1
|
Ramírez-Ruiz J, Grytskyy D, Mastrogiuseppe C, Habib Y, Moreno-Bote R. Complex behavior from intrinsic motivation to occupy future action-state path space. Nat Commun 2024; 15:6368. [PMID: 39075046 PMCID: PMC11286966 DOI: 10.1038/s41467-024-49711-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/13/2024] [Indexed: 07/31/2024] Open
Abstract
Most theories of behavior posit that agents tend to maximize some form of reward or utility. However, animals very often move with curiosity and seem to be motivated in a reward-free manner. Here we abandon the idea of reward maximization and propose that the goal of behavior is maximizing occupancy of future paths of actions and states. According to this maximum occupancy principle, rewards are the means to occupy path space, not the goal per se; goal-directedness simply emerges as rational ways of searching for resources so that movement, understood amply, never ends. We find that action-state path entropy is the only measure consistent with additivity and other intuitive properties of expected future action-state path occupancy. We provide analytical expressions that relate the optimal policy and state-value function and prove convergence of our value iteration algorithm. Using discrete and continuous state tasks, including a high-dimensional controller, we show that complex behaviors such as "dancing", hide-and-seek, and a basic form of altruistic behavior naturally result from the intrinsic motivation to occupy path space. All in all, we present a theory of behavior that generates both variability and goal-directedness in the absence of reward maximization.
Collapse
Affiliation(s)
- Jorge Ramírez-Ruiz
- Center for Brain and Cognition, Departament d'Enginyeria i Escola d'Enginyeria, Universitat Pompeu Fabra, Barcelona, Spain.
| | - Dmytro Grytskyy
- Center for Brain and Cognition, Departament d'Enginyeria i Escola d'Enginyeria, Universitat Pompeu Fabra, Barcelona, Spain
| | - Chiara Mastrogiuseppe
- Center for Brain and Cognition, Departament d'Enginyeria i Escola d'Enginyeria, Universitat Pompeu Fabra, Barcelona, Spain
| | - Yamen Habib
- Center for Brain and Cognition, Departament d'Enginyeria i Escola d'Enginyeria, Universitat Pompeu Fabra, Barcelona, Spain
| | - Rubén Moreno-Bote
- Center for Brain and Cognition, Departament d'Enginyeria i Escola d'Enginyeria, Universitat Pompeu Fabra, Barcelona, Spain
- Serra Húnter Fellow Programme, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
2
|
Lefeuvre M, Rutkowska J. Zebra finch song parameters are affected by the breeding status of the male, but not temperature variability. Physiol Behav 2024; 281:114581. [PMID: 38734358 DOI: 10.1016/j.physbeh.2024.114581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Bird song is a crucial feature for mate choice and reproduction. Song can potentially communicate information related to the quality of the mate, through song complexity, structure or finer changes in syllable characteristics. It has been shown in zebra finches that those characteristics can be affected by various factors including motivation, hormone levels or extreme temperature. However, although the literature on zebra finch song is substantial, some factors have been neglected. In this paper, we recorded male zebra finches in two breeding contexts (before and after pairing) and in two ambient temperature conditions (stable and variable) to see how those factors could influence song production. We found strong differences between the two breeding contexts: compared to their song before pairing, males that were paired had lower song rate, syllable consistency, frequency and entropy, while surprisingly the amplitude of their syllables increased. Temperature variability had an impact on the extent of these differences, but did not directly affect the song parameters that we measured. Our results describe for the first time how breeding status and temperature variability can affect zebra finch song, and give some new insights into the subtleties of the acoustic communication of this model species.
Collapse
Affiliation(s)
- Maëlle Lefeuvre
- Jagiellonian University, Doctoral School of Exact and Natural Sciences, Cracow, Poland; Jagiellonian University, Faculty of Biology, Institute of Environmental Sciences, Cracow, Poland.
| | - Joanna Rutkowska
- Jagiellonian University, Faculty of Biology, Institute of Environmental Sciences, Cracow, Poland
| |
Collapse
|
3
|
Rogers JF, Vandendoren M, Prather JF, Landen JG, Bedford NL, Nelson AC. Neural cell-types and circuits linking thermoregulation and social behavior. Neurosci Biobehav Rev 2024; 161:105667. [PMID: 38599356 PMCID: PMC11163828 DOI: 10.1016/j.neubiorev.2024.105667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Understanding how social and affective behavioral states are controlled by neural circuits is a fundamental challenge in neurobiology. Despite increasing understanding of central circuits governing prosocial and agonistic interactions, how bodily autonomic processes regulate these behaviors is less resolved. Thermoregulation is vital for maintaining homeostasis, but also associated with cognitive, physical, affective, and behavioral states. Here, we posit that adjusting body temperature may be integral to the appropriate expression of social behavior and argue that understanding neural links between behavior and thermoregulation is timely. First, changes in behavioral states-including social interaction-often accompany changes in body temperature. Second, recent work has uncovered neural populations controlling both thermoregulatory and social behavioral pathways. We identify additional neural populations that, in separate studies, control social behavior and thermoregulation, and highlight their relevance to human and animal studies. Third, dysregulation of body temperature is linked to human neuropsychiatric disorders. Although body temperature is a "hidden state" in many neurobiological studies, it likely plays an underappreciated role in regulating social and affective states.
Collapse
Affiliation(s)
- Joseph F Rogers
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY, USA; University of Wyoming Sensory Biology Center, USA
| | - Morgane Vandendoren
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY, USA; University of Wyoming Sensory Biology Center, USA
| | - Jonathan F Prather
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY, USA
| | - Jason G Landen
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY, USA; University of Wyoming Sensory Biology Center, USA
| | - Nicole L Bedford
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY, USA
| | - Adam C Nelson
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY, USA; University of Wyoming Sensory Biology Center, USA.
| |
Collapse
|
4
|
Güntürkün O, Pusch R, Rose J. Why birds are smart. Trends Cogn Sci 2024; 28:197-209. [PMID: 38097447 PMCID: PMC10940863 DOI: 10.1016/j.tics.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 03/08/2024]
Abstract
Many cognitive neuroscientists believe that both a large brain and an isocortex are crucial for complex cognition. Yet corvids and parrots possess non-cortical brains of just 1-25 g, and these birds exhibit cognitive abilities comparable with those of great apes such as chimpanzees, which have brains of about 400 g. This opinion explores how this cognitive equivalence is possible. We propose four features that may be required for complex cognition: a large number of associative pallial neurons, a prefrontal cortex (PFC)-like area, a dense dopaminergic innervation of association areas, and dynamic neurophysiological fundaments for working memory. These four neural features have convergently evolved and may therefore represent 'hard to replace' mechanisms enabling complex cognition.
Collapse
Affiliation(s)
- Onur Güntürkün
- Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, 44780 Bochum, Germany; Research Center One Health Ruhr, Research Alliance Ruhr, Ruhr University Bochum, Bochum, Germany.
| | - Roland Pusch
- Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, 44780 Bochum, Germany
| | - Jonas Rose
- Neural Basis of Learning, Faculty of Psychology, Ruhr University Bochum, 44780 Bochum, Germany
| |
Collapse
|
5
|
Adam I, Riebel K, Stål P, Wood N, Previs MJ, Elemans CPH. Daily vocal exercise is necessary for peak performance singing in a songbird. Nat Commun 2023; 14:7787. [PMID: 38086817 PMCID: PMC10716414 DOI: 10.1038/s41467-023-43592-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Vocal signals, including human speech and birdsong, are produced by complicated, precisely coordinated body movements, whose execution is fitness-determining in resource competition and mate choice. While the acquisition and maintenance of motor skills generally requires practice to develop and maintain both motor circuitry and muscle performance, it is unknown whether vocal muscles, like limb muscles, exhibit exercise-induced plasticity. Here, we show that juvenile and adult zebra finches (Taeniopygia castanotis) require daily vocal exercise to first gain and subsequently maintain peak vocal muscle performance. Experimentally preventing male birds from singing alters both vocal muscle physiology and vocal performance within days. Furthermore, we find females prefer song of vocally exercised males in choice experiments. Vocal output thus contains information on recent exercise status, and acts as an honest indicator of past exercise investment in songbirds, and possibly in all vocalising vertebrates.
Collapse
Affiliation(s)
- Iris Adam
- Department of Biology, University of Southern Denmark, Odense, Denmark.
| | - Katharina Riebel
- Institute of Biology, Animal Sciences & Health, Leiden University, Leiden, The Netherlands
| | - Per Stål
- Department of Integrative Medical Biology, Umea University, Umeå, Sweden
| | - Neil Wood
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, NJ, USA
| | - Michael J Previs
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, NJ, USA
| | - Coen P H Elemans
- Department of Biology, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
6
|
Elmaleh M, Yang Z, Ackert-Smith LA, Long MA. Uncoordinated sleep replay across hemispheres in the zebra finch. Curr Biol 2023; 33:4704-4712.e3. [PMID: 37757833 PMCID: PMC10842454 DOI: 10.1016/j.cub.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/28/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023]
Abstract
Bilaterally organized brain regions are often simultaneously active in both humans1,2,3 and animal models,4,5,6,7,8,9 but the extent to which the temporal progression of internally generated dynamics is coordinated across hemispheres and how this coordination changes with brain state remain poorly understood. To address these issues, we investigated the zebra finch courtship song (duration: 0.5-1.0 s), a highly stereotyped complex behavior10,11 produced by a set of bilaterally organized nuclei.12,13,14 Unilateral lesions to these structures can eliminate or degrade singing,13,15,16,17 indicating that both hemispheres are required for song production.18 Additionally, previous work demonstrated broadly coherent and symmetric bilateral premotor signals during song.9 To precisely track the temporal evolution of activity in each hemisphere, we recorded bilaterally in the song production pathway. We targeted the robust nucleus of the arcopallium (RA) in the zebra finch, where population activity reflects the moment-to-moment progression of the courtship song during awake vocalizations19,20,21,22,23,24 and sleep, where song-related network dynamics reemerge in "replay" events.24,25 We found that activity in the left and right RA is synchronized within a fraction of a millisecond throughout song. In stark contrast, the two hemispheres displayed largely independent replay activity during sleep, despite shared interhemispheric arousal levels. These findings demonstrate that the degree of bilateral coordination in the zebra finch song system is dynamically modulated by behavioral state.
Collapse
Affiliation(s)
- Margot Elmaleh
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Zetian Yang
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Lyn A Ackert-Smith
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Michael A Long
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
7
|
Zemel BM, Nevue AA, Tavares LES, Dagostin A, Lovell PV, Jin DZ, Mello CV, von Gersdorff H. Motor cortex analogue neurons in songbirds utilize Kv3 channels to generate ultranarrow spikes. eLife 2023; 12:e81992. [PMID: 37158590 PMCID: PMC10241522 DOI: 10.7554/elife.81992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 05/08/2023] [Indexed: 05/10/2023] Open
Abstract
Complex motor skills in vertebrates require specialized upper motor neurons with precise action potential (AP) firing. To examine how diverse populations of upper motor neurons subserve distinct functions and the specific repertoire of ion channels involved, we conducted a thorough study of the excitability of upper motor neurons controlling somatic motor function in the zebra finch. We found that robustus arcopallialis projection neurons (RAPNs), key command neurons for song production, exhibit ultranarrow spikes and higher firing rates compared to neurons controlling non-vocal somatic motor functions (dorsal intermediate arcopallium [AId] neurons). Pharmacological and molecular data indicate that this striking difference is associated with the higher expression in RAPNs of high threshold, fast-activating voltage-gated Kv3 channels, that likely contain Kv3.1 (KCNC1) subunits. The spike waveform and Kv3.1 expression in RAPNs mirror properties of Betz cells, specialized upper motor neurons involved in fine digit control in humans and other primates but absent in rodents. Our study thus provides evidence that songbirds and primates have convergently evolved the use of Kv3.1 to ensure precise, rapid AP firing in upper motor neurons controlling fast and complex motor skills.
Collapse
Affiliation(s)
- Benjamin M Zemel
- Vollum Institute, Oregon Health and Science UniversityPortlandUnited States
| | - Alexander A Nevue
- Department of Behavioral Neuroscience, Oregon Health and Science UniversityPortlandUnited States
| | - Leonardo ES Tavares
- Vollum Institute, Oregon Health and Science UniversityPortlandUnited States
- Department of Physics, Pennsylvania State UniversityUniversity ParkUnited States
| | - Andre Dagostin
- Vollum Institute, Oregon Health and Science UniversityPortlandUnited States
| | - Peter V Lovell
- Department of Behavioral Neuroscience, Oregon Health and Science UniversityPortlandUnited States
| | - Dezhe Z Jin
- Department of Physics, Pennsylvania State UniversityUniversity ParkUnited States
| | - Claudio V Mello
- Department of Behavioral Neuroscience, Oregon Health and Science UniversityPortlandUnited States
| | - Henrique von Gersdorff
- Vollum Institute, Oregon Health and Science UniversityPortlandUnited States
- Oregon Hearing Research Center, Oregon Health and Science UniversityPortlandUnited States
| |
Collapse
|
8
|
Adam I, Riebel K, St L P, Wood NB, Previs MJ, Elemans CPH. Peak performance singing requires daily vocal exercise in songbirds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529633. [PMID: 36865130 PMCID: PMC9980080 DOI: 10.1101/2023.02.23.529633] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Vocal signals mediate much of human and non-human communication. Key performance traits - such as repertoire size, speed and accuracy of delivery - affect communication efficacy in fitness-decisive contexts such as mate choice and resource competition 1 . Specialized fast vocal muscles 2,3 are central to accurate sound production 4 , but it is unknown whether vocal, like limb muscles 5,6 , need exercise to gain and maintain peak performance 7,8 . Here, we show that for song development in juvenile songbirds, the closest analogue to human speech acquisition 9 , regular vocal muscle exercise is crucial to achieve adult peak muscle performance. Furthermore, adult vocal muscle performance reduces within two days of abolishing exercise, leading to downregulation of critical proteins transforming fast to slower muscle fibre types. Daily vocal exercise is thus required to both gain and maintain peak vocal muscle performance, and if absent changes vocal output. We show that conspecifics can detect these acoustic changes and females prefer the song of exercised males. Song thus contains information on recent exercise status of the sender. Daily investment in vocal exercise to maintain peak performance is an unrecognized cost of singing and could explain why many birds sing daily even under adverse conditions 10 . Because neural regulation of syringeal and laryngeal muscle plasticity is equivalent, vocal output may reflect recent exercise status in all vocalizing vertebrates.
Collapse
|
9
|
Temperature-robust rapid eye movement and slow wave sleep in the lizard Laudakia vulgaris. Commun Biol 2022; 5:1310. [PMID: 36446903 PMCID: PMC9709036 DOI: 10.1038/s42003-022-04261-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022] Open
Abstract
During sleep our brain switches between two starkly different brain states - slow wave sleep (SWS) and rapid eye movement (REM) sleep. While this two-state sleep pattern is abundant across birds and mammals, its existence in other vertebrates is not universally accepted, its evolutionary emergence is unclear and it is undetermined whether it is a fundamental property of vertebrate brains or an adaptation specific to homeotherms. To address these questions, we conducted electrophysiological recordings in the Agamid lizard, Laudakia vulgaris during sleep. We found clear signatures of two-state sleep that resemble the mammalian and avian sleep patterns. These states switched periodically throughout the night with a cycle of ~90 seconds and were remarkably similar to the states previously reported in Pogona vitticeps. Interestingly, in contrast to the high temperature sensitivity of mammalian states, state switches were robust to large variations in temperature. We also found that breathing rate, micro-movements and eye movements were locked to the REM state as they are in mammals. Collectively, these findings suggest that two-state sleep is abundant across the agamid family, shares physiological similarity to mammalian sleep, and can be maintain in poikilothems, increasing the probability that it existed in the cold-blooded ancestor of amniotes.
Collapse
|
10
|
von Eugen K, Endepols H, Drzezga A, Neumaier B, Güntürkün O, Backes H, Ströckens F. Avian neurons consume three times less glucose than mammalian neurons. Curr Biol 2022; 32:4306-4313.e4. [PMID: 36084646 DOI: 10.1016/j.cub.2022.07.070] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 04/11/2022] [Accepted: 07/26/2022] [Indexed: 12/14/2022]
Abstract
Brains are among the most energetically costly tissues in the mammalian body.1 This is predominantly caused by expensive neurons with high glucose demands.2 Across mammals, the neuronal energy budget appears to be fixed, possibly posing an evolutionary constraint on brain growth.3-6 Compared to similarly sized mammals, birds have higher numbers of neurons, and this advantage conceivably contributes to their cognitive prowess.7 We set out to determine the neuronal energy budget of birds to elucidate how they can metabolically support such high numbers of neurons. We estimated glucose metabolism using positron emission tomography (PET) and 2-[18F]fluoro-2-deoxyglucose ([18F]FDG) as the radiotracer in awake and anesthetized pigeons. Combined with kinetic modeling, this is the gold standard to quantify cerebral metabolic rate of glucose consumption (CMRglc).8 We found that neural tissue in the pigeon consumes 27.29 ± 1.57 μmol glucose per 100 g per min in an awake state, which translates into a surprisingly low neuronal energy budget of 1.86 × 10-9 ± 0.2 × 10-9 μmol glucose per neuron per minute. This is approximately 3 times lower than the rate in the average mammalian neuron.3 The remarkably low neuronal energy budget explains how pigeons, and possibly other avian species, can support such high numbers of neurons without associated metabolic costs or compromising neuronal signaling. The advantage in neuronal processing of information at a higher efficiency possibly emerged during the distinct evolution of the avian brain.
Collapse
Affiliation(s)
- Kaya von Eugen
- Department of Biopsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Heike Endepols
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany; Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany; Institute of Neuroscience and Medicine, INM-5: Nuclear Chemistry, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Alexander Drzezga
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany; Institute of Neuroscience and Medicine, INM-2: Molecular Organization of the Brain, Forschungszentrum Jülich GmbH, Jülich, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn-Cologne, Germany
| | - Bernd Neumaier
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany; Institute of Neuroscience and Medicine, INM-5: Nuclear Chemistry, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Onur Güntürkün
- Department of Biopsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Heiko Backes
- Max Planck Institute for Metabolism Research, Multimodal Imaging Group, Cologne, Germany
| | - Felix Ströckens
- Department of Biopsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany; Cécile and Oskar Vogt Institute of Brain Research, University Hospital Düsseldorf, Heinrich-Heine University, Düsseldorf, Germany.
| |
Collapse
|
11
|
Elmaleh M, Kranz D, Asensio AC, Moll FW, Long MA. Sleep replay reveals premotor circuit structure for a skilled behavior. Neuron 2021; 109:3851-3861.e4. [PMID: 34626537 DOI: 10.1016/j.neuron.2021.09.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/12/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
Neural circuits often exhibit sequences of activity, but the contribution of local networks to their generation remains unclear. In the zebra finch, song-related premotor sequences within HVC may result from some combination of local connectivity and long-range thalamic inputs from nucleus uvaeformis (Uva). Because lesions to either structure abolish song, we examine "sleep replay" using high-density recording methods to reconstruct precise song-related events. Replay activity persists after the upstream nucleus interfacialis of the nidopallium is lesioned and slows when HVC is cooled, demonstrating that HVC provides temporal structure for these events. To further gauge the importance of intra-HVC connectivity for shaping network dynamics, we lesion Uva during sleep and find that residual replay sequences could span syllable boundaries, supporting a model in which HVC can propagate sequences throughout the duration of the song. Our results highlight the power of studying offline activity to investigate behaviorally relevant circuit organization.
Collapse
Affiliation(s)
- Margot Elmaleh
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Devorah Kranz
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Ariadna Corredera Asensio
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Felix W Moll
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Michael A Long
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
12
|
Resurgent Na + currents promote ultrafast spiking in projection neurons that drive fine motor control. Nat Commun 2021; 12:6762. [PMID: 34799550 PMCID: PMC8604930 DOI: 10.1038/s41467-021-26521-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 10/08/2021] [Indexed: 11/29/2022] Open
Abstract
The underlying mechanisms that promote precise spiking in upper motor neurons controlling fine motor skills are not well understood. Here we report that projection neurons in the adult zebra finch song nucleus RA display robust high-frequency firing, ultra-narrow spike waveforms, superfast Na+ current inactivation kinetics, and large resurgent Na+ currents (INaR). These properties of songbird pallial motor neurons closely resemble those of specialized large pyramidal neurons in mammalian primary motor cortex. They emerge during the early phases of song development in males, but not females, coinciding with a complete switch of Na+ channel subunit expression from Navβ3 to Navβ4. Dynamic clamping and dialysis of Navβ4's C-terminal peptide into juvenile RA neurons provide evidence that Navβ4, and its associated INaR, promote neuronal excitability. We thus propose that INaR modulates the excitability of upper motor neurons that are required for the execution of fine motor skills.
Collapse
|
13
|
Coomes C, Derryberry E. High temperatures reduce song production and alter signal salience in songbirds. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.07.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Banerjee A, Egger R, Long MA. Using focal cooling to link neural dynamics and behavior. Neuron 2021; 109:2508-2518. [PMID: 34171292 PMCID: PMC8376768 DOI: 10.1016/j.neuron.2021.05.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 12/21/2022]
Abstract
Establishing a causal link between neural function and behavioral output has remained a challenging problem. Commonly used perturbation techniques enable unprecedented control over intrinsic activity patterns and can effectively identify crucial circuit elements important for specific behaviors. However, these approaches may severely disrupt activity, precluding an investigation into the behavioral relevance of moment-to-moment neural dynamics within a specified brain region. Here we discuss the application of mild focal cooling to slow down intrinsic neural circuit activity while preserving its overall structure. Using network modeling and examples from multiple species, we highlight the power and versatility of focal cooling for understanding how neural dynamics control behavior and argue for its wider adoption within the systems neuroscience community.
Collapse
Affiliation(s)
- Arkarup Banerjee
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Robert Egger
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Michael A Long
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
15
|
Döppler JF, Peltier M, Amador A, Goller F, Mindlin GB. Replay of innate vocal patterns during night sleep in suboscines. Proc Biol Sci 2021; 288:20210610. [PMID: 34187198 DOI: 10.1098/rspb.2021.0610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Activation of forebrain circuitry during sleep has been variably characterized as 'pre- or replay' and has been linked to memory consolidation. The evolutionary origins of this mechanism, however, are unknown. Sleep activation of the sensorimotor pathways of learned birdsong is a particularly useful model system because the muscles controlling the vocal organ are activated, revealing syringeal activity patterns for direct comparison with those of daytime vocal activity. Here, we show that suboscine birds, which develop their species-typical songs innately without the elaborate forebrain-thalamic circuitry of the vocal learning taxa, also engage in replay during sleep. In two tyrannid species, the characteristic syringeal activation patterns of the song could also be identified during sleep. Similar to song-learning oscines, the burst structure was more variable during sleep than daytime song production. In kiskadees (Pitangus sulphuratus), a second vocalization, which is part of a multi-modal display, was also replayed during sleep along with one component of the visual display. These data show unambiguously that variable 'replay' of stereotyped vocal motor programmes is not restricted to programmes confined within forebrain circuitry. The proposed effects on vocal motor programme maintenance are, therefore, building on a pre-existing neural mechanism that predates the evolution of learned vocal motor behaviour.
Collapse
Affiliation(s)
- Juan F Döppler
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,IFIBA, CONICET, Buenos Aires, Argentina
| | - Manon Peltier
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Ana Amador
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,IFIBA, CONICET, Buenos Aires, Argentina
| | - Franz Goller
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA.,Institute of Zoophysiology, University of Münster, Munster, Nordrhein-Westfalen, Germany
| | - Gabriel B Mindlin
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,IFIBA, CONICET, Buenos Aires, Argentina
| |
Collapse
|
16
|
Ausra J, Munger SJ, Azami A, Burton A, Peralta R, Miller JE, Gutruf P. Wireless battery free fully implantable multimodal recording and neuromodulation tools for songbirds. Nat Commun 2021; 12:1968. [PMID: 33785751 PMCID: PMC8009877 DOI: 10.1038/s41467-021-22138-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 02/25/2021] [Indexed: 12/16/2022] Open
Abstract
Wireless battery free and fully implantable tools for the interrogation of the central and peripheral nervous system have quantitatively expanded the capabilities to study mechanistic and circuit level behavior in freely moving rodents. The light weight and small footprint of such devices enables full subdermal implantation that results in the capability to perform studies with minimal impact on subject behavior and yields broad application in a range of experimental paradigms. While these advantages have been successfully proven in rodents that move predominantly in 2D, the full potential of a wireless and battery free device can be harnessed with flying species, where interrogation with tethered devices is very difficult or impossible. Here we report on a wireless, battery free and multimodal platform that enables optogenetic stimulation and physiological temperature recording in a highly miniaturized form factor for use in songbirds. The systems are enabled by behavior guided primary antenna design and advanced energy management to ensure stable optogenetic stimulation and thermography throughout 3D experimental arenas. Collectively, these design approaches quantitatively expand the use of wireless subdermally implantable neuromodulation and sensing tools to species previously excluded from in vivo real time experiments.
Collapse
Affiliation(s)
- Jokubas Ausra
- Departments of Biomedical Engineering, The University of Arizona, Tucson, AZ, USA
| | | | - Amirhossein Azami
- Departments of Biomedical Engineering, The University of Arizona, Tucson, AZ, USA
| | - Alex Burton
- Departments of Biomedical Engineering, The University of Arizona, Tucson, AZ, USA
| | - Roberto Peralta
- Department of Aerospace and Mechanical Engineering, The University of Arizona, Tucson, AZ, USA
| | - Julie E Miller
- Department of Neuroscience, The University of Arizona, Tucson, AZ, USA.
- Departments of Speech, Language & Hearing Sciences, Neurology, and Bio5 Institute, Neuroscience GIDP, The University of Arizona, Tucson, AZ, USA.
| | - Philipp Gutruf
- Departments of Biomedical Engineering, The University of Arizona, Tucson, AZ, USA.
- Departments of Electrical and Computer Engineering, Bio5 Institute, Neuroscience GIDP, The University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
17
|
Gotoh M, Nagasaka K, Nakata M, Takashima I, Yamamoto S. Brain Temperature Alters Contributions of Excitatory and Inhibitory Inputs to Evoked Field Potentials in the Rat Frontal Cortex. Front Cell Neurosci 2020; 14:593027. [PMID: 33364923 PMCID: PMC7750431 DOI: 10.3389/fncel.2020.593027] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/15/2020] [Indexed: 01/06/2023] Open
Abstract
Changes in brain temperature have been reported to affect various brain functions. However, little is known about the effects of temperature on the neural activity at the network level, where multiple inputs are integrated. In this study, we recorded cortical evoked potentials while altering the local brain temperature in anesthetized rats. We delivered electrical stimulations to the midbrain dopamine area and measured the evoked potentials in the frontal cortex, the temperature of which was locally altered using a thermal control device. We focused on the maximum negative peaks, which was presumed to result mainly from polysynaptic responses, to examine the effect of local temperature on network activity. We showed that focal cortical cooling increased the amplitude of evoked potentials (negative correlation, >17°C); further cooling decreased their amplitude. This relationship would be graphically represented as an inverted-U-shaped curve. The pharmacological blockade of GABAergic inhibitory inputs eliminated the negative correlation (>17°C) and even showed a positive correlation when the concentration of GABAA receptor antagonist was sufficiently high. Blocking the glutamatergic excitatory inputs decreased the amplitude but did not cause such inversion. Our results suggest that the negative correlation between the amplitude of evoked potentials and the near-physiological local temperature is caused by the alteration of the balance of contribution between excitatory and inhibitory inputs to the evoked potentials, possibly due to higher temperature sensitivity of inhibitory inputs.
Collapse
Affiliation(s)
- Mizuho Gotoh
- Integrative Neuroscience Research Group, Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kazuaki Nagasaka
- Integrative Neuroscience Research Group, Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Mariko Nakata
- Integrative Neuroscience Research Group, Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Ichiro Takashima
- Integrative Neuroscience Research Group, Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Shinya Yamamoto
- Integrative Neuroscience Research Group, Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
18
|
Comparative Perspectives that Challenge Brain Warming as the Primary Function of REM Sleep. iScience 2020; 23:101696. [PMID: 33196022 PMCID: PMC7644584 DOI: 10.1016/j.isci.2020.101696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/17/2020] [Accepted: 10/14/2020] [Indexed: 01/04/2023] Open
Abstract
Rapid eye movement (REM) sleep is a paradoxical state of wake-like brain activity occurring after non-REM (NREM) sleep in mammals and birds. In mammals, brain cooling during NREM sleep is followed by warming during REM sleep, potentially preparing the brain to perform adaptively upon awakening. If brain warming is the primary function of REM sleep, then it should occur in other animals with similar states. We measured cortical temperature in pigeons and bearded dragons, lizards that exhibit NREM-like sleep and REM-like sleep with brain activity resembling wakefulness. In pigeons, cortical temperature decreased during NREM sleep and increased during REM sleep. However, brain temperature did not increase when dragons switched from NREM-like to REM-like sleep. Our findings indicate that brain warming is not a universal outcome of sleep states characterized by wake-like activity, challenging the hypothesis that their primary function is to warm the brain in preparation for wakefulness. In many mammals, the brain cools during non-REM sleep and warms during REM sleep Pigeons exhibit similar changes in cortical temperature during non-REM and REM sleep Brain temperature does not increase during REM-like sleep in bearded dragon lizards Brain warming is not a universal outcome of sleep states with wake-like brain activity
Collapse
|
19
|
|
20
|
Isola GR, Vochin A, Sakata JT. Manipulations of inhibition in cortical circuitry differentially affect spectral and temporal features of Bengalese finch song. J Neurophysiol 2020; 123:815-830. [PMID: 31967928 DOI: 10.1152/jn.00142.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The interplay between inhibition and excitation can regulate behavioral expression and control, including the expression of communicative behaviors like birdsong. Computational models postulate varying degrees to which inhibition within vocal motor circuitry influences birdsong, but few studies have tested these models by manipulating inhibition. Here we enhanced and attenuated inhibition in the cortical nucleus HVC (used as proper name) of Bengalese finches (Lonchura striata var. domestica). Enhancement of inhibition (with muscimol) in HVC dose-dependently reduced the amount of song produced. Infusions of higher concentrations of muscimol caused some birds to produce spectrally degraded songs, whereas infusions of lower doses of muscimol led to the production of relatively normal (nondegraded) songs. However, the spectral and temporal structures of these nondegraded songs were significantly different from songs produced under control conditions. In particular, muscimol infusions decreased the frequency and amplitude of syllables, increased various measures of acoustic entropy, and increased the variability of syllable structure. Muscimol also increased sequence durations and the variability of syllable timing and syllable sequencing. Attenuation of inhibition (with bicuculline) in HVC led to changes to song distinct from and often opposite to enhancing inhibition. For example, in contrast to muscimol, bicuculline infusions increased syllable amplitude, frequency, and duration and decreased the variability of acoustic features. However, like muscimol, bicuculline increased the variability of syllable sequencing. These data highlight the importance of inhibition to the production of stereotyped vocalizations and demonstrate that changes to neural dynamics within cortical circuitry can differentially affect spectral and temporal features of song.NEW & NOTEWORTHY We reveal that manipulations of inhibition in the cortical nucleus HVC affect the structure, timing, and sequencing of syllables in Bengalese finch song. Enhancing and blocking inhibition led to opposite changes to the acoustic structure and timing of vocalizations, but both caused similar changes to vocal sequencing. These data provide support for computational models of song control but also motivate refinement of existing models to account for differential effects on syllable structure, timing, and sequencing.
Collapse
Affiliation(s)
- Gaurav R Isola
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Anca Vochin
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Jon T Sakata
- Department of Biology, McGill University, Montreal, Quebec, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada.,Centre for Research on Brain, Language, and Music, Montreal, Quebec, Canada.,Center for Studies in Behavioral Neurobiology, Montreal, Quebec, Canada
| |
Collapse
|
21
|
Cotter R, Winnik S, Singer A, Aaron G. Effects of Small Temperature Differences Detected in Callosal Circuits of the Anterior Cingulate Cortex. Neuroscience 2020; 428:154-164. [PMID: 31918013 DOI: 10.1016/j.neuroscience.2019.12.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 11/25/2022]
Abstract
We measured the sensitivity of cortical circuit activity to small differences in local cortical environments by studying how temperature affects the trajectory of epileptiform events (EEs). EEs evoked via blockade of GABA-A receptors were recorded extracellularly from mouse coronal brain slices containing both hemispheres of anterior cingulate cortex synaptically connected by corpus callosum axons. Preferentially illuminating one hemisphere with the microscope condenser produced temperature differences of 0.1 °C between the hemispheres. The relatively warmer hemisphere typically initiated the EEs that then propagated to the contralateral side, demonstrating temperature directed propagation. Severing the callosum following one hour of EEs showed that the warmer hemisphere possessed a higher rate of EE generation. Further experiments implied that intact callosal circuits were required for the increased EE generation in the warmer hemisphere. We propose a hypothesis whereby callosal circuits can amplify differences in respective hemispheric activity, promoting this directionality in seizure propagation.
Collapse
Affiliation(s)
- R Cotter
- Wesleyan University, Middletown, CT 06459, United States
| | - S Winnik
- Wesleyan University, Middletown, CT 06459, United States
| | - A Singer
- Wesleyan University, Middletown, CT 06459, United States
| | - G Aaron
- Wesleyan University, Middletown, CT 06459, United States.
| |
Collapse
|
22
|
Picot A, Dominguez S, Liu C, Chen IW, Tanese D, Ronzitti E, Berto P, Papagiakoumou E, Oron D, Tessier G, Forget BC, Emiliani V. Temperature Rise under Two-Photon Optogenetic Brain Stimulation. Cell Rep 2019; 24:1243-1253.e5. [PMID: 30067979 DOI: 10.1016/j.celrep.2018.06.119] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 03/26/2018] [Accepted: 06/28/2018] [Indexed: 10/28/2022] Open
Abstract
In recent decades, optogenetics has been transforming neuroscience research, enabling neuroscientists to drive and read neural circuits. The recent development in illumination approaches combined with two-photon (2P) excitation, either sequential or parallel, has opened the route for brain circuit manipulation with single-cell resolution and millisecond temporal precision. Yet, the high excitation power required for multi-target photostimulation, especially under 2P illumination, raises questions about the induced local heating inside samples. Here, we present and experimentally validate a theoretical model that makes it possible to simulate 3D light propagation and heat diffusion in optically scattering samples at high spatial and temporal resolution under the illumination configurations most commonly used to perform 2P optogenetics: single- and multi-spot holographic illumination and spiral laser scanning. By investigating the effects of photostimulation repetition rate, spot spacing, and illumination dependence of heat diffusion, we found conditions that make it possible to design a multi-target 2P optogenetics experiment with minimal sample heating.
Collapse
Affiliation(s)
- Alexis Picot
- Wavefront-Engineering Microscopy Group, Neurophotonics Laboratory, UMR 8250 CNRS, University Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France
| | - Soledad Dominguez
- Wavefront-Engineering Microscopy Group, Neurophotonics Laboratory, UMR 8250 CNRS, University Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France
| | - Chang Liu
- Holographic Microscopy Group, Neurophotonics Laboratory, UMR 8250 CNRS, University Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France; Sorbonne Université, CNRS, INSERM, Institut de la Vision, 17 Rue Moreau, 75011 Paris, France
| | - I-Wen Chen
- Wavefront-Engineering Microscopy Group, Neurophotonics Laboratory, UMR 8250 CNRS, University Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France
| | - Dimitrii Tanese
- Wavefront-Engineering Microscopy Group, Neurophotonics Laboratory, UMR 8250 CNRS, University Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France
| | - Emiliano Ronzitti
- Wavefront-Engineering Microscopy Group, Neurophotonics Laboratory, UMR 8250 CNRS, University Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France; Sorbonne Université, CNRS, INSERM, Institut de la Vision, 17 Rue Moreau, 75011 Paris, France
| | - Pascal Berto
- Holographic Microscopy Group, Neurophotonics Laboratory, UMR 8250 CNRS, University Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France
| | - Eirini Papagiakoumou
- Wavefront-Engineering Microscopy Group, Neurophotonics Laboratory, UMR 8250 CNRS, University Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France; Institut National de la Santé et de la Recherche Médicale (Inserm), Paris, France
| | - Dan Oron
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Gilles Tessier
- Holographic Microscopy Group, Neurophotonics Laboratory, UMR 8250 CNRS, University Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France; Sorbonne Université, CNRS, INSERM, Institut de la Vision, 17 Rue Moreau, 75011 Paris, France
| | - Benoît C Forget
- Wavefront-Engineering Microscopy Group, Neurophotonics Laboratory, UMR 8250 CNRS, University Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France
| | - Valentina Emiliani
- Wavefront-Engineering Microscopy Group, Neurophotonics Laboratory, UMR 8250 CNRS, University Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France.
| |
Collapse
|
23
|
James LS, Sakata JT. Developmental modulation and predictability of age-dependent vocal plasticity in adult zebra finches. Brain Res 2019; 1721:146336. [PMID: 31310739 DOI: 10.1016/j.brainres.2019.146336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 02/07/2023]
Abstract
Predicting the nature of behavioral plasticity can provide insight into mechanisms of behavioral expression and control. Songbirds like the zebra finch rely on vocal signals for communication, and the performance of these signals demonstrate considerable plasticity over development. Traditionally, these signals were thought to be fixed in adulthood, but recent studies have revealed significant age-dependent changes to spectral and temporal features of song in adult songbirds. A number of age-dependent changes to song resemble acute changes to adult song performance across social contexts (e.g., when an adult male sings to a female relative to when he sings in isolation). The ability of variation in social context-dependent changes to predict variation in age-dependent plasticity would suggest shared mechanisms, but little is known about this predictability. In addition, although developmental experiences can shape adult plasticity, little is known about the extent to which social interactions during development affect age-dependent change to adult song. To this end, we systematically analyzed age- and context-dependent changes to adult zebra finch song, and then examined the degree to which age-dependent changes varied across birds that were social or non-socially tutored birds and to which social context-dependent changes predicted age-dependent changes. Non-socially tutored birds showed more dramatic changes to the broad structure of their motif over time than socially tutored birds, but non-socially and socially tutored birds did not differ in the extent of changes to various spectral and temporal features of song. Overall, we found that adult zebra finches produced longer and more spectrally stereotyped songs when they were older than when they were younger. Moreover, regardless of developmental tutoring, individual variation in age-dependent changes to song bout duration and syllable repetition were predicted by variation in social context-dependent changes to these features. These data indicate that social experiences during development can shape some aspects of adult plasticity and that acute context-dependent and long-term age-dependent changes to some song features could be mediated by modifications within similar neural substrates.
Collapse
Affiliation(s)
- Logan S James
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada; Centre for Research for Brain, Language, and Music, Montreal, QC H3G 2A8, Canada
| | - Jon T Sakata
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada; Centre for Research for Brain, Language, and Music, Montreal, QC H3G 2A8, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
24
|
Hyland Bruno J, Tchernichovski O. Regularities in zebra finch song beyond the repeated motif. Behav Processes 2017; 163:53-59. [PMID: 29122641 DOI: 10.1016/j.beproc.2017.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 10/20/2017] [Accepted: 11/05/2017] [Indexed: 01/01/2023]
Abstract
The proliferation of birdsong research into the neural mechanisms of vocal learning is indebted to the remarkable stereotypy of the zebra finch's song motif. Motifs are composed of several syllables, which birds learn to produce in a fixed order. But at a higher level of organization-the bout-zebra finch song is no longer stereotyped. Song bouts include several repetitions of the motif, which are often linked by a variable number of short "connector" vocalizations. In this conceptual methods paper, we show that combinatorial analysis alone yields an incomplete description of this bout-level structure. In contrast, studying birdsong as a time-varying analog signal can reveal patterns of flexibility in the rhythmic organization of song bouts. Visualizing large song-samples in sorted raster plots shows that motifs are strung together via two distinct categories of connections: tight or loose. Loose connections allow considerable timing variation across renditions. Even among co-tutored birds that acquired similar motifs, we observe strong individual variability in rhythms and temporal plasticity of song bouts. These findings suggest that vocal flexibility could potentially allow individuals to express a variety of behavioral states through their songs, even in species that sing only a single stereotyped motif.
Collapse
Affiliation(s)
- Julia Hyland Bruno
- Department of Psychology, Hunter College, City University of New York, 695 Park Avenue, HN 621, New York, NY 10065, USA; Psychology PhD Program, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA.
| | - Ofer Tchernichovski
- Department of Psychology, Hunter College, City University of New York, 695 Park Avenue, HN 621, New York, NY 10065, USA; Psychology PhD Program, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA.
| |
Collapse
|
25
|
Goldin MA, Mindlin GB. Temperature manipulation of neuronal dynamics in a forebrain motor control nucleus. PLoS Comput Biol 2017; 13:e1005699. [PMID: 28829769 PMCID: PMC5568752 DOI: 10.1371/journal.pcbi.1005699] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/25/2017] [Indexed: 01/18/2023] Open
Abstract
Different neuronal types within brain motor areas contribute to the generation of complex motor behaviors. A widely studied songbird forebrain nucleus (HVC) has been recognized as fundamental in shaping the precise timing characteristics of birdsong. This is based, among other evidence, on the stretching and the “breaking” of song structure when HVC is cooled. However, little is known about the temperature effects that take place in its neurons. To address this, we investigated the dynamics of HVC both experimentally and computationally. We developed a technique where simultaneous electrophysiological recordings were performed during temperature manipulation of HVC. We recorded spontaneous activity and found three effects: widening of the spike shape, decrease of the firing rate and change in the interspike interval distribution. All these effects could be explained with a detailed conductance based model of all the neurons present in HVC. Temperature dependence of the ionic channel time constants explained the first effect, while the second was based in the changes of the maximal conductance using single synaptic excitatory inputs. The last phenomenon, only emerged after introducing a more realistic synaptic input to the inhibitory interneurons. Two timescales were present in the interspike distributions. The behavior of one timescale was reproduced with different input balances received form the excitatory neurons, whereas the other, which disappears with cooling, could not be found assuming poissonian synaptic inputs. Furthermore, the computational model shows that the bursting of the excitatory neurons arises naturally at normal brain temperature and that they have an intrinsic delay at low temperatures. The same effect occurs at single synapses, which may explain song stretching. These findings shed light on the temperature dependence of neuronal dynamics and present a comprehensive framework to study neuronal connectivity. This study, which is based on intrinsic neuronal characteristics, may help to understand emergent behavioral changes. The study of the neuronal mechanisms that give rise to the complex behavior of singing in birds has been hotly debated lately. Many models have been tested and novel tools have been developed to try to understand the role of a key brain nucleus in the song pathway: HVC. It is believed that it is highly responsible for generating the precise timing of songs, and this has been tested by manipulating it with temperature. Results showed that cooling can stretch, but that it can also restructure or “break” the song syllables. However, single neuronal mechanisms are not yet described. To better understand this, we cooled HVC in canaries and measured spontaneous activity electrophysiologically. We found three effects: spike shape widening, spike rate reduction and changes in inter-spike-interval (ISI) distributions. To explain them, we built a computational model with a detailed description of ion channel conductances and temperature dependency. We could explain the first effect with a single neuron model. The second, could be explained adding single synapses. Finally, we showed similar ISI modifications of one of the timescales present by means of multiple stochastic inputs. In addition, we found that excitatory neurons show natural bursting behavior at normal brain temperatures and that synaptic delays are the main candidates to explain song stretching at low temperatures.
Collapse
Affiliation(s)
- Matías A. Goldin
- Dynamical Systems Laboratory, Physics Department and IFIBA Conicet, University of Buenos Aires, Pabellón 1, Ciudad Universitaria, Buenos Aires, Argentina
- * E-mail:
| | - Gabriel B. Mindlin
- Dynamical Systems Laboratory, Physics Department and IFIBA Conicet, University of Buenos Aires, Pabellón 1, Ciudad Universitaria, Buenos Aires, Argentina
| |
Collapse
|
26
|
Short SM, Oikonomou KD, Zhou WL, Acker CD, Popovic MA, Zecevic D, Antic SD. The stochastic nature of action potential backpropagation in apical tuft dendrites. J Neurophysiol 2017; 118:1394-1414. [PMID: 28566465 DOI: 10.1152/jn.00800.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 05/25/2017] [Accepted: 05/30/2017] [Indexed: 11/22/2022] Open
Abstract
In cortical pyramidal neurons, backpropagating action potentials (bAPs) supply Ca2+ to synaptic contacts on dendrites. To determine whether the efficacy of AP backpropagation into apical tuft dendrites is stable over time, we performed dendritic Ca2+ and voltage imaging in rat brain slices. We found that the amplitude of bAP-Ca2+ in apical tuft branches was unstable, given that it varied from trial to trial (termed "bAP-Ca2+ flickering"). Small perturbations in dendritic physiology, such as spontaneous synaptic inputs, channel inactivation, or temperature-induced changes in channel kinetics, can cause bAP flickering. In the tuft branches, the density of Na+ and K+ channels was sufficient to support local initiation of fast spikelets by glutamate iontophoresis. We quantified the time delay between the somatic AP burst and the peak of dendritic Ca2+ transient in the apical tuft, because this delay is important for induction of spike-timing dependent plasticity. Depending on the frequency of the somatic AP triplets, Ca2+ signals peaked in the apical tuft 20-50 ms after the 1st AP in the soma. Interestingly, at low frequency (<20 Hz), the Ca2+ peaked sooner than at high frequency, because only the 1st AP invaded tuft. Activation of dendritic voltage-gated Ca2+ channels is sensitive to the duration of the dendritic voltage transient. In apical tuft branches, small changes in the duration of bAP voltage waveforms cause disproportionately large increases in dendritic Ca2+ influx (bAP-Ca2+ flickering). The stochastic nature of bAP-Ca2+ adds a new perspective on the mechanisms by which pyramidal neurons combine inputs arriving at different cortical layers.NEW & NOTEWORTHY The bAP-Ca2+ signal amplitudes in some apical tuft branches randomly vary from moment to moment. In repetitive measurements, successful AP invasions are followed by complete failures. Passive spread of voltage from the apical trunk into the tuft occasionally reaches the threshold for local Na+ spike, resulting in stronger Ca2+ influx. During a burst of three somatic APs, the peak of dendritic Ca2+ in the apical tuft occurs with a delay of 20-50 ms depending on AP frequency.
Collapse
Affiliation(s)
- Shaina M Short
- Department of Neuroscience, UConn Health, Farmington, Connecticut
| | | | - Wen-Liang Zhou
- Department of Neuroscience, UConn Health, Farmington, Connecticut
| | - Corey D Acker
- Center for Cell Analysis and Modeling, UConn Health, Farmington, Connecticut
| | - Marko A Popovic
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut
| | - Dejan Zecevic
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut
| | - Srdjan D Antic
- Department of Neuroscience, UConn Health, Farmington, Connecticut; .,Stem Cell Institute, UConn Health, Farmington, Connecticut; and.,Institute for Systems Genomics, UConn Health, Farmington, Connecticut
| |
Collapse
|
27
|
Female conspecifics restore rhythmic singing behaviour in arrhythmic male zebra finches. J Biosci 2017; 42:139-147. [DOI: 10.1007/s12038-017-9664-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
28
|
Gadagkar V, Puzerey PA, Chen R, Baird-Daniel E, Farhang AR, Goldberg JH. Dopamine neurons encode performance error in singing birds. Science 2016; 354:1278-1282. [PMID: 27940871 PMCID: PMC5464363 DOI: 10.1126/science.aah6837] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/24/2016] [Indexed: 12/20/2022]
Abstract
Many behaviors are learned through trial and error by matching performance to internal goals. Yet neural mechanisms of performance evaluation remain poorly understood. We recorded basal ganglia-projecting dopamine neurons in singing zebra finches as we controlled perceived song quality with distorted auditory feedback. Dopamine activity was phasically suppressed after distorted syllables, consistent with a worse-than-predicted outcome, and was phasically activated at the precise moment of the song when a predicted distortion did not occur, consistent with a better-than-predicted outcome. Error response magnitude depended on distortion probability. Thus, dopaminergic error signals can evaluate behaviors that are not learned for reward and are instead learned by matching performance outcomes to internal goals.
Collapse
Affiliation(s)
- Vikram Gadagkar
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Pavel A Puzerey
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Ruidong Chen
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Eliza Baird-Daniel
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Alexander R Farhang
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Jesse H Goldberg
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
29
|
Gao YR, Ma Y, Zhang Q, Winder AT, Liang Z, Antinori L, Drew PJ, Zhang N. Time to wake up: Studying neurovascular coupling and brain-wide circuit function in the un-anesthetized animal. Neuroimage 2016; 153:382-398. [PMID: 27908788 PMCID: PMC5526447 DOI: 10.1016/j.neuroimage.2016.11.069] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 11/18/2016] [Accepted: 11/27/2016] [Indexed: 01/08/2023] Open
Abstract
Functional magnetic resonance imaging (fMRI) has allowed the noninvasive study of task-based and resting-state brain dynamics in humans by inferring neural activity from blood-oxygenation-level dependent (BOLD) signal changes. An accurate interpretation of the hemodynamic changes that underlie fMRI signals depends on the understanding of the quantitative relationship between changes in neural activity and changes in cerebral blood flow, oxygenation and volume. While there has been extensive study of neurovascular coupling in anesthetized animal models, anesthesia causes large disruptions of brain metabolism, neural responsiveness and cardiovascular function. Here, we review work showing that neurovascular coupling and brain circuit function in the awake animal are profoundly different from those in the anesthetized state. We argue that the time is right to study neurovascular coupling and brain circuit function in the awake animal to bridge the physiological mechanisms that underlie animal and human neuroimaging signals, and to interpret them in light of underlying neural mechanisms. Lastly, we discuss recent experimental innovations that have enabled the study of neurovascular coupling and brain-wide circuit function in un-anesthetized and behaving animal models.
Collapse
Affiliation(s)
- Yu-Rong Gao
- Neuroscience Graduate Program, Pennsylvania State University, University Park, PA 16802, Unidted States; Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, Unidted States
| | - Yuncong Ma
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, Unidted States
| | - Qingguang Zhang
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, Unidted States
| | - Aaron T Winder
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, Unidted States
| | - Zhifeng Liang
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, Unidted States
| | - Lilith Antinori
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, Unidted States
| | - Patrick J Drew
- Neuroscience Graduate Program, Pennsylvania State University, University Park, PA 16802, Unidted States; Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, Unidted States; Department of Neurosurgery, Pennsylvania State University, University Park, PA 16802, Unidted States; Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, Unidted States.
| | - Nanyin Zhang
- Neuroscience Graduate Program, Pennsylvania State University, University Park, PA 16802, Unidted States; Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, Unidted States.
| |
Collapse
|
30
|
Relation between brain temperature and white matter damage in subacute carbon monoxide poisoning. Sci Rep 2016; 6:36523. [PMID: 27819312 PMCID: PMC5098147 DOI: 10.1038/srep36523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 10/18/2016] [Indexed: 12/29/2022] Open
Abstract
In the previous studies, carbon monoxide (CO) poisoning showed an imbalance between cerebral perfusion and metabolism in the acute phase and the brain temperature (BT) in these patients remained abnormally high from the acute to the subacute phase. As observed in chronic ischemic patients, BT can continuously remain high depending on impairments of cerebral blood flow and metabolism; this is because heat removal and production system in the brain may mainly be maintained by the balance of these two factors; thus, cerebral white matter damage (WMD) affecting normal metabolism may affect the BT in patients with CO poisoning. Here, we investigated whether the BT correlates with the degree of WMD in patients with subacute CO-poisoning. In 16 patients with subacute CO-poisoning, the BT and degree of WMD were quantitatively measured by using magnetic resonance spectroscopy and the fractional anisotropy (FA) value from diffusion tensor imaging dataset. Consequently, the BT significantly correlated with the degree of WMD. In particular, BT observed in patients with delayed neuropsychiatric sequelae, a crucial symptom with sudden-onset in the chronic phase after CO exposure, might indicate cerebral hypo-metabolism and abnormal hemodynamics like “matched perfusion,” in which the reduced perfusion matches the reduced metabolism.
Collapse
|
31
|
Podgorski K, Ranganathan G. Brain heating induced by near-infrared lasers during multiphoton microscopy. J Neurophysiol 2016; 116:1012-23. [PMID: 27281749 PMCID: PMC5009202 DOI: 10.1152/jn.00275.2016] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/08/2016] [Indexed: 12/27/2022] Open
Abstract
Two-photon imaging and optogenetic stimulation rely on high illumination powers, particularly for state-of-the-art applications that target deeper structures, achieve faster measurements, or probe larger brain areas. However, little information is available on heating and resulting damage induced by high-power illumination in the brain. In the current study we used thermocouple probes and quantum dot nanothermometers to measure temperature changes induced by two-photon microscopy in the neocortex of awake and anaesthetized mice. We characterized heating as a function of wavelength, exposure time, and distance from the center of illumination. Although total power is highest near the surface of the brain, heating was most severe hundreds of micrometers below the focal plane, due to heat dissipation through the cranial window. Continuous illumination of a 1-mm(2) area produced a peak temperature increase of ∼1.8°C/100 mW. Continuous illumination with powers above 250 mW induced lasting damage, detected with immunohistochemistry against Iba1, glial fibrillary acidic protein, heat shock proteins, and activated caspase-3. Higher powers were usable in experiments with limited duty ratios, suggesting an approach to mitigate damage in high-power microscopy experiments.
Collapse
Affiliation(s)
- Kaspar Podgorski
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia
| | | |
Collapse
|
32
|
Koumura T, Okanoya K. Automatic Recognition of Element Classes and Boundaries in the Birdsong with Variable Sequences. PLoS One 2016; 11:e0159188. [PMID: 27442240 PMCID: PMC4956110 DOI: 10.1371/journal.pone.0159188] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 06/28/2016] [Indexed: 11/18/2022] Open
Abstract
Researches on sequential vocalization often require analysis of vocalizations in long continuous sounds. In such studies as developmental ones or studies across generations in which days or months of vocalizations must be analyzed, methods for automatic recognition would be strongly desired. Although methods for automatic speech recognition for application purposes have been intensively studied, blindly applying them for biological purposes may not be an optimal solution. This is because, unlike human speech recognition, analysis of sequential vocalizations often requires accurate extraction of timing information. In the present study we propose automated systems suitable for recognizing birdsong, one of the most intensively investigated sequential vocalizations, focusing on the three properties of the birdsong. First, a song is a sequence of vocal elements, called notes, which can be grouped into categories. Second, temporal structure of birdsong is precisely controlled, meaning that temporal information is important in song analysis. Finally, notes are produced according to certain probabilistic rules, which may facilitate the accurate song recognition. We divided the procedure of song recognition into three sub-steps: local classification, boundary detection, and global sequencing, each of which corresponds to each of the three properties of birdsong. We compared the performances of several different ways to arrange these three steps. As results, we demonstrated a hybrid model of a deep convolutional neural network and a hidden Markov model was effective. We propose suitable arrangements of methods according to whether accurate boundary detection is needed. Also we designed the new measure to jointly evaluate the accuracy of note classification and boundary detection. Our methods should be applicable, with small modification and tuning, to the songs in other species that hold the three properties of the sequential vocalization.
Collapse
Affiliation(s)
- Takuya Koumura
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Kazuo Okanoya
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- Cognition and Behavior Joint Laboratory, RIKEN Brain Science Institute, Saitama, Japan
| |
Collapse
|
33
|
Tachibana RO, Koumura T, Okanoya K. Variability in the temporal parameters in the song of the Bengalese finch (Lonchura striata var. domestica). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:1157-68. [PMID: 26512015 DOI: 10.1007/s00359-015-1046-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 10/12/2015] [Accepted: 10/14/2015] [Indexed: 11/27/2022]
Abstract
Birdsong provides a unique model for studying the control mechanisms of complex sequential behaviors. The present study aimed to demonstrate that multiple factors affect temporal control in the song production. We analyzed the song of Bengalese finches in various time ranges to address factors that affected the duration of acoustic elements (notes) and silent intervals (gaps). The gaps showed more jitter across song renditions than did notes. Gaps had longer duration in branching points of song sequence than in stereotypic transitions, and the duration of a gap was correlated with the duration of the note that preceded the gap. When looking at the variation among song renditions, we found notable factors in three time ranges: within-day drift, within-bout changes, and local jitter. Note durations shortened over time from morning to evening. Within each song bout note durations lengthened as singing progressed, while gap durations lengthened only during the late part of song bout. Further analysis after removing these drift factors confirmed that the jitter remained in local song sequences. These results suggest distinct sources of temporal variability exist at multiple levels on the basis of this note-gap relationship, and that song comprised a mixture of these sources.
Collapse
Affiliation(s)
- Ryosuke O Tachibana
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Takuya Koumura
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Kazuo Okanoya
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan. .,Cognition and Behavior Joint Laboratory, RIKEN Brain Science Institute, Saitama, Japan.
| |
Collapse
|
34
|
Matheson LE, Sun H, Sakata JT. Forebrain circuits underlying the social modulation of vocal communication signals. Dev Neurobiol 2015; 76:47-63. [PMID: 25959605 DOI: 10.1002/dneu.22298] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 05/01/2015] [Accepted: 05/01/2015] [Indexed: 12/27/2022]
Abstract
Across vertebrate species, signalers alter the structure of their communication signals based on the social context. For example, male Bengalese finches produce faster and more stereotyped songs when directing song to females (female-directed [FD] song) than when singing in isolation (undirected [UD] song), and such changes have been found to increase the attractiveness of a male's song. Despite the importance of such social influences, little is known about the mechanisms underlying the social modulation of communication signals. To this end, we analyzed differences in immediate early gene (EGR-1) expression when Bengalese finches produced FD or UD song. Relative to silent birds, EGR-1 expression was elevated in birds producing either FD or UD song throughout vocal control circuitry, including the interface nucleus of the nidopallium (NIf), HVC, the robust nucleus of the arcopallium (RA), Area X, and the lateral magnocellular nucleus of the anterior nidopallium (LMAN). Moreover, EGR-1 expression was higher in HVC, RA, Area X, and LMAN in males producing UD song than in males producing FD song, indicating that social context modulated EGR-1 expression in these areas. However, EGR-1 expression was not significantly different between males producing FD or UD song in NIf, the primary vocal motor input into HVC, suggesting that context-dependent changes could arise de novo in HVC. The pattern of context-dependent differences in EGR-1 expression in the Bengalese finch was highly similar to that in the zebra finch and suggests that social context affects song structure by modulating activity throughout vocal control nuclei.
Collapse
Affiliation(s)
| | - Herie Sun
- Department of Biology, McGill University
| | | |
Collapse
|
35
|
Shirey MJ, Smith JB, Kudlik DE, Huo BX, Greene SE, Drew PJ. Brief anesthesia, but not voluntary locomotion, significantly alters cortical temperature. J Neurophysiol 2015; 114:309-22. [PMID: 25972579 DOI: 10.1152/jn.00046.2015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/11/2015] [Indexed: 11/22/2022] Open
Abstract
Changes in brain temperature can alter electrical properties of neurons and cause changes in behavior. However, it is not well understood how behaviors, like locomotion, or experimental manipulations, like anesthesia, alter brain temperature. We implanted thermocouples in sensorimotor cortex of mice to understand how cortical temperature was affected by locomotion, as well as by brief and prolonged anesthesia. Voluntary locomotion induced small (∼ 0.1 °C) but reliable increases in cortical temperature that could be described using a linear convolution model. In contrast, brief (90-s) exposure to isoflurane anesthesia depressed cortical temperature by ∼ 2 °C, which lasted for up to 30 min after the cessation of anesthesia. Cortical temperature decreases were not accompanied by a concomitant decrease in the γ-band local field potential power, multiunit firing rate, or locomotion behavior, which all returned to baseline within a few minutes after the cessation of anesthesia. In anesthetized animals where core body temperature was kept constant, cortical temperature was still > 1 °C lower than in the awake animal. Thermocouples implanted in the subcortex showed similar temperature changes under anesthesia, suggesting these responses occur throughout the brain. Two-photon microscopy of individual blood vessel dynamics following brief isoflurane exposure revealed a large increase in vessel diameter that ceased before the brain temperature significantly decreased, indicating cerebral heat loss was not due to increased cerebral blood vessel dilation. These data should be considered in experimental designs recording in anesthetized preparations, computational models relating temperature and neural activity, and awake-behaving methods that require brief anesthesia before experimental procedures.
Collapse
Affiliation(s)
- Michael J Shirey
- Center for Neural Engineering, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania
| | - Jared B Smith
- Center for Neural Engineering, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania;
| | - D'Anne E Kudlik
- Center for Neural Engineering, Bioengineering Graduate Program, Pennsylvania State University, University Park, Pennsylvania; and
| | - Bing-Xing Huo
- Center for Neural Engineering, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania
| | - Stephanie E Greene
- Center for Neural Engineering, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania
| | - Patrick J Drew
- Center for Neural Engineering, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania; Department of Neurosurgery, Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
36
|
Kubikova L, Bosikova E, Cvikova M, Lukacova K, Scharff C, Jarvis ED. Basal ganglia function, stuttering, sequencing, and repair in adult songbirds. Sci Rep 2014; 4:6590. [PMID: 25307086 PMCID: PMC4194444 DOI: 10.1038/srep06590] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 08/08/2014] [Indexed: 11/18/2022] Open
Abstract
A pallial-basal-ganglia-thalamic-pallial loop in songbirds is involved in vocal motor learning. Damage to its basal ganglia part, Area X, in adult zebra finches has been noted to have no strong effects on song and its function is unclear. Here we report that neurotoxic damage to adult Area X induced changes in singing tempo and global syllable sequencing in all animals, and considerably increased syllable repetition in birds whose song motifs ended with minor repetitions before lesioning. This stuttering-like behavior started at one month, and improved over six months. Unexpectedly, the lesioned region showed considerable recovery, including immigration of newly generated or repaired neurons that became active during singing. The timing of the recovery and stuttering suggest that immature recovering activity of the circuit might be associated with stuttering. These findings indicate that even after juvenile learning is complete, the adult striatum plays a role in higher level organization of learned vocalizations.
Collapse
Affiliation(s)
- Lubica Kubikova
- Laboratory of Neurobiology and Physiology of Behaviour, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Ivanka pri Dunaji, Slovakia
| | - Eva Bosikova
- Laboratory of Neurobiology and Physiology of Behaviour, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Ivanka pri Dunaji, Slovakia
| | - Martina Cvikova
- Laboratory of Neurobiology and Physiology of Behaviour, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Ivanka pri Dunaji, Slovakia
| | - Kristina Lukacova
- Laboratory of Neurobiology and Physiology of Behaviour, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Ivanka pri Dunaji, Slovakia
| | | | - Erich D Jarvis
- Howard Hughes Medical Institute and Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
37
|
Wang H, Wang B, Normoyle KP, Jackson K, Spitler K, Sharrock MF, Miller CM, Best C, Llano D, Du R. Brain temperature and its fundamental properties: a review for clinical neuroscientists. Front Neurosci 2014; 8:307. [PMID: 25339859 PMCID: PMC4189373 DOI: 10.3389/fnins.2014.00307] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 09/12/2014] [Indexed: 01/13/2023] Open
Abstract
Brain temperature, as an independent therapeutic target variable, has received increasingly intense clinical attention. To date, brain hypothermia represents the most potent neuroprotectant in laboratory studies. Although the impact of brain temperature is prevalent in a number of common human diseases including: head trauma, stroke, multiple sclerosis, epilepsy, mood disorders, headaches, and neurodegenerative disorders, it is evident and well recognized that the therapeutic application of induced hypothermia is limited to a few highly selected clinical conditions such as cardiac arrest and hypoxic ischemic neonatal encephalopathy. Efforts to understand the fundamental aspects of brain temperature regulation are therefore critical for the development of safe, effective, and pragmatic clinical treatments for patients with brain injuries. Although centrally-mediated mechanisms to maintain a stable body temperature are relatively well established, very little is clinically known about brain temperature's spatial and temporal distribution, its physiological and pathological fluctuations, and the mechanism underlying brain thermal homeostasis. The human brain, a metabolically "expensive" organ with intense heat production, is sensitive to fluctuations in temperature with regards to its functional activity and energy efficiency. In this review, we discuss several critical aspects concerning the fundamental properties of brain temperature from a clinical perspective.
Collapse
Affiliation(s)
- Huan Wang
- Department of Neurosurgery, Carle Foundation Hospital, University of Illinois College of Medicine at Urbana-ChampaignUrbana, IL, USA
- Thermal Neuroscience Laboratory, Beckman Institute, University of Illinois at Urbana-ChampaignUrbana, IL, USA
| | - Bonnie Wang
- Department of Internal Medicine, Carle Foundation Hospital, University of Illinois College of Medicine at Urbana-ChampaignUrbana, IL, USA
| | - Kieran P. Normoyle
- Department of Internal Medicine, College of Medicine at Urbana-Champaign, University of IllinoisChampaign, Urbana, IL, USA
- Department of Molecular and Integrative Physiology, University of Illinois College of Medicine at Urbana-ChampaignUrbana, IL, USA
| | - Kevin Jackson
- Thermal Neuroscience Laboratory, Beckman Institute, University of Illinois at Urbana-ChampaignUrbana, IL, USA
| | - Kevin Spitler
- Department of Internal Medicine, Carle Foundation Hospital, University of Illinois College of Medicine at Urbana-ChampaignUrbana, IL, USA
| | - Matthew F. Sharrock
- Department of Internal Medicine, College of Medicine at Urbana-Champaign, University of IllinoisChampaign, Urbana, IL, USA
| | - Claire M. Miller
- Department of Internal Medicine, College of Medicine at Urbana-Champaign, University of IllinoisChampaign, Urbana, IL, USA
- Neuroscience Program, University of Illinois at Urbana-ChampaignUrbana, IL, USA
| | - Catherine Best
- Molecular and Cellular Biology, University of Illinois at Urbana-ChampaignUrbana, IL, USA
| | - Daniel Llano
- Thermal Neuroscience Laboratory, Beckman Institute, University of Illinois at Urbana-ChampaignUrbana, IL, USA
- Department of Molecular and Integrative Physiology, University of Illinois College of Medicine at Urbana-ChampaignUrbana, IL, USA
| | - Rose Du
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical SchoolBoston, MA, USA
| |
Collapse
|
38
|
Seidl AH, Rubel EW, Barría A. Differential conduction velocity regulation in ipsilateral and contralateral collaterals innervating brainstem coincidence detector neurons. J Neurosci 2014; 34:4914-9. [PMID: 24695710 PMCID: PMC3972718 DOI: 10.1523/jneurosci.5460-13.2014] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 02/20/2014] [Accepted: 02/28/2014] [Indexed: 11/21/2022] Open
Abstract
Information processing in the brain relies on precise timing of signal propagation. The highly conserved neuronal network for computing spatial representations of acoustic signals resolves microsecond timing of sounds processed by the two ears. As such, it provides an excellent model for understanding how precise temporal regulation of neuronal signals is achieved and maintained. The well described avian and mammalian brainstem circuit for computation of interaural time differences is composed of monaural cells in the cochlear nucleus (CN; nucleus magnocellularis in birds) projecting to binaurally innervated coincidence detection neurons in the medial superior olivary nucleus (MSO) in mammals or nucleus laminaris (NL) in birds. Individual axons from CN neurons issue a single axon that bifurcates into an ipsilateral branch and a contralateral branch that innervate segregated dendritic regions of the MSO/NL coincidence detector neurons. We measured conduction velocities of the ipsilateral and contralateral branches of these bifurcating axon collaterals in the chicken by antidromic stimulation of two sites along each branch and whole-cell recordings in the parent neurons. At the end of each experiment, the individual CN neuron and its axon collaterals were filled with dye. We show that the two collaterals of a single axon adjust the conduction velocities individually to achieve the specific conduction velocities essential for precise temporal integration of information from the two ears, as required for sound localization. More generally, these results suggest that individual axonal segments in the CNS interact locally with surrounding neural structures to determine conduction velocity.
Collapse
Affiliation(s)
- Armin H. Seidl
- Virginia Merrill Bloedel Hearing Research Center, and
- Departments of Otolaryngology—Head and Neck Surgery, and
| | - Edwin W Rubel
- Virginia Merrill Bloedel Hearing Research Center, and
- Departments of Otolaryngology—Head and Neck Surgery, and
- Physiology and Biophysics, University of Washington, Seattle, Washington 98195
| | - Andrés Barría
- Virginia Merrill Bloedel Hearing Research Center, and
- Physiology and Biophysics, University of Washington, Seattle, Washington 98195
| |
Collapse
|
39
|
A daily oscillation in the fundamental frequency and amplitude of harmonic syllables of zebra finch song. PLoS One 2013; 8:e82327. [PMID: 24312654 PMCID: PMC3846747 DOI: 10.1371/journal.pone.0082327] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 10/23/2013] [Indexed: 11/19/2022] Open
Abstract
Complex motor skills are more difficult to perform at certain points in the day (for example, shortly after waking), but the daily trajectory of motor-skill error is more difficult to predict. By undertaking a quantitative analysis of the fundamental frequency (FF) and amplitude of hundreds of zebra finch syllables per animal per day, we find that zebra finch song follows a previously undescribed daily oscillation. The FF and amplitude of harmonic syllables rises across the morning, reaching a peak near mid-day, and then falls again in the late afternoon until sleep. This oscillation, although somewhat variable, is consistent across days and across animals and does not require serotonin, as animals with serotonergic lesions maintained daily oscillations. We hypothesize that this oscillation is driven by underlying physiological factors which could be shared with other taxa. Song production in zebra finches is a model system for studying complex learned behavior because of the ease of gathering comprehensive behavioral data and the tractability of the underlying neural circuitry. The daily oscillation that we describe promises to reveal new insights into how time of day affects the ability to accomplish a variety of complex learned motor skills.
Collapse
|
40
|
Ali F, Otchy TM, Pehlevan C, Fantana AL, Burak Y, Ölveczky BP. The basal ganglia is necessary for learning spectral, but not temporal, features of birdsong. Neuron 2013; 80:494-506. [PMID: 24075977 PMCID: PMC3929499 DOI: 10.1016/j.neuron.2013.07.049] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2013] [Indexed: 11/19/2022]
Abstract
Executing a motor skill requires the brain to control which muscles to activate at what times. How these aspects of control-motor implementation and timing-are acquired, and whether the learning processes underlying them differ, is not well understood. To address this, we used a reinforcement learning paradigm to independently manipulate both spectral and temporal features of birdsong, a complex learned motor sequence, while recording and perturbing activity in underlying circuits. Our results uncovered a striking dissociation in how neural circuits underlie learning in the two domains. The basal ganglia was required for modifying spectral, but not temporal, structure. This functional dissociation extended to the descending motor pathway, where recordings from a premotor cortex analog nucleus reflected changes to temporal, but not spectral, structure. Our results reveal a strategy in which the nervous system employs different and largely independent circuits to learn distinct aspects of a motor skill.
Collapse
Affiliation(s)
- Farhan Ali
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Timothy M. Otchy
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
- Program in Neuroscience, Harvard University, Cambridge, MA 02138, USA
| | - Cengiz Pehlevan
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
- Swartz Program in Theoretical Neuroscience Harvard University, Cambridge, MA 02138, USA
| | - Antoniu L. Fantana
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Yoram Burak
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
- Swartz Program in Theoretical Neuroscience Harvard University, Cambridge, MA 02138, USA
| | - Bence P. Ölveczky
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
41
|
Brown adipose tissue thermogenesis, the basic rest–activity cycle, meal initiation, and bodily homeostasis in rats. Physiol Behav 2013; 121:61-9. [DOI: 10.1016/j.physbeh.2013.03.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 03/12/2013] [Accepted: 03/19/2013] [Indexed: 11/18/2022]
|
42
|
Day NF, Nick TA. Rhythmic cortical neurons increase their oscillations and sculpt basal ganglia signaling during motor learning. Dev Neurobiol 2013; 73:754-68. [PMID: 23776169 DOI: 10.1002/dneu.22098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 05/28/2013] [Indexed: 11/07/2022]
Abstract
The function and modulation of neural circuits underlying motor skill may involve rhythmic oscillations (Feller, 1999; Marder and Goaillard, 2006; Churchland et al., 2012). In the proposed pattern generator for birdsong, the cortical nucleus HVC, the frequency and power of oscillatory bursting during singing increases with development (Crandall et al., 2007; Day et al., 2009). We examined the maturation of cellular activity patterns that underlie these changes. Single unit ensemble recording combined with antidromic identification (Day et al., 2011) was used to study network development in anesthetized zebra finches. Autocovariance quantified oscillations within single units. A subset of neurons oscillated in the theta/alpha/mu/beta range (8-20 Hz), with greater power in adults compared to juveniles. Across the network, the normalized oscillatory power in the 8-20 Hz range was greater in adults than juveniles. In addition, the correlated activity between rhythmic neuron pairs increased with development. We next examined the functional impact of the oscillators on the output neurons of HVC. We found that the firing of oscillatory neurons negatively correlated with the activity of cortico-basal ganglia neurons (HVC(X)s), which project to Area X (the song basal ganglia). If groups of oscillators work together to tonically inhibit and precisely control the spike timing of adult HVC(X)s with coordinated release from inhibition, then the activity of HVC(X)s in juveniles should be decreased relative to adults due to uncorrelated, tonic inhibition. Consistent with this hypothesis, HVC(X)s had lower activity in juveniles. These data reveal network changes that shape cortical-to-basal ganglia signaling during motor learning.
Collapse
Affiliation(s)
- Nancy F Day
- Department of Neuroscience, the University of Minnesota, Twin Cities, Minnesota, 55455; Graduate Program in Neuroscience, the University of Minnesota, Twin Cities, Minnesota, 55455; Center for Neurobehavioral Development, the University of Minnesota, Twin Cities, Minnesota, 55455
| | | |
Collapse
|
43
|
Glaze CM, Troyer TW. Development of temporal structure in zebra finch song. J Neurophysiol 2012; 109:1025-35. [PMID: 23175805 DOI: 10.1152/jn.00578.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Zebra finch song has provided an excellent case study in the neural basis of sequence learning, with a high degree of temporal precision and tight links with precisely timed bursting in forebrain neurons. To examine the development of song timing, we measured the following four aspects of song temporal structure at four age ranges between 65 and 375 days posthatch: the mean durations of song syllables and the silent gaps between them, timing variability linked to song tempo, timing variability expressed independently across syllables and gaps, and transition probabilities between consecutive syllable pairs. We found substantial increases in song tempo between 65 and 85 days posthatch, due almost entirely to a shortening of gaps. We also found a decrease in tempo variability, also specific to gaps. Both the magnitude of the increase in tempo and the decrease in tempo variability were correlated on gap-by-gap basis with increases in the reliability of corresponding syllable transitions. Syllables had no systematic increase in tempo or decrease in tempo variability. In contrast to tempo parameters, both syllables and gaps showed an early sharp reduction in independent variability followed by continued reductions over the first year. The data suggest that links between syllable-based representations are strengthened during the later parts of the traditional period of song learning and that song rhythm continues to become more regular throughout the first year of life. Similar learning patterns have been identified in human sequence learning, suggesting a potentially rich area of comparative research.
Collapse
Affiliation(s)
- Christopher M Glaze
- Program in Neuroscience and Cognitive Science, Department of Psychology, University of Maryland, College Park, Maryland, USA.
| | | |
Collapse
|