1
|
Liu S, Liu D, Bender CM, Erickson KI, Sereika SM, Shaffer JR, Weeks DE, Conley YP. Associations between DNA methylation and cognitive function in early-stage hormone receptor-positive breast cancer patients. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.17.24317299. [PMID: 39606386 PMCID: PMC11601744 DOI: 10.1101/2024.11.17.24317299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Background Approximately one-third of breast cancer (BC) patients show poorer cognitive function (CF) before receiving adjuvant therapy compared with age-matched healthy controls. However, the biological mechanisms driving CF variation in the context of BC remain unclear. In this study, we aimed to identify genes and biological pathways associated with CF in postmenopausal women with early-stage hormone receptor-positive (HR+) BC using DNA methylation (DNAm) data, a dynamic regulator of gene activity. Methods Epigenome-wide association studies (EWAS) and differentially methylated region analyses were performed for each CF phenotype (seven objective domains and one subjective phenotype) using DNAm data from whole blood samples (n=109) taken at time of enrollment. Post-EWAS functional analyses were performed to enhance the understanding of the CF-related cytosine-phosphate-guanine (CpG) sites. Results When adjusting for age, verbal IQ scores, and global DNAm signature, cg10331779 near CTNND2 (p-value= 9.65 × 10 -9 ) and cg25906741 in MLIP (p-value= 2.01 × 10 -8 ) were associated with processing speed and subjective CF, respectively, while regions in/near SLC6A11 , PRKG1/CSTF2T , and FAM3B for processing speed, and regions in/near PI4KB and SGCE/PEG10 for mental flexibility were differentially methylated. In addition, beta-estradiol was identified as a common upstream regulator for all the CF phenotypes, suggesting an essential role of estrogen in explaining variation in CF of HR+ BC patients. Conclusions In our EWAS of 8 CF phenotypes, we found two epigenome-wide significant signals, one at cg10331779 near CTNND2 with processing speed and the other at cg25906741 in MLIP with subjective CF. We also found three differentially methylated regions associated with processing speed and two associated with mental flexibility. These findings need replication in larger cohorts.
Collapse
|
2
|
Roh SH, Mendez-Vazquez H, Sathler MF, Doolittle MJ, Zaytseva A, Brown H, Sainsbury M, Kim S. Prenatal exposure to valproic acid reduces synaptic δ-catenin levels and disrupts ultrasonic vocalization in neonates. Neuropharmacology 2024; 253:109963. [PMID: 38657945 PMCID: PMC11127754 DOI: 10.1016/j.neuropharm.2024.109963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Valproic acid (VPA) is an effective and commonly prescribed drug for epilepsy and bipolar disorder. However, children born from mothers treated with VPA during pregnancy exhibit an increased incidence of autism spectrum disorder (ASD). Although VPA may impair brain development at the cellular level, the mechanism of VPA-induced ASD has not been completely addressed. A previous study has found that VPA treatment strongly reduces δ-catenin mRNA levels in cultured human neurons. δ-catenin is important for the control of glutamatergic synapses and is strongly associated with ASD. VPA inhibits dendritic morphogenesis in developing neurons, an effect that is also found in neurons lacking δ-catenin expression. We thus hypothesize that prenatal exposure to VPA significantly reduces δ-catenin levels in the brain, which impairs glutamatergic synapses to cause ASD. Here, we found that prenatal exposure to VPA markedly reduced δ-catenin levels in the brain of mouse pups. VPA treatment also impaired dendritic branching in developing mouse cortical neurons, which was partially reversed by elevating δ-catenin expression. Prenatal VPA exposure significantly reduced synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor levels and postsynaptic density 95 (PSD95) in the brain of mouse pups, indicating dysfunctions in glutamatergic synaptic transmission. VPA exposure also significantly altered ultrasonic vocalization (USV) in newly born pups when they were isolated from their nest. Moreover, VPA-exposed pups show impaired hypothalamic response to isolation, which is required to produce animals' USVs following isolation from the nest. Therefore, these results suggest that VPA-induced ASD pathology can be mediated by the loss of δ-catenin functions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Morgan Sainsbury
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Seonil Kim
- Department of Biomedical Sciences, USA; Molecular, Cellular and Integrative Neurosciences Program, USA.
| |
Collapse
|
3
|
Glaesser D, Iwig M. Increased molar ratio of free fatty acids to albumin in blood as cause and early biomarker for the development of cataracts and Alzheimer's disease. Exp Eye Res 2024; 243:109888. [PMID: 38583754 DOI: 10.1016/j.exer.2024.109888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Cataracts and Alzheimer's disease (AD) are closely linked and are associated with aging and with systemic diseases that increase the molar ratio of free fatty acids to albumin (mFAR) in the blood. From the results of our earlier studies on the development of senile cataracts and from results recently published in the literature on the pathogenesis of Alzheimer's disease, we suggest that there is a common lipotoxic cascade for both diseases, explaining the strong connection between aging, an elevated mFAR in the blood, cataract formation, and AD. Long-chain free fatty acids (FFA) are transported in the blood as FFA/albumin complexes. In young people, vascular albumin barriers in the eyes and brain, very similar in their structure and effect, reduce the FFA/albumin complex concentration from around 650 μmol/l in the blood to 1-3 μmol/l in the aqueous humour of the eyes as well as in the cerebrospinal fluid of the brain. At such low concentrations the fatty acid uptake of the target cells - lens epithelial and brain cells - rises with increasing FFA/albumin complex concentrations, especially when the fatty acid load of albumin molecules is mFAR>1. At higher albumin concentrations, for instance in blood plasma or the interstitial tissue spaces, the fatty acid uptake of the target cells becomes increasingly independent of the FFA/albumin complex concentration and is mainly a function of the mFAR (Richieri et al., 1993). In the blood plasma of young people, the mFAR is normally below 1.0. In people over 40 years old, aging increases the mFAR by decreasing the plasma concentration of albumin and enhancing the plasma concentrations of FFA. The increase in the mFAR in association with C6-unsaturated FFA are risk factors for the vascular albumin barriers (Hennig et al., 1984). Damage to the vascular albumin barrier in the eyes and brain increases the concentration of FFA/albumin complex in the aqueous humour as well as in the cerebrospinal fluid, leading to mitochondrial dysfunction and the death of lens epithelial and brain cells, the development of cataracts, and AD. An age-dependent increase in the concentration of FFA/albumin complex has been found in the aqueous humour of 177 cataract patients, correlating with the mitochondria-mediated apoptotic death of lens epithelial cells, lens opacification and cataracts (Iwig et al., 2004). Mitochondrial dysfunction is also an early crucial event in Alzheimer's pathology, closely connected with the generation of amyloid beta peptides (Leuner et al., 2012). Very recently, amyloid beta production has also been confirmed in the lenses of Alzheimer's patients, causing cataracts (Moncaster et al., 2022). In view of this, we propose that there is a common lipotoxic cascade for senile cataract formation and senile AD, initiated by aging and/or systemic diseases, leading to an mFAR>1 in the blood.
Collapse
Affiliation(s)
- Dietmar Glaesser
- Institute of Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, D-06097, Halle, Germany.
| | - Martin Iwig
- Institute of Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, D-06097, Halle, Germany
| |
Collapse
|
4
|
Sarangi S, Minaeva O, Ledoux DM, Parsons DS, Moncaster JA, Black CA, Hollander J, Tripodis Y, Clark JI, Hunter DG, Goldstein LE. In vivo quasi-elastic light scattering detects molecular changes in the lenses of adolescents with Down syndrome. Exp Eye Res 2024; 241:109818. [PMID: 38422787 DOI: 10.1016/j.exer.2024.109818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/08/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
Down syndrome (DS) is the most common chromosomal disorder in humans. DS is associated with increased prevalence of several ocular sequelae, including characteristic blue-dot cerulean cataract. DS is accompanied by age-dependent accumulation of Alzheimer's disease (AD) amyloid-β (Aβ) peptides and amyloid pathology in the brain and comorbid early-onset Aβ amyloidopathy and colocalizing cataracts in the lens. Quasi-elastic light scattering (QLS) is an established optical technique that noninvasively measures changes in protein size distributions in the human lens in vivo. In this cross-sectional study, lenticular QLS correlation time was decreased in adolescent subjects with DS compared to age-matched control subjects. Clinical QLS was consistent with alterations in relative particle hydrodynamic radius in lenses of adolescents with DS. These correlative results suggest that noninvasive QLS can be used to evaluate molecular changes in the lenses of individuals with DS.
Collapse
Affiliation(s)
- Srikant Sarangi
- Molecular Aging & Development Laboratory, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA; Boston University Photonics Center, Boston University, Boston, MA, USA; Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Olga Minaeva
- Molecular Aging & Development Laboratory, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA; Boston University Photonics Center, Boston University, Boston, MA, USA; Department of Biomedical Engineering, Boston University, Boston, MA, USA; Boston University Alzheimer's Disease Research Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA; Department of Ophthalmology, Boston Children's Hospital, Boston, MA, USA
| | - Danielle M Ledoux
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Douglas S Parsons
- Molecular Aging & Development Laboratory, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA; Boston University Photonics Center, Boston University, Boston, MA, USA
| | - Juliet A Moncaster
- Molecular Aging & Development Laboratory, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA; Boston University Photonics Center, Boston University, Boston, MA, USA; Boston University Alzheimer's Disease Research Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Caitlin A Black
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA, USA
| | - Jeffrey Hollander
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA, USA
| | - Yorghos Tripodis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - John I Clark
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - David G Hunter
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Lee E Goldstein
- Molecular Aging & Development Laboratory, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA; Boston University Photonics Center, Boston University, Boston, MA, USA; Department of Biomedical Engineering, Boston University, Boston, MA, USA; Boston University Alzheimer's Disease Research Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
5
|
Wang L, Sang B, Zheng Z. The risk of dementia or cognitive impairment in patients with cataracts: a systematic review and meta-analysis. Aging Ment Health 2024; 28:11-22. [PMID: 37416949 DOI: 10.1080/13607863.2023.2226616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/04/2023] [Indexed: 07/08/2023]
Abstract
OBJECTIVES The aim of this study was to investigate whether cataract disease is associated with the risk of developing dementia or cognitive impairment. METHODS A systematic search of the literature in PubMed, the Extracts Database (Embase), the Cochrane Library and the Web of Science databases was performed from the inception data of each database until 1 September 2022. Sensitivity analyses were performed to assess the robustness and reliability of the overall findings. All extracted data were statistically analyzed using Stata software v.16.0. Publication bias was assessed using funnel plots and the Egger test. RESULTS There were 11 publications included in this study, which consisted of 489,211participants, spanning 10 countries from 2012 to 2022. Aggregation suggested that cataracts were associated with cognitive impairment (odds ratio [OR] = 1.32; 95% CI: 1.21-1.43; I 2 = 45.4.%; p = 0.000). The presence of cataracts is significantly associated with an increased risk of developing all-cause dementia (relative risk [RR] = 1.17; 95% CI: 1.08-1.26; I2 = 0.0%; p = 0.000). In subgroup analyses, having cataracts may increase the risk of Alzheimer's disease (hazard ratio [HR] = 1.28; 95% CI: 1.13-1.45; I2 = 0.0%; p = 0.000) and vascular dementia (HR = 1.35; 95% CI = 1.06-1.73; I2 = 0.0%, p = 0.015). The data from the Egger's test showed no significant evidence of publication bias. CONCLUSIONS Cataracts are associated with the risk of cognitive impairment and dementia, including Alzheimer's disease, and vascular dementia.
Collapse
Affiliation(s)
- Luping Wang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Bowen Sang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Zuyan Zheng
- Department of Acupuncture, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
6
|
Roh SH, Mendez-Vazquez H, Sathler MF, Doolittle MJ, Zaytseva A, Brown H, Sainsbury M, Kim S. Prenatal exposure to valproic acid reduces synaptic δ-catenin levels and disrupts ultrasonic vocalization in neonates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571709. [PMID: 38168404 PMCID: PMC10760095 DOI: 10.1101/2023.12.14.571709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Valproic acid (VPA) is an effective and commonly prescribed drug for epilepsy and bipolar disorder. However, children born from mothers treated with VPA during pregnancy exhibit an increased incidence of autism spectrum disorder (ASD). Although VPA may impair brain development at the cellular level, the mechanism of VPA-induced ASD has not been completely addressed. A previous study has found that VPA treatment strongly reduces δ-catenin mRNA levels in cultured human neurons. δ-catenin is important for the control of glutamatergic synapses and is strongly associated with ASD. VPA inhibits dendritic morphogenesis in developing neurons, an effect that is also found in neurons lacking δ-catenin expression. We thus hypothesize that prenatal exposure to VPA significantly reduces δ-catenin levels in the brain, which impairs glutamatergic synapses to cause ASD. Here, we found that prenatal exposure to VPA markedly reduced δ-catenin levels in the brain of mouse pups. VPA treatment also impaired dendritic branching in developing mouse cortical neurons, which was reversed by elevating δ-catenin expression. Prenatal VPA exposure significantly reduced synaptic AMPA receptor levels and postsynaptic density 95 (PSD95) in the brain of mouse pups, indicating dysfunctions in glutamatergic synaptic transmission. VPA exposure also significantly altered ultrasonic vocalization (USV) in newly born pups when they were isolated from their nest. Moreover, VPA-exposed pups show impaired hypothalamic response to isolation, which is required to produce animals' USVs following isolation from the nest. Therefore, these results suggest that VPA-induced ASD pathology can be mediated by the loss of δ-catenin functions. Highlights Prenatal exposure of valproic acid (VPA) in mice significantly reduces synaptic δ-catenin protein and AMPA receptor levels in the pups' brains.VPA treatment significantly impairs dendritic branching in cultured cortical neurons, which is reversed by increased δ-catenin expression.VPA exposed pups exhibit impaired communication such as ultrasonic vocalization.Neuronal activation linked to ultrasonic vocalization is absent in VPA-exposed pups.The loss of δ-catenin functions underlies VPA-induced autism spectrum disorder (ASD) in early childhood.
Collapse
|
7
|
Tan CX, Bindu DS, Hardin EJ, Sakers K, Baumert R, Ramirez JJ, Savage JT, Eroglu C. δ-Catenin controls astrocyte morphogenesis via layer-specific astrocyte-neuron cadherin interactions. J Cell Biol 2023; 222:e202303138. [PMID: 37707499 PMCID: PMC10501387 DOI: 10.1083/jcb.202303138] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/14/2023] [Accepted: 08/28/2023] [Indexed: 09/15/2023] Open
Abstract
Astrocytes control the formation of specific synaptic circuits via cell adhesion and secreted molecules. Astrocyte synaptogenic functions are dependent on the establishment of their complex morphology. However, it is unknown if distinct neuronal cues differentially regulate astrocyte morphogenesis. δ-Catenin was previously thought to be a neuron-specific protein that regulates dendrite morphology. We found δ-catenin is also highly expressed by astrocytes and required both in astrocytes and neurons for astrocyte morphogenesis. δ-Catenin is hypothesized to mediate transcellular interactions through the cadherin family of cell adhesion proteins. We used structural modeling and biochemical analyses to reveal that δ-catenin interacts with the N-cadherin juxtamembrane domain to promote N-cadherin surface expression. An autism-linked δ-catenin point mutation impaired N-cadherin cell surface expression and reduced astrocyte complexity. In the developing mouse cortex, only lower-layer cortical neurons express N-cadherin. Remarkably, when we silenced astrocytic N-cadherin throughout the cortex, only lower-layer astrocyte morphology was disrupted. These findings show that δ-catenin controls astrocyte-neuron cadherin interactions that regulate layer-specific astrocyte morphogenesis.
Collapse
Affiliation(s)
- Christabel Xin Tan
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | | | - Evelyn J. Hardin
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Kristina Sakers
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Ryan Baumert
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Juan J. Ramirez
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| | - Justin T. Savage
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| | - Cagla Eroglu
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
8
|
Kang M, Ang TFA, Devine SA, Sherva R, Mukherjee S, Trittschuh EH, Gibbons LE, Scollard P, Lee M, Choi SE, Klinedinst B, Nakano C, Dumitrescu LC, Durant A, Hohman TJ, Cuccaro ML, Saykin AJ, Kukull WA, Bennett DA, Wang LS, Mayeux RP, Haines JL, Pericak-Vance MA, Schellenberg GD, Crane PK, Au R, Lunetta KL, Mez JB, Farrer LA. A genome-wide search for pleiotropy in more than 100,000 harmonized longitudinal cognitive domain scores. Mol Neurodegener 2023; 18:40. [PMID: 37349795 PMCID: PMC10286470 DOI: 10.1186/s13024-023-00633-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND More than 75 common variant loci account for only a portion of the heritability for Alzheimer's disease (AD). A more complete understanding of the genetic basis of AD can be deduced by exploring associations with AD-related endophenotypes. METHODS We conducted genome-wide scans for cognitive domain performance using harmonized and co-calibrated scores derived by confirmatory factor analyses for executive function, language, and memory. We analyzed 103,796 longitudinal observations from 23,066 members of community-based (FHS, ACT, and ROSMAP) and clinic-based (ADRCs and ADNI) cohorts using generalized linear mixed models including terms for SNP, age, SNP × age interaction, sex, education, and five ancestry principal components. Significance was determined based on a joint test of the SNP's main effect and interaction with age. Results across datasets were combined using inverse-variance meta-analysis. Genome-wide tests of pleiotropy for each domain pair as the outcome were performed using PLACO software. RESULTS Individual domain and pleiotropy analyses revealed genome-wide significant (GWS) associations with five established loci for AD and AD-related disorders (BIN1, CR1, GRN, MS4A6A, and APOE) and eight novel loci. ULK2 was associated with executive function in the community-based cohorts (rs157405, P = 2.19 × 10-9). GWS associations for language were identified with CDK14 in the clinic-based cohorts (rs705353, P = 1.73 × 10-8) and LINC02712 in the total sample (rs145012974, P = 3.66 × 10-8). GRN (rs5848, P = 4.21 × 10-8) and PURG (rs117523305, P = 1.73 × 10-8) were associated with memory in the total and community-based cohorts, respectively. GWS pleiotropy was observed for language and memory with LOC107984373 (rs73005629, P = 3.12 × 10-8) in the clinic-based cohorts, and with NCALD (rs56162098, P = 1.23 × 10-9) and PTPRD (rs145989094, P = 8.34 × 10-9) in the community-based cohorts. GWS pleiotropy was also found for executive function and memory with OSGIN1 (rs12447050, P = 4.09 × 10-8) and PTPRD (rs145989094, P = 3.85 × 10-8) in the community-based cohorts. Functional studies have previously linked AD to ULK2, NCALD, and PTPRD. CONCLUSION Our results provide some insight into biological pathways underlying processes leading to domain-specific cognitive impairment and AD, as well as a conduit toward a syndrome-specific precision medicine approach to AD. Increasing the number of participants with harmonized cognitive domain scores will enhance the discovery of additional genetic factors of cognitive decline leading to AD and related dementias.
Collapse
Affiliation(s)
- Moonil Kang
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street E200, Boston, MA 02118 USA
| | - Ting Fang Alvin Ang
- Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
- Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
- Slone Epidemiology Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
| | - Sherral A. Devine
- Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
- Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
| | - Richard Sherva
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street E200, Boston, MA 02118 USA
| | - Shubhabrata Mukherjee
- Department of Medicine, University of Washington School of Medicine, Seattle, WA USA
| | - Emily H. Trittschuh
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA USA
| | - Laura E. Gibbons
- Department of Medicine, University of Washington School of Medicine, Seattle, WA USA
| | - Phoebe Scollard
- Department of Medicine, University of Washington School of Medicine, Seattle, WA USA
| | - Michael Lee
- Department of Medicine, University of Washington School of Medicine, Seattle, WA USA
| | - Seo-Eun Choi
- Department of Medicine, University of Washington School of Medicine, Seattle, WA USA
| | - Brandon Klinedinst
- Department of Medicine, University of Washington School of Medicine, Seattle, WA USA
| | - Connie Nakano
- Department of Medicine, University of Washington School of Medicine, Seattle, WA USA
| | - Logan C. Dumitrescu
- Vanderbilt Memory & Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN USA
| | - Alaina Durant
- Vanderbilt Memory & Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN USA
| | - Timothy J. Hohman
- Vanderbilt Memory & Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN USA
| | - Michael L. Cuccaro
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, Miami, FL USA
| | - Andrew J. Saykin
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN USA
- Department of Radiology and Imaging Services, Indiana University School of Medicine, Indianapolis, IN USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN USA
| | - Walter A. Kukull
- Department of Epidemiology, University of Washington, Seattle, WA USA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL USA
| | - Li-San Wang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA USA
| | - Richard P. Mayeux
- Department of Neurology, Columbia University School of Medicine, New York, NY USA
| | - Jonathan L. Haines
- Cleveland Institute for Computational Biology, Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH USA
| | | | - Gerard D. Schellenberg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA USA
| | - Paul K. Crane
- Department of Medicine, University of Washington School of Medicine, Seattle, WA USA
| | - Rhoda Au
- Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
- Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
- Slone Epidemiology Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
- Boston University Alzheimer’s Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA USA
| | - Kathryn L. Lunetta
- Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA USA
| | - Jesse B. Mez
- Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
- Boston University Alzheimer’s Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
| | - Lindsay A. Farrer
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street E200, Boston, MA 02118 USA
- Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
- Boston University Alzheimer’s Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
- Department of Ophthalmology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
| |
Collapse
|
9
|
Mendez-Vazquez H, Roach RL, Nip K, Sathler MF, Garver T, Danzman RA, Moseley MC, Roberts JP, Koch ON, Steger AA, Lee R, Arikkath J, Kim S. The autism-associated loss of δ-catenin functions disrupts social behaviors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.12.523372. [PMID: 36711484 PMCID: PMC9882145 DOI: 10.1101/2023.01.12.523372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
δ-catenin is expressed in excitatory synapses and functions as an anchor for the glutamatergic AMPA receptor (AMPAR) GluA2 subunit in the postsynaptic density. The glycine 34 to serine (G34S) mutation in the δ-catenin gene is found in autism spectrum disorder (ASD) patients and induces loss of δ-catenin functions at excitatory synapses, which is presumed to underlie ASD pathogenesis in humans. However, how the G34S mutation causes loss of δ-catenin functions to induce ASD remains unclear. Here, using neuroblastoma cells, we discover that the G34S mutation generates an additional phosphorylation site for glycogen synthase kinase 3β (GSK3β). This promotes δ-catenin degradation and causes the reduction of δ-catenin levels, which likely contributes to the loss of δ-catenin functions. Synaptic δ-catenin and GluA2 levels in the cortex are significantly decreased in mice harboring the δ-catenin G34S mutation. The G34S mutation increases glutamatergic activity in cortical excitatory neurons while it is decreased in inhibitory interneurons, indicating changes in cellular excitation and inhibition. δ-catenin G34S mutant mice also exhibit social dysfunction, a common feature of ASD. Most importantly, inhibition of GSK3β activity reverses the G34S-induced loss of δ-catenin function effects in cells and mice. Finally, using δ-catenin knockout mice, we confirm that δ-catenin is required for GSK3β inhibition-induced restoration of normal social behaviors in δ-catenin G34S mutant animals. Taken together, we reveal that the loss of δ-catenin functions arising from the ASD-associated G34S mutation induces social dysfunction via alterations in glutamatergic activity and that GSK3β inhibition can reverse δ-catenin G34S-induced synaptic and behavioral deficits. Significance Statement δ-catenin is important for the localization and function of glutamatergic AMPA receptors at synapses in many brain regions. The glycine 34 to serine (G34S) mutation in the δ-catenin gene is found in autism patients and results in the loss of δ-catenin functions. δ-catenin expression is also closely linked to other autism-risk genes involved in synaptic structure and function, further implying that it is important for the autism pathophysiology. Importantly, social dysfunction is a key characteristic of autism. Nonetheless, the links between δ-catenin functions and social behaviors are largely unknown. The significance of the current research is thus predicated on filling this gap by discovering the molecular, cellular, and synaptic underpinnings of the role of δ-catenin in social behaviors.
Collapse
|
10
|
Linseman DA, Lu Q. Editorial: Rho family GTPases and their effectors in neuronal survival and neurodegeneration. Front Cell Neurosci 2023; 17:1161072. [PMID: 36896267 PMCID: PMC9989285 DOI: 10.3389/fncel.2023.1161072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/23/2023] Open
Affiliation(s)
- Daniel A Linseman
- Department of Biological Sciences, Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, United States
| | - Qun Lu
- The Harriet and John Wooten Laboratory for Alzheimer's and Neurodegenerative Diseases Research, Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| |
Collapse
|
11
|
Moncaster JA, Moir RD, Burton MA, Chadwick O, Minaeva O, Alvarez VE, Ericsson M, Clark JI, McKee AC, Tanzi RE, Goldstein LE. Alzheimer's disease amyloid-β pathology in the lens of the eye. Exp Eye Res 2022; 221:108974. [PMID: 35202705 PMCID: PMC9873124 DOI: 10.1016/j.exer.2022.108974] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 01/26/2023]
Abstract
Neuropathological hallmarks of Alzheimer's disease (AD) include pathogenic accumulation of amyloid-β (Aβ) peptides and age-dependent formation of amyloid plaques in the brain. AD-associated Aβ neuropathology begins decades before onset of cognitive symptoms and slowly progresses over the course of the disease. We previously reported discovery of Aβ deposition, β-amyloidopathy, and co-localizing supranuclear cataracts (SNC) in lenses from people with AD, but not other neurodegenerative disorders or normal aging. We confirmed AD-associated Aβ molecular pathology in the lens by immunohistopathology, amyloid histochemistry, immunoblot analysis, epitope mapping, immunogold electron microscopy, quantitative immunoassays, and tryptic digest mass spectrometry peptide sequencing. Ultrastructural analysis revealed that AD-associated Aβ deposits in AD lenses localize as electron-dense microaggregates in the cytoplasm of supranuclear (deep cortex) fiber cells. These Aβ microaggregates also contain αB-crystallin and scatter light, thus linking Aβ pathology and SNC phenotype expression in the lenses of people with AD. Subsequent research identified Aβ lens pathology as the molecular origin of the distinctive cataracts associated with Down syndrome (DS, trisomy 21), a chromosomal disorder invariantly associated with early-onset Aβ accumulation and Aβ amyloidopathy in the brain. Investigation of 1249 participants in the Framingham Eye Study found that AD-associated quantitative traits in brain and lens are co-heritable. Moreover, AD-associated lens traits preceded MRI brain traits and cognitive deficits by a decade or more and predicted future AD. A genome-wide association study of bivariate outcomes in the same subjects identified a new AD risk factor locus in the CTNND2 gene encoding δ-catenin, a protein that modulates Aβ production in brain and lens. Here we report identification of AD-related human Aβ (hAβ) lens pathology and age-dependent SNC phenotype expression in the Tg2576 transgenic mouse model of AD. Tg2576 mice express Swedish mutant human amyloid precursor protein (APP-Swe), accumulate hAβ peptides and amyloid pathology in the brain, and exhibit cognitive deficits that slowly progress with increasing age. We found that Tg2576 trangenic (Tg+) mice, but not non-transgenic (Tg-) control mice, also express human APP, accumulate hAβ peptides, and develop hAβ molecular and ultrastructural pathologies in the lens. Tg2576 Tg+ mice exhibit age-dependent Aβ supranuclear lens opacification that recapitulates lens pathology and SNC phenotype expression in human AD. In addition, we detected hAβ in conditioned medium from lens explant cultures prepared from Tg+ mice, but not Tg- control mice, a finding consistent with constitutive hAβ generation in the lens. In vitro studies showed that hAβ promoted mouse lens protein aggregation detected by quasi-elastic light scattering (QLS) spectroscopy. These results support mechanistic (genotype-phenotype) linkage between Aβ pathology and AD-related phenotypes in lens and brain. Collectively, our findings identify Aβ pathology as the shared molecular etiology of two age-dependent AD-related cataracts associated with two human diseases (AD, DS) and homologous murine cataracts in the Tg2576 transgenic mouse model of AD. These results represent the first evidence of AD-related Aβ pathology outside the brain and point to lens Aβ as an optically-accessible AD biomarker for early detection and longitudinal monitoring of this devastating neurodegenerative disease.
Collapse
Affiliation(s)
- Juliet A. Moncaster
- Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, MA, 02118, USA,Boston University Alzheimer’s Disease Research Center, Boston University School of Medicine, 72 East Concord Street, B-7800 Boston, MA, 02118, USA
| | - Robert D. Moir
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Mark A. Burton
- Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Oliver Chadwick
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Olga Minaeva
- Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, MA, 02118, USA,Boston University Alzheimer’s Disease Research Center, Boston University School of Medicine, 72 East Concord Street, B-7800 Boston, MA, 02118, USA
| | - Victor E. Alvarez
- Boston University Alzheimer’s Disease Research Center, Boston University School of Medicine, 72 East Concord Street, B-7800 Boston, MA, 02118, USA,Edith Nourse Rogers Memorial Veterans’ Hospital, Bedford, MA, 01730, USA
| | - Maria Ericsson
- Electron Microscopy Facility, Harvard Medical School, Boston, MA, 02115, USA
| | - John I. Clark
- Departments of Biological Structure and Ophthalmology, University of Washington, Seattle, WA, 98195, USA
| | - Ann C. McKee
- Boston University Alzheimer’s Disease Research Center, Boston University School of Medicine, 72 East Concord Street, B-7800 Boston, MA, 02118, USA,Edith Nourse Rogers Memorial Veterans’ Hospital, Bedford, MA, 01730, USA
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Lee E. Goldstein
- Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, MA, 02118, USA,Boston University Alzheimer’s Disease Research Center, Boston University School of Medicine, 72 East Concord Street, B-7800 Boston, MA, 02118, USA,Corresponding author. Molecular Aging & Development Laboratory, Boston University, School of Medicine, 670 Albany Street, Boston, MA, 02118, USA. (L.E. Goldstein)
| |
Collapse
|
12
|
Martin JB, Herman K, Houssin NS, Rich W, Reilly MA, Plageman TF. Arvcf Dependent Adherens Junction Stability is Required to Prevent Age-Related Cortical Cataracts. Front Cell Dev Biol 2022; 10:840129. [PMID: 35874813 PMCID: PMC9297370 DOI: 10.3389/fcell.2022.840129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/14/2022] [Indexed: 11/30/2022] Open
Abstract
The etiology of age-related cortical cataracts is not well understood but is speculated to be related to alterations in cell adhesion and/or the changing mechanical stresses occurring in the lens with time. The role of cell adhesion in maintaining lens transparency with age is difficult to assess because of the developmental and physiological roles that well-characterized adhesion proteins have in the lens. This report demonstrates that Arvcf, a member of the p120-catenin subfamily of catenins that bind to the juxtamembrane domain of cadherins, is an essential fiber cell protein that preserves lens transparency with age in mice. No major developmental defects are observed in the absence of Arvcf, however, cortical cataracts emerge in all animals examined older than 6-months of age. While opacities are not obvious in young animals, histological anomalies are observed in lenses at 4-weeks that include fiber cell separations, regions of hexagonal lattice disorganization, and absence of immunolabeled membranes. Compression analysis of whole lenses also revealed that Arvcf is required for their normal biomechanical properties. Immunofluorescent labeling of control and Arvcf-deficient lens fiber cells revealed a reduction in membrane localization of N-cadherin, β-catenin, and αN-catenin. Furthermore, super-resolution imaging demonstrated that the reduction in protein membrane localization is correlated with smaller cadherin nanoclusters. Additional characterization of lens fiber cell morphology with electron microscopy and high resolution fluorescent imaging also showed that the cellular protrusions of fiber cells are abnormally elongated with a reduction and disorganization of cadherin complex protein localization. Together, these data demonstrate that Arvcf is required to maintain transparency with age by mediating the stability of the N-cadherin protein complex in adherens junctions.
Collapse
Affiliation(s)
- Jessica B. Martin
- College of Optometry, The Ohio State University, Columbus, OH, United States
| | - Kenneth Herman
- College of Optometry, The Ohio State University, Columbus, OH, United States
| | - Nathalie S. Houssin
- College of Optometry, The Ohio State University, Columbus, OH, United States
| | - Wade Rich
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, United States
| | - Matthew A. Reilly
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, United States
- Department of Ophthalmology and Visual Science, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Timothy F. Plageman
- College of Optometry, The Ohio State University, Columbus, OH, United States
- *Correspondence: Timothy F. Plageman Jr.,
| |
Collapse
|
13
|
Donta MS, Srivastava Y, McCrea PD. Delta-Catenin as a Modulator of Rho GTPases in Neurons. Front Cell Neurosci 2022; 16:939143. [PMID: 35860313 PMCID: PMC9289679 DOI: 10.3389/fncel.2022.939143] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/09/2022] [Indexed: 12/03/2022] Open
Abstract
Small Rho GTPases are molecular switches that are involved in multiple processes including regulation of the actin cytoskeleton. These GTPases are activated (turned on) and inactivated (turned off) through various upstream effector molecules to carry out many cellular functions. One such upstream modulator of small Rho GTPase activity is delta-catenin, which is a protein in the p120-catenin subfamily that is enriched in the central nervous system. Delta-catenin affects small GTPase activity to assist in the developmental formation of dendrites and dendritic spines and to maintain them once they mature. As the dendritic arbor and spine density are crucial for synapse formation and plasticity, delta-catenin's ability to modulate small Rho GTPases is necessary for proper learning and memory. Accordingly, the misregulation of delta-catenin and small Rho GTPases has been implicated in several neurological and non-neurological pathologies. While links between delta-catenin and small Rho GTPases have yet to be studied in many contexts, known associations include some cancers, Alzheimer's disease (AD), Cri-du-chat syndrome, and autism spectrum disorder (ASD). Drawing from established studies and recent discoveries, this review explores how delta-catenin modulates small Rho GTPase activity. Future studies will likely elucidate how PDZ proteins that bind delta-catenin further influence small Rho GTPases, how delta-catenin may affect small GTPase activity at adherens junctions when bound to N-cadherin, mechanisms behind delta-catenin's ability to modulate Rac1 and Cdc42, and delta-catenin's ability to modulate small Rho GTPases in the context of diseases, such as cancer and AD.
Collapse
Affiliation(s)
- Maxsam S. Donta
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center University of Texas Health Science Center Houston Graduate School of Biomedical Science, Houston, TX, United States
| | - Yogesh Srivastava
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Pierre D. McCrea
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center University of Texas Health Science Center Houston Graduate School of Biomedical Science, Houston, TX, United States
- Program in Neuroscience, The University of Texas MD Anderson Cancer Center University of Texas Health Science Center Houston Graduate School of Biomedical Science, Houston, TX, United States
| |
Collapse
|
14
|
Alzheimer's Disease Seen through the Eye: Ocular Alterations and Neurodegeneration. Int J Mol Sci 2022; 23:ijms23052486. [PMID: 35269629 PMCID: PMC8910735 DOI: 10.3390/ijms23052486] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/18/2022] Open
Abstract
Alzheimer’s Disease (AD) is one of the main neurodegenerative diseases worldwide. Unfortunately, AD shares many similarities with other dementias at early stages, which impedes an accurate premortem diagnosis. Therefore, it is urgent to find biomarkers to allow for early diagnosis of the disease. There is increasing scientific evidence highlighting the similarities between the eye and other structures of the CNS, suggesting that knowledge acquired in eye research could be useful for research and diagnosis of AD. For example, the retina and optic nerve are considered part of the central nervous system, and their damage can result in retrograde and anterograde axon degeneration, as well as abnormal protein aggregation. In the anterior eye segment, the aqueous humor and tear film may be comparable to the cerebrospinal fluid. Both fluids are enriched with molecules that can be potential neurodegenerative biomarkers. Indeed, the pathophysiology of AD, characterized by cerebral deposits of amyloid-beta (Aβ) and tau protein, is also present in the eyes of AD patients, besides numerous structural and functional changes observed in the structure of the eyes. Therefore, all this evidence suggests that ocular changes have the potential to be used as either predictive values for AD assessment or as diagnostic tools.
Collapse
|
15
|
Olive oil and wine as source of multi-target agents in the prevention of Alzheimer disease. Nutr Res Rev 2021; 36:140-154. [PMID: 34895363 DOI: 10.1017/s095442242100041x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Olive oil and wine are consumed daily worldwide and they constitute the fundamental pillars of the healthy Mediterranean diet. Polyphenolic compounds, naturally present in both olive oil and wine, are responsible for their beneficial properties. Current studies have shown the neuroprotective effects of polyphenols independently of their well-known antioxidant action. In this work, we have focused on reviewing the protective effect of polyphenols from extra virgin olive oil and wine in Alzheimer´s disease (AD), to emphasize that both food could be a possible therapeutic tool. Beneficial effects have been described in β-aggregation, neurofibrillary tangles, autophagy and mitochondrial function, as well as in cerebral insulin resistance. Furthermore, to date a harmful dose has not been described. Both preclinical and clinical works demonstrate that polyphenols act on neuropathological and cognitive disorders of AD, preventing or stopping the onset of this devastating disease. However, there are certain limitations in these studies, since it is very difficult to research diseases that lead to cognitive impairment. Although all the findings obtained are very encouraging, more studies should be carried out to use the polyphenols from olive oil and wine as therapeutic agents in the progression of AD. Therefore, more longitudinal studies in humans with a homogeneous cohort of patients are necessary to corroborate the efficacy of these nutraceuticals, as well as analyze which is the most appropriate dose for this purpose.
Collapse
|
16
|
Examining the effects of cigarette smoke on mouse lens through a multi OMIC approach. Sci Rep 2021; 11:18801. [PMID: 34552108 PMCID: PMC8458305 DOI: 10.1038/s41598-021-95013-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 07/14/2021] [Indexed: 11/22/2022] Open
Abstract
Here, we report a multi OMIC (transcriptome, proteome, and metabolome) approach to investigate molecular changes in lens fiber cells (FC) of mice exposed to cigarette smoke (CS). Pregnant mice were placed in a whole-body smoke chamber and a few days later pups were born, which were exposed to CS for 5 hours/day, 5 days/week for a total of 3½ months. We examined the mice exposed to CS for CS-related cataractogenesis after completion of the CS exposure but no cataracts were observed. Lenses of CS-exposed and age-matched, untreated control mice were extracted and lens FC were subjected to multi OMIC profiling. We identified 348 genes, 130 proteins, and 14 metabolites exhibiting significant (p < 0.05) differential levels in lens FC of mice exposed to CS, corresponding to 3.6%, 4.3%, and 5.0% of the total genes, protein, and metabolites, respectively identified in this study. Our multi OMIC approach confirmed that only a small fraction of the transcriptome, the proteome, and the metabolome was perturbed in the lens FC of mice exposed to CS, which suggests that exposure of CS had a minimal effect on the mouse lens. It is worth noting that while our results confirm that CS exposure does not have a substantial impact on the molecular landscape of the mouse lens FC, we cannot rule out that CS exposure for longer durations and/or in combination with other morbidities or environmental factors would have a more robust effect and/or result in cataractogenesis.
Collapse
|
17
|
Fereshetian S, Agranat JS, Siegel N, Ness S, Stein TD, Subramanian ML. Protein and Imaging Biomarkers in the Eye for Early Detection of Alzheimer's Disease. J Alzheimers Dis Rep 2021; 5:375-387. [PMID: 34189409 PMCID: PMC8203283 DOI: 10.3233/adr-210283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2021] [Indexed: 12/28/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most common causes of dementia worldwide. Although no formal curative therapy exists for the treatment of AD, considerable research has been performed to identify biomarkers for early detection of this disease, and thus improved subsequent management. Given that the eye can be examined and imaged non-invasively with relative ease, it has emerged as an exciting area of research for evidence of biomarkers and to aid in the early diagnosis of AD. This review explores the current understanding of both protein and retinal imaging biomarkers in the eye. Herein, primary findings in the literature regarding AD biomarkers associated with the lens, retina, and other ocular structures are reviewed.
Collapse
Affiliation(s)
- Shaunt Fereshetian
- Boston University School of Medicine, Department of Ophthalmology, Boston, MA, USA
| | - Joshua S. Agranat
- Boston University School of Medicine, Department of Ophthalmology, Boston, MA, USA
- Boston Medical Center, Boston, MA, USA
| | - Nicole Siegel
- Boston University School of Medicine, Department of Ophthalmology, Boston, MA, USA
- Boston Medical Center, Boston, MA, USA
| | - Steven Ness
- Boston University School of Medicine, Department of Ophthalmology, Boston, MA, USA
- Boston Medical Center, Boston, MA, USA
| | - Thor D. Stein
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- Department of Veterans Affairs Medical Center, Bedford, MA, USA
| | - Manju L. Subramanian
- Boston University School of Medicine, Department of Ophthalmology, Boston, MA, USA
- Boston Medical Center, Boston, MA, USA
| |
Collapse
|
18
|
Yamamoto N, Takeda S, Hatsusaka N, Hiramatsu N, Nagai N, Deguchi S, Nakazawa Y, Takata T, Kodera S, Hirata A, Kubo E, Sasaki H. Effect of a Lens Protein in Low-Temperature Culture of Novel Immortalized Human Lens Epithelial Cells (iHLEC-NY2). Cells 2020; 9:cells9122670. [PMID: 33322631 PMCID: PMC7764252 DOI: 10.3390/cells9122670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/27/2020] [Accepted: 12/11/2020] [Indexed: 11/24/2022] Open
Abstract
The prevalence of nuclear cataracts was observed to be significantly higher among residents of tropical and subtropical regions compared to those of temperate and subarctic regions. We hypothesized that elevated environmental temperatures may pose a risk of nuclear cataract development. The results of our in silico simulation revealed that in temperate and tropical regions, the human lens temperature ranges from 35.0 °C to 37.5 °C depending on the environmental temperature. The medium temperature changes during the replacement regularly in the cell culture experiment were carefully monitored using a sensor connected to a thermometer and showed a decrease of 1.9 °C, 3.0 °C, 1.7 °C, and 0.1 °C, after 5 min when setting the temperature of the heat plate device at 35.0 °C, 37.5 °C, 40.0 °C, and 42.5 °C, respectively. In the newly created immortalized human lens epithelial cell line clone NY2 (iHLEC-NY2), the amounts of RNA synthesis of αA crystallin, protein expression, and amyloid β (Aβ)1-40 secreted into the medium were increased at the culture temperature of 37.5 °C compared to 35.0 °C. In short-term culture experiments, the secretion of Aβ1-40 observed in cataracts was increased at 37.5 °C compared to 35.0 °C, suggesting that the long-term exposure to a high-temperature environment may increase the risk of cataracts.
Collapse
Affiliation(s)
- Naoki Yamamoto
- Department of Ophthalmology, Kanazawa Medical University, Ishikawa 920-0293, Japan; (N.Y.); (S.T.); (N.H.); (E.K.)
- Research Promotion and Support Headquarters, Fujita Health University, Aichi 470-1192, Japan;
| | - Shun Takeda
- Department of Ophthalmology, Kanazawa Medical University, Ishikawa 920-0293, Japan; (N.Y.); (S.T.); (N.H.); (E.K.)
| | - Natsuko Hatsusaka
- Department of Ophthalmology, Kanazawa Medical University, Ishikawa 920-0293, Japan; (N.Y.); (S.T.); (N.H.); (E.K.)
| | - Noriko Hiramatsu
- Research Promotion and Support Headquarters, Fujita Health University, Aichi 470-1192, Japan;
| | - Noriaki Nagai
- Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan; (N.N.); (S.D.)
| | - Saori Deguchi
- Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan; (N.N.); (S.D.)
| | - Yosuke Nakazawa
- Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan;
| | - Takumi Takata
- Radiation Biochemistry, Division of Radiation Life Science, Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka 590-0494, Japan;
| | - Sachiko Kodera
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Aichi 466-8555, Japan; (S.K.); (A.H.)
| | - Akimasa Hirata
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Aichi 466-8555, Japan; (S.K.); (A.H.)
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Aichi 466-8555, Japan
| | - Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, Ishikawa 920-0293, Japan; (N.Y.); (S.T.); (N.H.); (E.K.)
| | - Hiroshi Sasaki
- Department of Ophthalmology, Kanazawa Medical University, Ishikawa 920-0293, Japan; (N.Y.); (S.T.); (N.H.); (E.K.)
- Correspondence: ; Tel.: +81-762-286-2211
| |
Collapse
|
19
|
Wang J, Liu F, Song X, Li T. Association of 5p15.2 and 15q14 with high myopia in Tujia and Miao Chinese populations. BMC Ophthalmol 2020; 20:255. [PMID: 32586281 PMCID: PMC7318420 DOI: 10.1186/s12886-020-01516-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 06/12/2020] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The polymorphisms rs6885224 and rs634990 have been reported to be associated with high myopia in many populations. As there is still no report on whether these two SNPs are associated with myopia in the Tujia and Miao minority areas of China, we conducted a replication study to evaluate the association of single-nucleotide polymorphisms in the regions 5p15.2 and 15q14 with high myopia in Tujia and Miao Chinese populations. METHODS We performed a comprehensive meta-analysis of 5831 cases and 7055 controls to assess whether rs6885224 in the 5p15.2 region and rs634990 in the 15q14 region are associated with high myopia. Our replication study enrolled 804 individuals. Genomic DNA was extracted from venous leukocytes, and these two SNPs were genotyped by Sanger sequencing. Allele and genotype frequencies were analysed using χ2 tests, and ORs and 95% CIs were calculated. RESULTS According to the results of the meta-analysis, rs6885224 in the CTNND2 gene showed no association with myopia [p = 0.222, OR = 1.154, 95% CI (0.917-1.452)]. Conversely, rs634990 in the 15q14 region did exhibit a significant correlation with myopia [p = 7.270 × 10- 7, OR = 0.817, 95% CI (0.754-0.885)]. In our replication study, no association with high myopia in the Tujia and Miao populations was found for rs634990 or rs6885224. The following were obtained by allele frequency analysis: rs6885224, p = 0.175, OR = 0.845, and 95% CI = 0.662-1.078; rs634990, p = 0.087, OR = 0.84, and the 95% CI = 0.687-1.026. Genotype frequency analysis yielded p = 0.376 for rs6885224 and p = 0.243 for rs634990. CONCLUSIONS Our meta-analysis results show that rs634990 was significantly associated with myopia but that rs6885224 was not. Nevertheless, in our replication study, these two SNPs showed no association with myopia in the Tujia and Miao Chinese populations. This is the first report involving Tujia and Miao ethnic groups from Enshi minority areas. However, the sample size needs to be expanded and more stringent inclusion and exclusion criteria need to be formulated to verify the findings.
Collapse
Affiliation(s)
- Junwen Wang
- Department of Hubei Minzu University Affiliated Enshi Clinical Medical School, The Central Hospital of Enshi Tujia And Miao Autonomous Prefecture, No.158, Wuyang Road, Enshi, 445000, Hubei Provence, China
| | - Fang Liu
- Department of Hubei Minzu University Affiliated Enshi Clinical Medical School, The Central Hospital of Enshi Tujia And Miao Autonomous Prefecture, No.158, Wuyang Road, Enshi, 445000, Hubei Provence, China.,Department of Eye Centre, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Xiusheng Song
- Department of Hubei Minzu University Affiliated Enshi Clinical Medical School, The Central Hospital of Enshi Tujia And Miao Autonomous Prefecture, No.158, Wuyang Road, Enshi, 445000, Hubei Provence, China
| | - Tuo Li
- Department of Hubei Minzu University Affiliated Enshi Clinical Medical School, The Central Hospital of Enshi Tujia And Miao Autonomous Prefecture, No.158, Wuyang Road, Enshi, 445000, Hubei Provence, China.
| |
Collapse
|
20
|
Eugui P, Harper DJ, Kummer S, Lichtenegger A, Gesperger J, Himmel T, Augustin M, Merkle CW, Glösmann M, Baumann B. Three-dimensional visualization of opacifications in the murine crystalline lens by in vivo optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2020; 11:2085-2097. [PMID: 32341868 PMCID: PMC7173898 DOI: 10.1364/boe.387335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/05/2020] [Accepted: 03/12/2020] [Indexed: 05/03/2023]
Abstract
Diagnostic classification techniques used to diagnose cataracts, the world's leading cause of blindness, are currently based on subjective methods. Here, we present optical coherence tomography as a noninvasive tool for volumetric visualization of lesions formed in the crystalline lens. A custom-made swept-source optical coherence tomography (SS-OCT) system was utilized to investigate the murine crystalline lens. In addition to imaging cataractous lesions in aged wildtype mice, we studied the structure and shape of cataracts in a mouse model of Alzheimer's disease. Hyperscattering opacifications in the crystalline lens were observed in both groups. Post mortem histological analysis were performed to correlate findings in the anterior and posterior part of the lens to 3D OCT in vivo imaging. Our results showcase the capability of OCT to rapidly visualize cataractous lesions in the murine lens and suggest that OCT might be a valuable tool that provides additional insight for preclinical studies of cataract formation.
Collapse
Affiliation(s)
- Pablo Eugui
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
| | - Danielle J. Harper
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
| | - Stefan Kummer
- Core Facility for Research and Technology, University of Veterinary Medicine, Austria
| | - Antonia Lichtenegger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
| | - Johanna Gesperger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
- Division of Neuropathology and Neurochemistry, Department of Neurology of the Medical University of Vienna, Austria
| | - Tanja Himmel
- Core Facility for Research and Technology, University of Veterinary Medicine, Austria
| | - Marco Augustin
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
| | - Conrad W. Merkle
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
| | - Martin Glösmann
- Core Facility for Research and Technology, University of Veterinary Medicine, Austria
| | - Bernhard Baumann
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
| |
Collapse
|
21
|
Ryu T, Park HJ, Kim H, Cho YC, Kim BC, Jo J, Seo YW, Choi WS, Kim K. Improved memory and reduced anxiety in δ-catenin transgenic mice. Exp Neurol 2019; 318:22-31. [PMID: 30981806 DOI: 10.1016/j.expneurol.2019.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 03/13/2019] [Accepted: 04/10/2019] [Indexed: 10/27/2022]
Abstract
δ-Catenin is abundant in the brain and affects its synaptic plasticity. Furthermore, loss of δ-catenin is related to the deficits of learning and memory, mental retardation (cri-du-chat syndrome), and autism. A few studies about δ-catenin deficiency mice were performed. However, the effect of δ-catenin overexpression in the brain has not been investigated as yet. Therefore we generated a δ-catenin overexpressing mouse model. To generate a transgenic mouse model overexpressing δ-catenin in the brain, δ-catenin plasmid having a Thy-1 promotor was microinjected in C57BL/6 mice. Our results showed δ-catenin transgenic mice expressed higher levels of N-cadherin, β-catenin, and p120-catenin than did wild type mice. Furthermore, δ-catenin transgenic mice exhibited better object recognition, better sociability, and lower anxiety than wild type mice. However, both mice groups showed a similar pattern in locomotion tests. Although δ-catenin transgenic mice show similar locomotion, they show improved sociability and reduced anxiety. These characteristics are opposite to the symptoms of autism or mental retardation, which are caused when δ-catenin is deficient. These results suggest that δ-catenin may alleviate symptoms of autism, Alzheimer's disease and mental retardation.
Collapse
Affiliation(s)
- Taeyong Ryu
- College of Pharmacy and Research Institute for Drug Development, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hyung Joon Park
- School of Biological Sciences and Technology, College of Natural Sciences, College of Medicine, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hangun Kim
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon 57922, Republic of Korea
| | - Young-Chang Cho
- College of Pharmacy and Research Institute for Drug Development, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Byeong C Kim
- Department of Neurology, Chonnam National University Medical School, Gwnagju 61469, Republic of Korea
| | - Jihoon Jo
- Department of Neurology, Chonnam National University Medical School, Gwnagju 61469, Republic of Korea
| | - Young-Woo Seo
- Korea Basic Science Institute, Gwangju Center, Gwangju 61186, Republic of Korea
| | - Won-Seok Choi
- School of Biological Sciences and Technology, College of Natural Sciences, College of Medicine, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Kwonseop Kim
- College of Pharmacy and Research Institute for Drug Development, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
22
|
Choi SI, Lee B, Woo JH, Jeong JB, Jun I, Kim EK. APP processing and metabolism in corneal fibroblasts and epithelium as a potential biomarker for Alzheimer's disease. Exp Eye Res 2019; 182:167-174. [PMID: 30930125 DOI: 10.1016/j.exer.2019.03.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/18/2019] [Accepted: 03/17/2019] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) primarily affects the brain and is the most common form of dementia worldwide. Despite more than a century of research, there are still no early biomarkers for AD. It has been reported that AD affects the eye, which is more accessible for imaging than the brain; however, links with the cornea have not been evaluated. To investigate whether the cornea could be used to identify possible diagnostic indicators of AD, we analyzed the proteolytic processing and isoforms of amyloid precursor protein (APP) and evaluated the expression of AD-related genes and proteins in corneal fibroblasts from wild-type (WT) corneas and corneas from patients with granular corneal dystrophy type 2 (GCD2), which is related to amyloid formation in the cornea. Reverse transcription polymerase chain reaction (RT-PCR) analysis was used to assess the expression of AD-related genes, i.e., APP, ADAM10, BACE1, BACE2, PSEN1, NCSTN, IDE, and NEP. RT-PCR and DNA sequencing analysis demonstrated that isoforms of APP770 and APP751, but not APP695, were expressed in corneal fibroblasts. Moreover, the mRNA ratio of APP770/APP751 isoforms was approximately 4:1. Western blot analysis also demonstrated the expression of a disintegrin and metalloprotease domain-containing protein 10 (ADAM10), beta-site APP-cleaving enzyme 1 (BACE1), nicastrin, insulin degradation enzyme, and neprilysin in corneal fibroblasts. Among these targets, the levels of immature ADAM10 and BACE1 protein were significantly increased in GCD2 cells. The expression levels of APP, ADAM10, BACE1, and transforming growth factor-beta-induced protein (TGFBIp) were also detected by western blot in human corneal epithelium. We also investigated the effects of inhibition of the autophagy-lysosomal and ubiquitin-proteasomal proteolytic systems (UPS) on APP processing and metabolism. These pathway inhibitors accumulated APP, α-carboxy-terminal fragments (CTFs), β-CTFs, and the C-terminal APP intracellular domain (AICD) in corneal fibroblasts. Analysis of microRNAs (miRNAs) revealed that miR-9 and miR-181a negatively coregulated BACE1 and TGFBIp, which was directly associated with the pathogenesis of AD and GCD2, respectively. Immunohistochemical analysis indicated that APP and BACE1 were distributed in corneal stroma cells, epithelial cells, and the retinal layer in mice. Collectively, we propose that the cornea, which is the transparent outermost layer of the eye and thus offers easy accessibility, could be used as a potential biomarker for AD diagnosis and progression.
Collapse
Affiliation(s)
- Seung-Il Choi
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Boram Lee
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong Hwan Woo
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Jang Bin Jeong
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Ikhyun Jun
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, South Korea; Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Eung Kweon Kim
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, South Korea; Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
23
|
Dai W, Ryu T, Kim H, Jin YH, Cho YC, Kim K. Effects of δ-Catenin on APP by Its Interaction with Presenilin-1. Mol Cells 2019; 42:36-44. [PMID: 30622228 PMCID: PMC6354058 DOI: 10.14348/molcells.2018.0273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/16/2018] [Accepted: 10/18/2018] [Indexed: 11/27/2022] Open
Abstract
Alzheimer's disease (AD) is the most frequent age-related human neurological disorder. The characteristics of AD include senile plaques, neurofibrillary tangles, and loss of synapses and neurons in the brain. β-Amyloid (Aβ) peptide is the predominant proteinaceous component of senile plaques. The amyloid hypothesis states that Aβ initiates the cascade of events that result in AD. Amyloid precursor protein (APP) processing plays an important role in Aβ production, which initiates synaptic and neuronal damage. δ-Catenin is known to be bound to presenilin-1 (PS-1), which is the main component of the γ-secretase complex that regulates APP cleavage. Because PS-1 interacts with both APP and δ-catenin, it is worth studying their interactive mechanism and/or effects on each other. Our immunoprecipitation data showed that there was no physical association between δ-catenin and APP. However, we observed that δ-catenin could reduce the binding between PS-1 and APP, thus decreasing the PS-1 mediated APP processing activity. Furthermore, δ-catenin reduced PS-1-mediated stabilization of APP. The results suggest that δ-catenin can influence the APP processing and its level by interacting with PS-1, which may eventually play a protective role in the degeneration of an Alzheimer's disease patient.
Collapse
Affiliation(s)
- Weiye Dai
- College of Pharmacy and Research Institute for Drug Development, Chonnam National University, Gwangju 61186,
Korea
| | - Taeyong Ryu
- College of Pharmacy and Research Institute for Drug Development, Chonnam National University, Gwangju 61186,
Korea
| | - Hangun Kim
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon 57922,
Korea
| | - Yun Hye Jin
- College of Pharmacy and Research Institute for Drug Development, Chonnam National University, Gwangju 61186,
Korea
| | - Young-Chang Cho
- College of Pharmacy and Research Institute for Drug Development, Chonnam National University, Gwangju 61186,
Korea
| | - Kwonseop Kim
- College of Pharmacy and Research Institute for Drug Development, Chonnam National University, Gwangju 61186,
Korea
| |
Collapse
|
24
|
Nazarian A, Yashin AI, Kulminski AM. Genome-wide analysis of genetic predisposition to Alzheimer's disease and related sex disparities. ALZHEIMERS RESEARCH & THERAPY 2019; 11:5. [PMID: 30636644 PMCID: PMC6330399 DOI: 10.1186/s13195-018-0458-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 12/06/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common cause of dementia in the elderly and the sixth leading cause of death in the United States. AD is mainly considered a complex disorder with polygenic inheritance. Despite discovering many susceptibility loci, a major proportion of AD genetic variance remains to be explained. METHODS We investigated the genetic architecture of AD in four publicly available independent datasets through genome-wide association, transcriptome-wide association, and gene-based and pathway-based analyses. To explore differences in the genetic basis of AD between males and females, analyses were performed on three samples in each dataset: males and females combined, only males, or only females. RESULTS Our genome-wide association analyses corroborated the associations of several previously detected AD loci and revealed novel significant associations of 35 single-nucleotide polymorphisms (SNPs) outside the chromosome 19q13 region at the suggestive significance level of p < 5E-06. These SNPs were mapped to 21 genes in 19 chromosomal regions. Of these, 17 genes were not associated with AD at genome-wide or suggestive levels of associations by previous genome-wide association studies. Also, the chromosomal regions corresponding to 8 genes did not contain any previously detected AD-associated SNPs with p < 5E-06. Our transcriptome-wide association and gene-based analyses revealed that 26 genes located in 20 chromosomal regions outside chromosome 19q13 had evidence of potential associations with AD at a false discovery rate of 0.05. Of these, 13 genes/regions did not contain any previously AD-associated SNPs at genome-wide or suggestive levels of associations. Most of the newly detected AD-associated SNPs and genes were sex specific, indicating sex disparities in the genetic basis of AD. Also, 7 of 26 pathways that showed evidence of associations with AD in our pathway-bases analyses were significant only in females. CONCLUSIONS Our findings, particularly the newly discovered sex-specific genetic contributors, provide novel insight into the genetic architecture of AD and can advance our understanding of its pathogenesis.
Collapse
Affiliation(s)
- Alireza Nazarian
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Erwin Mill Building, 2024 W. Main St., Durham, NC, 27705, USA.
| | - Anatoliy I Yashin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Erwin Mill Building, 2024 W. Main St., Durham, NC, 27705, USA
| | - Alexander M Kulminski
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Erwin Mill Building, 2024 W. Main St., Durham, NC, 27705, USA.
| |
Collapse
|
25
|
Leppäaho E, Renvall H, Salmela E, Kere J, Salmelin R, Kaski S. Discovering heritable modes of MEG spectral power. Hum Brain Mapp 2019; 40:1391-1402. [PMID: 30600573 PMCID: PMC6590382 DOI: 10.1002/hbm.24454] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/27/2018] [Accepted: 10/19/2018] [Indexed: 12/14/2022] Open
Abstract
Brain structure and many brain functions are known to be genetically controlled, but direct links between neuroimaging measures and their underlying cellular-level determinants remain largely undiscovered. Here, we adopt a novel computational method for examining potential similarities in high-dimensional brain imaging data between siblings. We examine oscillatory brain activity measured with magnetoencephalography (MEG) in 201 healthy siblings and apply Bayesian reduced-rank regression to extract a low-dimensional representation of familial features in the participants' spectral power structure. Our results show that the structure of the overall spectral power at 1-90 Hz is a highly conspicuous feature that not only relates siblings to each other but also has very high consistency within participants' own data, irrespective of the exact experimental state of the participant. The analysis is extended by seeking genetic associations for low-dimensional descriptions of the oscillatory brain activity. The observed variability in the MEG spectral power structure was associated with SDK1 (sidekick cell adhesion molecule 1) and suggestively with several other genes that function, for example, in brain development. The current results highlight the potential of sophisticated computational methods in combining molecular and neuroimaging levels for exploring brain functions, even for high-dimensional data limited to a few hundred participants.
Collapse
Affiliation(s)
- Eemeli Leppäaho
- Department of Computer Science, Helsinki Institute for Information Technology HIIT, Aalto University, Helsinki, Finland
| | - Hanna Renvall
- Department of Neuroscience and Biomedical Engineering, Aalto University, Helsinki, Finland.,Aalto NeuroImaging, Aalto University, Helsinki, Finland
| | - Elina Salmela
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Juha Kere
- Molecular Neurology Research Program, University of Helsinki, Folkhälsan Institute of Genetics, Helsinki, Finland.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,School of Basic and Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Riitta Salmelin
- Department of Neuroscience and Biomedical Engineering, Aalto University, Helsinki, Finland.,Aalto NeuroImaging, Aalto University, Helsinki, Finland
| | - Samuel Kaski
- Department of Computer Science, Helsinki Institute for Information Technology HIIT, Aalto University, Helsinki, Finland
| |
Collapse
|
26
|
Hurwitz SN, Sun L, Cole KY, Ford CR, Olcese JM, Meckes DG. An optimized method for enrichment of whole brain-derived extracellular vesicles reveals insight into neurodegenerative processes in a mouse model of Alzheimer's disease. J Neurosci Methods 2018; 307:210-220. [PMID: 29894726 DOI: 10.1016/j.jneumeth.2018.05.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 05/18/2018] [Accepted: 05/29/2018] [Indexed: 01/11/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the major cause of dementia that has increased dramatically in prevalence over the past several decades. Yet many questions still surround the etiology of AD. Recently, extracellular vesicles (EVs) that transport protein, lipid, and nucleic acids from cell to cell have been implicated in the clearance and propagation of misfolded proteins. Investigation of EVs in AD progression, and their potential diagnostic utility may contribute to understanding and treating AD. However, the challenges of isolating brain-derived EVs have in part hindered these studies. NEW METHOD Here, we provide an optimized method for the enrichment of brain-derived EVs by iodixanol floatation density gradient for mass spectrometry analysis. RESULTS We demonstrate the isolation of these vesicles and the enrichment of EV proteins compared to sedimentation gradient isolation of vesicles. Moreover, comparative proteomic analysis of brain-derived EVs from healthy and AD mouse brains revealed differences in vesicular content including proteins involved in aging, immune response, and oxidation-reduction maintenance. These changes provide insight into AD-associated neurodegeneration and potential biomarkers of AD. Comparison with existing methods: Recent techniques have used sedimentation sucrose gradients to isolate EVs from brain tissue. However, here we demonstrate the advantages of floatation iodixanol density gradient isolation of small EVs, and provide evidence of EV enrichment by electron microscopy, immunoblot analysis, and quantitative mass spectrometry. CONCLUSIONS Together these findings offer a rigorous technique for enriching whole tissue-derived EVs for downstream analyses, and application of this approach to uncovering molecular changes in AD progression and other neurological conditions.
Collapse
Affiliation(s)
- Stephanie N Hurwitz
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306, United States
| | - Li Sun
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306, United States
| | - Kalonji Y Cole
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306, United States
| | - Charles R Ford
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306, United States
| | - James M Olcese
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306, United States.
| | - David G Meckes
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306, United States.
| |
Collapse
|
27
|
Yuan L, Arikkath J. Functional roles of p120ctn family of proteins in central neurons. Semin Cell Dev Biol 2017; 69:70-82. [PMID: 28603076 DOI: 10.1016/j.semcdb.2017.05.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/16/2017] [Accepted: 05/30/2017] [Indexed: 02/06/2023]
Abstract
The cadherin-catenin complex in central neurons is associated with a variety of cytosolic partners, collectively called catenins. The p120ctn members are a family of catenins that are distinct from the more ubiquitously expressed α- and β-catenins. It is becoming increasingly clear that the functional roles of the p120ctn family of catenins in central neurons extend well beyond their functional roles in non-neuronal cells in partnering with cadherin to regulate adhesion. In this review, we will provide an overview of the p120ctn family in neurons and their varied functional roles in central neurons. Finally, we will examine the emerging roles of this family of proteins in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Li Yuan
- Department of Pharmacology and Experimental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE 68198, United States; Developmental Neuroscience, Munroe-Meyer Institute, Durham Research Center II, Room 3031, University of Nebraska Medical Center, 985960 Nebraska Medical Center, Omaha, NE 68198-5960, United States.
| | - Jyothi Arikkath
- Developmental Neuroscience, Munroe-Meyer Institute, Durham Research Center II, Room 3031, University of Nebraska Medical Center, 985960 Nebraska Medical Center, Omaha, NE 68198-5960, United States.
| |
Collapse
|
28
|
Ferulic Acid Suppresses Amyloid β Production in the Human Lens Epithelial Cell Stimulated with Hydrogen Peroxide. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5343010. [PMID: 28409157 PMCID: PMC5376927 DOI: 10.1155/2017/5343010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/13/2017] [Accepted: 02/26/2017] [Indexed: 01/03/2023]
Abstract
It is well known that oxidative stresses induce the production of amyloid β (Aβ) in the brain, lens, and retina, leading to age-related diseases. In the present study, we investigated the effects of ferulic acid on the Aβ levels in H2O2-stimulated human lens epithelial (HLE) SRA 01/04 cells. Three types of Aβ peptides (Aβ1-40, Aβ1-42, and Aβ1-43) were measured by ELISA, and the levels of mRNA for the expressed proteins related to Aβ production (APP, BACE1, and PS proteins) and degradation (ADAM10, NEP, and ECE1 proteins) were determined by quantitative real-time RT-PCR. H2O2 stimulation augmented gene expression of the proteins related to Aβ production, resulting in the production of three types of Aβ peptides. Treatment with 0.1 μM ferulic acid attenuated the augmentations of gene expression and production of the proteins related to the secretion of three types of Aβ peptides in the H2O2-stimulated HLE cells. These results provided evidence of antioxidative functions of ferulic acid for lens epithelial cells.
Collapse
|
29
|
Wruck W, Schröter F, Adjaye J. Meta-Analysis of Transcriptome Data Related to Hippocampus Biopsies and iPSC-Derived Neuronal Cells from Alzheimer's Disease Patients Reveals an Association with FOXA1 and FOXA2 Gene Regulatory Networks. J Alzheimers Dis 2016; 50:1065-82. [PMID: 26890743 DOI: 10.3233/jad-150733] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although the incidence of Alzheimer's disease (AD) is continuously increasing in the aging population worldwide, effective therapies are not available. The interplay between causative genetic and environmental factors is partially understood. Meta-analyses have been performed on aspects such as polymorphisms, cytokines, and cognitive training. Here, we propose a meta-analysis approach based on hierarchical clustering analysis of a reliable training set of hippocampus biopsies, which is condensed to a gene expression signature. This gene expression signature was applied to various test sets of brain biopsies and iPSC-derived neuronal cell models to demonstrate its ability to distinguish AD samples from control. Thus, our identified AD-gene signature may form the basis for determination of biomarkers that are urgently needed to overcome current diagnostic shortfalls. Intriguingly, the well-described AD-related genes APP and APOE are not within the signature because their gene expression profiles show a lower correlation to the disease phenotype than genes from the signature. This is in line with the differing characteristics of the disease as early-/late-onset or with/without genetic predisposition. To investigate the gene signature's systemic role(s), signaling pathways, gene ontologies, and transcription factors were analyzed which revealed over-representation of response to stress, regulation of cellular metabolic processes, and reactive oxygen species. Additionally, our results clearly point to an important role of FOXA1 and FOXA2 gene regulatory networks in the etiology of AD. This finding is in corroboration with the recently reported major role of the dopaminergic system in the development of AD and its regulation by FOXA1 and FOXA2.
Collapse
|
30
|
Lu Q, Aguilar BJ, Li M, Jiang Y, Chen YH. Genetic alterations of δ-catenin/NPRAP/Neurojungin (CTNND2): functional implications in complex human diseases. Hum Genet 2016; 135:1107-16. [PMID: 27380241 PMCID: PMC5021578 DOI: 10.1007/s00439-016-1705-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/23/2016] [Indexed: 02/07/2023]
Abstract
Some genes involved in complex human diseases are particularly vulnerable to genetic variations such as single nucleotide polymorphism, copy number variations, and mutations. For example, Ras mutations account for over 30 % of all human cancers. Additionally, there are some genes that can display different variations with functional impact in different diseases that are unrelated. One such gene stands out: δ-catenin/NPRAP/Neurojungin with gene designation as CTNND2 on chromosome 5p15.2. Recent advances in genome wide association as well as molecular biology approaches have uncovered striking involvement of δ-catenin gene variations linked to complex human disorders. These disorders include cancer, bipolar disorder, schizophrenia, autism, Cri-du-chat syndrome, myopia, cortical cataract-linked Alzheimer's disease, and infectious diseases. This list has rapidly grown longer in recent years, underscoring the pivotal roles of δ-catenin in critical human diseases. δ-Catenin is an adhesive junction-associated protein in the delta subfamily of the β-catenin superfamily. δ-Catenin functions in Wnt signaling to regulate gene expression and modulate Rho GTPases of the Ras superfamily in cytoskeletal reorganization. δ-Catenin likely lies where Wnt signaling meets Rho GTPases and is a unique and vulnerable common target for mutagenesis in different human diseases.
Collapse
Affiliation(s)
- Qun Lu
- Department of Anatomy and Cell Biology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA.
- The Harriet and John Wooten Laboratory for Alzheimer's and Neurodegenerative Diseases Research, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA.
- Department of Urological Surgery, Capital Medical University Affiliated Beijing Anzhen Hospital, Beijing, 100029, China.
| | - Byron J Aguilar
- Department of Anatomy and Cell Biology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
| | - Mingchuan Li
- Department of Anatomy and Cell Biology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
- Department of Urological Surgery, Capital Medical University Affiliated Beijing Anzhen Hospital, Beijing, 100029, China
| | - Yongguang Jiang
- Department of Urological Surgery, Capital Medical University Affiliated Beijing Anzhen Hospital, Beijing, 100029, China
| | - Yan-Hua Chen
- Department of Anatomy and Cell Biology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
- Department of Pediatrics, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
| |
Collapse
|
31
|
Wang H, Su S, Yang M, Hu N, Yao Y, Zhu R, Zhou J, Liang C, Guan H. Association of ZNF644, GRM6, and CTNND2 genes with high myopia in the Han Chinese population: Jiangsu Eye Study. Eye (Lond) 2016; 30:1017-22. [PMID: 27034204 DOI: 10.1038/eye.2016.8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 12/03/2015] [Indexed: 11/09/2022] Open
Abstract
AimsHigh myopia is a common visual disorder in the world. The ZNF644, GRM6, and CTNND2 genes are expressed in the retina. This study aims to investigate the associations of these genes with high myopia in Han Chinese population.MethodsThe case-control association included high myopia cases (n=430) and controls (n=430) recruited from a population-based study, 'Jiangsu Eye Study'. Fourteen single-nucleotide polymorphisms (SNPs) in three genes were genotyped by the TaqMan method using the real-time PCR system.ResultsThree SNPs GRM6-rs11746675, GRM6-rs2067011, and GRM6-rs2645339 were associated with high myopia (odds ratio (OR)=0.74, P=0.003; OR=0.78, P=0.018; and OR=0.78, P=0.023; respectively). The significances of rs2067011 and rs2645339 disappeared after multiple testing corrections. Rs11746675 remained significant after correction for multiple testing. The genetic model analysis found that GRM6-rs11746675 and GRM6-rs2067011 were suggestively associated with high myopia in the recessive model (OR=0.54, P=0.004; OR=0.52, P=0.003; respectively). Haplotype GAT for GRM6 markers rs2067011-rs2645339-rs762724 showed significance (P=0.0239), but such association did not remain significant after multiple testing corrections.ConclusionsOur data suggested that genetic variants in GRM6 are associated with high myopia. The mechanism of GRM6 in the development of high myopia need to be further investigated.
Collapse
Affiliation(s)
- H Wang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, China
| | - S Su
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, China
| | - M Yang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, China
| | - N Hu
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, China
| | - Y Yao
- Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - R Zhu
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, China
| | - J Zhou
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, China
| | - C Liang
- Funing County Center for Disease Prevention and Control, Yancheng, China
| | - H Guan
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
32
|
Abstract
Neurons are highly polarized specialized cells. Neuronal integrity and functional roles are critically dependent on dendritic architecture and synaptic structure, function and plasticity. The cadherins are glycosylated transmembrane proteins that form cell adhesion complexes in various tissues. They are associated with a group of cytosolic proteins, the catenins. While the functional roles of the complex have been extensively investigates in non-neuronal cells, it is becoming increasingly clear that components of the complex have critical roles in regulating dendritic and synaptic architecture, function and plasticity in neurons. Consistent with these functional roles, aberrations in components of the complex have been implicated in a variety of neurodevelopmental disorders. In this review, we discuss the roles of the classical cadherins and catenins in various aspects of dendrite and synapse architecture and function and their relevance to human neurological disorders. Cadherins are glycosylated transmembrane proteins that were initially identified as Ca(2+)-dependent cell adhesion molecules. They are present on plasma membrane of a variety of cell types from primitive metazoans to humans. In the past several years, it has become clear that in addition to providing mechanical adhesion between cells, cadherins play integral roles in tissue morphogenesis and homeostasis. The cadherin family is composed of more than 100 members and classified into several subfamilies, including classical cadherins and protocadherins. Several of these cadherin family members have been implicated in various aspects of neuronal development and function. (1-3) The classical cadherins are associated with a group of cytosolic proteins, collectively called the catenins. While the functional roles of the cadherin-catenin cell adhesion complex have been extensively investigated in epithelial cells, it is now clear that components of the complex are well expressed in central neurons at different stages during development. (4,5) Recent exciting studies have shed some light on the functional roles of cadherins and catenins in central neurons. In this review, we will provide a brief overview of the cadherin superfamily, describe cadherin family members expressed in central neurons, cadherin-catenin complexes in central neurons and then focus on role of the cadherin-catenin complex in dendrite morphogenesis and synapse morphogenesis, function and plasticity. The final section is dedicated to discussion of the emerging list of neural disorders linked to cadherins and catenins. While the roles of cadherins and catenins have been examined in several different types of neurons, the focus of this review is their role in mammalian central neurons, particularly those of the cortex and hippocampus. Accompanying this review is a series of excellent reviews targeting the roles of cadherins and protocadherins in other aspects of neural development.
Collapse
Affiliation(s)
- Eunju Seong
- a Developmental Neuroscience; Munroe-Meyer Institute; University of Nebraska Medical Center ; Omaha , NE USA
| | | | | |
Collapse
|
33
|
Hamagishi T, Inagawa T, Kambayashi Y, Tsujiguchi H, Kitaoka M, Mitoma J, Asakura H, Suzuki F, Hori D, Anyenda EO, Thao NTT, Hibino Y, Hayashi K, Shibata A, Sagara T, Okochi J, Takamoku K, Hatta K, Konoshita T, Nakamura H. The Association between Activity of Daily Living and the Combination of Alzheimer’s Disease and Cataract in Elderly Requiring Nursing Care. Health (London) 2016. [DOI: 10.4236/health.2016.810103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Kerbage C, Sadowsky CH, Tariot PN, Agronin M, Alva G, Turner FD, Nilan D, Cameron A, Cagle GD, Hartung PD. Detection of Amyloid β Signature in the Lens and Its Correlation in the Brain to Aid in the Diagnosis of Alzheimer's Disease. Am J Alzheimers Dis Other Demen 2015; 30:738-45. [PMID: 24526759 PMCID: PMC10852881 DOI: 10.1177/1533317513520214] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2024]
Abstract
We report the findings from a clinical trial in which a group of patients clinically diagnosed with probable Alzheimer's disease (AD) were discriminated from an age-matched group of healthy volunteers (HVs) with statistical significance (P<.001). The results from 20 patients with AD and 20 HVs were obtained by a Fluorescent Ligand Eye Scanning (FLES) technique that measures a fluorescent signature specific to an exogenous ligand bound to amyloid-β in the lens of the eye. Sensitivity and specificity of 85% and 95%, respectively, have been achieved in predicting clinical diagnosis. Additionally, amyloid brain imaging using florbetapir F18 positron emission tomography shows significant correlation with the results obtained in the eye. Results of the study demonstrate the safety of the FLES system.
Collapse
Affiliation(s)
| | - Carl H Sadowsky
- Premiere Research Institute and Nova Southeastern University, West Palm Beach, FL, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Dubey SK, Hejtmancik JF, Krishnadas SR, Sharmila R, Haripriya A, Sundaresan P. Evaluation of genetic polymorphisms in clusterin and tumor necrosis factor-alpha genes in South Indian individuals with pseudoexfoliation syndrome. Curr Eye Res 2015; 40:1218-24. [PMID: 25849827 DOI: 10.3109/02713683.2014.997884] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE The aim of this study was to explore the potential association of genetic variants across clusterin (CLU) and tumor necrosis factor-alpha (TNF-α) genes in South Indian individuals with pseudoexfoliation syndrome (PEXS) and pseudoexfoliation glaucoma (PEXG). MATERIALS AND METHODS A total of 523 individuals including 299 unrelated cases (150 PEXS and 149 PEXG) and 224 age- and ethnically-matched healthy controls were recruited for genetic analysis. Six single-nucleotide polymorphisms (SNPs) including, five CLU SNPs (rs11136000, rs2279590, rs9331888, rs9331931, rs3087554) and one promoter SNP (rs1800629) of TNF-α were genotyped in all study subjects. Genotyping of CLU SNPs were performed using the TaqMan allelic discrimination assay while TNF-α SNP was genotyped using polymerase chain reaction (PCR)-based restriction fragment length polymorphism (RFLP) analysis. Association analysis was performed by determining the distributions of genotype and allele frequencies, Hardy-Weinberg equilibrium, and chi-square p values and odds ratios as implemented in the Golden Helix SNP & Variation Suite (SVS). RESULTS Five CLU SNPs did not show any significant differences in allele frequencies between patients and control subjects (rs3087554, p = 0.919, OR = 1.01, 95% CI: 0.77-1.33; rs2279590, p = 0.432, OR = 1.12, 95% CI: 0.84-1.51; rs9331931, p = 0.310, OR = 1.24, 95% CI: 0.81-1.89; rs11136000, p = 0.072, OR = 1.31, 95% CI: 0.97-1.76; rs9331888, p = 0.911, OR = 1.01, 95% CI: 0.78-1.31). The investigation of TNF-α SNP established a significant association with PEXS and PEXG (p = 0.042, OR = 0.61, 95% CI: 0.38-0.99). However, this association did not remain significant after Bonferroni correction. CONCLUSIONS Our data suggest that genetic variants in CLU and TNF-α genes do not play a major role in the development of PEXS and PEXG in the South Indian population.
Collapse
Affiliation(s)
- Sushil K Dubey
- a Department of Genetics , Dr. G. Venkataswamy Eye Research Institute, Aravind Medical Research Foundation , Madurai , Tamil Nadu , India
| | - James F Hejtmancik
- b Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health , Rockville , MD , USA
| | | | | | - Aravind Haripriya
- d Intraocular Lens and Cataract Clinic, Aravind Eye Hospital , Madurai , Tamil Nadu , India
| | - Periasamy Sundaresan
- a Department of Genetics , Dr. G. Venkataswamy Eye Research Institute, Aravind Medical Research Foundation , Madurai , Tamil Nadu , India
| |
Collapse
|
36
|
Belcaro C, Dipresa S, Morini G, Pecile V, Skabar A, Fabretto A. CTNND2 deletion and intellectual disability. Gene 2015; 565:146-9. [PMID: 25839933 DOI: 10.1016/j.gene.2015.03.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/20/2015] [Accepted: 03/24/2015] [Indexed: 01/30/2023]
Abstract
Neurodevelopmental disorders are a group of diseases characterized by either structural or functional alterations. The clinical spectrum can vary from isolated intellectual disability to more complex syndromes. Molecular karyotyping can explain 14%-18% of cases due to the presence of large pathogenic CNVs. Moreover, small CNVs involving single genes might result in a monogenic disease. In this article we report two cases of intragenic CTNND2 deletion, detected by molecular karyotyping, in patients with isolated intellectual disability.
Collapse
Affiliation(s)
- Chiara Belcaro
- Department of Medical Sciences, University of Trieste, Italy.
| | - Savina Dipresa
- Department of Medical Sciences, University of Trieste, Italy
| | - Giovanna Morini
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Vanna Pecile
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Aldo Skabar
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Antonella Fabretto
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| |
Collapse
|
37
|
Nopparat J, Zhang J, Lu JP, Chen YH, Zheng D, Neufer PD, Fan JM, Hong H, Boykin C, Lu Q. δ-Catenin, a Wnt/β-catenin modulator, reveals inducible mutagenesis promoting cancer cell survival adaptation and metabolic reprogramming. Oncogene 2015; 34:1542-52. [PMID: 24727894 PMCID: PMC4197123 DOI: 10.1038/onc.2014.89] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 01/16/2014] [Accepted: 02/17/2014] [Indexed: 02/06/2023]
Abstract
Mutations of Wnt/β-catenin signaling pathway has essential roles in development and cancer. Although β-catenin and adenomatous polyposis coli (APC) gene mutations are well established and are known to drive tumorigenesis, discoveries of mutations in other components of the pathway lagged, which hinders the understanding of cancer mechanisms. Here we report that δ-catenin (gene designation: CTNND2), a primarily neural member of the β-catenin superfamily that promotes canonical Wnt/β-catenin/LEF-1-mediated transcription, displays exonic mutations in human prostate cancer and promotes cancer cell survival adaptation and metabolic reprogramming. When overexpressed in cells derived from prostate tumor xenografts, δ-catenin gene invariably gives rise to mutations, leading to sequence disruptions predicting functional alterations. Ectopic δ-catenin gene integrating into host chromosomes is locus nonselective. δ-Catenin mutations promote tumor development in mouse prostate with probasin promoter (ARR2PB)-driven, prostate-specific expression of Myc oncogene, whereas mutant cells empower survival advantage upon overgrowth and glucose deprivation. Reprogramming energy utilization accompanies the downregulation of glucose transporter-1 and poly (ADP-ribose) polymerase cleavage while preserving tumor type 2 pyruvate kinase expression. δ-Catenin mutations increase β-catenin translocation to the nucleus and hypoxia-inducible factor 1α (HIF-1α) expression. Therefore, introducing δ-catenin mutations is an important milestone in prostate cancer metabolic adaptation by modulating β-catenin and HIF-1α signaling under glucose shortage to amplify its tumor-promoting potential.
Collapse
Affiliation(s)
- J Nopparat
- Department of Anatomy and Cell Biology, The Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - J Zhang
- Department of Anatomy and Cell Biology, The Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - J-P Lu
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Y-H Chen
- 1] Department of Anatomy and Cell Biology, The Brody School of Medicine, East Carolina University, Greenville, NC, USA [2] Leo Jenkins Cancer Center, The Brody School of Medicine, East Carolina University, Greenville, NC, USA [3] Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - D Zheng
- 1] Department of Kinesiology, East Carolina University, Greenville, NC, USA [2] East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
| | - P D Neufer
- 1] Department of Kinesiology, East Carolina University, Greenville, NC, USA [2] East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA [3] Department of Physiology, The Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - J M Fan
- Department of Anatomy and Cell Biology, The Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - H Hong
- Department of Pathology and Laboratory Medicine, The Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - C Boykin
- Department of Anatomy and Cell Biology, The Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Q Lu
- 1] Department of Anatomy and Cell Biology, The Brody School of Medicine, East Carolina University, Greenville, NC, USA [2] Leo Jenkins Cancer Center, The Brody School of Medicine, East Carolina University, Greenville, NC, USA [3] Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
38
|
Bei L, Shui YB, Bai F, Nelson SK, Van Stavern GP, Beebe DC. A test of lens opacity as an indicator of preclinical Alzheimer Disease. Exp Eye Res 2015; 140:117-123. [PMID: 25773986 DOI: 10.1016/j.exer.2015.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/13/2015] [Accepted: 03/12/2015] [Indexed: 12/23/2022]
Abstract
Previous studies reported that characteristic lens opacities were present in Alzheimer Disease (AD) patients postmortem. We therefore determined whether cataract grade or lens opacity is related to the risk of Alzheimer dementia in participants who have biomarkers that predict a high risk of developing the disease. AD biomarker status was determined by positron emission tomography-Pittsburgh compound B (PET-PiB) imaging and cerebrospinal fluid (CSF) levels of Aβ42. Cognitively normal participants with a clinical dementia rating of zero (CDR = 0; N = 40) or with slight evidence of dementia (CDR = 0.5; N = 2) were recruited from longitudinal studies of memory and aging at the Washington University Knight Alzheimer's Disease Research Center. The age, sex, race, cataract type and cataract grade of all participants were recorded and an objective measure of lens light scattering was obtained for each eye using a Scheimpflug camera. Twenty-seven participants had no biomarkers of Alzheimer dementia and were CDR = 0. Fifteen participants had biomarkers indicating increased risk of AD, two of which were CDR = 0.5. Participants who were biomarker positive were older than those who were biomarker negative. Biomarker positive participants had more advanced cataracts and increased cortical light scattering, none of which reached statistical significance after adjustment for age. We conclude that cataract grade or lens opacity is unlikely to provide a non-invasive measure of the risk of developing Alzheimer dementia.
Collapse
Affiliation(s)
- Ling Bei
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Ying-Bo Shui
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Fang Bai
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Suzanne K Nelson
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Gregory P Van Stavern
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA.
| | - David C Beebe
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA; Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
39
|
Bosten JM, Goodbourn PT, Lawrance-Owen AJ, Bargary G, Hogg RE, Mollon JD. A population study of binocular function. Vision Res 2015; 110:34-50. [PMID: 25771401 DOI: 10.1016/j.visres.2015.02.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/04/2015] [Accepted: 02/20/2015] [Indexed: 12/20/2022]
Abstract
As part of a genome-wide association study (GWAS) of perceptual traits in healthy adults, we measured stereo acuity, the duration of alternative percepts in binocular rivalry and the extent of dichoptic masking in 1060 participants. We present the distributions of the measures, the correlations between measures, and their relationships to other psychophysical traits. We report sex differences, and correlations with age, interpupillary distance, eye dominance, phorias, visual acuity and personality. The GWAS, using data from 988 participants, yielded one genetic association that passed a permutation test for significance: The variant rs1022907 in the gene VTI1A was associated with self-reported ability to see autostereograms. We list a number of other suggestive genetic associations (p<10(-5)).
Collapse
Affiliation(s)
- J M Bosten
- Department of Psychology, University of Cambridge, UK; School of Psychology, University of Sussex, Brighton, UK.
| | - P T Goodbourn
- Department of Psychology, University of Cambridge, UK; School of Psychology, University of Sydney, Australia
| | | | - G Bargary
- Department of Psychology, University of Cambridge, UK; Division of Optometry and Visual Science, City University, London, UK
| | - R E Hogg
- Department of Psychology, University of Cambridge, UK; Centre for Experimental Medicine, Queen's University Belfast, UK
| | - J D Mollon
- Department of Psychology, University of Cambridge, UK
| |
Collapse
|
40
|
Suh J, Moncaster JA, Wang L, Hafeez I, Herz J, Tanzi RE, Goldstein LE, Guénette SY. FE65 and FE65L1 amyloid precursor protein-binding protein compound null mice display adult-onset cataract and muscle weakness. FASEB J 2015; 29:2628-39. [PMID: 25757569 DOI: 10.1096/fj.14-261453] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 02/19/2015] [Indexed: 12/11/2022]
Abstract
FE65 and FE65L1 are cytoplasmic adaptor proteins that bind a variety of proteins, including the amyloid precursor protein, and that mediate the assembly of multimolecular complexes. We previously reported that FE65/FE65L1 double knockout (DKO) mice display disorganized laminin in meningeal fibroblasts and a cobblestone lissencephaly-like phenotype in the developing cortex. Here, we examined whether loss of FE65 and FE65L1 causes ocular and muscular deficits, 2 phenotypes that frequently accompany cobblestone lissencephaly. Eyes of FE65/FE65L1 DKO mice develop normally, but lens degeneration becomes apparent in young adult mice. Abnormal lens epithelial cell migration, widespread small vacuole formation, and increased laminin expression underneath lens capsules suggest impaired interaction between epithelial cells and capsular extracellular matrix in DKO lenses. Cortical cataracts develop in FE65L1 knockout (KO) mice aged 16 months or more but are absent in wild-type or FE65 KO mice. FE65 family KO mice show attenuated grip strength, and the nuclei of DKO muscle cells frequently locate in the middle of muscle fibers. These findings reveal that FE65 and FE65L1 are essential for the maintenance of lens transparency, and their loss produce phenotypes in brain, eye, and muscle that are comparable to the clinical features of congenital muscular dystrophies in humans.
Collapse
Affiliation(s)
- Jaehong Suh
- *Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, and Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA; and Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Juliet A Moncaster
- *Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, and Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA; and Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lirong Wang
- *Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, and Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA; and Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Imran Hafeez
- *Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, and Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA; and Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Joachim Herz
- *Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, and Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA; and Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Rudolph E Tanzi
- *Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, and Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA; and Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lee E Goldstein
- *Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, and Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA; and Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Suzanne Y Guénette
- *Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, and Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA; and Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
41
|
Halder D, Mandal C, Lee BH, Lee JS, Choi MR, Chai JC, Lee YS, Jung KH, Chai YG. PCDHB14- and GABRB1-like nervous system developmental genes are altered during early neuronal differentiation of NCCIT cells treated with ethanol. Hum Exp Toxicol 2015; 34:1017-27. [PMID: 25566775 DOI: 10.1177/0960327114566827] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ethanol (EtOH) exposure during embryonic development causes dysfunction of the central nervous system (CNS). Here, we examined the effects of chronic EtOH on gene expression during early stages of neuronal differentiation. Human embryonic carcinoma (NCCIT) cells were differentiated into neuronal precursors/lineages in the presence or absence of EtOH and folic acid. Gene expression profiling and pathway analysis demonstrated that EtOH deregulates many genes and pathways that are involved in early brain development. EtOH exposure downregulated several important genes, such as PCDHB14, GABRB1, CTNND2, NAV3, RALDH1, and OPN5, which are involved in CNS development, synapse assembly, synaptic transmission, and neurotransmitter receptor activity. GeneGo pathway analysis revealed that the deregulated genes mapped to disease pathways that were relevant to fetal alcohol spectrum disorders (FASD, such as neurotic disorders, epilepsy, and alcohol-related disorders). In conclusion, these findings suggest that the impairment of the neurological system or suboptimal synapse formation resulting from EtOH exposure could underlie the neurodevelopmental disorders in individuals with FASD.
Collapse
Affiliation(s)
- D Halder
- Department of Molecular and Life Sciences, Hanyang University, Ansan, Republic of Korea
| | - C Mandal
- Department of Molecular and Life Sciences, Hanyang University, Ansan, Republic of Korea
| | - B H Lee
- Department of Psychiatry, Gangnam Eulji Hospital, Eulji University, Seoul, Republic of Korea KARF Hospital, the Korean Alcohol Research Foundation, Goyang, Republic of Korea
| | - J S Lee
- KARF Hospital, the Korean Alcohol Research Foundation, Goyang, Republic of Korea
| | - M R Choi
- Department of Molecular and Life Sciences, Hanyang University, Ansan, Republic of Korea
| | - J C Chai
- Department of Molecular and Life Sciences, Hanyang University, Ansan, Republic of Korea
| | - Y S Lee
- Department of Molecular and Life Sciences, Hanyang University, Ansan, Republic of Korea
| | - K H Jung
- Institute of Natural Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Y G Chai
- Department of Molecular and Life Sciences, Hanyang University, Ansan, Republic of Korea Department of Nanobiotechnology, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
42
|
At the interface of sensory and motor dysfunctions and Alzheimer's disease. Alzheimers Dement 2015; 11:70-98. [PMID: 25022540 PMCID: PMC4287457 DOI: 10.1016/j.jalz.2014.04.514] [Citation(s) in RCA: 387] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 03/13/2014] [Accepted: 04/09/2014] [Indexed: 11/21/2022]
Abstract
Recent evidence indicates that sensory and motor changes may precede the cognitive symptoms of Alzheimer's disease (AD) by several years and may signify increased risk of developing AD. Traditionally, sensory and motor dysfunctions in aging and AD have been studied separately. To ascertain the evidence supporting the relationship between age-related changes in sensory and motor systems and the development of AD and to facilitate communication between several disciplines, the National Institute on Aging held an exploratory workshop titled "Sensory and Motor Dysfunctions in Aging and AD." The scientific sessions of the workshop focused on age-related and neuropathologic changes in the olfactory, visual, auditory, and motor systems, followed by extensive discussion and hypothesis generation related to the possible links among sensory, cognitive, and motor domains in aging and AD. Based on the data presented and discussed at this workshop, it is clear that sensory and motor regions of the central nervous system are affected by AD pathology and that interventions targeting amelioration of sensory-motor deficits in AD may enhance patient function as AD progresses.
Collapse
|
43
|
Jun G, Asai H, Zeldich E, Drapeau E, Chen C, Chung J, Park JH, Kim S, Haroutunian V, Foroud T, Kuwano R, Haines JL, Pericak-Vance MA, Schellenberg GD, Lunetta KL, Kim JW, Buxbaum JD, Mayeux R, Ikezu T, Abraham CR, Farrer LA. PLXNA4 is associated with Alzheimer disease and modulates tau phosphorylation. Ann Neurol 2014; 76:379-92. [PMID: 25043464 PMCID: PMC4830273 DOI: 10.1002/ana.24219] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 07/02/2014] [Accepted: 07/02/2014] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Much of the genetic basis for Alzheimer disease (AD) is unexplained. We sought to identify novel AD loci using a unique family-based approach that can detect robust associations with infrequent variants (minor allele frequency < 0.10). METHODS We conducted a genome-wide association study in the Framingham Heart Study (discovery) and NIA-LOAD (National Institute on Aging-Late-Onset Alzheimer Disease) Study (replication) family-based cohorts using an approach that accounts for family structure and calculates a risk score for AD as the outcome. Links between the most promising gene candidate and AD pathogenesis were explored in silico as well as experimentally in cell-based models and in human brain. RESULTS Genome-wide significant association was identified with a PLXNA4 single nucleotide polymorphism (rs277470) located in a region encoding the semaphorin-3A (SEMA3A) binding domain (meta-analysis p value [meta-P] = 4.1 × 10(-8) ). A test for association with the entire region was also significant (meta-P = 3.2 × 10(-4) ). Transfection of SH-SY5Y cells or primary rat neurons with full-length PLXNA4 (TS1) increased tau phosphorylation with stimulated by SEMA3A. The opposite effect was observed when cells were transfected with shorter isoforms (TS2 and TS3). However, transfection of any isoform into HEK293 cells stably expressing amyloid β (Aβ) precursor protein (APP) did not result in differential effects on APP processing or Aβ production. Late stage AD cases (n = 9) compared to controls (n = 5) had 1.9-fold increased expression of TS1 in cortical brain tissue (p = 1.6 × 10(-4) ). Expression of TS1 was significantly correlated with the Clinical Dementia Rating score (ρ = 0.75, p = 2.2 × 10(-4) ), plaque density (ρ = 0.56, p = 0.01), and Braak stage (ρ = 0.54, p = 0.02). INTERPRETATION Our results indicate that PLXNA4 has a role in AD pathogenesis through isoform-specific effects on tau phosphorylation.
Collapse
Affiliation(s)
- Gyungah Jun
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA,Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, USA,Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA,Corresponding Authors: Drs. Gyungah Jun and Lindsay A. Farrer, Biomedical Genetics E200, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118; tel – (617) 638-5393; fax – (617) 638-4275; or
| | - Hirohide Asai
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Ella Zeldich
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Elodie Drapeau
- Department of Psychiatry and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - CiDi Chen
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jaeyoon Chung
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jong-Ho Park
- Department of Health Sciences and Technology, Graduate School, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sehwa Kim
- Department of Health Sciences and Technology, Graduate School, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Vahram Haroutunian
- Department of Psychiatry and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ryozo Kuwano
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Jonathan L. Haines
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio, USA
| | | | - Gerard D. Schellenberg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Kathryn L. Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Jong-Won Kim
- Department of Health Sciences and Technology, Graduate School, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University School of Medicine, Seoul, Korea,Department of Laboratory Medicine & Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Joseph D. Buxbaum
- Department of Psychiatry and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Richard Mayeux
- Department of Neurology and the Taub Institute, Columbia University, New York, New York, USA
| | - Tsuneya Ikezu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, USA,Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Carmela R. Abraham
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, USA,Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Lindsay A. Farrer
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA,Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, USA,Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA,Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA,Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA,Corresponding Authors: Drs. Gyungah Jun and Lindsay A. Farrer, Biomedical Genetics E200, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118; tel – (617) 638-5393; fax – (617) 638-4275; or
| |
Collapse
|
44
|
Sahlin E, Gustavsson P, Liedén A, Papadogiannakis N, Bjäreborn L, Pettersson K, Nordenskjöld M, Iwarsson E. Molecular and cytogenetic analysis in stillbirth: results from 481 consecutive cases. Fetal Diagn Ther 2014; 36:326-32. [PMID: 25059832 DOI: 10.1159/000361017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 02/28/2014] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The underlying causes of stillbirth are heterogeneous and in many cases unexplained. Our aim was to conclude clinical results from karyotype and quantitative fluorescence-polymerase chain reaction (QF-PCR) analysis of all stillbirths occurring in Stockholm County between 2008 and 2012. By screening a subset of cases, we aimed to study the possible benefits of chromosomal microarray (CMA) in the analysis of the etiology of stillbirth. METHODS During 2008-2012, 481 stillbirths in Stockholm County were investigated according to a clinical protocol including karyotype or QF-PCR analysis. CMA screening was performed on a subset of 90 cases, corresponding to all stillbirths from 2010 without a genetic diagnosis. RESULTS Chromosomal aberrations were detected by karyotype or QF-PCR analysis in 7.5% of the stillbirths. CMA analysis additionally identified two known syndromes, one aberration disrupting a known disease gene, and 26 variants of unknown significance. Furthermore, CMA had a significantly higher success rate than karyotyping (100 vs. 80%, p < 0.001). DISCUSSION In the analysis of stillbirth, conventional karyotyping is prone to failure, and QF-PCR is a useful complement. We show that CMA has a higher success rate and aberration detection frequency than these methods, and conclude that CMA is a valuable tool for identification of chromosomal aberrations in stillbirth.
Collapse
Affiliation(s)
- Ellika Sahlin
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, CMM L8:02, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Vision function abnormalities in Alzheimer disease. Surv Ophthalmol 2014; 59:414-33. [DOI: 10.1016/j.survophthal.2013.10.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 09/28/2013] [Accepted: 10/01/2013] [Indexed: 12/16/2022]
|
46
|
Lu Q, Lanford GW, Hong H, Chen YH. δ-Catenin as a potential cancer biomarker. Pathol Int 2014; 64:243-6. [PMID: 24888779 DOI: 10.1111/pin.12156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Qun Lu
- Department of Anatomy and Cell Biology, East Carolina University, Greenville, North Carolina, USA
| | | | | | | |
Collapse
|
47
|
Cataract may be a non-memory feature of Alzheimer’s disease in older people. Eur J Epidemiol 2014; 29:405-9. [DOI: 10.1007/s10654-014-9903-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/11/2014] [Indexed: 01/05/2023]
|
48
|
Palmitoylation of δ-catenin by DHHC5 mediates activity-induced synapse plasticity. Nat Neurosci 2014; 17:522-32. [PMID: 24562000 PMCID: PMC5025286 DOI: 10.1038/nn.3657] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/22/2014] [Indexed: 02/07/2023]
Abstract
Synaptic cadherin adhesion complexes are known to be key regulators of synapse plasticity. However, the molecular mechanisms that coordinate activity-induced modifications in cadherin localization and adhesion and subsequent changes in synapse morphology and efficacy, remain unanswered. We demonstrate that the intracellular cadherin binding protein, δ-catenin, is transiently palmitoylated by DHHC5 following enhanced synaptic activity, and that palmitoylation increases δ-catenin/cadherin interactions at synapses. Both the palmitoylation of δ-catenin and its binding to cadherin are required for activity-induced stabilization of N-cadherin at synapses, the enlargement of postsynaptic spines, as well as insertion of GluA1 and GluA2 subunits into the synaptic membrane and the concomitant increase in mEPSC amplitude. Importantly, context-dependent fear conditioning in mice results in increased δ-catenin palmitoylation as well as increased δ-catenin/cadherin associations at hippocampal synapses. Together, this suggests a role for palmitoylated δ-catenin in coordinating activity-dependent changes in synaptic adhesion molecules, synapse structure, and receptor localization that are involved in memory formation.
Collapse
|
49
|
Promise and challenge: the lens model as a biomarker for early diagnosis of Alzheimer's disease. DISEASE MARKERS 2014; 2014:826503. [PMID: 24688166 PMCID: PMC3945026 DOI: 10.1155/2014/826503] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 12/24/2013] [Accepted: 01/06/2014] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia pathologically characterized by cerebral amyloid-beta (Aβ) deposition. Early and accurate diagnosis of the disease still remains a big challenge. There is evidence that Aβ aggregation starts to occur years before symptoms arise. Noninvasive monitoring of Aβ plaques is critical for both the early diagnosis and prognosis of AD. Presently, there is a major effort on looking for a reasonably priced technology capable of diagnosing AD by detecting the presence of Aβ. Studies suggest that AD is systemic rather than brain-limited focus diseases and the aggregation of the disease-causing proteins also takes place in lens except the brain. There is a possible relationship between AD and a specific subtype of age-related cataract (supranuclear cataract). If similar abnormal protein deposits are present in the lens, it would facilitate non-invasive diagnosis and monitoring of disease progression. However, there are controversies on the issues related to performance and validation of Aβ deposition in lens as biomarkers for early detection of AD. Here we review the recent findings concerning Aβ deposition in the lenses of AD patients and evaluate if the ocular lens can provide a biomarker for AD.
Collapse
|
50
|
|