1
|
Simões RB, Simões MDELPB, Ioshii SO, Robes RR, Dall'antonia MO, Goehr MP, Neves PJF. Effects of valproic acid on wound healing of the abdominal wall musculoaponeurotic layer: an experimental study in rats. Rev Col Bras Cir 2024; 51:e20243676. [PMID: 38896636 DOI: 10.1590/0100-6991e-20243676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/10/2024] [Indexed: 01/03/2025] Open
Abstract
INTRODUCTION valproic acid (VPA), an epigenetic drug, has potential for the treatment of neoplasms. Its effects on the healing of the peritoneal-musculo-aponeurotic plane (PMA) of the abdominal wall are studied. METHOD sixty Wistar rats were allocated into two groups: experimental (VPA) and control (0.9% sodium chloride), treated daily, starting three days before the intervention and until euthanasia. Under anesthesia, a median laparotomy was performed and repaired with two synthetic layers. Assessments took place 3, 7 and 14 days after surgery. The integrity of the wounds, the quality of the inflammatory reaction, the intensity of the leukocyte infiltrate, collagen synthesis, the intensity of angiogenesis and the presence of myofibroblasts were studied. RESULTS there was dehiscence of the PMA plane in 11 of the 30 animals (p=0.001) in the experimental group. There was no difference in the quality and intensity of the inflammatory reaction. Immunohistochemistry revealed, in the experimental group, less collagen I (p3=0.003, p7=0.013 and p14=0.001) and more collagen III (p3=0.003, p7=0.013 and p14= 0.001). Collagen evaluated by Sirus Supra Red F3BA showed, in the experimental group, less collagen at all three times (p<0.001) with less collagen I and collagen III (p<0.001). A lower number of vessels was found on the 3rd day (p<0.001) and on the 7th day (p=0.001) and did not affect the number of myofibroblasts. CONCLUSION VPA showed dehiscence of the PMA plane, with less deposition of total collagen and collagen I, less angiogenic activity, without interfering with the number of myofibroblasts.
Collapse
Affiliation(s)
- Rachel Biondo Simões
- - Universidade Federal do Paraná, Programa de Pós-graduação em Clínica Cirúrgica - Dep. de Cirurgia - Curitiba - PR - Brasil
| | - Maria DE Lourdes Pessole Biondo Simões
- - Universidade Federal do Paraná, Programa de Pós-graduação em Clínica Cirúrgica - Dep. de Cirurgia - Curitiba - PR - Brasil
- - Universidade Federal do Paraná, Técnica Cirúrgica e Cirurgia Experimental - Curitiba - PR - Brasil
| | - Sérgio Ossamu Ioshii
- - Universidade Federal do Paraná, Departamento de Patologia da UFPR - Curitiba - PR - Brasil
| | - Rogério Ribeiro Robes
- - Universidade Federal do Paraná, Técnica Cirúrgica e Cirurgia Experimental - Curitiba - PR - Brasil
| | | | - Matheus Prince Goehr
- - Universidade Federal do Paraná, Técnica Cirúrgica e Cirurgia Experimental - Curitiba - PR - Brasil
| | - Pedro Juan Furtado Neves
- - Universidade Federal do Paraná, Técnica Cirúrgica e Cirurgia Experimental - Curitiba - PR - Brasil
| |
Collapse
|
2
|
Fahmy SH, Jungbluth H, Jepsen S, Winter J. Effects of histone acetyltransferase (HAT) and histone deacetylase (HDAC) inhibitors on proliferative, differentiative, and regenerative functions of Toll-like receptor 2 (TLR-2)-stimulated human dental pulp cells (hDPCs). Clin Oral Investig 2023; 28:53. [PMID: 38157054 DOI: 10.1007/s00784-023-05466-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVES This in vitro study aimed to modify TLR-2-mediated effects on the paracrine, proliferative, and differentiation potentials of human dental pulp-derived cells using histone acetyltransferase (HAT) and histone deacetylase (HDAC) inhibitors. MATERIALS AND METHODS Cell viability was assessed using the XTT assay. Cells were either treated with 10 μg/ml Pam3CSK4 only, or pre-treated with valproic acid (VPA) (3 mM), trichostatin A (TSA) (3 μM), and MG-149 (3 μM) for a total of 4 h and 24 h. Control groups included unstimulated cells and cells incubated with inhibitors solvents only. Transcript levels for NANOG, OCT3-4, FGF-1 and 2, NGF, VEGF, COL-1A1, TLR-2, hβD-2 and 3, BMP-2, DSPP, and ALP were assessed through qPCR. RESULTS After 24 h, TSA pre-treatment significantly upregulated the defensins and maintained the elevated pro-inflammatory cytokines, but significantly reduced healing and differentiation genes. VPA significantly upregulated the pro-inflammatory cytokine levels, while MG-149 significantly downregulated them. Pluripotency genes were not significantly affected by any regimen. CONCLUSIONS At the attempted concentrations, TSA upregulated the defensins gene expression levels, and MG-149 exerted a remarkable anti-inflammatory effect; therefore, they could favorably impact the immunological profile of hDPCs. CLINICAL RELEVANCE Targeting hDPC nuclear function could be a promising option in the scope of the biological management of inflammatory pulp diseases.
Collapse
Affiliation(s)
- Sarah Hossam Fahmy
- Department of Endodontics, Faculty of Dentistry, Ain Shams University, Cairo, Egypt.
- Department of Periodontology, Operative and Preventive Dentistry, Center of Dento-Maxillo-Facial Medicine, Faculty of Medicine, University of Bonn, University Hospital of Bonn, Bonn, Germany.
| | - Holger Jungbluth
- Department of Periodontology, Operative and Preventive Dentistry, Center of Dento-Maxillo-Facial Medicine, Faculty of Medicine, University of Bonn, University Hospital of Bonn, Bonn, Germany
| | - Søren Jepsen
- Department of Periodontology, Operative and Preventive Dentistry, Center of Dento-Maxillo-Facial Medicine, Faculty of Medicine, University of Bonn, University Hospital of Bonn, Bonn, Germany
| | - Jochen Winter
- Department of Periodontology, Operative and Preventive Dentistry, Center of Dento-Maxillo-Facial Medicine, Faculty of Medicine, University of Bonn, University Hospital of Bonn, Bonn, Germany
| |
Collapse
|
3
|
Yoon M, Kim E, Seo SH, Kim GU, Choi KY. KY19382 Accelerates Cutaneous Wound Healing via Activation of the Wnt/β-Catenin Signaling Pathway. Int J Mol Sci 2023; 24:11742. [PMID: 37511501 PMCID: PMC10380997 DOI: 10.3390/ijms241411742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
The Wnt/β-catenin signaling pathway plays important roles in the multi-phases of wound healing: homeostasis, inflammation, proliferative, and remodeling phases. However, there are no clinically available therapeutic agents targeting the Wnt/β-catenin pathway. In this study, we tested the effect of 5, 6-dichloroindirubin-3'-methoxime (KY19382), a small molecule that activates the Wnt/β-catenin pathway via interference with the function of the negative feedback regulator CXXC5, on cutaneous wound healing. KY19382 significantly enhanced cell migration of human keratinocytes and dermal fibroblasts with increased levels of β-catenin, phalloidin, Keratin 14, proliferating cell nuclear antigen (PCNA), Collagen I, and alpha-smooth muscle actin (α-SMA) by activating the Wnt/β-catenin signaling pathway without causing significant cytotoxicity. In addition, levels of Collagen I, Keratin 14, PCNA, and stem cell markers were significantly increased by KY19382 in a cutaneous murine wound healing model. Moreover, KY19382 treatment accelerated re-epithelialization and neo-epidermis formation with collagen deposition and stem cell activation at an early stage of cutaneous wound healing. Overall, KY19382 accelerates wound healing via activating the Wnt/β-catenin pathway, and may have the potential to be used for the development of a new wound healing agent.
Collapse
Affiliation(s)
- Minguen Yoon
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Eunhwan Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Seol Hwa Seo
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Geon-Uk Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Kang-Yell Choi
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
- CK Regeon Inc., Seoul 03722, Republic of Korea
| |
Collapse
|
4
|
Lee SH, An S, Ryu YC, Seo SH, Park S, Lee MJ, Cho SW, Choi KY. Adhesive Hydrogel Patch-Mediated Combination Drug Therapy Induces Regenerative Wound Healing through Reconstruction of Regenerative Microenvironment. Adv Healthc Mater 2023; 12:e2203094. [PMID: 36854308 DOI: 10.1002/adhm.202203094] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/22/2023] [Indexed: 03/02/2023]
Abstract
Regenerative wound healing involves the scarless wound healing as observed in fetal skin. Multiple features of regenerative wound healing have been well studied; however, the practical application of pro-regenerative materials to recapitulate the regenerative wound healing in adult skins has not yet been achieved. In this study, the authors identified that their novel pro-regenerative material, pyrogallol-functionalized hyaluronic acid (HA-PG) patches in combination with protein transduction domain-fused Dishevelled (Dvl)-binding motif (PTD-DBM), a peptide inhibiting the CXXC-type zinc finger protein 5 (CXXC5)-Dvl interaction, promoted regenerative wound healing in mice. The HA-PG patches loaded with this competitor peptide and valproic acid (VPA), a glycogen synthase kinase 3β (GSK3β) inhibitor, significantly inhibited scar formation during wound healing. The HA-PG patches with PTD-DBM and/or VPA inhibit the expression of differentiated cell markers such as α-smooth muscle actin (α-SMA) while inducing the expression of stem cell markers such as CD105 and Nestin. Moreover, Collagen III, an important factor for regenerative healing, is critically induced by the HA-PG patches with PTD-DBM and/or VPA, as also seen in VPA-treated Cxxc5-/- mouse fibroblasts. Overall, these findings suggest that the novel regeneration-promoting material can be utilized as a potential therapeutic agent to promote both wound healing and scar attenuation.
Collapse
Affiliation(s)
- Soung-Hoon Lee
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- CK Regeon Inc., Seoul, 03722, Republic of Korea
| | - Soohwan An
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yeong Chan Ryu
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seol Hwa Seo
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sohyun Park
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- CK Regeon Inc., Seoul, 03722, Republic of Korea
| | - Mi Jeong Lee
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Kang-Yell Choi
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- CK Regeon Inc., Seoul, 03722, Republic of Korea
| |
Collapse
|
5
|
Recombinant Human Prolidase (rhPEPD) Induces Wound Healing in Experimental Model of Inflammation through Activation of EGFR Signalling in Fibroblasts. Molecules 2023; 28:molecules28020851. [PMID: 36677909 PMCID: PMC9867103 DOI: 10.3390/molecules28020851] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/31/2022] [Accepted: 01/08/2023] [Indexed: 01/18/2023] Open
Abstract
The potential of recombinant human prolidase (rhPEPD) to induce wound healing in an experimental model of IL-1β-induced inflammation in human fibroblasts was studied. It was found that rhPEPD significantly increased cell proliferation and viability, as well as the expression of the epidermal growth factor receptor (EGFR) and downstream signaling proteins, such as phosphorylated PI3K, AKT, and mTOR, in the studied model. Moreover, rhPEPD upregulated the expression of the β1 integrin receptor and its downstream signaling proteins, such as p-FAK, Grb2 and p-ERK 1/2. The inhibition of EGFR signaling by gefitinib abolished rhPEPD-dependent functions in an experimental model of inflammation. Subsequent studies showed that rhPEPD augmented collagen biosynthesis in IL-1β-treated fibroblasts as well as in a wound healing model (wound closure/scratch test). Although IL-1β treatment of fibroblasts increased cell migration, rhPEPD significantly enhanced this process. This effect was accompanied by an increase in the activity of MMP-2 and MMP-9, suggesting extracellular matrix (ECM) remodeling during the inflammatory process. The data suggest that rhPEPD may play an important role in EGFR-dependent cell growth in an experimental model of inflammation in human fibroblasts, and this knowledge may be useful for further approaches to the treatment of abnormalities of wound healing and other skin diseases.
Collapse
|
6
|
Euodia daniellii Hemsl. Extract and Its Active Component Hesperidin Accelerate Cutaneous Wound Healing via Activation of Wnt/β-Catenin Signaling Pathway. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27207134. [PMID: 36296727 PMCID: PMC9608813 DOI: 10.3390/molecules27207134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/06/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
The activation of the Wnt/β-catenin signaling pathway plays a key role in the wound-healing process through tissue regeneration. The extract of Euodia daniellii Hemsl. (E. daniellii), a member of the Rutaceae family, activates the Wnt/β-catenin signaling pathway. However, the function of E. daniellii in wound healing has not yet been elucidated. We performed a migration assay to determine the wound-healing effect of E. daniellii extract in vitro using human keratinocytes and dermal fibroblast. In addition, a mouse acute wound model was used to investigate the cutaneous wound-healing effect of E. daniellii extract in vivo and confirm the potential mechanism. E. daniellii extract enhanced the migration of human keratinocytes and dermal fibroblasts via the activation of the Wnt/β-catenin pathway. Moreover, the E. daniellii extract increased the levels of keratin 14, PCNA, collagen I, and α-SMA, with nuclei accumulation of β-catenin in vitro. E. daniellii extract also efficiently accelerated re-epithelialization and stimulated wound healing in vivo. Furthermore, we confirmed that hesperidin, one of the components of E. daniellii, efficiently accelerated the migration of human keratinocytes and dermal fibroblasts, as well as wound healing in vivo via the activation of the Wnt/β-catenin pathway. Overall, E. daniellii extract and its active component, hesperidin, have potential to be used as therapeutic agents for wound healing.
Collapse
|
7
|
Biondo-Simões R, Biondo-Simões MDLP, Ioshii SO, Robes RR, Dall'Antonia MDO. The effects of valproic acid on skin healing: experimental study in rats. Acta Cir Bras 2022; 37:e370403. [PMID: 35857935 PMCID: PMC9290763 DOI: 10.1590/acb370403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/07/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose: To recognize the effects of valproic acid (VPA), an epigenetic drug, on the skin healing process. Methods: Sixty male Wistar rats were divided into two groups: the experiment treated with VPA (100 mg/kg/day); and the control, with 0.9% sodium chloride by gavage. Skin healing was studied in three moments (the third, the seventh, and the 14th day), evaluating the parameters: inflammatory reaction and its intensity (anti-LCA), angiogenesis (anti-CD34), collagen I and III (anti-collagen I, anti-collagen III and Picrosirius-red F3BA) and myofibroblasts (anti-alpha-AMS). Results: The inflammatory reaction was acute or sub-acute in both groups on the third day. On the seventh and the 14th day, chronic predominated in the control (p=0.006), and sub-acute in the experiment (p=0.020). There was a greater number of leukocytes in the group treated only on the third day (p=0.036). The number of vessels was lower in the treated group at the three times (p3=0.002, p7<0.001, and p14=0.027). Myofibroblasts were rare in the third day and moderate quantity in the remaining periods. Collagen I density was higher in the control at the three times (p<0.001) and collagen III in the treated group (p<0.001). Conclusions: VPA led to a more intense inflammatory reaction, decreased angiogenesis and collagen deposition, especially type I collagen.
Collapse
Affiliation(s)
- Rachel Biondo-Simões
- Fellow Master degree. Universidade Federal do Paraná - Postgraduate Program in Surgery Clinical - Curitiba (PR), Brazil
| | | | - Sérgio Ossamu Ioshii
- Full Professor. Universidade Federal do Paraná - Department of Pathology - Curitiba (PR), Brazil
| | | | | |
Collapse
|
8
|
Mi Y, Zhong L, Lu S, Hu P, Pan Y, Ma X, Yan B, Wei Z, Yang G. Quercetin promotes cutaneous wound healing in mice through Wnt/β-catenin signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 290:115066. [PMID: 35122975 DOI: 10.1016/j.jep.2022.115066] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/17/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Oxytropis falcata Bunge is a legume distributed in Northwest China, which is mainly used to treat knife wounds and inflammation. Quercetin is a bioactive flavonoid in O. falcata and becomes a promising healing compound for its angiogenic and anti-inflammatory activities. However, the healing mechanism of quercetin in cutaneous wound remains elusive. AIM OF THE STUDY The purpose of this study was to evaluate the healing effect of quercetin on cutaneous wound models in vivo and in vitro, and to reveal the Wnt/β-catenin pathway and Telomerase reverse transcriptase (TERT) involved mechanisms. MATERIALS AND METHODS The effects of quercetin on the proliferation and migration of 4 kinds of skin cells were determined by CCK-8 and scratch assay. The wound-healing capacity of quercetin was evaluated in cutaneous wound model of C57BL/6 mice and the wound healing degree was observed by histological staining. The expressions of inflammatory factors, growth factors and the related proteins were detected via Western blot and RT-qPCR analyses. The molecular docking was adopted to evaluate the binding ability of quercetin and TERT. RESULTS Quercetin could promote both proliferation and migration of fibroblasts, and enhance cutaneous wound healing capacity in mice. Compared to the control group, the wound healing rates in low (1.5 mg/mL), medium (3.0 mg/mL) and high dose (6.0 mg/mL) quercetin groups reached 94.67%, 97.31% and 98.42%, respectively. Moreover, the dermal structure in quercetin treated mice restored normal and the content of collagen fiber became abundant after administration. The levels of inflammatory factors, including tumor necrosis factor-α, interleukin-1β and interleukin-6 were significantly reduced after quercetin administration. Among which, the level of IL-1β in cutaneous wound was 0.007 times higher than that of the control group when treated with quercetin of high dose (6.0 mg/mL). The improved level of GSH in quercetin treated cutaneous wounds also indicated its higher antioxidant ability. In addition, dose-dependent positive associations were found in the expression levels of vascular endothelial growth factor, fibroblast growth factor and alpha smooth muscle actin in quercetin treated cutaneous wounds. The significantly upregulated protein levels of Wnt and β-catenin further indicated the important role of quercetin in promoting wound healing in mice. According to molecular docking analysis, the formed hydrogen bonds between quercetin and Ala195, Gln308, Asn369 and Lys372 residues of TERT also indicated the indispensable role of TERT in improving wound healing capacity. CONCLUSION Quercetin effectively promoted cutaneous wound healing by enhancing the proliferation and migration of fibroblasts, as well as inhibiting inflammation and increasing the expression of growth factors in mice via Wnt/β-catenin signaling pathway and TERT. It provides a basis for a more thorough understanding of mechanism of action of O. falcata Bunge in the treatment of knife wounds and burns.
Collapse
Affiliation(s)
- Yuhui Mi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, PR China
| | - Lei Zhong
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, PR China
| | - Saijian Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, PR China
| | - Po Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, PR China
| | - Yang Pan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, PR China.
| | - Xuelin Ma
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, PR China
| | - Binghui Yan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, PR China
| | - Zhenhuan Wei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, PR China
| | - Guangming Yang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, PR China.
| |
Collapse
|
9
|
Sosnowski P, Sass P, Słonimska P, Płatek R, Kamińska J, Baczyński Keller J, Mucha P, Peszyńska-Sularz G, Czupryn A, Pikuła M, Piotrowski A, Janus Ł, Rodziewicz-Motowidło S, Skowron P, Sachadyn P. Regenerative Drug Discovery Using Ear Pinna Punch Wound Model in Mice. Pharmaceuticals (Basel) 2022; 15:ph15050610. [PMID: 35631437 PMCID: PMC9145447 DOI: 10.3390/ph15050610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 01/25/2023] Open
Abstract
The ear pinna is a complex tissue consisting of the dermis, cartilage, muscles, vessels, and nerves. Ear pinna healing is a model of regeneration in mammals. In some mammals, including rabbits, punch wounds in the ear pinna close spontaneously; in common-use laboratory mice, they remain for life. Agents inducing ear pinna healing are potential regenerative drugs. We tested the effects of selected bioactive agents on 2 mm ear pinna wound closure in BALB/c mice. Our previous research demonstrated that a DNA methyltransferase inhibitor, zebularine, remarkably induced ear pinna regeneration. Although experiments with two other demethylating agents, RG108 and hydralazine, were unsuccessful, a histone deacetylase inhibitor, valproic acid, was another epigenetic agent found to increase ear hole closure. In addition, we identified a pro-regenerative activity of 4-ketoretinoic acid, a retinoic acid metabolite. Attempts to counteract the regenerative effects of the demethylating agent zebularine, with folates as methyl donors, failed. Surprisingly, a high dose of methionine, another methyl donor, promoted ear hole closure. Moreover, we showed that the regenerated areas of ear pinna were supplied with nerve fibre networks and blood vessels. The ear punch model proved helpful in testing the pro-regenerative activities of small-molecule compounds and observations of peripheral nerve regeneration.
Collapse
Affiliation(s)
- Paweł Sosnowski
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (P.S.); (P.S.); (P.S.); (R.P.); (J.K.); (J.B.K.)
| | - Piotr Sass
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (P.S.); (P.S.); (P.S.); (R.P.); (J.K.); (J.B.K.)
| | - Paulina Słonimska
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (P.S.); (P.S.); (P.S.); (R.P.); (J.K.); (J.B.K.)
| | - Rafał Płatek
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (P.S.); (P.S.); (P.S.); (R.P.); (J.K.); (J.B.K.)
| | - Jolanta Kamińska
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (P.S.); (P.S.); (P.S.); (R.P.); (J.K.); (J.B.K.)
| | - Jakub Baczyński Keller
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (P.S.); (P.S.); (P.S.); (R.P.); (J.K.); (J.B.K.)
| | - Piotr Mucha
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdańsk, 80-308 Gdańsk, Poland;
| | - Grażyna Peszyńska-Sularz
- Tri-City University Animal House—Research Service Centre, Medical University of Gdańsk, 80-211 Gdańsk, Poland;
| | - Artur Czupryn
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology PAS, 02-093 Warsaw, Poland;
| | - Michał Pikuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdańsk, 80-211 Gdańsk, Poland;
| | - Arkadiusz Piotrowski
- Department of Biology and Pharmaceutical Botany, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland;
| | | | | | - Piotr Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdańsk, 80-308 Gdańsk, Poland;
| | - Paweł Sachadyn
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (P.S.); (P.S.); (P.S.); (R.P.); (J.K.); (J.B.K.)
- Correspondence:
| |
Collapse
|
10
|
Lezcano V, Morelli S, González-Pardo V. Molecular and cellular outcomes of quercetin actions on healthy and tumor osteoblasts. Biochimie 2022; 199:46-59. [PMID: 35447220 DOI: 10.1016/j.biochi.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/11/2022] [Accepted: 04/11/2022] [Indexed: 11/26/2022]
Abstract
There is a global trend in the use of natural bioactive compounds to complement conventional therapies in bone diseases. In this work, we studied the effects of the phytoestrogen quercetin (QUE) in healthy and tumor osteoblasts. We found that QUE (1 μM, 48 h) significantly increased the cell number and the viability of healthy human osteoblasts (hFOB cells) determined by a trypan blue and a MTS assay, respectively, among other concentrations tested. In addition, wound healing and cellular adhesion assays also demonstrated that 1 μM of QUE significantly stimulated both parameters in osteoblasts. Moreover, osteoblast differentiation was also triggered by QUE in an osteogenic medium by measuring alkaline phosphatase activity, calcium deposition, and collagen levels. Herein, a concentration of 0.01 μM of QUE showed an increment in these differentiation markers and an activation of AKT/GSK3β/β-catenin pathway, determined by a Western blot analysis. In addition, immunocytochemistry and subcellular fraction studies indicated an increase of β-catenin localization in the plasma membrane after QUE treatment. Otherwise, QUE (20-100 μM) decreased the cell number and the viability in tumor osteoblasts (ROS 17/2.8 cells) after 48 h. Furthermore, QUE (100 μM) decreased AKT(Ser473) and the pro-apoptotic protein BAD(Ser136) phosphorylation. In addition, the ERK1/2 phosphorylation increased leading to osteosarcoma cell death since pre-treatment with the MEK inhibitor PD98059 had reverted QUE effect. Altogether, these results indicate that to stimulate the osteoblastogenesis low concentrations of QUE are required; however, these concentrations are not effective in inhibiting the growth of tumor osteoblasts, for which higher concentrations are required.
Collapse
Affiliation(s)
- Virginia Lezcano
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), 8000, Bahía Blanca, Buenos Aires, Argentina; Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Argentina, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 8000, Bahía Blanca, Buenos Aires, Argentina.
| | - Susana Morelli
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), 8000, Bahía Blanca, Buenos Aires, Argentina; Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Argentina, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 8000, Bahía Blanca, Buenos Aires, Argentina
| | - Verónica González-Pardo
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), 8000, Bahía Blanca, Buenos Aires, Argentina; Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Argentina, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 8000, Bahía Blanca, Buenos Aires, Argentina
| |
Collapse
|
11
|
Guo X, Schaudinn C, Blume-Peytavi U, Vogt A, Rancan F. Effects of Adipose-Derived Stem Cells and Their Conditioned Medium in a Human Ex Vivo Wound Model. Cells 2022; 11:cells11071198. [PMID: 35406762 PMCID: PMC8998073 DOI: 10.3390/cells11071198] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/23/2022] [Accepted: 03/30/2022] [Indexed: 12/14/2022] Open
Abstract
Adult stem cells have been extensively investigated for tissue repair therapies. Adipose-derived stem cells (ASCs) were shown to improve wound healing by promoting re-epithelialization and vascularization as well as modulating the inflammatory immune response. In this study, we used ex vivo human skin cultured in a six-well plate with trans-well inserts as a model for superficial wounds. Standardized wounds were created and treated with allogeneic ASCs, ASCs conditioned medium (ASC-CM), or cell culture medium (DMEM) supplemented with fetal calf serum (FCS). Skin viability (XTT test), histology (hematoxylin and eosin, H and E), β-catenin expression as well as inflammatory mediators and growth factors were monitored over 12 days of skin culture. We observed only a moderate time-dependent decrease in skin metabolic activity while skin morphology was preserved, and re-epithelialization occurred at the wound edges. An increase in β-catenin expression was observed in the newly formed epithelia, especially in the samples treated with ASC-CM. In general, increased growth factors and inflammatory mediators, e.g., hepatocytes growth factor (HGF), platelet-derived growth factor subunit AA (PDGF-AA), IL-1α, IL-7, TNF-α, and IL-10, were observed over the incubation time. Interestingly, different expression profiles were observed for the different treatments. Samples treated with ASC-CM significantly increased the levels of inflammatory cytokines and PDGF-AA with respect to control, whereas the treatment with ASCs in DMEM with 10% FCS resulted in significantly increased levels of fibroblast growth factor-basic (FGF-basic) and moderate increases of immunomodulatory cytokines. These results confirm that the wound microenvironment can influence the type of mediators secreted by ASCs and the mode as to how they improve the wound healing process. Comparative investigations with pre-activated ASCs will elucidate further aspects of the wound healing mechanism and improve the protocols of ACS application.
Collapse
Affiliation(s)
- Xiao Guo
- Clinical Research Center for Hair and Skin Science, Department of Dermatology, Venerology and and Allergy, Charité–Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (X.G.); (U.B.-P.); (A.V.)
| | - Christoph Schaudinn
- Advanced Light and Electron Microscopy, Zentrum für Biologische Gefahren und Spezielle Pathogene 4 (ZBS4), Robert Koch Institute, 13353 Berlin, Germany;
| | - Ulrike Blume-Peytavi
- Clinical Research Center for Hair and Skin Science, Department of Dermatology, Venerology and and Allergy, Charité–Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (X.G.); (U.B.-P.); (A.V.)
| | - Annika Vogt
- Clinical Research Center for Hair and Skin Science, Department of Dermatology, Venerology and and Allergy, Charité–Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (X.G.); (U.B.-P.); (A.V.)
| | - Fiorenza Rancan
- Clinical Research Center for Hair and Skin Science, Department of Dermatology, Venerology and and Allergy, Charité–Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (X.G.); (U.B.-P.); (A.V.)
- Correspondence: ; Tel.: +49-30-450518347
| |
Collapse
|
12
|
Choi S, Yoon M, Choi KY. Approaches for Regenerative Healing of Cutaneous Wound with an Emphasis on Strategies Activating the Wnt/β-Catenin Pathway. Adv Wound Care (New Rochelle) 2022; 11:70-86. [PMID: 33573472 PMCID: PMC9831250 DOI: 10.1089/wound.2020.1284] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Significance: In adult mammals, spontaneous repair of a cutaneous wound occurs slowly and leaves a scar with skin adnexa deficiencies. To accelerate cutaneous wound-healing rates and avoid scar formation, current studies have focused on regenerative therapies. Recent Advances: Emerging therapeutics for regenerative wound healing often focus on the use of growth factors and stem cells. However, these therapeutic approaches have limited routine clinical use due to high costs and technical requirements. Critical Issue: Understanding the molecular mechanisms involved in the signaling pathways for cutaneous wound healing and neogenic synthesis of the skin components is important for identification of novel targets for the development of regenerative wound-healing agents. Future Directions: The Wnt/β-catenin pathway is a well-known key player for enhancement of the overall healing process involving tissue regeneration via crosstalk with other signaling pathways. Strategies that activate the Wnt/β-catenin pathway via modulation of the pathway-controlling regulatory factors could provide effective therapeutic approaches for regenerative wound healing.
Collapse
Affiliation(s)
- Sehee Choi
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Minguen Yoon
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Kang-Yell Choi
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea.,CK Biotech, Inc., Seodaemun-Gu, Korea.,Correspondence: CK Biotech, Inc., Room 417, Engineering Research Park, 50 Yonsei Ro, Seodaemun-Gu 03722, Korea
| |
Collapse
|
13
|
Indirubin-3’-alkoxime derivatives for upregulation of Wnt signaling through dual inhibition of GSK-3β and the CXXC5-Dvl interaction. Bioorg Chem 2022; 121:105664. [DOI: 10.1016/j.bioorg.2022.105664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/27/2022] [Accepted: 02/05/2022] [Indexed: 11/18/2022]
|
14
|
Imashiro C, Kang B, Lee Y, Hwang YH, Im S, Kim DE, Takemura K, Lee H. Propagating acoustic waves on a culture substrate regulate the directional collective cell migration. MICROSYSTEMS & NANOENGINEERING 2021; 7:90. [PMID: 34786204 PMCID: PMC8581020 DOI: 10.1038/s41378-021-00304-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/16/2021] [Accepted: 05/20/2021] [Indexed: 06/02/2023]
Abstract
Collective cell migration plays a critical role in physiological and pathological processes such as development, wound healing, and metastasis. Numerous studies have demonstrated how various types of chemical, mechanical, and electrical cues dictate the collective migratory behaviors of cells. Although an acoustic cue can be advantageous because of its noninvasiveness and biocompatibility, cell migration in response to acoustic stimulation remains poorly understood. In this study, we developed a device that is able to apply surface acoustic waves to a cell culture substrate and investigated the effect of propagating acoustic waves on collective cell migration. The migration distance estimated at various wave intensities revealed that unidirectional cell migration was enhanced at a critical wave intensity and that it was suppressed as the intensity was further increased. The increased migration might be attributable to cell orientation alignment along the direction of the propagating wave, as characterized by nucleus shape. Thicker actin bundles indicative of a high traction force were observed in cells subjected to propagating acoustic waves at the critical intensity. Our device and technique can be useful for regulating cellular functions associated with cell migration.
Collapse
Affiliation(s)
- Chikahiro Imashiro
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Shinjuku, Japan
- Department of Mechanical Engineering, Keio University, Yokohama, Japan
| | - Byungjun Kang
- School of Mechanical Engineering, Yonsei University, Seoul, Korea
| | - Yunam Lee
- School of Mechanical Engineering, Yonsei University, Seoul, Korea
| | - Youn-Hoo Hwang
- School of Mechanical Engineering, Yonsei University, Seoul, Korea
| | - Seonghun Im
- School of Mechanical Engineering, Yonsei University, Seoul, Korea
| | - Dae-Eun Kim
- School of Mechanical Engineering, Yonsei University, Seoul, Korea
| | - Kenjiro Takemura
- Department of Mechanical Engineering, Keio University, Yokohama, Japan
| | - Hyungsuk Lee
- School of Mechanical Engineering, Yonsei University, Seoul, Korea
| |
Collapse
|
15
|
Network pharmacology-based investigation of potential targets of astragalus membranaceous-angelica sinensis compound acting on diabetic nephropathy. Sci Rep 2021; 11:19496. [PMID: 34593896 PMCID: PMC8484574 DOI: 10.1038/s41598-021-98925-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 09/16/2021] [Indexed: 01/17/2023] Open
Abstract
To explore the mechanism of the Astragalus membranaceous (AM)-Angelica sinensis (AS) compound in the treatment of diabetic nephropathy (DN) we used network pharmacology and molecular docking. Screen the components and targets of the AM-AS compound in the TCMSP and the BATMAN-TCM, and establish a component-target interaction network by Cytoscape 3.7.2. After searching relevant targets of DN in related databases, the common targets of the AM-AS compound and DN were obtained by comparison. Gene ontology (GO) analysis and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway enrichment analysis were performed through David database. Molecular docking was performed by PyMoL2.3.0 and AutoDock Vina software. After screening, 142 main targets of the AM-AS compound in the treatment of DN have been identified. Target network was established and the topology of PPI network was analyzed. KEGG pathway enrichment analysis shows that these targets are related to apoptosis, oxidative stress, inflammation, insulin resistance, etc. Molecular docking shows that the target proteins have good combinations with the main active components of the AM-AS compound. AM-AS compound may treat DN by acting on VEGFA, TP53, IL-6, TNF, MARK1, etc., and regulate apoptosis, oxidative stress, inflammation, glucose, and lipid metabolism processes. The in vivo study results suggest that AM-AS compound can significantly reduce the FBG level of diabetic rats, increase the level of INS, improve renal functions, reduce urinary proteins, inhibit glycogen deposition, granulocyte infiltration and collagen fiber proliferation in renal tissue, and restrain the progress of DN. In vivo study combined with network pharmacology and molecular docking methods provides new ideas for the pathogenesis and treatments of DN.
Collapse
|
16
|
Duan Y, Qi D, Liu Y, Song Y, Wang X, Jiao S, Li H, Gonzalez FJ, Qi Y, Xu Q, Du J, Qu A. Deficiency of peroxisome proliferator-activated receptor α attenuates apoptosis and promotes migration of vascular smooth muscle cells. Biochem Biophys Rep 2021; 27:101091. [PMID: 34381883 PMCID: PMC8339143 DOI: 10.1016/j.bbrep.2021.101091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 11/29/2022] Open
Abstract
Peroxisome proliferator-activated receptor (PPAR) α is widely expressed in the vasculature and has pleiotropic and lipid-lowering independent effects, but its role in the growth and function of vascular smooth muscle cells (VSMCs) during vascular pathophysiology is still unclear. Herein, VSMC-specific PPARα-deficient mice (Ppara ΔSMC) were generated by Cre-LoxP site-specific recombinase technology and VSMCs were isolated from mice aorta. PPARα deficiency attenuated VSMC apoptosis induced by angiotensin (Ang) II and hydrogen peroxide, and increased the migration of Ang II-challenged cells.
Collapse
Key Words
- Ang II, angiotensin II
- Angiotensin II
- EC, endothelial cell
- ECM, extracellular matrix
- ERK, extracellular signal-regulated kinase
- MAPK, mitogen-activated protein kinase
- MCP-1, monocyte chemoattractant protein-1
- PCR, polymerase chain reaction
- PPAR, peroxisome proliferator-activated receptor
- PPARα
- SM22α, smooth muscle 22α
- TGF, tumor growth factor
- TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labeling
- VSMC, vascular smooth muscle cell
- Vascular remodeling
- Vascular smooth muscle cell
Collapse
Affiliation(s)
- Yan Duan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing, China
| | - Dan Qi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing, China
| | - Ye Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing, China
| | - Yanting Song
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing, China
| | - Xia Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing, China
| | - Shiyu Jiao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing, China
| | - Huihua Li
- Department of Nutrition and Food Hygiene, School of Public Health, Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yongfen Qi
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Qingbo Xu
- School of Cardiovascular Medicine and Sciences, King' s College of London, London, UK
| | - Jie Du
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing, China.,Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing, China
| |
Collapse
|
17
|
Lu CC, Yang JS, Chiu YJ, Tsai FJ, Hsu YM, Yin MC, Juan YN, Ho TJ, Chen HP. Dracorhodin perchlorate enhances wound healing via β-catenin, ERK/p38, and AKT signaling in human HaCaT keratinocytes. Exp Ther Med 2021; 22:822. [PMID: 34131445 PMCID: PMC8193218 DOI: 10.3892/etm.2021.10254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 04/15/2021] [Indexed: 12/15/2022] Open
Abstract
Dracorhodin can be isolated from the exudates of the fruit of Daemonorops draco. Previous studies suggested that dracorhodin perchlorate can promote fibroblast proliferation and enhance angiogenesis during wound healing. In the present study, the potential bioactivity of dracorhodin perchlorate in human HaCaT keratinocytes, were investigated in vitro, with specific focus on HaCaT wound healing. The results of in vitro scratch assay demonstrated the progressive closure of the wound after treatment with dracorhodin perchlorate in a time-dependent manner. An MTT assay and propidium iodide exclusion detected using flow cytometry were used to detect cell viability of HaCaT cells. Potential signaling pathways underlying the effects mediated by dracorhodin perchlorate in HaCaT cells were clarified by western blot analysis and kinase activity assays. Dracorhodin perchlorate significantly increased the protein expression levels of β-catenin and activation of AKT, ERK and p38 in HaCaT cells. In addition, dracorhodin perchlorate did not induce HaCaT cell proliferation but promoted cell migration. Other mechanisms may yet be involved in the dracorhodin perchlorate-induced wound healing process of human keratinocytes. In summary, dracorhodin perchlorate may serve to be a potential molecularly-targeted phytochemical that can improve skin wound healing.
Collapse
Affiliation(s)
- Chi-Cheng Lu
- Department of Sport Performance, National Taiwan University of Sport, Taichung 40404, Taiwan, R.O.C
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40447, Taiwan, R.O.C
| | - Yu-Jen Chiu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veteran General Hospital, Taipei 11217, Taiwan, R.O.C.,Department of Surgery, School of Medicine, National Yang Ming University, Taipei 11221, Taiwan, R.O.C
| | - Fuu-Jen Tsai
- Human Genetics Center, Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan, R.O.C.,Department of Medical Genetics, China Medical University Hospital, Taichung 40447, Taiwan, R.O.C.,School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Yuan-Man Hsu
- Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Mei-Chin Yin
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40447, Taiwan, R.O.C.,Department of Food Nutrition and Health Biotechnology, Asia University, Taichung 41354, Taiwan, R.O.C
| | - Yu-Ning Juan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40447, Taiwan, R.O.C
| | - Tsung-Jung Ho
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Hualien 97002, Taiwan, R.O.C.,School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 97004, Taiwan, R.O.C.,Division of Chinese Medicine, China Medical University Beigang Hospital, Yulin 65152, Taiwan, R.O.C
| | - Hao-Ping Chen
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Hualien 97002, Taiwan, R.O.C.,Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan, R.O.C
| |
Collapse
|
18
|
Ferulic Acid Induces Keratin 6α via Inhibition of Nuclear β-Catenin Accumulation and Activation of Nrf2 in Wound-Induced Inflammation. Biomedicines 2021; 9:biomedicines9050459. [PMID: 33922346 PMCID: PMC8146113 DOI: 10.3390/biomedicines9050459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 11/16/2022] Open
Abstract
Injured tissue triggers complex interactions through biological process associated with keratins. Rapid recovery is most important for protection against secondary infection and inflammatory pain. For rapid wound healing with minimal pain and side effects, shilajit has been used as an ayurvedic medicine. However, the mechanisms of rapid wound closure are unknown. Here, we found that shilajit induced wound closure in an acute wound model and induced migration in skin explant cultures through evaluation of transcriptomics via microarray testing. In addition, ferulic acid (FA), as a bioactive compound, induced migration via modulation of keratin 6α (K6α) and inhibition of β-catenin in primary keratinocytes of skin explant culture and injured full-thickness skin, because accumulation of β-catenin into the nucleus acts as a negative regulator and disturbs migration in human epidermal keratinocytes. Furthermore, FA alleviated wound-induced inflammation via activation of nuclear factor erythroid-2-related factor 2 (Nrf2) at the wound edge. These findings show that FA is a novel therapeutic agent for wound healing that acts via inhibition of β-catenin in keratinocytes and by activation of Nrf2 in wound-induced inflammation.
Collapse
|
19
|
Identification of the Potential Biomarkers Involved in the Human Oral Mucosal Wound Healing: A Bioinformatic Study. BIOMED RESEARCH INTERNATIONAL 2021. [DOI: 10.1155/2021/6695245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Objective. To identify the key genetic and epigenetic mechanisms involved in the wound healing process after injury of the oral mucosa. Materials and Methods. Gene expression profiling datasets pertaining to rapid wound healing of oral mucosa were identified using the Gene Expression Omnibus (GEO) database. Differential gene expression analysis was performed to identify differentially expressed genes (DEGs) during oral mucosal wound healing. Next, functional enrichment analysis was performed to identify the biological processes (BPs) and signaling pathways relevant to these DEGs. A protein-protein interaction (PPI) network was constructed to identify hub DEGs. Interaction networks were constructed for both miRNA-target DEGs and DEGs-transcription factors. A DEGs-chemical compound interaction network and a miRNA-small molecular interaction network were also constructed. Results. DEGs were found significantly enriched in several signaling pathways including arachidonic acid metabolism, cell cycle, p53, and ECM-receptor interaction. Hub genes, GABARAPL1, GABARAPL2, HDAC5, MAP1LC3A, AURKA, and PLK1, were identified via PPI network analysis. Two miRNAs, miR-34a-5p and miR-335-5p, were identified as pivotal players in the miRNA-target DEGs network. Four transcription factors FOS, PLAU, BCL6, and RORA were found to play key roles in the TFs-DEGs interaction network. Several chemical compounds including Valproic acid, Doxorubicin, Nickel, and tretinoin and small molecular drugs including atorvastatin, 17β-estradiol, curcumin, and vitamin D3 were noted to influence oral mucosa regeneration by regulating the expression of healing-associated DEGs/miRNAs. Conclusion. Genetic and epigenetic mechanisms and specific drugs were identified as significant molecular mechanisms and entities relevant to oral mucosal healing. These may be valuable potential targets for experimental research.
Collapse
|
20
|
Extracellular Prolidase (PEPD) Induces Anabolic Processes through EGFR, β 1-integrin, and IGF-1R Signaling Pathways in an Experimental Model of Wounded Fibroblasts. Int J Mol Sci 2021; 22:ijms22020942. [PMID: 33477899 PMCID: PMC7833428 DOI: 10.3390/ijms22020942] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/11/2021] [Accepted: 01/16/2021] [Indexed: 12/22/2022] Open
Abstract
The role of prolidase (PEPD) as a ligand of the epidermal growth factor receptor (EGFR) was studied in an experimental model of wound healing in cultured fibroblasts. The cells were treated with PEPD (1-100 nM) and analysis of cell viability, proliferation, migration, collagen biosynthesis, PEPD activity, and the expressions of EGFR, insulin-like growth factor 1 (IGF-1), and β1-integrin receptor including downstream signaling proteins were performed. It has been found that PEPD stimulated proliferation and migration of fibroblasts via activation of the EGFR-downstream PI3K/Akt/mTOR signaling pathway. Simultaneously, PEPD stimulated the expression of β1-integrin and IGF-1 receptors and proteins downstream to these receptors such as FAK, Grb2, and ERK1/2. Collagen biosynthesis was increased in control and "wounded" fibroblasts under PEPD treatment. The data suggest that PEPD-induced EGFR signaling may serve as a new attempt to therapy wound healing.
Collapse
|
21
|
Prolidase Stimulates Proliferation and Migration through Activation of the PI3K/Akt/mTOR Signaling Pathway in Human Keratinocytes. Int J Mol Sci 2020; 21:ijms21239243. [PMID: 33287453 PMCID: PMC7730528 DOI: 10.3390/ijms21239243] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 01/15/2023] Open
Abstract
Recent reports have indicated prolidase (PEPD) as a ligand of the epidermal growth factor receptor (EGFR). Since this receptor is involved in the promotion of cell proliferation, growth, and migration, we aimed to investigate whether prolidase may participate in wound healing in vitro. All experiments were performed in prolidase-treated human keratinocytes assessing cell vitality, proliferation, and migration. The expression of downstream signaling proteins induced by EGFR, insulin-like growth factor 1 (IGF-1), transforming growth factor β1 (TGF-β1), and β1-integrin receptors were evaluated by Western immunoblotting and immunocytochemical staining. To determine collagen biosynthesis and prolidase activity radiometric and colorimetric methods were used, respectively. Proline content was determined by applying the liquid chromatography coupled with mass spectrometry. We found that prolidase promoted the proliferation and migration of keratinocytes through stimulation of EGFR-downstream signaling pathways in which the PI3K/Akt/mTOR axis was involved. Moreover, PEPD upregulated the expression of β1-integrin and IGF-1 receptors and their downstream proteins. Proline concentration and collagen biosynthesis were increased in HaCaT cells under prolidase treatment. Since extracellular prolidase as a ligand of EGFR induced cell growth, migration, and collagen biosynthesis in keratinocytes, it may represent a potential therapeutic approach for the treatment of skin wounds.
Collapse
|
22
|
Oztay F, Tunali S, Kayalar O, Yanardag R. The protective effect of vitamin U on valproic acid‐induced lung toxicity in rats via amelioration of oxidative stress. J Biochem Mol Toxicol 2020; 34:e22602. [DOI: 10.1002/jbt.22602] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/27/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Fusun Oztay
- Department of Biology, Faculty of Science Istanbul University Vezneciler Istanbul Turkey
| | - Sevim Tunali
- Department of Chemistry, Faculty of Engineering Istanbul University—Cerrahpasa Avcilar Turkey
| | - Ozgecan Kayalar
- Department of Biology, Faculty of Science Istanbul University Vezneciler Istanbul Turkey
- Koc University School of Medicine Koc University Research Center for Translational Medicine (KUTTAM) Istanbul Turkey
| | - Refiye Yanardag
- Department of Chemistry, Faculty of Engineering Istanbul University—Cerrahpasa Avcilar Turkey
| |
Collapse
|
23
|
Jafar H, Hasan M, Al-Hattab D, Saleh M, Ameereh LA, Khraisha S, Younes N, Awidi A. Platelet lysate promotes the healing of long-standing diabetic foot ulcers: A report of two cases and in vitro study. Heliyon 2020; 6:e03929. [PMID: 32420494 PMCID: PMC7218073 DOI: 10.1016/j.heliyon.2020.e03929] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/22/2019] [Accepted: 05/01/2020] [Indexed: 12/18/2022] Open
Abstract
Long-standing foot ulcers present a great challenge in diabetes care. Platelet products have been suggested as a possible therapeutic option. However, nor the effect of an injectable form of platelet lysate on the healing of ulcers nor that on primary cells of the epidermis have been studied. In the current study, we present two cases of an ongoing clinical trial showing the positive effect of autologous platelet lysate injected perilesional. Both clinical cases treated with injections of hPL showed complete healing of previously un-healed within 8 weeks of treatment. Further, we describe the in vitro effect of human platelet lysate (hPL) on primary human epidermal keratinocytes (HEK) in terms of chemotaxis, migration and proliferation. In vitro, HEK showed enhanced chemotaxis towards the hPL compared to keratinocyte-defined media (p < 0.0001). Their migration was also stimulated especially at hPL concentration of 10%V/V (p < 0.0001). In contrast, hPL significantly inhibited HEK proliferation measured through MTT assay (p < 0.0001). In conclusion, the findings presented here provide preliminary evidence of an explanatory mechanism for the effect of hPL on primary keratinocytes and therefore of their potential use in a clinical setting. hPL promotes keratinocyte migration and therefore closure of foot ulcers.
Collapse
Affiliation(s)
- Hanan Jafar
- Cell Therapy Center, University of Jordan, Amman, Jordan
- Department of Anatomy and Histology, College of Medicine, University of Jordan, Amman, Jordan
- Corresponding author.
| | - Maram Hasan
- Cell Therapy Center, University of Jordan, Amman, Jordan
| | - Dana Al-Hattab
- Cell Therapy Center, University of Jordan, Amman, Jordan
- Laboratory for Nanomedicine, Biological & Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Mohanad Saleh
- Cell Therapy Center, University of Jordan, Amman, Jordan
| | | | - Salim Khraisha
- Department of Physiology and Biochemistry, College of Medicine, University of Jordan, Amman, Jordan
| | - Nidal Younes
- Department of Surgery, College of Medicine, University of Jordan, Amman, Jordan
| | - Abdalla Awidi
- Cell Therapy Center, University of Jordan, Amman, Jordan
- Department of Internal Medicine, College of Medicine, University of Jordan, Amman, Jordan
- Corresponding author.
| |
Collapse
|
24
|
Chen Y, Tian L, Yang F, Tong W, Jia R, Zou Y, Yin L, Li L, He C, Liang X, Ye G, Lv C, Song X, Yin Z. Tannic Acid Accelerates Cutaneous Wound Healing in Rats Via Activation of the ERK 1/2 Signaling Pathways. Adv Wound Care (New Rochelle) 2019; 8:341-354. [PMID: 31737421 DOI: 10.1089/wound.2018.0853] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/23/2019] [Indexed: 02/06/2023] Open
Abstract
Objective: This study was aimed to evaluate the effect of tannic acid (TA), a natural plant polyphenol astringent, on wound healing in vitro and in vivo, and to elucidate the underlying molecular signaling pathway in the wound healing. Approach: Cutaneous skin wounds were created in rats and then treated until closure with purified TA, serum or tissue samples were collected to test the concentration of factors by enzyme-linked immunosorbent assay (ELISA), and the expression in gene or protein was measured by quantitative real-time polymerase chain reaction or Western blot. We explored the cell-/dose-specific responses of TA (0.1-0.4 μg/mL) on proliferation and gene and protein expression of fibroblast NIH 3T3 cells. Results: The wounds on rats treated by TA got healed faster than those in the untreated group. The histopathology study showed that TA accelerated re-epithelialization and increase in hair follicles could be detected. The levels of growth factors including basic fibroblast growth factor (bFGF), transforming growth factor-beta, and vascular endothelial growth factor in TA-treated groups were all increased, and the content of interleukin-1 (IL-1) and IL-6 was decreased significantly when compared with that of the untreated group. The NIH 3T3 cells grow faster in 6 h at concentration of 0.1 μg/mL, and the expression of bFGF in gene and protein was increased significantly in the 0.1 μg/mL TA group. Further study revealed that the protein levels of bFGF, extracellular signal regulated kinase (Erk) 1/2, and P-Erk 1/2 in Erk 1/2 pathway were increased after TA treatment. Innovation: The role of TA in wound healing efficacy is unclear; this study, therefore, assesses the effects of TA on wound healing in different periods and the underlying molecular mechanisms. Conclusion: These results suggested that TA could accelerate wound healing through modulation of inflammatory cytokines and growth factors and activate Erk 1/2 pathway. In conclusion, TA may be a potential agent in promoting wound healing.
Collapse
Affiliation(s)
- Yaqin Chen
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lvbo Tian
- Sichuan International Travel Health Care Center, Chengdu, China
| | - Fengyu Yang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Wenzhi Tong
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lizi Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Changliang He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoxia Liang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Gang Ye
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Cheng Lv
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
25
|
Azmi L, Shukla I, Goutam A, Allauddin, Rao CV, Jawaid T, Kamal M, Awaad AS, Alqasoumi SI, AlKhamees OA. In vitro wound healing activity of 1-hydroxy-5,7-dimethoxy-2-naphthalene-carboxaldehyde (HDNC) and other isolates of Aegle marmelos L.: Enhances keratinocytes motility via Wnt/β-catenin and RAS-ERK pathways. Saudi Pharm J 2019; 27:532-539. [PMID: 31061622 PMCID: PMC6488852 DOI: 10.1016/j.jsps.2019.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/27/2019] [Indexed: 01/27/2023] Open
Abstract
Wound healing is a complex process in which injured skin and tissues repaired by interaction of a complex cascade of cellular events that generates resurfacing, reconstitution and restoration of the tensile strength of injured skin. It follows β-catenin, extracellular signal regulated kinase (ERK) and Akt signaling pathways. Aegle marmelos L., generally known as bael is found to act as anti-inflammatory, antioxidant and anti-ulcer agent. Furthermore, studies have demonstrated that this Indian traditional medicinal plant, A. marmelos flower extract (AMF) was used for wound injury. Henceforth, the current study was investigated to ascertain the effect of its active constituents in vitro wound healing with mechanism involve in migration of cells and activation of β-catenin in keratinocytes, inhibition of PGE2 in macrophages and production of collagen in fibroblasts. We have taken full thickness wound of rats and applied AMF for 2 weeks. Cutaneous wound healing activity was performed using HaCaT keratinocytes, Hs68 dermal fibroblasts and RAW264.7 macrophages to determine cell viability, nitric oxide production, collagen expression, cell migration and β-catenin activation. Results shows that AMF treated rats demonstrated reduced wound size and epithelisation was improved, involved in keratinocytes migration by regulation of Akt signaling, beta-catenin and extracellular signal-regulated kinase (ERK) pathways. AMF and its active constituent’s increased mRNA expression, inhibited nitric oxide, PGE2 release, mRNA expression of mediators in RAW 264.7 macrophages and enhances the motility of HaCaT keratinocytes in vitro wound healing of rats.
Collapse
Affiliation(s)
- Lubna Azmi
- Pharmacognosy and Ethnopharmacology Division, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India.,Department of Chemistry, University of Lucknow, Lucknow, India
| | - Ila Shukla
- Pharmacognosy and Ethnopharmacology Division, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Arti Goutam
- Pharmacognosy and Ethnopharmacology Division, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
| | - Allauddin
- Pharmacognosy and Ethnopharmacology Division, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
| | - Ch V Rao
- Pharmacognosy and Ethnopharmacology Division, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
| | - Talha Jawaid
- Department of Pharmacology, Hygia Institute of Pharmaceutical Education and Research, Ghaila Road, Lucknow 226002, Uttar Pradesh, India
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Amani S Awaad
- Director of Gateway to United Kingdom Education Ltd., Bradford, United Kingdom
| | - Saleh I Alqasoumi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Osama A AlKhamees
- Department of Pharmacology, College of Medicine, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 11623, Riyadh 11544, Saudi Arabia
| |
Collapse
|
26
|
Balasubramanian D, Pearson JF, Kennedy MA. Gene expression effects of lithium and valproic acid in a serotonergic cell line. Physiol Genomics 2018; 51:43-50. [PMID: 30576260 DOI: 10.1152/physiolgenomics.00069.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Valproic acid (VPA) and lithium are widely used in the treatment of bipolar disorder. However, the underlying mechanism of action of these drugs is not clearly understood. We used RNA-Seq analysis to examine the global profile of gene expression in a rat serotonergic cell line (RN46A) after exposure to these two mood stabilizer drugs. Numerous genes were differentially regulated in response to VPA (log2 fold change ≥ 1.0; i.e., odds ratio of ≥2, at false discovery rate <5%), but only two genes ( Dynlrb2 and Cdyl2) showed significant differential regulation after exposure of the cells to lithium, with the same analysis criteria. Both of these genes were also regulated by VPA. Many of the differentially expressed genes had functions of potential relevance to mood disorders or their treatment, such as several serpin family genes (including neuroserpin), Nts (neurotensin), Maob (monoamine oxidase B), and Ap2b1, which is important for synaptic vesicle function. Pathway analysis revealed significant enrichment of Gene Ontology terms such as extracellular matrix remodeling, cell adhesion, and chemotaxis. This study in a cell line derived from the raphe nucleus has identified a range of genes and pathways that provide novel insights into potential therapeutic actions of the commonly used mood stabilizer drugs.
Collapse
Affiliation(s)
- Diana Balasubramanian
- Carney Centre for Pharmacogenomics, Department of Pathology and Biomedical Science, University of Otago , Christchurch , New Zealand
| | - John F Pearson
- Carney Centre for Pharmacogenomics, Department of Pathology and Biomedical Science, University of Otago , Christchurch , New Zealand.,Biostatistics and Computational Biology Unit, University of Otago , Christchurch , New Zealand
| | - Martin A Kennedy
- Carney Centre for Pharmacogenomics, Department of Pathology and Biomedical Science, University of Otago , Christchurch , New Zealand
| |
Collapse
|
27
|
Sarandy MM, Miranda LL, Altoé LS, Novaes RD, Zanuncio VV, Leite JPV, Gonçalves RV. Strychnos pseudoquina modulates the morphological reorganization of the scar tissue of second intention cutaneous wounds in rats. PLoS One 2018; 13:e0195786. [PMID: 29649320 PMCID: PMC5896999 DOI: 10.1371/journal.pone.0195786] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/29/2018] [Indexed: 12/12/2022] Open
Abstract
Natural substances are used in folk medicines to treat injuries. Strychnos pseudoquina has scarring, antipyretic, and antimalarial actions. The present study aimed to analyze the effect of S. pseudoquina on cutaneous wound healing in rats. The S. pseudoquina extract was submitted to phytochemical prospection. The levels of flavonoids and total phenolic compounds in the extract were 50.7 mg/g and 2.59 mg/g, respectively. Thirty Wistar rats were individualized in cages with food and water ad libitum (registration no. 730/2014). After anesthesia, three circular wounds (12mm diameter) were made in the animals, which were randomly separated into five treatments: Sal, saline; VO, ointment vehicles (lanolin and Vaseline); SS, positive control (silver sulfadiazine 1%); LE 5, freeze-dried extract 5%; and LE 10, lyophilized extract 10%. The animals were treated with the ointment daily for 21 days. Every seven days, the area and the rate of wound contraction were evaluated. Tissue samples were removed for histopathological analysis of the number of mast cells, elastic and collagen fibers, and biochemical analyses, quantification of malondialdehyde (MDA), carbonylated proteins (PCN), superoxide dismutase (SOD), catalase (CAT), transforming growth factor β (TGF-β), Interleukin 10 (IL-10) and tumor necrosis factor (TNF). The number of mast cells, collagen and elastic fibers in the rat wounds were higher in the treatments with the plant. The extract also stimulated the activity of antioxidant enzymes, particularly SOD, presenting high levels, and maintained low levels of PCN. The TGF-β and IL-10 concentration was higher in the LE5 and LE10 treatment of the extract than in the Sal, OV and SS treatments on day 7. The ointment based on S. pseudoquina closed the wound faster and accelerated wound healing in animals.
Collapse
Affiliation(s)
| | - Lyvia Lopes Miranda
- Institute of Biomedical Sciences, Department General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Luciana Schulthais Altoé
- Institute of Biomedical Sciences, Department General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Rômulo Dias Novaes
- Department of Structural Biology, Universidade Federal de Alfenas, Alfenas, Minas Gerais, Brazil
| | - Virgínia Vinha Zanuncio
- Department of Medicine and Nursing, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - João Paulo Viana Leite
- Department of Agricultural Biochemistry, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | |
Collapse
|
28
|
Danggui Buxue Extract-Loaded Liposomes in Thermosensitive Gel Enhance In Vivo Dermal Wound Healing via Activation of the VEGF/PI3K/Akt and TGF- β/Smads Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:8407249. [PMID: 29292400 PMCID: PMC5674729 DOI: 10.1155/2017/8407249] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/16/2017] [Accepted: 08/17/2017] [Indexed: 02/08/2023]
Abstract
Danggui Buxue extract-loaded liposomes in thermosensitive gel (DBLTG) are a sustained-release local drug delivery system derived from Danggui Buxue decoction, a well-known Chinese herb formula with wound healing potential. In the present study, we investigated the therapeutic effects of DBLTG on dorsal full-thickness excisional wounds in rats by measuring the percentage of wound contraction and hydroxyproline content, as well as conducting histological observations and immunohistochemical analysis. We also assessed involvement of the vascular endothelial growth factor (VEGF)/phosphatidylinositol 3-kinase (PI3K)/Akt and transforming growth factor beta (TGF-β)/Smads signaling pathways in the wound healing process upon DBLTG treatment via western blot. The results show that DBLTG treatment remarkably accelerates wound closure, enhances hydroxyproline content in wound granulation tissue, promotes cutaneous wound healing by reducing the inflammatory response and improving fresh granulation tissue formation, and significantly increases the density of blood vessels, cells proliferation, and expression of type I and type III collagen. Moreover, DBLTG markedly upregulates the relative protein expression of VEGFA and TGF-β1 and notably stimulates the phosphorylation of Akt and Smad2/3. In conclusion, DBLTG significantly improved dermal wound healing in rats by stimulating angiogenesis and collagen synthesis; these effects are likely mediated via the VEGF/PI3K/Akt and TGF-β/Smads signaling pathways, respectively.
Collapse
|
29
|
Liu M, Luo G, Wang Y, He W, Liu T, Zhou D, Hu X, Xing M, Wu J. Optimization and integration of nanosilver on polycaprolactone nanofibrous mesh for bacterial inhibition and wound healing in vitro and in vivo. Int J Nanomedicine 2017; 12:6827-6840. [PMID: 28979121 PMCID: PMC5602461 DOI: 10.2147/ijn.s140648] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bacterial infection is a major hurdle to wound healing, and the overuse of antibiotics have led to global issue, such as emergence of multidrug-resistant bacteria, even "super bacteria". On the contrary, nanosilver (NS) can kill bacteria without causing resistant bacterial strains. In this study, NS was simply generated in situ on the polycaprolactone (PCL) nanofibrous mesh using an environmentally benign and mussel-inspired dopamine (DA). Scanning electron microscopy showed that NS uniformly formed on the nanofibers of PCL mesh. Fourier transform infrared spectroscopy revealed the step-by-step preparation of pristine PCL mesh, including DA coating and NS formation, which were further verified by water contact angle changing from hydrophobic to hydrophilic. To optimize the NS dose, the antibacterial activity of PCL/NS against Staphylococcus aureus, Escherichia coli and Acinetobacter baumannii was detected by bacterial suspension assay, and the cytotoxicity of NS was evaluated using cellular morphology observation and Cell Counting Kit-8 (CCK8) assay. Then, inductively coupled plasma atomic emission spectrometry exhibited that the optimized PCL/NS had a safe and sustained silver release. Moreover, PCL/NS could effectively inhibit bacterial infection in an infectious murine full-thickness skin wound model. As demonstrated by the enhanced level of proliferating cell nuclear antigen (PCNA) in keratinocytes and longer length of neo-formed epidermis, PCL/NS accelerated wound healing by promoting re-epithelialization via enhancing keratinocyte proliferation in infectious wounds.
Collapse
Affiliation(s)
- Menglong Liu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, the Third Military Medical University
- Department of Burns, Chongqing Key Laboratory for Disease Proteomics, Chongqing, People’s Republic of China
| | - Gaoxing Luo
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, the Third Military Medical University
- Department of Burns, Chongqing Key Laboratory for Disease Proteomics, Chongqing, People’s Republic of China
| | - Ying Wang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, the Third Military Medical University
- Department of Burns, Chongqing Key Laboratory for Disease Proteomics, Chongqing, People’s Republic of China
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, the Third Military Medical University
- Department of Burns, Chongqing Key Laboratory for Disease Proteomics, Chongqing, People’s Republic of China
| | - Tengfei Liu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, the Third Military Medical University
- Department of Burns, Chongqing Key Laboratory for Disease Proteomics, Chongqing, People’s Republic of China
| | - Daijun Zhou
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, the Third Military Medical University
- Department of Burns, Chongqing Key Laboratory for Disease Proteomics, Chongqing, People’s Republic of China
| | - Xiaohong Hu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, the Third Military Medical University
- Department of Burns, Chongqing Key Laboratory for Disease Proteomics, Chongqing, People’s Republic of China
| | - Malcolm Xing
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, the Third Military Medical University
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Jun Wu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, the Third Military Medical University
- Department of Burns, Chongqing Key Laboratory for Disease Proteomics, Chongqing, People’s Republic of China
- Department of Burns, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
30
|
Dorjsembe B, Lee HJ, Kim M, Dulamjav B, Jigjid T, Nho CW. Achillea asiatica extract and its active compounds induce cutaneous wound healing. JOURNAL OF ETHNOPHARMACOLOGY 2017; 206:306-314. [PMID: 28602757 DOI: 10.1016/j.jep.2017.06.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 05/28/2017] [Accepted: 06/03/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Achillea asiatica Serg. is a perennial herb belonging to the Asteraceae family that has long been traditionally used to treat acute intestinal and stomach inflammation, persistent fever, ulcers, wounds, and rheumatism. AIM OF THE STUDY We investigated the effect of A. asiatica extract (AAE) on cutaneous wound healing. MATERIALS AND METHODS To assess the effect of AAE on wounds, an incisional Sprague-Dawley (SD) rat model was topically treated with AAE for 2 weeks. HaCaT keratinocytes, Hs68 dermal fibroblasts, and RAW 264.7 macrophages were used for in vitro experiments. After treatment with AAE, cell viability, cell migration, and production of nitric oxide (NO) and prostaglandin E2 (PGE2) were investigated. mRNA expression of collagen type I and III and inflammatory cytokines was measured by RT-PCR. The effect of AAE on activation of β-catenin and other markers was determined by Western blot analysis. RESULTS AAE treatment significantly increased epithelialization and accelerated wound healing in SD rats. Meanwhile, AAE and its active compounds reduced NO and PGE2 release and mRNA expression of inflammatory cytokines in RAW 264.7 macrophages, reflecting anti-inflammatory activity. Furthermore, AAE and its constituents stimulated collagen expression in Hs68 fibroblasts by activating transforming growth factor-β and stimulated keratinocyte differentiation and motility by inducing β-catenin, Akt, and keratinocyte differentiation markers. CONCLUSIONS AAE improves skin wounds in SD rats and supports keratinocyte development.
Collapse
Affiliation(s)
- Banzragch Dorjsembe
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung, Republic of Korea; Department of Biological Chemistry, University of Science and Technology, Daejeon, Republic of Korea
| | - Hee Ju Lee
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung, Republic of Korea; Systems Biotechnology Research Center, Korea Institute of Science and Technology, Gangneung, Republic of Korea
| | - Myungsuk Kim
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung, Republic of Korea; Convergence Research Center for Smart Farm Solution, Korea Institute of Science and Technology, Gangneung, Republic of Korea
| | - Batsuren Dulamjav
- Natural Product Chemistry Laboratory, Institute of Chemistry and Chemical Technology, Mongolian Academy of Science, Ulaanbaatar, Mongolia
| | - Tunsag Jigjid
- Natural Product Chemistry Laboratory, Institute of Chemistry and Chemical Technology, Mongolian Academy of Science, Ulaanbaatar, Mongolia
| | - Chu Won Nho
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung, Republic of Korea; Convergence Research Center for Smart Farm Solution, Korea Institute of Science and Technology, Gangneung, Republic of Korea.
| |
Collapse
|
31
|
Xu R, Bai Y, Zhao J, Xia H, Kong Y, Yao Z, Yan R, Zhang X, Hu X, Liu M, Yang Q, Luo G, Wu J. Silicone rubber membrane with specific pore size enhances wound regeneration. J Tissue Eng Regen Med 2017; 12:e905-e917. [DOI: 10.1002/term.2414] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/07/2017] [Accepted: 01/13/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Rui Xu
- Department of Neurology, Xinqiao Hospital & The Second Affiliated HospitalThird Military Medical University Chongqing China
| | - Yang Bai
- Institute of Burn Research, Southwest HospitalThird Military Medical University; State Key Laboratory of Trauma, Burn and Combined Injury; Chongqing Key Laboratory for Disease Proteomics Chongqing China
- Department of Otolaryngology, Southwest HospitalThird Military Medical University Chongqing China
| | - Jian Zhao
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan University Chengdu China
| | - Hesheng Xia
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan University Chengdu China
| | - Yi Kong
- Institute of Burn Research, Southwest HospitalThird Military Medical University; State Key Laboratory of Trauma, Burn and Combined Injury; Chongqing Key Laboratory for Disease Proteomics Chongqing China
| | - Zhihui Yao
- Institute of Burn Research, Southwest HospitalThird Military Medical University; State Key Laboratory of Trauma, Burn and Combined Injury; Chongqing Key Laboratory for Disease Proteomics Chongqing China
| | - Rongshuai Yan
- Institute of Burn Research, Southwest HospitalThird Military Medical University; State Key Laboratory of Trauma, Burn and Combined Injury; Chongqing Key Laboratory for Disease Proteomics Chongqing China
| | - Xiaorong Zhang
- Institute of Burn Research, Southwest HospitalThird Military Medical University; State Key Laboratory of Trauma, Burn and Combined Injury; Chongqing Key Laboratory for Disease Proteomics Chongqing China
| | - Xiaohong Hu
- Institute of Burn Research, Southwest HospitalThird Military Medical University; State Key Laboratory of Trauma, Burn and Combined Injury; Chongqing Key Laboratory for Disease Proteomics Chongqing China
| | - Meixi Liu
- Institute of Burn Research, Southwest HospitalThird Military Medical University; State Key Laboratory of Trauma, Burn and Combined Injury; Chongqing Key Laboratory for Disease Proteomics Chongqing China
| | - Qingwu Yang
- Department of Neurology, Xinqiao Hospital & The Second Affiliated HospitalThird Military Medical University Chongqing China
| | - Gaoxing Luo
- Institute of Burn Research, Southwest HospitalThird Military Medical University; State Key Laboratory of Trauma, Burn and Combined Injury; Chongqing Key Laboratory for Disease Proteomics Chongqing China
| | - Jun Wu
- Institute of Burn Research, Southwest HospitalThird Military Medical University; State Key Laboratory of Trauma, Burn and Combined Injury; Chongqing Key Laboratory for Disease Proteomics Chongqing China
| |
Collapse
|
32
|
Targeting of CXXC5 by a Competing Peptide Stimulates Hair Regrowth and Wound-Induced Hair Neogenesis. J Invest Dermatol 2017; 137:2260-2269. [PMID: 28595998 DOI: 10.1016/j.jid.2017.04.038] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 04/02/2017] [Accepted: 04/18/2017] [Indexed: 02/02/2023]
Abstract
The Wnt/β-catenin pathway has been implicated in hair follicle development and hair regeneration in adults. We discovered that CXXC-type zinc finger protein 5 (CXXC5) is a negative regulator of the Wnt/β-catenin pathway involved in hair regrowth and wound-induced hair follicle neogenesis via an interaction with Dishevelled. CXXC5 was upregulated in miniaturized hair follicles and arrector pili muscles in human balding scalps. The inhibitory effects of CXXC5 on alkaline phosphatase activity and cell proliferation were demonstrated using human hair follicle dermal papilla cells. Moreover, CXXC5-/- mice displayed accelerated hair regrowth, and treatment with valproic acid, a glycogen synthase kinase 3β inhibitor that activates the Wnt/β-catenin pathway, further induced hair regrowth in the CXXC5-/- mice. Disrupting the CXXC5-Dishevelled interaction with a competitor peptide activated the Wnt/β-catenin pathway and accelerated hair regrowth and wound-induced hair follicle neogenesis. Overall, these findings suggest that the CXXC5-Dishevelled interaction is a potential target for the treatment of hair loss.
Collapse
|
33
|
Volksdorf T, Heilmann J, Eming SA, Schawjinski K, Zorn-Kruppa M, Ueck C, Vidal-Y-Sy S, Windhorst S, Jücker M, Moll I, Brandner JM. Tight Junction Proteins Claudin-1 and Occludin Are Important for Cutaneous Wound Healing. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1301-1312. [PMID: 28412298 DOI: 10.1016/j.ajpath.2017.02.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 02/07/2017] [Indexed: 12/31/2022]
Abstract
Tight junction (TJ) proteins are known to be involved in proliferation and differentiation. These processes are essential for normal skin wound healing. Here, we investigated the TJ proteins claudin-1 and occludin in ex vivo skin wound healing models and tissue samples of acute and chronic human wounds and observed major differences in localization/expression of these proteins, with chronic wounds often showing a loss of the proteins at the wound margins and/or in the regenerating epidermis. Knockdown experiments in primary human keratinocytes showed that decreased claudin-1 expression resulted in significantly impaired scratch wound healing, with delayed migration and reduced proliferation. Activation of AKT pathway was significantly attenuated after claudin-1 knockdown, and protein levels of extracellular signal-related kinase 1/2 were reduced. For occludin, down-regulation had no impact on wound healing in normal scratch assays, but after subjecting the cells to mechanical stress, which is normally present in wounds, wound healing was impaired. For both proteins we show that most of these actions are independent from the formation of barrier-forming TJ structures, thus demonstrating nonbarrier-related functions of TJ proteins in the skin. However, for claudin-1 effects on scratch wound healing were more pronounced when TJs could form. Together, our findings provide evidence for a role of claudin-1 and occludin in epidermal regeneration with potential clinical importance.
Collapse
Affiliation(s)
- Thomas Volksdorf
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Janina Heilmann
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Sabine A Eming
- Department of Dermatology, University of Cologne, Cologne, Germany
| | - Kathrin Schawjinski
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Michaela Zorn-Kruppa
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Christopher Ueck
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Sabine Vidal-Y-Sy
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Sabine Windhorst
- Institute of Biochemistry and Signal Transduction, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Manfred Jücker
- Institute of Biochemistry and Signal Transduction, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Ingrid Moll
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Johanna M Brandner
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
34
|
Joshi A, Joshi VK, Pandey D, Hemalatha S. Systematic investigation of ethanolic extract from Leea macrophylla: Implications in wound healing. JOURNAL OF ETHNOPHARMACOLOGY 2016; 191:95-106. [PMID: 27321280 DOI: 10.1016/j.jep.2016.06.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 04/17/2016] [Accepted: 06/13/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Leea macrophylla Roxb. ex Hornem. (Leeaceae) commonly known as Hastikarnapalasa is mainly distributed throughout the tropical parts of India. Traditionally, the plant is found to be effective against guinea worm, ringworm and is applied to sores and wounds. AIM OF THE STUDY The present study aims to validate traditional wound healing claim of Leea macrophylla scientifically. MATERIAL AND METHODS Box-Behnken design (BBD) was used to optimize the extraction process. The optimized root tuber extract of Leea macrophylla was standardized with chlorogenic acid by HPLC for the first time. Both oral and topical routes were selected as administrative means for the wound healing study using excision and incision wound model. For topical treatment bioadhesive gel was formulated and characterized for mechanical and physical characteristics by texture profile analysis (TPA) and scanning electron microscopy (SEM). The effect on wound healing was also assessed by evaluating antioxidant enzymes viz. glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT), free radicals lipid peroxidation (LPO) and nitric oxide (NO), inflammatory marker myeloperoxidase (MPO), collagen markers hydroxyproline, hexosamine and hexuronic acid along with the histopathological examination. Furthermore, the effect on the level of the proinflammatory cytokines interleukin-1β (IL-1β), interleukin -6 (IL-6), tumor necrosis factor-α (TNF-α) and growth factor, vascular endothelial growth factor (VEGF) were determined. The expression of cell proliferation nuclear marker Ki-67 was also analyzed by Western blot analysis. RESULTS With mesh openings Sieve no. 20, semi polar nature of solvent (92.5:7.5 ethanol-water blend) and extraction time of 18h, substantially greater extraction efficiency (29%) and phenolic yield (181.54mg/g) were obtained. The content of chlorogenic acid in ethanol extracts of Leea macrophylla was obtained as 9.01% w/w. In incision model, oral treatment with 500mg/kg ethanolic extract increased wound breaking strength by 23.41% while bioadhesive gel (5% w/v) showed a higher increase of 44.68%. Topical application produced complete wound contraction in 20 days against 22 days taken by oral treatment. Topical treatment also produced a significant (p<0.05) increase in antioxidants glutathione, superoxide dismutase and catalase whereas the level of enzymes lipid peroxidation and nitric oxide and inflammatory markers myeloperoxidase were reduced. Further advantageous effects were reflected by significantly (p<0.05) increased levels of hydroxyproline, hexosamine and hexuronic acid. Favorable effects on the level of proinflammatory cytokines interleukin-1β, interleukin-6, tumor necrosis factor - α and growth factor, vascular endothelial growth factor were also observed. The wound healing potential of Leea macrophylla was further supported by its ability to promote cell proliferation during wound healing as demonstrated by Western blot analysis of proliferation marker Ki-67. CONCLUSION The study justified traditional use of Leea macrophylla in wound healing and demonstrated that the bioadhesive gel of ethanolic extract produced faster and more significant healing as compared to oral treatment.
Collapse
Affiliation(s)
- Apurva Joshi
- Department of Pharmaceutics, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Vinod K Joshi
- Department of Dravyaguna, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Deepali Pandey
- Department of Pharmaceutics, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - S Hemalatha
- Department of Pharmaceutics, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
35
|
Dinda M, Mazumdar S, Das S, Ganguly D, Dasgupta UB, Dutta A, Jana K, Karmakar P. The Water Fraction of Calendula officinalis Hydroethanol Extract Stimulates In Vitro and In Vivo Proliferation of Dermal Fibroblasts in Wound Healing. Phytother Res 2016; 30:1696-1707. [PMID: 27426257 DOI: 10.1002/ptr.5678] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 05/11/2016] [Accepted: 06/16/2016] [Indexed: 12/12/2022]
Abstract
The active fraction and/or compounds of Calendula officinalis responsible for wound healing are not known yet. In this work we studied the molecular target of C. officinalis hydroethanol extract (CEE) and its active fraction (water fraction of hydroethanol extract, WCEE) on primary human dermal fibroblasts (HDF). In vivo, CEE or WCEE were topically applied on excisional wounds of BALB/c mice and the rate of wound contraction and immunohistological studies were carried out. We found that CEE and only its WCEE significantly stimulated the proliferation as well as the migration of HDF cells. Also they up-regulate the expression of connective tissue growth factor (CTGF) and α-smooth muscle actin (α-SMA) in vitro. In vivo, CEE or WCEE treated mice groups showed faster wound healing and increased expression of CTGF and α-SMA compared to placebo control group. The increased expression of both the proteins during granulation phase of wound repair demonstrated the potential role of C. officinalis in wound healing. In addition, HPLC-ESI MS analysis of the active water fraction revealed the presence of two major compounds, rutin and quercetin-3-O-glucoside. Thus, our results showed that C. officinalis potentiated wound healing by stimulating the expression of CTGF and α-SMA and further we identified active compounds. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Manikarna Dinda
- Department of Life Science and Biotechnology, Jadavpur University, 188, Raja S.C. Mullick Road, Kolkata, 700 032, West Bengal, India
| | - Swagata Mazumdar
- Department of Life Science and Biotechnology, Jadavpur University, 188, Raja S.C. Mullick Road, Kolkata, 700 032, West Bengal, India
| | - Saurabh Das
- Department of Chemistry (Inorganic Section), Jadavpur University, 188, Raja S.C. Mullick Road, Kolkata, 700 032, West Bengal, India
| | - Durba Ganguly
- Department of Chemistry (Inorganic Section), Jadavpur University, 188, Raja S.C. Mullick Road, Kolkata, 700 032, West Bengal, India
| | - Uma B Dasgupta
- Department of Life Science and Biotechnology, Jadavpur University, 188, Raja S.C. Mullick Road, Kolkata, 700 032, West Bengal, India
| | - Ananya Dutta
- Division of Molecular Medicine, Bose Institute, P 1/12, CIT Scheme VIIM, Kolkata, 700 054, India
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, P 1/12, CIT Scheme VIIM, Kolkata, 700 054, India
| | - Parimal Karmakar
- Department of Life Science and Biotechnology, Jadavpur University, 188, Raja S.C. Mullick Road, Kolkata, 700 032, West Bengal, India.
| |
Collapse
|
36
|
Seo SH, Lee SH, Cha PH, Kim MY, Min DS, Choi KY. Polygonum aviculare L. and its active compounds, quercitrin hydrate, caffeic acid, and rutin, activate the Wnt/β-catenin pathway and induce cutaneous wound healing. Phytother Res 2016; 30:848-54. [PMID: 26929003 DOI: 10.1002/ptr.5593] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/30/2015] [Accepted: 01/24/2016] [Indexed: 01/09/2023]
Abstract
Polygonum aviculare L. is a member of the Polygonaceae family of plants, which has been known for its antioxidant and anti-obesity effects. However, the wound healing function of P. aviculare extract has not been assessed. In this study, we identified a novel property of P. aviculare extract as a Wnt/β-catenin pathway activator based on a screen of 350 plant extracts using HEK293-TOP cells retaining the Wnt/β-catenin signaling reporter gene. P. aviculare extract accelerated the migration of HaCaT keratinocytes without showing significant cytotoxicity. Moreover, P. aviculare extract efficiently re-epithelized wounds generated on mice. Additionally, ingredients of P. aviculare extract, such as quercitrin hydrate, caffeic acid, and rutin, also accelerated the motility of HaCaT keratinocytes with the activation of Wnt/β-catenin signaling. Therefore, based on our findings, P. aviculare extract and its active ingredients could be potential therapeutic agents for wound healing. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Seol Hwa Seo
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Soung-Hoon Lee
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Pu-Hyeon Cha
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Mi-Yeon Kim
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Do Sik Min
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, 609-735, Korea
| | - Kang-Yell Choi
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| |
Collapse
|
37
|
Seet LF, Toh LZ, Finger SN, Chu SWL, Stefanovic B, Wong TT. Valproic acid suppresses collagen by selective regulation of Smads in conjunctival fibrosis. J Mol Med (Berl) 2015; 94:321-34. [PMID: 26507880 PMCID: PMC4803820 DOI: 10.1007/s00109-015-1358-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 09/28/2015] [Accepted: 10/20/2015] [Indexed: 04/17/2023]
Abstract
Overproduction of type I collagen is associated with a wide range of fibrotic diseases as well as surgical failure such as in glaucoma filtration surgery (GFS). Its modulation is therefore of clinical importance. Valproic acid (VPA) is known to reduce collagen in a variety of tissues with unclear mechanism of action. In this report, we demonstrate that VPA inhibited collagen production in both conjunctival fibroblasts and the mouse model of GFS. In fibroblasts, VPA decreased type I collagen expression which intensified with longer drug exposure and suppressed steady-state type I collagen promoter activity. Moreover, VPA decreased Smad2, Smad3 and Smad4 but increased Smad6 expression with a similar intensity-exposure profile. Reduction of Smad3 using small hairpin RNA and/or overexpression of Smad6 resulted in decreased collagen expression which was exacerbated when VPA was simultaneously present. Furthermore, fibrogenic TGF-β2 failed to induce collagen when VPA was present, as opposed to the myofibroblast markers, beta-actin, alpha-smooth muscle actin and tenascin-C, which were elevated by TGF-β2. VPA suppressed p3TP-Lux luciferase activity and selectively rescued Smad6 expression from suppression by TGF-β2. Notably, SMAD6 overexpression reduced the effectiveness of TGF-β2 in inducing collagen expression. In corroboration, VPA inhibited type I collagen but increased Smad6 expression in the late phase of wound healing in the mouse model of GFS. Taken together, our data indicate that VPA has the capacity to effectively suppress both steady-state and fibrogenic activation of type I collagen expression by modulating Smad expression. Hence, VPA is potentially applicable as an anti-fibrotic therapeutic by targeting collagen. Key message: • VPA modulates type I collagen expression via members of the Smad family. • VPA suppresses Smad2, Smad3 and Smad4 but upregulates Smad6. • Smad3 and Smad6 are involved in VPA regulation of steady-state collagen expression. • Smad6 is involved in VPA modulation of TGF-β-stimulated collagen expression. • VPA reduces collagen and upregulates Smad6 in the mouse model of glaucoma filtration surgery.
Collapse
Affiliation(s)
- Li-Fong Seet
- Ocular Therapeutics and Drug Delivery, Singapore Eye Research Institute, Singapore, Singapore. .,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,Duke-NUS Graduate Medical School Singapore, Singapore, Singapore.
| | - Li Zhen Toh
- Ocular Therapeutics and Drug Delivery, Singapore Eye Research Institute, Singapore, Singapore
| | - Sharon N Finger
- Ocular Therapeutics and Drug Delivery, Singapore Eye Research Institute, Singapore, Singapore
| | - Stephanie W L Chu
- Ocular Therapeutics and Drug Delivery, Singapore Eye Research Institute, Singapore, Singapore
| | - Branko Stefanovic
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Tina T Wong
- Ocular Therapeutics and Drug Delivery, Singapore Eye Research Institute, Singapore, Singapore. .,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,Duke-NUS Graduate Medical School Singapore, Singapore, Singapore. .,Glaucoma Service, Singapore National Eye Center, 11 Third Hospital Avenue, Singapore, 168751, Singapore. .,School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
38
|
Singh P, Bast F. Screening of multi-targeted natural compounds for receptor tyrosine kinases inhibitors and biological evaluation on cancer cell lines, in silico and in vitro. Med Oncol 2015; 32:233. [PMID: 26298529 DOI: 10.1007/s12032-015-0678-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 08/08/2015] [Indexed: 12/27/2022]
Abstract
Receptors for growth factors encompass within the superfamily of receptor tyrosine kinases and are known to regulate numerous biological processes including cellular growth, proliferation, metabolism, survival, cell differentiation and apoptosis. These receptors have recently caught the attention of the researchers as an attractive target to combat cancer owing to the evidence suggesting their over-expression in cancer cells. Therefore, we studied receptor-based molecular docking of IR (PDB; 3ETA), IGF1R (PDB; 1K3A), EGFR (PDB; 1M17), VEGFIR (PDB; 3HNG), and VEGFIIR (PDB; 2OH4) against natural compounds. Further, in vitro investigation of the biological effect of lead molecules in an array of cancer cell lines was done. All selected natural compounds were docked with the X-ray crystal structure of selected protein by employing GLIDE (Grid-based Ligand Docking with Energetics) Maestro 9.6. InterBioScreen natural compounds docked with each selected protein molecules by using GLIDE high throughput virtual screening. On the basis of Gscore, we select 20 compounds along with 68 anticancer compounds for GLIDE extra precision molecular docking. It was discovered in this study that compound epigallocatechin gallate (EGCG) yielded magnificent Gscore with IGF1R (PDB; 1K3A) and VEGFIIR (PDB; 2OH4), and protein-ligand interactions are chart out. Effect of EGCG on biological activity such as mRNA expression of selected protein, cell proliferation, oxidative stress, and cell migration was reported after the 48 h treatments in cancer cell lines. The RT-PCR densitometric bands analysis showed that compound EGCG reduced the mRNA expression of IGF1R, VEGFIIR, and mTOR at 80 μM concentration. Moreover, EGCG significantly reduced cell proliferation and ROS generation after 48 h treatments. Our result also indicated a reduction in the potential for cell migration that might show in vivo anti-metastasis activity of EGCG.
Collapse
Affiliation(s)
- Pushpendra Singh
- Centre for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151001, Punjab, India
| | | |
Collapse
|
39
|
Tseng YT, Ho PS, Wang CF, Liang CS. Valproic Acid–Induced Thrombocytopenia May Cause Wound Nonhealing in Individuals With Schizophrenia. PSYCHOSOMATICS 2015; 56:410-3. [DOI: 10.1016/j.psym.2014.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 02/19/2014] [Accepted: 02/20/2014] [Indexed: 11/25/2022]
|
40
|
Lee SH, Kim MY, Kim HY, Lee YM, Kim H, Nam KA, Roh MR, Min DS, Chung KY, Choi KY. The Dishevelled-binding protein CXXC5 negatively regulates cutaneous wound healing. ACTA ACUST UNITED AC 2015; 212:1061-80. [PMID: 26056233 PMCID: PMC4493411 DOI: 10.1084/jem.20141601] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 05/14/2015] [Indexed: 02/02/2023]
Abstract
In human melanoma biopsies and a murine cutaneous wound model, Lee et al. identify the Dishevelled-binding protein CXXC5 as a negative modulator of skin wound healing. CXXC5-deficient mice present accelerated wound healing as well as keratin and collagen synthesis. CXXC5, interacting with Dvl, operates as a negative feedback regulator of Wnt/β-catenin signaling and may represent a potential target for wound treatment. Wnt/β-catenin signaling plays important roles in cutaneous wound healing and dermal fibrosis. However, its regulatory mechanism has not been fully elucidated, and a commercially available wound-healing agent targeting this pathway is desirable but currently unavailable. We found that CXXC-type zinc finger protein 5 (CXXC5) serves as a negative feedback regulator of the Wnt/β-catenin pathway by interacting with the Dishevelled (Dvl) protein. In humans, CXXC5 protein levels were reduced in epidermal keratinocytes and dermal fibroblasts of acute wounds. A differential regulation of β-catenin, α-smooth muscle actin (α-SMA), and collagen I by overexpression and silencing of CXXC5 in vitro indicated a critical role for this factor in myofibroblast differentiation and collagen production. In addition, CXXC5−/− mice exhibited accelerated cutaneous wound healing, as well as enhanced keratin 14 and collagen synthesis. Protein transduction domain (PTD)–Dvl-binding motif (DBM), a competitor peptide blocking CXXC5-Dvl interactions, disrupted this negative feedback loop and activated β-catenin and collagen production in vitro. Co-treatment of skin wounds with PTD-DBM and valproic acid (VPA), a glycogen synthase kinase 3β (GSK3β) inhibitor which activates the Wnt/β-catenin pathway, synergistically accelerated cutaneous wound healing in mice. Together, these data suggest that CXXC5 would represent a potential target for future therapies aimed at improving wound healing.
Collapse
Affiliation(s)
- Soung-Hoon Lee
- Translational Research Center for Protein Function Control; Department of Biotechnology, College of Life Science and Biotechnology; and Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, College of Medicine; Yonsei University, Seoul 120-749, South Korea Translational Research Center for Protein Function Control; Department of Biotechnology, College of Life Science and Biotechnology; and Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, College of Medicine; Yonsei University, Seoul 120-749, South Korea
| | - Mi-Yeon Kim
- Translational Research Center for Protein Function Control; Department of Biotechnology, College of Life Science and Biotechnology; and Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, College of Medicine; Yonsei University, Seoul 120-749, South Korea Translational Research Center for Protein Function Control; Department of Biotechnology, College of Life Science and Biotechnology; and Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, College of Medicine; Yonsei University, Seoul 120-749, South Korea
| | - Hyun-Yi Kim
- Translational Research Center for Protein Function Control; Department of Biotechnology, College of Life Science and Biotechnology; and Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, College of Medicine; Yonsei University, Seoul 120-749, South Korea Translational Research Center for Protein Function Control; Department of Biotechnology, College of Life Science and Biotechnology; and Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, College of Medicine; Yonsei University, Seoul 120-749, South Korea
| | - Young-Mi Lee
- Translational Research Center for Protein Function Control; Department of Biotechnology, College of Life Science and Biotechnology; and Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, College of Medicine; Yonsei University, Seoul 120-749, South Korea Translational Research Center for Protein Function Control; Department of Biotechnology, College of Life Science and Biotechnology; and Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, College of Medicine; Yonsei University, Seoul 120-749, South Korea
| | - Heesu Kim
- Translational Research Center for Protein Function Control; Department of Biotechnology, College of Life Science and Biotechnology; and Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, College of Medicine; Yonsei University, Seoul 120-749, South Korea
| | - Kyoung Ae Nam
- Translational Research Center for Protein Function Control; Department of Biotechnology, College of Life Science and Biotechnology; and Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, College of Medicine; Yonsei University, Seoul 120-749, South Korea
| | - Mi Ryung Roh
- Translational Research Center for Protein Function Control; Department of Biotechnology, College of Life Science and Biotechnology; and Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, College of Medicine; Yonsei University, Seoul 120-749, South Korea
| | - Do Sik Min
- Translational Research Center for Protein Function Control; Department of Biotechnology, College of Life Science and Biotechnology; and Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, College of Medicine; Yonsei University, Seoul 120-749, South Korea Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 609-735, South Korea
| | - Kee Yang Chung
- Translational Research Center for Protein Function Control; Department of Biotechnology, College of Life Science and Biotechnology; and Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, College of Medicine; Yonsei University, Seoul 120-749, South Korea
| | - Kang-Yell Choi
- Translational Research Center for Protein Function Control; Department of Biotechnology, College of Life Science and Biotechnology; and Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, College of Medicine; Yonsei University, Seoul 120-749, South Korea Translational Research Center for Protein Function Control; Department of Biotechnology, College of Life Science and Biotechnology; and Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, College of Medicine; Yonsei University, Seoul 120-749, South Korea
| |
Collapse
|
41
|
Blagodatski A, Poteryaev D, Katanaev VL. Targeting the Wnt pathways for therapies. MOLECULAR AND CELLULAR THERAPIES 2014; 2:28. [PMID: 26056595 PMCID: PMC4452063 DOI: 10.1186/2052-8426-2-28] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 09/05/2014] [Indexed: 12/16/2022]
Abstract
The Wnt/β-catenin signaling pathway is crucial in animal development from sponges to humans. Its activity in the adulthood is less general, with exceptions having huge medical importance. Namely, improper activation of this pathway is carcinogenic in many tissues, most notably in the colon, liver and the breast. On the other hand, the Wnt/β-catenin signaling must be re-activated in cases of tissue damage, and insufficient activation results in regeneration failure and degeneration. These both medically important implications are unified by the emerging importance of this signaling pathway in the control of proliferation of various types of stem cells, crucial for tissue regeneration and, in case of cancer stem cells – cancer progression and relapse. This article aims at briefly reviewing the current state of knowledge in the field of Wnt signaling, followed by a detailed discussion of current medical developments targeting distinct branches of the Wnt pathway for anti-cancer and pro-regeneration therapies.
Collapse
Affiliation(s)
- Artem Blagodatski
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russian Federation
| | | | - Vladimir L Katanaev
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
42
|
Blagodatski A, Poteryaev D, Katanaev VL. Targeting the Wnt pathways for therapies. MOLECULAR AND CELLULAR THERAPIES 2014; 2:28. [PMID: 26056595 PMCID: PMC4452063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 09/05/2014] [Indexed: 11/21/2023]
Abstract
The Wnt/β-catenin signaling pathway is crucial in animal development from sponges to humans. Its activity in the adulthood is less general, with exceptions having huge medical importance. Namely, improper activation of this pathway is carcinogenic in many tissues, most notably in the colon, liver and the breast. On the other hand, the Wnt/β-catenin signaling must be re-activated in cases of tissue damage, and insufficient activation results in regeneration failure and degeneration. These both medically important implications are unified by the emerging importance of this signaling pathway in the control of proliferation of various types of stem cells, crucial for tissue regeneration and, in case of cancer stem cells - cancer progression and relapse. This article aims at briefly reviewing the current state of knowledge in the field of Wnt signaling, followed by a detailed discussion of current medical developments targeting distinct branches of the Wnt pathway for anti-cancer and pro-regeneration therapies.
Collapse
Affiliation(s)
- Artem Blagodatski
- />Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russian Federation
| | | | - Vladimir L Katanaev
- />Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
43
|
Rousseau AF, Bargues L, Bever HL, Vest P, Cavalier E, Ledoux D, Piérard GE, Damas P. Effect of gamma-hydroxybutyrate on keratinocytes proliferation: A preliminary prospective controlled study in severe burn patients. Int J Crit Illn Inj Sci 2014; 4:108-13. [PMID: 25024938 PMCID: PMC4093961 DOI: 10.4103/2229-5151.134150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Hypermetabolism and hyposomatotropism related to severe burns lead to impaired wound healing. Growth hormone (GH) boosts wound healing notably following stimulation of the production of insulin-like growth factor-1 (IGF1), a mitogen factor for keratinocytes. Gamma-hydroxybutyrate (GHB) stimulates endogenous GH secretion. AIM To assess effects of GHB sedation on keratinocytes proliferation (based on immunohistochemical techniques). DESIGN Monocentric, prospective, controlled trial. MATERIALS AND METHODS Patients (aging 18-65 years, burn surface area >30%, expected to be sedated for at least one month) were alternately allocated, at the 5(th) day following injury, in three groups according to the intravenous GHB dose administered for 21 days: Evening bolus of 50 mg/kg (Group B), continuous infusion at the rate of 10 mg/kg/h (Group C), or absence of GHB (Group P). They all received local standard cares. Immunohistochemistry (Ki67/MIB-1, Ulex europaeus agglutinin-1 and Mac 387 antibodies) was performed at D21 on adjacent unburned skin sample for assessing any keratinocyte activation. Serum IGF1 levels were measured at initiation and completion of the protocol. STATISTICAL ANALYSIS Categorical variables were compared with Chi-square test. Comparisons of medians were made using Kruskal-Wallis test. Post hoc analyses were performed using Mann-Whitney test with Bonferroni correction for multiple comparisons. A P < 0.05 was considered to be statistically significant. RESULTS A total of 14 patients completed the study (Group B: n = 5, Group C: n = 5, Group P: n = 4). Continuous administration of GHB was associated with a significant higher Ki67 immunolabeling at D21 (P = 0.049) and with a significant higher increase in the IGF1 concentrations at D21 (P = 0.024). No adverse effects were disclosed. CONCLUSIONS Our preliminary data support a positive effect of GHB on keratinocyte proliferation and are encouraging enough to warrant large prospective studies.
Collapse
Affiliation(s)
| | - Laurent Bargues
- Burn Centre, Percy Military Teaching Hospital, Clamart, France
| | - Hervé Le Bever
- Burn Centre, Percy Military Teaching Hospital, Clamart, France
| | - Philippe Vest
- Clinical Chemistry, Percy Military Teaching Hospital, Clamart, France
| | | | - Didier Ledoux
- Intensive Care Unit and Burn Centre, University Hospital, Liège, Belgium
| | | | - Pierre Damas
- Intensive Care Unit and Burn Centre, University Hospital, Liège, Belgium
| |
Collapse
|
44
|
Lorencini M, Brohem CA, Dieamant GC, Zanchin NI, Maibach HI. Active ingredients against human epidermal aging. Ageing Res Rev 2014; 15:100-15. [PMID: 24675046 DOI: 10.1016/j.arr.2014.03.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 03/10/2014] [Accepted: 03/17/2014] [Indexed: 02/07/2023]
Abstract
The decisive role of the epidermis in maintaining body homeostasis prompted studies to evaluate the changes in epidermal structure and functionality over the lifetime. This development, along with the identification of molecular mechanisms of epidermal signaling, maintenance, and differentiation, points to a need for new therapeutic alternatives to treat and prevent skin aging. In addition to recovering age- and sun-compromised functions, proper treatment of the epidermis has important esthetic implications. This study reviews active ingredients capable of counteracting symptoms of epidermal aging, organized according to the regulation of specific age-affected epidermal functions: (1) several compounds, other than retinoids and derivatives, act on the proliferation and differentiation of keratinocytes, supporting the protective barrier against mechanical and chemical insults; (2) natural lipidic compounds, as well as glycerol and urea, are described as agents for maintaining water-ion balance; (3) regulation of immunological pathogen defense can be reinforced by natural extracts and compounds, such as resveratrol; and (4) antioxidant exogenous sources enriched with flavonoids and vitamin C, for example, improve solar radiation protection and epidermal antioxidant activity. The main objective is to provide a functional classification of active ingredients as regulatory elements of epidermal homeostasis, with potential cosmetic and/or dermatological applications.
Collapse
|
45
|
Chiara Barsotti M, Losi P, Briganti E, Sanguinetti E, Magera A, Al Kayal T, Feriani R, Di Stefano R, Soldani G. Effect of platelet lysate on human cells involved in different phases of wound healing. PLoS One 2013; 8:e84753. [PMID: 24386412 PMCID: PMC3873992 DOI: 10.1371/journal.pone.0084753] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 11/19/2013] [Indexed: 12/28/2022] Open
Abstract
Background Platelets are rich in mediators able to positively affect cell activity in wound healing. Aim of this study was to characterize the effect of different concentrations of human pooled allogeneic platelet lysate on human cells involved in the different phases of wound healing (inflammatory phase, angiogenesis, extracellular matrix secretion and epithelialization). Methodology/Principal Findings Platelet lysate effect was studied on endothelial cells, monocytes, fibroblasts and keratinocytes, in terms of viability and proliferation, migration, angiogenesis, tissue repair pathway activation (ERK1/2) and inflammatory response evaluation (NFκB). Results were compared both with basal medium and with a positive control containing serum and growth factors. Platelet lysate induced viability and proliferation at the highest concentrations tested (10% and 20% v/v). Whereas both platelet lysate concentrations increased cell migration, only 20% platelet lysate was able to significantly promote angiogenic activity (p<0.05 vs. control), comparably to the positive control. Both platelet lysate concentrations activated important inflammatory pathways such as ERK1/2 and NFκB with the same early kinetics, whereas the effect was different for later time-points. Conclusion/Significance These data suggest the possibility of using allogeneic platelet lysate as both an alternative to growth factors commonly used for cell culture and as a tool for clinical regenerative application for wound healing.
Collapse
Affiliation(s)
- Maria Chiara Barsotti
- Department of Surgery, Medical, Molecular, and Critical Area Pathology, University of Pisa, Pisa, Italy
- * E-mail:
| | - Paola Losi
- Institute of Clinical Physiology, National Research Council, Massa, Italy
| | - Enrica Briganti
- Institute of Clinical Physiology, National Research Council, Massa, Italy
| | - Elena Sanguinetti
- Institute of Clinical Physiology, National Research Council, Massa, Italy
| | | | - Tamer Al Kayal
- Institute of Clinical Physiology, National Research Council, Massa, Italy
| | - Roberto Feriani
- Department of Surgery, Medical, Molecular, and Critical Area Pathology, University of Pisa, Pisa, Italy
| | - Rossella Di Stefano
- Department of Surgery, Medical, Molecular, and Critical Area Pathology, University of Pisa, Pisa, Italy
| | - Giorgio Soldani
- Institute of Clinical Physiology, National Research Council, Massa, Italy
| |
Collapse
|
46
|
The small molecule indirubin-3'-oxime activates Wnt/β-catenin signaling and inhibits adipocyte differentiation and obesity. Int J Obes (Lond) 2013; 38:1044-52. [PMID: 24232498 PMCID: PMC4125748 DOI: 10.1038/ijo.2013.209] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 10/10/2013] [Accepted: 11/04/2013] [Indexed: 01/21/2023]
Abstract
Objectives: Activation of the Wnt/β-catenin signaling pathway inhibits adipogenesis by maintaining preadipocytes in an undifferentiated state. We investigated the effect of indirubin-3′-oxime (I3O), which was screened as an activator of the Wnt/β-catenin signaling, on inhibiting the preadipocyte differentiation in vitro and in vivo. Methods: 3T3L1 preadipocytes were differentiated with 0, 4 or 20 μM of I3O. The I3O effect on adipocyte differentiation was observed by Oil-red-O staining. Activation of Wnt/β-catenin signaling in I3O-treated 3T3L1 cells was shown using immunocytochemical and immunoblotting analyses for β-catenin. The regulation of adipogenic markers was analyzed via real-time reverse transcription-PCR (RT-PCR) and immunoblotting analyses. For the in vivo study, mice were divided into five different dietary groups: chow diet, high-fat diet (HFD), HFD supplemented with I3O at 5, 25 and 100 mg kg−1. After 8 weeks, adipose and liver tissues were excised from the mice and subject to morphometry, real-time RT-PCR, immunoblotting and histological or immunohistochemical analyses. In addition, adipokine and insulin concentrations in serum of the mice were accessed by enzyme-linked immunosorbent assay. Results: Using a cell-based approach to screen a library of pharmacologically active small molecules, we identified I3O as a Wnt/β-catenin pathway activator. I3O inhibited the differentiation of 3T3-L1 cells into mature adipocytes and decreased the expression of adipocyte markers, CCAAT/enhancer-binding protein α and peroxisome proliferator-activated receptor γ, at both mRNA and protein levels. In vivo, I3O inhibited the development of obesity in HFD-fed mice by attenuating HFD-induced body weight gain and visceral fat accumulation without showing any significant toxicity. Factors associated with metabolic disorders such as hyperlipidemia and hyperglycemia were also improved by treatment of I3O. Conclusion: Activation of the Wnt/β-catenin signaling pathway can be used as a therapeutic strategy for the treatment of obesity and metabolic syndrome and implicates I3O as a candidate anti-obesity agent.
Collapse
|
47
|
Schmidt A, Wende K, Bekeschus S, Bundscherer L, Barton A, Ottmüller K, Weltmann KD, Masur K. Non-thermal plasma treatment is associated with changes in transcriptome of human epithelial skin cells. Free Radic Res 2013; 47:577-92. [DOI: 10.3109/10715762.2013.804623] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|