain Imaging Behav 2020; 15:2109-2120. [PMID: 33048291 DOI: 10.1007/s11682-020-00406-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2020] [Indexed: 10/23/2022]
Abstract
The link between literacy difficulties and brain alterations has been described in depth. Resting-state fMRI (rs-fMRI) has been successfully applied to the study of intrinsic functional connectivity (iFc) both in dyslexia and typically developing children. Most related studies have focused on the stages from late childhood into adulthood using a seed to voxel approach. Our study analyzes iFc in an early childhood sample using the multivariate pattern analysis. This facilitates a hypothesis-free analysis and the possible identification of abnormal functional connectivity patterns at a whole brain level. Thirty-four children with literacy difficulties (LD) (7.1 ± 0.69 yr.) and 30 typically developing children (TD) (7.43 ± 0.52 yr.) were selected. Functional brain connectivity was measured using an rs-fMRI acquisition. The LD group showed a higher iFc between the right middle frontal gyrus (rMFG) and the default mode network (DMN) regions, and a lower iFc between the rMFG and both the bilateral insular cortex and the supramarginal gyrus. These results are interpreted as a DMN on/off routine malfunction in the LD group, which suggests an alteration of the task control network regulating DMN activity. In the LD group, the posterior cingulate cortex also showed a lower iFc with both the middle temporal poles and the fusiform gyrus. This could be interpreted as a failure in the integration of information between brain regions that facilitate reading. Our results show that children with literacy difficulties have an altered functional connectivity in their reading and attentional networks at the beginning of the literacy acquisition. Future studies should evaluate whether or not these alterations could indicate a risk of developing dyslexia.
Collapse
|
47
|
Torre GA, Matejko AA, Eden GF. The relationship between brain structure and proficiency in reading and mathematics in children, adolescents, and emerging adults. Dev Cogn Neurosci 2020; 45:100856. [PMID: 32949854 PMCID: PMC7502824 DOI: 10.1016/j.dcn.2020.100856] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 08/26/2020] [Accepted: 09/04/2020] [Indexed: 11/18/2022] Open
Abstract
Behavioral and brain imaging studies speak to commonalities between reading and math. Here, we investigated relationships between individual differences in reading and math ability (single word reading and calculation) with brain anatomy (cortical thickness and surface area) in 342 participants between 6-22 years of age from the NIH Pediatric MRI Database. We found no brain-behavioral correlations in the full sample. When dividing the dataset into three age-specific subgroups, cortical thickness of the left supramarginal gyrus (SMG) and fusiform gyrus (FG) correlated with reading ability in the oldest subgroup (15-22 years) only. Next, we tested unique contributions of these educational measures to neuroanatomy. Single word reading ability, age, and their interaction all contributed unique variance to cortical thickness in the left SMG and intraparietal sulcus (IPS). Age, and the interaction between age and reading, predicted cortical thickness in the left FG. However, regression analyses for math ability showed no relationships with cortical thickness; nor for math or reading ability with surface area. Overall, our results demonstrate relationships between cortical thickness and reading ability in emerging adults, but not in younger age groups. Surprisingly, there were no such relationships with math, and hence no convergence between the reading and math results.
Collapse
Affiliation(s)
- G A Torre
- Center for the Study of Learning, Georgetown University Medical Center, Washington DC, United States; Department of Pediatrics, Georgetown University Medical Center, Washington DC, United States.
| | - A A Matejko
- Center for the Study of Learning, Georgetown University Medical Center, Washington DC, United States; Department of Pediatrics, Georgetown University Medical Center, Washington DC, United States
| | - G F Eden
- Center for the Study of Learning, Georgetown University Medical Center, Washington DC, United States; Department of Pediatrics, Georgetown University Medical Center, Washington DC, United States.
| |
Collapse
|
48
|
Developmental dyslexia: A new look at clinical features and brain mechanisms. HANDBOOK OF CLINICAL NEUROLOGY 2020. [PMID: 32977895 DOI: 10.1016/b978-0-444-64148-9.00004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Developmental dyslexia is the commonest "specific learning disorder" (DSM-5) or "developmental learning disorder with impairment in reading" (ICD-11). This impairment in reading acquisition is related to a defect in the installation of cognitive precursors necessary to master the grapheme-phoneme conversion. Its origin is largely genetic, but many environmental factors seem capable of modulating symptom intensity. Three types of presentation, roughly equal in occurrence, are useful to distinguish according to the associated disorders (language, attentional, and/or motor coordination), thus suggesting, at least in part, potentially different mechanisms at their origin. In adolescence and adulthood the clinical presentation tends to bear a more uniform pattern, covering a large range of severity depending on each person's ability to compensate for their deficit. Research has demonstrated dysfunction of specific brain areas during reading-related tasks (using fMRI), essentially in the left cerebral hemisphere, but also atypical patterns of connectivity (using diffusion imaging), further supplemented by functional connectivity studies at rest. The current therapeutic recommendations emphasize the need for multidisciplinary care, giving priority, depending on the clinical form, to the language, psychomotor, or neuropsychologic aspects of rehabilitation. Various training methods whose effectiveness has been scientifically tested are reviewed, emphasizing those exploiting the hypothesis of a lack of intermodal connectivity between separate cognitive systems.
Collapse
|
49
|
Li H, Booth JR, Feng X, Wei N, Zhang M, Zhang J, Zhong H, Lu C, Liu L, Ding G, Meng X. Functional parcellation of the right cerebellar lobule VI in children with normal or impaired reading. Neuropsychologia 2020; 148:107630. [PMID: 32976851 DOI: 10.1016/j.neuropsychologia.2020.107630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 09/06/2020] [Accepted: 09/14/2020] [Indexed: 12/27/2022]
Abstract
Neuroimaging studies have reported that the right cerebellar lobule VI is engaged in reading, but its role is unclear. The goal of our study was to identify functionally-dissociable subregions in the right lobule VI and how these subregions contribute to reading in children with normal or impaired reading. In Experiment I, typically developing children performed an orthographic task and a phonological task during functional magnetic resonance imaging (fMRI). We classified the voxels in the right lobule VI into seven zones based on the patterns of functional connectivity with the cerebrum across both tasks. In Experiment II, we compared the brain activation and cerebro-cerebellar connectivities of each subregion between children readers with different reading levels. We did not find significant group differences in cerebellar activation. However, we found that impaired readers had considerably higher functional connectivity between R1 and the right angular gyrus and the right precuneus compared to the control group in the phonological task. These findings show that the right cerebellar lobule VI is functionally parceled and its subregions might be differentially connected with the cerebrum between children with normal reading abilities and those with impaired reading.
Collapse
Affiliation(s)
- Hehui Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - James R Booth
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN, 37203-5721, USA
| | - Xiaoxia Feng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Na Wei
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Manli Zhang
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100871, China
| | - Jia Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Hejing Zhong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Chunming Lu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Li Liu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Guosheng Ding
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
| | - Xiangzhi Meng
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100871, China; PekingU-PolyU Center for Child Development and Learning, Peking University, Beijing, 100871, China.
| |
Collapse
|
50
|
Mancuso L, Fornito A, Costa T, Ficco L, Liloia D, Manuello J, Duca S, Cauda F. A meta-analytic approach to mapping co-occurrent grey matter volume increases and decreases in psychiatric disorders. Neuroimage 2020; 222:117220. [PMID: 32777357 DOI: 10.1016/j.neuroimage.2020.117220] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022] Open
Abstract
Numerous studies have investigated grey matter (GM) volume changes in diverse patient groups. Reports of disorder-related GM reductions are common in such work, but many studies also report evidence for GM volume increases in patients. It is unclear whether these GM increases and decreases are independent or related in some way. Here, we address this question using a novel meta-analytic network mapping approach. We used a coordinate-based meta-analysis of 64 voxel-based morphometry studies of psychiatric disorders to calculate the probability of finding a GM increase or decrease in one region given an observed change in the opposite direction in another region. Estimating this co-occurrence probability for every pair of brain regions allowed us to build a network of concurrent GM changes of opposing polarity. Our analysis revealed that disorder-related GM increases and decreases are not independent; instead, a GM change in one area is often statistically related to a change of opposite polarity in other areas, highlighting distributed yet coordinated changes in GM volume as a function of brain pathology. Most regions showing GM changes linked to an opposite change in a distal area were located in salience, executive-control and default mode networks, as well as the thalamus and basal ganglia. Moreover, pairs of regions showing coupled changes of opposite polarity were more likely to belong to different canonical networks than to the same one. Our results suggest that regional GM alterations in psychiatric disorders are often accompanied by opposing changes in distal regions that belong to distinct functional networks.
Collapse
Affiliation(s)
- Lorenzo Mancuso
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy; GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Alex Fornito
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University,Victoria, Australia; Monash Biomedical Imaging, Monash University,Victoria, Australia
| | - Tommaso Costa
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy; GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy.
| | - Linda Ficco
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy; GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Donato Liloia
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy; GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Jordi Manuello
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy; GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Sergio Duca
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Franco Cauda
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy; GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|