1
|
Mukku RP, Poornima K, Yadav S, Raghunand TR. Delineating the functional role of the PPE50 (Rv3135) - PPE51 (Rv3136) gene cluster in the pathophysiology of Mycobacterium tuberculosis. Microbes Infect 2024; 26:105248. [PMID: 37931681 DOI: 10.1016/j.micinf.2023.105248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/08/2023]
Abstract
The extraordinary success of Mycobacterium tuberculosis (M. tb) has been attributed to its ability to modulate host immune responses, and its genome encodes multiple immunomodulatory factors, including several proteins of the multigenic PE_PPE family. To understand its role in M. tb pathophysiology we have characterised the PPE50 (Rv3135)-PPE51 (Rv3136) gene cluster, one of nine PPE-PPE clusters in the genome. We demonstrate here that this cluster is operonic, and that PPE50 and PPE51 interact - the first demonstration of PPE-PPE interaction. THP-1 macrophages infected with recombinant Mycobacterium smegmatis strains expressing PPE50 and PPE51 showed lower intracellular viability than the control, which correlated with an increase in transcript levels of iNOS2. Infected macrophages also exhibited an upregulation in levels of IL-10, indicating an immunomodulatory role for these proteins. Using pull-downs and signalling assays, we identified TLR1 to be the cognate receptor for PPE50 - all the phenotypes observed on infection of THP-1 macrophages were reversed on pre-treatment with an anti-TLR1 antibody, validating the functional outcome of PPE50-TLR1 interaction. Our data reveals a TLR1 dependent role for the PPE50-PPE51 cluster in promoting bacillary persistence, via CFU reduction and concomitant upregulation of the anti-inflammatory response - a two-pronged strategy to circumvent host immune surveillance.
Collapse
Affiliation(s)
- Ravi Prasad Mukku
- CSIR - Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India.
| | - Kokavalla Poornima
- CSIR - Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India.
| | - Sangya Yadav
- CSIR - Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India.
| | - Tirumalai R Raghunand
- CSIR - Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Xu T, Wang C, Li M, Wei J, He Z, Qian Z, Wang X, Wang H. Mycobacterium tuberculosis PE_PGRS45 (Rv2615c) Promotes Recombinant Mycobacteria Intracellular Survival via Regulation of Innate Immunity, and Inhibition of Cell Apoptosis. J Microbiol 2024; 62:49-62. [PMID: 38337112 DOI: 10.1007/s12275-023-00101-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 02/12/2024]
Abstract
Tuberculosis (TB), a bacterial infectious disease caused by Mycobacterium tuberculosis (M. tuberculosis), is a significant global public health problem. Mycobacterium tuberculosis expresses a unique family of PE_PGRS proteins that have been implicated in pathogenesis. Despite numerous studies, the functions of most PE_PGRS proteins in the pathogenesis of mycobacterium infections remain unclear. PE_PGRS45 (Rv2615c) is only found in pathogenic mycobacteria. In this study, we successfully constructed a recombinant Mycobacterium smegmatis (M. smegmatis) strain which heterologously expresses the PE_PGRS45 protein. We found that overexpression of this cell wall-associated protein enhanced bacterial viability under stress in vitro and cell survival in macrophages. MS_PE_PGRS45 decreased the secretion of pro-inflammatory cytokines such as IL-1β, IL-6, IL-12p40, and TNF-α. We also found that MS_PE_PGRS45 increased the expression of the anti-inflammatory cytokine IL-10 and altered macrophage-mediated immune responses. Furthermore, PE_PGRS45 enhanced the survival rate of M. smegmatis in macrophages by inhibiting cell apoptosis. Collectively, our findings show that PE_PGRS45 is a virulent factor actively involved in the interaction with the host macrophage.
Collapse
Affiliation(s)
- Tao Xu
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Research Center of Laboratory Medicine, School of Laboratory Medicine, Bengbu Medical University, Bengbu, 233030, People's Republic of China
| | - Chutong Wang
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Research Center of Laboratory Medicine, School of Laboratory Medicine, Bengbu Medical University, Bengbu, 233030, People's Republic of China
| | - Minying Li
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Research Center of Laboratory Medicine, School of Laboratory Medicine, Bengbu Medical University, Bengbu, 233030, People's Republic of China
| | - Jing Wei
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Research Center of Laboratory Medicine, School of Laboratory Medicine, Bengbu Medical University, Bengbu, 233030, People's Republic of China
| | - Zixuan He
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Research Center of Laboratory Medicine, School of Laboratory Medicine, Bengbu Medical University, Bengbu, 233030, People's Republic of China
| | - Zhongqing Qian
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Research Center of Laboratory Medicine, School of Laboratory Medicine, Bengbu Medical University, Bengbu, 233030, People's Republic of China
| | - Xiaojing Wang
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, First Affiliated Hospital, Bengbu Medical University, Bengbu, 233030, People's Republic of China
| | - Hongtao Wang
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, First Affiliated Hospital, Bengbu Medical University, Bengbu, 233030, People's Republic of China.
| |
Collapse
|
3
|
Paul P, Tiwari B. Organelles are miscommunicating: Membrane contact sites getting hijacked by pathogens. Virulence 2023; 14:2265095. [PMID: 37862470 PMCID: PMC10591786 DOI: 10.1080/21505594.2023.2265095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 09/25/2023] [Indexed: 10/22/2023] Open
Abstract
Membrane Contact Sites (MCS) are areas of close apposition of organelles that serve as hotspots for crosstalk and direct transport of lipids, proteins and metabolites. Contact sites play an important role in Ca2+ signalling, phospholipid synthesis, and micro autophagy. Initially, altered regulation of vesicular trafficking was regarded as the key mechanism for intracellular pathogen survival. However, emerging studies indicate that pathogens hijack MCS elements - a novel strategy for survival and replication in an intracellular environment. Several pathogens exploit MCS to establish direct contact between organelles and replication inclusion bodies, which are essential for their survival within the cell. By establishing this direct control, pathogens gain access to cytosolic compounds necessary for replication, maintenance, escaping endocytic maturation and circumventing lysosome fusion. MCS components such as VAP A/B, OSBP, and STIM1 are targeted by pathogens through their effectors and secretion systems. In this review, we delve into the mechanisms which operate in the evasion of the host immune system when intracellular pathogens hostage MCS. We explore targeting MCS components as a novel therapeutic approach, modifying molecular pathways and signalling to address the disease's mechanisms and offer more effective, tailored treatments for affected individuals.
Collapse
Affiliation(s)
- Pratyashaa Paul
- Department of Biological Sciences, Indian Institute of Science Education and Research, India
| | - Bhavana Tiwari
- Department of Biological Sciences, Indian Institute of Science Education and Research, India
| |
Collapse
|
4
|
Yandrapally S, Agarwal A, Chatterjee A, Sarkar S, Mohareer K, Banerjee S. Mycobacterium tuberculosis EspR modulates Th1-Th2 shift by transcriptionally regulating IL-4, steering increased mycobacterial persistence and HIV propagation during co-infection. Front Immunol 2023; 14:1276817. [PMID: 37928551 PMCID: PMC10621737 DOI: 10.3389/fimmu.2023.1276817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) and HIV are known to mutually support each other during co-infection by multiple mechanisms. This synergistic influence could be either by direct interactions or indirectly through secreted host or pathogen factors that work in trans. Mtb secretes several virulence factors to modulate the host cellular environment for its persistence and escaping cell-intrinsic immune responses. We hypothesized that secreted Mtb transcription factors that target the host nucleus can directly interact with host DNA element(s) or HIV LTR during co-infection, thereby modulating immune gene expression, or driving HIV transcription, helping the synergistic existence of Mtb and HIV. Here, we show that the Mtb-secreted protein, EspR, a transcription regulator, increased mycobacterial persistence and HIV propagation during co-infection. Mechanistically, EspR localizes to the nucleus of the host cells during infection, binds to its putative cognate motif on the promoter region of the host IL-4 gene, activating IL-4 gene expression, causing high IL-4 titers that induce a Th2-type microenvironment, shifting the macrophage polarization to an M2 state as evident from CD206 dominant population over CD64. This compromised the clearance of the intracellular mycobacteria and enhanced HIV propagation. It was interesting to note that EspR did not bind to HIV LTR, although its transient expression increased viral propagation. This is the first report of an Mtb transcription factor directly regulating a host cytokine gene. This augments our understanding of the evolution of Mtb immune evasion strategies and unveils how Mtb aggravates comorbidities, such as HIV co-infection, by modulating the immune microenvironment.
Collapse
|
5
|
Anand PK, Kaur G, Saini V, Kaur J, Kaur J. N-terminal PPE domain plays an integral role in extracellular transportation and stability of the immunomodulatory Rv3539 protein of the Mycobacterium tuberculosis. Biochimie 2023; 213:30-40. [PMID: 37156406 DOI: 10.1016/j.biochi.2023.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/31/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
Multigene PE/PPE family is exclusively present in mycobacterium species. Only few selected genes of this family have been characterized till date. Rv3539 was annotated as PPE63 with conserved PPE domain at N-terminal and PE-PPE at C-terminal. An α/β hydrolase structural fold, characteristic of lipase/esterase, was present in the PE-PPE domain. To assign the biochemical function to Rv3539, the corresponding gene was cloned in pET-32a (+) as full-length, PPE, and PE-PPE domains individually, followed by expression in E. Coli C41 (DE3). All three proteins demonstrated esterase activity. However, the enzyme activity in the N-terminal PPE domain was very low. The enzyme activity of Rv3539 and PE-PPE proteins was approximately same with the pNP-C4 as optimum substrate at 40 °C and pH 8.0. The loss of enzyme activity after mutating the predicted catalytic triad (Ser296Ala, Asp369Ala, and His395Ala) found only in the PE-PPE domain, confirmed the candidature of the bioinformatically predicted active site residue. The optimal activity and thermostability of the Rv3539 protein was altered by removing the PPE domain. CD-spectroscopy analysis confirmed the role of PPE domain to the thermostability of Rv3539 by maintaining the structural integrity at higher temperatures. The presence of the N-terminal PPE domain directed the Rv3539 protein to the cell membrane/wall and the extracellular compartment. The Rv3539 protein could generate humoral response in TB patients. Therefore, results demonstrated that Rv3539 demonstrated esterase activity. PE-PPE domain of Rv3539 is functionally automated, however, N-terminus domain played a role in protein stabilization and its transportation. Both domains participated in immunomodulation.
Collapse
Affiliation(s)
- Pradeep Kumar Anand
- Department of Biotechnology, BMS Block-1, South Campus, Panjab University, Chandigarh, 160014, India.
| | - Gagandeep Kaur
- Department of Biotechnology, BMS Block-1, South Campus, Panjab University, Chandigarh, 160014, India.
| | - Varinder Saini
- Department of Pulmonary Medicine, Government Medical College and Hospital, Chandigarh, India.
| | - Jasbinder Kaur
- Department of Biochemistry, Government Medical College and Hospital, Chandigarh, India.
| | - Jagdeep Kaur
- Department of Biotechnology, BMS Block-1, South Campus, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
6
|
Anand PK, Saini V, Kaur J, Kumar A, Kaur J. Cell wall and immune modulation by Rv1800 (PPE28) helps M. smegmatis to evade intracellular killing. Int J Biol Macromol 2023; 247:125837. [PMID: 37455004 DOI: 10.1016/j.ijbiomac.2023.125837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/27/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Rv1800 is predicted as PPE family protein found in pathogenic mycobacteria only. Under acidic stress, the rv1800 gene was expressed in M. tuberculosis H37Ra. In-silico study showed lipase/esterase activity in C-terminus PE-PPE domain having pentapeptide motif with catalytic Ser-Asp-His residue. Full-length Rv1800 and C-terminus PE-PPE domain proteins showed esterase activity with pNP-C4 at the optimum temperature of 40 °C and pH 8.0. However, the N-terminus PPE domain showed no esterase activity, but involved in thermostability of Rv1800 full-length protein. M. smegmatis expressing rv1800 (MS_Rv1800) showed altered colony morphology and a significant resistance to numerous environmental stresses, antibiotics and higher lipid content. In extracellular and membrane fraction, Rv1800 protein was detected, while C terminus PE-PPE was present in cytoplasm, suggesting the role of N-terminus PPE domain in transportation of protein. MS_Rv1800 infected macrophage showed higher intracellular survival and low production of ROS, NO and expression levels of iNOS and pro-inflammatory cytokines, while induced expression of the anti-inflammatory cytokines. The Rv1800, PPE and PE-PPE showed antibody-mediated immunity in MDR-TB and PTB patients. Overall, these results confirmed the esterase activity in the C-terminus and function of N-terminus in thermostabilization and transportation; predicting the role of Rv1800 in immune/lipid modulation to support intracellular mycobacterium survival.
Collapse
Affiliation(s)
- Pradeep Kumar Anand
- Department of Biotechnology, BMS Block-1, South Campus, Panjab University, Chandigarh, 160014, India
| | - Varinder Saini
- Department of Pulmonary Medicine, Government Medical College and Hospital, Chandigarh, India
| | - Jasbinder Kaur
- Department of Biochemistry, Government Medical College and Hospital, Chandigarh, India
| | - Arbind Kumar
- Department of Biotechnology, BMS Block-1, South Campus, Panjab University, Chandigarh, 160014, India
| | - Jagdeep Kaur
- Department of Biotechnology, BMS Block-1, South Campus, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
7
|
Anand PK, Kaur J. Rv3539 (PPE63) of Mycobacterium Tuberculosis Promotes Survival of Mycobacterium Smegmatis in Human Macrophages Cell Line via Cell Wall Modulation of Bacteria and Altering Host's Immune Response. Curr Microbiol 2023; 80:267. [PMID: 37401981 DOI: 10.1007/s00284-023-03360-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/31/2023] [Indexed: 07/05/2023]
Abstract
The modulation of host's immune response plays an important role in the intracellular survival of Mycobacterium tuberculosis. The intracellular pathogen counteracts environmental stresses with help of the expression of several genes. The M. tuberculosis genome encodes several immune-modulatory proteins including PE (proline-glutamic acid)/PPE (proline-proline-glutamic acid) superfamily proteins. It is unclear how the unique PE/PPE proteins superfamily contributes to survival under different stress and pathophysiology conditions. Previously, we showed that PPE63 (Rv3539) has C-terminal esterase extension and was localized as a membrane attached and in extracellular compartment. Therefore, the probability of these proteins interacting with the host to modulate the host immune response cannot be ruled out. The physiological role of PPE63 was characterized by expressing the PPE63 in the M. smegmatis, a non-pathogenic strain intrinsically deficient of PPE63. The recombinant M. smegmatis expressing PPE63 altered the colony morphology, lipid composition, and integrity of the cell wall. It provided resistance to multiple hostile environmental stress conditions and several antibiotics. MS_Rv3539 demonstrated higher infection and intracellular survival in comparison to the MS_Vec in the PMA-differentiated THP-1 cells. The decreased intracellular level of ROS, NO, and expression of iNOS was observed in THP-1 cells upon infection with MS_Rv3539 in comparison to MS_Vec. Further, the decrease in expression of pro-inflammatory cytokines like IL-6, TNF-α, and IL-1β and enhanced anti-inflammatory cytokines like IL-10, pointed toward its role in immune modulation. Overall this study suggested the role of Rv3539 in enhanced intracellular survival of M. smegmatis via cell wall modulation and altered immune response of host.
Collapse
Affiliation(s)
- Pradeep K Anand
- Department of Biotechnology, Panjab University, BMS Block-1, South Campus, Chandigarh, 160014, India
| | - Jagdeep Kaur
- Department of Biotechnology, Panjab University, BMS Block-1, South Campus, Chandigarh, 160014, India.
| |
Collapse
|
8
|
Parmar S, Tocheva EI. The cell envelope of Mycobacterium abscessus and its role in pathogenesis. PLoS Pathog 2023; 19:e1011318. [PMID: 37200238 DOI: 10.1371/journal.ppat.1011318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023] Open
Abstract
Mycobacterium abscessus is a nontuberculosis mycobacterium (NTM) that has shown an exponential rise in its ability to cause disease. Due to its ubiquitous presence in the environment, M. abscessus is widely implicated in secondary exacerbations of many nosocomial infections and genetic respiratory disorders, such as cystic fibrosis (CF). Contrary to other rapidly growing NTMs, the cell envelope of M. abscessus harbors several prominent features and undergoes modifications that are responsible for its pathogenesis. Compositional changes of the mycobacterial outer membrane (MOM) significantly decrease the presence of glycopeptidolipids (GPLs) and enable the transition from a colonizing, smooth morphotype into a virulent, rough morphotype. The GPLs are transported to the MOM by the Mycobacterial membrane proteins Large (MmpL), which further act as drug efflux pumps and confer antibiotic resistance. Lastly, M. abscessus possesses 2 type VII secretion systems (T7SS): ESX-3 and ESX-4, both of which have recently been implicated in host-pathogen interactions and virulence. This review summarizes the current knowledge of M. abscessus pathogenesis and highlights the clinically relevant association between the structure and functions of its cell envelope.
Collapse
Affiliation(s)
- Shweta Parmar
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Elitza I Tocheva
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
9
|
D'Souza C, Kishore U, Tsolaki AG. The PE-PPE Family of Mycobacterium tuberculosis: Proteins in Disguise. Immunobiology 2023; 228:152321. [PMID: 36805109 DOI: 10.1016/j.imbio.2022.152321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Mycobacterium tuberculosis has thrived in parallel with humans for millennia, and despite our efforts, M. tuberculosis continues to plague us, currently infecting a third of the world's population. The success of M. tuberculosis has recently been attributed, in part, to the PE-PPE family; a unique collection of 168 proteins fundamentally involved in the pathogenesis of M. tuberculosis. The PE-PPE family proteins have been at the forefront of intense research efforts since their discovery in 1998 and whilst our knowledge and understanding has significantly advanced over the last two decades, many important questions remain to be elucidated. This review consolidates and examines the vast body of existing literature regarding the PE-PPE family proteins, with respect to the latest developments in elucidating their evolution, structure, subcellular localisation, function, and immunogenicity. This review also highlights significant inconsistencies and contradictions within the field. Additionally, possible explanations for these knowledge gaps are explored. Lastly, this review poses many important questions, which need to be addressed to complete our understanding of the PE-PPE family, as well as highlighting the challenges associated with studying this enigmatic family of proteins. Further research into the PE-PPE family, together with technological advancements in genomics and proteomics, will undoubtedly improve our understanding of the pathogenesis of M. tuberculosis, as well as identify key targets/candidates for the development of novel drugs, diagnostics, and vaccines.
Collapse
Affiliation(s)
- Christopher D'Souza
- Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, United Kingdom
| | - Uday Kishore
- Department of Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Anthony G Tsolaki
- Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, United Kingdom.
| |
Collapse
|
10
|
Responses of Humoral and Cellular Immune Mediators in BALB/c Mice to LipX (PE11) as Seed Tuberculosis Vaccine Candidates. Genes (Basel) 2022; 13:genes13111954. [DOI: 10.3390/genes13111954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
A member of the pe/ppe gene family, lipX (pe11), is capable of directing persistent Mycobacterium tuberculosis and avoiding host immune responses. Some studies have indicated that LipX (PE11) can detect humoral antibodies in tuberculosis patients. Hence, information on immune mediators’ responses to this protein is essential to understand its protective efficacy against M. tuberculosis infections. This study aimed to examine the response of immune mediators to pCDNA3.1-lipX expression in vivo. In the experiment, pCDNA3.1-lipX was injected into BALB/c strain male mice aged between 6 and 8 weeks, and they were compared to groups injected with pCDNA3.1 and without injection. The injection was carried out three times intramuscularly every two weeks. Blood was taken retro-orbitally and used for humoral response analysis by Western blotting against LipX-His protein. Simultaneously, the splenocytes were cultured and induced with LipX-His protein for cellular immunity analyses. Our study showed that the recombinant DNA of pCDNA3.1-lipX induced a humoral and cellular immune response, especially in IL-4, IL-12, and IFN-γ, which are the primary cellular responses to M. tuberculosis infections. However, additional studies, such as a challenge study, are needed to strengthen the argument that this plasmid construction is feasible as a tuberculosis seed vaccine candidate.
Collapse
|
11
|
Belyaeva IV, Kosova AN, Vasiliev AG. Tuberculosis and Autoimmunity. PATHOPHYSIOLOGY 2022; 29:298-318. [PMID: 35736650 PMCID: PMC9228380 DOI: 10.3390/pathophysiology29020022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/17/2022] Open
Abstract
Tuberculosis remains a common and dangerous chronic bacterial infection worldwide. It is long-established that pathogenesis of many autoimmune diseases is mainly promoted by inadequate immune responses to bacterial agents, among them Mycobacterium tuberculosis. Tuberculosis is a multifaceted process having many different outcomes and complications. Autoimmunity is one of the processes characteristic of tuberculosis; the presence of autoantibodies was documented by a large amount of evidence. The role of autoantibodies in pathogenesis of tuberculosis is not quite clear and widely disputed. They are regarded as: (1) a result of imbalanced immune response being reactive in nature, (2) a critical part of TB pathogenicity, (3) a beginning of autoimmune disease, (4) a protective mechanism helping to eliminate microbes and infected cells, and (5) playing dual role, pathogenic and protective. There is no single autoimmunity-mechanism development in tuberculosis; different pathways may be suggested. It may be excessive cell death and insufficient clearance of dead cells, impaired autophagy, enhanced activation of macrophages and dendritic cells, environmental influences such as vitamin D insufficiency, and genetic polymorphism, both of Mycobacterium tuberculosis and host.
Collapse
|
12
|
Dutta A, Mukku RP, Kumar GA, Jafurulla M, Raghunand TR, Chattopadhyay A. Integrity of the Actin Cytoskeleton of Host Macrophages is Necessary for Mycobacterial Entry. J Membr Biol 2022; 255:623-632. [PMID: 35166859 PMCID: PMC8852914 DOI: 10.1007/s00232-022-00217-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/27/2022] [Indexed: 11/16/2022]
Abstract
Macrophages are the primary hosts for Mycobacterium tuberculosis (M. tb), an intracellular pathogen, and the causative organism of tuberculosis (TB) in humans. While M. tb has the ability to enter and survive in host macrophages, the precise mechanism of its internalization, and factors that control this essential process are poorly defined. We have previously demonstrated that perturbations in levels of cholesterol and sphingolipids in macrophages lead to significant reduction in the entry of Mycobacterium smegmatis (M. smegmatis), a surrogate model for mycobacterial internalization, signifying a role for these plasma membrane lipids in interactions at the host–pathogen interface. In this work, we investigated the role of the host actin cytoskeleton, a critical protein framework underlying the plasma membrane, in the entry of M. smegmatis into human macrophages. Our results show that cytochalasin D mediated destabilization of the actin cytoskeleton of host macrophages results in a dose-dependent reduction in the entry of mycobacteria. Notably, the internalization of Escherichia coli remained invariant upon actin destabilization of host cells, implying a specific involvement of the actin cytoskeleton in mycobacterial infection. By monitoring the F-actin content of macrophages utilizing a quantitative confocal microscopy-based technique, we observed a close correlation between the entry of mycobacteria into host macrophages with cellular F-actin content. Our results constitute the first quantitative analysis of the role of the actin cytoskeleton of human macrophages in the entry of mycobacteria, and highlight actin-mediated mycobacterial entry as a potential target for future anti-TB therapeutics.
Collapse
Affiliation(s)
- Aritri Dutta
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India
| | - Ravi Prasad Mukku
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India
| | - G Aditya Kumar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India.,Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Md Jafurulla
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India
| | - Tirumalai R Raghunand
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India.
| | | |
Collapse
|
13
|
The Mycobacterium tuberculosis PE_PGRS Protein Family Acts as an Immunological Decoy to Subvert Host Immune Response. Int J Mol Sci 2022; 23:ijms23010525. [PMID: 35008950 PMCID: PMC8745494 DOI: 10.3390/ijms23010525] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/03/2021] [Accepted: 12/15/2021] [Indexed: 02/04/2023] Open
Abstract
Mycobacterium tuberculosis (M.tb) is a successful pathogen that can reside within the alveolar macrophages of the host and can survive in a latent stage. The pathogen has evolved and developed multiple strategies to resist the host immune responses. M.tb escapes from host macrophage through evasion or subversion of immune effector functions. M.tb genome codes for PE/PPE/PE_PGRS proteins, which are intrinsically disordered, redundant and antigenic in nature. These proteins perform multiple functions that intensify the virulence competence of M.tb majorly by modulating immune responses, thereby affecting immune mediated clearance of the pathogen. The highly repetitive, redundant and antigenic nature of PE/PPE/PE_PGRS proteins provide a critical edge over other M.tb proteins in terms of imparting a higher level of virulence and also as a decoy molecule that masks the effect of effector molecules, thereby modulating immuno-surveillance. An understanding of how these proteins subvert the host immunological machinery may add to the current knowledge about M.tb virulence and pathogenesis. This can help in redirecting our strategies for tackling M.tb infections.
Collapse
|
14
|
Categorizing sequences of concern by function to better assess mechanisms of microbial pathogenesis. Infect Immun 2021; 90:e0033421. [PMID: 34780277 PMCID: PMC9119117 DOI: 10.1128/iai.00334-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
To identify sequences with a role in microbial pathogenesis, we assessed the adequacy of their annotation by existing controlled vocabularies and sequence databases. Our goal was to regularize descriptions of microbial pathogenesis for improved integration with bioinformatic applications. Here, we review the challenges of annotating sequences for pathogenic activity. We relate the categorization of more than 2,750 sequences of pathogenic microbes through a controlled vocabulary called Functions of Sequences of Concern (FunSoCs). These allow for an ease of description by both humans and machines. We provide a subset of 220 fully annotated sequences in the supplemental material as examples. The use of this compact (∼30 terms), controlled vocabulary has potential benefits for research in microbial genomics, public health, biosecurity, biosurveillance, and the characterization of new and emerging pathogens.
Collapse
|
15
|
Sharma S, Sharma M. Proline-Glutamate/Proline-Proline-Glutamate (PE/PPE) proteins of Mycobacterium tuberculosis: The multifaceted immune-modulators. Acta Trop 2021; 222:106035. [PMID: 34224720 DOI: 10.1016/j.actatropica.2021.106035] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 12/30/2022]
Abstract
The PE/PPE proteins encoded by seven percent (7%) of Mycobacterium tuberculosis (Mtb) genome are the chief constituents to pathogen's virulence reservoir. The fact that these genes have evolved along ESX secretory system in pathogenic Mtb strains make their investigation very intriguing. There is lot of speculation about the prominent role of these proteins at host pathogen interface and in disease pathogenesis. Nevertheless, the exact function of PE/PPE proteins still remains a mystery which calls for further research targeting these proteins. This article is an effort to document all the facts known so far with regard to these unique proteins which involves their origin, evolution, transcriptional control, and most important their role as host immune-modulators. Our understanding strongly points towards the versatile nature of these PE/PPE proteins as Mtb's host immune sensors and as decisive factors in shaping the outcome of infection. Further investigation on these proteins will surely pave way for newer and effective vaccines and therapeutics to control Tuberculosis (TB).
Collapse
Affiliation(s)
- Sadhna Sharma
- DS Kothari Central Interdisciplinary Research Centre and Department of Zoology, Miranda House, University of Delhi, Delhi 110007, India.
| | - Monika Sharma
- DS Kothari Central Interdisciplinary Research Centre and Department of Zoology, Miranda House, University of Delhi, Delhi 110007, India.
| |
Collapse
|
16
|
PGRS Domain of Rv0297 of Mycobacterium tuberculosis Functions in A Calcium Dependent Manner. Int J Mol Sci 2021; 22:ijms22179390. [PMID: 34502303 PMCID: PMC8430768 DOI: 10.3390/ijms22179390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/12/2021] [Accepted: 03/24/2021] [Indexed: 01/04/2023] Open
Abstract
Mycobacterium tuberculosis (M.tb), the pathogen causing tuberculosis, is a major threat to human health worldwide. Nearly 10% of M.tb genome encodes for a unique family of PE/PPE/PGRS proteins present exclusively in the genus Mycobacterium. The functions of most of these proteins are yet unexplored. The PGRS domains of these proteins have been hypothesized to consist of Ca2+ binding motifs that help these intrinsically disordered proteins to modulate the host cellular responses. Ca2+ is an important secondary messenger that is involved in the pathogenesis of tuberculosis in diverse ways. This study presents the calcium-dependent function of the PGRS domain of Rv0297 (PE_PGRS5) in M.tb virulence and pathogenesis. Tandem repeat search revealed the presence of repetitive Ca2+ binding motifs in the PGRS domain of the Rv0297 protein (Rv0297PGRS). Molecular Dynamics simulations and fluorescence spectroscopy revealed Ca2+ dependent stabilization of the Rv0297PGRS protein. Calcium stabilized Rv0297PGRS enhances the interaction of Rv0297PGRS with surface localized Toll like receptor 4 (TLR4) of macrophages. The Ca2+ stabilized binding of Rv0297PGRS with the surface receptor of macrophages enhances its downstream consequences in terms of Nitric Oxide (NO) production and cytokine release. Thus, this study points to hitherto unidentified roles of calcium-modulated PE_PGRS proteins in the virulence of M.tb. Understanding the pathogenic potential of Ca2+ dependent PE_PGRS proteins can aid in targeting these proteins for therapeutic interventions.
Collapse
|
17
|
Nitric Oxide-Dependent Electron Transport Chain Inhibition by the Cytochrome bc1 Inhibitor and Pretomanid Combination Kills Mycobacterium tuberculosis. Antimicrob Agents Chemother 2021; 65:e0095621. [PMID: 34152815 DOI: 10.1128/aac.00956-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis, the causative agent of human tuberculosis, harbors a branched electron transport chain, preventing the bactericidal action of cytochrome bc1 inhibitors (e.g., TB47). Here, we investigated, using luminescent mycobacterial strains, the in vitro combination activity of cytochrome bc1 inhibitors and nitric oxide (NO) donors including pretomanid (PMD) and explored the mechanisms of combination activity. The TB47 and PMD combination quickly abolished the light emission of luminescent bacilli, as was the case for the combination of TB47 and aurachin D, a putative cytochrome bd inhibitor. The TB47 and PMD combination inhibited M. tuberculosis oxygen consumption, decreased ATP levels, and had a delayed bactericidal effect. The NO scavenger carboxy-PTIO prevented the bactericidal activity of the drug combination, suggesting the requirement for NO. In addition, cytochrome bc1 inhibitors were largely bactericidal when administered with DETA NONOate, another NO donor. Proteomic analysis revealed that the cotreated bacilli had a compromised expression of the dormancy regulon proteins, PE/PPE proteins, and proteins required for the biosynthesis of several cofactors, including mycofactocin. Some of these proteomic changes, e.g., the impaired dormancy regulon induction, were attributed to PMD. In conclusion, combination of cytochrome bc1 inhibitors with PMD inhibited M. tuberculosis respiration and killed the bacilli. The activity of cytochrome bc1 inhibitors can be greatly enhanced by NO donors. Monitoring of luminescence may be further exploited to screen cytochrome bd inhibitors.
Collapse
|
18
|
Abo-Kadoum MA, Assad M, Ali MK, Uae M, Nzaou SAE, Gong Z, Moaaz A, Lambert N, Eltoukhy A, Xie J. Mycobacterium tuberculosis PE17 (Rv1646) promotes host cell apoptosis via host chromatin remodeling mediated by reduced H3K9me3 occupancy. Microb Pathog 2021; 159:105147. [PMID: 34400280 DOI: 10.1016/j.micpath.2021.105147] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/20/2021] [Accepted: 08/12/2021] [Indexed: 01/03/2023]
Abstract
Tuberculosis caused by Mycobacterium tuberculosis remains a serious global public health threat. M. tuberculosis PE and PPE proteins are closely involved in pathogen-host interaction. To explore the predicted function of the M. tuberculosis PE17 (Rv1646), we heterologously expressed PE17 in a non-pathogenic Mycobacterium smegmatis strain (Ms_PE17). PE17 can reduce the survival of M. smegmatis within macrophages associated with altering the transcription levels of inflammatory cytokines IL1β, IL6, TNFα, and IL10 in Ms_PE17 infected macrophages through JNK signaling. Furthermore, macrophages apoptosis was increased upon Ms_PE17 infection in a caspases-dependent manner, accompanied by the activation of the Endoplasmic Reticulum stress IRE1α/ASK1/JNK signaling pathway. This can be largely interpreted by the epigenetic changes through reduced H3K9me3 chromatin occupancy post Ms_PE17 infection. To our knowledge, this is the first report that PE17 altered the macrophages apoptosis via H3K9me3 mediated chromatin remodeling.
Collapse
Affiliation(s)
- M A Abo-Kadoum
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ecoenvironments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing, 400715, China; Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assuit Branch, 71524, Egypt
| | - Mohammed Assad
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ecoenvironments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing, 400715, China; Department of Biotechnology, Faculty of Science and Technology Omdurman Islamic University, Khartoum, Sudan
| | - Md Kaisar Ali
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ecoenvironments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing, 400715, China; College of Animal Science and Technology, Southwest University, Beibei, Chongqing, 400715, China
| | - Moure Uae
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ecoenvironments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Stech A E Nzaou
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ecoenvironments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Zhen Gong
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ecoenvironments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Asmaa Moaaz
- The State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Nzungize Lambert
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ecoenvironments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Adel Eltoukhy
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assuit Branch, 71524, Egypt; Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ecoenvironments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing, 400715, China.
| |
Collapse
|
19
|
Nowik N, Prajsnar TK, Przyborowska A, Rakus K, Sienkiewicz W, Spaink HP, Podlasz P. The Role of Galanin during Bacterial Infection in Larval Zebrafish. Cells 2021; 10:cells10082011. [PMID: 34440783 PMCID: PMC8391356 DOI: 10.3390/cells10082011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 11/26/2022] Open
Abstract
Galanin is a peptide that is conserved among different species and plays various roles in an organism, although its entire role is not completely understood. For many years, galanin has been linked mainly with the neurotransmission in the nervous system; however, recent reports underline its role in immunity. Zebrafish (Danio rerio) is an intensively developing animal model to study infectious diseases. In this study, we used larval zebrafish to determine the role of galanin in bacterial infection. We showed that knockout of galanin in zebrafish leads to a higher bacterial burden and mortality during Mycobacterium marinum and Staphylococcus aureus infection, whereas administration of a galanin analogue, NAX 5055, improves the ability of fish to control the infection caused by both pathogens. Moreover, the transcriptomics data revealed that a lower number of genes were regulated in response to mycobacterial infection in gal−/− mutants compared with their gal+/+ wild-type counterparts. We also found that galanin deficiency led to significant changes in immune-related pathways, mostly connected with cytokine and chemokine functions. The results show that galanin acts not only as a neurotransmitter but is also involved in immune response to bacterial infections, demonstrating the complexity of the neuroendocrine system and its possible connection with immunity.
Collapse
Affiliation(s)
- Natalia Nowik
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (N.N.); (A.P.); (W.S.)
- Department of Animal Sciences and Health, Institute of Biology (IBL), Leiden University, 2333 BE Leiden, The Netherlands; (T.K.P.); (H.P.S.)
| | - Tomasz K. Prajsnar
- Department of Animal Sciences and Health, Institute of Biology (IBL), Leiden University, 2333 BE Leiden, The Netherlands; (T.K.P.); (H.P.S.)
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland;
| | - Anna Przyborowska
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (N.N.); (A.P.); (W.S.)
- Department of Pathophysiology, Forensic Veterinary and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-719 Olsztyn, Poland
| | - Krzysztof Rakus
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland;
| | - Waldemar Sienkiewicz
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (N.N.); (A.P.); (W.S.)
| | - Herman P. Spaink
- Department of Animal Sciences and Health, Institute of Biology (IBL), Leiden University, 2333 BE Leiden, The Netherlands; (T.K.P.); (H.P.S.)
| | - Piotr Podlasz
- Department of Pathophysiology, Forensic Veterinary and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-719 Olsztyn, Poland
- Correspondence: ; Tel.: +48-89-5245291
| |
Collapse
|
20
|
Sharma N, Shariq M, Quadir N, Singh J, Sheikh JA, Hasnain SE, Ehtesham NZ. Mycobacterium tuberculosis Protein PE6 (Rv0335c), a Novel TLR4 Agonist, Evokes an Inflammatory Response and Modulates the Cell Death Pathways in Macrophages to Enhance Intracellular Survival. Front Immunol 2021; 12:696491. [PMID: 34322125 PMCID: PMC8311496 DOI: 10.3389/fimmu.2021.696491] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/21/2021] [Indexed: 01/14/2023] Open
Abstract
Mycobacterium tuberculosis (M. tb) is an intracellular pathogen that exploits moonlighting functions of its proteins to interfere with host cell functions. PE/PPE proteins utilize host inflammatory signaling and cell death pathways to promote pathogenesis. We report that M. tb PE6 protein (Rv0335c) is a secretory protein effector that interacts with innate immune toll-like receptor TLR4 on the macrophage cell surface and promotes activation of the canonical NFĸB signaling pathway to stimulate secretion of proinflammatory cytokines TNF-α, IL-12, and IL-6. Using mouse macrophage TLRs knockout cell lines, we demonstrate that PE6 induced secretion of proinflammatory cytokines dependent on TLR4 and adaptor Myd88. PE6 possesses nuclear and mitochondrial targeting sequences and displayed time-dependent differential localization into nucleus/nucleolus and mitochondria, and exhibited strong Nucleolin activation. PE6 strongly induces apoptosis via increased production of pro-apoptotic molecules Bax, Cytochrome C, and pcMyc. Mechanistic details revealed that PE6 activates Caspases 3 and 9 and induces endoplasmic reticulum-associated unfolded protein response pathways to induce apoptosis through increased production of ATF6, Chop, BIP, eIF2α, IRE1α, and Calnexin. Despite being a potent inducer of apoptosis, PE6 suppresses innate immune defense strategy autophagy by inducing inhibitory phosphorylation of autophagy initiating kinase ULK1. Inversely, PE6 induces activatory phosphorylation of autophagy master regulator MtorC1, which is reflected by lower conversion of autophagy markers LC3BI to LC3BII and increased accumulation of autophagy substrate p62 which is also dependent on innate immune receptor TLR4. The use of pharmacological agents, rapamycin and bafilomycin A1, confirms the inhibitory effect of PE6 on autophagy, evidenced by the reduced conversion of LC3BI to LC3BII and increased accumulation of p62 in the presence of rapamycin and bafilomycin A1. We also observed that PE6 binds DNA, which could have significant implications in virulence. Furthermore, our analyses reveal that PE6 efficiently binds iron to likely aid in intracellular survival. Recombinant Mycobacterium smegmatis (M. smegmatis) containing pe6 displayed robust growth in iron chelated media compared to vector alone transformed cells, which suggests a role of PE6 in iron acquisition. These findings unravel novel mechanisms exploited by PE6 protein to subdue host immunity, thereby providing insights relevant to a better understanding of host–pathogen interaction during M. tb infection.
Collapse
Affiliation(s)
- Neha Sharma
- Indian Council of Medical Research-National Institute of Pathology, New Delhi, India.,Jamia Hamdard Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Mohd Shariq
- Indian Council of Medical Research-National Institute of Pathology, New Delhi, India
| | - Neha Quadir
- Indian Council of Medical Research-National Institute of Pathology, New Delhi, India.,Jamia Hamdard Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Jasdeep Singh
- Jamia Hamdard Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Javaid A Sheikh
- Department of Biotechnology, School of Chemical and Life Science, Jamia Hamdard, New Delhi, India
| | - Seyed E Hasnain
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology-Delhi, New Delhi, India.,Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, India
| | - Nasreen Z Ehtesham
- Indian Council of Medical Research-National Institute of Pathology, New Delhi, India
| |
Collapse
|
21
|
Peterson EJR, Abidi AA, Arrieta-Ortiz ML, Aguilar B, Yurkovich JT, Kaur A, Pan M, Srinivas V, Shmulevich I, Baliga NS. Intricate Genetic Programs Controlling Dormancy in Mycobacterium tuberculosis. Cell Rep 2021; 31:107577. [PMID: 32348771 PMCID: PMC7605849 DOI: 10.1016/j.celrep.2020.107577] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 12/18/2019] [Accepted: 04/06/2020] [Indexed: 11/24/2022] Open
Abstract
Mycobacterium tuberculosis (MTB) displays the remarkable ability to transition in and out of dormancy, a hallmark of the pathogen’s capacity to evade the immune system and exploit susceptible individuals. Uncovering the gene regulatory programs that underlie the phenotypic shifts in MTB during disease latency and reactivation has posed a challenge. We develop an experimental system to precisely control dissolved oxygen levels in MTB cultures in order to capture the transcriptional events that unfold as MTB transitions into and out of hypoxia-induced dormancy. Using a comprehensive genome-wide transcription factor binding map and insights from network topology analysis, we identify regulatory circuits that deterministically drive sequential transitions across six transcriptionally and functionally distinct states encompassing more than three-fifths of the MTB genome. The architecture of the genetic programs explains the transcriptional dynamics underlying synchronous entry of cells into a dormant state that is primed to infect the host upon encountering favorable conditions. Mycobacterium tuberculosis (MTB) persists within the host by counteracting disparate stressors including hypoxia. Peterson et al. report a transcriptional program that coordinates sequential state transitions to drive MTB in and out of hypoxia-induced dormancy. Among varied properties, this program encodes advanced preparedness to infect the host in favorable conditions.
Collapse
Affiliation(s)
| | - Abrar A Abidi
- Institute for Systems Biology, Seattle, WA 98109, USA
| | | | - Boris Aguilar
- Institute for Systems Biology, Seattle, WA 98109, USA
| | | | - Amardeep Kaur
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Min Pan
- Institute for Systems Biology, Seattle, WA 98109, USA
| | | | | | - Nitin S Baliga
- Institute for Systems Biology, Seattle, WA 98109, USA; Molecular and Cellular Biology Program, Departments of Microbiology and Biology, University of Washington, Seattle, WA; Lawrence Berkeley National Laboratories, Berkeley, CA.
| |
Collapse
|
22
|
Sharma T, Grover S, Arora N, P M, Ehtesham NZ, Hasnain SE. PGRS Domain of Rv0297 of Mycobacterium tuberculosis Is Involved in Modulation of Macrophage Functions to Favor Bacterial Persistence. Front Cell Infect Microbiol 2020; 10:451. [PMID: 33042856 PMCID: PMC7517703 DOI: 10.3389/fcimb.2020.00451] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/23/2020] [Indexed: 01/04/2023] Open
Abstract
Mycobacterium tuberculosis (M. tb) Rv0297-encoded PE_PGRS5 has been known to be expressed at the later stages of infection and in acidified phagosomes during transcriptome and proteomic studies. The possible role of Rv0297 in the modulation of phagosomal maturation and in providing protection against a microbicidal environment has been hypothesized. We show that Rv0297PGRS is involved in modulating the calcium homeostasis of macrophages followed by impedance of the phagolysosomal acidification process. This is evident from the downregulation of the late endosomal markers (Rab7 and cathepsin D) in the macrophages infected with recombinant Mycobacterium smegmatis (rM.smeg)—M.smeg_Rv0297 and M.smeg_Rv0297PGRS—or treated with recombinant Rv0297PGRS protein. Macrophages infected with rM.smeg expressing Rv0297 produce nitric oxide and undergo apoptosis, which may aid in the dissemination of pathogen in the later stages of infection. Rv0297 was also found to be involved in rescuing the bacterium from oxidative and hypoxic stress employed by macrophages and augmented the survivability of the recombinant bacterium. These results attribute to the functional significance of this protein in M.tb virulence mechanism. The fact that this protein gets expressed at the later stages of lung granulomas during M.tb infection suggests that the bacterium possibly employs Rv0297 as its dissemination and survival strategy.
Collapse
Affiliation(s)
- Tarina Sharma
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India
| | - Sonam Grover
- Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Naresh Arora
- Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Manjunath P
- ICMR-National Institute of Pathology, New Delhi, India
| | | | - Seyed Ehtesham Hasnain
- Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India.,Dr. Reddy's Institute of Life Sciences, Hyderabad, India
| |
Collapse
|
23
|
Röltgen K, Pluschke G. Buruli ulcer: The Efficacy of Innate Immune Defense May Be a Key Determinant for the Outcome of Infection With Mycobacterium ulcerans. Front Microbiol 2020; 11:1018. [PMID: 32523571 PMCID: PMC7261859 DOI: 10.3389/fmicb.2020.01018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/24/2020] [Indexed: 12/18/2022] Open
Abstract
Buruli ulcer (BU) is a neglected, tropical infectious disease of the skin and the subcutaneous tissue caused by Mycobacterium ulcerans. This pathogen has emerged as a new species from a common ancestor with Mycobacterium marinum by acquisition of the virulence plasmid pMUM. The plasmid encodes enzymes required for the synthesis of the macrolide toxin mycolactone, which has cytotoxic and immunosuppressive activities. In advanced BU lesions, extracellular clusters of M. ulcerans reside in necrotic subcutaneous tissue and are protected from infiltrating leukocytes by the cytotoxic activity of secreted mycolactone. Several lines of evidence indicate that elements of the innate immune system eliminate in many cases the initial inoculum before bacterial clusters can form and that therefore exposure to M. ulcerans leads only in a minority of individuals to the characteristic chronic necrotizing BU lesions. It is assumed that phagocytes play a key role in early host defense against M. ulcerans. Antibodies against bacterial surface structures seem to have less potential to enhance innate immunity than TH1 cell responses. Precise innate and adaptive immune effector mechanisms leading to protective immunity are however unclear, complicating the development of effective vaccines, the most desired solution to control BU. The tuberculosis vaccine Mycobacterium bovis Bacillus Calmette–Guérin (BCG) has limited short-term protective activity against BU. Whether this effect is due to the broad antigenic cross-reactivity between M. bovis and M. ulcerans or is at least partly mediated by a non-specific enhanced responsiveness of innate immune cells to secondary stimulation, recently described as “trained immunity” or “innate immune memory” is unknown but has major implications for vaccine design. Current vaccine research and development activities are focusing on recombinant BCG, subunit vaccines with selected M. ulcerans proteins, and the neutralization of mycolactone.
Collapse
Affiliation(s)
- Katharina Röltgen
- Department of Pathology, Stanford School of Medicine, Stanford University, Stanford, CA, United States
| | - Gerd Pluschke
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| |
Collapse
|
24
|
PPE51 Is Involved in the Uptake of Disaccharides by Mycobacterium tuberculosis. Cells 2020; 9:cells9030603. [PMID: 32138343 PMCID: PMC7140425 DOI: 10.3390/cells9030603] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/20/2020] [Accepted: 02/28/2020] [Indexed: 01/09/2023] Open
Abstract
We have recently found that selected thio-disaccharides possess bactericidal effects against Mycobacterium tuberculosis but not against Escherichia coli or Staphylococcus aureus. Here, we selected spontaneous mutants displaying resistance against the investigated thio-glycoside. According to next-generation sequencing, four of six analyzed mutants which were resistant to high concentrations of the tested chemical carried nonsynonymous mutations in the gene encoding the PPE51 protein. The complementation of these mutants with an intact ppe51 gene returned their sensitivity to the wild-type level. The uptake of tritiated thio-glycoside was significantly more abundant in wild-type Mycobacterium tuberculosis compared to the strain carrying the mutated ppe51 gene. The ppe51 mutations or CRISPR-Cas9-mediated downregulation of PPE51 expression affected the growth of mutant strains on minimal media supplemented with disaccharides (maltose or lactose) but not with glycerol or glucose as the sole carbon and energy source. Taking the above into account, we postulate that PPE51 participates in the uptake of disaccharides by tubercle bacilli.
Collapse
|
25
|
Ali MK, Zhen G, Nzungize L, Stojkoska A, Duan X, Li C, Duan W, Xu J, Xie J. Mycobacterium tuberculosis PE31 ( Rv3477) Attenuates Host Cell Apoptosis and Promotes Recombinant M. smegmatis Intracellular Survival via Up-regulating GTPase Guanylate Binding Protein-1. Front Cell Infect Microbiol 2020; 10:40. [PMID: 32117813 PMCID: PMC7020884 DOI: 10.3389/fcimb.2020.00040] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 01/21/2020] [Indexed: 12/23/2022] Open
Abstract
The Mycobacterium (M.) tuberculosis comprising proline–glutamic acid (PE) subfamily proteins associate with virulence, pathogenesis, and host-immune modulations. While the functions of most of this family members are not yet explored. Here, we explore the functions of “PE only” subfamily member PE31 (Rv3477) in virulence and host-pathogen interactions. We have expressed the M. tuberculosis PE31 in non-pathogenic Mycobacterium smegmatis strain (Ms_PE31) and demonstrated that PE31 significantly altered the cell facet features including colony morphology and biofilm formation. PE31 expressing M. smegmatis showed more resistant to the low pH, diamide, H2O2 and surface stress. Moreover, Ms_PE31 showed higher intracellular survival in macrophage THP-1 cells. Ms_PE31 significantly down-regulated the production of IL-12p40 and IL-6, while up-regulates the production of IL-10 in macrophages. Ms_PE31 also induced the expression of guanylate-binding protein-1 (GBP-1) in macrophages. Further analysis demonstrates that Ms_PE31 inhibits the caspase-3 activation and reduces the macrophages apoptosis. Besides, the NF-κB signaling pathway involves the interplay between Ms_PE31 and macrophages. Collectively, our finding identified that PE31 act as a functionally relevant virulence factor of M. tuberculosis.
Collapse
Affiliation(s)
- Md Kaisar Ali
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, China
| | - Gong Zhen
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, China
| | - Lambert Nzungize
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, China
| | - Andrea Stojkoska
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, China
| | - Xiangke Duan
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, China
| | - Chunyan Li
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, China
| | - Wei Duan
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, China
| | - Junqi Xu
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, China
| | - Jianping Xie
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, China
| |
Collapse
|
26
|
Joshi K, Meena S, Meena LS. Analysis of predicted amino acid biosynthesis in Rv3344c in Mycobacterium tuberculosis H 37 Rv using bioinformatics tools. Biotechnol Appl Biochem 2019; 67:213-223. [PMID: 31596006 DOI: 10.1002/bab.1834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/05/2019] [Indexed: 11/10/2022]
Abstract
According to World Health Organization (WHO) report, Mycobacterium tuberculosis H37 Rv (M. tuberculosis) affects one-third population of the world. Emergence of effective treatment/research against this disease is need of the hour. Therefore, we present some important aspects of Rv3344c, which is a PE_PGRS protein. Evidence shows that PE_PGRS proteins show fibronectin binding activity. This protein has affinity for calcium and also shows motifs of GTP-binding protein. It also shows the presence of sites for ribose-5-phosphate binding and motifs of aspartate-beta-semialdehyde dehydrogenase, both of which are involved in amino acid biosynthesis. Thus, this protein might be targeted to block the amino acid biosynthesis in M. tuberculosis. This article takes into consideration some important aspects of Rv3344c protein as its function is still unknown. This study includes retrieval of protein sequence database, multiple sequence alignment, protein-protein interaction, epitope prediction, localization, function prediction, phosphorylation site prediction, model building and its validation, ligand-binding prediction along with mutational analysis. Hence, this study might be an important step in the development of new drugs and treatment of tuberculosis.
Collapse
Affiliation(s)
- Khyati Joshi
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Swati Meena
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Laxman S Meena
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| |
Collapse
|
27
|
Yu X, Feng J, Huang L, Gao H, Liu J, Bai S, Wu B, Xie J. Molecular Basis Underlying Host Immunity Subversion by Mycobacterium tuberculosis PE/PPE Family Molecules. DNA Cell Biol 2019; 38:1178-1187. [PMID: 31580738 DOI: 10.1089/dna.2019.4852] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mycobacterium tuberculosis proline-glutamic acid (PE)/proline-proline-glutamic acid (PPE) family proteins, with >160 members, are crucial for virulence, cell wall, host cell fate, host Th1/Th2 balance, and CD8+ T cell recognition. Ca2+ signaling is involved in PE/PPE protein-mediated host-pathogen interaction. PE/PPE proteins also function in heme utilization and nitric oxide production. PE/PPE family proteins are intensively pursued as diagnosis biomarkers and vaccine components.
Collapse
Affiliation(s)
- Xiaowen Yu
- Chongqing Key Laboratory of Traditional Chinese Medicine to Prevent and Treat Autoimmune Diseases, Chongqing, P.R. China
| | - Jing Feng
- Chongqing Key Laboratory of Traditional Chinese Medicine to Prevent and Treat Autoimmune Diseases, Chongqing, P.R. China
| | - Lu Huang
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing, P.R. China
| | - Hongyan Gao
- Chongqing Key Laboratory of Traditional Chinese Medicine to Prevent and Treat Autoimmune Diseases, Chongqing, P.R. China
| | - Jinkun Liu
- Chongqing Key Laboratory of Traditional Chinese Medicine to Prevent and Treat Autoimmune Diseases, Chongqing, P.R. China
| | - Shutong Bai
- Chongqing Key Laboratory of Traditional Chinese Medicine to Prevent and Treat Autoimmune Diseases, Chongqing, P.R. China
| | - Bin Wu
- Chongqing Key Laboratory of Traditional Chinese Medicine to Prevent and Treat Autoimmune Diseases, Chongqing, P.R. China
| | - Jianping Xie
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Institute of Modern Biopharmaceuticals, School of Life Sciences, Southwest University, Chongqing, P.R. China
| |
Collapse
|
28
|
Doddam SN, Peddireddy V, Yerra P, Sai Arun PP, Qaria MA, Baddam R, Sarker N, Ahmed N. Mycobacterium tuberculosis DosR regulon gene Rv2004c contributes to streptomycin resistance and intracellular survival. Int J Med Microbiol 2019; 309:151353. [PMID: 31521502 DOI: 10.1016/j.ijmm.2019.151353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/26/2019] [Accepted: 08/29/2019] [Indexed: 11/19/2022] Open
Abstract
Tuberculosis (TB) is the deadly infectious disease challenging the public health globally and its impact is further aggravated by co-infection with HIV and the emergence of drug resistant strains of Mycobacterium tuberculosis. In this study, we attempted to characterise the Rv2004c encoded protein, a member of DosR regulon, for its role in drug resistance. In silico docking analysis revealed that Rv2004c binds with streptomycin (SM). Phosphotransferase assay demonstrated that Rv2004c possibly mediates SM resistance through the aminoglycoside phosphotransferase activity. Further, E. coli expressing Rv2004c conferred resistance to 100μM of SM in liquid broth cultures indicating a mild aminoglycoside phosphotransferase activity of Rv2004c. Moreover, we investigated the role of MSMEG_3942 (an orthologous gene of Rv2004c) encoded protein in intracellular survival, its effect on in-vitro growth and its expression in different stress conditions by over expressing it in Mycobacterium smegmatis (M. smegmatis). MSMEG_3942 overexpressing recombinant M. smegmatis strains grew faster in acidic medium and also showed higher bacillary counts in infected macrophages when compared to M. smegmatis transformed with vector alone. Our results are likely to contribute to the better understanding of the involvement of Rv2004c in partial drug resistance, intracellular survival and adaptation of bacilli to stress conditions.
Collapse
Affiliation(s)
- Sankara Narayana Doddam
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, 500046, India
| | - Vidyullatha Peddireddy
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, 500046, India; Department of Microbiology & FST, GITAM Institute of Science, GITAM Deemed University, Visakhapatnam, Andhra Pradesh, 530045, India.
| | - Priyadarshini Yerra
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, 500046, India
| | - Pv Parvati Sai Arun
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Gandipet, Hyderabad, Telangana, 500075, India
| | - Majjid A Qaria
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, 500046, India
| | - Ramani Baddam
- Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Nishat Sarker
- Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Niyaz Ahmed
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, 500046, India; Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh.
| |
Collapse
|
29
|
Modipane L, Reva O, Magazi BT, Antiabong JF, Osei Sekyere J, Mbelle NM. Phylogenomic and epidemiological insights into two clinical Mycobacterium bovis BCG strains circulating in South Africa. Int J Infect Dis 2019; 87:32-38. [PMID: 31442625 DOI: 10.1016/j.ijid.2019.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Mycobacterium bovis BCG is a live, attenuated tuberculosis vaccine. While the vaccine protects infants from tuberculosis, complications including disseminated infections have been reported following vaccination. Genetically diverse BCG sub-strains now exist following continuous passaging of the original Pasteur strain for vaccine manufacture. This genetic diversity reportedly influences the severity of disseminated BCG infections and the efficacy of BCG immunization. METHODS M. bovis BCG was isolated from infants suspected of being infected with tuberculosis. The whole genome of the clinical isolates and BCG Moscow were sequenced using Illumina Miseq and the sequences were analysed using CLC Genomics Workbench 7.0, PhyResSE v1.0, and Parsnp. RESULTS AND CONCLUSIONS Genetic variations between the clinical strains and the reference BCG Copenhagen were identified. The clinical strains shared only one mutation in a secretion protein. Mutations were identified in various antibiotic resistance genes in the BCG isolates, which suggests their potential as multidrug-resistant (MDR) phenotypes. Phylogenetic analysis showed that the two isolates were distantly related, and the M1_S48 clinical isolate was closely related to M. bovis BCG Moscow. The phylogenomics results imply that two different BCG strains may be circulating in South Africa. However, it is difficult to associate the BCG vaccine strain administered and the BCG strain supplied with specific adverse events, as BCGiosis is under-reported. This study presents background genomic information for future surveillance and tracking of the distribution of BCGiosis-associated mycobacteria. It is also the first to report on the genomes of clinical BCG strains in Africa.
Collapse
Affiliation(s)
- Lesedi Modipane
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| | - Oleg Reva
- Department of Biochemistry, Genetics and Microbiology, Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria, South Africa.
| | - Beki Themba Magazi
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| | - John Francis Antiabong
- Centre for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, TX, USA.
| | - John Osei Sekyere
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| | - Nontombi Marylucy Mbelle
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa; National Health Laboratory Services, Department of Medical Microbiology, Pretoria, South Africa.
| |
Collapse
|
30
|
Gample SP, Agrawal S, Sarkar D. Evidence of nitrite acting as a stable and robust inducer of non-cultivability in Mycobacterium tuberculosis with physiological relevance. Sci Rep 2019; 9:9261. [PMID: 31239517 PMCID: PMC6593118 DOI: 10.1038/s41598-019-45652-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/30/2019] [Indexed: 11/21/2022] Open
Abstract
Tuberculosis (TB) is the ninth leading cause of death worldwide, ranking above human immunodeficiency virus. Latency is the major obstacle in the eradication of this disease. How the physiology of the pathogen changes in transition to the latent stage needs to be understood. The latent bacteria extracted from animal hosts exist in a nonculturable (NC) phase, whereas bacteria extracted from most in vitro models are culture-positive. In the present study, we observed that nitrite, up to a concentration of 5 mM, shows the growth of Mycobacterium tuberculosis (MTB) in liquid media, but this effect starts reversing at higher concentrations. At a concentration of 10 mM, nitrite induces rapid nonculturability of MTB at the aerobic stage. This noncultivable dormancy was confirmed by analyzing the characteristics of NC bacteria. Further differential gene expression analyses clearly supported the formation of a dormancy phenotype. This study will be helpful for the use of this bacillus as a dormancy model in future studies on TB latency.
Collapse
Affiliation(s)
- Suwarna P Gample
- CSIR-National Chemical Laboratory, Organic Chemistry Division, Pune, 411008, Maharashtra, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sonia Agrawal
- CSIR-National Chemical Laboratory, Organic Chemistry Division, Pune, 411008, Maharashtra, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Dhiman Sarkar
- CSIR-National Chemical Laboratory, Organic Chemistry Division, Pune, 411008, Maharashtra, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
31
|
Saelens JW, Viswanathan G, Tobin DM. Mycobacterial Evolution Intersects With Host Tolerance. Front Immunol 2019; 10:528. [PMID: 30967867 PMCID: PMC6438904 DOI: 10.3389/fimmu.2019.00528] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/27/2019] [Indexed: 12/12/2022] Open
Abstract
Over the past 200 years, tuberculosis (TB) has caused more deaths than any other infectious disease, likely infecting more people than it has at any other time in human history. Mycobacterium tuberculosis (Mtb), the etiologic agent of TB, is an obligate human pathogen that has evolved through the millennia to become an archetypal human-adapted pathogen. This review focuses on the evolutionary framework by which Mtb emerged as a specialized human pathogen and applies this perspective to the emergence of specific lineages that drive global TB burden. We consider how evolutionary pressures, including transmission dynamics, host tolerance, and human population patterns, may have shaped the evolution of diverse mycobacterial genomes.
Collapse
Affiliation(s)
- Joseph W. Saelens
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| | - Gopinath Viswanathan
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| | - David M. Tobin
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
- Department of Immunology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
32
|
Peterson EJ, Bailo R, Rothchild AC, Arrieta-Ortiz ML, Kaur A, Pan M, Mai D, Abidi AA, Cooper C, Aderem A, Bhatt A, Baliga NS. Path-seq identifies an essential mycolate remodeling program for mycobacterial host adaptation. Mol Syst Biol 2019; 15:e8584. [PMID: 30833303 PMCID: PMC6398593 DOI: 10.15252/msb.20188584] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 11/23/2022] Open
Abstract
The success of Mycobacterium tuberculosis (MTB) stems from its ability to remain hidden from the immune system within macrophages. Here, we report a new technology (Path-seq) to sequence miniscule amounts of MTB transcripts within up to million-fold excess host RNA Using Path-seq and regulatory network analyses, we have discovered a novel transcriptional program for in vivo mycobacterial cell wall remodeling when the pathogen infects alveolar macrophages in mice. We have discovered that MadR transcriptionally modulates two mycolic acid desaturases desA1/desA2 to initially promote cell wall remodeling upon in vitro macrophage infection and, subsequently, reduces mycolate biosynthesis upon entering dormancy. We demonstrate that disrupting MadR program is lethal to diverse mycobacteria making this evolutionarily conserved regulator a prime antitubercular target for both early and late stages of infection.
Collapse
Affiliation(s)
| | - Rebeca Bailo
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Alissa C Rothchild
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | | | | | - Min Pan
- Institute for Systems Biology, Seattle, WA, USA
| | - Dat Mai
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | | | - Charlotte Cooper
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Alan Aderem
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Apoorva Bhatt
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Nitin S Baliga
- Institute for Systems Biology, Seattle, WA, USA
- Molecular and Cellular Biology Program, Departments of Microbiology and Biology, University of Washington, Seattle, WA, USA
- Lawrence Berkeley National Laboratories, Berkeley, CA, USA
| |
Collapse
|
33
|
Kwon KW, Choi HH, Han SJ, Kim JS, Kim WS, Kim H, Kim LH, Kang SM, Park J, Shin SJ. Vaccine efficacy of a Mycobacterium tuberculosis Beijing-specific proline-glutamic acid (PE) antigen against highly virulent outbreak isolates. FASEB J 2019; 33:6483-6496. [PMID: 30753099 DOI: 10.1096/fj.201802604r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacillus Calmette-Guerin vaccine confers insufficient pulmonary protection against tuberculosis (TB), particularly the Mycobacterium tuberculosis (Mtb) Beijing strain infection. Identification of vaccine antigens (Ags) by considering Mtb genetic diversity is crucial for the development of improved TB vaccine. MTBK_20640, a new Beijing genotype-specific proline-glutamic acid-family Ag, was identified by comparative genomic analysis. Its immunologic features were characterized by evaluating interactions with dendritic cells (DCs), and immunogenicity and vaccine efficacy were determined against highly virulent Mtb Beijing outbreak Korean Beijing (K) strain and HN878 strain in murine infection model. MTBK_20640 induced DCs via TLR2 and downstream MAPK and NF-κB signaling pathways, effectively promoting naive CD4-positive (CD4+) T-cell proliferation and IFN-γ production. Different IFN-γ response was observed in mice infected with Mtb K or reference H37Rv strain. Significant induction of T helper type 1 cell-polarized Ag-specific multifunctional CD4+ T cells and a marked Ag-specific IgG2c response were observed in mice immunized with MTBK_20640/glucopyranosyl lipid adjuvant-stable emulsion. The immunization conferred long-term protection against 2 Mtb Beijing outbreak strains, as evidenced by a significant reduction in colony-forming units in the lung and spleen and reduced lung inflammation. MTBK_20640 vaccination conferred long-term protection against highly virulent Mtb Beijing strains. MTBK_20640 may be developed into a novel Ag component in multisubunit TB vaccines in the future.-Kwon, K. W., Choi, H.-H., Han, S. J., Kim, J.-S., Kim, W. S., Kim, H., Kim, L.-H., Kang, S. M., Park, J., Shin, S. J. Vaccine efficacy of a Mycobacterium tuberculosis Beijing-specific proline-glutamic acid (PE) antigen against highly virulent outbreak isolates.
Collapse
Affiliation(s)
- Kee Woong Kwon
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 Program for Leading Universities and Students (PLUS) Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Hong-Hee Choi
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 Program for Leading Universities and Students (PLUS) Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung Jung Han
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 Program for Leading Universities and Students (PLUS) Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong-Seok Kim
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 Program for Leading Universities and Students (PLUS) Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.,Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, South Korea
| | - Woo Sik Kim
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 Program for Leading Universities and Students (PLUS) Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.,Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - Hongmin Kim
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 Program for Leading Universities and Students (PLUS) Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Lee-Han Kim
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 Program for Leading Universities and Students (PLUS) Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Soon Myung Kang
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 Program for Leading Universities and Students (PLUS) Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Jaehun Park
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 Program for Leading Universities and Students (PLUS) Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 Program for Leading Universities and Students (PLUS) Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
34
|
Gong Z, Kuang Z, Li H, Li C, Ali MK, Huang F, Li P, Li Q, Huang X, Ren S, Li J, Xie J. Regulation of host cell pyroptosis and cytokines production by Mycobacterium tuberculosis effector PPE60 requires LUBAC mediated NF-κB signaling. Cell Immunol 2018; 335:41-50. [PMID: 30415762 DOI: 10.1016/j.cellimm.2018.10.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/13/2018] [Accepted: 10/30/2018] [Indexed: 10/28/2022]
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis infection, remains a global public health threat. The success of M. tuberculosis largely contributes to its manipulation of host cell fate. The role of M. tuberculosis PE/PPE family effectors in the host destiny was intensively explored. In this study, the role of PPE60 (Rv3478) was characterized by using Rv3478 recombinant M. smegmatis. PPE60 can promote host cell pyroptosis via caspases/NLRP3/gasdermin. The production of pro-inflammatory cytokines, such as IL-1β, IL-6, IL-12p40 and TNF-α was altered by PPE60. We found that LUBAC was involved in PPE60-elicited NF-κB signaling by using Linear Ubiquitin Chain Assembly Complex (LUBAC)-specific inhibitor gliotoxin. The PPE60 recombinant M. smegmatis survival rate within macrophages is increased, as well as elevated resistance to stresses such as low pH, surface stresses and antibiotics exposure. For a first time it is firstly reported that M. tuberculosis effector PPE60 can modulate the host cell fate via LUBAC-mediated NF-κB signaling.
Collapse
Affiliation(s)
- Zhen Gong
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Zhongmei Kuang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Hui Li
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China; Institute of Chengdu Medical College, School of Laboratory Medicine, No 783 Xindu Avenue, Chengdu, Sichuan 610083, China
| | - Chunyan Li
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Md Kaisar Ali
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Fujing Huang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Ping Li
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Qiming Li
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Xue Huang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Sai Ren
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Jiang Li
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
35
|
PPE11 of Mycobacterium tuberculosis can alter host inflammatory response and trigger cell death. Microb Pathog 2018; 126:45-55. [PMID: 30366125 DOI: 10.1016/j.micpath.2018.10.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 08/09/2018] [Accepted: 10/22/2018] [Indexed: 01/23/2023]
Abstract
Tuberculosis (TB), which is caused by Mycobacterium tuberculosis (Mtb), remains a serious global health problem. The PE/PPE family, featuring unique sequences, structures and expression in Mtb, is reported to interfere with the macrophage response to the pathogen and facilitate its infection. PPE11 (Rv0453) existed in pathogenic mycobacteria and was persistently expressed in the infected guinea pig lungs. However, the role it played in the pathogenesis remains unclear. Here, to investigate the interaction and potential mechanism of PPE11 between pathogens and hosts, we heterologously expressed PPE11 in non-pathogenic, rapidly growing Mycobacterium smegmatis strains. We found that the overexpression of the cell wall-associated protein, PPE11, can improve the viability of bacteria in the presence of lysozyme, hydrogen peroxide and acid stress. Expression of PPE11 enhanced the early survival of M. smegmatis in macrophages and sustained a higher bacterial load in mouse tissues that showed exacerbated organ pathology. Macrophages infected with recombinant M. smegmatis produced significantly greater amounts of interleukin (IL)-1β, IL-6, tumour necrosis factor (TNF)-α and an early decrease in IL-10 along with higher levels of host cell death. Similar cytokines changes were observed in the sera of infected mice. Accordingly, PPE11 protein causes histopathological changes by disrupting the dynamic balance of the inflammatory factors and promoting host-cell death, indicating a potential role in the virulence of Mtb.
Collapse
|
36
|
Viable Coxiella burnetii Induces Differential Cytokine Responses in Chronic Q Fever Patients Compared to Heat-Killed Coxiella burnetii. Infect Immun 2018; 86:IAI.00333-18. [PMID: 30037794 DOI: 10.1128/iai.00333-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/17/2018] [Indexed: 02/02/2023] Open
Abstract
Cytokine responses of chronic Q fever patients to the intracellular bacterium Coxiella burnetii have mostly been studied using ex vivo stimulation of immune cells with heat-killed C. burnetii due to the extensive measures needed to work with viable biosafety level 3 agents. Whether research with heat-killed C. burnetii can be translated to immune responses to viable C. burnetii is imperative for the interpretation of previous and future studies with heat-killed C. burnetii Peripheral blood mononuclear cells (PBMCs) of chronic Q fever patients (n = 10) and healthy controls (n = 10) were stimulated with heat-killed or viable C. burnetii of two strains, Nine Mile and the Dutch outbreak strain 3262, for 24 h, 48 h, and 7 days in the absence or presence of serum containing anti-C. burnetii antibodies. When stimulated with viable C. burnetii, PBMCs of chronic Q fever patients and controls produced fewer proinflammatory cytokines (interleukin-6 [IL-6], tumor necrosis factor alpha, and IL-1β) after 24 h than after stimulation with heat-killed C. burnetii In the presence of Q fever seronegative serum, IL-10 production was higher after stimulation with viable rather than heat-killed C. burnetii; however, when incubating with anti-C. burnetii antibody serum, the effect on IL-10 production was reduced. Levels of adaptive, merely T-cell-derived cytokine (gamma interferon, IL-17, and IL-22) and CXCL9 production were not different between heat-killed and viable C. burnetii stimulatory conditions. Results from previous and future research with heat-killed C. burnetii should be interpreted with caution for innate cytokines, but heat-killed C. burnetii-induced adaptive cytokine production is representative of stimulation with viable bacteria.
Collapse
|
37
|
Bachhawat N. PE-only/PE_PGRS proteins of Mycobacterium tuberculosis contain a conserved tetra-peptide sequence DEVS/DXXS that is a potential caspase-3 cleavage motif. J Biosci 2018; 43:597-604. [PMID: 30207307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Mycobacterium tuberculosis H37Rv is an intracellular pathogen responsible for causing tuberculosis in humans. The M. tuberculosis genome has been shown to contain a very large and unique family of PE proteins made of two sub-families: PE-only and PE_PGRS proteins. These two subtypes of proteins play a crucial role in the pathogenesis of the microbe. However, despite numerous investigations, the role of these proteins in disease development remains obscure. In this study, sequence analysis with a search for short conserved motifs revealed a conserved tetra-peptide motif DEVS/DXXS at the PE domain of almost every PE-only and PE_PGRS protein. The motif was found at a distance of 43-46 amino acids from the N-terminal of PE_PGRS proteins, and at a distance of between 35 and 82 amino acids of the PE-only proteins. As phosphorylation of the serine residue of this tetra-peptide could yield a motif similar to the caspase-3 binding recognition sequence DEVD/E, the region from a representative PE_PGRS protein (PE_PGRS45) was docked to human caspase-3. Strong interactions of only the protein containing the phosphorylated motif (DEVpS/DXXpS) to caspase-3 were observed. This suggested that the conserved DEVS/DXXS motif could have evolved for phosphorylation and subsequent recognition by caspase-3. These findings have important implications in unravelling the role of these PE proteins in mycobacterial infection.
Collapse
|
38
|
PE-only/PE_PGRS proteins of Mycobacterium tuberculosis contain a conserved tetra-peptide sequence DEVS/DXXS that is a potential caspase-3 cleavage motif. J Biosci 2018. [DOI: 10.1007/s12038-018-9775-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
39
|
Mycobacterium tuberculosis PE_PGRS18 enhances the intracellular survival of M. smegmatis via altering host macrophage cytokine profiling and attenuating the cell apoptosis. Apoptosis 2018; 22:502-509. [PMID: 27987050 DOI: 10.1007/s10495-016-1336-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Mycobacterium tuberculosis PE/PPE family proteins, named after the presence of conserved PE (Pro-Glu) and PPE (Pro-Pro-Glu) domains at N-terminal, are prevalent in M. tuberculosis genome. The function of most PE/PPE family proteins remains elusive. To characterize the function of PE_PGRS18, the encoding gene was heterologously expressed in M. smegmatis, a nonpathogenic mycobacterium. The recombinant PE_PGRS18 is cell wall associated. M. smegmatis PE_PGRS18 recombinant showed differential response to stresses and altered the production of host cytokines IL-6, IL-1β, IL-12p40 and IL-10, as well as enhanced survival within macrophages largely via attenuating the apoptosis of macrophages. In summary, the study firstly unveiled the role of PE_PGRS18 in physiology and pathogenesis of mycobacterium.
Collapse
|
40
|
Rodriguez DC, Ocampo M, Salazar LM, Patarroyo MA. Quantifying intracellular Mycobacterium tuberculosis: An essential issue for in vitro assays. Microbiologyopen 2018; 7:e00588. [PMID: 29484835 PMCID: PMC5911991 DOI: 10.1002/mbo3.588] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 12/21/2017] [Accepted: 12/28/2017] [Indexed: 12/12/2022] Open
Abstract
Many studies about intracellular microorganisms which are important regarding diseases affecting public health have been focused on the recognition of host–pathogen interactions, thereby ascertaining the mechanisms by which the pathogen invades a cell and makes it become its host. Such knowledge enables understanding the immunological response triggered by these interactions for obtaining useful information for developing vaccines and drugs. Quantitative cell infection assay protocols are indispensable regarding studies involving Mycobacterium tuberculosis, which takes the lives of more than 2 million people worldwide every year; however, sometimes these are limited by the pathogen's slow growth. Concerning such limitation, a detailed review is presented here regarding the different methods for quantifying and differentiating an intracellular pathogen, the importance of mycobacteria aggregate dissociation and multiplicity of infection (MOI) in infection assays. The methods’ differences, advantages, and disadvantages are discussed regarding intra and extracellular bacteria (on cell surface) differentiation, current problems are outlined, as are the solutions provided using fluorophores and projections made concerning quantitative infection assays.
Collapse
Affiliation(s)
- Deisy Carolina Rodriguez
- Universidad Nacional de Colombia, Bogotá, Colombia.,Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Marisol Ocampo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,Universidad del Rosario, Bogotá, Colombia
| | | | - Manuel Alfonso Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
41
|
Deng W, Yang W, Zeng J, Abdalla AE, Xie J. Mycobacterium tuberculosis PPE32 promotes cytokines production and host cell apoptosis through caspase cascade accompanying with enhanced ER stress response. Oncotarget 2018; 7:67347-67359. [PMID: 27634911 PMCID: PMC5341880 DOI: 10.18632/oncotarget.12030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/25/2016] [Indexed: 11/25/2022] Open
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis (MTB) infection, remains a grave global public health burden which claims the lives around two to three million annually. PE and PPE proteins, featured by the Pro-Glu (PE) or Pro-Pro-Glu (PPE) motifs at the conserved N-terminal domain, are abundant in the MTB genome. PPE32 can increase intracellular survival of mycobacteria through abnormally increase in cytokines production. PPE32 might subvert the macrophage immune response and thwart its bactericidal effect. THP-1 macrophages treated with PPE32 or infected with Mycobacterium smegmatis (MS) expression PPE32 showed increase of cytokines production and multiple hallmarks of apoptosis. We found that PPE32 significantly increases the expression of IL-12p40 and IL-32 through ERK1/2 signaling pathway. In addition, the cell viability of macrophage was inhibited after PPE32 stimulation. We noted that PPE32 induces cleavage of caspase-3 and caspase-9, while inhibition of caspase activity significantly abrogates the PPE32-induced cell apoptosis. Moreover, PPE32 treatment promotes endoplasmic reticulum stress related gene expression, suggesting ER stress might be responsible for PPE32-induced cell apoptosis.
Collapse
Affiliation(s)
- Wanyan Deng
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, PR China.,Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, PR China
| | - Wenmin Yang
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, PR China
| | - Jie Zeng
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, PR China
| | - Abualgasim Elgaili Abdalla
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, PR China.,Department of Clinical Microbiology, College of Medical Laboratory Sciences, Omdurman Islamic University, Omdurman, Khartoum, Sudan
| | - Jianping Xie
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, PR China
| |
Collapse
|
42
|
Zhai X, Luo T, Peng X, Ma P, Wang C, Zhang C, Suo J, Bao L. The truncated Rv2820c of Mycobacterium tuberculosis Beijing family augments intracellular survival of M. smegmatis by altering cytokine profile and inhibiting NO generation. INFECTION GENETICS AND EVOLUTION 2018; 59:75-83. [PMID: 29407192 DOI: 10.1016/j.meegid.2018.01.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/21/2018] [Accepted: 01/29/2018] [Indexed: 12/26/2022]
Abstract
Genetic variations among genes of Mycobacterium tuberculosis may be associated with antigenic variation and immune evasion, which complicates the pathogenesis of M. tuberculosis. The hyper-virulent M. tuberculosis Beijing strains harbored several large sequence deletions, among which RD207 attributed to the deletion of CRISPR loci and several Cas genes. RD207 also gave rise to a truncated gene Rv2820c-Bj with 60% deletion in length at the 3'-end and a new 3'-end of five amino acid mutations. It has been reported that Rv2820c-Bj correlated with enhanced intracellular survival of M. smegmatis in macrophages when compared to its full-length counterpart Rv2820c in M. tuberculosis, however, the respective contribution of the truncation and the new 3'-end of Rv2820c-Bj to this enhancement was unclear. Here, by infecting THP-1 macrophages with Ms_Rv2820c-Bj, Ms_Rv2820c and MS_Rv2820c-Tr (expressing the truncated Rv2820c without five amino acid mutations at 3'-end), we found only Ms_Rv2820c-Bj was responsible for the enhancement of survival of M. smegmatis in macrophages. Furthermore, we detected that Ms_Rv2820c-Tr and Ms_Rv2820c-Bj induced similar cytokine profile and NO production after infection of macrophages, which was distinctly different from Ms_Rv2820c. However, Ms_Rv2820c-Bj evoked higher levels of interleukin-10 (IL-10) and lower levels of interleukin- 6 (IL-6), interleukin-1β (IL-1β) and interleukin-12 (IL-12) in infected THP-1 macrophages than Ms_Rv2820c-Tr. Accordingly, we concluded that the new 3'-end of Rv2820c-Bj was important to dampen host defense and enhance the intracellular survival of M. smegmatis.
Collapse
Affiliation(s)
- Xiaoqian Zhai
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Tao Luo
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
| | - Xuan Peng
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Pengjiao Ma
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Chuhan Wang
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Chunxi Zhang
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Jing Suo
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Lang Bao
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
| |
Collapse
|
43
|
Zondervan NA, van Dam JCJ, Schaap PJ, Martins Dos Santos VAP, Suarez-Diez M. Regulation of Three Virulence Strategies of Mycobacterium tuberculosis: A Success Story. Int J Mol Sci 2018; 19:E347. [PMID: 29364195 PMCID: PMC5855569 DOI: 10.3390/ijms19020347] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/19/2018] [Accepted: 01/21/2018] [Indexed: 12/28/2022] Open
Abstract
Tuberculosis remains one of the deadliest diseases. Emergence of drug-resistant and multidrug-resistant M. tuberculosis strains makes treating tuberculosis increasingly challenging. In order to develop novel intervention strategies, detailed understanding of the molecular mechanisms behind the success of this pathogen is required. Here, we review recent literature to provide a systems level overview of the molecular and cellular components involved in divalent metal homeostasis and their role in regulating the three main virulence strategies of M. tuberculosis: immune modulation, dormancy and phagosomal rupture. We provide a visual and modular overview of these components and their regulation. Our analysis identified a single regulatory cascade for these three virulence strategies that respond to limited availability of divalent metals in the phagosome.
Collapse
Affiliation(s)
- Niels A Zondervan
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Jesse C J van Dam
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
- LifeGlimmer GmbH, Markelstrasse 38, 12163 Berlin, Germany.
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| |
Collapse
|
44
|
Mouse Bone Marrow Sca-1 + CD44 + Mesenchymal Stem Cells Kill Avirulent Mycobacteria but Not Mycobacterium tuberculosis through Modulation of Cathelicidin Expression via the p38 Mitogen-Activated Protein Kinase-Dependent Pathway. Infect Immun 2017; 85:IAI.00471-17. [PMID: 28739828 DOI: 10.1128/iai.00471-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 07/17/2017] [Indexed: 01/08/2023] Open
Abstract
Mycobacterium tuberculosis primarily infects lung macrophages. However, a recent study showed that M. tuberculosis also infects and persists in a dormant form inside bone marrow mesenchymal stem cells (BM-MSCs) even after successful antibiotic therapy. However, the mechanism(s) by which M. tuberculosis survives in BM-MSCs is still not known. Like macrophages, BM-MSCs do not contain a well-defined endocytic pathway, which is known to play a central role in the clearance of internalized mycobacteria. Here, we studied the fate of virulent and avirulent mycobacteria in Sca-1+ CD44+ BM-MSCs. We found that BM-MSCs were able to kill avirulent Mycobacterium smegmatis and Mycobacterium bovis BCG but not the pathogenic species M. tuberculosis Further mechanistic studies revealed that pathogenic M. tuberculosis dampens the antibacterial response of BM-MSCs by downregulating the expression of the cationic antimicrobial peptide cathelicidin. In contrast, avirulent mycobacteria were effectively killed by inducing the Toll-like receptor 2/4 (TLR2/4) pathway-dependent expression of cathelicidin, while small interfering RNA (siRNA)-mediated cathelicidin silencing increased the survival of M. bovis BCG in BM-MSCs. We also showed that M. bovis BCG infection caused increased expression levels of MyD88, phospho-interleukin-1 receptor-associated kinase 4 (pIRAK-4), and the p38 mitogen-activated protein kinase (MAPK) signaling pathway. Further downstream investigations demonstrated that IRAK-4-p38 activation increased the nuclear translocation of NF-κB, which subsequently induced the expression of cathelicidin and the cytokine interleukin-1β (IL-1β), resulting in the decreased survival of M. bovis BCG. On the other hand, inhibition of TLR2/4, pIRAK-4, p38, and NF-κB nuclear translocation decreased cathelicidin and IL-1β expression levels and therefore increased the survival of avirulent mycobacteria. This is the first report that demonstrates that virulent mycobacteria manipulate the TLR2/4-MyD88-IRAK-4-p38-NF-κB-Camp-IL-1β pathway to survive inside bone marrow stem cells.
Collapse
|
45
|
Mycobacterium tuberculosis PPE44 (Rv2770c) is involved in response to multiple stresses and promotes the macrophage expression of IL-12 p40 and IL-6 via the p38, ERK, and NF-κB signaling axis. Int Immunopharmacol 2017; 50:319-329. [DOI: 10.1016/j.intimp.2017.06.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/11/2017] [Accepted: 06/26/2017] [Indexed: 11/19/2022]
|
46
|
Myllymäki H, Niskanen M, Oksanen KE, Sherwood E, Ahava M, Parikka M, Rämet M. Identification of novel antigen candidates for a tuberculosis vaccine in the adult zebrafish (Danio rerio). PLoS One 2017; 12:e0181942. [PMID: 28742838 PMCID: PMC5526617 DOI: 10.1371/journal.pone.0181942] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 07/10/2017] [Indexed: 12/31/2022] Open
Abstract
Tuberculosis (TB) remains a major global health challenge and the development of a better vaccine takes center stage in fighting the disease. For this purpose, animal models that are capable of replicating the course of the disease and are suitable for the early-stage screening of vaccine candidates are needed. A Mycobacterium marinum infection in adult zebrafish resembles human TB. Here, we present a pre-clinical screen for a DNA-based tuberculosis vaccine in the adult zebrafish using an M. marinum infection model. We tested 15 antigens representing different types of mycobacterial proteins, including the Resuscitation Promoting factors (Rpf), PE/PPE protein family members, other membrane proteins and metabolic enzymes. The antigens were expressed as GFP fusion proteins, facilitating the validation of their expression in vivo. The efficiency of the antigens was tested against a low-dose intraperitoneal M. marinum infection (≈ 40 colony forming units), which mimics a primary M. tuberculosis infection. While none of the antigens was able to completely prevent a mycobacterial infection, four of them, namely RpfE, PE5_1, PE31 and cdh, led to significantly reduced bacterial burdens at four weeks post infection. Immunization with RpfE also improved the survival of the fish against a high-dose intraperitoneal injection with M. marinum (≈ 10.000 colony forming units), resembling the disseminated form of the disease. This study shows that the M. marinum infection model in adult zebrafish is suitable for the pre-clinical screening of tuberculosis vaccines and presents RpfE as a potential antigen candidate for further studies.
Collapse
Affiliation(s)
- Henna Myllymäki
- BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- * E-mail:
| | - Mirja Niskanen
- BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Kaisa Ester Oksanen
- BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Eleanor Sherwood
- BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Maarit Ahava
- BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Mataleena Parikka
- BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- Oral and Maxillofacial Unit, Tampere University Hospital, Tampere, Finland
| | - Mika Rämet
- BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, Oulu, Finland, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
47
|
Kumar A, Saini V, Kumar A, Kaur J, Kaur J. Modulation of Trehalose Dimycolate and Immune System by Rv0774c Protein Enhanced the Intracellular Survival of Mycobacterium smegmatis in Human Macrophages Cell Line. Front Cell Infect Microbiol 2017; 7:289. [PMID: 28713776 PMCID: PMC5491638 DOI: 10.3389/fcimb.2017.00289] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 06/14/2017] [Indexed: 01/21/2023] Open
Abstract
Mycobacterium tuberculosis Rv0774c protein was reported previously to express under stress conditions. Therefore, Rv0774c gene was cloned and expressed in Mycobacterium smegmatis, a surrogate host, to determine its role in bacterial persistence and immune modulation in natural environment. The bacterial colonies expressing Rv0774c (Ms_rv0774c) were larger, smoother, more moist, and flatter than the control ones (Ms_ve). Enhanced survival of Ms_rv0774c after treatment with streptomycin was observed when compared with control. The cell envelope of Ms_rv0774c was demonstrated to have more trehalose di-mycolate (TDM) and lesser amount of mycolylmannosylphosphorylheptaprenol (Myc-PL) in comparison to control. Higher intracellular survival rate was observed for Ms_rv0774c as compared to Ms_ve in the THP-1 cells. This could be correlated to the reduction in the levels of reactive NO and iNOS expression. Infection of macrophages with Ms_rv0774c resulted in significantly increased expression of TLR2 receptor and IL-10 cytokines. However, it lowered the production of pro-inflammatory cytokines such as IL-12, TNF-α, IFN-γ, and MCP-1 in Ms_rv0774c infected macrophages in comparison to the control and could be associated with decreased phosphorylation of p38 MAPK. Though, predicted with high antigenicity index bioinformatically, extracellular in nature and accessible to host milieu, Rv0774c was not able to generate humoral response in patient samples. Overall, the present findings indicated that Rv0774c altered the morphology and streptomycin sensitivity by altering the lipid composition of M. smegmatis as well as modulated the immune response in favor of bacterial persistence.
Collapse
Affiliation(s)
- Arbind Kumar
- Department of Biotechnology, Panjab UniversityChandigarh, India
| | - Varinder Saini
- Department of Pulmonary Medicine, Government Medical College and HospitalChandigarh, India
| | - Anjani Kumar
- Department of Biotechnology, Panjab UniversityChandigarh, India
| | - Jasbinder Kaur
- Department of Pulmonary Medicine, Government Medical College and HospitalChandigarh, India.,Department of Biochemistry, Government Medical College and HospitalChandigarh, India
| | - Jagdeep Kaur
- Department of Biotechnology, Panjab UniversityChandigarh, India
| |
Collapse
|
48
|
Identification of Mycobacterial Genes Involved in Antibiotic Sensitivity: Implications for the Treatment of Tuberculosis with β-Lactam-Containing Regimens. Antimicrob Agents Chemother 2017; 61:AAC.00425-17. [PMID: 28438925 DOI: 10.1128/aac.00425-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/09/2017] [Indexed: 12/25/2022] Open
Abstract
In a Mycobacterium smegmatis mutant library screen, transposon mutants with insertions in fhaA, dprE2, rpsT, and parA displayed hypersusceptibility to antibiotics, including the β-lactams meropenem, ampicillin, amoxicillin, and cefotaxime. Sub-MIC levels of octoclothepin, a psychotic drug inhibiting ParA, phenocopied the parA insertion and enhanced the bactericidal activity of meropenem against Mycobacterium tuberculosis in combination with clavulanate. Our study identifies novel factors associated with antibiotic resistance, with implications in repurposing β-lactams for tuberculosis treatment.
Collapse
|
49
|
Mukhopadhyay S, Ghosh S. Mycobacterium tuberculosis: what is the role of PPE2 during infection? Future Microbiol 2017; 12:457-460. [PMID: 28481123 DOI: 10.2217/fmb-2017-0038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Sangita Mukhopadhyay
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Nampally, Hyderabad, India
| | - Sudip Ghosh
- Molecular Biology Division, National Institute of Nutrition (ICMR), Jamai Osmania PO, Hyderabad, India
| |
Collapse
|
50
|
Mycobacterium tuberculosis PE_PGRS41 Enhances the Intracellular Survival of M. smegmatis within Macrophages Via Blocking Innate Immunity and Inhibition of Host Defense. Sci Rep 2017; 7:46716. [PMID: 28440335 PMCID: PMC5404228 DOI: 10.1038/srep46716] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/23/2017] [Indexed: 01/17/2023] Open
Abstract
The success of Mycobacterium tuberculosis (M. tuberculosis) as a pathogen is largely contributes to its ability to manipulate the host immune responses. The genome of M. tuberculosis encodes multiple immune-modulatory proteins, including several members of the multi-genic PE_PPE family. Despite of intense research, the roles of PE_PGRS proteins in mycobacterial pathogenesis remain elusive. The function of M. tuberculosis PE_PGRS41, characterized by an extended and unique C-terminal domain, was studied. Expression of PE_PGRS41 in Mycobacterium smegmatis, a non-pathogenic species intrinsically deficient of PE_PGRS, severely impaired the resistance of the recombinant to multiple stresses via altering the cell wall integrity. Macrophages infected by M. smegmatis harboring PE_PGRS41 decreased the production of TNF-α, IL-1β and IL-6. In addition, PE_PGRS41 boosted the survival of M. smegmatis within macrophage accompanied with enhanced cytotoxic cell death through inhibiting the cell apoptosis and autophagy. Taken together, these results implicate that PE_PGRS41 is a virulence factor of M. tuberculosis and sufficient to confer pathogenic properties to M. smegmatis.
Collapse
|