1
|
Balakin E, Yurku K, Fomina T, Butkova T, Nakhod V, Izotov A, Kaysheva A, Pustovoyt V. A Systematic Review of Traumatic Brain Injury in Modern Rodent Models: Current Status and Future Prospects. BIOLOGY 2024; 13:813. [PMID: 39452122 PMCID: PMC11504108 DOI: 10.3390/biology13100813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024]
Abstract
According to the Centers for Disease Control and Prevention (CDC), the national public health agency of the United States, traumatic brain injury is among the leading causes of mortality and disability worldwide. The consequences of TBI include diffuse brain atrophy, local post-traumatic atrophy, arachnoiditis, pachymeningitis, meningocerebral cicatrices, cranial nerve lesions, and cranial defects. In 2019, the economic cost of injuries in the USA alone was USD 4.2 trillion, which included USD 327 billion for medical care, USD 69 billion for work loss, and USD 3.8 trillion for the value of statistical life and quality of life losses. More than half of this cost (USD 2.4 trillion) was among working-age adults (25-64 years old). Currently, the development of new diagnostic approaches and the improvement of treatment techniques require further experimental studies focused on modeling TBI of varying severity.
Collapse
Affiliation(s)
- Evgenii Balakin
- Federal Medical Biophysical Center of Federal Medical Biological Agency, 123098 Moscow, Russia
| | - Ksenia Yurku
- Federal Medical Biophysical Center of Federal Medical Biological Agency, 123098 Moscow, Russia
| | - Tatiana Fomina
- Federal Medical Biophysical Center of Federal Medical Biological Agency, 123098 Moscow, Russia
| | | | | | | | - Anna Kaysheva
- Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Vasiliy Pustovoyt
- Federal Medical Biophysical Center of Federal Medical Biological Agency, 123098 Moscow, Russia
| |
Collapse
|
2
|
Darmanto AG, Jan JS, Yen TL, Huang SW, Teng RD, Wang JY, Taliyan R, Sheu JR, Yang CH. Targeting Circadian Protein Rev-erbα to Alleviate Inflammation, Oxidative Stress, and Enhance Functional Recovery Following Brain Trauma. Antioxidants (Basel) 2024; 13:901. [PMID: 39199147 PMCID: PMC11351136 DOI: 10.3390/antiox13080901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
Traumatic brain injury (TBI) is a significant cause of morbidity and mortality worldwide, and its pathophysiology is characterized by oxidative stress and inflammation. Despite extensive research, effective treatments for TBI remain elusive. Recent studies highlighted the critical interplay between TBI and circadian rhythms, but the detailed regulation remains largely unknown. Motivated by the observed sustained decrease in Rev-erbα after TBI, we aimed to understand the critical role of Rev-erbα in the pathophysiology of TBI and determine its feasibility as a therapeutic target. Using a mouse model of TBI, we observed that TBI significantly downregulates Rev-erbα levels, exacerbating inflammatory and oxidative stress pathways. The regulation of Rev-erbα with either the pharmacological activator or inhibitor bidirectionally modulated inflammatory and oxidative events, which in turn influenced neurobehavioral outcomes, highlighting the protein's protective role. Mechanistically, Rev-erbα influences the expression of key oxidative stress and inflammatory regulatory genes. A reduction in Rev-erbα following TBI likely contributes to increased oxidative damage and inflammation, creating a detrimental environment for neuronal survival and recovery which could be reversed via the pharmacological activation of Rev-erbα. Our findings highlight the therapeutic potential of targeting Rev-erbα to mitigate TBI-induced damage and improve outcomes, especially in TBI-susceptible populations with disrupted circadian regulation.
Collapse
Affiliation(s)
- Arief Gunawan Darmanto
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (A.G.D.); (J.-R.S.)
- School of Medicine, Universitas Ciputra, Surabaya 60219, Indonesia
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan; (J.-S.J.); (T.-L.Y.); (S.-W.H.); (R.-D.T.)
| | - Jing-Shiun Jan
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan; (J.-S.J.); (T.-L.Y.); (S.-W.H.); (R.-D.T.)
| | - Ting-Lin Yen
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan; (J.-S.J.); (T.-L.Y.); (S.-W.H.); (R.-D.T.)
- Department of Medical Research, Cathay General Hospital, Taipei 22174, Taiwan
| | - Shin-Wei Huang
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan; (J.-S.J.); (T.-L.Y.); (S.-W.H.); (R.-D.T.)
| | - Ruei-Dun Teng
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan; (J.-S.J.); (T.-L.Y.); (S.-W.H.); (R.-D.T.)
| | - Jia-Yi Wang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei 110301, Taiwan
| | - Rajeev Taliyan
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, Pilani 333031, Rajasthan, India;
| | - Joen-Rong Sheu
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (A.G.D.); (J.-R.S.)
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan; (J.-S.J.); (T.-L.Y.); (S.-W.H.); (R.-D.T.)
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Chih-Hao Yang
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan; (J.-S.J.); (T.-L.Y.); (S.-W.H.); (R.-D.T.)
| |
Collapse
|
3
|
Lin Y, He L, Cai Y, Wang X, Wang S, Li F. The role of circadian clock in regulating cell functions: implications for diseases. MedComm (Beijing) 2024; 5:e504. [PMID: 38469551 PMCID: PMC10925886 DOI: 10.1002/mco2.504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 03/13/2024] Open
Abstract
The circadian clock system orchestrates daily behavioral and physiological rhythms, facilitating adaptation to environmental and internal oscillations. Disruptions in circadian rhythms have been linked to increased susceptibility to various diseases and can exacerbate existing conditions. This review delves into the intricate regulation of diurnal gene expression and cell function by circadian clocks across diverse tissues. . Specifically, we explore the rhythmicity of gene expressions, behaviors, and functions in both immune and non-immune cells, elucidating the regulatory effects and mechanisms imposed by circadian clocks. A detailed discussion is centered on elucidating the complex functions of circadian clocks in regulating key cellular signaling pathways. We further review the circadian regulation in diverse diseases, with a focus on inflammatory diseases, cancers, and systemic diseases. By highlighting the intimate interplay between circadian clocks and diseases, especially through clock-controlled cell function, this review contributes to the development of novel disease intervention strategies. This enhanced understanding holds significant promise for the design of targeted therapies that can exploit the circadian regulation mechanisms for improved treatment efficacy.
Collapse
Affiliation(s)
- Yanke Lin
- Infectious Diseases InstituteGuangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
- Guangdong TCRCure Biopharma Technology Co., Ltd.GuangzhouChina
| | | | - Yuting Cai
- School of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhouChina
| | - Xiaokang Wang
- Department of PharmacyShenzhen Longhua District Central HospitalShenzhenChina
| | - Shuai Wang
- School of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhouChina
| | - Feng Li
- Infectious Diseases InstituteGuangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
4
|
Kuo LT, Lu HY, Chen YH. Traumatic brain injury-induced disruption of the circadian clock. J Mol Med (Berl) 2024; 102:403-414. [PMID: 38285094 PMCID: PMC10879350 DOI: 10.1007/s00109-024-02416-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 12/16/2023] [Accepted: 01/03/2024] [Indexed: 01/30/2024]
Abstract
Disturbances in the circadian rhythm have been reported in patients following traumatic brain injury (TBI). However, the rhythmic expression of circadian genes in peripheral blood leukocytes (PBL) following TBI has not yet been studied. The messenger ribonucleic acid (mRNA) expression of period 1 (Per1), Per2, Per3, cryptochrome 1 (Cry1), Cry2, brain and muscle aryl hydrocarbon receptor nuclear translocator-like 1 (Bmal1), and circadian locomotor output cycles kaput (Clock) was quantified in PBLs from sham-operated rats and rats with acute subdural hematoma (ASDH) over a 48-h period. The rectal temperature of the animals was measured every 4 h over 2 days. The mesor, rhythm, amplitude, and acrophase were estimated using cosinor analysis. Cosinor analysis revealed that Per2, Cry1, and Bmal1 mRNAs were rhythmically expressed in the PBLs of sham-operated rats. In contrast, fluctuations in rhythmic expression were not observed following ASDH. The rectal temperature of sham-operated rats also exhibited rhythmicity. ASDH rats had a disrupted rectal temperature rhythm, a diminished amplitude, and an acrophase shift. TBI with ASDH results in dysregulated expression of some circadian genes and changes in body temperature rhythm. Further research is required to understand the pathophysiology of altered circadian networks following TBI. KEY MESSAGES: First to investigate the mRNA expression of circadian genes in PBLs of ASDH rats. ASDH rats had disrupted rhythmicity of Per2, Cry1, and Bmal1 mRNA expression. Cosinor analysis showed that ASDH rats had a disrupted rectal temperature rhythm.
Collapse
Affiliation(s)
- Lu-Ting Kuo
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, 7 Chun-Shan South Road, Taipei, 100, Taiwan.
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Yun-Lin Branch, Douliu, Yunlin, 640, Taiwan.
| | - Hsueh-Yi Lu
- Department of Industrial Engineering and Management, National Yunlin University of Science and Technology, Douliu, Yunlin, 640, Taiwan
| | - Yi-Hsing Chen
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, 7 Chun-Shan South Road, Taipei, 100, Taiwan
| |
Collapse
|
5
|
Green TRF, Carey SD, Mannino G, Craig JA, Rowe RK, Zielinski MR. Sleep, inflammation, and hemodynamics in rodent models of traumatic brain injury. Front Neurosci 2024; 18:1361014. [PMID: 38426017 PMCID: PMC10903352 DOI: 10.3389/fnins.2024.1361014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Traumatic brain injury (TBI) can induce dysregulation of sleep. Sleep disturbances include hypersomnia and hyposomnia, sleep fragmentation, difficulty falling asleep, and altered electroencephalograms. TBI results in inflammation and altered hemodynamics, such as changes in blood brain barrier permeability and cerebral blood flow. Both inflammation and altered hemodynamics, which are known sleep regulators, contribute to sleep impairments post-TBI. TBIs are heterogenous in cause and biomechanics, which leads to different molecular and symptomatic outcomes. Animal models of TBI have been developed to model the heterogeneity of TBIs observed in the clinic. This review discusses the intricate relationship between sleep, inflammation, and hemodynamics in pre-clinical rodent models of TBI.
Collapse
Affiliation(s)
- Tabitha R. F. Green
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Sean D. Carey
- Veterans Affairs (VA) Boston Healthcare System, West Roxbury, MA, United States
- Department of Psychiatry, Harvard Medical School, West Roxbury, MA, United States
| | - Grant Mannino
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - John A. Craig
- Veterans Affairs (VA) Boston Healthcare System, West Roxbury, MA, United States
| | - Rachel K. Rowe
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Mark R. Zielinski
- Veterans Affairs (VA) Boston Healthcare System, West Roxbury, MA, United States
- Department of Psychiatry, Harvard Medical School, West Roxbury, MA, United States
| |
Collapse
|
6
|
Son G, Neylan TC, Grinberg LT. Neuronal and glial vulnerability of the suprachiasmatic nucleus in tauopathies: evidence from human studies and animal models. Mol Neurodegener 2024; 19:4. [PMID: 38195580 PMCID: PMC10777507 DOI: 10.1186/s13024-023-00695-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/08/2023] [Indexed: 01/11/2024] Open
Abstract
Tauopathies, a group of neurodegenerative diseases that includes Alzheimer's disease, commonly lead to disturbances in sleep-wake patterns and circadian rhythm disorders. The circadian rhythm, a recurring 24-hour cycle governing human biological activity, is regulated by the hypothalamic suprachiasmatic nucleus (SCN) and endogenous transcriptional-translational feedback loops. Surprisingly, little attention has been given to investigating tauopathy-driven neuropathology in the SCN and the repercussions of SCN and circadian gene dysfunction in the human brain affected by tauopathies. This review aims to provide an overview of the current literature on the vulnerability of the SCN in tauopathies in humans. Emphasis is placed on elucidating the neuronal and glial changes contributing to the widespread disruption of the molecular circadian clock. Furthermore, this review identifies areas of knowledge requiring further investigation.
Collapse
Affiliation(s)
- Gowoon Son
- Memory and Aging Center, Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Thomas C Neylan
- Memory and Aging Center, Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Lea T Grinberg
- Memory and Aging Center, Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, USA.
- Department of Pathology, University of Sao Paulo Medical School, Sao Paulo, Brazil.
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
7
|
Landvater J, Kim S, Caswell K, Kwon C, Odafe E, Roe G, Tripathi A, Vukovics C, Wang J, Ryan K, Cocozza V, Brock M, Tchopev Z, Tonkin B, Capaldi V, Collen J, Creamer J, Irfan M, Wickwire EM, Williams S, Werner JK. Traumatic brain injury and sleep in military and veteran populations: A literature review. NeuroRehabilitation 2024; 55:245-270. [PMID: 39121144 PMCID: PMC11613026 DOI: 10.3233/nre-230380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/12/2024] [Indexed: 08/11/2024]
Abstract
BACKGROUND Traumatic brain injury (TBI) is a hallmark of wartime injury and is related to numerous sleep wake disorders (SWD), which persist long term in veterans. Current knowledge gaps in pathophysiology have hindered advances in diagnosis and treatment. OBJECTIVE We reviewed TBI SWD pathophysiology, comorbidities, diagnosis and treatment that have emerged over the past two decades. METHODS We conducted a literature review of English language publications evaluating sleep disorders (obstructive sleep apnea, insomnia, hypersomnia, parasomnias, restless legs syndrome and periodic limb movement disorder) and TBI published since 2000. We excluded studies that were not specifically evaluating TBI populations. RESULTS Highlighted areas of interest and knowledge gaps were identified in TBI pathophysiology and mechanisms of sleep disruption, a comparison of TBI SWD and post-traumatic stress disorder SWD. The role of TBI and glymphatic biomarkers and management strategies for TBI SWD will also be discussed. CONCLUSION Our understanding of the pathophysiologic underpinnings of TBI and sleep health, particularly at the basic science level, is limited. Developing an understanding of biomarkers, neuroimaging, and mixed-methods research in comorbid TBI SWD holds the greatest promise to advance our ability to diagnose and monitor response to therapy in this vulnerable population.
Collapse
Affiliation(s)
- Jeremy Landvater
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Sharon Kim
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Keenan Caswell
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Caroline Kwon
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Emamoke Odafe
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Grace Roe
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Ananya Tripathi
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | - Jonathan Wang
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Keith Ryan
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | - Matthew Brock
- Wilford Hall Ambulatory Surgical Center, San Antonio, TX, USA
| | - Zahari Tchopev
- Wilford Hall Ambulatory Surgical Center, San Antonio, TX, USA
| | - Brionn Tonkin
- University of Minnesota, Minneapolis, MN, USA
- Minneapolis Veterans Administration Medical Center, Minneapolis, MN, USA
| | - Vincent Capaldi
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Jacob Collen
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | - Muna Irfan
- University of Minnesota, Minneapolis, MN, USA
- Minneapolis Veterans Administration Medical Center, Minneapolis, MN, USA
| | - Emerson M. Wickwire
- Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Scott Williams
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Defense Health Headquarters, Falls Church, VA, USA
| | - J. Kent Werner
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Walter Reed National Military Medical Center, Bethesda, MD, USA
| |
Collapse
|
8
|
Sgro M, Ellens S, Kodila ZN, Christensen J, Li C, Mychasiuk R, Yamakawa GR. Repetitive mild traumatic brain injury alters central and peripheral clock gene expression in the adolescent rat. Neurobiol Sleep Circadian Rhythms 2023; 14:100090. [PMID: 36942266 PMCID: PMC10024151 DOI: 10.1016/j.nbscr.2023.100090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/21/2023] [Accepted: 02/26/2023] [Indexed: 03/11/2023] Open
Abstract
Mild traumatic brain injury (mTBI) or concussion is a common injury worldwide leading to substantial medical costs and a high burden on society. In adolescents, falls and sports related trauma are often the causes of mTBI. Importantly, critical brain growth and development occurs during this sensitive period making the prospect of a brain injury a worrying phenomenon. Upwards of 70% of patients report circadian disruption following these injuries and this has been shown to impede recovery. Therefore, we sought to determine if core circadian clock gene expression was disrupted in rat model of repetitive mTBI (RmTBI). Male and female adolescent rats (n = 129) received sham or RmTBI. The animals were then euthanized at different times throughout the day and night. Tissue from the hypothalamus, cerebellum, hippocampus, liver, and small intestine were evaluated for the expression of per1, per2, cry1, clock, bmal1 and rev-erb-α. We found most clock genes varied across the day/night indicating circadian expression patterns. In the hypothalamus we found RmTBI altered the expression of cry1 and bmal1 in addition to sex differences in per2, cry1, clock, bmal1 and rev-erb- α. In the cerebellum, per1, per2, cry1, clock, bmal1 and rev-erb-α rhythms were all knocked out by RmTBI in addition to sex differences in cry1, clock and bmal1 expression. We also detected a significant decrease in overall expression of all clock genes in males in the middle of the night. In the hippocampus we found that RmTBI changed the rhythm of rev-erb-α expression in addition to sex differences in bmal1 expression. In the liver we detected strong rhythms in all genes examined, however only per2 expression was knocked out by RmTBI, in addition we also detected sex differences in per2 and cry1. We also detected an overall decrease in female clock gene expression in the early night. In the small intestine, RmTBI altered cry1 expression and there were sex differences in rev-erb-α. These results indicate that RmTBI alters core circadian clock gene expression in the central and peripheral nervous system in a time, tissue and sex dependent manner. This may be disrupting important phase relationships between the brain and peripheral nervous system and contributing to post-injury symptomology and also highlights the importance for time and sex dependent assessment of injury outcomes.
Collapse
Affiliation(s)
- Marissa Sgro
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Susanne Ellens
- Sport and Exercise Science, School of Allied Health, Human Services & Sport, La Trobe University, Melbourne, Australia
| | - Zoe N. Kodila
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Jennaya Christensen
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Crystal Li
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Glenn R. Yamakawa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Corresponding author. Department of Neuroscience, Central Clinical School, Monash University, 6th Floor, 99 Commercial Road, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
9
|
Wang Q, Gu X, Liu Y, Liu S, Lu W, Wu Y, Lu H, Huang J, Tu W. Insights into the circadian rhythm alterations of the novel PFOS substitutes F-53B and OBS on adult zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130959. [PMID: 36860044 DOI: 10.1016/j.jhazmat.2023.130959] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/20/2022] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
As alternatives to perfluorooctane sulfonate (PFOS), 6:2 Cl-PFESA (F-53B) and sodium p-perfluorous nonenoxybenzene sulfonate (OBS) are frequently detected in aquatic environments, but little is known about their neurotoxicity, especially in terms of circadian rhythms. In this study, adult zebrafish were chronically exposed to 1 μM PFOS, F-53B and OBS for 21 days taking circadian rhythm-dopamine (DA) regulatory network as an entry point to comparatively investigate their neurotoxicity and underlying mechanisms. The results showed that PFOS may affect the response to heat rather than circadian rhythms by reducing DA secretion due to disruption of calcium signaling pathway transduction caused by midbrain swelling. In contrast, F-53B and OBS altered the circadian rhythms of adult zebrafish, but their mechanisms of action were different. Specifically, F-53B might alter circadian rhythms by interfering with amino acid neurotransmitter metabolism and disrupting blood-brain barrier (BBB) formation, whereas OBS mainly inhibited canonical Wnt signaling transduction by reducing cilia formation in ependymal cells and induced midbrain ventriculomegaly, finally triggering imbalance in DA secretion and circadian rhythm changes. Our study highlights the need to focus on the environmental exposure risks of PFOS alternatives and the sequential and interactive mechanisms of their multiple toxicities.
Collapse
Affiliation(s)
- Qiyu Wang
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Xueyan Gu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Yu Liu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Shuai Liu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Wuting Lu
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Yongming Wu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Huiqiang Lu
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Jing Huang
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenqing Tu
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
10
|
Kimura A, Ishida Y, Nosaka M, Ishigami A, Yamamoto H, Kuninaka Y, Hata S, Ozaki M, Kondo T. Application and limitation of a biological clock-based method for estimating time of death in forensic practices. Sci Rep 2023; 13:6093. [PMID: 37055510 PMCID: PMC10102023 DOI: 10.1038/s41598-023-33328-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/11/2023] [Indexed: 04/15/2023] Open
Abstract
Estimating time of death is one of the most important problems in forensics. Here, we evaluated the applicability, limitations and reliability of the developed biological clock-based method. We analyzed the expression of the clock genes, BMAL1 and NR1D1, in 318 dead hearts with defined time of death by real-time RT-PCR. For estimating the time of death, we chose two parameters, the NR1D1/BMAL1 ratio and BMAL1/NR1D1 ratio for morning and evening deaths, respectively. The NR1D1/BMAL1 ratio was significantly higher in morning deaths and the BMAL1/NR1D1 ratio was significantly higher in evening deaths. Sex, age, postmortem interval, and most causes of death had no significant effect on the two parameters, except for infants and the elderly, and severe brain injury. Although our method may not work in all cases, our method is useful for forensic practice in that it complements classical methods that are strongly influenced by the environment in which the corpse is placed. However, this method should be applied with caution in infants, the elderly, and patients with severe brain injury.
Collapse
Affiliation(s)
- Akihiko Kimura
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Yuko Ishida
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Mizuho Nosaka
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Akiko Ishigami
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Hiroki Yamamoto
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Yumi Kuninaka
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Satoshi Hata
- Department of Cardiovascular Medicine, Kinan Hospital, Wakayama, Japan
| | - Mitsunori Ozaki
- Department of Neurological Surgery, National Hospital Organization Minami Wakayama Medical Center, Wakayama, Japan
| | - Toshikazu Kondo
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan.
| |
Collapse
|
11
|
Fan J, Chen D, Wang N, Su R, Li H, Ma H, Gao F. Negative relationship between brain-derived neurotrophic factor (BDNF) and attention: A possible elevation in BDNF level among high-altitude migrants. Front Neurol 2023; 14:1144959. [PMID: 37114226 PMCID: PMC10126458 DOI: 10.3389/fneur.2023.1144959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Objective Brain-derived neurotrophic factor (BDNF), a member of the neurotrophic family that plays a vital role in regulating neuronal activity and synaptic plasticity in the brain, affects attention. However, studies investigating the association between BDNF and attention in long-term high-altitude (HA) migrants are limited in the literature. As HA affects both BDNF and attention, the relationship between these factors becomes more complex. Therefore, this study aimed to evaluate the relationship between peripheral blood concentrations of BDNF and the three attentional networks in both behavioral and electrical aspects of the brain in long-term HA migrants. Materials and methods Ninety-eight Han adults (mean age: 34.74 ± 3.48 years, 51 females and 47 males, all have lived at Lhasa for 11.30 ± 3.82 years) were recruited in this study. For all participants, the serum BDNF levels were assessed using enzyme-linked immunosorbent assay; event-related potentials (N1, P1, and P3) were recorded during the Attentional Networks Test, which was used as the measure of three attentional networks. Results Executive control scores were negatively correlated with P3 amplitude (r = -0.20, p = 0.044), and serum BDNF levels were positively correlated with executive control scores (r = 0.24, p = 0.019) and negatively correlated with P3 amplitude (r = -0.22, p = 0.027). Through grouping of BDNF levels and three attentional networks, executive control was found to be significantly higher in the high BDNF group than in the low BDNF group (p = 0.010). Different BDNF levels were associated with both orienting scores (χ2 = 6.99, p = 0.030) and executive control scores (χ2 = 9.03, p = 0.011). The higher the BDNF level, the worse was the executive function and the lower was the average P3 amplitude and vice versa. Females were found to have higher alerting scores than males (p = 0.023). Conclusion This study presented the relationship between BDNF and attention under HA. The higher the BDNF level, the worse was the executive control, suggesting that after long-term exposure to HA, hypoxia injury of the brain may occur in individuals with relatively higher BDNF levels, and this higher BDNF level may be the result of self-rehabilitation tackling the adverse effects brought by the HA environment.
Collapse
Affiliation(s)
- Jing Fan
- Plateau Brain Science Research Center, Tibet University, Lhasa, China
| | - Dongmei Chen
- Plateau Brain Science Research Center, Tibet University, Lhasa, China
- Office of Safety and Health, Lhasa No. 1 Middle School, Lhasa, China
| | - Niannian Wang
- Plateau Brain Science Research Center, Tibet University, Lhasa, China
| | - Rui Su
- Plateau Brain Science Research Center, Tibet University, Lhasa, China
- Beijing Key Laboratory of Behavior and Mental Health, School of Psychological and Cognitive Sciences, Peking University, Beijing, China
| | - Hao Li
- Plateau Brain Science Research Center, Tibet University, Lhasa, China
| | - Hailin Ma
- Plateau Brain Science Research Center, Tibet University, Lhasa, China
- Academy of Plateau Science and Sustainability, People's Government of Qinghai Province, Xining, China
- *Correspondence: Hailin Ma
| | - Fei Gao
- Plateau Brain Science Research Center, Tibet University, Lhasa, China
- Fei Gao
| |
Collapse
|
12
|
Mallah K, Zibara K, Kerbaj C, Eid A, Khoshman N, Ousseily Z, Kobeissy A, Cardon T, Cizkova D, Kobeissy F, Fournier I, Salzet M. Neurotrauma investigation through spatial omics guided by mass spectrometry imaging: Target identification and clinical applications. MASS SPECTROMETRY REVIEWS 2023; 42:189-205. [PMID: 34323300 DOI: 10.1002/mas.21719] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/04/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
Traumatic brain injury (TBI) represents one of the major public health concerns worldwide due to the increase in TBI incidence as a result of injuries from daily life accidents such as sports and motor vehicle transportation as well as military-related practices. This type of central nervous system trauma is known to predispose patients to several neurological disorders such as Parkinson's disease, Alzheimer's disease, chronic trauamatic encephalopathy, and age-related Dementia. Recently, several proteomic and lipidomic platforms have been applied on different TBI studies to investigate TBI-related mechanisms that have broadened our understanding of its distinct neuropathological complications. In this study, we provide an updated comprehensive overview of the current knowledge and novel perspectives of the spatially resolved microproteomics and microlipidomics approaches guided by mass spectrometry imaging used in TBI studies and its applications in the neurotrauma field. In this regard, we will discuss the use of the spatially resolved microproteomics and assess the different microproteomic sampling methods such as laser capture microdissection, parafilm assisted microdissection, and liquid microjunction extraction as accurate and precise techniques in the field of neuroproteomics. Additionally, we will highlight lipid profiling applications and their prospective potentials in characterizing molecular processes involved in the field of TBI. Specifically, we will discuss the phospholipid metabolism acting as a precursor for proinflammatory molecules such as eicosanoids. Finally, we will survey the current state of spatial neuroproteomics and microproteomics applications and present the various studies highlighting their findings in these fields.
Collapse
Affiliation(s)
- Khalil Mallah
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
- PRASE, Lebanese University, Beirut, Lebanon
- Univ.Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
| | - Kazem Zibara
- PRASE, Lebanese University, Beirut, Lebanon
- Department of Biology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Coline Kerbaj
- Department of Biology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Ali Eid
- Department of Basic Medical Sciences, QU Health, Qatar University, Doha, Qatar
| | - Nour Khoshman
- Department of Biology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Zahraa Ousseily
- Department of Biology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Abir Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Tristan Cardon
- Univ.Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
| | - Dasa Cizkova
- Univ.Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
- Center for Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Isabelle Fournier
- Univ.Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
- Institut Universitaire de France, Paris, France
| | - Michel Salzet
- Univ.Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
13
|
Sharma HS, Muresanu DF, Nozari A, Lafuente JV, Buzoianu AD, Tian ZR, Huang H, Feng L, Bryukhovetskiy I, Manzhulo I, Wiklund L, Sharma A. Neuroprotective Effects of Nanowired Delivery of Cerebrolysin with Mesenchymal Stem Cells and Monoclonal Antibodies to Neuronal Nitric Oxide Synthase in Brain Pathology Following Alzheimer's Disease Exacerbated by Concussive Head Injury. ADVANCES IN NEUROBIOLOGY 2023; 32:139-192. [PMID: 37480461 DOI: 10.1007/978-3-031-32997-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Concussive head injury (CHI) is one of the major risk factors in developing Alzheimer's disease (AD) in military personnel at later stages of life. Breakdown of the blood-brain barrier (BBB) in CHI leads to extravasation of plasma amyloid beta protein (ΑβP) into the brain fluid compartments precipitating AD brain pathology. Oxidative stress in CHI or AD is likely to enhance production of nitric oxide indicating a role of its synthesizing enzyme neuronal nitric oxide synthase (NOS) in brain pathology. Thus, exploration of the novel roles of nanomedicine in AD or CHI reducing NOS upregulation for neuroprotection are emerging. Recent research shows that stem cells and neurotrophic factors play key roles in CHI-induced aggravation of AD brain pathologies. Previous studies in our laboratory demonstrated that CHI exacerbates AD brain pathology in model experiments. Accordingly, it is quite likely that nanodelivery of NOS antibodies together with cerebrolysin and mesenchymal stem cells (MSCs) will induce superior neuroprotection in AD associated with CHI. In this review, co-administration of TiO2 nanowired cerebrolysin - a balanced composition of several neurotrophic factors and active peptide fragments, together with MSCs and monoclonal antibodies (mAb) to neuronal NOS is investigated for superior neuroprotection following exacerbation of brain pathology in AD exacerbated by CHI based on our own investigations. Our observations show that nanowired delivery of cerebrolysin, MSCs and neuronal NOS in combination induces superior neuroprotective in brain pathology in AD exacerbated by CHI, not reported earlier.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Ala Nozari
- Anesthesiology & Intensive Care, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Hongyun Huang
- Beijing Hongtianji Neuroscience Academy, Beijing, China
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Shijiazhuang, Hebei Province, China
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Igor Manzhulo
- Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| |
Collapse
|
14
|
Boots R, Xue G, Tromp D, Rawashdeh O, Bellapart J, Townsend S, Rudd M, Winter C, Mitchell G, Garner N, Clement P, Karamujic N, Zappala C. Circadian Rhythmicity of Vital Signs at Intensive Care Unit Discharge and Outcome of Traumatic Brain Injury. Am J Crit Care 2022; 31:472-482. [PMID: 36316179 DOI: 10.4037/ajcc2022821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Physiological functions with circadian rhythmicity are often disrupted during illness. OBJECTIVE To assess the utility of circadian rhythmicity of vital signs in predicting outcome of traumatic brain injury (TBI). METHODS A retrospective single-center cohort study of adult intensive care unit (ICU) patients with largely isolated TBI to explore the relationship between the circadian rhythmicity of vital signs during the last 24 hours before ICU discharge and clinical markers of TBI severity and score on the Glasgow Outcome Scale 6 months after injury (GOS-6). RESULTS The 130 study participants had a median age of 39.0 years (IQR, 23.0-59.0 years), a median Glasgow Coma Scale score at the scene of 8.0 (IQR, 3.0-13.0), and a median Rotterdam score on computed tomography of the head of 3 (IQR, 3-3), with 105 patients (80.8%) surviving to hospital discharge. Rhythmicity was present for heart rate (30.8% of patients), systolic blood pressure (26.2%), diastolic blood pressure (20.0%), and body temperature (26.9%). Independent predictors of a dichotomized GOS-6 ≥4 were the Rotterdam score (odds ratio [OR], 0.38 [95% CI, 0.18-0.81]; P = .01), Glasgow Coma Scale score at the scene (OR, 1.22 [95% CI, 1.05-1.41]; P = .008), age (OR, 0.95 [95% CI, 0.92-0.98]; P = .003), oxygen saturation <90% in the first 24 hours (OR, 0.19 [95% CI, 0.05-0.73]; P = .02), serum sodium level <130 mmol/L (OR, 0.20 [95% CI, 0.05-0.70]; P = .01), and active intracranial pressure management (OR, 0.16 [95% CI, 0.04-0.62]; P = .008), but not rhythmicity of any vital sign. CONCLUSION Circadian rhythmicity of vital signs at ICU discharge is not predictive of GOS-6 in patients with TBI.
Collapse
Affiliation(s)
- Rob Boots
- Rob Boots is an associate professor, Thoracic Medicine, Royal Brisbane and Women's Hospital, a senior specialist, Intensive Care, Bundaberg Hospital, Faculty of Medicine, The University of Queensland, Herston, and a professsor, Faculty of Medicine and Dentistry, Griffith University, Queensland, Australia
| | - George Xue
- George Xue is the medical registrar, Royal Brisbane and Women's Hospital
| | - Dirk Tromp
- Dirk Tromp is the senior radiology registrar, Royal Brisbane and Women's Hospital
| | - Oliver Rawashdeh
- Oliver Rawashdeh is director, Chronobiology and Sleep Research, School of Biomedical Sciences, Faculty of Medicine, The University of Queensland
| | - Judith Bellapart
- Judith Bellapart is a senior specialist, Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, and Burns, Trauma, and Critical Care, The University of Queensland
| | - Shane Townsend
- Shane Townsend is director, Intensive Care Services, Royal Brisbane and Women's Hospital
| | - Michael Rudd
- Michael Rudd is acting director, Trauma, Royal Brisbane and Women's Hospital
| | - Craig Winter
- Craig Winter is a staff specialist neurosurgeon, Royal Brisbane and Women's Hospital
| | - Gary Mitchell
- Gary Mitchell is a staff specialist, Emergency Medicine, Royal Brisbane and Women's Hospital
| | - Nicholas Garner
- Nicholas Garner is a PhD student, Chronobiology and Sleep Research Lab, School of Biomedical Sciences, Faculty of Medicine, The University of Queensland
| | - Pierre Clement
- Pierre Clement is a clinical information systems manager, Intensive Care Services, Royal Brisbane and Women's Hospital
| | - Nermin Karamujic
- Nermin Karamujic is a data manager and clinical information systems manager, Intensive Care Services, Royal Brisbane and Women's Hospital
| | - Christopher Zappala
- Christopher Zappala is a senior staff specialist, Thoracic Medicine, Royal Brisbane and Women's Hospital
| |
Collapse
|
15
|
Srisurapanont K, Samakarn Y, Kamklong B, Siratrairat P, Bumiputra A, Jaikwang M, Srisurapanont M. Efficacy and acceptability of blue-wavelength light therapy for post-TBI behavioral symptoms: A systematic review and meta-analysis of randomized controlled trials. PLoS One 2022; 17:e0274025. [PMID: 36201498 PMCID: PMC9536631 DOI: 10.1371/journal.pone.0274025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/20/2022] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVE Behavioral symptoms are common after traumatic brain injury (TBI), but their treatments remain unsatisfactory. This systematic review and meta-analysis compared the efficacy and acceptability between blue-wavelength light therapy (BWLT) and long-wavelength/no light therapy (LW/NLT) for post-TBI sleepiness, sleep disturbance, depressive symptoms, and fatigue. METHODS This study included randomized controlled trials comparing the effects of BWLT and LW/NLT on post-TBI sleepiness, sleep disturbance, depression, or fatigue. We searched Pubmed, Embase, CINAHL, and Cochrane Central Register of Controlled of Trials on April 13, 2022. The revised tool for assessing the risk of bias in randomized trials was applied. We performed a frequentist pairwise meta-analysis using a random-effects model. RESULTS Of 233 retrieved records, six trials (N = 278) were included in this meta-analysis. TBIs ranged from mild to severe, and the interventions were administered for a median of 35 days. Most trials delivered light therapy via lightboxes. Three trials had a high risk of bias. BWLT was significantly superior to LW/NLT in reducing sleep disturbance (5 trials; SMD = -0.63; 95% CI = -1.21 to -0.05; p = 0.03; I2 = 61%) and depressive symptoms (4 trials; SMD = -1.00; 95% CI = -1.62 to -0.38; p < 0.01; I2 = 56%). There were trends that BWLT was superior to LW/NLT in reducing sleepiness (6 trials; SMD = -0.92; 95% CI = -1.84 to 0.00; p = 0.05; I2 = 88%) and fatigue (4 trials; SMD = -1.44; 95% CI = -2.95 to 0.08; p = 0.06; I2 = 91%). All-cause dropout rates were not significantly different between groups. CONCLUSION Limited and heterogenous evidence suggests that short-term BWLT is well accepted, has a large treatment effect on post-TBI depressive symptoms, and may have a moderate treatment effect on post-TBI sleep disturbance.
Collapse
Affiliation(s)
| | - Yanisa Samakarn
- Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | | | - Arina Bumiputra
- Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Montita Jaikwang
- Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Manit Srisurapanont
- Department of Psychiatry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
16
|
Study of Brain Circadian Rhythms in Patients with Chronic Disorders of Consciousness and Healthy Individuals Using Microwave Radiometry. Diagnostics (Basel) 2022; 12:diagnostics12081777. [PMID: 35892486 PMCID: PMC9331034 DOI: 10.3390/diagnostics12081777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/06/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
The study of circadian rhythms in the human body using temperature measurements is the most informative way to assess the viability of the body’s rhythm-organizing systems. Pathological processes can affect circadian rhythm dynamics in damaged organs. Severe brain damage that caused the development of disorders of consciousness (DOC) (strokes, traumatic brain injury) disrupts the activity of central oscillators, by directly damaging or destroying the periphery links, and the level of preservation of circadian rhythms and the dynamics of their recovery can be informative diagnostic criteria for patient’s condition assessment. This study examined 23 patients with DOC by using a non-invasive method for obtaining body and cerebral cortex temperature to compare with healthy controls. Measurements were made with a 4 h interval for 52 h beginning at 08:00 on day 1 and ending at 08:00 on day 3. The profile of patients with DOC showed complete disruption compared to healthy controls with rhythmic patterns. The results indicate that the mechanisms for maintaining brain circadian rhythms are different from general homeostasis regulation of the body. Use of microwave radio thermometry for the identification of rehabilitation potential in patients with DOC is a promising area of investigation.
Collapse
|
17
|
The Effect of Traumatic Brain Injury on Sleep Architecture and Circadian Rhythms in Mice—A Comparison of High-Frequency Head Impact and Controlled Cortical Injury. BIOLOGY 2022; 11:biology11071031. [PMID: 36101412 PMCID: PMC9312487 DOI: 10.3390/biology11071031] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/02/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Traumatic brain injury (TBI) is a significant risk factor for the development of sleep and circadian rhythm impairments. In order to understand if TBI models with different injury mechanism, severity and pathology have different sleep and circadian rhythm disruptions, we performed a detailed sleep and circadian analysis of the high-frequency head impact TBI model (a mouse model that mimics sports-related head impacts) and the controlled cortical impact TBI model (a mouse model that mimics severe brain trauma). We found that both TBI models disrupt the ability of brain cells to maintain circadian rhythms; however, both injury groups could still maintain circadian behavior patterns. Both the mild head impact model and the severe brain injury model had normal amount of sleep at 7 d after injury; however, the severe brain injury mice had disrupted brain wave patterns during sleep. We conclude that different types of TBI have different patterns of sleep disruptions. Abstract Traumatic brain injury (TBI) is a significant risk factor for the development of sleep and circadian rhythm impairments. In this study we compare the circadian rhythms and sleep patterns in the high-frequency head impact (HFHI) and controlled cortical impact (CCI) mouse models of TBI. These mouse models have different injury mechanisms key differences of pathology in brain regions controlling circadian rhythms and EEG wave generation. We found that both HFHI and CCI caused dysregulation in the diurnal expression of core circadian genes (Bmal1, Clock, Per1,2, Cry1,2) at 24 h post-TBI. CCI mice had reduced locomotor activity on running wheels in the first 7 d post-TBI; however, both CCI and HFHI mice were able to maintain circadian behavior cycles even in the absence of light cues. We used implantable EEG to measure sleep cycles and brain activity and found that there were no differences in the time spent awake, in NREM or REM sleep in either TBI model. However, in the sleep states, CCI mice have reduced delta power in NREM sleep and reduced theta power in REM sleep at 7 d post-TBI. Our data reveal that different types of brain trauma can result in distinct patterns of circadian and sleep disruptions and can be used to better understand the etiology of sleep disorders after TBI.
Collapse
|
18
|
Padmakumar S, Kulkarni P, Ferris CF, Bleier BS, Amiji MM. Traumatic brain injury and the development of parkinsonism: Understanding pathophysiology, animal models, and therapeutic targets. Biomed Pharmacother 2022; 149:112812. [PMID: 35290887 PMCID: PMC9050934 DOI: 10.1016/j.biopha.2022.112812] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 02/06/2023] Open
Abstract
The clinical translation of therapeutic approaches to combat debilitating neurodegenerative conditions, such as Parkinson's disease (PD), remains as an urgent unmet challenge. The strong molecular association between the pathogenesis of traumatic brain injury (TBI) and the development of parkinsonism in humans has been well established. Therefore, a lot of ongoing research aims to investigate this pathology overlap in-depth, to exploit the common targets of TBI and PD for development of more effective and long-term treatment strategies. This review article intends to provide a detailed background on TBI pathophysiology and its established overlap with PD with an additional emphasis on the recent findings about their effect on perivascular clearance. Although, the traditional animal models of TBI and PD are still being considered, there is a huge focus on the development of combinatory hybrid animal models coupling concussion with the pre-established PD models for a better recapitulation of the human context of PD pathogenesis. Lastly, the therapeutic targets for TBI and PD, and the contemporary research involving exosomes, DNA vaccines, miRNA, gene therapy and gene editing for the development of potential candidates are discussed, along with the recent development of lesser invasive and promising central nervous system (CNS) drug delivery strategies.
Collapse
Affiliation(s)
- Smrithi Padmakumar
- Department of Pharmaceutical Sciences, School of Pharmacy and Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, United States of America
| | - Praveen Kulkarni
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States of America
| | - Craig F Ferris
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States of America
| | - Benjamin S Bleier
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States of America
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy and Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, United States of America.
| |
Collapse
|
19
|
Hetman M, Slomnicki L, Hodges E, Ohri SS, Whittemore SR. Role of circadian rhythms in pathogenesis of acute CNS injuries: Insights from experimental studies. Exp Neurol 2022; 353:114080. [DOI: 10.1016/j.expneurol.2022.114080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/28/2022] [Accepted: 04/05/2022] [Indexed: 11/16/2022]
|
20
|
Wu L, Chan ST, Edmiston WJ, Jin G, Levy ES, Kwong KK, Mannix R, Meehan WP, Chifamba FF, Lipton JO, Whalen MJ, Chen YCI. Persistent CO 2 reactivity deficits are associated with neurological dysfunction up to one year after repetitive mild closed head injury in adolescent mice. J Cereb Blood Flow Metab 2021; 41:3260-3272. [PMID: 34229511 PMCID: PMC8669283 DOI: 10.1177/0271678x211021771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cerebrovascular reactivity (CVR) deficits in adolescents with concussion may persist after resolution of neurological symptoms. Whether or not CVR deficits predict long term neurological function is unknown. We used adolescent mice closed head injury (CHI) models (54 g, 107 cm or 117 cm drop height), followed by blood oxygenation level dependent (BOLD)-functional MRI with CO2 challenge to assess CVR and brain connectivity. At one week, 3HD 107 cm mice showed delayed BOLD responses (p = 0.0074), normal striatal connectivity, and an impaired respiratory rate response to CO2 challenge (p = 0.0061 in ΔRmax). The 107 cm group developed rotarod deficits at 6 months (p = 0.02) and altered post-CO2 brain connectivity (3-fold increase in striatum to motor cortex correlation coefficient) by one year, but resolved their CVR and respiratory rate impairments, and did not develop cognitive or circadian activity deficits. In contrast, the 117 cm group had persistent CVR (delay time: p = 0.016; washout time: p = 0.039) and circadian activity deficits (free-running period: 23.7 hr in sham vs 23.9 hr in 3HD; amplitude: 0.15 in sham vs 0.2 in 3HD; peak activity: 18 in sham vs 21 in 3HD) at one year. Persistent CVR deficits after concussion may portend long-term neurological dysfunction. Further studies are warranted to determine the utility of CVR to predict chronic neurological outcome after mild traumatic brain injury.
Collapse
Affiliation(s)
- Limin Wu
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Suk-Tak Chan
- Department of Radiology, A. Martino's Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - William J Edmiston
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Gina Jin
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Emily S Levy
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kenneth K Kwong
- Department of Radiology, A. Martino's Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Rebekah Mannix
- Department of Emergency Medicine, Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - William P Meehan
- Department of Emergency Medicine, Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.,Department of Orthopedics, Division of Sports Medicine, Boston, MA, USA
| | - Fortunate F Chifamba
- Department of Neurology, Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Jonathan O Lipton
- Department of Neurology, Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.,Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Michael J Whalen
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yin-Ching I Chen
- Department of Radiology, A. Martino's Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
21
|
Li B, Li D, Ni H, Liu C, Xiong J, Liu H, Gao R, Zhang L, Chen G. The circadian clock regulator Bmal1 affects traumatic brain injury in rats through the p38 MAPK signalling pathway. Brain Res Bull 2021; 178:17-28. [PMID: 34774994 DOI: 10.1016/j.brainresbull.2021.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 11/02/2022]
Abstract
Traumatic brain injury (TBI) is still one of the main causes of death and disability worldwide. Bmal1 (brain and muscle Arnt-like protein-1) is the most central factor of the circadian rhythms that control life and cells. Studies have shown that Bmal1 is involved in inflammation, oxidative stress, vasodilation, glucose and lipid metabolism. This study explored the effect of Bmal1 on secondary brain injury after TBI in rats and the possible mechanism. We established a rat model of TBI induced by the free fall of a weight in rats. The Western blotting and immunofluorescence results showed that the Bmal1 levels decreased in the cerebral cortex after TBI, especially at 48 h. The effects of Bmal1 levels on rats after TBI were evaluated by brain oedema measurement, adhesive removal tests, behavioural tests, and TUNEL and FJC staining. We found that the recombinant Bmal1 protein increased Bmal1 levels after TBI and reduced brain oedema, neurobehavioural injury, somatosensory disturbances, and nerve cell necrosis and apoptosis. The ELISA results showed that Bmal1 overexpression could reduce the inflammatory factors IL-4 and TNF-α after TBI. In contrast, inhibiting Bmal1 expression had the opposite effect. The changes in Bmal1 levels were closely related to the phosphorylation of p38 MAPK after TBI. In conclusion, a decrease in Bmal1 after TBI may exacerbate pathological symptoms in vivo by activating p38 MAPK phosphorylation.
Collapse
Affiliation(s)
- Bing Li
- Department of Neurosurgery, the Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China
| | - Di Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Haibo Ni
- Department of Neurosurgery, the Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China
| | - Chenglin Liu
- Department of Neurosurgery, the Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China
| | - Jian Xiong
- Department of Rehabilitation, the Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China
| | - Huixiang Liu
- Department of Neurosurgery, the Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China
| | - Rong Gao
- Department of Neurosurgery, the Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China.
| | - Li Zhang
- Department of Neurosurgery, the Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China.
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, the First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
22
|
Said MF, Islam AA, Massi MN, Prihantono, Hatta M, Patellongi IJ, Cangara H, Adhimarta W, Nasrullah, Nasution RA. Effect of erythropoietin administration on expression of mRNA brain-derived Neutrophic factor, levels of stromal cell-derived Factor-1, and neuron specific enolase in brain injury model Sprague Dawley. Ann Med Surg (Lond) 2021; 70:102877. [PMID: 34691421 PMCID: PMC8519762 DOI: 10.1016/j.amsu.2021.102877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/18/2021] [Accepted: 09/19/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a complicated condition that is the primary cause of death and disability in children and young adults in developed countries. Various kinds of therapy have been carried out in the management of brain injury, one of which is the administration of erythropoietin (EPO). There are not many studies in Indonesia have proven that EPO administration is effective on parameters such as stromal cell-derived factor 1 (SDF-1), brain-derived neurotrophic factor (BDNF mRNA), and neuron-specific enolase (NSE) in brain injury patients. The purpose of this study was to see how EPO affected BDNF mRNA expression, SDF-1 serum levels, and NSE levels in experimental rats with TBI. METHODS This study was conducted using a rat head injury model. Fifteen rats were randomly assigned to one of three groups: A, B, or C. EPO was administered subcutis with a dose of 30.000 U/kg. Blood samples were taken after brain injury (H0), 12 h (H12), and 24 h (H24) after brain injury. Serum level of SDF-1 and NSE were measured using mRNA BDNF gene expression was measured with Real-Time-PCR, and ELISA. RESULTS This study found EPO increase BDNF mRNA expression in group C at H-12 (7,92 ± 0.51 vs 6.45 ± 0.33) compared to group B, and at H-24 (9.20 ± 0.56 vs 7.22 ± 0.19); increase SDF-1 levels in group C at H-12 (7,56 ± 0,54) vs 4,62 ± 0,58) compared to group B, and at H-24 (11,32 ± 4,55 vs 2,55 ± 0,70); decrease serum NSE levels in group C at H-12 (17,25 ± 2,02 vs 29,65 ± 2,33) compare to group B and at H-24 (12,14 ± 2,61 vs 37,31 ± 2,76); the values are significantly different with p < 0,05. CONCLUSION EPO may have neuroprotective and anti-inflammatory properties in TBI by increasing mRNA BDNF expression and serum SDF-1 levels, and decrease serum NSE levels.
Collapse
Affiliation(s)
- Muhammad Fadli Said
- Doctoral Program of Biomedical Sciences, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Andi Asadul Islam
- Department of Neurosurgery, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Muhammad Nasrum Massi
- Department of Clinical Microbiology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Prihantono
- Department of Surgery, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Mochammad Hatta
- Department of Clinical Microbiology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Ilham jaya Patellongi
- Department of Physiology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Husni Cangara
- Department of Pathology Anatomy, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Willy Adhimarta
- Department of Neurosurgery, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Nasrullah
- Department of Neurosurgery, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | | |
Collapse
|
23
|
Miller M, Williams R, Pagulayan K, Barber J, Ehde DM, Hoffman J. Correlates of sleep disturbance in Veterans with traumatic brain injury and chronic pain: A cross-sectional study. Disabil Health J 2021; 15:101203. [PMID: 34479850 DOI: 10.1016/j.dhjo.2021.101203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 07/24/2021] [Accepted: 08/23/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Few studies have investigated sleep in Veterans with comorbid traumatic brain injury (TBI) and chronic pain. OBJECTIVE To describe mood and cognitive correlates with sleep disturbance in a sample of Veterans with both TBI and chronic pain. RESEARCH METHOD Cross-sectional, correlational analyses were completed using baseline data from a randomized controlled trial comparing psychosocial treatments for pain in Veterans with TBI. Enrollment occurred between July 2015 and January 2017. Self-report measures of hours slept, insomnia severity, depression and PTSD symptoms were collected along with a brief neuropsychological assessment. RESULTS Participants (n = 221) were an average age of 37.2 years (SD = 8.2) and mostly male (89%). Participants reported sleeping an average of 4.9 h a night (SD = 1.4) with an average Insomnia Severity Index (ISI) score of 17.4 (SD = 5.4) suggesting moderate insomnia symptoms. Fewer hours slept was associated with higher depression scores (r = -0.28, p < 0.001) and slower processing speed (r = 0.23, p < 0.001). Increasing insomnia severity was associated with greater depression (r = 0.57, p < 0.001) and PTSD symptoms (r = 0.44, p < 0.001), and slower processing speed (r = -0.22, p < 0.001). CONCLUSIONS The average ISI score was above the clinical cut off for insomnia diagnosis. Results suggest that those with more severe insomnia symptoms report higher depression and PTSD symptoms as well as exhibit slower processing speed. Improving sleep in this population may be important for improving outcome following TBI.
Collapse
Affiliation(s)
- Megan Miller
- VA Puget Sound Health Care System, Seattle, WA, USA.
| | - Rhonda Williams
- VA Puget Sound Health Care System, Seattle, WA, USA; Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | - Kathleen Pagulayan
- VA Puget Sound Health Care System, Seattle, WA, USA; Department of Psychiatry and Behavioural Sciences, University of Washington, Seattle, WA, USA
| | - Jason Barber
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | - Dawn M Ehde
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | - Jeanne Hoffman
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
24
|
Daneva E, Makris K, Korompeli A, Muurlink O, Kaklamanos I, Fildissis G, Vlachos K, Myrianthefs P. Saliva cortisol levels and physiological parameter fluctuations in mild traumatic brain injury patients compared to controls. Int J Neurosci 2021; 133:612-620. [PMID: 34228947 DOI: 10.1080/00207454.2021.1951264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Evidence suggests that fluctuations of cortisol and physiological parameters can emerge during the course of mild Traumatic Brain Injury (mTBI). OBJECTIVE To investigate fluctuations of cortisol and physiological parametersduring the acute phase of mTBI in hospitalized patients. METHODS 30 participants (19 patients with mTBI and 11 controls) were examined for saliva cortisol dynamics, heart rate (HR), systolic arterial pressure (SAP), diastolic arterial pressure (DAP), mean arterial pressure (MAP) and body temperature (BT) fluctuations for four consecutive days. Also, the participants completed the Athens Insomnia Scale and Epworth Sleepiness Scales, in order to check for sleep problems. RESULTS Patients showed elevated levels of cortisol relative to controls (peak at 8 am and lowest levels at 12 am), as well as for most physiological parameters. MAP was significantly higher for patients throughout the measurement period, and BT was elevated for patients relative to controls at almost all measurements of the first and second day. Mean HR tended to track at non-significantly higher levels for the mTBI group. Patients' sleepiness and insomnia values (ESS and AIS) were initially significantly higher relative to controls but the difference dissipated by day 4. CONCLUSION The increase in absolute values of cortisol and physiological parameters measurements, indicates that in the acute phase of mTBI, a stressful process is activated which may affect sleep quality as well.Supplemental data for this article is available online at at doi: 10.1080/00207454.2021.1951264.
Collapse
Affiliation(s)
| | - Konstantinos Makris
- Clinical Biochemistry Department, KAT General Hospital, Kifissia, Athens, Greece
| | - Anna Korompeli
- National and Kapodistrian University of Athens, School of Health Sciences, Department of Nursing, "AgioiAnargyroi" General Hospital, Athens, Greece, Noufaron & Timiou Stavrou, Kaliftaki, Nea Kifissia, Athens, Greece
| | - Olav Muurlink
- Central Queensland University, Brisbane, Griffith Institute of Educational Research, Brisbane, Australia
| | - Ioannis Kaklamanos
- National and Kapodistrian University of Athens, School of Health Sciences, Department of Nursing, "AgioiAnargyroi" General Hospital, Athens, Greece, Noufaron & Timiou Stavrou, Kaliftaki, Nea Kifissia, Athens, Greece
| | - George Fildissis
- National and Kapodistrian University of Athens, School of Health Sciences, Department of Nursing, "AgioiAnargyroi" General Hospital, Athens, Greece, Noufaron & Timiou Stavrou, Kaliftaki, Nea Kifissia, Athens, Greece
| | | | - Pavlos Myrianthefs
- National and Kapodistrian University of Athens, School of Health Sciences, Department of Nursing, "AgioiAnargyroi" General Hospital, Athens, Greece, Noufaron & Timiou Stavrou, Kaliftaki, Nea Kifissia, Athens, Greece
| |
Collapse
|
25
|
The Role of BDNF in Experimental and Clinical Traumatic Brain Injury. Int J Mol Sci 2021; 22:ijms22073582. [PMID: 33808272 PMCID: PMC8037220 DOI: 10.3390/ijms22073582] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023] Open
Abstract
Traumatic brain injury is one of the leading causes of mortality and morbidity in the world with no current pharmacological treatment. The role of BDNF in neural repair and regeneration is well established and has also been the focus of TBI research. Here, we review experimental animal models assessing BDNF expression following injury as well as clinical studies in humans including the role of BDNF polymorphism in TBI. There is a large heterogeneity in experimental setups and hence the results with different regional and temporal changes in BDNF expression. Several studies have also assessed different interventions to affect the BDNF expression following injury. Clinical studies highlight the importance of BDNF polymorphism in the outcome and indicate a protective role of BDNF polymorphism following injury. Considering the possibility of affecting the BDNF pathway with available substances, we discuss future studies using transgenic mice as well as iPSC in order to understand the underlying mechanism of BDNF polymorphism in TBI and develop a possible pharmacological treatment.
Collapse
|
26
|
Frase S, Kaiser S, Steimer M, Selzner L, Foit NA, Niesen WD, Schallner N. Patients with Subarachnoid Hemorrhage Exhibit Disturbed Expression Patterns of the Circadian Rhythm Gene Period-2. Life (Basel) 2021; 11:life11020124. [PMID: 33562664 PMCID: PMC7915417 DOI: 10.3390/life11020124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Circadian rhythm gene expression in cerebral pacemaker regions is regulated by a transcriptional-translational feedback loop across the 24-h day-night cycle. In preclinical models of subarachnoid hemorrhage (SAH), cyclic gene expression is disrupted. Stabilization of circadian rhythm gene expression attenuates susceptibility to ischemic damage in both neuronal and myocardial tissues. In this clinical observational study, circadian rhythm gene Period-2 (Per2) mRNA expression levels were determined from blood leukocytes and cerebrospinal fluid (CSF) cells via real-time PCR on days 1, 7 and 14 after aneurysm rupture in 49 patients with spontaneous SAH. CSF Per2 expression was markedly suppressed immediately after SAH and remained suppressed over the course of two weeks of ICU treatment. Short-term mortality as well as occurrence of delirium was associated with greater extent of Per2 suppression on day 1 after SAH. Patients that developed delayed cerebral ischemia exhibited comparatively lower Per2 expression levels on day 7 after SAH, while presence of vasospasm remained unaffected. However, Per2 expression did not differ in patient groups with favourable or non-favourable functional neurological outcome (modified Rankin Scales 1–3 vs. 4–6). While our findings suggest a potential protective effect of stable circadian rhythm gene expression on the extent of ischemic damage, this effect was confined to the early disease course and was not reflected in patients’ functional neurological outcome.
Collapse
Affiliation(s)
- Sibylle Frase
- Department of Neurology and Neuroscience, Medical Center—University of Freiburg, 79106 Freiburg, Germany;
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.K.); (M.S.); (L.S.); (N.A.F.); (N.S.)
- Correspondence:
| | - Sandra Kaiser
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.K.); (M.S.); (L.S.); (N.A.F.); (N.S.)
- Department of Anesthesiology and Critical Care, Medical Center—University of Freiburg, 79106 Freiburg, Germany
| | - Matti Steimer
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.K.); (M.S.); (L.S.); (N.A.F.); (N.S.)
- Department of Anesthesiology and Critical Care, Medical Center—University of Freiburg, 79106 Freiburg, Germany
| | - Lisa Selzner
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.K.); (M.S.); (L.S.); (N.A.F.); (N.S.)
- Department of Anesthesiology and Critical Care, Medical Center—University of Freiburg, 79106 Freiburg, Germany
| | - Niels Alexander Foit
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.K.); (M.S.); (L.S.); (N.A.F.); (N.S.)
- Department of Neurosurgery, Medical Center—University of Freiburg, 79106 Freiburg, Germany
| | - Wolf-Dirk Niesen
- Department of Neurology and Neuroscience, Medical Center—University of Freiburg, 79106 Freiburg, Germany;
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.K.); (M.S.); (L.S.); (N.A.F.); (N.S.)
| | - Nils Schallner
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.K.); (M.S.); (L.S.); (N.A.F.); (N.S.)
- Department of Anesthesiology and Critical Care, Medical Center—University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
27
|
A Tangled Threesome: Circadian Rhythm, Body Temperature Variations, and the Immune System. BIOLOGY 2021; 10:biology10010065. [PMID: 33477463 PMCID: PMC7829919 DOI: 10.3390/biology10010065] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/06/2021] [Accepted: 01/10/2021] [Indexed: 12/14/2022]
Abstract
Simple Summary In mammals, including humans, the body temperature displays a circadian rhythm and is maintained within a narrow range to facilitate the optimal functioning of physiological processes. Body temperature increases during the daytime and decreases during the nighttime thus influencing the expression of the molecular clock and the clock-control genes such as immune genes. An increase in body temperature (daytime, or fever) also prepares the organism to fight aggression by promoting the activation, function, and delivery of immune cells. Many factors may affect body temperature level and rhythm, including environment, age, hormones, or treatment. The disruption of the body temperature is associated with many kinds of diseases and their severity, thus supporting the assumed association between body temperature rhythm and immune functions. Recent studies using complex analysis suggest that circadian rhythm may change in all aspects (level, period, amplitude) and may be predictive of good or poor outcomes. The monitoring of body temperature is an easy tool to predict outcomes and maybe guide future studies in chronotherapy. Abstract The circadian rhythm of the body temperature (CRBT) is a marker of the central biological clock that results from multiple complex biological processes. In mammals, including humans, the body temperature displays a strict circadian rhythm and has to be maintained within a narrow range to allow optimal physiological functions. There is nowadays growing evidence on the role of the temperature circadian rhythm on the expression of the molecular clock. The CRBT likely participates in the phase coordination of circadian timekeepers in peripheral tissues, thus guaranteeing the proper functioning of the immune system. The disruption of the CRBT, such as fever, has been repeatedly described in diseases and likely reflects a physiological process to activate the molecular clock and trigger the immune response. On the other hand, temperature circadian disruption has also been described as associated with disease severity and thus may mirror or contribute to immune dysfunction. The present review aims to characterize the potential implication of the temperature circadian rhythm on the immune response, from molecular pathways to diseases. The origin of CRBT and physiological changes in body temperature will be mentioned. We further review the immune biological effects of temperature rhythmicity in hosts, vectors, and pathogens. Finally, we discuss the relationship between circadian disruption of the body temperature and diseases and highlight the emerging evidence that CRBT monitoring would be an easy tool to predict outcomes and guide future studies in chronotherapy.
Collapse
|
28
|
McTiernan CF, Lemster BH, Bedi KC, Margulies KB, Moravec CS, Hsieh PN, Shusterman V, Saba S. Circadian Pattern of Ion Channel Gene Expression in Failing Human Hearts. Circ Arrhythm Electrophysiol 2020; 14:e009254. [PMID: 33301345 DOI: 10.1161/circep.120.009254] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Ventricular tachyarrhythmias and sudden cardiac death show a circadian pattern of occurrence in patients with heart failure. In the rodent ventricle, a significant portion of genes, including some ion channels, shows a circadian pattern of expression. However, genes that define electrophysiological properties in failing human heart ventricles have not been examined for a circadian expression pattern. METHODS Ventricular tissue samples were collected from patients at the time of cardiac transplantation. Two sets of samples (n=37 and 46, one set with a greater arrhythmic history) were selected to generate pseudo-time series according to their collection time. A third set (n=27) of samples was acquired from the nonfailing ventricles of brain-dead donors. The expression of 5 known circadian clock genes and 19 additional ion channel genes plausibly important to electrophysiological properties were analyzed by real-time polymerase chain reaction and then analyzed for the percentage of expression variation attributed to a 24-hour circadian pattern. RESULTS The 5 known circadian clock gene transcripts showed a strong circadian expression pattern. Compared with rodent hearts, the human circadian clock gene transcripts showed a similar temporal order of acrophases but with a ≈7.6 hours phase shift. Five of the ion channel genes also showed strong circadian expression. Comparable studies of circadian clock gene expression in samples recovered from nonheart failure brain-dead donors showed acrophase shifts, or weak or complete loss of circadian rhythmicity, suggesting alterations in circadian gene expression. CONCLUSIONS Ventricular tissue from failing human hearts display a circadian pattern of circadian clock gene expression but phase-shifted relative to rodent hearts. At least 5 ion channels show a circadian expression pattern in the ventricles of failing human hearts, which may underlie a circadian pattern of ventricular tachyarrhythmia/sudden cardiac death. Nonfailing hearts from brain-dead donors show marked differences in circadian clock gene expression patterns, suggesting fundamental deviations from circadian expression.
Collapse
Affiliation(s)
- Charles F McTiernan
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, PA (C.F.M., B.H.L., S.S.)
| | - Bonnie H Lemster
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, PA (C.F.M., B.H.L., S.S.)
| | - Kenneth C Bedi
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia (K.C.B)
| | - Kenneth B Margulies
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (K.B.M.)
| | - Christine S Moravec
- Department of Cardiovascular Medicine, Cleveland Clinic Foundation, OH (C.S.M.)
| | | | | | - Samir Saba
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, PA (C.F.M., B.H.L., S.S.)
| |
Collapse
|
29
|
Elenberger J, Kim B, de Castro-Abeger A, Rex TS. Connections between intrinsically photosensitive retinal ganglion cells and TBI symptoms. Neurology 2020; 95:826-833. [PMID: 32934170 PMCID: PMC7682828 DOI: 10.1212/wnl.0000000000010830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 08/12/2020] [Indexed: 12/15/2022] Open
Abstract
The majority of patients with traumatic brain injury (TBI) are classified as having a mild TBI. Despite being categorized as mild, these individuals report ongoing and complex symptoms, which negatively affect their ability to complete activities of daily living and overall quality of life. Some of the major symptoms include anxiety, depression, sleep problems, headaches, light sensitivity, and difficulty reading. The root cause for these symptoms is under investigation by many in the field. Of interest, several of these symptoms such as headaches, ocular pain, light sensitivity, and sleep disturbances may overlap and share underlying circuitry influenced by the intrinsically photosensitive retinal ganglion cells (ipRGCs). These cells are light sensing, but non-image forming, and they influence corneal function, pupillary constriction, and circadian rhythm. In this review, we discuss these symptoms and propose a role of the ipRGCs as at least one underlying and unifying cause for such symptoms.
Collapse
Affiliation(s)
- Jason Elenberger
- From the Department of Ophthalmology & Visual Sciences (J.E., B.K., T.S.R.), Vanderbilt University; and Vanderbilt Eye Institute (A.d.C.-A., T.S.R.), Vanderbilt University Medical Center, Nashville, TN
| | - Bohan Kim
- From the Department of Ophthalmology & Visual Sciences (J.E., B.K., T.S.R.), Vanderbilt University; and Vanderbilt Eye Institute (A.d.C.-A., T.S.R.), Vanderbilt University Medical Center, Nashville, TN
| | - Alexander de Castro-Abeger
- From the Department of Ophthalmology & Visual Sciences (J.E., B.K., T.S.R.), Vanderbilt University; and Vanderbilt Eye Institute (A.d.C.-A., T.S.R.), Vanderbilt University Medical Center, Nashville, TN
| | - Tonia S Rex
- From the Department of Ophthalmology & Visual Sciences (J.E., B.K., T.S.R.), Vanderbilt University; and Vanderbilt Eye Institute (A.d.C.-A., T.S.R.), Vanderbilt University Medical Center, Nashville, TN.
| |
Collapse
|
30
|
Sharma A, Muresanu DF, Sahib S, Tian ZR, Castellani RJ, Nozari A, Lafuente JV, Buzoianu AD, Bryukhovetskiy I, Manzhulo I, Patnaik R, Wiklund L, Sharma HS. Concussive head injury exacerbates neuropathology of sleep deprivation: Superior neuroprotection by co-administration of TiO 2-nanowired cerebrolysin, alpha-melanocyte-stimulating hormone, and mesenchymal stem cells. PROGRESS IN BRAIN RESEARCH 2020; 258:1-77. [PMID: 33223033 DOI: 10.1016/bs.pbr.2020.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sleep deprivation (SD) is common in military personnel engaged in combat operations leading to brain dysfunction. Military personnel during acute or chronic SD often prone to traumatic brain injury (TBI) indicating the possibility of further exacerbating brain pathology. Several lines of evidence suggest that in both TBI and SD alpha-melanocyte-stimulating hormone (α-MSH) and brain-derived neurotrophic factor (BDNF) levels decreases in plasma and brain. Thus, a possibility exists that exogenous supplement of α-MSH and/or BDNF induces neuroprotection in SD compounded with TBI. In addition, mesenchymal stem cells (MSCs) are very portent in inducing neuroprotection in TBI. We examined the effects of concussive head injury (CHI) in SD on brain pathology. Furthermore, possible neuroprotective effects of α-MSH, MSCs and neurotrophic factors treatment were explored in a rat model of SD and CHI. Rats subjected to 48h SD with CHI exhibited higher leakage of BBB to Evans blue and radioiodine compared to identical SD or CHI alone. Brain pathology was also exacerbated in SD with CHI group as compared to SD or CHI alone together with a significant reduction in α-MSH and BDNF levels in plasma and brain and enhanced level of tumor necrosis factor-alpha (TNF-α). Exogenous administration of α-MSH (250μg/kg) together with MSCs (1×106) and cerebrolysin (a balanced composition of several neurotrophic factors and active peptide fragments) (5mL/kg) significantly induced neuroprotection in SD with CHI. Interestingly, TiO2 nanowired delivery of α-MSH (100μg), MSCs, and cerebrolysin (2.5mL/kg) induced enhanced neuroprotection with higher levels of α-MSH and BDNF and decreased the TNF-α in SD with CHI. These observations are the first to show that TiO2 nanowired administration of α-MSH, MSCs and cerebrolysin induces superior neuroprotection following SD in CHI, not reported earlier. The clinical significance of our findings in light of the current literature is discussed.
Collapse
Affiliation(s)
- Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Igor Manzhulo
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
31
|
Andrabi M, Andrabi MM, Kunjunni R, Sriwastva MK, Bose S, Sagar R, Srivastava AK, Mathur R, Jain S, Subbiah V. Lithium acts to modulate abnormalities at behavioral, cellular, and molecular levels in sleep deprivation-induced mania-like behavior. Bipolar Disord 2020; 22:266-280. [PMID: 31535429 DOI: 10.1111/bdi.12838] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Ample amount of data suggests role of rapid eye movement (REM) sleep deprivation as the cause and effect of mania. Studies have also suggested disrupted circadian rhythms contributing to the pathophysiology of mood disorders, including bipolar disorder. However, studies pertaining to circadian genes and effect of lithium treatment on clock genes are scant. Thus, we wanted to determine the effects of REM sleep deprivation on expression of core clock genes and determine whether epigenetics is involved. Next, we wanted to explore ultrastructural abnormalities in the hippocampus. Moreover, we were interested to determine oxidative stress, tumor necrosis factor-α (TNF-α), and brain-derived neurotrophic factor levels in the central and peripheral systems. METHODS Rats were sleep deprived by the flower pot method and were then analyzed for various behaviors and biochemical tests. Lithium was supplemented in diet. RESULTS We found that REM sleep deprivation resulted in hyperactivity, reduction in anxiety-like behavior, and abnormal dyadic social interaction. Some of these behaviors were sensitive to lithium. REM sleep deprivation also altered circadian gene expression and caused significant imbalance between histone acetyl transferase/histone deacetylase (HAT/HDAC) activity. Ultrastructural analysis revealed various cellular abnormalities. Lipid peroxidation and increased TNF-α levels suggested oxidative stress and ongoing inflammation. Circadian clock genes were differentially modulated with lithium treatment and HAT/HDAC imbalance was partially prevented. Moreover, lithium treatment prevented myelin fragmentation, disrupted vasculature, necrosis, inflammation, and lipid peroxidation, and partially prevented mitochondrial damage and apoptosis. CONCLUSIONS Taken together, these results suggest plethora of abnormalities in the brain following REM sleep deprivation, many of these changes in the brain may be target of lithium's mechanism of action.
Collapse
Affiliation(s)
- Mutahar Andrabi
- Department of Neurobiochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | | - Remesh Kunjunni
- Department of Neurobiochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Mukesh Kumar Sriwastva
- Department of Neurobiochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Samrat Bose
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Rajesh Sagar
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India
| | | | - Rashmi Mathur
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Suman Jain
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Vivekanandhan Subbiah
- Department of Neurobiochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
32
|
Assessment and Treatment of Sleep in Mild Traumatic Brain Injury. Concussion 2020. [DOI: 10.1016/b978-0-323-65384-8.00007-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
33
|
Reply to "Circadian Rhythm Disruption and Sepsis in Severe Trauma Patients" Shock [epub ahead of print]. Shock 2019; 52:642. [PMID: 31725111 DOI: 10.1097/shk.0000000000001331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Salberg S, Christensen J, Yamakawa GR, Lengkeek C, Malik H, Tabor J, Hazari A, Mychasiuk R. A Bump on the Head or Late to Bed: Behavioral and Pathophysiological Effects of Sleep Deprivation after Repetitive Mild Traumatic Brain Injury in Adolescent Rats. J Neurotrauma 2019; 35:1895-1905. [PMID: 30074871 DOI: 10.1089/neu.2018.5744] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
An old wives' tale, and strongly held dogma, maintains that one should be kept awake after a mild traumatic brain injury (mTBI) to prevent a coma. This, however, conflicts with the known benefits of sleep: repair and restoration. We therefore sought to examine the effects of sleep deprivation (SD) in the post-traumatic sleep period on post-concussion symptomology (PCS). Adolescent male and female rats were administered repetitive mTBIs (RmTBI) or sham injuries and were then assigned to 5 h of SD or left undisturbed. All animals were then tested using seven behavioral tasks validated to examine PCS, followed by analysis of serum cytokines, and quantitative real-time PCR for messenger RNA (mRNA) expression. Exposure to 3 SD epochs significantly impaired behavior in 4 of 7 of the measures, while RmTBI also produced dysfunction in 5 of 7 tests, but the effects of SD and RmTBI were not cumulative. SD induced long-lasting changes in serum levels of Tnf-α, IL6, and IL-1ß. mRNA expression in the pre-frontal cortex, hippocampus, hypothalamus, and anterior cingulate cortex was modified in response to SD and RmTBI; but similar to the behavioral measures, the mRNA changes were not cumulative. Consequently, we report that SD often produced impairments similar or worse than RmTBI, and sleep hygiene should become a priority for adolescent health.
Collapse
Affiliation(s)
- Sabrina Salberg
- Department of Psychology, University of Calgary , Calgary, Alberta, Canada
| | | | - Glenn R Yamakawa
- Department of Psychology, University of Calgary , Calgary, Alberta, Canada
| | - Connor Lengkeek
- Department of Psychology, University of Calgary , Calgary, Alberta, Canada
| | - Haris Malik
- Department of Psychology, University of Calgary , Calgary, Alberta, Canada
| | - Jason Tabor
- Department of Psychology, University of Calgary , Calgary, Alberta, Canada
| | - Ali Hazari
- Department of Psychology, University of Calgary , Calgary, Alberta, Canada
| | - Richelle Mychasiuk
- Department of Psychology, University of Calgary , Calgary, Alberta, Canada
| |
Collapse
|
35
|
Diaz E, Diaz I, Del Busto C, Escudero D, Pérez S. Clock Genes Disruption in the Intensive Care Unit. J Intensive Care Med 2019; 35:1497-1504. [PMID: 31510864 DOI: 10.1177/0885066619876572] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Intensive care unit (ICU) environment disrupts the circadian rhythms due to environmental and other nonphotic synchronizers. The main purpose of this article is to establish whether critically patients have desynchronization at the molecular level after 1 week of stay in the ICU. METHODS The rhythm of Clock, Bmal1, Cry1, and Per2 genes in neuro-ICU patients (n = 11) on the first day after admission in the unit (1 day) and 1 week later (1 week) was studied, 4 time points throughout the day, at 6, 12, 18, and 24 hours. Human whole blood samples were obtained from neuro-ICU patients. The total RNA was isolated and each sample was reverse transcribed to complementary DNA and quantitative polymerase chain reaction (PCRq) was performed. The possible rhythm was studied using Fourier Series. RESULTS After 1 week, the clock gene rhythmicity completely disappeared. Messenger RNA (mRNA) expression for the 4 clock genes was shown rhythmicity at the first day after admission in the ICU. Circadian rhythmicity for none of them was observed but rather, ultradian rhythmicity was found. The expression of Clock, Bmal1, and Per2 mRNA after 1 week was similar in the 4-time point studies without significant fluctuation among the 4 time points analyzed. DISCUSSION Rhythmic mRNA expression is present at the first day after admission in the ICU. However, ICU stay during 1 week affects the molecular machinery of the biological clock generating chronodisruption. Circadian disruption is associated with the risk of several pathologies, thus, it seems to be clear that ICU stay in constant conditions could adversely affect patient evolution and probably, circadian resynchronization restoring clock gene expression could lead to a better clinical evolution of the patient. CONCLUSIONS Clock genes disruption is observed in neuro-ICU patients. Light therapy as well as melatonin treatment could reduce the impact of ICU stay period in biological clock, thereby improving patients' recovery.
Collapse
Affiliation(s)
- Elena Diaz
- Area of Physiology, Department of Functional Biology, 90195University of Oviedo, Oviedo, Spain
| | - Irene Diaz
- Area of Computation Science and Artificial Intelligence, Department of Computer Science, 16763University of Oviedo, Oviedo, Spain
| | - Cecilia Del Busto
- Cardiological Intensive Care Unit. 16474Heart Area-Central University Hospital of AsturiasHeart Area-Central University Hospital of Asturias. Network Biomedical Research Center (CIBERES), Madrid, Spain
| | - Dolores Escudero
- Intensive Care Unit, 16474Central University Hospital of Asturias, Oviedo, Spain
| | - Silvia Pérez
- Unit of Cell Therapy and Regenerative Medicine, 16474Central University Hospital of Asturias, Oviedo, Spain
| |
Collapse
|
36
|
Gleason JD, Oishi MM, Wen JT, Julius A, Pappu S, Yonas H. Assessing circadian rhythms and entrainment via intracranial temperature after severe head trauma. Biomed Signal Process Control 2019. [DOI: 10.1016/j.bspc.2019.101610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
37
|
Yamakawa GR, Weerawardhena H, Eyolfson E, Griep Y, Antle MC, Mychasiuk R. Investigating the Role of the Hypothalamus in Outcomes to Repetitive Mild Traumatic Brain Injury: Neonatal Monosodium Glutamate Does Not Exacerbate Deficits. Neuroscience 2019; 413:264-278. [DOI: 10.1016/j.neuroscience.2019.06.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 05/29/2019] [Accepted: 06/15/2019] [Indexed: 12/20/2022]
|
38
|
|
39
|
Coiffard B, Diallo AB, Culver A, Mezouar S, Hammad E, Vigne C, Nicolino-Brunet C, Dignat-George F, Baumstarck K, Boucekine M, Leone M, Mege JL. Circadian Rhythm Disruption and Sepsis in Severe Trauma Patients. Shock 2019; 52:29-36. [PMID: 30074979 DOI: 10.1097/shk.0000000000001241] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Circadian rhythms are important regulators of immune functions. Admission to an intensive care unit may impact molecular clock activity and host response. Our objective was to assess and compare the immune circadian rhythms in trauma patients who develop and in those who do not develop sepsis. METHODS Blood samples were collected from severe trauma patients within 4 days after admission, with collections taking place every 4 h over a 24-h period. Cortisol and cytokines were measured with immunoassays. Whole-blood expression of 3 clock genes (Bmal1, Per2, and Per3) was studied by reverse transcription quantitative polymerase chain reaction. Neutrophils, monocytes, and lymphocytes were analyzed by flow cytometry. Patients with and without sepsis were compared with the cosinor mixed model to estimate mesors, amplitudes, and acrophases. RESULTS Thirty-eight patients were enrolled in the study, and 13 developed at least 1 septic episode. The septic patients had higher levels of cortisol than the nonseptic patients (mesor at 489 nmol/L vs. 405 nmol/L, P < 0.05) and delayed acrophases (22 h vs. 15 h, P < 0.05). They also had lower lymphocyte counts (mesor at 785 vs. 1,012 cells/μL, P < 0.05), higher neutrophil counts (mesor at 7,648 vs. 7,001 cells/μL, P < 0.05), and monocyte counts (mesor at 579 vs. 473 cells/μL, P < 0.05) than the nonseptic patients. Although no amplitude difference was identified, the acrophases were significantly different between the 2 groups for lymphocytes, interleukin 10 and tumor necrosis factor. CONCLUSION We demonstrated that all trauma patients had impaired circadian rhythms of cortisol, cytokines, leukocytes, and clock genes. Early circadian disruption was associated with the occurrence of sepsis and might be a marker of sepsis severity.
Collapse
Affiliation(s)
- Benjamin Coiffard
- IRD, AP-HM, MEPHI, IHU-Méditerranée Infection, Aix Marseille Université, Marseille, France
| | - Aissatou B Diallo
- IRD, AP-HM, MEPHI, IHU-Méditerranée Infection, Aix Marseille Université, Marseille, France
| | - Aurélien Culver
- Service d'Anesthésie et de Réanimation, APHM, CHU Hôpital Nord, Aix-Marseille Université, Marseille, France
| | - Soraya Mezouar
- IRD, AP-HM, MEPHI, IHU-Méditerranée Infection, Aix Marseille Université, Marseille, France
| | - Emmanuelle Hammad
- Service d'Anesthésie et de Réanimation, APHM, CHU Hôpital Nord, Aix-Marseille Université, Marseille, France
| | - Coralie Vigne
- Service d'Anesthésie et de Réanimation, APHM, CHU Hôpital Nord, Aix-Marseille Université, Marseille, France
| | - Corine Nicolino-Brunet
- Service d'Hématologie, APHM, CHU La Conception, Aix-Marseille Université, Marseille, France
| | - Françoise Dignat-George
- Service d'Hématologie, APHM, CHU La Conception, Aix-Marseille Université, Marseille, France
- INSERM, VRCM, Aix-Marseille Université, Marseille, France
| | | | | | - Marc Leone
- IRD, AP-HM, MEPHI, IHU-Méditerranée Infection, Aix Marseille Université, Marseille, France
- Service d'Anesthésie et de Réanimation, APHM, CHU Hôpital Nord, Aix-Marseille Université, Marseille, France
| | - Jean-Louis Mege
- IRD, AP-HM, MEPHI, IHU-Méditerranée Infection, Aix Marseille Université, Marseille, France
| |
Collapse
|
40
|
Sekar S, Zhang Y, Miranzadeh Mahabadi H, Parvizi A, Taghibiglou C. Low-Field Magnetic Stimulation Restores Cognitive and Motor Functions in the Mouse Model of Repeated Traumatic Brain Injury: Role of Cellular Prion Protein. J Neurotrauma 2019; 36:3103-3114. [PMID: 31020907 DOI: 10.1089/neu.2018.5918] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Traumatic brain injury (TBI)/concussion is a growing epidemic throughout the world. Memory and neurobehavioral dysfunctions are among the sequelae of TBI. Dislodgement of cellular prion protein (PrPc) and disruption of circadian rhythm have been linked to TBI. Low-field magnetic stimulation (LFMS) is a new noninvasive repetitive transcranial magnetic stimulation (rTMS) technique that generates diffused and low-intensity magnetic stimulation to deep cortical and subcortical areas. The role of LFMS on PrPc, proteins related to the circadian rhythm, and behavior alterations in a repeated TBI mouse model were studied in the present study. TBI was induced to the mice (right hemisphere) using weight-drop method, once daily for 3 days. LFMS treatment was given for 20 min once daily for 4 days (immediately after each TBI induction). The results showed that LFMS-treated TBI mice significantly improved cognitive and motor function as evidenced by open field exploration, rotarod, and novel location recognition tasks. In addition, a significant increase in PrPc and decreased glial fibrillary acidic protein levels were observed in cortical and hippocampal regions of LFMS-treated TBI mice brain compared with sham-treated TBI mice, while neuronal nuclei level was significantly increased in cortical region. In LFMS-treated mice, a decrease in proteins related to circadian rhythm were observed, compared with sham-treated TBI mice. The results obtained from the study demonstrated the neuroprotective effect of LFMS, which may be through regulating PrPc and/or proteins related to circadian rhythm. Thus, the present study suggests that LFMS may improve the subject's neurological condition following TBI.
Collapse
Affiliation(s)
- Sathiya Sekar
- Department of Anatomy, Physiology, Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yanbo Zhang
- Department of Psychiatry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Hajar Miranzadeh Mahabadi
- Department of Anatomy, Physiology, Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Amirhassan Parvizi
- Department of Anatomy, Physiology, Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Changiz Taghibiglou
- Department of Anatomy, Physiology, Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
41
|
Shah EJ, Gurdziel K, Ruden DM. Mammalian Models of Traumatic Brain Injury and a Place for Drosophila in TBI Research. Front Neurosci 2019; 13:409. [PMID: 31105519 PMCID: PMC6499071 DOI: 10.3389/fnins.2019.00409] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/10/2019] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury (TBI), caused by a sudden blow or jolt to the brain that disrupts normal function, is an emerging health epidemic with ∼2.5 million cases occurring annually in the United States that are severe enough to cause hospitalization or death. Most common causes of TBI include contact sports, vehicle crashes and domestic violence or war injuries. Injury to the central nervous system is one of the most consistent candidates for initiating the molecular and cellular cascades that result in Alzheimer's disease (AD), Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS). Not every TBI event is alike with effects varying from person to person. The majority of people recover from mild TBI within a short period of time, but repeated incidents can have deleterious long-lasting effects which depend on factors such as the number of TBIs sustained, time till medical attention, age, gender and genetics of the individual. Despite extensive research, many questions still remain regarding diagnosis, treatment, and prevention of long-term effects from TBI as well as recovery of brain function. In this review, we present an overview of TBI pathology, discuss mammalian models for TBI and focus on current methods using Drosophila melanogaster as a model for TBI study. The relatively small brain size (∼100,000 neurons and glia), conserved neurotransmitter signaling mechanisms and sophisticated genetics of Drosophila allows for cell biological, molecular and genetic analyses that are impractical in mammalian models of TBI.
Collapse
Affiliation(s)
- Ekta J. Shah
- Department of Pharmacology, Wayne State University, Detroit, MI, United States
| | - Katherine Gurdziel
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
| | - Douglas M. Ruden
- Department of Pharmacology, Wayne State University, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States
| |
Collapse
|
42
|
Hou J, Shen Q, Wan X, Zhao B, Wu Y, Xia Z. REM sleep deprivation-induced circadian clock gene abnormalities participate in hippocampal-dependent memory impairment by enhancing inflammation in rats undergoing sevoflurane inhalation. Behav Brain Res 2019; 364:167-176. [PMID: 30779975 DOI: 10.1016/j.bbr.2019.01.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/18/2018] [Accepted: 01/18/2019] [Indexed: 12/31/2022]
Abstract
Sleep disturbance can result in memory impairment, and both sleep and hippocampal memory formation are maintained by circadian clock genes. Although preoperative sleep deprivation is known to be an independent risk factor for postoperative cognitive dysfunction (POCD) after inhalation anesthesia, the circadian mechanisms involved are currently unclear. To examine this issue, we constructed models of rapid eye movement sleep deprivation (RSD) and POCD after sevoflurane inhalation, to evaluate the circadian mechanisms underlying preoperative sleep deprivation-induced POCD after sevoflurane inhalation. Morris water maze probe test performance revealed that RSD aggravated the hippocampal-dependent memory impairment induced by sevoflurane anesthesia, and the recovery period of memory impairment was prolonged for more than a week by sleep deprivation. Western blot analysis revealed that sleep deprivation inhibited hippocampal Bmal1 and Egr1 expression for more than 7 days after sevoflurane inhalation. Importantly, hippocampal Per2 expression levels were first decreased by sevoflurane inhalation then increased from the third day by sleep deprivation. Sleep deprivation enhanced the expression of hippocampal inflammatory factors IL-1β and IL-6 after sevoflurane inhalation. In addition, sevoflurane inhalation activated the plasma expression of S100β and IL-6, particularly after sleep deprivation. Sleep deprivation aggravated pathogenic impairment of pyramidal neurons and activated astrocytes in CA1 after sevoflurane inhalation. These results suggest that preoperative RSD aggravates hippocampal memory impairment by enhancing neuroinflammatory injuries after sevoflurane inhalation, which is related to hippocampal clock gene abnormalities.
Collapse
Affiliation(s)
- Jiabao Hou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Qianni Shen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Xing Wan
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Bo Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Yang Wu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China.
| |
Collapse
|
43
|
Laser Capture Microdissection in Traumatic Brain Injury Research: Obtaining Hippocampal Subregions and Pools of Injured Neurons for Genomic Analyses. Methods Mol Biol 2019. [PMID: 29344864 DOI: 10.1007/978-1-4939-7558-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The methods presented here are based on our laboratory's 15 years of experience using laser capture microdissection to obtain samples for the study of gene expression after traumatic brain injury (TBI) using a well-established rat model of experimental TBI. Here, we describe how to use the ArcturusXT laser capture microdissection system to capture swaths of specific regions of the rat hippocampus as well as specific neuronal populations defined by Fluoro-Jade C staining. Staining with Fluoro-Jade C identifies a neuron that is in the process of degeneration. We have optimized our protocols for Fluoro-Jade C tissue staining and laser capture microdissection to maintain RNA integrity which is essential for a variety of downstream applications, such as microarray, PCR array, and quantitative real-time PCR analyses.
Collapse
|
44
|
Abstract
BACKGROUND Sleep disorders play a significant role in the care of those with Traumatic Brain Injury (TBI). OBJECTIVE To provide a literature review on the interaction of sleep and circadian processes on those with TBI. METHODS A literature review was conducted on PubMed using the following key words and their combination: "Sleep Apnea", "Traumatic Brain Injury", "Circadian", "Parasomnia", "Insomnia", "Hypersomnia", "Narcolepsy", and "Restless Legs". We review the spectrum of traumatic brain injury associated sleep disorders and discuss clinical approaches to diagnosis and treatment. RESULTS Disordered sleep and wakefulness after TBI is common. Sleep disruption contributes to morbidity, such as the development of neurocognitive and neurobehavioral deficits, and prolongs the recovery phase after injury. Early recognition and correction of these problems may limit the secondary effects of traumatic brain injury and improve neuro recovery/patient outcomes. CONCLUSIONS A more focused approach to sleep health is appropriate when caring for those with TBI.
Collapse
Affiliation(s)
- Lisa F Wolfe
- Division of Pulmonary and Critical Care Medicine Northwestern University, Chicago, IL, USA
| | - Ashima S Sahni
- Division of Pulmonary and Critical Care Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Hrayr Attarian
- Department of Neurology Northwestern University, Chicago, IL, USA
| |
Collapse
|
45
|
Aoun R, Rawal H, Attarian H, Sahni A. Impact of traumatic brain injury on sleep: an overview. Nat Sci Sleep 2019; 11:131-140. [PMID: 31692507 PMCID: PMC6707934 DOI: 10.2147/nss.s182158] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/07/2019] [Indexed: 12/21/2022] Open
Abstract
Traumatic brain injury (TBI) is a global health problem that affects millions of civilians, athletes, and military personnel yearly. Sleeping disorders are one of the underrecognized sequalae even though they affect 46% of individuals with TBI. After a mild TBI, 29% of patients have insomnia, 25% have sleep apnea, 28% have hypersomnia, and 4% have narcolepsy. The type of sleep disturbance may also vary according to the number of TBIs sustained. Diffuse axonal injury within the sleep regulation system, disruption of hormones involved in sleep, and insults to the hypothalamus, brain stem, and reticular activating system are some of the proposed theories for the pathophysiology of sleep disorders after TBI. Genetic and anatomical factors also come to play in the development and severity of these sleeping disorders. Untreated sleep disturbances following TBI can lead to serious consequences with respect to an individual's cognitive functioning. Initial management focuses on conservative measures with progression to more aggressive options if necessary. Future research should attempt to establish the effectiveness of the treatments currently used, as well as identify manageable co-existing factors that could be exacerbating sleep disorders.
Collapse
Affiliation(s)
- Raissa Aoun
- Department of Neurology, Lebanese American University Medical Center - Rizk Hospital, Beirut, Lebanon
| | - Himanshu Rawal
- Department of Medicine, Medstar Union Memorial Hospital, Baltimore, MD, USA
| | - Hrayr Attarian
- Department of Neurology, Northwestern Memorial Hospital, Chicago, IL, USA
| | - Ashima Sahni
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, IL, Chicago, USA
| |
Collapse
|
46
|
Sampathkumar H, DiTommaso C, Holcomb E, Tallavajhula S. Assessment of sleep after traumatic brain injury (TBI). NeuroRehabilitation 2018; 43:267-276. [DOI: 10.3233/nre-182485] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Haresh Sampathkumar
- JH Rehabilitation, Kilpauk, Chennai, India
- TIRR Memorial Hermann, Houston, TX, USA
- University of Texas Health Science Center at Houston
- McGovern Medical School, Houston, TX, USA
| | - Craig DiTommaso
- TIRR Memorial Hermann, Houston, TX, USA
- Baylor St Luke’s Medical Center, Houston, TX, USA
- Baylor College of Medicine, Houston, TX, USA
| | - Erin Holcomb
- TIRR Memorial Hermann, Houston, TX, USA
- Baylor College of Medicine, Houston, TX, USA
| | - Sudha Tallavajhula
- TIRR Memorial Hermann, Houston, TX, USA
- University of Texas Health Science Center at Houston
- McGovern Medical School, Houston, TX, USA
| |
Collapse
|
47
|
Matos HDC, Koike BDV, Pereira WDS, de Andrade TG, Castro OW, Duzzioni M, Kodali M, Leite JP, Shetty AK, Gitaí DLG. Rhythms of Core Clock Genes and Spontaneous Locomotor Activity in Post- Status Epilepticus Model of Mesial Temporal Lobe Epilepsy. Front Neurol 2018; 9:632. [PMID: 30116220 PMCID: PMC6082935 DOI: 10.3389/fneur.2018.00632] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 07/12/2018] [Indexed: 12/16/2022] Open
Abstract
The interaction of Mesial Temporal Lobe Epilepsy (mTLE) with the circadian system control is apparent from an oscillatory pattern of limbic seizures, daytime's effect on seizure onset and the efficacy of antiepileptic drugs. Moreover, seizures per se can interfere with the biological rhythm output, including circadian oscillation of body temperature, locomotor activity, EEG pattern as well as the transcriptome. However, the molecular mechanisms underlying this cross-talk remain unclear. In this study, we systematically evaluated the temporal expression of seven core circadian transcripts (Bmal1, Clock, Cry1, Cry2, Per1, Per2, and Per3) and the spontaneous locomotor activity (SLA) in post-status epilepticus (SE) model of mTLE. Twenty-four hour oscillating SLA remained intact in post-SE groups although the circadian phase and the amount and intensity of activity were changed in early post-SE and epileptic phases. The acrophase of the SLA rhythm was delayed during epileptogenesis, a fragmented 24 h rhythmicity and extended active phase length appeared in the epileptic phase. The temporal expression of circadian transcripts Bmal1, Cry1, Cry2, Per1, Per2, and Per3 was also substantially altered. The oscillatory expression of Bmal1 was maintained in rats imperiled to SE, but with lower amplitude (A = 0.2) and an advanced acrophase in the epileptic phase. The diurnal rhythm of Cry1 and Cry2 was absent in the early post-SE but was recovered in the epileptic phase. Per1 and Per2 rhythmic expression were disrupted in post-SE groups while Per3 presented an arrhythmic profile in the epileptic phase, only. The expression of Clock did not display rhythmic pattern in any condition. These oscillating patterns of core clock genes may contribute to hippocampal 24 h cycling and, consequently to seizure periodicity. Furthermore, by using a pool of samples collected at 6 different Zeitgeber Times (ZT), we found that all clock transcripts were significantly dysregulated after SE induction, except Per3 and Per2. Collectively, altered SLA rhythm in early post-SE and epileptic phases implies a possible role for seizure as a nonphotic cue, which is likely linked to activation of hippocampal–accumbens pathway. On the other hand, altered temporal expression of the clock genes after SE suggests their involvement in the MTLE.
Collapse
Affiliation(s)
- Heloisa de Carvalho Matos
- Department of Cellular and Molecular Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Brazil
| | | | - Wanessa Dos Santos Pereira
- Department of Cellular and Molecular Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Brazil
| | - Tiago G de Andrade
- Laboratory of Molecular Chronobiology, Federal University of Alagoas, Arapiraca, Brazil.,Department of Physiology and Pharmacology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Brazil
| | - Olagide W Castro
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX, United States
| | - Marcelo Duzzioni
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX, United States
| | - Maheedhar Kodali
- Division of Neurology, Department of Neurosciences and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Joao P Leite
- Faculty of Medicine, Federal University of Alagoas, Maceio, Brazil
| | - Ashok K Shetty
- Division of Neurology, Department of Neurosciences and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Daniel L G Gitaí
- Department of Cellular and Molecular Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Brazil.,Division of Neurology, Department of Neurosciences and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
48
|
Pace M, Camilo MR, Seiler A, Duss SB, Mathis J, Manconi M, Bassetti CL. Rapid eye movements sleep as a predictor of functional outcome after stroke: a translational study. Sleep 2018; 41:5056018. [DOI: 10.1093/sleep/zsy138] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Indexed: 12/18/2022] Open
Affiliation(s)
- Marta Pace
- Center for Experimental Neurology (ZEN), Department of Neurology, University Hospital (Inselspital), Bern, Switzerland
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Millene R Camilo
- Department of Neurology, University Hospital-Inselspital, Bern, Switzerland
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Andrea Seiler
- Department of Neurology, University Hospital-Inselspital, Bern, Switzerland
| | - Simone B Duss
- Department of Neurology, University Hospital-Inselspital, Bern, Switzerland
| | - Johannes Mathis
- Department of Neurology, University Hospital-Inselspital, Bern, Switzerland
| | - Mauro Manconi
- Department of Neurology, University Hospital-Inselspital, Bern, Switzerland
- Sleep and Epilepsy Center, Neurocenter of Southern Switzerland, Civic Hospital (EOC) of Lugano, Lugano, Switzerland
| | - Claudio L Bassetti
- Center for Experimental Neurology (ZEN), Department of Neurology, University Hospital (Inselspital), Bern, Switzerland
- Department of Neurology, University Hospital-Inselspital, Bern, Switzerland
| |
Collapse
|
49
|
Russell AL, Richardson MR, Bauman BM, Hernandez IM, Saperstein S, Handa RJ, Wu TJ. Differential Responses of the HPA Axis to Mild Blast Traumatic Brain Injury in Male and Female Mice. Endocrinology 2018; 159:2363-2375. [PMID: 29701827 DOI: 10.1210/en.2018-00203] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/19/2018] [Indexed: 12/20/2022]
Abstract
Traumatic brain injury (TBI) affects 10 million people worldwide, annually. TBI is linked to increased risk of psychiatric disorders. TBI, induced by explosive devices, has a unique phenotype. Over one-third of people exposed to blast-induced TBI (bTBI) have prolonged neuroendocrine deficits, shown by anterior pituitary dysfunction. Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis is linked to increased risk for psychiatric disorders. Not only is there limited information on how the HPA axis responds to mild bTBI (mbTBI), sex differences are understudied. We examined central and peripheral HPA axis reactivity, 7 to 10 days after mbTBI in male and female mice. Males exposed to mbTBI had increased restraint-induced serum corticosterone (CORT), but attenuated restraint-induced corticotropin-releasing factor (CRF)/c-Fos-immunoreactivity (ir) in the paraventricular nucleus of the hypothalamus (PVN). Females displayed an opposite response, with attenuated restraint-induced CORT and enhanced restraint-induced PVN CRF/c-Fos-ir. We examined potential mechanisms underlying this dysregulation and found that mbTBI did not affect pituitary (pro-opiomelanocortin and CRF receptor subtype 1) or adrenal (11β-hydroxylase, 11β-dehydrogenase 1, and melanocortin 2 receptor) gene expression. mbTBI did not alter mineralocorticoid or glucocorticoid gene expression in the PVN or relevant limbic structures. In females, but not males, mbTBI decreased c-Fos-ir in non-neuroendocrine (presumably preautonomic) CRF neurons in the PVN. Whereas we demonstrated a sex-dependent link to stress dysregulation of preautonomic neurons in females, we hypothesize that mbTBI may disrupt limbic pathways involved in HPA axis coordination in males. Overall, mbTBI altered the HPA axis in a sex-dependent manner, highlighting the importance of developing therapies to target individual strategies that males and females use to cope with mbTBI.
Collapse
Affiliation(s)
- Ashley L Russell
- Program in Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - M Riley Richardson
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Bradly M Bauman
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Ian M Hernandez
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Samantha Saperstein
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Robert J Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - T John Wu
- Program in Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
50
|
Nikolian VC, Dennahy IS, Higgins GA, Williams AM, Weykamp M, Georgoff PE, Eidy H, Ghandour MH, Chang P, Alam HB. Transcriptomic changes following valproic acid treatment promote neurogenesis and minimize secondary brain injury. J Trauma Acute Care Surg 2018; 84:459-465. [PMID: 29251707 PMCID: PMC5905703 DOI: 10.1097/ta.0000000000001765] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Early treatment with valproic acid (VPA) has demonstrated benefit in preclinical models of traumatic brain injury, including smaller brain lesion size, decreased edema, reduced neurologic disability, and faster recovery. Mechanisms underlying these favorable outcomes are not fully understood. We hypothesized that VPA treatment would upregulate genes involved in cell survival and proliferation and downregulate those associated with cell death and the inflammatory response. METHODS Ten female swine were subjected to a protocol of traumatic brain injury and hemorrhagic shock. They were assigned to two groups (n = 5): normal saline (NS; 3× volume of shed blood), or NS + VPA (150 mg/kg). Following 6 hours of observation, brain tissue was harvested to evaluate lesion size and edema. Brain tissue was processed for RNA sequencing. Gene set enrichment and pathway analysis was performed to determine the differential gene expression patterns following injury. RESULTS Animals treated with VPA were noted to have a 46% reduction in brain lesion size and a 57% reduction in ipsilateral brain edema. Valproic acid significantly upregulated genes involved in morphology of the nervous system, neuronal development and neuron quantity. The VPA treatment downregulated pathways related to apoptosis, glial cell proliferation, and neuroepithelial cell differentiation. Ingenuity Pathway Analysis identified VPA as the top upstream regulator of activated transcription, supporting it as a direct cause of these transcriptional changes. Master transcriptional regulator NEUROD1 was also significantly upregulated, suggesting that VPA may induce additional transcription factors. CONCLUSION Administration of VPA attenuated brain lesion size, reduced brain edema, and induced significant changes in the transcriptome of injured brain within 6 hours. Patterns of differential expression were consistent with the proposed neurogenic and prosurvival effects of VPA treatment.
Collapse
Affiliation(s)
| | | | - Gerald A. Higgins
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI
| | | | - Michael Weykamp
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | | | - Hassan Eidy
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | | | - Panpan Chang
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Hasan B. Alam
- Department of Surgery, University of Michigan, Ann Arbor, MI
| |
Collapse
|