1
|
Kessler S, Burke B, Andrieux G, Schinköthe J, Hamberger L, Kacza J, Zhan S, Reasoner C, Dutt TS, Kaukab Osman M, Henao-Tamayo M, Staniek J, Villena Ossa JF, Frank DT, Ma W, Ulrich R, Cathomen T, Boerries M, Rizzi M, Beer M, Schwemmle M, Reuther P, Schountz T, Ciminski K. Deciphering bat influenza H18N11 infection dynamics in male Jamaican fruit bats on a single-cell level. Nat Commun 2024; 15:4500. [PMID: 38802391 PMCID: PMC11130286 DOI: 10.1038/s41467-024-48934-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024] Open
Abstract
Jamaican fruit bats (Artibeus jamaicensis) naturally harbor a wide range of viruses of human relevance. These infections are typically mild in bats, suggesting unique features of their immune system. To better understand the immune response to viral infections in bats, we infected male Jamaican fruit bats with the bat-derived influenza A virus (IAV) H18N11. Using comparative single-cell RNA sequencing, we generated single-cell atlases of the Jamaican fruit bat intestine and mesentery. Gene expression profiling showed that H18N11 infection resulted in a moderate induction of interferon-stimulated genes and transcriptional activation of immune cells. H18N11 infection was predominant in various leukocytes, including macrophages, B cells, and NK/T cells. Confirming these findings, human leukocytes, particularly macrophages, were also susceptible to H18N11, highlighting the zoonotic potential of this bat-derived IAV. Our study provides insight into a natural virus-host relationship and thus serves as a fundamental resource for future in-depth characterization of bat immunology.
Collapse
Affiliation(s)
- Susanne Kessler
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bradly Burke
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Geoffroy Andrieux
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Jan Schinköthe
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Lea Hamberger
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Johannes Kacza
- BioImaging Core Facility, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Shijun Zhan
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Clara Reasoner
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Taru S Dutt
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Maria Kaukab Osman
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Marcela Henao-Tamayo
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Julian Staniek
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Freiburg, Germany
| | - Jose Francisco Villena Ossa
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Freiburg, Germany
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg, Germany
| | - Dalit T Frank
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Wenjun Ma
- Department of Veterinary Pathobiology and Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| | - Reiner Ulrich
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Toni Cathomen
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Freiburg, Germany
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg, Germany
| | - Melanie Boerries
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner site Freiburg, a partnership between DKFZ and Medical Center - University of Freiburg, Freiburg, Germany
| | - Marta Rizzi
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Insel Riems, Germany
| | - Martin Schwemmle
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Reuther
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tony Schountz
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| | - Kevin Ciminski
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany.
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
2
|
Demian WL, Cormier O, Mossman K. Immunological features of bats: resistance and tolerance to emerging viruses. Trends Immunol 2024; 45:198-210. [PMID: 38453576 DOI: 10.1016/j.it.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 03/09/2024]
Abstract
Bats are among the most diverse mammalian species, representing over 20% of mammalian diversity. The past two decades have witnessed a disproportionate spillover of viruses from bats to humans compared with other mammalian hosts, attributed to the viral richness within bats, their phylogenetic likeness to humans, and increased human contact with wildlife. Unique evolutionary adaptations in bat genomes, particularly in antiviral protection and immune tolerance genes, enable bats to serve as reservoirs for pandemic-inducing viruses. Here, we discuss current limitations and advances made in understanding the role of bats as drivers of pandemic zoonoses. We also discuss novel technologies that have revealed spatial, dynamic, and physiological factors driving virus and host coevolution.
Collapse
Affiliation(s)
- Wael L Demian
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada; McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Olga Cormier
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada; McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Karen Mossman
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada; McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
3
|
Hashimi M, Sebrell TA, Hedges JF, Snyder D, Lyon KN, Byrum SD, Mackintosh SG, Crowley D, Cherne MD, Skwarchuk D, Robison A, Sidar B, Kunze A, Loveday EK, Taylor MP, Chang CB, Wilking JN, Walk ST, Schountz T, Jutila MA, Bimczok D. Antiviral responses in a Jamaican fruit bat intestinal organoid model of SARS-CoV-2 infection. Nat Commun 2023; 14:6882. [PMID: 37898615 PMCID: PMC10613288 DOI: 10.1038/s41467-023-42610-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 10/16/2023] [Indexed: 10/30/2023] Open
Abstract
Bats are natural reservoirs for several zoonotic viruses, potentially due to an enhanced capacity to control viral infection. However, the mechanisms of antiviral responses in bats are poorly defined. Here we established a Jamaican fruit bat (JFB, Artibeus jamaicensis) intestinal organoid model of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. Upon infection with SARS-CoV-2, increased viral RNA and subgenomic RNA was detected, but no infectious virus was released, indicating that JFB organoids support only limited viral replication but not viral reproduction. SARS-CoV-2 replication was associated with significantly increased gene expression of type I interferons and inflammatory cytokines. Interestingly, SARS-CoV-2 also caused enhanced formation and growth of JFB organoids. Proteomics revealed an increase in inflammatory signaling, cell turnover, cell repair, and SARS-CoV-2 infection pathways. Collectively, our findings suggest that primary JFB intestinal epithelial cells mount successful antiviral interferon responses and that SARS-CoV-2 infection in JFB cells induces protective regenerative pathways.
Collapse
Affiliation(s)
- Marziah Hashimi
- Montana State University, Department of Microbiology and Cell Biology, Bozeman, MT, USA
| | - T Andrew Sebrell
- Montana State University, Department of Microbiology and Cell Biology, Bozeman, MT, USA
| | - Jodi F Hedges
- Montana State University, Department of Microbiology and Cell Biology, Bozeman, MT, USA
| | - Deann Snyder
- Montana State University, Department of Microbiology and Cell Biology, Bozeman, MT, USA
| | - Katrina N Lyon
- Montana State University, Department of Microbiology and Cell Biology, Bozeman, MT, USA
| | - Stephanie D Byrum
- University of Arkansas for Medical Sciences, Department of Biochemistry and Molecular Biology, Little Rock, AR, USA
- Arkansas Children's Research Institute, Little Rock, AR, USA
| | - Samuel G Mackintosh
- University of Arkansas for Medical Sciences, Department of Biochemistry and Molecular Biology, Little Rock, AR, USA
| | - Dan Crowley
- Montana State University, Department of Microbiology and Cell Biology, Bozeman, MT, USA
- Department of Public & Ecosystem Health, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Michelle D Cherne
- Montana State University, Department of Microbiology and Cell Biology, Bozeman, MT, USA
| | - David Skwarchuk
- Montana State University, Department of Microbiology and Cell Biology, Bozeman, MT, USA
| | - Amanda Robison
- Montana State University, Department of Microbiology and Cell Biology, Bozeman, MT, USA
| | - Barkan Sidar
- Montana State University, Chemical and Biological Engineering Department, Bozeman, MT, USA
- Center for Biofilm Engineering, Bozeman, MT, USA
| | - Anja Kunze
- Montana State University, Electrical and Computer Engineering Department, Bozeman, MT, USA
| | - Emma K Loveday
- Montana State University, Chemical and Biological Engineering Department, Bozeman, MT, USA
- Center for Biofilm Engineering, Bozeman, MT, USA
| | - Matthew P Taylor
- Montana State University, Department of Microbiology and Cell Biology, Bozeman, MT, USA
| | - Connie B Chang
- Montana State University, Chemical and Biological Engineering Department, Bozeman, MT, USA
- Center for Biofilm Engineering, Bozeman, MT, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - James N Wilking
- Montana State University, Chemical and Biological Engineering Department, Bozeman, MT, USA
- Center for Biofilm Engineering, Bozeman, MT, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Seth T Walk
- Montana State University, Department of Microbiology and Cell Biology, Bozeman, MT, USA
| | - Tony Schountz
- Department of Microbiology, Immunology, and Pathology and Center of Vector-Borne Infectious Diseases, Colorado State University, Fort, Collins, CO, USA
| | - Mark A Jutila
- Montana State University, Department of Microbiology and Cell Biology, Bozeman, MT, USA
| | - Diane Bimczok
- Montana State University, Department of Microbiology and Cell Biology, Bozeman, MT, USA.
- Center for Biofilm Engineering, Bozeman, MT, USA.
| |
Collapse
|
4
|
Pereira PDC, Diniz DG, da Costa ER, Magalhães NGDM, da Silva ADJF, Leite JGS, Almeida NIP, Cunha KDN, de Melo MAD, Vasconcelos PFDC, Diniz JAP, Brites D, Anthony DC, Diniz CWP, Guerreiro-Diniz C. Genes, inflammatory response, tolerance, and resistance to virus infections in migratory birds, bats, and rodents. Front Immunol 2023; 14:1239572. [PMID: 37711609 PMCID: PMC10497949 DOI: 10.3389/fimmu.2023.1239572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Normally, the host immunological response to viral infection is coordinated to restore homeostasis and protect the individual from possible tissue damage. The two major approaches are adopted by the host to deal with the pathogen: resistance or tolerance. The nature of the responses often differs between species and between individuals of the same species. Resistance includes innate and adaptive immune responses to control virus replication. Disease tolerance relies on the immune response allowing the coexistence of infections in the host with minimal or no clinical signs, while maintaining sufficient viral replication for transmission. Here, we compared the virome of bats, rodents and migratory birds and the molecular mechanisms underlying symptomatic and asymptomatic disease progression. We also explore the influence of the host physiology and environmental influences on RNA virus expression and how it impacts on the whole brain transcriptome of seemingly healthy semipalmated sandpiper (Calidris pusilla) and spotted sandpiper (Actitis macularius). Three time points throughout the year were selected to understand the importance of longitudinal surveys in the characterization of the virome. We finally revisited evidence that upstream and downstream regulation of the inflammatory response is, respectively, associated with resistance and tolerance to viral infections.
Collapse
Affiliation(s)
- Patrick Douglas Corrêa Pereira
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| | - Daniel Guerreiro Diniz
- Seção de Hepatologia, Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Belém, Pará, Brazil
- Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Laboratório de Investigações em Neurodegeneração e Infecção, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Emanuel Ramos da Costa
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
- Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Laboratório de Investigações em Neurodegeneração e Infecção, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Nara Gyzely de Morais Magalhães
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| | - Anderson de Jesus Falcão da Silva
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| | - Jéssica Gizele Sousa Leite
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| | - Natan Ibraim Pires Almeida
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| | - Kelle de Nazaré Cunha
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| | - Mauro André Damasceno de Melo
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| | - Pedro Fernando da Costa Vasconcelos
- Centro de Ciências Biológicas e da Saúde, Universidade do Estado do Pará, Belém, Pará, Brazil
- Seção de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Ananindeua, Pará, Brazil
| | - José Antonio Picanço Diniz
- Seção de Hepatologia, Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Belém, Pará, Brazil
| | - Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Daniel Clive Anthony
- Department of Pharmacology, Laboratory of Experimental Neuropathology, University of Oxford, Oxford, United Kingdom
| | - Cristovam Wanderley Picanço Diniz
- Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Laboratório de Investigações em Neurodegeneração e Infecção, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Cristovam Guerreiro-Diniz
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| |
Collapse
|
5
|
Hashimi M, Sebrell T, Hedges J, Snyder D, Lyon K, Byrum S, Mackintosh SG, Cherne M, Skwarchuk D, Crowley D, Robison A, Sidar B, Kunze A, Loveday E, Taylor M, Chang C, Wilking J, Walk S, Schountz T, Jutila M, Bimczok D. Antiviral response mechanisms in a Jamaican Fruit Bat intestinal organoid model of SARS-CoV-2 infection. RESEARCH SQUARE 2022:rs.3.rs-2340919. [PMID: 36561186 PMCID: PMC9774215 DOI: 10.21203/rs.3.rs-2340919/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bats are natural reservoirs for several zoonotic viruses, potentially due to an enhanced capacity to control viral infection. However, the mechanisms of antiviral responses in bats are poorly defined. Here we established a Jamaican fruit bat (JFB) intestinal organoid model of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. JFB organoids were susceptible to SARS-CoV-2 infection, with increased viral RNA and subgenomic RNA detected in cell lysates and supernatants. Gene expression of type I interferons and inflammatory cytokines was induced in response to SARS-CoV-2 but not in response to TLR agonists. Interestingly, SARS-CoV-2 did not lead to cytopathic effects in JFB organoids but caused enhanced organoid growth. Proteomic analyses revealed an increase in inflammatory signaling, cell turnover, cell repair, and SARS-CoV-2 infection pathways. Collectively, our findings suggest that primary JFB intestinal epithelial cells can mount a successful antiviral interferon response and that SARS-CoV-2 infection in JFB cells induces protective regenerative pathways.
Collapse
|
6
|
Different but Not Unique: Deciphering the Immunity of the Jamaican Fruit Bat by Studying Its Viriome. Viruses 2022; 14:v14020238. [PMID: 35215832 PMCID: PMC8879847 DOI: 10.3390/v14020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/20/2022] [Accepted: 01/23/2022] [Indexed: 02/04/2023] Open
Abstract
A specialized and fine-tuned immune response of bats upon infection with viruses is believed to provide the basis for a “friendly” coexistence with these pathogens, which are often lethal for humans and other mammals. First insights into the immunity of bats suggest that bats have evolved to possess their own strategies to cope with viral infections. Yet, the molecular details for this innocuous coexistence remain poorly described and bat infection models are the key to unveiling these secrets. In Jamaican fruit bats (Artibeus jamaicensis), a New World bat species, infection experiments with its (putative) natural viral pathogens Tacaribe virus (TCRV), rabies virus (RABV), and the bat influenza A virus (IAV) H18N11, have contributed to an accurate, though still incomplete, representation of the bat-imposed immunity. Surprisingly, though many aspects of their innate and adaptive immune responses differ from that of the human immune response, such as a contraction of the IFN locus and reduction in the number of immunoglobulin subclasses, variations could also be observed between Jamaican fruit bats and other bat species.
Collapse
|
7
|
Exploring the Role of Innate Lymphocytes in the Immune System of Bats and Virus-Host Interactions. Viruses 2022; 14:v14010150. [PMID: 35062356 PMCID: PMC8781337 DOI: 10.3390/v14010150] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 01/27/2023] Open
Abstract
Bats are reservoirs of a large number of viruses of global public health significance, including the ancestral virus for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the causative agent of coronavirus disease 2019 (COVID-19). Although bats are natural carriers of multiple pathogenic viruses, they rarely display signs of disease. Recent insights suggest that bats have a more balanced host defense and tolerance system to viral infections that may be linked to the evolutionary adaptation to powered flight. Therefore, a deeper understanding of bat immune system may provide intervention strategies to prevent zoonotic disease transmission and to identify new therapeutic targets. Similar to other eutherian mammals, bats have both innate and adaptive immune systems that have evolved to detect and respond to invading pathogens. Bridging these two systems are innate lymphocytes, which are highly abundant within circulation and barrier tissues. These cells share the characteristics of both innate and adaptive immune cells and are poised to mount rapid effector responses. They are ideally suited as the first line of defense against early stages of viral infections. Here, we will focus on the current knowledge of innate lymphocytes in bats, their function, and their potential role in host–pathogen interactions. Moreover, given that studies into bat immune systems are often hindered by a lack of bat-specific research tools, we will discuss strategies that may aid future research in bat immunity, including the potential use of organoid models to delineate the interplay between innate lymphocytes, bat viruses, and host tolerance.
Collapse
|
8
|
Nectar-feeding bats and birds show parallel molecular adaptations in sugar metabolism enzymes. Curr Biol 2021; 31:4667-4674.e6. [PMID: 34478643 DOI: 10.1016/j.cub.2021.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 04/21/2021] [Accepted: 08/05/2021] [Indexed: 12/27/2022]
Abstract
In most vertebrates, the demand for glucose as the primary substrate for cellular respiration is met by the breakdown of complex carbohydrates, or energy is obtained by protein and lipid catabolism. In contrast, a few bat and bird species have convergently evolved to subsist on nectar, a sugar-rich mixture of glucose, fructose, and sucrose.1-4 How these nectar-feeders have adapted to cope with life-long high sugar intake while avoiding the onset of metabolic syndrome and diabetes5-7 is not understood. We analyzed gene sequences obtained from 127 taxa, including 22 nectar-feeding bat and bird genera that collectively encompass four independent origins of nectarivory. We show these divergent taxa have undergone pervasive molecular adaptation in sugar catabolism pathways, including parallel selection in key glycolytic and fructolytic enzymes. We also uncover convergent amino acid substitutions in the otherwise evolutionarily conserved aldolase B (ALDOB), which catalyzes rate-limiting steps in fructolysis and glycolysis, and the mitochondrial gatekeeper pyruvate dehydrogenase (PDH), which links glycolysis and the tricarboxylic acid cycle. Metabolomic profile and enzyme functional assays are consistent with increased respiratory flux in nectar-feeding bats and help explain how these taxa can both sustain hovering flight and efficiently clear simple sugars. Taken together, our results indicate that nectar-feeding bats and birds have undergone metabolic adaptations that have enabled them to exploit a unique energy-rich dietary niche among vertebrates.
Collapse
|
9
|
Fang M, Hu W, Liu B. Characterization of bat coronaviruses: a latent global threat. J Vet Sci 2021; 22:e72. [PMID: 34553517 PMCID: PMC8460465 DOI: 10.4142/jvs.2021.22.e72] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 12/23/2022] Open
Abstract
It has been speculated that bats serve as reservoirs of a huge variety of emerging coronaviruses (CoVs) that have been responsible for severe havoc in human health systems as well as negatively affecting human economic and social systems. A prime example is the currently active severe acute respiratory syndrome (SARS)-CoV2, which presumably originated from bats, demonstrating that the risk of a new outbreak of bat coronavirus is always latent. Therefore, an in-depth investigation to better comprehend bat CoVs has become an important issue within the international community, a group that aims to attenuate the consequences of future outbreaks. In this review, we present a concise introduction to CoVs found in bats and discuss their distribution in Southeast Asia. We also discuss the unique adaptation features in bats that confer the ability to be a potential coronavirus reservoir. In addition, we review the bat coronavirus-linked diseases that have emerged in the last two decades. Finally, we propose key factors helpful in the prediction of a novel coronavirus outbreak and present the most recent methods used to forecast an evolving outbreak.
Collapse
Affiliation(s)
- Manxin Fang
- College of Life Science and Resources and Environment, Yichun University, Yichun 336000, Jiangxi, China
| | - Wei Hu
- College of Life Science and Resources and Environment, Yichun University, Yichun 336000, Jiangxi, China
| | - Ben Liu
- College of Life Science and Resources and Environment, Yichun University, Yichun 336000, Jiangxi, China
- Jiangxi Lvke Agriculture and Animal Husbandry Technology Co., Ltd, Yichun 336000, Jiangxi, China
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun University, Yichun 336000, Jiangxi, China.
| |
Collapse
|
10
|
Chattopadhyay B, Garg KM, Ray R, Mendenhall IH, Rheindt FE. Novel de Novo Genome of Cynopterus brachyotis Reveals Evolutionarily Abrupt Shifts in Gene Family Composition across Fruit Bats. Genome Biol Evol 2021; 12:259-272. [PMID: 32068833 PMCID: PMC7151552 DOI: 10.1093/gbe/evaa030] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2020] [Indexed: 12/01/2022] Open
Abstract
Major novel physiological or phenotypic adaptations often require accompanying modifications at the genic level. Conversely, the detection of considerable contractions and/or expansions of gene families can be an indicator of fundamental but unrecognized physiological change. We sequenced a novel fruit bat genome (Cynopterus brachyotis) and adopted a comparative approach to reconstruct the evolution of fruit bats, mapping contractions and expansions of gene families along their evolutionary history. Despite a radical change in life history as compared with other bats (e.g., loss of echolocation, large size, and frugivory), fruit bats have undergone surprisingly limited change in their genic composition, perhaps apart from a potentially novel gene family expansion relating to telomere protection and longevity. In sharp contrast, within fruit bats, the new Cynopterus genome bears the signal of unusual gene loss and gene family contraction, despite its similar morphology and lifestyle to two other major fruit bat lineages. Most missing genes are regulatory, immune-related, and olfactory in nature, illustrating the diversity of genomic strategies employed by bats to contend with responses to viral infection and olfactory requirements. Our results underscore that significant fluctuations in gene family composition are not always associated with obvious examples of novel physiological and phenotypic adaptations but may often relate to less-obvious shifts in immune strategies.
Collapse
Affiliation(s)
| | - Kritika M Garg
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Rajasri Ray
- Center for Ecological Sciences, Indian Institute of Science, Bangalore, Karnataka, India.,Centre for Studies in Ethnobiology, Biodiversity and Sustainability (CEiBa), Mokdumpur, Malda, West Bengal, India
| | - Ian H Mendenhall
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Frank E Rheindt
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
11
|
Shankar EM, Che KF, Yong YK, Girija ASS, Velu V, Ansari AW, Larsson M. Asymptomatic SARS-CoV-2 infection: is it all about being refractile to innate immune sensing of viral spare-parts?-Clues from exotic animal reservoirs. Pathog Dis 2021; 79:ftaa076. [PMID: 33289808 PMCID: PMC7799061 DOI: 10.1093/femspd/ftaa076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/04/2020] [Indexed: 01/08/2023] Open
Abstract
A vast proportion of coronavirus disease 2019 (COVID-19) individuals remain asymptomatic and can shed severe acute respiratory syndrome (SARS-CoV) type 2 virus to transmit the infection, which also explains the exponential increase in the number of COVID-19 cases globally. Furthermore, the rate of recovery from clinical COVID-19 in certain pockets of the globe is surprisingly high. Based on published reports and available literature, here, we speculated a few immunovirological mechanisms as to why a vast majority of individuals remain asymptomatic similar to exotic animal (bats and pangolins) reservoirs that remain refractile to disease development despite carrying a huge load of diverse insidious viral species, and whether such evolutionary advantage would unveil therapeutic strategies against COVID-19 infection in humans. Understanding the unique mechanisms that exotic animal species employ to achieve viral control, as well as inflammatory regulation, appears to hold key clues to the development of therapeutic versatility against COVID-19.
Collapse
MESH Headings
- Animals
- Animals, Exotic/virology
- Asymptomatic Diseases
- COVID-19/genetics
- COVID-19/immunology
- COVID-19/transmission
- COVID-19/virology
- Chiroptera/virology
- Cytokine Release Syndrome/genetics
- Cytokine Release Syndrome/immunology
- Cytokine Release Syndrome/prevention & control
- Cytokine Release Syndrome/virology
- Disease Reservoirs
- Eutheria/virology
- Gene Expression
- Host Specificity
- Humans
- Immune Tolerance
- Immunity, Innate
- Interferon-beta/deficiency
- Interferon-beta/genetics
- Interferon-beta/immunology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/virology
- Monocytes/immunology
- Monocytes/virology
- NLR Family, Pyrin Domain-Containing 3 Protein/deficiency
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- NLR Family, Pyrin Domain-Containing 3 Protein/immunology
- Receptors, KIR/deficiency
- Receptors, KIR/genetics
- Receptors, KIR/immunology
- Receptors, NK Cell Lectin-Like/deficiency
- Receptors, NK Cell Lectin-Like/genetics
- Receptors, NK Cell Lectin-Like/immunology
- SARS-CoV-2/pathogenicity
- Tumor Necrosis Factor-alpha/deficiency
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/immunology
- Zoonoses/genetics
- Zoonoses/immunology
- Zoonoses/transmission
- Zoonoses/virology
Collapse
Affiliation(s)
- Esaki M Shankar
- Infection Biology, Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur 610005, India
| | - Karlhans F Che
- Unit for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Yean K Yong
- Laboratory Centre, Xiamen University, Sepang, Malaysia
| | - A S Smiline Girija
- Department of Microbiology, Saveetha Dental College and Hospital, Chennai, India
| | - Vijayakumar Velu
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA USA
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Abdul W Ansari
- Sharjah Institute of Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Marie Larsson
- Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
12
|
Murphy WJ, Foley NM, Bredemeyer KR, Gatesy J, Springer MS. Phylogenomics and the Genetic Architecture of the Placental Mammal Radiation. Annu Rev Anim Biosci 2020; 9:29-53. [PMID: 33228377 DOI: 10.1146/annurev-animal-061220-023149] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The genomes of placental mammals are being sequenced at an unprecedented rate. Alignments of hundreds, and one day thousands, of genomes spanning the rich living and extinct diversity of species offer unparalleled power to resolve phylogenetic controversies, identify genomic innovations of adaptation, and dissect the genetic architecture of reproductive isolation. We highlight outstanding questions about the earliest phases of placental mammal diversification and the promise of newer methods, as well as remaining challenges, toward using whole genome data to resolve placental mammal phylogeny. The next phase of mammalian comparative genomics will see the completion and application of finished-quality, gapless genome assemblies from many ordinal lineages and closely related species. Interspecific comparisons between the most hypervariable genomic loci will likely reveal large, but heretofore mostly underappreciated, effects on population divergence, morphological innovation, and the origin of new species.
Collapse
Affiliation(s)
- William J Murphy
- Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843, USA;
| | - Nicole M Foley
- Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843, USA;
| | - Kevin R Bredemeyer
- Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843, USA;
| | - John Gatesy
- Division of Vertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
| | - Mark S Springer
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, California 92521, USA
| |
Collapse
|
13
|
Johansen MD, Irving A, Montagutelli X, Tate MD, Rudloff I, Nold MF, Hansbro NG, Kim RY, Donovan C, Liu G, Faiz A, Short KR, Lyons JG, McCaughan GW, Gorrell MD, Cole A, Moreno C, Couteur D, Hesselson D, Triccas J, Neely GG, Gamble JR, Simpson SJ, Saunders BM, Oliver BG, Britton WJ, Wark PA, Nold-Petry CA, Hansbro PM. Animal and translational models of SARS-CoV-2 infection and COVID-19. Mucosal Immunol 2020; 13:877-891. [PMID: 32820248 PMCID: PMC7439637 DOI: 10.1038/s41385-020-00340-z] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023]
Abstract
COVID-19 is causing a major once-in-a-century global pandemic. The scientific and clinical community is in a race to define and develop effective preventions and treatments. The major features of disease are described but clinical trials have been hampered by competing interests, small scale, lack of defined patient cohorts and defined readouts. What is needed now is head-to-head comparison of existing drugs, testing of safety including in the background of predisposing chronic diseases, and the development of new and targeted preventions and treatments. This is most efficiently achieved using representative animal models of primary infection including in the background of chronic disease with validation of findings in primary human cells and tissues. We explore and discuss the diverse animal, cell and tissue models that are being used and developed and collectively recapitulate many critical aspects of disease manifestation in humans to develop and test new preventions and treatments.
Collapse
Affiliation(s)
- M D Johansen
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, Australia
| | - A Irving
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, ZJU International Campus, Haining, China
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - X Montagutelli
- Department of Genomes and Genetics, Institut Pasteur, Paris, France
| | - M D Tate
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - I Rudloff
- Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia
- Department of Paediatrics, Monash University, Clayton, VIC, 3168, Australia
| | - M F Nold
- Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia
- Monash Newborn, Monash Children's Hospital, Clayton, VIC, Australia
| | - N G Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, NSW, Australia
| | - R Y Kim
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, NSW, Australia
| | - C Donovan
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, NSW, Australia
| | - G Liu
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, NSW, Australia
| | - A Faiz
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, Australia
| | - K R Short
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
| | - J G Lyons
- Centenary Institute and Dermatology, The University of Sydney and Cancer Services, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - G W McCaughan
- Centenary Institute and Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - M D Gorrell
- Centenary Institute and Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - A Cole
- Centenary Institute and Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - C Moreno
- Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre, Centenary Institute, and School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - D Couteur
- Charles Perkins Centre and School of Life and Environmental Sciences, University of Sydney, and Faculty of Medicine and Health, Concord Clinical School, ANZAC Research Institute and Centre for Education and Research on Ageing, Sydney, Australia
| | - D Hesselson
- Centenary Institute and Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - J Triccas
- Discipline of Infectious Diseases and Immunology, Central Clinical School, Faculty of Medicine and Health and the Charles Perkins Centre, The University of Sydney, Camperdown, Sydney, Australia
| | - G G Neely
- Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre, Centenary Institute, and School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - J R Gamble
- Centenary Institute and Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - S J Simpson
- Charles Perkins Centre and School of Life and Environmental Sciences, University of Sydney, and Faculty of Medicine and Health, Concord Clinical School, ANZAC Research Institute and Centre for Education and Research on Ageing, Sydney, Australia
| | - B M Saunders
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, Australia
| | - B G Oliver
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, Australia
- Woolcock Institute of Medical Research, Sydney, Australia
| | - W J Britton
- Centenary Institute, The University of Sydney and Department of Clinical Immunology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - P A Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, NSW, Australia
| | - C A Nold-Petry
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
- Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia
| | - P M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, Australia.
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, NSW, Australia.
| |
Collapse
|
14
|
Lee RC, Farfan-Caceres LM, Debler JW, Syme RA. Characterization of Growth Morphology and Pathology, and Draft Genome Sequencing of Botrytis fabae, the Causal Organism of Chocolate Spot of Faba Bean ( Vicia faba L.). Front Microbiol 2020; 11:217. [PMID: 32132988 PMCID: PMC7040437 DOI: 10.3389/fmicb.2020.00217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 01/30/2020] [Indexed: 11/13/2022] Open
Abstract
Chocolate spot is a major fungal disease of faba bean caused by the ascomycete fungus, Botrytis fabae. B. fabae is also implicated in botrytis gray mold disease in lentils, along with B. cinerea. Here we have isolated and characterized two B. fabae isolates from chocolate spot lesions on faba bean leaves. In plant disease assays on faba bean and lentil, B. fabae was more aggressive than B. cinerea and we observed variation in susceptibility among a small set of cultivars for both plant hosts. Using light microscopy, we observed a spreading, generalized necrosis response in faba bean toward B. fabae. In contrast, the plant response to B. cinerea was localized to epidermal cells underlying germinated spores and appressoria. In addition to the species characterization of B. fabae, we produced genome assemblies for both B. fabae isolates using Illumina sequencing. Genome sequencing coverage and assembly size for B. fabae isolates, were 27x and 45x, and 43.2 and 44.5 Mb, respectively. Following genome assembly and annotation, carbohydrate-active enzyme (CAZymes) and effector genes were predicted. There were no major differences in the numbers of each of the major classes of CAZymes. We predicted 29 effector genes for B. fabae, and using the same selection criteria for B. cinerea, we predicted 34 putative effector genes. For five of the predicted effector genes, the pairwise dN/dS ratio between orthologs from B. fabae and B. cinerea was greater than 1.0, suggesting positive selection and the potential evolution of molecular mechanisms for host specificity in B. fabae. Furthermore, a homology search of secondary metabolite clusters revealed the absence of the B. cinerea phytotoxin botrydial and several other uncharacterized secondary metabolite biosynthesis genes from B. fabae. Although there were no obvious differences in the number or proportional representation of different transposable element classes, the overall proportion of AT-rich DNA sequence in B. fabae was double that of B. cinerea.
Collapse
Affiliation(s)
- Robert C Lee
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - Lina M Farfan-Caceres
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - Johannes W Debler
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - Robert A Syme
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| |
Collapse
|
15
|
Banerjee A, Baker ML, Kulcsar K, Misra V, Plowright R, Mossman K. Novel Insights Into Immune Systems of Bats. Front Immunol 2020; 11:26. [PMID: 32117225 PMCID: PMC7025585 DOI: 10.3389/fimmu.2020.00026] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/08/2020] [Indexed: 11/13/2022] Open
Abstract
In recent years, viruses similar to those that cause serious disease in humans and other mammals have been detected in apparently healthy bats. These include filoviruses, paramyxoviruses, and coronaviruses that cause severe diseases such as Ebola virus disease, Marburg haemorrhagic fever and severe acute respiratory syndrome (SARS) in humans. The evolution of flight in bats seem to have selected for a unique set of antiviral immune responses that control virus propagation, while limiting self-damaging inflammatory responses. Here, we summarize our current understanding of antiviral immune responses in bats and discuss their ability to co-exist with emerging viruses that cause serious disease in other mammals. We highlight how this knowledge may help us to predict viral spillovers into new hosts and discuss future directions for the field.
Collapse
Affiliation(s)
- Arinjay Banerjee
- Department of Pathology and Molecular Medicine, Michael DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Michelle L Baker
- Health and Biosecurity Business Unit, Australian Animal Health Laboratory, CSIRO, Geelong, VIC, Australia
| | - Kirsten Kulcsar
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Vikram Misra
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Raina Plowright
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Karen Mossman
- Department of Pathology and Molecular Medicine, Michael DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
16
|
Edenborough KM, Bokelmann M, Lander A, Couacy-Hymann E, Lechner J, Drechsel O, Renard BY, Radonić A, Feldmann H, Kurth A, Prescott J. Dendritic Cells Generated From Mops condylurus, a Likely Filovirus Reservoir Host, Are Susceptible to and Activated by Zaire Ebolavirus Infection. Front Immunol 2019; 10:2414. [PMID: 31681302 PMCID: PMC6797855 DOI: 10.3389/fimmu.2019.02414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/26/2019] [Indexed: 12/17/2022] Open
Abstract
Ebola virus infection of human dendritic cells (DCs) induces atypical adaptive immune responses and thereby exacerbates Ebola virus disease (EVD). Human DCs, infected with Ebola virus aberrantly express low levels of the DC activation markers CD80, CD86, and MHC class II. The T cell responses ensuing are commonly anergic rather than protective against EVD. We hypothesize that DCs derived from potential reservoir hosts such as bats, which do not develop disease signs in response to Ebola virus infection, would exhibit features associated with activation. In this study, we have examined Zaire ebolavirus (EBOV) infection of DCs derived from the Angolan free-tailed bat species, Mops condylurus. This species was previously identified as permissive to EBOV infection in vivo, in the absence of disease signs. M. condylurus has also been recently implicated as the reservoir host for Bombali ebolavirus, a virus species that is closely related to EBOV. Due to the absence of pre-existing M. condylurus species-specific reagents, we characterized its de novo assembled transcriptome and defined its phylogenetic similarity to other mammals, which enabled the identification of cross-reactive reagents for M. condylurus bone marrow-derived DC (bat-BMDC) differentiation and immune cell phenotyping. Our results reveal that bat-BMDCs are susceptible to EBOV infection as determined by detection of EBOV specific viral RNA (vRNA). vRNA increased significantly 72 h after EBOV-infection and was detected in both cells and in culture supernatants. Bat-BMDC infection was further confirmed by the observation of GFP expression in DC cultures infected with a recombinant GFP-EBOV. Bat-BMDCs upregulated CD80 and chemokine ligand 3 (CCL3) transcripts in response to EBOV infection, which positively correlated with the expression levels of EBOV vRNA. In contrast to the aberrant responses to EBOV infection that are typical for human-DC, our findings from bat-BMDCs provide evidence for an immunological basis of asymptomatic EBOV infection outcomes.
Collapse
Affiliation(s)
- Kathryn M. Edenborough
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Marcel Bokelmann
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Angelika Lander
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Emmanuel Couacy-Hymann
- LANADA, Laboratoire National d'Appui au Développement Agricole, Bingerville, Côte d'Ivoire
| | - Johanna Lechner
- Methodology and Research Infrastructure, Robert Koch Institute, Berlin, Germany
| | - Oliver Drechsel
- Methodology and Research Infrastructure, Robert Koch Institute, Berlin, Germany
| | - Bernhard Y. Renard
- Methodology and Research Infrastructure, Robert Koch Institute, Berlin, Germany
| | - Aleksandar Radonić
- Methodology and Research Infrastructure, Robert Koch Institute, Berlin, Germany
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, ON, United States
| | - Andreas Kurth
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Joseph Prescott
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
17
|
Mostajo NF, Lataretu M, Krautwurst S, Mock F, Desirò D, Lamkiewicz K, Collatz M, Schoen A, Weber F, Marz M, Hölzer M. A comprehensive annotation and differential expression analysis of short and long non-coding RNAs in 16 bat genomes. NAR Genom Bioinform 2019; 2:lqz006. [PMID: 32289119 PMCID: PMC7108008 DOI: 10.1093/nargab/lqz006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/21/2019] [Accepted: 09/10/2019] [Indexed: 12/25/2022] Open
Abstract
Although bats are increasingly becoming the focus of scientific studies due to their unique properties, these exceptional animals are still among the least studied mammals. Assembly quality and completeness of bat genomes vary a lot and especially non-coding RNA (ncRNA) annotations are incomplete or simply missing. Accordingly, standard bioinformatics pipelines for gene expression analysis often ignore ncRNAs such as microRNAs or long antisense RNAs. The main cause of this problem is the use of incomplete genome annotations. We present a complete screening for ncRNAs within 16 bat genomes. NcRNAs affect a remarkable variety of vital biological functions, including gene expression regulation, RNA processing, RNA interference and, as recently described, regulatory processes in viral infections. Within all investigated bat assemblies, we annotated 667 ncRNA families including 162 snoRNAs and 193 miRNAs as well as rRNAs, tRNAs, several snRNAs and lncRNAs, and other structural ncRNA elements. We validated our ncRNA candidates by six RNA-Seq data sets and show significant expression patterns that have never been described before in a bat species on such a large scale. Our annotations will be usable as a resource (rna.uni-jena.de/supplements/bats) for deeper studying of bat evolution, ncRNAs repertoire, gene expression and regulation, ecology and important host–virus interactions.
Collapse
Affiliation(s)
- Nelly F Mostajo
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany.,Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße 2, 35043 Marburg, Germany.,European Virus Bioinformatics Center, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany
| | - Marie Lataretu
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany.,European Virus Bioinformatics Center, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany
| | - Sebastian Krautwurst
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany.,European Virus Bioinformatics Center, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany
| | - Florian Mock
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany.,European Virus Bioinformatics Center, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany
| | - Daniel Desirò
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany.,European Virus Bioinformatics Center, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany
| | - Kevin Lamkiewicz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany.,European Virus Bioinformatics Center, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany
| | - Maximilian Collatz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany.,European Virus Bioinformatics Center, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany
| | - Andreas Schoen
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, 35392 Gießen, Germany.,German Center for Infection Research (DZIF), partner sites 35043 Marburg and 35392 Gießen, Germany
| | - Friedemann Weber
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße 2, 35043 Marburg, Germany.,Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, 35392 Gießen, Germany.,German Center for Infection Research (DZIF), partner sites 35043 Marburg and 35392 Gießen, Germany
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany.,European Virus Bioinformatics Center, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany.,FLI Leibniz Institute for Age Research, Beutenbergstraße 11, 07745 Jena, Germany
| | - Martin Hölzer
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany.,European Virus Bioinformatics Center, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany
| |
Collapse
|
18
|
Gupta BB, Selter LL, Baranwal VK, Arora D, Mishra SK, Sirohi P, Poonia AK, Chaudhary R, Kumar R, Krattinger SG, Chauhan H. Updated inventory, evolutionary and expression analyses of G (PDR) type ABC transporter genes of rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 142:429-439. [PMID: 31419645 DOI: 10.1016/j.plaphy.2019.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
ABC transporters constitute the largest family of transporter proteins in living organisms and divided into eight subfamilies, from A-H. ABCG members, specific to plants and fungi, belong to subfamily G. In this study, we provide updated inventory, detailed account of phylogeny, gene structure characteristics, and expression profiling during reproductive development, abiotic and biotic stresses of members of ABCG gene family in rice along with reannotation and cloning of FL-cDNA of OsABCG50/PDR23. We observed that of the 22 ABCGs/PDRs, four genes evolved as a result of gene duplication events and their expression pattern changed after duplication. Analysis of expression revealed seed and developmental stage preferential expression of five ABCG/PDR members. Transcript levels of eight ABCGs/PDRs were affected by abiotic and biotic stresses. Expression of seven ABCG/PDR genes was also altered by hormonal elicitors. The modulated expression is nicely correlated with the presence of tissue/stress specific cis-acting elements present in putative promoter region.
Collapse
Affiliation(s)
| | - Liselotte L Selter
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Vinay K Baranwal
- Swami Devanand Post Graduate College, Math-Lar, Deoria, U. P, India
| | - Deepanksha Arora
- Indian Institute of Technology Roorkee, India; VIB Department of Plant Systems Biology, Ghent University, Belgium
| | | | | | | | | | - Rahul Kumar
- School of Life Sciences, University of Hyderabad, India
| | - Simon G Krattinger
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland; King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), Thuwal, Saudi Arabia
| | | |
Collapse
|
19
|
A metaanalysis of bat phylogenetics and positive selection based on genomes and transcriptomes from 18 species. Proc Natl Acad Sci U S A 2019; 116:11351-11360. [PMID: 31113885 PMCID: PMC6561249 DOI: 10.1073/pnas.1814995116] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
This work represents a large, order-wide evolutionary analysis of the order Chiroptera (bats). Our pipeline for assembling sequence data and curating orthologous multiple sequence alignments includes methods for improving results when combining genomic and transcriptomic data sources. The resulting phylogenetic tree divides the order Chiroptera into Yinpterochiroptera and Yangochiroptera, in disagreement with the previous division into Megachiroptera and Microchiroptera and in agreement with some other recent molecular studies, and also provides evidence for other contested branch placements. We also performed a genome-wide analysis of positive selection and found 181 genes with signatures of positive selection. Enrichment analysis shows these positively selected genes to be primarily related to immune responses but also, surprisingly, collagen formation. Historically, the evolution of bats has been analyzed using a small number of genetic loci for many species or many genetic loci for a few species. Here we present a phylogeny of 18 bat species, each of which is represented in 1,107 orthologous gene alignments used to build the tree. We generated a transcriptome sequence of Hypsignathus monstrosus, the African hammer-headed bat, and additional transcriptome sequence for Rousettus aegyptiacus, the Egyptian fruit bat. We then combined these data with existing genomic and transcriptomic data from 16 other bat species. In the analysis of such datasets, there is no clear consensus on the most reliable computational methods for the curation of quality multiple sequence alignments since these public datasets represent multiple investigators and methods, including different source materials (chromosomal DNA or expressed RNA). Here we lay out a systematic analysis of parameters and produce an advanced pipeline for curating orthologous gene alignments from combined transcriptomic and genomic data, including a software package: the Mismatching Isoform eXon Remover (MIXR). Using this method, we created alignments of 11,677 bat genes, 1,107 of which contain orthologs from all 18 species. Using the orthologous gene alignments created, we assessed bat phylogeny and also performed a holistic analysis of positive selection acting in bat genomes. We found that 181 genes have been subject to positive natural selection. This list is dominated by genes involved in immune responses and genes involved in the production of collagens.
Collapse
|
20
|
Moreno-Santillán DD, Machain-Williams C, Hernández-Montes G, Ortega J. De Novo Transcriptome Assembly and Functional Annotation in Five Species of Bats. Sci Rep 2019; 9:6222. [PMID: 30996290 PMCID: PMC6470166 DOI: 10.1038/s41598-019-42560-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 04/01/2019] [Indexed: 12/21/2022] Open
Abstract
High-throughput RNA sequencing is a powerful tool that allows us to perform gene prediction and analyze tissue-specific overexpression of genes, but also at species level comparisons can be performed, although in a more restricted manner. In the present study complete liver transcriptomes of five tropical bat species were De novo assembled and annotated. Highly expressed genes in the five species were involved in glycolysis and lipid metabolism pathways. Cross-species differential expression analysis was conducted using single copy orthologues shared across the five species. Between 22 and 29 orthologs were upregulated for each species. We detected upregulated expression in Artibeus jamaicensis genes related to fructose metabolism pathway. Such findings can be correlated with A. jamaicensis dietary habits, as it was the unique frugivorous species included. This is the first report of transcriptome assembly by RNA-seq in these species, except for A. jamaicensis and as far as our knowledge is the first cross-species comparisons of transcriptomes and gene expression in tropical bats.
Collapse
Affiliation(s)
- Diana D Moreno-Santillán
- Escuela Nacional de Ciencias Biológicas, Posgrado Químicobiológicas, Instituto Politécnico Nacional, Departamento de Zoología, Ciudad de México, CDMX, Mexico
| | - Carlos Machain-Williams
- Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Laboratorio de Arbovirología, Mérida, Yucatán, Mexico
| | - Georgina Hernández-Montes
- Universidad Nacional Autónoma de México, Red de Apoyo a la Investigación, Ciudad de México, CDMX, Mexico
| | - Jorge Ortega
- Escuela Nacional de Ciencias Biológicas, Posgrado Químicobiológicas, Instituto Politécnico Nacional, Departamento de Zoología, Ciudad de México, CDMX, Mexico.
| |
Collapse
|
21
|
Periasamy P, Hutchinson PE, Chen J, Bonne I, Shahul Hameed SS, Selvam P, Hey YY, Fink K, Irving AT, Dutertre CA, Baker M, Crameri G, Wang LF, Alonso S. Studies on B Cells in the Fruit-Eating Black Flying Fox ( Pteropus alecto). Front Immunol 2019; 10:489. [PMID: 30930908 PMCID: PMC6428034 DOI: 10.3389/fimmu.2019.00489] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 02/22/2019] [Indexed: 01/08/2023] Open
Abstract
The ability of bats to act as reservoir for viruses that are highly pathogenic to humans suggests unique properties and functional characteristics of their immune system. However, the lack of bat specific reagents, in particular antibodies, has limited our knowledge of bat's immunity. Here, we report a panel of cross-reactive antibodies against MHC-II, NK1.1, CD3, CD21, CD27, and immunoglobulin (Ig), that allows flow cytometry analysis of B, T and NK cell populations in two different fruit-eating bat species namely, Pteropus alecto and E. spelaea. Results confirmed predominance of T cells in the spleen and blood of bats, as previously reported by us. However, the percentages of B cells in bone marrow and NK cells in spleen varied greatly between wild caught P. alecto bats and E. spelaea colony bats, which may reflect inherent differences of their immune system or different immune status. Other features of bat B cells were investigated. A significant increase in sIg+ B cell population was observed in the spleen and blood from LPS-injected bats but not from poly I:C-injected bats, supporting T-independent polyclonal B cell activation by LPS. Furthermore, using an in vitro calcium release assay, P. alecto B cells exhibited significant calcium release upon cross-linking of their B cell receptor. Together, this work contributes to improve our knowledge of bat adaptive immunity in particular B cells.
Collapse
Affiliation(s)
- Pravin Periasamy
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Paul E. Hutchinson
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Jinmiao Chen
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Isabelle Bonne
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Shahana Shereene Shahul Hameed
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Pavithra Selvam
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Ying Ying Hey
- Programme in Emerging Infectious Disease, Duke-NUS Medical School, Singapore, Singapore
| | - Katja Fink
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Aaron T. Irving
- Programme in Emerging Infectious Disease, Duke-NUS Medical School, Singapore, Singapore
| | - Charles-Antoine Dutertre
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Michelle Baker
- CSIRO, Livestock Industries, Australian Animal Health Laboratory, Geelong, VIC, Australia
| | - Gary Crameri
- Crameri Research Consulting, Geelong, VIC, Australia
| | - Lin-Fa Wang
- Programme in Emerging Infectious Disease, Duke-NUS Medical School, Singapore, Singapore
| | - Sylvie Alonso
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
22
|
Bats and Coronaviruses. Viruses 2019; 11:v11010041. [PMID: 30634396 PMCID: PMC6356540 DOI: 10.3390/v11010041] [Citation(s) in RCA: 266] [Impact Index Per Article: 53.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/05/2019] [Accepted: 01/07/2019] [Indexed: 11/17/2022] Open
Abstract
Bats are speculated to be reservoirs of several emerging viruses including coronaviruses (CoVs) that cause serious disease in humans and agricultural animals. These include CoVs that cause severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), porcine epidemic diarrhea (PED) and severe acute diarrhea syndrome (SADS). Bats that are naturally infected or experimentally infected do not demonstrate clinical signs of disease. These observations have allowed researchers to speculate that bats are the likely reservoirs or ancestral hosts for several CoVs. In this review, we follow the CoV outbreaks that are speculated to have originated in bats. We review studies that have allowed researchers to identify unique adaptation in bats that may allow them to harbor CoVs without severe disease. We speculate about future studies that are critical to identify how bats can harbor multiple strains of CoVs and factors that enable these viruses to “jump” from bats to other mammals. We hope that this review will enable readers to identify gaps in knowledge that currently exist and initiate a dialogue amongst bat researchers to share resources to overcome present limitations.
Collapse
|
23
|
Paul S, Heckmann LH, Sørensen JG, Holmstrup M, Arumugaperumal A, Sivasubramaniam S. Transcriptome sequencing, de novo assembly and annotation of the freeze tolerant earthworm, Dendrobaena octaedra. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
24
|
Pavlovich SS, Lovett SP, Koroleva G, Guito JC, Arnold CE, Nagle ER, Kulcsar K, Lee A, Thibaud-Nissen F, Hume AJ, Mühlberger E, Uebelhoer LS, Towner JS, Rabadan R, Sanchez-Lockhart M, Kepler TB, Palacios G. The Egyptian Rousette Genome Reveals Unexpected Features of Bat Antiviral Immunity. Cell 2018; 173:1098-1110.e18. [PMID: 29706541 PMCID: PMC7112298 DOI: 10.1016/j.cell.2018.03.070] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/22/2018] [Accepted: 03/27/2018] [Indexed: 12/27/2022]
Abstract
Bats harbor many viruses asymptomatically, including several notorious for causing extreme virulence in humans. To identify differences between antiviral mechanisms in humans and bats, we sequenced, assembled, and analyzed the genome of Rousettus aegyptiacus, a natural reservoir of Marburg virus and the only known reservoir for any filovirus. We found an expanded and diversified KLRC/KLRD family of natural killer cell receptors, MHC class I genes, and type I interferons, which dramatically differ from their functional counterparts in other mammals. Such concerted evolution of key components of bat immunity is strongly suggestive of novel modes of antiviral defense. An evaluation of the theoretical function of these genes suggests that an inhibitory immune state may exist in bats. Based on our findings, we hypothesize that tolerance of viral infection, rather than enhanced potency of antiviral defenses, may be a key mechanism by which bats asymptomatically host viruses that are pathogenic in humans.
Collapse
Affiliation(s)
- Stephanie S Pavlovich
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Sean P Lovett
- Center for Genome Sciences, United States Army Research Institute of Infectious Diseases (USAMRIID), Frederick, MD 21702, USA
| | - Galina Koroleva
- Center for Genome Sciences, United States Army Research Institute of Infectious Diseases (USAMRIID), Frederick, MD 21702, USA
| | - Jonathan C Guito
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Catherine E Arnold
- Center for Genome Sciences, United States Army Research Institute of Infectious Diseases (USAMRIID), Frederick, MD 21702, USA
| | - Elyse R Nagle
- Center for Genome Sciences, United States Army Research Institute of Infectious Diseases (USAMRIID), Frederick, MD 21702, USA
| | - Kirsten Kulcsar
- Center for Genome Sciences, United States Army Research Institute of Infectious Diseases (USAMRIID), Frederick, MD 21702, USA
| | - Albert Lee
- Departments of Systems Biology and Biomedical Informatics, Columbia University, New York, NY 10032, USA
| | - Françoise Thibaud-Nissen
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD 20892, USA
| | - Adam J Hume
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA; National Emerging Infectious Diseases Laboratory, Boston University, Boston, MA 02118, USA
| | - Elke Mühlberger
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA; National Emerging Infectious Diseases Laboratory, Boston University, Boston, MA 02118, USA
| | - Luke S Uebelhoer
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Jonathan S Towner
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Raul Rabadan
- Departments of Systems Biology and Biomedical Informatics, Columbia University, New York, NY 10032, USA
| | - Mariano Sanchez-Lockhart
- Center for Genome Sciences, United States Army Research Institute of Infectious Diseases (USAMRIID), Frederick, MD 21702, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Thomas B Kepler
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA; Department of Mathematics and Statistics, Boston University, Boston, MA 02215, USA; National Emerging Infectious Diseases Laboratory, Boston University, Boston, MA 02118, USA.
| | - Gustavo Palacios
- Center for Genome Sciences, United States Army Research Institute of Infectious Diseases (USAMRIID), Frederick, MD 21702, USA.
| |
Collapse
|
25
|
Sarkis S, Lise MC, Darcissac E, Dabo S, Falk M, Chaulet L, Neuveut C, Meurs EF, Lavergne A, Lacoste V. Development of molecular and cellular tools to decipher the type I IFN pathway of the common vampire bat. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 81:1-7. [PMID: 29122634 DOI: 10.1016/j.dci.2017.10.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/31/2017] [Accepted: 10/31/2017] [Indexed: 06/07/2023]
Abstract
Though the common vampire bat, Desmodus rotundus, is known as the main rabies virus reservoir in Latin America, no tools are available to investigate its antiviral innate immune system. To characterize the IFN-I pathway, we established an immortalized cell line from a D. rotundus fetal lung named FLuDero. Then we molecularly characterized some of the Toll-like receptors (TLR3, 7, 8 and 9), the three RIG-I-like receptor members, as well as IFNα1 and IFNβ. Challenging the FLuDero cell line with poly (I:C) resulted in an up-regulation of both IFNα1 and IFNβ and the induction of expression of the different pattern recognition receptors characterized. These findings provide evidence of the intact dsRNA recognition machinery and the IFN-I signaling pathway in our cellular model. Herein, we generated a sum of insightful specific molecular and cellular tools that will serve as a useful model to study virus-host interactions of the common vampire bat.
Collapse
Affiliation(s)
- Sarkis Sarkis
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de La Guyane, Cayenne, French Guiana.
| | - Marie-Claude Lise
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de La Guyane, Cayenne, French Guiana
| | - Edith Darcissac
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de La Guyane, Cayenne, French Guiana
| | - Stéphanie Dabo
- Hepacivirus and Innate Immunity, Institut Pasteur, 75015 Paris, France
| | - Marcel Falk
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de La Guyane, Cayenne, French Guiana
| | - Laura Chaulet
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de La Guyane, Cayenne, French Guiana
| | - Christine Neuveut
- Hepacivirus and Innate Immunity, Institut Pasteur, 75015 Paris, France
| | - Eliane F Meurs
- Hepacivirus and Innate Immunity, Institut Pasteur, 75015 Paris, France
| | - Anne Lavergne
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de La Guyane, Cayenne, French Guiana
| | - Vincent Lacoste
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de La Guyane, Cayenne, French Guiana.
| |
Collapse
|
26
|
Abstract
Bats are a large and diverse group comprising approximately 20% of all living mammalian species. They are the only mammals capable of powered flight and have many unique characteristics, including long lifespans, echolocation, and hibernation, and play key roles in insect control, pollination, and seed dispersal. The role of bats as natural reservoirs of a variety of high-profile viruses that are highly pathogenic in other susceptible species yet cause no clinical disease in bats has led to a resurgence of interest in their immune systems. Equally compelling is the urgency to understand the immune mechanisms responsible for the susceptibility of bats to the fungus responsible for white syndrome, which threatens to wipe out a number of species of North American bats. In this chapter we review the current knowledge in the field of bat immunology, focusing on recent highlights and the need for further investigations in this area.
Collapse
|
27
|
Springer MS, Gatesy J. Delimiting Coalescence Genes (C-Genes) in Phylogenomic Data Sets. Genes (Basel) 2018; 9:genes9030123. [PMID: 29495400 PMCID: PMC5867844 DOI: 10.3390/genes9030123] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/02/2018] [Accepted: 02/19/2018] [Indexed: 02/07/2023] Open
Abstract
coalescence methods have emerged as a popular alternative for inferring species trees with large genomic datasets, because these methods explicitly account for incomplete lineage sorting. However, statistical consistency of summary coalescence methods is not guaranteed unless several model assumptions are true, including the critical assumption that recombination occurs freely among but not within coalescence genes (c-genes), which are the fundamental units of analysis for these methods. Each c-gene has a single branching history, and large sets of these independent gene histories should be the input for genome-scale coalescence estimates of phylogeny. By contrast, numerous studies have reported the results of coalescence analyses in which complete protein-coding sequences are treated as c-genes even though exons for these loci can span more than a megabase of DNA. Empirical estimates of recombination breakpoints suggest that c-genes may be much shorter, especially when large clades with many species are the focus of analysis. Although this idea has been challenged recently in the literature, the inverse relationship between c-gene size and increased taxon sampling in a dataset-the 'recombination ratchet'-is a fundamental property of c-genes. For taxonomic groups characterized by genes with long intron sequences, complete protein-coding sequences are likely not valid c-genes and are inappropriate units of analysis for summary coalescence methods unless they occur in recombination deserts that are devoid of incomplete lineage sorting (ILS). Finally, it has been argued that coalescence methods are robust when the no-recombination within loci assumption is violated, but recombination must matter at some scale because ILS, a by-product of recombination, is the raison d'etre for coalescence methods. That is, extensive recombination is required to yield the large number of independently segregating c-genes used to infer a species tree. If coalescent methods are powerful enough to infer the correct species tree for difficult phylogenetic problems in the anomaly zone, where concatenation is expected to fail because of ILS, then there should be a decreasing probability of inferring the correct species tree using longer loci with many intralocus recombination breakpoints (i.e., increased levels of concatenation).
Collapse
Affiliation(s)
- Mark S Springer
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA.
| | - John Gatesy
- Division of Vertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA.
| |
Collapse
|
28
|
Springer MS, Gatesy J. Pinniped Diphyly and Bat Triphyly: More Homology Errors Drive Conflicts in the Mammalian Tree. J Hered 2017; 109:297-307. [DOI: 10.1093/jhered/esx089] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/07/2017] [Indexed: 11/14/2022] Open
Affiliation(s)
- Mark S Springer
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA
| | - John Gatesy
- Division of Vertebrate Zoology, American Museum of Natural History, New York, NY
| |
Collapse
|
29
|
Transcriptomic Signatures of Tacaribe Virus-Infected Jamaican Fruit Bats. mSphere 2017; 2:mSphere00245-17. [PMID: 28959737 PMCID: PMC5615131 DOI: 10.1128/msphere.00245-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/07/2017] [Indexed: 12/18/2022] Open
Abstract
As reservoir hosts of viruses associated with human disease, little is known about the interactions between bats and viruses. Using Jamaican fruit bats infected with Tacaribe virus (TCRV) as a model, we characterized the gene expression responses to infection in different tissues and identified pathways involved with the response to infection. This report is the most detailed gene discovery work in the species to date and the first to describe immune gene expression responses in bats during a pathogenic viral infection. Tacaribe virus (TCRV) is a mammalian arenavirus that was first isolated from artibeus bats in the 1950s. Subsequent experimental infection of Jamaican fruit bats (Artibeus jamaicensis) caused a disease similar to that of naturally infected bats. Although substantial attention has focused on bats as reservoir hosts of viruses that cause human disease, little is known about the interactions between bats and their pathogens. We performed a transcriptome-wide study to illuminate the response of Jamaican fruit bats experimentally infected with TCRV. Differential gene expression analysis of multiple tissues revealed global and organ-specific responses associated with innate antiviral responses, including interferon alpha/beta and Toll-like receptor signaling, activation of complement cascades, and cytokine signaling, among others. Genes encoding proteins involved in adaptive immune responses, such as gamma interferon signaling and costimulation of T cells by the CD28 family, were also altered in response to TCRV infection. Immunoglobulin gene expression was also elevated in the spleens of infected bats, including IgG, IgA, and IgE isotypes. These results indicate an active innate and adaptive immune response to TCRV infection occurred but did not prevent fatal disease. This de novo assembly provides a high-throughput data set of the Jamaican fruit bat and its host response to TCRV infection, which remains a valuable tool to understand the molecular signatures involved in antiviral responses in bats. IMPORTANCE As reservoir hosts of viruses associated with human disease, little is known about the interactions between bats and viruses. Using Jamaican fruit bats infected with Tacaribe virus (TCRV) as a model, we characterized the gene expression responses to infection in different tissues and identified pathways involved with the response to infection. This report is the most detailed gene discovery work in the species to date and the first to describe immune gene expression responses in bats during a pathogenic viral infection.
Collapse
|
30
|
Schountz T, Baker ML, Butler J, Munster V. Immunological Control of Viral Infections in Bats and the Emergence of Viruses Highly Pathogenic to Humans. Front Immunol 2017; 8:1098. [PMID: 28959255 PMCID: PMC5604070 DOI: 10.3389/fimmu.2017.01098] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/22/2017] [Indexed: 01/20/2023] Open
Abstract
Bats are reservoir hosts of many important viruses that cause substantial disease in humans, including coronaviruses, filoviruses, lyssaviruses, and henipaviruses. Other than the lyssaviruses, they do not appear to cause disease in the reservoir bats, thus an explanation for the dichotomous outcomes of infections of humans and bat reservoirs remains to be determined. Bats appear to have a few unusual features that may account for these differences, including evidence of constitutive interferon (IFN) activation and greater combinatorial diversity in immunoglobulin genes that do not undergo substantial affinity maturation. We propose these features may, in part, account for why bats can host these viruses without disease and how they may contribute to the highly pathogenic nature of bat-borne viruses after spillover into humans. Because of the constitutive IFN activity, bat-borne viruses may be shed at low levels from bat cells. With large naive antibody repertoires, bats may control the limited virus replication without the need for rapid affinity maturation, and this may explain why bats typically have low antibody titers to viruses. However, because bat viruses have evolved in high IFN environments, they have enhanced countermeasures against the IFN response. Thus, upon infection of human cells, where the IFN response is not constitutive, the viruses overwhelm the IFN response, leading to abundant virus replication and pathology.
Collapse
Affiliation(s)
- Tony Schountz
- Arthropod-Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Michelle L Baker
- Australian Animal Health Laboratory, Health and Biosecurity Business Unit, Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia
| | - John Butler
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Vincent Munster
- Virus Ecology Unit, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, United States
| |
Collapse
|
31
|
Evolution and Antiviral Specificities of Interferon-Induced Mx Proteins of Bats against Ebola, Influenza, and Other RNA Viruses. J Virol 2017; 91:JVI.00361-17. [PMID: 28490593 DOI: 10.1128/jvi.00361-17] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/02/2017] [Indexed: 01/29/2023] Open
Abstract
Bats serve as a reservoir for various, often zoonotic viruses, including significant human pathogens such as Ebola and influenza viruses. However, for unknown reasons, viral infections rarely cause clinical symptoms in bats. A tight control of viral replication by the host innate immune defense might contribute to this phenomenon. Transcriptomic studies revealed the presence of the interferon-induced antiviral myxovirus resistance (Mx) proteins in bats, but detailed functional aspects have not been assessed. To provide evidence that bat Mx proteins might act as key factors to control viral replication we cloned Mx1 cDNAs from three bat families, Pteropodidae, Phyllostomidae, and Vespertilionidae. Phylogenetically these bat Mx1 genes cluster closely with their human ortholog MxA. Using transfected cell cultures, minireplicon systems, virus-like particles, and virus infections, we determined the antiviral potential of the bat Mx1 proteins. Bat Mx1 significantly reduced the polymerase activity of viruses circulating in bats, including Ebola and influenza A-like viruses. The related Thogoto virus, however, which is not known to infect bats, was not inhibited by bat Mx1. Further, we provide evidence for positive selection in bat Mx1 genes that might explain species-specific antiviral activities of these proteins. Together, our data suggest a role for Mx1 in controlling these viruses in their bat hosts.IMPORTANCE Bats are a natural reservoir for various viruses that rarely cause clinical symptoms in bats but are dangerous zoonotic pathogens, like Ebola or rabies virus. It has been hypothesized that the interferon system might play a key role in controlling viral replication in bats. We speculate that the interferon-induced Mx proteins might be key antiviral factors of bats and have coevolved with bat-borne viruses. This study evaluated for the first time a large set of bat Mx1 proteins spanning three major bat families for their antiviral potential, including activity against Ebola virus and bat influenza A-like virus, and we describe here their phylogenetic relationship, revealing patterns of positive selection that suggest a coevolution with viral pathogens. By understanding the molecular mechanisms of the innate resistance of bats against viral diseases, we might gain important insights into how to prevent and fight human zoonotic infections caused by bat-borne viruses.
Collapse
|
32
|
Comparative genomics reveals contraction in olfactory receptor genes in bats. Sci Rep 2017; 7:259. [PMID: 28325942 PMCID: PMC5427940 DOI: 10.1038/s41598-017-00132-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 02/09/2017] [Indexed: 12/31/2022] Open
Abstract
Gene loss and gain during genome evolution are thought to play important roles in adaptive phenotypic diversification. Among mammals, bats possess the smallest genomes and have evolved the unique abilities of powered flight and laryngeal echolocation. To investigate whether gene family evolution has contributed to the genome downsizing and phenotypic diversification in this group, we performed comparative evolutionary analyses of complete proteome data for eight bat species, including echolocating and non-echolocating forms, together with the proteomes of 12 other laurasiatherian mammals. Our analyses revealed extensive gene loss in the most recent ancestor of bats, and also of carnivores (both >1,000 genes), although this gene contraction did not appear to correlate with the reduction in genome size in bats. Comparisons of highly dynamic families suggested that expansion and contraction affected genes with similar functions (immunity, response to stimulus) in all laurasiatherian lineages. However, the magnitude and direction of these changes varied greatly among groups. In particular, our results showed contraction of the Olfactory Receptor (OR) gene repertoire in the last common ancestor of all bats, as well as that of the echolocating species studied. In contrast, non-echolocating fruit bats showed evidence of expansion in ORs, supporting a "trade-off" between sensory modalities.
Collapse
|
33
|
Baranwal VK, Khurana P. Major intrinsic proteins repertoire of Morus notabilis and their expression profiles in different species. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 111:304-317. [PMID: 27988481 DOI: 10.1016/j.plaphy.2016.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 10/27/2016] [Accepted: 12/02/2016] [Indexed: 06/06/2023]
Abstract
Leaf moisture content in Morus is a significant trait regulating the yield of silk production. Studies have shown that fresh leaves or leaves with high water content are preferably eaten by silk worm. Water and certain other molecules transport in plants is known to be regulated by aquaporins or Major Intrinsic Proteins (MIPs). Members of the MIP gene family have also been implicated in plant development and stress responsiveness. To understand how members of MIP gene family are regulated and evolved, we carried out an extensive analysis of the gene family. We identified a total of 36 non redundant MIPs in Morus notabilis genome, belonging to five subfamilies PIPs, TIPs, NIPs, XIPs and SIPs) have been identified. We performed a Gene ontology (GO) term enrichment analysis and looked at distribution of cis elements in their 2K upstream regulatory region to reveal their putative roles in various stresses and developmental aspects. Expression analysis in developmental stages revealed their tissue preferential expression pattern in diverse vegetative and reproductive tissues. Comparison of expression profiles in the leaves of three species including Morus notabilis, Morus serrata and Morus laevigata led to identification of differential expression in these species. In all, this study elaborates a basic insight into the structure, function and evolutionary analysis of MIP gene family in Morus which is hitherto unavailable. Our analysis will provide a ready reference to the mulberry research community involved in the Morus improvement program.
Collapse
Affiliation(s)
- Vinay Kumar Baranwal
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Paramjit Khurana
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
34
|
Leech S, Baker ML. The interplay between viruses and the immune system of bats. MICROBIOLOGY AUSTRALIA 2017. [DOI: 10.1071/ma17010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Bats are an abundant and diverse group of mammals with an array of unique characteristics, including their well-known roles as natural reservoirs for a variety of viruses. These include the deadly zoonotic paramyxoviruses; Hendra (HeV) and Nipah (NiV)1,2, lyssaviruses3, coronaviruses such as severe acute respiratory coronavirus (SARS-CoV)4 and filoviruses such as Marburg5. Although these viruses are highly pathogenic in other species, including humans, bats rarely show clinical signs of disease whilst maintaining the ability to transmit virus to susceptible vertebrate hosts. In addition, bats are capable of clearing experimental infections with henipaviruses, filoviruses and lyssaviruses at doses of infection that are lethal in other mammals6–12. Curiously, the ability of bats to tolerate viral infections does not appear to extend to extracellular pathogens such as bacteria, fungi and parasites13. Over the past few years, considerable headway has been made into elucidating the mechanisms responsible for the ability of bats to control viral replication, with evidence for unique differences in the innate immune responses of bats14–20. However, many questions remain around mechanisms responsible for the ability of bats to co-exist with viruses, including their ability to tolerate constitutive immune activation, the triggers associated with viral spillover events and the sites of viral replication. Although bats appear to have all of the major components of the immune system present in other species, their unique ecological characteristics (including flight, high density populations and migration) combined with their long co-evolutionary history with viruses has likely shaped their immune response resulting in an equilibrium between the host and its pathogens.
Collapse
|
35
|
Martínez Gómez JM, Periasamy P, Dutertre CA, Irving AT, Ng JHJ, Crameri G, Baker ML, Ginhoux F, Wang LF, Alonso S. Phenotypic and functional characterization of the major lymphocyte populations in the fruit-eating bat Pteropus alecto. Sci Rep 2016; 6:37796. [PMID: 27883085 PMCID: PMC5121612 DOI: 10.1038/srep37796] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 11/02/2016] [Indexed: 12/11/2022] Open
Abstract
The unique ability of bats to act as reservoir for viruses that are highly pathogenic to humans suggests unique properties and functional characteristics of their immune system. However, the lack of bat specific reagents, in particular antibodies, has limited our knowledge of bat's immunity. Using cross-reactive antibodies, we report the phenotypic and functional characterization of T cell subsets, B and NK cells in the fruit-eating bat Pteropus alecto. Our findings indicate the predominance of CD8+ T cells in the spleen from wild-caught bats that may reflect either the presence of viruses in this organ or predominance of this cell subset at steady state. Instead majority of T cells in circulation, lymph nodes and bone marrow (BM) were CD4+ subsets. Interestingly, 40% of spleen T cells expressed constitutively IL-17, IL-22 and TGF-β mRNA, which may indicate a strong bias towards the Th17 and regulatory T cell subsets. Furthermore, the unexpected high number of T cells in bats BM could suggest an important role in T cell development. Finally, mitogenic stimulation induced proliferation and production of effector molecules by bats immune cells. This work contributes to a better understanding of bat's immunity, opening up new perspectives of therapeutic interventions for humans.
Collapse
Affiliation(s)
- Julia María Martínez Gómez
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Immunology programme, Life Sciences Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Pravin Periasamy
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Immunology programme, Life Sciences Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Charles-Antoine Dutertre
- Programme in Emerging Infectious Disease, Duke-NUS Medical School, Singapore
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore
| | - Aaron Trent Irving
- Programme in Emerging Infectious Disease, Duke-NUS Medical School, Singapore
| | - Justin Han Jia Ng
- Programme in Emerging Infectious Disease, Duke-NUS Medical School, Singapore
| | - Gary Crameri
- CSIRO, Health and Biosecurity Business Unit, Australian Animal Health Laboratory, Geelong, Australia
| | - Michelle L. Baker
- CSIRO, Health and Biosecurity Business Unit, Australian Animal Health Laboratory, Geelong, Australia
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore
| | - Lin-Fa Wang
- Programme in Emerging Infectious Disease, Duke-NUS Medical School, Singapore
| | - Sylvie Alonso
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Immunology programme, Life Sciences Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
36
|
Kang SW, Patnaik BB, Hwang HJ, Park SY, Chung JM, Song DK, Patnaik HH, Lee JB, Kim C, Kim S, Park HS, Park SH, Park YS, Han YS, Lee JS, Lee YS. Sequencing and de novo assembly of visceral mass transcriptome of the critically endangered land snail Satsuma myomphala: Annotation and SSR discovery. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2016; 21:77-89. [PMID: 28107688 DOI: 10.1016/j.cbd.2016.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 10/24/2016] [Accepted: 10/26/2016] [Indexed: 12/12/2022]
Abstract
Satsuma myomphala is critically endangered through loss of natural habitats, predation by natural enemies, and indiscriminate collection. It is a protected species in Korea but lacks genomic resources for an understanding of varied functional processes attributable to evolutionary success under natural habitats. For assessing the genetic information of S. myomphala, we performed for the first time, de novo transcriptome sequencing and functional annotation of expressed sequences using Illumina Next-Generation Sequencing (NGS) platform and bioinformatics analysis. We identified 103,774 unigenes of which 37,959, 12,890, and 17,699 were annotated in the PANM (Protostome DB), Unigene, and COG (Clusters of Orthologous Groups) databases, respectively. In addition, 14,451 unigenes were predicted under Gene Ontology functional categories, with 4581 assigned to a single category. Furthermore, 3369 sequences with 646 having Enzyme Commission (EC) numbers were mapped to 122 pathways in the Kyoto Encyclopedia of Genes and Genomes Pathway database. The prominent protein domains included the Zinc finger (C2H2-like), Reverse Transcriptase, Thioredoxin-like fold, and RNA recognition motif domain. Many unigenes with homology to immunity, defense, and reproduction-related genes were screened in the transcriptome. We also detected 3120 putative simple sequence repeats (SSRs) encompassing dinucleotide to hexanucleotide repeat motifs from >1kb unigene sequences. A list of PCR primers of SSR loci have been identified to study the genetic polymorphisms. The transcriptome data represents a valuable resource for further investigations on the species genome structure and biology. The unigenes information and microsatellites would provide an indispensable tool for conservation of the species in natural and adaptive environments.
Collapse
Affiliation(s)
- Se Won Kang
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do 31538, Republic of Korea
| | - Bharat Bhusan Patnaik
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do 31538, Republic of Korea; Trident School of Biotech Sciences, Trident Academy of Creative Technology (TACT), Bhubaneswar, Odisha, 751024, India
| | - Hee-Ju Hwang
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do 31538, Republic of Korea
| | - So Young Park
- Biodiversity Conservation & Change Research Division, Nakdonggang National Institute of Biological Resources, 137, Donam 2-gil, Sangju-si, Gyeongsangbuk-do, 37242, Republic of Korea
| | - Jong Min Chung
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do 31538, Republic of Korea
| | - Dae Kwon Song
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do 31538, Republic of Korea
| | - Hongray Howrelia Patnaik
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do 31538, Republic of Korea
| | - Jae Bong Lee
- Korea Zoonosis Research Institute (KOZRI), Chonbuk National University, 820-120 Hana-ro, Iksan, Jeollabuk-do 54528, Republic of Korea
| | - Changmu Kim
- National Institute of Biological Resources, 42, Hwangyeong-ro, Seo-gu, Incheon 22689, Republic of Korea
| | - Soonok Kim
- National Institute of Biological Resources, 42, Hwangyeong-ro, Seo-gu, Incheon 22689, Republic of Korea
| | - Hong Seog Park
- Research Institute, GnC BIO Co., Ltd., 621-6 Banseok-dong, Yuseong-gu, Daejeon 34069, Republic of Korea
| | - Seung-Hwan Park
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil (Shinjeong0dong), Jungeup-si, Jeollabuk-do,56212, Republic of Korea
| | - Young-Su Park
- Department of Nursing, College of Medicine, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do 31538, Republic of Korea
| | - Yeon Soo Han
- College of Agriculture and Life Science, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Jun Sang Lee
- Institute of Environmental Research, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon-do-si 243341, Republic of Korea
| | - Yong Seok Lee
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do 31538, Republic of Korea.
| |
Collapse
|
37
|
Munster VJ, Adney DR, van Doremalen N, Brown VR, Miazgowicz KL, Milne-Price S, Bushmaker T, Rosenke R, Scott D, Hawkinson A, de Wit E, Schountz T, Bowen RA. Replication and shedding of MERS-CoV in Jamaican fruit bats (Artibeus jamaicensis). Sci Rep 2016; 6:21878. [PMID: 26899616 PMCID: PMC4761889 DOI: 10.1038/srep21878] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 02/03/2016] [Indexed: 11/26/2022] Open
Abstract
The emergence of Middle East respiratory syndrome coronavirus (MERS-CoV) highlights the zoonotic potential of Betacoronaviruses. Investigations into the origin of MERS-CoV have focused on two potential reservoirs: bats and camels. Here, we investigated the role of bats as a potential reservoir for MERS-CoV. In vitro, the MERS-CoV spike glycoprotein interacted with Jamaican fruit bat (Artibeus jamaicensis) dipeptidyl peptidase 4 (DPP4) receptor and MERS-CoV replicated efficiently in Jamaican fruit bat cells, suggesting there is no restriction at the receptor or cellular level for MERS-CoV. To shed light on the intrinsic host-virus relationship, we inoculated 10 Jamaican fruit bats with MERS-CoV. Although all bats showed evidence of infection, none of the bats showed clinical signs of disease. Virus shedding was detected in the respiratory and intestinal tract for up to 9 days. MERS-CoV replicated transiently in the respiratory and, to a lesser extent, the intestinal tracts and internal organs; with limited histopathological changes observed only in the lungs. Analysis of the innate gene expression in the lungs showed a moderate, transient induction of expression. Our results indicate that MERS-CoV maintains the ability to replicate in bats without clinical signs of disease, supporting the general hypothesis of bats as ancestral reservoirs for MERS-CoV.
Collapse
Affiliation(s)
- Vincent J. Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Danielle R. Adney
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Neeltje van Doremalen
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Vienna R. Brown
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Kerri L. Miazgowicz
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Shauna Milne-Price
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Trenton Bushmaker
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Rebecca Rosenke
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Dana Scott
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Ann Hawkinson
- Department of Biology, University of Northern Colorado, Greeley, Colorado, USA
| | - Emmie de Wit
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Tony Schountz
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Richard A. Bowen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
38
|
Springer MS, Gatesy J. The gene tree delusion. Mol Phylogenet Evol 2016; 94:1-33. [DOI: 10.1016/j.ympev.2015.07.018] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/04/2015] [Accepted: 07/22/2015] [Indexed: 10/23/2022]
|
39
|
Lee AK, Kulcsar KA, Elliott O, Khiabanian H, Nagle ER, Jones MEB, Amman BR, Sanchez-Lockhart M, Towner JS, Palacios G, Rabadan R. De novo transcriptome reconstruction and annotation of the Egyptian rousette bat. BMC Genomics 2015; 16:1033. [PMID: 26643810 PMCID: PMC4672546 DOI: 10.1186/s12864-015-2124-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/22/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The Egyptian Rousette bat (Rousettus aegyptiacus), a common fruit bat species found throughout Africa and the Middle East, was recently identified as a natural reservoir host of Marburg virus. With Ebola virus, Marburg virus is a member of the family Filoviridae that causes severe hemorrhagic fever disease in humans and nonhuman primates, but results in little to no pathological consequences in bats. Understanding host-pathogen interactions within reservoir host species and how it differs from hosts that experience severe disease is an important aspect of evaluating viral pathogenesis and developing novel therapeutics and methods of prevention. RESULTS Progress in studying bat reservoir host responses to virus infection is hampered by the lack of host-specific reagents required for immunological studies. In order to establish a basis for the design of reagents, we sequenced, assembled, and annotated the R. aegyptiacus transcriptome. We performed de novo transcriptome assembly using deep RNA sequencing data from 11 distinct tissues from one male and one female bat. We observed high similarity between this transcriptome and those available from other bat species. Gene expression analysis demonstrated clustering of expression profiles by tissue, where we also identified enrichment of tissue-specific gene ontology terms. In addition, we identified and experimentally validated the expression of novel coding transcripts that may be specific to this species. CONCLUSION We comprehensively characterized the R. aegyptiacus transcriptome de novo. This transcriptome will be an important resource for understanding bat immunology, physiology, disease pathogenesis, and virus transmission.
Collapse
Affiliation(s)
- Albert K Lee
- Department of Biomedical Informatics, Columbia University College of Physicians and Surgeons, 1130 St. Nicholas Ave, New York, USA.
- Department of Systems Biology, Columbia University College of Physicians and Surgeons, 1130 St. Nicholas Ave, New York, USA.
| | - Kirsten A Kulcsar
- United States Army Medical Research Institute for Infectious Disease, Center for Genome Sciences, 1425 Porter St, Ft Detrick, 21702, USA.
| | - Oliver Elliott
- Department of Systems Biology, Columbia University College of Physicians and Surgeons, 1130 St. Nicholas Ave, New York, USA.
| | - Hossein Khiabanian
- Department of Systems Biology, Columbia University College of Physicians and Surgeons, 1130 St. Nicholas Ave, New York, USA.
| | - Elyse R Nagle
- United States Army Medical Research Institute for Infectious Disease, Center for Genome Sciences, 1425 Porter St, Ft Detrick, 21702, USA.
| | - Megan E B Jones
- Centers for Disease Control and Prevention, Viral Special Pathogens Branch, 1600 Clifton Rd. NE, Atlanta, 30333, USA.
| | - Brian R Amman
- Centers for Disease Control and Prevention, Viral Special Pathogens Branch, 1600 Clifton Rd. NE, Atlanta, 30333, USA.
| | - Mariano Sanchez-Lockhart
- United States Army Medical Research Institute for Infectious Disease, Center for Genome Sciences, 1425 Porter St, Ft Detrick, 21702, USA.
| | - Jonathan S Towner
- Centers for Disease Control and Prevention, Viral Special Pathogens Branch, 1600 Clifton Rd. NE, Atlanta, 30333, USA.
| | - Gustavo Palacios
- United States Army Medical Research Institute for Infectious Disease, Center for Genome Sciences, 1425 Porter St, Ft Detrick, 21702, USA.
- National Center for Biodefense and Infectious Disease, George Mason University, Manassas, 20110, USA.
| | - Raul Rabadan
- Department of Biomedical Informatics, Columbia University College of Physicians and Surgeons, 1130 St. Nicholas Ave, New York, USA.
- Department of Systems Biology, Columbia University College of Physicians and Surgeons, 1130 St. Nicholas Ave, New York, USA.
| |
Collapse
|
40
|
Richardson MF, Sherman CDH. De Novo Assembly and Characterization of the Invasive Northern Pacific Seastar Transcriptome. PLoS One 2015; 10:e0142003. [PMID: 26529321 PMCID: PMC4631335 DOI: 10.1371/journal.pone.0142003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/15/2015] [Indexed: 12/11/2022] Open
Abstract
Invasive species are a major threat to global biodiversity but can also serve as valuable model systems to examine important evolutionary processes. While the ecological aspects of invasions have been well documented, the genetic basis of adaptive change during the invasion process has been hampered by a lack of genomic resources for the majority of invasive species. Here we report the first larval transcriptomic resource for the Northern Pacific Seastar, Asterias amurensis, an invasive marine predator in Australia. Approximately 117.5 million 100 base-pair (bp) paired-end reads were sequenced from a single RNA-Seq library from a pooled set of full-sibling A. amurensis bipinnaria larvae. We evaluated the efficacy of a pre-assembly error correction pipeline on subsequent de novo assembly. Error correction resulted in small but important improvements to the final assembly in terms of mapping statistics and core eukaryotic genes representation. The error-corrected de novo assembly resulted in 115,654 contigs after redundancy clustering. 41,667 assembled contigs were homologous to sequences from NCBI’s non-redundant protein and UniProt databases. We assigned Gene Ontology, KEGG Orthology, Pfam protein domain terms and predicted protein-coding sequences to > 36,000 contigs. The final transcriptome dataset generated here provides functional information for 18,319 unique proteins, comprising at least 11,355 expressed genes. Furthermore, we identified 9,739 orthologs to P. miniata proteins, evaluated our annotation pipeline and generated a list of 150 candidate genes for responses to several environmental stressors that may be important for adaptation of A. amurensis in the invasive range. Our study has produced a large set of A. amurensis RNA contigs with functional annotations that can serve as a resource for future comparisons to other echinoderm transcriptomes and gene expression studies. Our data can be used to study the genetic basis of adaptive change and other important evolutionary processes during a successful invasion.
Collapse
Affiliation(s)
- Mark F. Richardson
- Deakin University, Geelong, Australia. School of Life and Environmental Sciences, Centre for Integrative Ecology, (Waurn Ponds Campus). 75 Pigdons Road. Locked Bag 20000, Geelong, VIC 3220, Australia
- * E-mail:
| | - Craig D. H. Sherman
- Deakin University, Geelong, Australia. School of Life and Environmental Sciences, Centre for Integrative Ecology, (Waurn Ponds Campus). 75 Pigdons Road. Locked Bag 20000, Geelong, VIC 3220, Australia
| |
Collapse
|
41
|
Moratelli R, Calisher CH. Bats and zoonotic viruses: can we confidently link bats with emerging deadly viruses? Mem Inst Oswaldo Cruz 2015; 110:1-22. [PMID: 25742261 PMCID: PMC4371215 DOI: 10.1590/0074-02760150048] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 02/09/2015] [Indexed: 12/17/2022] Open
Abstract
An increasingly asked question is 'can we confidently link bats with emerging viruses?'. No, or not yet, is the qualified answer based on the evidence available. Although more than 200 viruses - some of them deadly zoonotic viruses - have been isolated from or otherwise detected in bats, the supposed connections between bats, bat viruses and human diseases have been raised more on speculation than on evidence supporting their direct or indirect roles in the epidemiology of diseases (except for rabies). However, we are convinced that the evidence points in that direction and that at some point it will be proved that bats are competent hosts for at least a few zoonotic viruses. In this review, we cover aspects of bat biology, ecology and evolution that might be relevant in medical investigations and we provide a historical synthesis of some disease outbreaks causally linked to bats. We provide evolutionary-based hypotheses to tentatively explain the viral transmission route through mammalian intermediate hosts and to explain the geographic concentration of most outbreaks, but both are no more than speculations that still require formal assessment.
Collapse
Affiliation(s)
| | - Charles H Calisher
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
42
|
Kumar V, Kutschera VE, Nilsson MA, Janke A. Genetic signatures of adaptation revealed from transcriptome sequencing of Arctic and red foxes. BMC Genomics 2015; 16:585. [PMID: 26250829 PMCID: PMC4528681 DOI: 10.1186/s12864-015-1724-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 06/26/2015] [Indexed: 11/17/2022] Open
Abstract
Background The genus Vulpes (true foxes) comprises numerous species that inhabit a wide range of habitats and climatic conditions, including one species, the Arctic fox (Vulpes lagopus) which is adapted to the arctic region. A close relative to the Arctic fox, the red fox (Vulpes vulpes), occurs in subarctic to subtropical habitats. To study the genetic basis of their adaptations to different environments, transcriptome sequences from two Arctic foxes and one red fox individual were generated and analyzed for signatures of positive selection. In addition, the data allowed for a phylogenetic analysis and divergence time estimate between the two fox species. Results The de novo assembly of reads resulted in more than 160,000 contigs/transcripts per individual. Approximately 17,000 homologous genes were identified using human and the non-redundant databases. Positive selection analyses revealed several genes involved in various metabolic and molecular processes such as energy metabolism, cardiac gene regulation, apoptosis and blood coagulation to be under positive selection in foxes. Branch site tests identified four genes to be under positive selection in the Arctic fox transcriptome, two of which are fat metabolism genes. In the red fox transcriptome eight genes are under positive selection, including molecular process genes, notably genes involved in ATP metabolism. Analysis of the three transcriptomes and five Sanger re-sequenced genes in additional individuals identified a lower genetic variability within Arctic foxes compared to red foxes, which is consistent with distribution range differences and demographic responses to past climatic fluctuations. A phylogenomic analysis estimated that the Arctic and red fox lineages diverged about three million years ago. Conclusions Transcriptome data are an economic way to generate genomic resources for evolutionary studies. Despite not representing an entire genome, this transcriptome analysis identified numerous genes that are relevant to arctic adaptation in foxes. Similar to polar bears, fat metabolism seems to play a central role in adaptation of Arctic foxes to the cold climate, as has been identified in the polar bear, another arctic specialist. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1724-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vikas Kumar
- Senckenberg Biodiversity and Climate Research Center, Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, D-60325, Frankfurt am Main, Germany.
| | - Verena E Kutschera
- Senckenberg Biodiversity and Climate Research Center, Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, D-60325, Frankfurt am Main, Germany. .,Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden.
| | - Maria A Nilsson
- Senckenberg Biodiversity and Climate Research Center, Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, D-60325, Frankfurt am Main, Germany.
| | - Axel Janke
- Senckenberg Biodiversity and Climate Research Center, Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, D-60325, Frankfurt am Main, Germany. .,Evolution & Diversity, Goethe University Frankfurt, Institute for Ecology, Biologicum, Max-von-Laue-Str.13, D-60439, Frankfurt am Main, Germany.
| |
Collapse
|
43
|
Wynne JW, Shiell BJ, Marsh GA, Boyd V, Harper JA, Heesom K, Monaghan P, Zhou P, Payne J, Klein R, Todd S, Mok L, Green D, Bingham J, Tachedjian M, Baker ML, Matthews D, Wang LF. Proteomics informed by transcriptomics reveals Hendra virus sensitizes bat cells to TRAIL-mediated apoptosis. Genome Biol 2015; 15:532. [PMID: 25398248 DOI: 10.1186/preaccept-1718798964145132] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Bats are a major reservoir of emerging infectious viruses. Many of these viruses are highly pathogenic to humans however bats remain asymptomatic. The mechanism by which bats control viral replication is unknown. Here we utilize an integrated approach of proteomics informed by transcriptomics to compare the response of immortalized bat and human cells following infection with the highly pathogenic bat-borne Hendra virus (HeV). RESULTS The host response between the cell lines was significantly different at both the mRNA and protein levels. Human cells demonstrated minimal response eight hours post infection, followed by a global suppression of mRNA and protein abundance. Bat cells demonstrated a robust immune response eight hours post infection, which led to the up-regulation of apoptosis pathways, mediated through the tumor necrosis factor-related apoptosis inducing ligand (TRAIL). HeV sensitized bat cells to TRAIL-mediated apoptosis, by up-regulating death receptor transcripts. At 48 and 72 hours post infection, bat cells demonstrated a significant increase in apoptotic cell death. CONCLUSIONS This is the first study to comprehensively compare the response of bat and human cells to a highly pathogenic zoonotic virus. An early induction of innate immune processes followed by apoptosis of virally infected bat cells highlights the possible involvement of programmed cell death in the host response. Our study shows for the first time a side-by-side high-throughput analysis of a dangerous zoonotic virus in cell lines derived from humans and the natural bat host. This enables a way to search for divergent mechanisms at a molecular level that may influence host pathogenesis.
Collapse
|
44
|
Wynne JW, Shiell BJ, Marsh GA, Boyd V, Harper JA, Heesom K, Monaghan P, Zhou P, Payne J, Klein R, Todd S, Mok L, Green D, Bingham J, Tachedjian M, Baker ML, Matthews D, Wang LF. Proteomics informed by transcriptomics reveals Hendra virus sensitizes bat cells to TRAIL-mediated apoptosis. Genome Biol 2015. [PMID: 25398248 PMCID: PMC4269970 DOI: 10.1186/s13059-014-0532-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Bats are a major reservoir of emerging infectious viruses. Many of these viruses are highly pathogenic to humans however bats remain asymptomatic. The mechanism by which bats control viral replication is unknown. Here we utilize an integrated approach of proteomics informed by transcriptomics to compare the response of immortalized bat and human cells following infection with the highly pathogenic bat-borne Hendra virus (HeV). Results The host response between the cell lines was significantly different at both the mRNA and protein levels. Human cells demonstrated minimal response eight hours post infection, followed by a global suppression of mRNA and protein abundance. Bat cells demonstrated a robust immune response eight hours post infection, which led to the up-regulation of apoptosis pathways, mediated through the tumor necrosis factor-related apoptosis inducing ligand (TRAIL). HeV sensitized bat cells to TRAIL-mediated apoptosis, by up-regulating death receptor transcripts. At 48 and 72 hours post infection, bat cells demonstrated a significant increase in apoptotic cell death. Conclusions This is the first study to comprehensively compare the response of bat and human cells to a highly pathogenic zoonotic virus. An early induction of innate immune processes followed by apoptosis of virally infected bat cells highlights the possible involvement of programmed cell death in the host response. Our study shows for the first time a side-by-side high-throughput analysis of a dangerous zoonotic virus in cell lines derived from humans and the natural bat host. This enables a way to search for divergent mechanisms at a molecular level that may influence host pathogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0532-x) contains supplementary material, which is available to authorized users.
Collapse
|
45
|
Immunology of bats and their viruses: challenges and opportunities. Viruses 2015; 6:4880-901. [PMID: 25494448 PMCID: PMC4276934 DOI: 10.3390/v6124880] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/21/2014] [Accepted: 11/28/2014] [Indexed: 12/20/2022] Open
Abstract
Bats are reservoir hosts of several high-impact viruses that cause significant human diseases, including Nipah virus, Marburg virus and rabies virus. They also harbor many other viruses that are thought to have caused disease in humans after spillover into intermediate hosts, including SARS and MERS coronaviruses. As is usual with reservoir hosts, these viruses apparently cause little or no pathology in bats. Despite the importance of bats as reservoir hosts of zoonotic and potentially zoonotic agents, virtually nothing is known about the host/virus relationships; principally because few colonies of bats are available for experimental infections, a lack of reagents, methods and expertise for studying bat antiviral responses and immunology, and the difficulty of conducting meaningful field work. These challenges can be addressed, in part, with new technologies that are species-independent that can provide insight into the interactions of bats and viruses, which should clarify how the viruses persist in nature, and what risk factors might facilitate transmission to humans and livestock.
Collapse
|
46
|
Cowled C, Stewart CR, Likic VA, Friedländer MR, Tachedjian M, Jenkins KA, Tizard ML, Cottee P, Marsh GA, Zhou P, Baker ML, Bean AG, Wang LF. Characterisation of novel microRNAs in the Black flying fox (Pteropus alecto) by deep sequencing. BMC Genomics 2014; 15:682. [PMID: 25128405 PMCID: PMC4156645 DOI: 10.1186/1471-2164-15-682] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 08/07/2014] [Indexed: 12/11/2022] Open
Abstract
Background Bats are a major source of new and emerging viral diseases. Despite the fact that bats carry and shed highly pathogenic viruses including Ebola, Nipah and SARS, they rarely display clinical symptoms of infection. Host factors influencing viral replication are poorly understood in bats and are likely to include both pre- and post-transcriptional regulatory mechanisms. MicroRNAs are a major mechanism of post-transcriptional gene regulation, however very little is known about them in bats. Results This study describes 399 microRNAs identified by deep sequencing of small RNA isolated from tissues of the Black flying fox, Pteropus alecto, a confirmed natural reservoir of the human pathogens Hendra virus and Australian bat lyssavirus. Of the microRNAs identified, more than 100 are unique amongst vertebrates, including a subset containing mutations in critical seed regions. Clusters of rapidly-evolving microRNAs were identified, as well as microRNAs predicted to target genes involved in antiviral immunity, the DNA damage response, apoptosis and autophagy. Closer inspection of the predicted targets for several highly supported novel miRNA candidates suggests putative roles in host-virus interaction. Conclusions MicroRNAs are likely to play major roles in regulating virus-host interaction in bats, via dampening of inflammatory responses (limiting the effects of immunopathology), and directly limiting the extent of viral replication, either through restricting the availability of essential factors or by controlling apoptosis. Characterisation of the bat microRNA repertoire is an essential step towards understanding transcriptional regulation during viral infection, and will assist in the identification of mechanisms that enable bats to act as natural virus reservoirs. This in turn will facilitate the development of antiviral strategies for use in humans and other species. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-682) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christopher Cowled
- CSIRO Australian Animal Health Laboratory, 5 Portarlington Rd, Geelong East, Victoria 3220, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Seim I, Fang X, Xiong Z, Lobanov AV, Huang Z, Ma S, Feng Y, Turanov AA, Zhu Y, Lenz TL, Gerashchenko MV, Fan D, Hee Yim S, Yao X, Jordan D, Xiong Y, Ma Y, Lyapunov AN, Chen G, Kulakova OI, Sun Y, Lee SG, Bronson RT, Moskalev AA, Sunyaev SR, Zhang G, Krogh A, Wang J, Gladyshev VN. Genome analysis reveals insights into physiology and longevity of the Brandt's bat Myotis brandtii. Nat Commun 2014; 4:2212. [PMID: 23962925 PMCID: PMC3753542 DOI: 10.1038/ncomms3212] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 06/26/2013] [Indexed: 11/20/2022] Open
Abstract
Bats account for one-fifth of mammalian species, are the only mammals with powered flight, and are among the few animals that echolocate. The insect-eating Brandt’s bat (Myotis brandtii) is the longest-lived bat species known to date (lifespan exceeds 40 years) and, at 4–8 g adult body weight, is the most extreme mammal with regard to disparity between body mass and longevity. Here we report sequencing and analysis of the Brandt’s bat genome and transcriptome, which suggest adaptations consistent with echolocation and hibernation, as well as altered metabolism, reproduction and visual function. Unique sequence changes in growth hormone and insulin-like growth factor 1 receptors are also observed. The data suggest that an altered growth hormone/insulin-like growth factor 1 axis, which may be common to other long-lived bat species, together with adaptations such as hibernation and low reproductive rate, contribute to the exceptional lifespan of the Brandt’s bat. Bats account for 20 per cent of all mammals, these are the only mammals with powered flight, and are among the few animals that echolocate. Here, Seim et al. sequence the genome of the long-lived (>40 years) Brandt’s bat, Myotis brandtii and provide clues to its evolution, longevity and other traits.
Collapse
Affiliation(s)
- Inge Seim
- 1] Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, South Korea [3]
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Wray GA. Genomics and the Evolution of Phenotypic Traits. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2013. [DOI: 10.1146/annurev-ecolsys-110512-135828] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Evolutionary genetics has entered an unprecedented era of discovery, catalyzed in large part by the development of technologies that provide information about genome sequence and function. An important benefit is the ability to move beyond a handful of model organisms in lab settings to identify the genetic basis for evolutionarily interesting traits in many organisms in natural settings. Other benefits are the abilities to identify causal mutations and validate their phenotypic consequences more readily and in many more species. Genomic technologies have reinvigorated interest in some of the most fundamental and persistent questions in evolutionary genetics, revealed previously unsuspected evolutionary phenomena, and opened the door to a wide range of new questions.
Collapse
Affiliation(s)
- Gregory A. Wray
- Department of Biology and Institute for Genome Sciences & Policy, Duke University, Durham, North Carolina 27701
| |
Collapse
|
49
|
Harris SE, Munshi-South J, Obergfell C, O’Neill R. Signatures of rapid evolution in urban and rural transcriptomes of white-footed mice (Peromyscus leucopus) in the New York metropolitan area. PLoS One 2013; 8:e74938. [PMID: 24015321 PMCID: PMC3756007 DOI: 10.1371/journal.pone.0074938] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 08/06/2013] [Indexed: 12/16/2022] Open
Abstract
Urbanization is a major cause of ecological degradation around the world, and human settlement in large cities is accelerating. New York City (NYC) is one of the oldest and most urbanized cities in North America, but still maintains 20% vegetation cover and substantial populations of some native wildlife. The white-footed mouse, Peromyscusleucopus, is a common resident of NYC's forest fragments and an emerging model system for examining the evolutionary consequences of urbanization. In this study, we developed transcriptomic resources for urban P. leucopus to examine evolutionary changes in protein-coding regions for an exemplar "urban adapter." We used Roche 454 GS FLX+ high throughput sequencing to derive transcriptomes from multiple tissues from individuals across both urban and rural populations. From these data, we identified 31,015 SNPs and several candidate genes potentially experiencing positive selection in urban populations of P. leucopus. These candidate genes are involved in xenobiotic metabolism, innate immune response, demethylation activity, and other important biological phenomena in novel urban environments. This study is one of the first to report candidate genes exhibiting signatures of directional selection in divergent urban ecosystems.
Collapse
Affiliation(s)
- Stephen E. Harris
- Program in Ecology, Evolutionary Biology, & Behavior, The Graduate Center, City University of New York (CUNY), New York, New York, United States of America
| | - Jason Munshi-South
- Louis Calder Center, Fordham University, Armonk, New York, United States of America
| | - Craig Obergfell
- Molecular & Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Rachel O’Neill
- Molecular & Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| |
Collapse
|
50
|
Abstract
The coalescent methods for species tree reconstruction are increasingly popular because they can accommodate coalescence and multilocus data sets. Herein, we present STRAW, a web server that offers workflows for reconstruction of phylogenies of species using three species tree methods—MP-EST, STAR and NJst. The input data are a collection of rooted gene trees (for STAR and MP-EST methods) or unrooted gene trees (for NJst). The output includes the estimated species tree, modified Robinson-Foulds distances between gene trees and the estimated species tree and visualization of trees to compare gene trees with the estimated species tree. The web sever is available at http://bioinformatics.publichealth.uga.edu/SpeciesTreeAnalysis/.
Collapse
Affiliation(s)
- Timothy I Shaw
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | | | | | | |
Collapse
|