1
|
Lax C, Nicolás FE, Navarro E, Garre V. Molecular mechanisms that govern infection and antifungal resistance in Mucorales. Microbiol Mol Biol Rev 2024; 88:e0018822. [PMID: 38445820 PMCID: PMC10966947 DOI: 10.1128/mmbr.00188-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
SUMMARYThe World Health Organization has established a fungal priority pathogens list that includes species critical or highly important to human health. Among them is the order Mucorales, a fungal group comprising at least 39 species responsible for the life-threatening infection known as mucormycosis. Despite the continuous rise in cases and the poor prognosis due to innate resistance to most antifungal drugs used in the clinic, Mucorales has received limited attention, partly because of the difficulties in performing genetic manipulations. The COVID-19 pandemic has further escalated cases, with some patients experiencing the COVID-19-associated mucormycosis, highlighting the urgent need to increase knowledge about these fungi. This review addresses significant challenges in treating the disease, including delayed and poor diagnosis, the lack of accurate global incidence estimation, and the limited treatment options. Furthermore, it focuses on the most recent discoveries regarding the mechanisms and genes involved in the development of the disease, antifungal resistance, and the host defense response. Substantial advancements have been made in identifying key fungal genes responsible for invasion and tissue damage, host receptors exploited by the fungus to invade tissues, and mechanisms of antifungal resistance. This knowledge is expected to pave the way for the development of new antifungals to combat mucormycosis. In addition, we anticipate significant progress in characterizing Mucorales biology, particularly the mechanisms involved in pathogenesis and antifungal resistance, with the possibilities offered by CRISPR-Cas9 technology for genetic manipulation of the previously intractable Mucorales species.
Collapse
Affiliation(s)
- Carlos Lax
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Francisco E. Nicolás
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Eusebio Navarro
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Victoriano Garre
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| |
Collapse
|
2
|
Zhang M, Xu W, Mei H, Song G, Ge N, Tao Y, Liu W, Liang G. Comparative genomics predict specific genes in potential mucorales identification. Arch Microbiol 2023; 205:320. [PMID: 37640972 DOI: 10.1007/s00203-023-03659-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/03/2023] [Accepted: 08/13/2023] [Indexed: 08/31/2023]
Abstract
Mucoralean fungi could cause mucormycosis in humans, particularly in immunodeficient individuals and those with diabetes mellitus or trauma. With plenty of species and genera, their molecular identification and pathogenicity have a large deviation. Reported cases of mucormycosis showed frequent occurrence in Rhizopus species, Mucor species, and Lichtheimia species. We analyzed the whole genome sequences of 25 species of the top 10 Mucorales genera, along with another 22 important pathogenic non-Mucorales species, to dig the target genes for monitoring Mucorales species and identify potential genomic imprints of virulence in them. Mucorales-specific genes have been found in various orthogroups extracted by Python script, while genus-specific genes were annotated covering cellular structure, biochemistry metabolism, molecular processing, and signal transduction. Proteins related to the virulence of Mucorales species varied with distinct significance in copy numbers, in which Orthofinder was conducted. Based on our fresh retrospective analysis of mucormycosis, a comparative genomic analysis of pathogenic Mucorales was conducted in more frequent pathogens. Specific orthologs between Mucorales and non-Mucoralean pathogenic fungi were discussed in detail. Referring to the previously reported virulence proteins, we included more frequent pathogenic Mucorales and compared them in Mucorales species and non-Mucorales species. Besides, more samples are needed to further verify the potential target genes.
Collapse
Affiliation(s)
- Meijie Zhang
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, 210042, China
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Wenqi Xu
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, 210042, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, 210042, China
| | - Huan Mei
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, 210042, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, 210042, China
| | - Ge Song
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, 210042, China
- Department of Dermatology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Naicen Ge
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, 210042, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, 210042, China
- CAMS Collection Center of Pathogen Microorganisms-D (CAMS-CCPM-D), Nanjing, 210042, China
| | - Ye Tao
- Shanghai Biozeron Biotechnology Co., Ltd, Shanghai, 201800, China
| | - Weida Liu
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, 210042, China.
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, 210042, China.
- CAMS Collection Center of Pathogen Microorganisms-D (CAMS-CCPM-D), Nanjing, 210042, China.
| | - Guanzhao Liang
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, 210042, China.
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, 210042, China.
- CAMS Collection Center of Pathogen Microorganisms-D (CAMS-CCPM-D), Nanjing, 210042, China.
| |
Collapse
|
3
|
Pham D, Howard-Jones AR, Sparks R, Stefani M, Sivalingam V, Halliday CL, Beardsley J, Chen SCA. Epidemiology, Modern Diagnostics, and the Management of Mucorales Infections. J Fungi (Basel) 2023; 9:659. [PMID: 37367595 DOI: 10.3390/jof9060659] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/28/2023] Open
Abstract
Mucormycosis is an uncommon, yet deadly invasive fungal infection caused by the Mucorales moulds. These pathogens are a WHO-assigned high-priority pathogen group, as mucormycosis incidence is increasing, and there is unacceptably high mortality with current antifungal therapies. Current diagnostic methods have inadequate sensitivity and specificity and may have issues with accessibility or turnaround time. Patients with diabetes mellitus and immune compromise are predisposed to infection with these environmental fungi, but COVID-19 has established itself as a new risk factor. Mucorales also cause healthcare-associated outbreaks, and clusters associated with natural disasters have also been identified. Robust epidemiological surveillance into burden of disease, at-risk populations, and emerging pathogens is required. Emerging serological and molecular techniques may offer a faster route to diagnosis, while newly developed antifungal agents show promise in preliminary studies. Equitable access to these emerging diagnostic techniques and antifungal therapies will be key in identifying and treating mucormycosis, as delayed initiation of therapy is associated with higher mortality.
Collapse
Affiliation(s)
- David Pham
- Centre for Infectious Diseases & Microbiology, Westmead Hospital, Westmead, NSW 2170, Australia
| | - Annaleise R Howard-Jones
- Centre for Infectious Diseases & Microbiology Laboratory Services, NSW Health Pathology-Institute of Clinical Pathology & Medical Research, Westmead Hospital, Westmead, NSW 2170, Australia
- Faculty of Medicine & Health, University of Sydney, Camperdown, NSW 2006, Australia
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, NSW 2006, Australia
| | - Rebecca Sparks
- Douglass Hanly Moir Pathology, Sydney, NSW 2113, Australia
| | - Maurizio Stefani
- Centre for Infectious Diseases & Microbiology Laboratory Services, NSW Health Pathology-Institute of Clinical Pathology & Medical Research, Westmead Hospital, Westmead, NSW 2170, Australia
| | - Varsha Sivalingam
- Centre for Infectious Diseases & Microbiology Laboratory Services, NSW Health Pathology-Institute of Clinical Pathology & Medical Research, Westmead Hospital, Westmead, NSW 2170, Australia
| | - Catriona L Halliday
- Centre for Infectious Diseases & Microbiology Laboratory Services, NSW Health Pathology-Institute of Clinical Pathology & Medical Research, Westmead Hospital, Westmead, NSW 2170, Australia
| | - Justin Beardsley
- Centre for Infectious Diseases & Microbiology, Westmead Hospital, Westmead, NSW 2170, Australia
- Faculty of Medicine & Health, University of Sydney, Camperdown, NSW 2006, Australia
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, NSW 2006, Australia
- Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
| | - Sharon C-A Chen
- Centre for Infectious Diseases & Microbiology Laboratory Services, NSW Health Pathology-Institute of Clinical Pathology & Medical Research, Westmead Hospital, Westmead, NSW 2170, Australia
- Faculty of Medicine & Health, University of Sydney, Camperdown, NSW 2006, Australia
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
4
|
Chen X, Jia X, Bing J, Zhang H, Hong N, Liu Y, Xi H, Wang W, Liu Z, Zhang Q, Li L, Kang M, Xiao Y, Yang B, Lin Y, Xu H, Fan X, Huang J, Gong J, Xu J, Xie X, Yang W, Zhang G, Zhang J, Kang W, Wang H, Hou X, Xiao M, Xu Y. Clonal Dissemination of Antifungal-Resistant Candida haemulonii, China. Emerg Infect Dis 2023; 29:576-584. [PMID: 36823029 PMCID: PMC9973686 DOI: 10.3201/eid2903.221082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Candida haemulonii, a relative of C. auris, frequently shows antifungal resistance and is transmissible. However, molecular tools for genotyping and investigating outbreaks are not yet established. We performed genome-based population analysis on 94 C. haemulonii strains, including 58 isolates from China and 36 other published strains. Phylogenetic analysis revealed that C. haemulonii can be divided into 4 clades. Clade 1 comprised strains from China and other global strains; clades 2-4 contained only isolates from China, were more recently evolved, and showed higher antifungal resistance. Four regional epidemic clusters (A, B, C, and D) were identified in China, each comprising ≥5 cases (largest intracluster pairwise single-nucleotide polymorphism differences <50 bp). Cluster A was identified in 2 hospitals located in the same city, suggesting potential intracity transmissions. Cluster D was resistant to 3 classes of antifungals. The emergence of more resistant phylogenetic clades and regional dissemination of antifungal-resistant C. haemulonii warrants further monitoring.
Collapse
|
5
|
Moskaluk A, Darlington L, Kuhn S, Behzadi E, Gagne RB, Kozakiewicz CP, VandeWoude S. Genetic Characterization of Microsporum canis Clinical Isolates in the United States. J Fungi (Basel) 2022; 8:676. [PMID: 35887433 PMCID: PMC9321804 DOI: 10.3390/jof8070676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 12/16/2022] Open
Abstract
Microsporum canis is the primary agent causing dermatophytosis in cats, and also infects humans, dogs, and other species. Assessment of genetic variation among M. canis isolates in the United States has not been conducted. Further, M. canis mating type and assessment of disease severity associated with genotypic characteristics have not been rigorously evaluated. We therefore isolated M. canis from 191 domestic cats across the US and characterized genotypes by evaluation of ITS sequence, MAT locus, and microsatellite loci analysis. The genes SSU1 and SUB3, which are associated with keratin adhesion and digestion, were sequenced from a subset of isolates to evaluate potential genetic associations with virulence. Analysis of microsatellite makers revealed three M. canis genetic clusters. Both clinic location and disease severity were significant predictors of microsatellite variants. 100% of the M. canis isolates were MAT1-1 mating gene type, indicating that MAT1-2 is very rare or extinct in the US and that asexual reproduction is the dominant form of replication. No genetic variation at SSU1 and SUB3 was observed. These findings pave the way for novel testing modalities for M. canis and provide insights about transmission and ecology of this ubiquitous and relatively uncharacterized agent.
Collapse
Affiliation(s)
- Alex Moskaluk
- Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (A.M.); (L.D.); (E.B.); (C.P.K.)
| | - Lauren Darlington
- Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (A.M.); (L.D.); (E.B.); (C.P.K.)
| | - Sally Kuhn
- Behavior Analysis, Simmons University, Boston, MA 02115, USA;
| | - Elisa Behzadi
- Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (A.M.); (L.D.); (E.B.); (C.P.K.)
| | - Roderick B. Gagne
- Pathobiology, Wildlife Futures Program, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Christopher P. Kozakiewicz
- Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (A.M.); (L.D.); (E.B.); (C.P.K.)
| | - Sue VandeWoude
- Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (A.M.); (L.D.); (E.B.); (C.P.K.)
| |
Collapse
|
6
|
Boan P, Pang S, Mowlaboccus S, Wrobel JP, Musk M, Lavender M, Yaw MC, Hernest A, MacQuillan G, Dembo LG, Coombs GW, Gardam DJ, Pereira LA, Robinson JO. Apophysomyces Variabilis Infection in Transplant Recipients due to Unrecognized Infection in an Intravenous Drug-Using Donor. Transplantation 2022; 106:e169-e171. [PMID: 35100230 DOI: 10.1097/tp.0000000000003921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Peter Boan
- Department of Infectious Diseases, Fiona Stanley Hospital, Perth, WA, Australia.,Department of Microbiology, PathWest Laboratory Medicine WA, Fiona Stanley Hospital, Perth, WA, Australia
| | - Stanley Pang
- Department of Microbiology, PathWest Laboratory Medicine WA, Fiona Stanley Hospital, Perth, WA, Australia.,College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Shakeel Mowlaboccus
- Department of Microbiology, PathWest Laboratory Medicine WA, Fiona Stanley Hospital, Perth, WA, Australia.,College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Jeremy P Wrobel
- Advanced Lung Disease Unit, Fiona Stanley Hospital, Perth, WA, Australia.,Department of Medicine, University of Notre Dame Australia, Perth, WA, Australia
| | - Michael Musk
- Advanced Lung Disease Unit, Fiona Stanley Hospital, Perth, WA, Australia
| | - Melanie Lavender
- Advanced Lung Disease Unit, Fiona Stanley Hospital, Perth, WA, Australia
| | - Meow Cheong Yaw
- Advanced Lung Disease Unit, Fiona Stanley Hospital, Perth, WA, Australia
| | - Adrian Hernest
- Advanced Lung Disease Unit, Fiona Stanley Hospital, Perth, WA, Australia
| | - Gerry MacQuillan
- Western Australian Liver Transplantation Service, Sir Charles Gairdner Hospital, Perth, WA, Australia.,School of Medicine and Pharmacology, University of Western Australia, Perth, WA, Australia
| | - Lawrence G Dembo
- Advanced Heart Failure and Cardiac Transplant Service, Fiona Stanley Hospital, Perth, WA, Australia
| | - Geoffrey W Coombs
- Department of Microbiology, PathWest Laboratory Medicine WA, Fiona Stanley Hospital, Perth, WA, Australia.,College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Dianne J Gardam
- Department of Microbiology, PathWest Laboratory Medicine WA, Fiona Stanley Hospital, Perth, WA, Australia
| | - Lynette A Pereira
- Department of Infectious Diseases, Fiona Stanley Hospital, Perth, WA, Australia.,Department of Microbiology, PathWest Laboratory Medicine WA, Fiona Stanley Hospital, Perth, WA, Australia
| | - J Owen Robinson
- Department of Infectious Diseases, Fiona Stanley Hospital, Perth, WA, Australia.,Department of Microbiology, PathWest Laboratory Medicine WA, Fiona Stanley Hospital, Perth, WA, Australia.,College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia.,Department of Infectious Diseases, Royal Perth Hospital, Perth, WA, Australia
| |
Collapse
|
7
|
Kachuei R, Badali H, Vaezi A, Jafari NJ, Ahmadikia K, Kord M, Aala F, Al-Hatmi AM, Khodavaisy S. Fatal necrotising cutaneous mucormycosis due to novel Saksenaea species: a case study. J Wound Care 2021; 30:465-468. [PMID: 34121440 DOI: 10.12968/jowc.2021.30.6.465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This case report describes the progressive wound infection in the left thigh of a 34-year-old man due to an old landmine explosion. The infection developed into rapidly spreading skin and soft tissue necrotising Saksenaea infection, despite antifungal therapy and surgical debridement. The report provides evidence that Saksenaea spp. should be added to the list of mucoralean fungi that can cause severe necrotising infection. It also highlights the need for improved early diagnostic procedures and enhanced understanding of Saksenaea virulence factors that contribute to necrotising infection.
Collapse
Affiliation(s)
- Reza Kachuei
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Badali
- Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Afsane Vaezi
- Department of Medical Laboratory Science, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | | | - Kazem Ahmadikia
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Kord
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Aala
- Department of Parasitology and Mycology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Abdullah Ms Al-Hatmi
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.,Directorate General of Health Services, Ministry of Health, Oman.,Centre of Expertise in Mycology Radboud University Medical Centre/Canisius Wilhelmina Hospital, Nijmegen, the Netherlands
| | - Sadegh Khodavaisy
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Bowers JR, Monroy-Nieto J, Gade L, Travis J, Refojo N, Abrantes R, Santander J, French C, Dignani MC, Hevia AI, Roe CC, Lemmer D, Lockhart SR, Chiller T, Litvintseva AP, Clara L, Engelthaler DM. Rhizopus microsporus Infections Associated with Surgical Procedures, Argentina, 2006-2014. Emerg Infect Dis 2021; 26:937-944. [PMID: 32310081 PMCID: PMC7181922 DOI: 10.3201/eid2605.191045] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rhizopus spp. fungi are ubiquitous in the environment and a rare but substantial cause of infection in immunosuppressed persons and surgery patients. During 2005–2017, an abnormally high number of Rhizopus infections in surgery patients, with no apparent epidemiologic links, were reported in Argentina. To determine the likelihood of a common source of the cluster, we performed whole-genome sequencing on samples collected during 2006–2014. Most isolates were separated by >60 single-nucleotide polymorphisms, and we found no evidence for recombination or nonneutral mutation accumulation; these findings do not support common source or patient-to-patient transmission. Assembled genomes of most isolates were ≈25 Mbp, and multiple isolates had substantially larger assembled genomes (43–51 Mbp), indicative of infections with strain types that underwent genome expansion. Whole-genome sequencing has become an essential tool for studying epidemiology of fungal infections. Less discriminatory techniques may miss true relationships, possibly resulting in inappropriate attribution of point source.
Collapse
|
9
|
Nguyen MH, Kaul D, Muto C, Cheng SJ, Richter RA, Bruno VM, Liu G, Beyhan S, Sundermann AJ, Mounaud S, Pasculle AW, Nierman WC, Driscoll E, Cumbie R, Clancy CJ, Dupont CL. Genetic diversity of clinical and environmental Mucorales isolates obtained from an investigation of mucormycosis cases among solid organ transplant recipients. Microb Genom 2020; 6:mgen000473. [PMID: 33245689 PMCID: PMC8116672 DOI: 10.1099/mgen.0.000473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 10/27/2020] [Indexed: 12/20/2022] Open
Abstract
Mucormycoses are invasive infections by Rhizopus species and other Mucorales. Over 10 months, four solid organ transplant (SOT) recipients at our centre developed mucormycosis due to Rhizopus microsporus (n=2), R. arrhizus (n=1) or Lichtheimia corymbifera (n=1), at a median 31.5 days (range: 13-34) post-admission. We performed whole genome sequencing (WGS) on 72 Mucorales isolates (45 R. arrhizus, 19 R. delemar, six R. microsporus, two Lichtheimia species) from these patients, from five patients with community-acquired mucormycosis, and from hospital and regional environments. Isolates were compared by core protein phylogeny and global genomic features, including genome size, guanine-cytosine percentages, shared protein families and paralogue expansions. Patient isolates fell into six core phylogenetic lineages (clades). Phylogenetic and genomic similarities of R. microsporus isolates recovered 7 months apart from two SOT recipients in adjoining hospitals suggested a potential common source exposure. However, isolates from other patients and environmental sites had unique genomes. Many isolates that were indistinguishable by core phylogeny were distinct by one or more global genomic comparisons. Certain clades were recovered throughout the study period, whereas others were found at particular time points. In conclusion, mucormycosis cases could not be genetically linked to a definitive environmental source. Comprehensive genomic analyses eliminated false associations between Mucorales isolates that would have been assigned using core phylogenetic or less extensive genomic comparisons. The genomic diversity of Mucorales mandates that multiple isolates from individual patients and environmental sites undergo WGS during epidemiological investigations. However, exhaustive surveillance of fungal populations in a hospital and surrounding community is probably infeasible.
Collapse
Affiliation(s)
- M. Hong Nguyen
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Carlene Muto
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Present address: Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Shaoji J. Cheng
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | - Guojun Liu
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Alexander J. Sundermann
- University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | | | - A. William Pasculle
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Eileen Driscoll
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Richard Cumbie
- University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | | |
Collapse
|
10
|
Fun(gi)omics: Advanced and Diverse Technologies to Explore Emerging Fungal Pathogens and Define Mechanisms of Antifungal Resistance. mBio 2020; 11:mBio.01020-20. [PMID: 33024032 PMCID: PMC7542357 DOI: 10.1128/mbio.01020-20] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The landscape of infectious fungal agents includes previously unidentified or rare pathogens with the potential to cause unprecedented casualties in biodiversity, food security, and human health. The influences of human activity, including the crisis of climate change, along with globalized transport, are underlying factors shaping fungal adaptation to increased temperature and expanded geographical regions. Furthermore, the emergence of novel antifungal-resistant strains linked to excessive use of antifungals (in the clinic) and fungicides (in the field) offers an additional challenge to protect major crop staples and control dangerous fungal outbreaks. The landscape of infectious fungal agents includes previously unidentified or rare pathogens with the potential to cause unprecedented casualties in biodiversity, food security, and human health. The influences of human activity, including the crisis of climate change, along with globalized transport, are underlying factors shaping fungal adaptation to increased temperature and expanded geographical regions. Furthermore, the emergence of novel antifungal-resistant strains linked to excessive use of antifungals (in the clinic) and fungicides (in the field) offers an additional challenge to protect major crop staples and control dangerous fungal outbreaks. Hence, the alarming frequency of fungal infections in medical and agricultural settings requires effective research to understand the virulent nature of fungal pathogens and improve the outcome of infection in susceptible hosts. Mycology-driven research has benefited from a contemporary and unified approach of omics technology, deepening the biological, biochemical, and biophysical understanding of these emerging fungal pathogens. Here, we review the current state-of-the-art multi-omics technologies, explore the power of data integration strategies, and highlight discovery-based revelations of globally important and taxonomically diverse fungal pathogens. This information provides new insight for emerging pathogens through an in-depth understanding of well-characterized fungi and provides alternative therapeutic strategies defined through novel findings of virulence, adaptation, and resistance.
Collapse
|
11
|
Pamidimukkala U, Sudhaharan S, Kancharla A, Vemu L, Challa S, Karanam SD, Chavali P, Prakash H, Ghosh AK, Gupta S, Rudramurthy SM, Chakrabarti A. Mucormycosis due to Apophysomyces species complex- 25 years' experience at a tertiary care hospital in southern India. Med Mycol 2020; 58:425-433. [PMID: 31342074 DOI: 10.1093/mmy/myz081] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/06/2019] [Accepted: 07/03/2019] [Indexed: 12/18/2022] Open
Abstract
Apophysomyces elegans species complex is an important cause of cutaneous mucormycosis in India. However, majority of those cases are reported as case reports only. We desired to analyze our patients with Apophysomyces infection reported over 25 years (1992-2017) to understand the epidemiology, management, and outcome of the disease. During the study period 24 cases were reported, and the majority (95.8%) of them presented with necrotizing fasciitis following accidental/surgical/iatrogenic trauma. One patient presented with continuous ambulatory peritoneal dialysis (CAPD) related peritonitis. Healthcare related Apophysomyces infection was noted in 29.2% patients. In addition to trauma, comorbidities were noted in 37.5% patients (type 2diabetes mellitus-6, chronic alcoholism-2, and chronic kidney disease-1). Of the 24 isolates, 11 isolates starting from year 2014 were identified as Apophysomyces variabilis by molecular methods. Majority (95.8%) of the patients were managed surgically with or without amphotericin B deoxycholate therapy, while one patient was treated with amphotericin B deoxycholate alone. Among 24 patients, seven (29.1%) recovered, six (25%) patients could not afford antifungal management and left the hospital against medical advice, and 11 (45.9%) patients died.The present case series highlights that necrotizing fasciitis caused by A. variabilis is prevalent in India, and the disease may be healthcare related. Although diagnosis is not difficult, awareness among surgeons is still limited about the infection, leading to a delay in sending samples to the mycology laboratory. Apophysomyces infection must be considered in the differential diagnosis in apatient with progressive necrosis of a wound who is not responding to antibacterial therapy.
Collapse
Affiliation(s)
- Umabala Pamidimukkala
- Department of Microbiology, Nizam's Institute of Medical Sciences, Hyderabad, Telengana state, India
| | - Sukanya Sudhaharan
- Department of Microbiology, Nizam's Institute of Medical Sciences, Hyderabad, Telengana state, India
| | - Anuradha Kancharla
- Department of Microbiology, Nizam's Institute of Medical Sciences, Hyderabad, Telengana state, India
| | - Lakshmi Vemu
- Department of Microbiology, Nizam's Institute of Medical Sciences, Hyderabad, Telengana state, India
| | - Sundaram Challa
- Dept. of Pathology, Nizam's Institute of Medical Sciences, Hyderabad, Telengana state, India
| | - Sandhya Devi Karanam
- Department of Microbiology, Nizam's Institute of Medical Sciences, Hyderabad, Telengana state, India
| | - Padmasri Chavali
- Department of Microbiology, Nizam's Institute of Medical Sciences, Hyderabad, Telengana state, India
| | - Hariprasath Prakash
- Department of Medical Microbiology, Post graduate Institute of Medical Education and Research, Chandigarh, India
| | - Anup Kumar Ghosh
- Department of Medical Microbiology, Post graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sunita Gupta
- Department of Medical Microbiology, Post graduate Institute of Medical Education and Research, Chandigarh, India
| | - Shivaprakash M Rudramurthy
- Department of Medical Microbiology, Post graduate Institute of Medical Education and Research, Chandigarh, India
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Post graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
12
|
Xu Q, Xu T, Zhuang Y, Liu X, Li Y, Chen Y. In Vivo Development of Polymyxin B Resistance in Klebsiella pneumoniae owing to a 42 bp Deletion in the Sequence of phoQ. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5868479. [PMID: 32382559 PMCID: PMC7193288 DOI: 10.1155/2020/5868479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/30/2020] [Indexed: 11/18/2022]
Abstract
Polymyxins resistance has emerged worldwide and is threatening the treatment efficacy of multidrug resistant Klebsiella pneumoniae in humans and animals. In this research, we employed whole-genome sequencing (WGS) to investigate the polymyxin B resistance mechanism in selected polymyxin B-susceptible and polymyxin B-resistant K. pneumoniae, isolated from one patient of Huashan Hospital affiliated to Fudan University. The WGS results showed that the two K. pneumoniae all belong to ST11. The average nucleotide identity between the two K. pneumoniae was nearly 100%. No sense mutations of polymyxins resistance associated genes (pmrA, pmrB, phoP, mgrB) were observed in polymyxin B-resistant K. pneumonia (PRKP) compared to the polymyxin B-susceptible isolate. A 42 bp deletion was found in the sequence of phoQ in PRKP. The deletion of amino acid occurred on the periplasmic domain of PhoQ protein. We speculate that this is the domain that MgrB protein interact with the PhoQ protein and negatively regulate the PhoP/PhoQ system. qRT-PCR analysis revealed an overexpression of the pmrA (6.8-fold), pmrB (151.9-fold), pmrC (14.5-fold), pmrK (287.9-fold), phoP (14.5-fold), and phoQ (16.8-fold) genes in the polymyxin B-resistant isolate compared to the expression of the polymyxin B-susceptible K. pneumoniae isolate, suggesting that the phoQ deletion maybe responsible for the increased expression levels of those genes. In conclusion, this study identified a 42 bp deletion in the sequence of phoQ as being responsible for the overexpression of pmrCAB and pmrHFIJKLM operons, leading to resistance to polymyxin B.
Collapse
Affiliation(s)
- Qingqing Xu
- Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Teng Xu
- Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yuan Zhuang
- Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiaofen Liu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission, Shanghai 200040, China
| | - Ying Li
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission, Shanghai 200040, China
| | - Yijian Chen
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission, Shanghai 200040, China
| |
Collapse
|
13
|
Cornely OA, Alastruey-Izquierdo A, Arenz D, Chen SCA, Dannaoui E, Hochhegger B, Hoenigl M, Jensen HE, Lagrou K, Lewis RE, Mellinghoff SC, Mer M, Pana ZD, Seidel D, Sheppard DC, Wahba R, Akova M, Alanio A, Al-Hatmi AMS, Arikan-Akdagli S, Badali H, Ben-Ami R, Bonifaz A, Bretagne S, Castagnola E, Chayakulkeeree M, Colombo AL, Corzo-León DE, Drgona L, Groll AH, Guinea J, Heussel CP, Ibrahim AS, Kanj SS, Klimko N, Lackner M, Lamoth F, Lanternier F, Lass-Floerl C, Lee DG, Lehrnbecher T, Lmimouni BE, Mares M, Maschmeyer G, Meis JF, Meletiadis J, Morrissey CO, Nucci M, Oladele R, Pagano L, Pasqualotto A, Patel A, Racil Z, Richardson M, Roilides E, Ruhnke M, Seyedmousavi S, Sidharthan N, Singh N, Sinko J, Skiada A, Slavin M, Soman R, Spellberg B, Steinbach W, Tan BH, Ullmann AJ, Vehreschild JJ, Vehreschild MJGT, Walsh TJ, White PL, Wiederhold NP, Zaoutis T, Chakrabarti A. Global guideline for the diagnosis and management of mucormycosis: an initiative of the European Confederation of Medical Mycology in cooperation with the Mycoses Study Group Education and Research Consortium. THE LANCET. INFECTIOUS DISEASES 2019; 19:e405-e421. [PMID: 31699664 PMCID: PMC8559573 DOI: 10.1016/s1473-3099(19)30312-3] [Citation(s) in RCA: 916] [Impact Index Per Article: 183.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/10/2019] [Accepted: 06/05/2019] [Indexed: 12/20/2022]
Abstract
Mucormycosis is a difficult to diagnose rare disease with high morbidity and mortality. Diagnosis is often delayed, and disease tends to progress rapidly. Urgent surgical and medical intervention is lifesaving. Guidance on the complex multidisciplinary management has potential to improve prognosis, but approaches differ between health-care settings. From January, 2018, authors from 33 countries in all United Nations regions analysed the published evidence on mucormycosis management and provided consensus recommendations addressing differences between the regions of the world as part of the "One World One Guideline" initiative of the European Confederation of Medical Mycology (ECMM). Diagnostic management does not differ greatly between world regions. Upon suspicion of mucormycosis appropriate imaging is strongly recommended to document extent of disease and is followed by strongly recommended surgical intervention. First-line treatment with high-dose liposomal amphotericin B is strongly recommended, while intravenous isavuconazole and intravenous or delayed release tablet posaconazole are recommended with moderate strength. Both triazoles are strongly recommended salvage treatments. Amphotericin B deoxycholate is recommended against, because of substantial toxicity, but may be the only option in resource limited settings. Management of mucormycosis depends on recognising disease patterns and on early diagnosis. Limited availability of contemporary treatments burdens patients in low and middle income settings. Areas of uncertainty were identified and future research directions specified.
Collapse
Affiliation(s)
- Oliver A Cornely
- Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany; German Centre for Infection Research (DZIF) partner site Bonn-Cologne, Cologne, Germany; CECAD Cluster of Excellence, University of Cologne, Cologne, Germany; Clinical Trials Center Cologne, University Hospital of Cologne, Cologne, Germany.
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Dorothee Arenz
- Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany; CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
| | - Sharon C A Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, New South Wales Health Pathology, and the Department of Infectious Diseases, Westmead Hospital, School of Medicine, University of Sydney, Sydney, NSW, Australia
| | - Eric Dannaoui
- Université Paris-Descartes, Faculté de Médecine, APHP, Hôpital Européen Georges Pompidou, Unité de Parasitologie-Mycologie, Service de Microbiologie, Paris, France
| | - Bruno Hochhegger
- Radiology, Hospital São Lucas da Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS), Escola de Medicina, Porto Alegre, Brazil; Radiology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Martin Hoenigl
- Section of Infectious Diseases and Tropical Medicine and Division of Pulmonology, Medical University of Graz, Graz, Austria; Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, San Diego, USA
| | - Henrik E Jensen
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, KU Leuven and Clinical Department of Laboratory Medicine and National Reference Center for Mycosis, University Hospitals Leuven, Leuven, Belgium
| | - Russell E Lewis
- Infectious Diseases Clinic, Sant'Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Sibylle C Mellinghoff
- Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany; CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
| | - Mervyn Mer
- Divisions of Critical Care and Pulmonology, Department of Medicine, Charlotte Maxeke Johannesburg Academic Hospital and Faculty of Health Sciences University of the Witwatersrand, Johannesburg, South Africa
| | - Zoi D Pana
- Infectious Diseases Unit, 3rd Department of Paediatrics, Faculty of Medicine, Aristotle University School of Health Sciences, Thessaloniki, Greece; Hippokration General Hospital, Thessaloniki, Greece
| | - Danila Seidel
- Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany; CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
| | - Donald C Sheppard
- Division of Infectious Diseases, Department of Medicine, Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Roger Wahba
- Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Murat Akova
- Department of Infectious Diseases, Hacettepe University School of Medicine, Ankara, Turkey
| | - Alexandre Alanio
- Institut Pasteur, National Reference Center for Invasive Mycoses and Antifungals, Department of Mycology, CNRS UMR2000, Parasitology-Mycology Laboratory, Lariboisière, Saint-Louis, Fernand Widal Hospitals, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Paris, France
| | - Abdullah M S Al-Hatmi
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands; Centre of Expertise in Mycology RadboudUMC/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands; Ministry of Health, Directorate General of Health Services, Ibri, Oman
| | - Sevtap Arikan-Akdagli
- Department of Medical Microbiology, Hacettepe University School of Medicine, Sıhhiye Ankara, Turkey
| | - Hamid Badali
- Department of Medical Mycology/Invasive Fungi Research Center (IFRC), School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ronen Ben-Ami
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Infectious Diseases Unit, Tel Aviv Medical Center, Tel- Aviv, Israel
| | - Alexandro Bonifaz
- Dermatology Service & Mycology Department, Hospital General de México "Dr. Eduardo Liceaga", Mexico City, Mexico
| | - Stéphane Bretagne
- Institut Pasteur, National Reference Center for Invasive Mycoses and Antifungals, Department of Mycology, CNRS UMR2000, Parasitology-Mycology Laboratory, Lariboisière, Saint-Louis, Fernand Widal Hospitals, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Paris, France
| | - Elio Castagnola
- Infectious Diseases Unit, Istituto Giannina Gaslini Children's Hospital, Genoa, Italy
| | - Methee Chayakulkeeree
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Arnaldo L Colombo
- Special Mycology Laboratory, Division of Infectious Diseases, Department of Medicine, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Dora E Corzo-León
- Department of Epidemiology and Infectious Diseases, Hospital General Dr Manuel Gea González, Mexico City, Mexico; Medical Mycology and Fungal Immunology/Wellcome Trust Strategic Award Program, Aberdeen Fungal Group, University of Aberdeen, King's College, Aberdeen, UK
| | - Lubos Drgona
- Oncohematology Clinic, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Andreas H Groll
- InfectiousDisease Research Program, Department of Paediatric Hematology/Oncology and Center for Bone Marrow Transplantation, University Children's Hospital Münster, Münster, Germany
| | - Jesus Guinea
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación v Sanitaria Gregorio Marañón, Madrid, Spain; Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Claus-Peter Heussel
- Diagnostic and Interventional Radiology, Thoracic Clinic, University Hospital Heidelberg, Heidelberg, Germany
| | - Ashraf S Ibrahim
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance, CA, USA
| | - Souha S Kanj
- Department of Internal Medicine, Division of Infectious Diseases, American University of Beirut Medical Center, Beirut, Lebanon
| | - Nikolay Klimko
- Department of Clinical Mycology, Allergology and Immunology, North Western State Medical University, St Petersburg, Russia
| | - Michaela Lackner
- Division of Hygiene and Medical Microbiology, Department of Hygiene, Microbiology and Public Health, Medical University Innsbruck, Innsbruck, Austria
| | - Frederic Lamoth
- Infectious Diseases Service, Department of Medicine and Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland; Institute of Microbiology, Department of Laboratories, Lausanne University Hospital, Lausanne, Switzerland
| | - Fanny Lanternier
- Institut Pasteur, National Reference Center for Invasive Mycoses and Antifungals, Department of Mycology, Paris Descartes University, Necker-Enfants Malades University Hospital, Department of Infectious Diseases and Tropical Medicine, Centre d'Infectiologie Necker-Pasteur, Institut Imagine, AP-HP, Paris, France
| | - Cornelia Lass-Floerl
- Division of Hygiene and Medical Microbiology, Department of Hygiene, Microbiology and Public Health, Medical University Innsbruck, Innsbruck, Austria
| | - Dong-Gun Lee
- Division of Infectious Diseases, Department of Internal Medicine, Catholic Hematology Hospital, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul, Korea
| | - Thomas Lehrnbecher
- Division of Paediatric Haematology and Oncology, Hospital for Children and Adolescents, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Badre E Lmimouni
- School of Medicine and Pharmacy, University Mohammed the fifth, Hay Riad, Rabat, Morocco
| | - Mihai Mares
- Laboratory of Antimicrobial Chemotherapy, Ion Ionescu de la Brad University, Iaşi, Romania
| | - Georg Maschmeyer
- Department of Hematology, Oncology and Palliative Care, Klinikum Ernst von Bergmann, Potsdam, Germany
| | - Jacques F Meis
- Department of Medical Microbiology and Infectious Diseases, Centre of Expertise in Mycology Radboudumc/Canisius Wilhelmina Hospital, Nijmegen, Netherlands
| | - Joseph Meletiadis
- Clinical Microbiology Laboratory, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece; Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Center, Rotterdam, The Netherlands
| | - C Orla Morrissey
- Department of Infectious Diseases, Alfred Health & Monash University, Melbourne, Australia
| | - Marcio Nucci
- Department of Internal Medicine, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rita Oladele
- Department of Medical Microbiology & Parasitology, College of Medicine, University of Lagos, Yaba, Lagos, Nigeria; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Livio Pagano
- Department of Hematology, Fondazione Policlinico Universitario A. Gemelli -IRCCS- Universita Cattolica del Sacro Cuore, Roma, Italy
| | - Alessandro Pasqualotto
- Federal University of Health Sciences of Porto Alegre, Hospital Dom Vicente Scherer, Porto Alegre, Brazil
| | - Atul Patel
- Infectious Diseases Clinic, Vedanta Institute of Medical Sciences, Navarangpura, Ahmeddabad, India
| | - Zdenek Racil
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Malcolm Richardson
- UK NHS Mycology Reference Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Emmanuel Roilides
- Infectious Diseases Unit, 3rd Department of Paediatrics, Faculty of Medicine, Aristotle University School of Health Sciences, Thessaloniki, Greece; Hippokration General Hospital, Thessaloniki, Greece
| | - Markus Ruhnke
- Hämatologie & Internistische Onkologie, Lukas-Krankenhaus Bünde, Onkologische Ambulanz, Bünde, Germany
| | - Seyedmojtaba Seyedmousavi
- Department of Medical Mycology/Invasive Fungi Research Center (IFRC), School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Center of Expertise in Microbiology, Infection Biology and Antimicrobial Pharmacology, Tehran, Iran; Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Neeraj Sidharthan
- Department of Hemato Oncology, Amrita Institute of Medical Sciences, Amrita Viswa Vidyapeetham University, Kochi, India
| | - Nina Singh
- Division of Infectious Diseases, University of Pittsburgh Medical Center and VA Pittsburgh Healthcare System, Infectious Diseases Section, University of Pittsburgh, Pittsburgh, PA, USA
| | - János Sinko
- Infectious Diseases Unit, Szent Istvan and Szent Laszlo Hospital, Budapest, Hungary
| | - Anna Skiada
- Department of Infectious Diseases, Laiko General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Monica Slavin
- University of Melbourne, Melbourne, VIC, Australia; The National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Parkville, Melbourne, VIC, Australia
| | - Rajeev Soman
- P D Hinduja Hospital & Medical Research Centre, Department of Medicine, Veer Sarvarkar Marg, Mumbai, India
| | - Brad Spellberg
- Los Angeles County and University of Southern California (LAC+USC) Medical Center, Los Angeles, CA, USA
| | - William Steinbach
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Ban Hock Tan
- Department of Infectious Diseases, Singapore General Hospital, Singapur, Singapore
| | - Andrew J Ullmann
- Department for Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Jörg J Vehreschild
- Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany; German Centre for Infection Research (DZIF) partner site Bonn-Cologne, Cologne, Germany; Department of Internal Medicine, Hematology/Oncology, Goethe University Frankfurt, Frankfurt, Germany
| | - Maria J G T Vehreschild
- Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany; German Centre for Infection Research (DZIF) partner site Bonn-Cologne, Cologne, Germany; Department of Internal Medicine, Infectious Diseases, Goethe University Frankfurt, Frankfurt, Germany
| | - Thomas J Walsh
- Departments of Medicine, Pediatrics, Microbiology & Immunology, Weill Cornell Medicine, and New York Presbyterian Hospital, New York City, NY, USA
| | - P Lewis White
- Public Health Wales Microbiology Cardiff, UHW, Heath Park, Cardiff, UK
| | - Nathan P Wiederhold
- Fungus Testing Laboratory, University of Texas Health Science Center, San Antonio, TX, USA
| | - Theoklis Zaoutis
- Division of Infectious Diseases, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| |
Collapse
|
14
|
Outbreaks of Mucorales and the Species Involved. Mycopathologia 2019; 185:765-781. [PMID: 31734800 DOI: 10.1007/s11046-019-00403-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/22/2019] [Indexed: 01/27/2023]
Abstract
The order Mucorales is an ancient group of fungi classified in the subphylum Mucoromycotina. Mucorales are mainly fast-growing saprotrophs that belong to the first colonizers of diverse organic materials and represent a permanent part of the human environment. Several species are able to cause human infections (mucormycoses) predominantly in patients with impaired immune system, diabetes, or deep trauma. In this review, we compiled 32 reports on community- and hospital-acquired outbreaks caused by Mucorales. The most common source of mucoralean outbreaks was contaminated medical devices that are responsible for 40.7% of the outbreaks followed by contaminated air (31.3%), traumatic inoculation of soil or foreign bodies (9.4%), and the contact (6.2%) or the ingestion (6.2%) of contaminated plant material. The most prevalent species were Rhizopus arrhizus and R. microsporus causing 57% of the outbreaks. The genus Rhizomucor was dominating in outbreaks related to contaminated air while outbreaks of Lichtheimia species and Mucor circinelloides were transmitted by direct contact. Outbreaks with the involvement of several species are reported. Subtyping of strains revealed clonality in two outbreaks and no close relation in two other outbreaks. Based on the existing data, outbreaks of Mucorales can be caused by heterogeneous sources consisting of different strains or different species. Person-to-person transmission cannot be excluded because Mucorales can sporulate on wounds. For a better understanding and prevention of outbreaks, we need to increase our knowledge on the physiology, ecology, and population structure of outbreak causing species and more subtyping data.
Collapse
|
15
|
Macias AM, Marek PE, Morrissey EM, Brewer MS, Short DP, Stauder CM, Wickert KL, Berger MC, Metheny AM, Stajich JE, Boyce G, Rio RVM, Panaccione DG, Wong V, Jones TH, Kasson MT. Diversity and function of fungi associated with the fungivorous millipede, Brachycybe lecontii. FUNGAL ECOL 2019; 41:187-197. [PMID: 31871487 PMCID: PMC6927558 DOI: 10.1016/j.funeco.2019.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Fungivorous millipedes (subterclass Colobognatha) likely represent some of the earliest known mycophagous terrestrial arthropods, yet their fungal partners remain elusive. Here we describe relationships between fungi and the fungivorous millipede, Brachycybe lecontii. Their fungal community is surprisingly diverse, including 176 genera, 39 orders, four phyla, and several undescribed species. Of particular interest are twelve genera conserved across wood substrates and millipede clades that comprise the core fungal community of B. lecontii. Wood decay fungi, long speculated to serve as the primary food source for Brachycybe species, were absent from this core assemblage and proved lethal to millipedes in pathogenicity assays while entomopathogenic Hypocreales were more common in the core but had little effect on millipede health. This study represents the first survey of fungal communities associated with any colobognath millipede, and these results offer a glimpse into the complexity of millipede fungal communities.
Collapse
Affiliation(s)
- Angie M. Macias
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Paul E. Marek
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Ember M. Morrissey
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Michael S. Brewer
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | | | - Cameron M. Stauder
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Kristen L. Wickert
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Matthew C. Berger
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Amy M. Metheny
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Jason E. Stajich
- Department of Microbiology and Plant Pathology and Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Greg Boyce
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Rita V. M. Rio
- Department of Biology, West Virginia University, Morgantown, WV, 26506, USA
| | - Daniel G. Panaccione
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Victoria Wong
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Tappey H. Jones
- Department of Chemistry, Virginia Military Institute, Lexington, VA, 24450, USA
| | - Matt T. Kasson
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, 26506, USA
| |
Collapse
|
16
|
Engelthaler DM, Casadevall A. On the Emergence of Cryptococcus gattii in the Pacific Northwest: Ballast Tanks, Tsunamis, and Black Swans. mBio 2019; 10:e02193-19. [PMID: 31575770 PMCID: PMC6775458 DOI: 10.1128/mbio.02193-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The appearance of Cryptococcus gattii in the North American Pacific Northwest (PNW) in 1999 was an unexpected and is still an unexplained event. Recent phylogenomic analyses strongly suggest that this pathogenic fungus arrived in the PNW approximately 7 to 9 decades ago. In this paper, we theorize that the ancestors of the PNW C. gattii clones arrived in the area by shipborne transport, possibly in contaminated ballast, and established themselves in coastal waters early in the 20th century. In 1964, a tsunami flooded local coastal regions, transporting C. gattii to land. The occurrence of cryptococcosis in animals and humans 3 decades later suggests that adaptation to local environs took time, possibly requiring an increase in virulence and further dispersal. Tsunamis as a mechanism for the seeding of land with pathogenic waterborne microbes may have important implications for our understanding of how infectious diseases emerge in certain regions. This hypothesis suggests experimental work for its validation or refutation.
Collapse
|
17
|
Walsh TJ, Hospenthal DR, Petraitis V, Kontoyiannis DP. Necrotizing Mucormycosis of Wounds Following Combat Injuries, Natural Disasters, Burns, and Other Trauma. J Fungi (Basel) 2019; 5:jof5030057. [PMID: 31277364 PMCID: PMC6787580 DOI: 10.3390/jof5030057] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 01/30/2023] Open
Abstract
Necrotizing mucormycosis is a devastating complication of wounds incurred in the setting of military (combat) injuries, natural disasters, burns, or other civilian trauma. Apophysomyces species, Saksenaea species and Lichtheimia (formerly Absidia) species, although uncommon as causes of sinopulmonary mucormycosis, are relatively frequent agents of trauma-related mucormycosis. The pathogenesis of these infections likely involves a complex interaction among organism, impaired innate host defenses, and biofilms related to traumatically implanted foreign materials. Effective management depends upon timely diagnosis, thorough surgical debridement, and early initiation of antifungal therapy.
Collapse
Affiliation(s)
- Thomas J Walsh
- Departments of Medicine, Pediatrics, and Microbiology & Immunology; Weill Cornell Medicine of Cornell University and New York Presbyterian Hospital, New York, NY 10065, USA.
| | - Duane R Hospenthal
- Division of Infectious Diseases, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Vidmantas Petraitis
- Departments of Medicine, Weill Cornell Medicine of Cornell University, New York, NY 10065, USA
| | - Dimitrios P Kontoyiannis
- Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
18
|
McCotter OZ, Benedict K, Engelthaler DM, Komatsu K, Lucas KD, Mohle-Boetani JC, Oltean H, Vugia D, Chiller TM, Sondermeyer Cooksey GL, Nguyen A, Roe CC, Wheeler C, Sunenshine R. Update on the Epidemiology of coccidioidomycosis in the United States. Med Mycol 2019; 57:S30-S40. [PMID: 30690599 DOI: 10.1093/mmy/myy095] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/18/2018] [Indexed: 01/25/2023] Open
Abstract
The incidence of reported coccidioidomycosis in the past two decades has increased greatly; monitoring its changing epidemiology is essential for understanding its burden on patients and the healthcare system and for identifying opportunities for prevention and education. We provide an update on recent coccidioidomycosis trends and public health efforts nationally and in Arizona, California, and Washington State. In Arizona, enhanced surveillance shows that coccidioidomycosis continues to be associated with substantial morbidity. California reported its highest yearly number of cases ever in 2016 and has implemented interventions to reduce coccidioidomycosis in the prison population by excluding certain inmates from residing in prisons in high-risk areas. Coccidioidomycosis is emerging in Washington State, where phylogenetic analyses confirm the existence of a unique Coccidioides clade. Additional studies of the molecular epidemiology of Coccidioides will improve understanding its expanding endemic range. Ongoing public health collaborations and future research priorities are focused on characterizing geographic risk, particularly in the context of environmental change; identifying further risk reduction strategies for high-risk groups; and improving reporting of cases to public health agencies.
Collapse
Affiliation(s)
- Orion Z McCotter
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Kaitlin Benedict
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Ken Komatsu
- Arizona Department of Health Services, Phoenix, Arizona, USA
| | - Kimberley D Lucas
- California Correctional Healthcare Services, Elk Grove, California, USA
| | | | - Hanna Oltean
- Washington State Department of Health, Shoreline, Washington, USA
| | - Duc Vugia
- California Department of Public Health, Richmond and Sacramento, California, USA
| | - Tom M Chiller
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Alyssa Nguyen
- California Department of Public Health, Richmond and Sacramento, California, USA
| | - Chandler C Roe
- Translational Genomics Research Institute, Flagstaff, Arizona, USA.,Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Charlotte Wheeler
- California Correctional Healthcare Services, Elk Grove, California, USA
| | - Rebecca Sunenshine
- Maricopa County Department of Public Health, Phoenix, Arizona, USA.,Office of Public Health Preparedness and Response, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
19
|
Wijayawardene NN, Pawłowska J, Letcher PM, Kirk PM, Humber RA, Schüßler A, Wrzosek M, Muszewska A, Okrasińska A, Istel Ł, Gęsiorska A, Mungai P, Lateef AA, Rajeshkumar KC, Singh RV, Radek R, Walther G, Wagner L, Walker C, Wijesundara DSA, Papizadeh M, Dolatabadi S, Shenoy BD, Tokarev YS, Lumyong S, Hyde KD. Notes for genera: basal clades of Fungi (including Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota). FUNGAL DIVERS 2018. [DOI: 10.1007/s13225-018-0409-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Outbreak of Invasive Wound Mucormycosis in a Burn Unit Due to Multiple Strains of Mucor circinelloides f. circinelloides Resolved by Whole-Genome Sequencing. mBio 2018; 9:mBio.00573-18. [PMID: 29691339 PMCID: PMC5915733 DOI: 10.1128/mbio.00573-18] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mucorales are ubiquitous environmental molds responsible for mucormycosis in diabetic, immunocompromised, and severely burned patients. Small outbreaks of invasive wound mucormycosis (IWM) have already been reported in burn units without extensive microbiological investigations. We faced an outbreak of IWM in our center and investigated the clinical isolates with whole-genome sequencing (WGS) analysis. We analyzed M. circinelloides isolates from patients in our burn unit (BU1, Hôpital Saint-Louis, Paris, France) together with nonoutbreak isolates from Burn Unit 2 (BU2, Paris area) and from France over a 2-year period (2013 to 2015). A total of 21 isolates, including 14 isolates from six BU1 patients, were analyzed by whole-genome sequencing (WGS). Phylogenetic classification based on de novo assembly and assembly free approaches showed that the clinical isolates clustered in four highly divergent clades. Clade 1 contained at least one of the strains from the six epidemiologically linked BU1 patients. The clinical isolates were specific to each patient. Two patients were infected with more than two strains from different clades, suggesting that an environmental reservoir of clonally unrelated isolates was the source of contamination. Only two patients from BU1 shared one strain, which could correspond to direct transmission or contamination with the same environmental source. In conclusion, WGS of several isolates per patients coupled with precise epidemiological data revealed a complex situation combining potential cross-transmission between patients and multiple contaminations with a heterogeneous pool of strains from a cryptic environmental reservoir. Invasive wound mucormycosis (IWM) is a severe infection due to environmental molds belonging to the order Mucorales. Severely burned patients are particularly at risk for IWM. Here, we used whole-genome sequencing (WGS) analysis to resolve an outbreak of IWM due to Mucor circinelloides that occurred in our hospital (BU1). We sequenced 21 clinical isolates, including 14 from BU1 and 7 unrelated isolates, and compared them to the reference genome (1006PhL). This analysis revealed that the outbreak was mainly due to multiple strains that seemed patient specific, suggesting that the patients were more likely infected from a pool of diverse strains from the environment rather than from direct transmission among them. This study revealed the complexity of a Mucorales outbreak in the settings of IWM in burn patients, which has been highlighted based on WGS combined with careful sampling.
Collapse
|
21
|
Genomic epidemiology of the UK outbreak of the emerging human fungal pathogen Candida auris. Emerg Microbes Infect 2018; 7:43. [PMID: 29593275 PMCID: PMC5874254 DOI: 10.1038/s41426-018-0045-x] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/22/2018] [Accepted: 01/24/2018] [Indexed: 11/09/2022]
Abstract
Candida auris was first described in 2009, and it has since caused nosocomial outbreaks, invasive infections, and fungaemia across at least 19 countries on five continents. An outbreak of C. auris occurred in a specialized cardiothoracic London hospital between April 2015 and November 2016, which to date has been the largest outbreak in the UK, involving a total of 72 patients. To understand the genetic epidemiology of C. auris infection both within this hospital and within a global context, we sequenced the outbreak isolate genomes using Oxford Nanopore Technologies and Illumina platforms to detect antifungal resistance alleles and reannotate the C. auris genome. Phylogenomic analysis placed the UK outbreak in the India/Pakistan clade, demonstrating an Asian origin; the outbreak showed similar genetic diversity to that of the entire clade, and limited local spatiotemporal clustering was observed. One isolate displayed resistance to both echinocandins and 5-flucytosine; the former was associated with a serine to tyrosine amino acid substitution in the gene FKS1, and the latter was associated with a phenylalanine to isoleucine substitution in the gene FUR1. These mutations add to a growing body of research on multiple antifungal drug targets in this organism. Multiple differential episodic selection of antifungal resistant genotypes has occurred within a genetically heterogenous population across this outbreak, creating a resilient pathogen and making it difficult to define local-scale patterns of transmission and implement outbreak control measures.
Collapse
|
22
|
Bougnoux ME, Brun S, Zahar JR. Healthcare-associated fungal outbreaks: New and uncommon species, New molecular tools for investigation and prevention. Antimicrob Resist Infect Control 2018; 7:45. [PMID: 29599969 PMCID: PMC5870726 DOI: 10.1186/s13756-018-0338-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/21/2018] [Indexed: 11/10/2022] Open
Abstract
Outbreaks of healthcare-associated fungal infections have repeatedly been described over recent years, often caused by new or uncommon species. Candida auris, a recently described multidrug-resistant yeast species, is certainly the most worrisome species having caused several severe healthcare outbreaks of invasive infections, on four continents. Also, large nosocomial outbreaks due to uncommon fungal species such as Exserohilum rostratum and Sarocladium kiliense, were both linked to contamination of medical products, however the source of another outbreak, caused by Saprochaete clavata, remains unresolved. Furthermore, these outbreaks identified new populations under threat in addition to those commonly at risk for invasive fungal infections, such as immunosuppressed and intensive care unit patients. All of these outbreaks have highlighted the usefulness of a high level of awareness, rapid diagnostic methods, and new molecular typing tools such as Whole Genome Sequencing (WGS), prompt investigation and aggressive interventions, including notification of public health agencies. This review summarizes the epidemiological and clinical data of the majority of healthcare-associated outbreaks reported over the last 6 years caused by uncommon or new fungal pathogens, as well as the contribution of WGS as support to investigate the source of infection and the most frequent control measures used.
Collapse
Affiliation(s)
- Marie-Elisabeth Bougnoux
- 1Unité de Parasitologie-Mycologie, Service de Microbiologie clinique, Hôpital Necker Enfants-Malades, Assistance Publique - Hôpitaux de Paris (APHP), Paris, France.,2Université Paris Descartes, Sorbonne Paris-Cité, Paris, France.,3Département Mycologie, Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Sophie Brun
- 4Service de Parasitologie-Mycologie, Hôpital Avicenne, Groupe Hospitalier Paris-Seine-Saint-Denis, Assistance Publique - Hôpitaux de Paris (APHP), Bobigny, France.,5Université Paris 13, Bobigny, France
| | - Jean-Ralph Zahar
- 6Département de microbiologie clinique, unité de contrôle et de prévention du risque infectieux, Hôpital Avicenne, Groupe Hospitalier Paris-Seine-Saint-Denis, Assistance Publique - Hôpitaux de Paris (APHP), Bobigny, France.,7IAME, UMR 1137, Université Paris 13, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
23
|
Abstract
Globalization has facilitated the worldwide movement and introduction of pathogens, but epizoological reconstructions of these invasions are often hindered by limited sampling and insufficient genetic resolution among isolates. Pseudogymnoascus destructans, a fungal pathogen causing the epizootic of white-nose syndrome in North American bats, has exhibited few genetic polymorphisms in previous studies, presenting challenges for both epizoological tracking of the spread of this fungus and for determining its evolutionary history. We used single nucleotide polymorphisms (SNPs) from whole-genome sequencing and microsatellites to construct high-resolution phylogenies of P. destructans. Shallow genetic diversity and the lack of geographic structuring among North American isolates support a recent introduction followed by expansion via clonal reproduction across the epizootic zone. Moreover, the genetic relationships of isolates within North America suggest widespread mixing and long-distance movement of the fungus. Genetic diversity among isolates of P. destructans from Europe was substantially higher than in those from North America. However, genetic distance between the North American isolates and any given European isolate was similar to the distance between the individual European isolates. In contrast, the isolates we examined from Asia were highly divergent from both European and North American isolates. Although the definitive source for introduction of the North American population has not been conclusively identified, our data support the origin of the North American invasion by P. destructans from Europe rather than Asia. This phylogenetic study of the bat white-nose syndrome agent, P. destructans, uses genomics to elucidate evolutionary relationships among populations of the fungal pathogen to understand the epizoology of this biological invasion. We analyze hypervariable and abundant genetic characters (microsatellites and genomic SNPs, respectively) to reveal previously uncharacterized diversity among populations of the pathogen from North America and Eurasia. We present new evidence supporting recent introduction of the fungus to North America from a diverse Eurasian population, with limited increase in genetic variation in North America since that introduction.
Collapse
|
24
|
Investigating Clinical Issues by Genotyping of Medically Important Fungi: Why and How? Clin Microbiol Rev 2017; 30:671-707. [PMID: 28490578 DOI: 10.1128/cmr.00043-16] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Genotyping studies of medically important fungi have addressed elucidation of outbreaks, nosocomial transmissions, infection routes, and genotype-phenotype correlations, of which secondary resistance has been most intensively investigated. Two methods have emerged because of their high discriminatory power and reproducibility: multilocus sequence typing (MLST) and microsatellite length polymorphism (MLP) using short tandem repeat (STR) markers. MLST relies on single-nucleotide polymorphisms within the coding regions of housekeeping genes. STR polymorphisms are based on the number of repeats of short DNA fragments, mostly outside coding regions, and thus are expected to be more polymorphic and more rapidly evolving than MLST markers. There is no consensus on a universal typing system. Either one or both of these approaches are now available for Candida spp., Aspergillus spp., Fusarium spp., Scedosporium spp., Cryptococcus neoformans, Pneumocystis jirovecii, and endemic mycoses. The choice of the method and the number of loci to be tested depend on the clinical question being addressed. Next-generation sequencing is becoming the most appropriate method for fungi with no MLP or MLST typing available. Whatever the molecular tool used, collection of clinical data (e.g., time of hospitalization and sharing of similar rooms) is mandatory for investigating outbreaks and nosocomial transmission.
Collapse
|
25
|
Apophysomyces variabilis: draft genome sequence and comparison of predictive virulence determinants with other medically important Mucorales. BMC Genomics 2017; 18:736. [PMID: 28923009 PMCID: PMC5604411 DOI: 10.1186/s12864-017-4136-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 09/08/2017] [Indexed: 12/28/2022] Open
Abstract
Background Apophysomyces species are prevalent in tropical countries and A. variabilis is the second most frequent agent causing mucormycosis in India. Among Apophysomyces species, A. elegans, A. trapeziformis and A. variabilis are commonly incriminated in human infections. The genome sequences of A. elegans and A. trapeziformis are available in public database, but not A. variabilis. We, therefore, performed the whole genome sequence of A. variabilis to explore its genomic structure and possible genes determining the virulence of the organism. Results The whole genome of A. variabilis NCCPF 102052 was sequenced and the genomic structure of A. variabilis was compared with already available genome structures of A. elegans, A. trapeziformis and other medically important Mucorales. The total size of genome assembly of A. variabilis was 39.38 Mb with 12,764 protein-coding genes. The transposable elements (TEs) were low in Apophysomyces genome and the retrotransposon Ty3-gypsy was the common TE. Phylogenetically, Apophysomyces species were grouped closely with Phycomyces blakesleeanus. OrthoMCL analysis revealed 3025 orthologues proteins, which were common in those three pathogenic Apophysomyces species. Expansion of multiple gene families/duplication was observed in Apophysomyces genomes. Approximately 6% of Apophysomyces genes were predicted to be associated with virulence on PHIbase analysis. The virulence determinants included the protein families of CotH proteins (invasins), proteases, iron utilisation pathways, siderophores and signal transduction pathways. Serine proteases were the major group of proteases found in all Apophysomyces genomes. The carbohydrate active enzymes (CAZymes) constitute the majority of the secretory proteins. Conclusion The present study is the maiden attempt to sequence and analyze the genomic structure of A. variabilis. Together with available genome sequence of A. elegans and A. trapeziformis, the study helped to indicate the possible virulence determinants of pathogenic Apophysomyces species. The presence of unique CAZymes in cell wall might be exploited in future for antifungal drug development. Electronic supplementary material The online version of this article (10.1186/s12864-017-4136-1) contains supplementary material, which is available to authorized users.
Collapse
|
26
|
Miller JD. IH issues in natural disasters: Residents, first responders & public health. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2017; 14:158-160. [PMID: 28574755 DOI: 10.1080/15459624.2017.1328107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Affiliation(s)
- J David Miller
- a Department of Chemistry , Carleton University , Ottawa , Ontario
| |
Collapse
|
27
|
Benedict K, Richardson M, Vallabhaneni S, Jackson BR, Chiller T. Emerging issues, challenges, and changing epidemiology of fungal disease outbreaks. THE LANCET. INFECTIOUS DISEASES 2017; 17:e403-e411. [PMID: 28774697 DOI: 10.1016/s1473-3099(17)30443-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/12/2016] [Accepted: 02/09/2017] [Indexed: 12/14/2022]
Abstract
Several high-profile outbreaks have drawn attention to invasive fungal infections (IFIs) as an increasingly important public health problem. IFI outbreaks are caused by many different fungal pathogens and are associated with numerous settings and sources. In the community, IFI outbreaks often occur among people without predisposing medical conditions and are frequently precipitated by environmental disruption. Health-care-associated IFI outbreaks have been linked to suboptimal hospital environmental conditions, transmission via health-care workers' hands, contaminated medical products, and transplantation of infected organs. Outbreak investigations provide important insights into the epidemiology of IFIs, uncover risk factors for infection, and identify opportunities for preventing similar events in the future. Well recognised challenges with IFI outbreak recognition, response, and prevention include the need for improved rapid diagnostic methods, the absence of routine surveillance for most IFIs, adherence to infection control practices, and health-care provider awareness. Additionally, IFI outbreak investigations have revealed several emerging issues, including new populations at risk because of travel or relocation, occupation, or immunosuppression; fungal pathogens appearing in geographical areas in which they have not been previously recognised; and contaminated compounded medications. This report highlights notable IFI outbreaks in the past decade, with an emphasis on these emerging challenges in the USA.
Collapse
Affiliation(s)
- Kaitlin Benedict
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Malcolm Richardson
- Mycology Reference Centre, University Hospital of South Manchester and University of Manchester, Manchester, UK
| | - Snigdha Vallabhaneni
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Brendan R Jackson
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Tom Chiller
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
28
|
Ye M, Tu J, Jiang J, Bi Y, You W, Zhang Y, Ren J, Zhu T, Cao Z, Yu Z, Shao C, Shen Z, Ding B, Yuan J, Zhao X, Guo Q, Xu X, Huang J, Wang M. Clinical and Genomic Analysis of Liver Abscess-Causing Klebsiella pneumoniae Identifies New Liver Abscess-Associated Virulence Genes. Front Cell Infect Microbiol 2016; 6:165. [PMID: 27965935 PMCID: PMC5126061 DOI: 10.3389/fcimb.2016.00165] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/15/2016] [Indexed: 12/03/2022] Open
Abstract
Hypervirulent variants of Klebsiella pneumoniae (hvKp) that cause invasive community-acquired pyogenic liver abscess (PLA) have emerged globally. Little is known about the virulence determinants associated with hvKp, except for the virulence genes rmpA/A2 and siderophores (iroBCD/iucABCD) carried by the pK2044-like large virulence plasmid. Here, we collected most recent clinical isolates of hvKp from PLA samples in China, and performed clinical, molecular, and genomic sequencing analyses. We found that 90.9% (40/44) of the pathogens causing PLA were K. pneumoniae. Among the 40 LA-Kp, K1 (62.5%), and K2 (17.5%) were the dominant serotypes, and ST23 (47.5%) was the major sequence type. S1-PFGE analyses demonstrated that although 77.5% (31/40) of the LA-Kp isolates harbored a single large virulence plasmid varied in size, 5 (12.5%) isolates had no plasmid and 4 (10%) had two or three plasmids. Whole genome sequencing and comparative analysis of 3 LA-Kp and 3 non-LA-Kp identified 133 genes present only in LA-Kp. Further, large scale screening of the 133 genes in 45 LA-Kp and 103 non-LA-Kp genome sequences from public databases identified 30 genes that were highly associated with LA-Kp, including iroBCD, iucABCD and rmpA/A2 and 21 new genes. Then, these 21 new genes were analyzed in 40 LA-Kp and 86 non-LA-Kp clinical isolates collected in this study by PCR, showing that new genes were present 80–100% among LA-Kp isolates while 2–11% in K. pneumoniae isolates from sputum and urine. Several of the 21 genes have been proposed as virulence factors in other bacteria, such as the gene encoding SAM-dependent methyltransferase and pagO which protects bacteria from phagocytosis. Taken together, these genes are likely new virulence factors contributing to the hypervirulence phenotype of hvKp, and may deepen our understanding of virulence mechanism of hvKp.
Collapse
Affiliation(s)
- Meiping Ye
- Institute of Antibiotics, Huashan Hospital, Fudan University Shanghai, China
| | - Jianfei Tu
- Fifth Affiliated Hospital of Wenzhou Medical University Lishui, China
| | - Jianping Jiang
- Department of Bioinformatics, SJTU-Yale Joint Center for Biostatistics, Shanghai Jiaotong University Shanghai, China
| | - Yingmin Bi
- Institute of Antibiotics, Huashan Hospital, Fudan University Shanghai, China
| | - Weibo You
- Fifth Affiliated Hospital of Wenzhou Medical University Lishui, China
| | - Yanliang Zhang
- Nanjing First Hospital, Nanjing Medical University Nanjing, China
| | - Jianmin Ren
- Fifth Affiliated Hospital of Wenzhou Medical University Lishui, China
| | - Taohui Zhu
- Fifth Affiliated Hospital of Wenzhou Medical University Lishui, China
| | - Zhuo Cao
- Sixth Hospital of Wenzhou Medical University Lishui, China
| | - Zuochun Yu
- Fifth Affiliated Hospital of Wenzhou Medical University Lishui, China
| | - Chuxiao Shao
- Fifth Affiliated Hospital of Wenzhou Medical University Lishui, China
| | - Zhen Shen
- Institute of Antibiotics, Huashan Hospital, Fudan University Shanghai, China
| | - Baixing Ding
- Institute of Antibiotics, Huashan Hospital, Fudan University Shanghai, China
| | - Jinyi Yuan
- Institute of Antibiotics, Huashan Hospital, Fudan University Shanghai, China
| | - Xu Zhao
- Institute of Antibiotics, Huashan Hospital, Fudan University Shanghai, China
| | - Qinglan Guo
- Institute of Antibiotics, Huashan Hospital, Fudan University Shanghai, China
| | - Xiaogang Xu
- Institute of Antibiotics, Huashan Hospital, Fudan University Shanghai, China
| | - Jinwei Huang
- Fifth Affiliated Hospital of Wenzhou Medical University Lishui, China
| | - Minggui Wang
- Institute of Antibiotics, Huashan Hospital, Fudan University Shanghai, China
| |
Collapse
|
29
|
Roe CC, Horn KS, Driebe EM, Bowers J, Terriquez JA, Keim P, Engelthaler DM. Whole genome SNP typing to investigate methicillin-resistant Staphylococcus aureus carriage in a health-care provider as the source of multiple surgical site infections. Hereditas 2016; 153:11. [PMID: 28096773 PMCID: PMC5226111 DOI: 10.1186/s41065-016-0017-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 10/26/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Prevention of nosocomial transmission of infections is a central responsibility in the healthcare environment, and accurate identification of transmission events presents the first challenge. Phylogenetic analysis based on whole genome sequencing provides a high-resolution approach for accurately relating isolates to one another, allowing precise identification or exclusion of transmission events and sources for nearly all cases. We sequenced 24 methicillin-resistant Staphylococcus aureus (MRSA) genomes to retrospectively investigate a suspected point source of three surgical site infections (SSIs) that occurred over a one-year period. The source of transmission was believed to be a surgical team member colonized with MRSA, involved in all surgeries preceding the SSI cases, who was subsequently decolonized. Genetic relatedness among isolates was determined using whole genome single nucleotide polymorphism (SNP) data. RESULTS Whole genome SNP typing (WGST) revealed 283 informative SNPs between the surgical team member's isolate and the closest SSI isolate. The second isolate was 286 and the third was thousands of SNPs different, indicating the nasal carriage strain from the surgical team member was not the source of the SSIs. Given the mutation rates estimated for S. aureus, none of the SSI isolates share a common ancestor within the past 16 years, further discounting any common point source for these infections. The decolonization procedures and resources spent on the point source infection control could have been prevented if WGST was performed at the time of the suspected transmission, instead of retrospectively. CONCLUSIONS Whole genome sequence analysis is an ideal method to exclude isolates involved in transmission events and nosocomial outbreaks, and coupling this method with epidemiological data can determine if a transmission event occurred. These methods promise to direct infection control resources more appropriately.
Collapse
Affiliation(s)
- Chandler C. Roe
- Pathogen Genomics Division, Translational Genomics Research Institute, 3051 W. Shamrell Blvd., Suite 106, Flagstaff, AZ 86001 USA
| | | | - Elizabeth M. Driebe
- Pathogen Genomics Division, Translational Genomics Research Institute, 3051 W. Shamrell Blvd., Suite 106, Flagstaff, AZ 86001 USA
| | - Jolene Bowers
- Pathogen Genomics Division, Translational Genomics Research Institute, 3051 W. Shamrell Blvd., Suite 106, Flagstaff, AZ 86001 USA
| | | | - Paul Keim
- Pathogen Genomics Division, Translational Genomics Research Institute, 3051 W. Shamrell Blvd., Suite 106, Flagstaff, AZ 86001 USA
| | - David M. Engelthaler
- Pathogen Genomics Division, Translational Genomics Research Institute, 3051 W. Shamrell Blvd., Suite 106, Flagstaff, AZ 86001 USA
| |
Collapse
|
30
|
Etienne KA, Roe CC, Smith RM, Vallabhaneni S, Duarte C, Escadon P, Castaneda E, Gomez BL, de Bedout C, López LF, Salas V, Hederra LM, Fernandez J, Pidal P, Hormazabel JC, Otaiza F, Vannberg FO, Gillece J, Lemmer D, Driebe EM, Englethaler DM, Litvintseva AP. Whole-Genome Sequencing to Determine Origin of Multinational Outbreak of Sarocladium kiliense Bloodstream Infections. Emerg Infect Dis 2016; 22:476-81. [PMID: 26891230 PMCID: PMC4766898 DOI: 10.3201/eid2203.151193] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Next-generation technologies and bioinformatics enabled source attribution and implementation of effective control strategies. We used whole-genome sequence typing (WGST) to investigate an outbreak of Sarocladium kiliense bloodstream infections (BSI) associated with receipt of contaminated antinausea medication among oncology patients in Colombia and Chile during 2013–2014. Twenty-five outbreak isolates (18 from patients and 7 from medication vials) and 11 control isolates unrelated to this outbreak were subjected to WGST to elucidate a source of infection. All outbreak isolates were nearly indistinguishable (<5 single-nucleotide polymorphisms), and >21,000 single-nucleotide polymorphisms were identified from unrelated control isolates, suggesting a point source for this outbreak. S. kiliense has been previously implicated in healthcare-related infections; however, the lack of available typing methods has precluded the ability to substantiate point sources. WGST for outbreak investigation caused by eukaryotic pathogens without reference genomes or existing genotyping methods enables accurate source identification to guide implementation of appropriate control and prevention measures.
Collapse
|
31
|
Firacative C, Roe CC, Malik R, Ferreira-Paim K, Escandón P, Sykes JE, Castañón-Olivares LR, Contreras-Peres C, Samayoa B, Sorrell TC, Castañeda E, Lockhart SR, Engelthaler DM, Meyer W. MLST and Whole-Genome-Based Population Analysis of Cryptococcus gattii VGIII Links Clinical, Veterinary and Environmental Strains, and Reveals Divergent Serotype Specific Sub-populations and Distant Ancestors. PLoS Negl Trop Dis 2016; 10:e0004861. [PMID: 27494185 PMCID: PMC4975453 DOI: 10.1371/journal.pntd.0004861] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 06/29/2016] [Indexed: 12/13/2022] Open
Abstract
The emerging pathogen Cryptococcus gattii causes life-threatening disease in immunocompetent and immunocompromised hosts. Of the four major molecular types (VGI-VGIV), the molecular type VGIII has recently emerged as cause of disease in otherwise healthy individuals, prompting a need to investigate its population genetic structure to understand if there are potential genotype-dependent characteristics in its epidemiology, environmental niche(s), host range and clinical features of disease. Multilocus sequence typing (MLST) of 122 clinical, environmental and veterinary C. gattii VGIII isolates from Australia, Colombia, Guatemala, Mexico, New Zealand, Paraguay, USA and Venezuela, and whole genome sequencing (WGS) of 60 isolates representing all established MLST types identified four divergent sub-populations. The majority of the isolates belong to two main clades, corresponding either to serotype B or C, indicating an ongoing species evolution. Both major clades included clinical, environmental and veterinary isolates. The C. gattii VGIII population was genetically highly diverse, with minor differences between countries, isolation source, serotype and mating type. Little to no recombination was found between the two major groups, serotype B and C, at the whole and mitochondrial genome level. C. gattii VGIII is widespread in the Americas, with sporadic cases occurring elsewhere, WGS revealed Mexico and USA as a likely origin of the serotype B VGIII population and Colombia as a possible origin of the serotype C VGIII population. Serotype B isolates are more virulent than serotype C isolates in a murine model of infection, causing predominantly pulmonary cryptococcosis. No specific link between genotype and virulence was observed. Antifungal susceptibility testing against six antifungal drugs revealed that serotype B isolates are more susceptible to azoles than serotype C isolates, highlighting the importance of strain typing to guide effective treatment to improve the disease outcome. Cryptococcus gattii, which is classically divided into four major molecular types (VGI-VGIV), and two serotypes B and C, is the second most important cause of cryptococcosis. The rising incidence of human and animal cryptococcosis cases caused by molecular type VGIII highlights the need for increased vigilance. In this study, we characterized a large set of C. gattii VGIII isolates. Genetic analysis revealed four diverging sub-populations, which were primarily associated with serotype B or C, and very likely originated from endemic regions in Colombia, Mexico and the USA. Differences in virulence and antifungal susceptibility between serotypes may result in different disease outcomes since serotype B isolates were more virulent in mice than serotype C isolates, but serotype C isolates were less susceptible to azoles, the primary treatment for uncomplicated cryptococcosis. Identification of cryptococcal serotype and molecular type in clinical practice has the potential to guide treatment regimens and hence reduce morbidity and mortality in both sporadic cases and those associated with outbreaks. Our study significantly contributes to the understanding of the epidemiology, genetics and pathogenesis of Cryptococcus and cryptococcosis.
Collapse
Affiliation(s)
- Carolina Firacative
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Sydney Medical School - Westmead Hospital, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Millennium Institute, Sydney, Australia
- Grupo de Microbiología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Chandler C. Roe
- Translational Genomics Research Institute, Flagstaff, Arizona, United States of America
| | - Richard Malik
- Centre for Veterinary Education, The University of Sydney, Sydney, Australia
| | - Kennio Ferreira-Paim
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Sydney Medical School - Westmead Hospital, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Millennium Institute, Sydney, Australia
- Infectious Disease Department, Triangulo Mineiro Federal University, Uberaba, Minas Gerais, Brazil
| | - Patricia Escandón
- Grupo de Microbiología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Jane E. Sykes
- Department of Medicine and Epidemiology, University of California, Davis, Davis, California, United States of America
| | - Laura Rocío Castañón-Olivares
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad National Autónoma de México, Mexico City, Mexico
| | | | | | - Tania C. Sorrell
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Sydney Medical School - Westmead Hospital, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Millennium Institute, Sydney, Australia
| | | | - Shawn R. Lockhart
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - David M. Engelthaler
- Translational Genomics Research Institute, Flagstaff, Arizona, United States of America
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Sydney Medical School - Westmead Hospital, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Millennium Institute, Sydney, Australia
- * E-mail:
| |
Collapse
|
32
|
Chibucos MC, Soliman S, Gebremariam T, Lee H, Daugherty S, Orvis J, Shetty AC, Crabtree J, Hazen TH, Etienne KA, Kumari P, O'Connor TD, Rasko DA, Filler SG, Fraser CM, Lockhart SR, Skory CD, Ibrahim AS, Bruno VM. An integrated genomic and transcriptomic survey of mucormycosis-causing fungi. Nat Commun 2016; 7:12218. [PMID: 27447865 PMCID: PMC4961843 DOI: 10.1038/ncomms12218] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 06/09/2016] [Indexed: 12/22/2022] Open
Abstract
Mucormycosis is a life-threatening infection caused by Mucorales fungi. Here we sequence 30 fungal genomes, and perform transcriptomics with three representative Rhizopus and Mucor strains and with human airway epithelial cells during fungal invasion, to reveal key host and fungal determinants contributing to pathogenesis. Analysis of the host transcriptional response to Mucorales reveals platelet-derived growth factor receptor B (PDGFRB) signaling as part of a core response to divergent pathogenic fungi; inhibition of PDGFRB reduces Mucorales-induced damage to host cells. The unique presence of CotH invasins in all invasive Mucorales, and the correlation between CotH gene copy number and clinical prevalence, are consistent with an important role for these proteins in mucormycosis pathogenesis. Our work provides insight into the evolution of this medically and economically important group of fungi, and identifies several molecular pathways that might be exploited as potential therapeutic targets.
Collapse
Affiliation(s)
- Marcus C. Chibucos
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Sameh Soliman
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, California 90502, USA
| | - Teclegiorgis Gebremariam
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, California 90502, USA
| | - Hongkyu Lee
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, California 90502, USA
| | - Sean Daugherty
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Joshua Orvis
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Amol C. Shetty
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Jonathan Crabtree
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Tracy H. Hazen
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Kizee A. Etienne
- Fungal Reference Laboratory, Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | - Priti Kumari
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Timothy D. O'Connor
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - David A. Rasko
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Scott G. Filler
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, California 90502, USA
- David Geffen School of Medicine at UCLA, Los Angeles, California 90502, USA
| | - Claire M. Fraser
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Shawn R. Lockhart
- Fungal Reference Laboratory, Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | - Christopher D. Skory
- National Center for Agriculture Utilization Research, USDA, Agricultural Research Service, Peoria, Illinois 61604, USA
| | - Ashraf S. Ibrahim
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, California 90502, USA
- David Geffen School of Medicine at UCLA, Los Angeles, California 90502, USA
| | - Vincent M. Bruno
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| |
Collapse
|
33
|
Debourgogne A, Dorin J, Machouart M. Emerging infections due to filamentous fungi in humans and animals: only the tip of the iceberg? ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:332-342. [PMID: 27058996 DOI: 10.1111/1758-2229.12404] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 03/06/2016] [Indexed: 06/05/2023]
Abstract
Over the last few decades, the number of patients susceptible to invasive filamentous fungal infections has steadily increased, especially in populations suffering from hematological diseases. The pathogens responsible for such mycoses are now quite well characterized, such as Aspergillus spp. - the most commonly isolated mold -, Mucorales, Fusarium spp., Scedosporium spp. or melanized fungi. An increase in the incidence of this category of 'emerging' fungi has been recently highlighted, evoking a shift in fungal ecology. Starting from these medical findings, taking a step back and adopt a wider perspective offers possible explanations of this phenomenon on an even larger scale than previously reported. In this review, we illustrate the link between emerging fungi in medicine and changes in ecology or human behaviours, and we encourage integrative approaches to apprehend the adverse effects of progress and develop preventive measures in vast domains, such as agriculture or medicine.
Collapse
Affiliation(s)
- Anne Debourgogne
- Structure de Parasitologie-Mycologie, Département de Microbiologie, Centre Hospitalo-Universitaire de Nancy (CHU-Nancy), Hôpitaux de Brabois, 11 allée du Morvan, 54511 Vandœuvre-les-Nancy, France
- Laboratoire Stress Immunité Pathogènes - EA 7300 - Université de Lorraine, 9 avenue de la forêt de Haye, 54511 Vandoeuvre-les-Nancy, France
| | - Joséphine Dorin
- Structure de Parasitologie-Mycologie, Département de Microbiologie, Centre Hospitalo-Universitaire de Nancy (CHU-Nancy), Hôpitaux de Brabois, 11 allée du Morvan, 54511 Vandœuvre-les-Nancy, France
| | - Marie Machouart
- Structure de Parasitologie-Mycologie, Département de Microbiologie, Centre Hospitalo-Universitaire de Nancy (CHU-Nancy), Hôpitaux de Brabois, 11 allée du Morvan, 54511 Vandœuvre-les-Nancy, France
- Laboratoire Stress Immunité Pathogènes - EA 7300 - Université de Lorraine, 9 avenue de la forêt de Haye, 54511 Vandoeuvre-les-Nancy, France
| |
Collapse
|
34
|
Local Population Structure and Patterns of Western Hemisphere Dispersal for Coccidioides spp., the Fungal Cause of Valley Fever. mBio 2016; 7:e00550-16. [PMID: 27118594 PMCID: PMC4850269 DOI: 10.1128/mbio.00550-16] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Coccidioidomycosis (or valley fever) is a fungal disease with high morbidity and mortality that affects tens of thousands of people each year. This infection is caused by two sibling species, Coccidioides immitis and C. posadasii, which are endemic to specific arid locales throughout the Western Hemisphere, particularly the desert southwest of the United States. Recent epidemiological and population genetic data suggest that the geographic range of coccidioidomycosis is expanding, as new endemic clusters have been identified in the state of Washington, well outside the established endemic range. The genetic mechanisms and epidemiological consequences of this expansion are unknown and require better understanding of the population structure and evolutionary history of these pathogens. Here we performed multiple phylogenetic inference and population genomics analyses of 68 new and 18 previously published genomes. The results provide evidence of substantial population structure in C. posadasii and demonstrate the presence of distinct geographic clades in central and southern Arizona as well as dispersed populations in Texas, Mexico, South America, and Central America. Although a smaller number of C. immitis strains were included in the analyses, some evidence of phylogeographic structure was also detected in this species, which has been historically limited to California and Baja, Mexico. Bayesian analyses indicated that C. posadasii is the more ancient of the two species and that Arizona contains the most diverse subpopulations. We propose a southern Arizona-northern Mexico origin for C. posadasii and describe a pathway for dispersal and distribution out of this region. Coccidioidomycosis, or valley fever, is caused by the pathogenic fungi Coccidioides posadasii and C. immitis. The fungal species and disease are primarily found in the American desert southwest, with spotted distribution throughout the Western Hemisphere. Initial molecular studies suggested a likely anthropogenic movement of C. posadasii from North America to South America. Here we comparatively analyze eighty-six genomes of the two Coccidioides species and establish local and species-wide population structures to not only clarify the earlier dispersal hypothesis but also provide evidence of likely ancestral populations and patterns of dispersal for the known subpopulations of C. posadasii.
Collapse
|
35
|
Prakash H, Ghosh AK, Rudramurthy SM, Paul RA, Gupta S, Negi V, Chakrabarti A. The environmental source of emerging Apophysomyces variabilis infection in India. Med Mycol 2016; 54:567-75. [PMID: 27118802 DOI: 10.1093/mmy/myw014] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/15/2016] [Indexed: 11/14/2022] Open
Abstract
The rare mucoraceous fungus, Apophysomyces species complex ranks second after Rhizopus arrhizus causing mucormycosis in India. The source of this agent in the environment is not clearly known. We conducted an environmental study to find its presence in Indian soil. The soil samples from different geographical locations were analyzed for isolation of Mucorales. Rhizopus arrhizus (24.6%) was most commonly isolated from soil, followed by Lichtheimia spp. (23.2%), Cunninghamella spp. (21.7%), Rhizopus microsporus (14%) and Apophysomyces spp. (4.5%). The isolation of Apophysomyces species complex was significantly associated with low nitrogen content of the soil. Based on sequencing of internal transcribed spacer (ITS) and 28S (D1/D2) regions of ribosomal DNA, the Apophysomyces isolates were identified as Apophysomyces variabilis with 98 to 100% similarity to type strain A. variabilis (CBS658.93). The analysis of amplified fragment length polymorphism (AFLP) fingerprinting data demonstrated genomic diversity of A. variabilis isolates with multiple clades (similarity 40-90%). The minimum inhibitory concentrations (MIC), MIC50 and MIC90 for A. variabilis isolates were 1 and 4 μg/ml for amphotericin B, 0.25 and 0.5 μg/ml for itraconazole, 0.125 and 0.25 μg/ml for posaconazole, 0.06 and 0.12 μg/ml for terbinafine, respectively. The present study revealed abundant presence of A. variabilis in Indian soil with low nitrogen content, its genetic heterogeneity and relatively high MICs for amphotericin B.
Collapse
Affiliation(s)
- Hariprasath Prakash
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Anup Kumar Ghosh
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | - Raees Ahmad Paul
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sunita Gupta
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Vishwanand Negi
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
36
|
Ashu EE, Xu J. The roles of sexual and asexual reproduction in the origin and dissemination of strains causing fungal infectious disease outbreaks. INFECTION GENETICS AND EVOLUTION 2015; 36:199-209. [PMID: 26394109 DOI: 10.1016/j.meegid.2015.09.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/16/2015] [Accepted: 09/18/2015] [Indexed: 12/15/2022]
Abstract
Sexual reproduction commonly refers to the reproductive process in which genomes from two sources are combined into a single cell through mating and then the zygote genomes are partitioned to progeny cells through meiosis. Reproduction in the absence of mating and meiosis is referred to as asexual or clonal reproduction. One major advantage of sexual reproduction is that it generates genetic variation among progeny which may allow for faster adaptation of the population to novel and/or stressful environments. However, adaptation to stressful or new environments can still occur through mutation, in the absence of sex. In this review, we analyzed the relative contributions of sexual and asexual reproduction in the origin and spread of strains causing fungal infectious diseases outbreaks. The necessity of sex and the ability of asexual fungi to initiate outbreaks are discussed. We propose a framework that relates the modes of reproduction to the origin and propagation of fungal disease outbreaks. Our analyses suggest that both sexual and asexual reproduction can play critical roles in the origin of outbreak strains and that the rapid spread of outbreak strains is often accomplished through asexual expansion.
Collapse
Affiliation(s)
- Eta Ebasi Ashu
- Department of Biology, McMaster University, 1280 Main St. W, Hamilton, ON L8S 4K1, Canada
| | - Jianping Xu
- Department of Biology, McMaster University, 1280 Main St. W, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
37
|
Abstract
UNLABELLED Highly invasive, community-acquired Klebsiella pneumoniae infections have recently emerged, resulting in pyogenic liver abscesses. These infections are caused by hypervirulent K. pneumoniae (hvKP) isolates primarily of capsule serotype K1 or K2. Hypervirulent K1 isolates belong to clonal complex 23 (CC23), indicating that this clonal lineage has a specific genetic background conferring hypervirulence. Here, we apply whole-genome sequencing to a collection of K. pneumoniae isolates to characterize the phylogenetic background of hvKP isolates with an emphasis on CC23. Most of the hvKP isolates belonged to CC23 and grouped into a distinct monophyletic clade, revealing that CC23 is a unique clonal lineage, clearly distinct from nonhypervirulent strains. Separate phylogenetic analyses of the CC23 isolates indicated that the CC23 lineage evolved recently by clonal expansion from a single common ancestor. Limited grouping according to geographical origin was observed, suggesting that CC23 has spread globally through multiple international transmissions. Conversely, hypervirulent K2 strains clustered in genetically unrelated groups. Strikingly, homologues of a large virulence plasmid were detected in all hvKP clonal lineages, indicating a key role in K. pneumoniae hypervirulence. The plasmid encodes two siderophores, aerobactin and salmochelin, and RmpA (regulator of the mucoid phenotype); all these factors were found to be restricted to hvKP isolates. Genomic comparisons revealed additional factors specifically associated with CC23. These included a distinct variant of a genomic island encoding yersiniabactin, colibactin, and microcin E492. Furthermore, additional novel genomic regions unique to CC23 were revealed which may also be involved in the increased virulence of this important clonal lineage. IMPORTANCE During the last 3 decades, hypervirulent Klebsiella pneumoniae (hvKP) isolates have emerged, causing severe community-acquired infections primarily in the form of pyogenic liver abscesses. This syndrome has so far primarily been found in Southeast Asia, but increasing numbers of cases are being reported worldwide, indicating that the syndrome is turning into a globally emerging disease. We applied whole-genome sequencing to a collection of K. pneumoniae clinical isolates to reveal the phylogenetic background of hvKP and to identify genetic factors associated with the increased virulence. The hvKP isolates primarily belonged to clonal complex 23 (CC23), and this clonal lineage was revealed to be clearly distinct from nonhypervirulent strains. A specific virulence plasmid was found to be associated with hypervirulence, and novel genetic determinants uniquely associated with CC23 were identified. Our findings extend the understanding of the genetic background of the emergence of hvKP clones.
Collapse
|
38
|
Genomic Context of Azole Resistance Mutations in Aspergillus fumigatus Determined Using Whole-Genome Sequencing. mBio 2015; 6:e00536. [PMID: 26037120 PMCID: PMC4453006 DOI: 10.1128/mbio.00536-15] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A rapid and global emergence of azole resistance has been observed in the pathogenic fungus Aspergillus fumigatus over the past decade. The dominant resistance mechanism appears to be of environmental origin and involves mutations in the cyp51A gene, which encodes a protein targeted by triazole antifungal drugs. Whole-genome sequencing (WGS) was performed for high-resolution single-nucleotide polymorphism (SNP) analysis of 24 A. fumigatus isolates, including azole-resistant and susceptible clinical and environmental strains obtained from India, the Netherlands, and the United Kingdom, in order to assess the utility of WGS for characterizing the alleles causing resistance. WGS analysis confirmed that TR34/L98H (a mutation comprising a tandem repeat [TR] of 34 bases in the promoter of the cyp51A gene and a leucine-to-histidine change at codon 98) is the sole mechanism of azole resistance among the isolates tested in this panel of isolates. We used population genomic analysis and showed that A. fumigatus was panmictic, with as much genetic diversity found within a country as is found between continents. A striking exception to this was shown in India, where isolates are highly related despite being isolated from both clinical and environmental sources across >1,000 km; this broad occurrence suggests a recent selective sweep of a highly fit genotype that is associated with the TR34/L98H allele. We found that these sequenced isolates are all recombining, showing that azole-resistant alleles are segregating into diverse genetic backgrounds. Our analysis delineates the fundamental population genetic parameters that are needed to enable the use of genome-wide association studies to identify the contribution of SNP diversity to the generation and spread of azole resistance in this medically important fungus. Resistance to azoles in the ubiquitous ascomycete fungus A. fumigatus was first reported from clinical isolates collected in the United States during the late 1980s. Over the last decade, an increasing number of A. fumigatus isolates from the clinic and from nature have been found to show resistance to azoles, suggesting that resistance is emerging through selection by the widespread usage of agricultural azole antifungal compounds. Aspergillosis is an emerging clinical problem, with high rates of treatment failures necessitating the development of new techniques for surveillance and for determining the genome-wide basis of azole resistance in A. fumigatus.
Collapse
|
39
|
Affiliation(s)
- Anastasia P. Litvintseva
- Mycotic Diseases Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail:
| | - Mary E. Brandt
- Mycotic Diseases Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Rajal K. Mody
- Mycotic Diseases Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Shawn R. Lockhart
- Mycotic Diseases Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| |
Collapse
|
40
|
Hull CM, Purdy NJ, Moody SC. Mitigation of human-pathogenic fungi that exhibit resistance to medical agents: can clinical antifungal stewardship help? Future Microbiol 2015; 9:307-25. [PMID: 24762306 DOI: 10.2217/fmb.13.160] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Reducing indiscriminate antimicrobial usage to combat the expansion of multidrug-resistant human-pathogenic bacteria is fundamental to clinical antibiotic stewardship. In contrast to bacteria, fungal resistance traits are not understood to be propagated via mobile genetic elements, and it has been proposed that a global explosion of resistance to medical antifungals is therefore unlikely. Clinical antifungal stewardship has focused instead on reducing the drug toxicity and high costs associated with medical agents. Mitigating the problem of human-pathogenic fungi that exhibit resistance to antimicrobials is an emergent issue. This article addresses the extent to which clinical antifungal stewardship could influence the scale and epidemiology of resistance to medical antifungals both now and in the future. The importance of uncharted selection pressure exerted by agents outside the clinical setting (agricultural pesticides, industrial xenobiotics, biocides, pharmaceutical waste and others) on environmentally ubiquitous spore-forming molds that are lesserstudied but increasingly responsible for drug-refractory infections is considered.
Collapse
Affiliation(s)
- Claire M Hull
- Swansea University, College of Medicine, Institute of Life Science: Microbes & Immunity, SA2 8PP, Wales, UK
| | | | | |
Collapse
|
41
|
Abstract
This article reviews four immunocompetent patients who developed a rare fungal infection, mucormycosis, secondary to multiple traumatic injuries sustained during an EF-5 tornado in Joplin, MO. Commonly found in soil and decaying organic matter, mucorales are fungi associated with soft tissue and cutaneous infections. Onset of this fungal infection can occur without clinical signs, presenting several days to several weeks after injury, delaying diagnosis. A multidisciplinary treatment approach including aggressive antifungal therapy and aggressive surgical debridement is critical. This diagnosis should be considered in all patients presenting with injuries sustained from high-velocity embedment of debris such as natural disasters or explosions. We present four cases of mucormycosis, species Apophysomyces trapeziformis. Data reported includes predisposing factors, number of days between injury and diagnosis of mucormycosis, surgical treatment, antifungal therapy, outcomes, and potential risk factors that may have contributed to the development of mucormycosis.
Collapse
|
42
|
Vaux S, Criscuolo A, Desnos-Ollivier M, Diancourt L, Tarnaud C, Vandenbogaert M, Brisse S, Coignard B, Dromer F. Multicenter outbreak of infections by Saprochaete clavata, an unrecognized opportunistic fungal pathogen. mBio 2014; 5:e02309-14. [PMID: 25516620 PMCID: PMC4271555 DOI: 10.1128/mbio.02309-14] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Rapidly fatal cases of invasive fungal infections due to a fungus later identified as Saprochaete clavata were reported in France in May 2012. The objectives of this study were to determine the clonal relatedness of the isolates and to investigate possible sources of contamination. A nationwide alert was launched to collect cases. Molecular identification methods, whole-genome sequencing (WGS), and clone-specific genotyping were used to analyze recent and historical isolates, and a case-case study was performed. Isolates from thirty cases (26 fungemias, 22 associated deaths at day 30) were collected between September 2011 and October 2012. Eighteen cases occurred within 8 weeks (outbreak) in 10 health care facilities, suggesting a common source of contamination, with potential secondary cases. Phylogenetic analysis identified one clade (clade A), which accounted for 16/18 outbreak cases. Results of microbiological investigations of environmental, drug, or food sources were negative. Analysis of exposures pointed to a medical device used for storage and infusion of blood products, but no fungal contamination was detected in the unused devices. Molecular identification of isolates from previous studies demonstrated that S. clavata can be found in dairy products and has already been involved in monocentric outbreaks in hematology wards. The possibility that S. clavata may transmit through contaminated medical devices or can be associated with dairy products as seen in previous European outbreaks is highly relevant for the management of future outbreaks due to this newly recognized pathogen. This report also underlines further the potential of WGS for investigation of outbreaks due to uncommon fungal pathogens. IMPORTANCE Several cases of rapidly fatal infections due to the fungus Saprochaete clavata were reported in France within a short period of time in three health care facilities, suggesting a common source of contamination. A nationwide alert collected 30 cases over 1 year, including an outbreak of 18 cases over 8 weeks. Whole-genome sequencing (WGS) was used to analyze recent and historical isolates and to design a clade-specific genotyping method that uncovered a clone associated with the outbreak, thus allowing a case-case study to analyze the risk factors associated with infection by the clone. The possibility that S. clavata may transmit through contaminated medical devices or can be associated with dairy products as seen in previous European outbreaks is highly relevant for the management of future outbreaks due to this newly recognized pathogen.
Collapse
Affiliation(s)
- Sophie Vaux
- Institut de veille sanitaire, département des Maladies Infectieuses, Saint-Maurice, France
| | - Alexis Criscuolo
- Institut Pasteur, Genotyping of Pathogens and Public Health, Paris, France
| | | | - Laure Diancourt
- Institut Pasteur, Genotyping of Pathogens and Public Health, Paris, France
| | - Chloé Tarnaud
- Institut de veille sanitaire, département des Maladies Infectieuses, Saint-Maurice, France
| | | | | | - Bruno Coignard
- Institut de veille sanitaire, département des Maladies Infectieuses, Saint-Maurice, France
| | | |
Collapse
|
43
|
Mendoza L, Vilela R, Voelz K, Ibrahim AS, Voigt K, Lee SC. Human Fungal Pathogens of Mucorales and Entomophthorales. Cold Spring Harb Perspect Med 2014; 5:a019562. [PMID: 25377138 PMCID: PMC4382724 DOI: 10.1101/cshperspect.a019562] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In recent years, we have seen an increase in the number of immunocompromised cohorts as a result of infections and/or medical conditions, which has resulted in an increased incidence of fungal infections. Although rare, the incidence of infections caused by fungi belonging to basal fungal lineages is also continuously increasing. Basal fungal lineages diverged at an early point during the evolution of the fungal lineage, in which, in a simplified four-phylum fungal kingdom, Zygomycota and Chytridiomycota belong to the basal fungi, distinguishing them from Ascomycota and Basidiomycota. Currently there are no known human infections caused by fungi in Chytridiomycota; only Zygomycotan fungi are known to infect humans. Hence, infections caused by zygomycetes have been called zygomycosis, and the term "zygomycosis" is often used as a synonym for "mucormycosis." In the four-phylum fungal kingdom system, Zygomycota is classified mainly based on morphology, including the ability to form coenocytic (aseptated) hyphae and zygospores (sexual spores). In the Zygomycota, there are 10 known orders, two of which, the Mucorales and Entomophthorales, contain species that can infect humans, and the infection has historically been known as zygomycosis. However, recent multilocus sequence typing analyses (the fungal tree of life [AFTOL] project) revealed that the Zygomycota forms not a monophyletic clade but instead a polyphyletic clade, whereas Ascomycota and Basidiomycota are monophyletic. Thus, the term "zygomycosis" needed to be further specified, resulting in the terms "mucormycosis" and "entomophthoramycosis." This review covers these two different types of fungal infections.
Collapse
Affiliation(s)
- Leonel Mendoza
- Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48424-1031 Biomedical Laboratory Diagnostics, Michigan State University, East Lansing, Michigan 48424-1031
| | - Raquel Vilela
- Biomedical Laboratory Diagnostics, Michigan State University, East Lansing, Michigan 48424-1031 Faculty of Pharmacy, Federal University of Minas Gerais (UFMG), Minas Gerais, CEP33400000 Belo Horizonte, Brazil Belo Horizonte Brazil; Superior Institute of Medicine (ISMD), Minas Gerais, CEP33400000 Belo Horizonte, Brazil
| | - Kerstin Voelz
- Institute of Microbiology and Infection & School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom The National Institute of Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom B15 2WB
| | - Ashraf S Ibrahim
- Division of Infectious Diseases, Harbor-University of California Los Angeles Medical Center, St. John's Cardiovascular Research Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90502 David Geffen School of Medicine at UCLA, Los Angeles, California 90095
| | - Kerstin Voigt
- Jena Microbial Resource Collection, Leibniz Institute for Natural Product Research and Infection Biology and University of Jena, Faculty of Biology and Pharmacy, Institute of Microbiology, Neugasse 25, 07743 Jena, Germany
| | - Soo Chan Lee
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
44
|
Comparative analysis of subtyping methods against a whole-genome-sequencing standard for Salmonella enterica serotype Enteritidis. J Clin Microbiol 2014; 53:212-8. [PMID: 25378576 DOI: 10.1128/jcm.02332-14] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A retrospective investigation was performed to evaluate whole-genome sequencing as a benchmark for comparing molecular subtyping methods for Salmonella enterica serotype Enteritidis and survey the population structure of commonly encountered S. enterica serotype Enteritidis outbreak isolates in the United States. A total of 52 S. enterica serotype Enteritidis isolates representing 16 major outbreaks and three sporadic cases collected between 2001 and 2012 were sequenced and subjected to subtyping by four different methods: (i) whole-genome single-nucleotide-polymorphism typing (WGST), (ii) multiple-locus variable-number tandem-repeat (VNTR) analysis (MLVA), (iii) clustered regularly interspaced short palindromic repeats combined with multi-virulence-locus sequence typing (CRISPR-MVLST), and (iv) pulsed-field gel electrophoresis (PFGE). WGST resolved all outbreak clusters and provided useful robust phylogenetic inference results with high epidemiological correlation. While both MLVA and CRISPR-MVLST yielded higher discriminatory power than PFGE, MLVA outperformed the other methods in delineating outbreak clusters whereas CRISPR-MVLST showed the potential to trace major lineages and ecological origins of S. enterica serotype Enteritidis. Our results suggested that whole-genome sequencing makes a viable platform for the evaluation and benchmarking of molecular subtyping methods.
Collapse
|
45
|
Wendt JM, Kaul D, Limbago BM, Ramesh M, Cohle S, Denison AM, Driebe EM, Rasheed JK, Zaki SR, Blau DM, Paddock CD, McDougal LK, Engelthaler DM, Keim PS, Roe CC, Akselrod H, Kuehnert MJ, Basavaraju SV. Transmission of methicillin-resistant Staphylococcus aureus infection through solid organ transplantation: confirmation via whole genome sequencing. Am J Transplant 2014; 14:2633-9. [PMID: 25250717 PMCID: PMC4620542 DOI: 10.1111/ajt.12898] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 06/04/2014] [Accepted: 06/22/2014] [Indexed: 01/25/2023]
Abstract
We describe two cases of donor-derived methicillin-resistant Staphylococcus aureus (MRSA) bacteremia that developed after transplantation of organs from a common donor who died from acute MRSA endocarditis. Both recipients developed recurrent MRSA infection despite appropriate antibiotic therapy, and required prolonged hospitalization and hospital readmission. Comparison of S. aureus whole genome sequence of DNA extracted from fixed donor tissue and recipients' isolates confirmed donor-derived transmission. Current guidelines emphasize the risk posed by donors with bacteremia from multidrug-resistant organisms. This investigation suggests that, particularly in the setting of donor endocarditis, even a standard course of prophylactic antibiotics may not be sufficient to prevent donor-derived infection.
Collapse
Affiliation(s)
- J. M. Wendt
- Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, GA,Centers for Disease Control and Prevention, Epidemic Intelligence Service, Office of Surveillance Epidemiology and Laboratory Services, Atlanta, GA
| | - D. Kaul
- Division of Infectious Diseases, University of Michigan School of Medicine, Ann Arbor, MI
| | - B. M. Limbago
- Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, GA
| | - M. Ramesh
- Henry Ford Health System, Detroit, MI
| | - S. Cohle
- Kent County Office of the Medical Examiner, Grand Rapids, MI
| | - A. M. Denison
- Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, GA
| | - E. M. Driebe
- The Translational Genomics Research Institute, TGen North, Flagstaff, AZ
| | - J. K. Rasheed
- Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, GA
| | - S. R. Zaki
- Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, GA
| | - D. M. Blau
- Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, GA
| | - C. D. Paddock
- Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, GA
| | - L. K. McDougal
- Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, GA
| | - D. M. Engelthaler
- The Translational Genomics Research Institute, TGen North, Flagstaff, AZ
| | - P. S. Keim
- The Translational Genomics Research Institute, TGen North, Flagstaff, AZ
| | - C. C. Roe
- The Translational Genomics Research Institute, TGen North, Flagstaff, AZ
| | - H. Akselrod
- Mount Sinai School of Medicine, New York, NY
| | - M. J. Kuehnert
- Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, GA
| | - S. V. Basavaraju
- Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, GA,Corresponding author: Sridhar V. Basavaraju,
| |
Collapse
|
46
|
Chander J, Stchigel AM, Alastruey-Izquierdo A, Jayant M, Bala K, Rani H, Handa U, Punia RS, Dalal U, Attri AK, Monzon A, Cano-Lira JF, Guarro J. Fungal necrotizing fasciitis, an emerging infectious disease caused by Apophysomyces (Mucorales). Rev Iberoam Micol 2014; 32:93-8. [PMID: 25576377 DOI: 10.1016/j.riam.2014.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 03/07/2014] [Accepted: 06/03/2014] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The mucoralean fungi are emerging causative agents of primary cutaneous infections presenting in the form of necrotizing fasciitis. AIMS The aim of this study was to investigate a series of suspected necrotizing fasciitis cases by Apophysomyces species over one-year period in a northern Indian hospital. METHODS The clinical details of those patients suspected to suffer from fungal necrotizing fasciitis were recorded. Skin biopsies from local wounds were microscopically examined and fungal culturing was carried out on standard media. The histopathology was evaluated using conventional methods and special stains. Apophysomyces isolates were identified by their morphology and by molecular sequencing of the internal transcribed spacer (ITS) region of the ribosomal genes. Antifungal susceptibility testing was carried out following EUCAST guidelines and treatment progress was monitored. RESULTS Seven patients were found to be suffering from necrotizing fasciitis caused by Apophysomyces spp. Six isolates were identified as Apophysomyces variabilis and one as Apophysomyces elegans. Five patients had previously received intramuscular injections in the affected area. Three patients recovered, two died and the other two left treatment against medical advice and are presumed to have died due to their terminal illnesses. Posaconazole and terbinafine were found to be the most active compounds against A. variabilis, while the isolate of A. elegans was resistant to all antifungals tested. CONCLUSIONS Apophysomyces is confirmed as an aggressive fungus able to cause fatal infections. All clinicians, microbiologists and pathologists need to be aware of these emerging mycoses as well as of the risks involved in medical practices, which may provoke serious fungal infections such as those produced by Apophysomyces.
Collapse
Affiliation(s)
- Jagdish Chander
- Government Medical College Hospital (GMCH), Chandigarh, India
| | | | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, Spanish National Center for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Mayank Jayant
- Government Medical College Hospital (GMCH), Chandigarh, India
| | - Kiran Bala
- Government Medical College Hospital (GMCH), Chandigarh, India
| | - Hena Rani
- Government Medical College Hospital (GMCH), Chandigarh, India
| | - Uma Handa
- Government Medical College Hospital (GMCH), Chandigarh, India
| | | | - Usha Dalal
- Government Medical College Hospital (GMCH), Chandigarh, India
| | | | - Araceli Monzon
- Mycology Reference Laboratory, Spanish National Center for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Josep Guarro
- Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili, Reus, Spain
| |
Collapse
|
47
|
Primary cutaneous mucormycosis produced by the new species Apophysomyces mexicanus. J Clin Microbiol 2014; 52:4428-31. [PMID: 25297328 DOI: 10.1128/jcm.02138-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A case of fungal necrotizing fasciitis that appeared in an immunocompetent Mexican woman after a car accident is described. The patient did not respond to antifungal treatment and died 4 days later. The fungus was molecularly identified as a new species of Apophysomyces, namely, Apophysomyces mexicanus.
Collapse
|
48
|
Dannaoui E, Millon L. Current Status of Diagnosis of Mucormycosis: Update on Molecular Methods. CURRENT FUNGAL INFECTION REPORTS 2014. [DOI: 10.1007/s12281-014-0196-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Cryptococcus gattii in North American Pacific Northwest: whole-population genome analysis provides insights into species evolution and dispersal. mBio 2014; 5:e01464-14. [PMID: 25028429 PMCID: PMC4161256 DOI: 10.1128/mbio.01464-14] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The emergence of distinct populations of Cryptococcus gattii in the temperate North American Pacific Northwest (PNW) was surprising, as this species was previously thought to be confined to tropical and semitropical regions. Beyond a new habitat niche, the dominant emergent population displayed increased virulence and caused primary pulmonary disease, as opposed to the predominantly neurologic disease seen previously elsewhere. Whole-genome sequencing was performed on 118 C. gattii isolates, including the PNW subtypes and the global diversity of molecular type VGII, to better ascertain the natural source and genomic adaptations leading to the emergence of infection in the PNW. Overall, the VGII population was highly diverse, demonstrating large numbers of mutational and recombinational events; however, the three dominant subtypes from the PNW were of low diversity and were completely clonal. Although strains of VGII were found on at least five continents, all genetic subpopulations were represented or were most closely related to strains from South America. The phylogenetic data are consistent with multiple dispersal events from South America to North America and elsewhere. Numerous gene content differences were identified between the emergent clones and other VGII lineages, including genes potentially related to habitat adaptation, virulence, and pathology. Evidence was also found for possible gene introgression from Cryptococcus neoformans var. grubii that is rarely seen in global C. gattii but that was present in all PNW populations. These findings provide greater understanding of C. gattii evolution in North America and support extensive evolution in, and dispersal from, South America. Cryptococcus gattii emerged in the temperate North American Pacific Northwest (PNW) in the late 1990s. Beyond a new environmental niche, these emergent populations displayed increased virulence and resulted in a different pattern of clinical disease. In particular, severe pulmonary infections predominated in contrast to presentation with neurologic disease as seen previously elsewhere. We employed population-level whole-genome sequencing and analysis to explore the genetic relationships and gene content of the PNW C. gattii populations. We provide evidence that the PNW strains originated from South America and identified numerous genes potentially related to habitat adaptation, virulence expression, and clinical presentation. Characterization of these genetic features may lead to improved diagnostics and therapies for such fungal infections. The data indicate that there were multiple recent introductions of C. gattii into the PNW. Public health vigilance is warranted for emergence in regions where C. gattii is not thought to be endemic.
Collapse
|
50
|
Whole-genome analysis of Exserohilum rostratum from an outbreak of fungal meningitis and other infections. J Clin Microbiol 2014; 52:3216-22. [PMID: 24951807 DOI: 10.1128/jcm.00936-14] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Exserohilum rostratum was the cause of most cases of fungal meningitis and other infections associated with the injection of contaminated methylprednisolone acetate produced by the New England Compounding Center (NECC). Until this outbreak, very few human cases of Exserohilum infection had been reported, and very little was known about this dematiaceous fungus, which usually infects plants. Here, we report using whole-genome sequencing (WGS) for the detection of single nucleotide polymorphisms (SNPs) and phylogenetic analysis to investigate the molecular origin of the outbreak using 22 isolates of E. rostratum retrieved from 19 case patients with meningitis or epidural/spinal abscesses, 6 isolates from contaminated NECC vials, and 7 isolates unrelated to the outbreak. Our analysis indicates that all 28 isolates associated with the outbreak had nearly identical genomes of 33.8 Mb. A total of 8 SNPs were detected among the outbreak genomes, with no more than 2 SNPs separating any 2 of the 28 genomes. The outbreak genomes were separated from the next most closely related control strain by ∼136,000 SNPs. We also observed significant genomic variability among strains unrelated to the outbreak, which may suggest the possibility of cryptic speciation in E. rostratum.
Collapse
|