1
|
Silme RS, Baysal Ö, Can A, Kürüm Y, Korkut A, Kırboğa KK, Çetinkaya A. Exploring the Genome-wide Expression Level of the Bacterial Strain Belonging to Bacillus safensis (MM19) Against Phomopsis viticola. Curr Microbiol 2024; 81:404. [PMID: 39400703 DOI: 10.1007/s00284-024-03908-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/14/2024] [Indexed: 10/15/2024]
Abstract
Rhizobacteria have the ability to compete with pathogenic microorganisms and contribute to plant immunity and defense mechanisms. Their growth and survival in the rhizosphere ensure a biological balance in favor of the host plant. The differential gene expression profiles of B. safensis (MM19) revealed significantly increased expression of prominent genes related to thiamine biosynthesis involving various metabolites and enzymes that participate in the suppression of mycelium growth and pathogen inhibition. Correspondingly, the expression of three major genes (HOG1, FUS3, SGI) involved in the virulence of P. viticola was assessed using qPCR analysis. HOG1 was the highest expressed gene in the pathogen when it was co-cultivated with MM19. Based on these findings, we performed molecular docking and dynamics analysis to explore the interaction between HOG1 and thiamine, as well as expression network analysis constructed using Cytoscape. The functional genomic data related to thiamine biosynthesis and the corresponding pathways ensure a priming role in the antagonistic behavior of B. safensis (MM19) against P. viticola as a support for plant immunity.
Collapse
Affiliation(s)
- Ragıp Soner Silme
- Center for Research and Practice in Biotechnology and Genetic Engineering, Istanbul University, Istanbul, Fatih, Turkey.
| | - Ömür Baysal
- Molecular Microbiology Unit, Department of Molecular Biology and Genetics, Faculty of Science, Muğla Sıtkı Koçman University, Kötekli-Muğla, Turkey.
- Department of Biological Sciences, University of Worcester, Worcester, UK.
| | - Ahmet Can
- Molecular Microbiology Unit, Department of Molecular Biology and Genetics, Faculty of Science, Muğla Sıtkı Koçman University, Kötekli-Muğla, Turkey
| | - Yiğit Kürüm
- Molecular Microbiology Unit, Department of Molecular Biology and Genetics, Faculty of Science, Muğla Sıtkı Koçman University, Kötekli-Muğla, Turkey
| | - Ahmet Korkut
- Molecular Microbiology Unit, Department of Molecular Biology and Genetics, Faculty of Science, Muğla Sıtkı Koçman University, Kötekli-Muğla, Turkey
| | - Kevser Kübra Kırboğa
- Faculty of Engineering, Department of Bioengineering, Bilecik Seyh Edebali University, Bilecik, Turkey
| | - Agit Çetinkaya
- Department of Molecular Biology and Genetics, Gebze Technical University, Kocaeli, Gebze, Turkey
| |
Collapse
|
2
|
Shi F, Yang D, Meng X, Li J, Zhu Y, Liu J. Effects of Paecilomyces lilacinus and Bacillus pumilus on stem nematode and rhizosphere bacterial communities of sweet potato. Sci Rep 2024; 14:23290. [PMID: 39375441 PMCID: PMC11458784 DOI: 10.1038/s41598-024-74268-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/24/2024] [Indexed: 10/09/2024] Open
Abstract
Stem nematode (Ditylenchus destructor Thorne) is considered one of the most economically devastating species affecting sweet potato production. Biocontrol offers a sustainable strategy for nematode control. This study conducted a pot experiment to evaluate the biocontrol efficacy of Paecilomyces lilacinus CS-Z and Bacillus pumilus Y-26 against the stem nematode, as well as to examine their influence on the bacterial communities in the sweet potato rhizosphere. The findings indicated that B.pumilus Y-26 and P.lilacinus CS-Z exhibited respective suppression rates of 82.9% and 85.1% against the stem nematode, while also stimulating sweet potato plant growth. Both high-throughput sequencing and Biolog analysis revealed distinct impacts of the treatments on the bacterial communities. At the phylum level, B.pumilus Y-26 enhanced the abundance of Actinobacteria but reduced the abundance of Cyanobacteria, with P.lilacinus CS-Z exhibiting similar effects. Additionally, the treatment with B.pumilus Y-26 resulted in increased abundances of Crossiella, Gaiella, Bacillus, and Streptomyces at the genus level, while the treatment with P.lilacinus CS-Z showed increased abundances of Crossiella and Streptomyces. In contrast, the abundance of Pseudarthrobacter was reduced in the treatment with B.pumilus Y-26. Conversely, the application of the nematicide fosthiazate exhibited minor influence on the bacterial community. The findings indicated that the application of P.lilacinus CS-Z and B.pumilus Y-26 led to an increase in the relative abundances of beneficial microorganisms, including Gaiella, Bacillus, and Streptomyces, in the rhizosphere soil. In conclusion, P.lilacinus CS-Z and B.pumilus Y-26 demonstrated their potential as environmentally friendly biocontrol agents for managing stem nematode disease of sweet potato.
Collapse
Affiliation(s)
- Fengyu Shi
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinghuangdao, Hebei, China
| | - Dan Yang
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinghuangdao, Hebei, China
| | - Xinpeng Meng
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinghuangdao, Hebei, China
| | - Jiaxin Li
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinghuangdao, Hebei, China
| | - Yingbo Zhu
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinghuangdao, Hebei, China.
| | - Jianbin Liu
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| |
Collapse
|
3
|
Lai X, Duan W, Zhang W, Peng Z, Wang X, Wang H, Qi X, Pi H, Chen K, Yan L. Integrative analysis of microbiome and metabolome revealed the effect of microbial inoculant on microbial community diversity and function in rhizospheric soil under tobacco monoculture. Microbiol Spectr 2024; 12:e0404623. [PMID: 38989997 PMCID: PMC11302352 DOI: 10.1128/spectrum.04046-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/28/2024] [Indexed: 07/12/2024] Open
Abstract
Over-application of chemical fertilizers and continuous cropping obstacles seriously restrict the sustainable development of tobacco production. Localized fertilization of beneficial microbes has potential advantages in achieving higher productivity, but the underlying biological mechanisms of interactions between rhizospheric microorganisms and the related metabolic cycle remain poorly characterized. Here, an integrative analysis of microbiomes with non-targeted metabolomics was performed on 30 soil samples of rhizosphere, root surrounding, and bulk soils from flue-cured tobacco under continuous and non-continuous monocropping systems. The analysis was conducted using UPLC-MS/MS platforms and high-throughput amplicon sequencing targeting the bacterial 16S rRNA gene and fungal ITS gene. The microbial inoculant consisted of Bacillus subtilis, B. velezensis, and B. licheniformis at the ratio of 1:1:1 in effective microbial counts, improved the cured leaf yield and disease resistance of tobacco, and enhanced nicotine and nitrogen contents of tobacco leaves. The bacterial taxa Rhizobium, Pseudomonas, Sphingomonadaceae, and Burkholderiaceae of the phylum Proteobacteria accumulated in high relative abundance and were identified as biomarkers following the application of the microbial inoculant. Under continuous monocropping, metabolomics demonstrated that the application of the microbial inoculant significantly affected the soil metabolite spectrum, and the differential metabolites were significantly enriched to the synthesis and degradation of nicotine (nicotinate and nicotinamide metabolism and biosynthesis of alkaloids derived from nicotinic acid). In addition, microbes were closely related to the accumulation of metabolites through correlation analysis. The interactions between plant roots and rhizospheric microorganisms provide valuable information for understanding how these beneficial microbes affect complex biological processes and the adaption capacity of plants to environments.IMPORTANCEThis study elaborated on how the microbial fertilizer significantly changed overall community structures and metabolite spectrum of rhizospheric microbes, which provide insights into the process of rhizosphere microbial remolding in response to continuous monocropping. we verified the hypothesis that the application of the microbial inoculant in continuous cropping would lead to the selection of distinct microbiota communities by establishing models to correlate biomarkers. Through correlation analysis of the microbiome and metabolome, we proved that rhizospheric microbes were closely related to the accumulation of metabolites, including the synthesis and degradation of nicotine. The interactions between plant roots and rhizospheric microorganisms provide valuable information for understanding how these beneficial microbes affect complex biological processes and the adaption capacity of plants to environments.
Collapse
Affiliation(s)
- Xianjun Lai
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Liangshan, China
| | - Wangjun Duan
- China Tobacco Sichuan Industrial Co. Ltd, Chengdu, China
| | - Wenyou Zhang
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Liangshan, China
| | - Zhengsong Peng
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Liangshan, China
| | - Xianjun Wang
- China Tobacco Sichuan Industrial Co. Ltd, Chengdu, China
| | - Haiyan Wang
- Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiaobo Qi
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Liangshan, China
| | - Huaqiang Pi
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Liangshan, China
| | - Kailu Chen
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Liangshan, China
| | - Lang Yan
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Liangshan, China
| |
Collapse
|
4
|
Liu J, Zhang S, Ma H, Huang J, Xiang M, Liu X. Inhibition and biocontrol potential of Ochrobactrum pseudogrignonense NC1 against four Phytophthora species. J GEN APPL MICROBIOL 2024; 69:327-334. [PMID: 37989280 DOI: 10.2323/jgam.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Phytophthora species are highly destructive soilborne oomycetes pathogens that spread through infested soil and water. Ochrobactrum pseudogrignonense NC1 has been shown to inhibit plant parasitic nematodes via volatile organic compounds (VOCs). In this study, we investigated the inhibitory effect of O. pseudogrignonense NC1 against four Phytophthora species on agar plates and in vivo bioassay. We found that NC1 significantly inhibited the mycelial growth and zoospore production of all four species of Phytophthora in a dose-dependent manner. The half maximal inhibitory concentration (IC50) values for inhibition of mycelial growth (or zoospore production) were 26% (14.8%), 18.9% (14.2%), 20.3% (8.3%) and 46.9% (4%) for Phytophthora capsici Leonian, Phytophthora infestans, Phytophthora parasitica var. nicotiana and Phytophthora sojae, respectively. The biocontrol efficiency of NC1 was 46.3% in pepper seedlings against P. capsici, almost 100% in potato tubers against P. infestans, 60% in tomato leave against P. parasitica and 100% in soybean leave against P. sojae, respectively. Our findings suggest that O. pseudogrignonense NC1 has great potential as a biocontrol agent for managing Phytophthora diseases.
Collapse
Affiliation(s)
- Jinming Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Mcrobiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University
| | - Shiyu Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Mcrobiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University
| | - Haikun Ma
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Mcrobiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University
| | - Jun Huang
- Shandong Yuanchen Biomedical Technology Group Co., Ltd
| | - Meichun Xiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences
| | - Xingzhong Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Mcrobiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University
| |
Collapse
|
5
|
Trippa D, Scalenghe R, Basso MF, Panno S, Davino S, Morone C, Giovino A, Oufensou S, Luchi N, Yousefi S, Martinelli F. Next-generation methods for early disease detection in crops. PEST MANAGEMENT SCIENCE 2024; 80:245-261. [PMID: 37599270 DOI: 10.1002/ps.7733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/21/2023] [Indexed: 08/22/2023]
Abstract
Plant pathogens are commonly identified in the field by the typical disease symptoms that they can cause. The efficient early detection and identification of pathogens are essential procedures to adopt effective management practices that reduce or prevent their spread in order to mitigate the negative impacts of the disease. In this review, the traditional and innovative methods for early detection of the plant pathogens highlighting their major advantages and limitations are presented and discussed. Traditional techniques of diagnosis used for plant pathogen identification are focused typically on the DNA, RNA (when molecular methods), and proteins or peptides (when serological methods) of the pathogens. Serological methods based on mainly enzyme-linked immunosorbent assay (ELISA) are the most common method used for pathogen detection due to their high-throughput potential and low cost. This technique is not particularly reliable and sufficiently sensitive for many pathogens detection during the asymptomatic stage of infection. For non-cultivable pathogens in the laboratory, nucleic acid-based technology is the best choice for consistent pathogen detection or identification. Lateral flow systems are innovative tools that allow fast and accurate results even in field conditions, but they have sensitivity issues to be overcome. PCR assays performed on last-generation portable thermocyclers may provide rapid detection results in situ. The advent of portable instruments can speed pathogen detection, reduce commercial costs, and potentially revolutionize plant pathology. This review provides information on current methodologies and procedures for the effective detection of different plant pathogens. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Daniela Trippa
- Dipartimento di Scienze Agrarie Alimentari e Forestali, Università degli Studi di Palermo, Palermo, Italy
| | - Riccardo Scalenghe
- Dipartimento di Scienze Agrarie Alimentari e Forestali, Università degli Studi di Palermo, Palermo, Italy
| | | | - Stefano Panno
- Dipartimento di Scienze Agrarie Alimentari e Forestali, Università degli Studi di Palermo, Palermo, Italy
| | - Salvatore Davino
- Dipartimento di Scienze Agrarie Alimentari e Forestali, Università degli Studi di Palermo, Palermo, Italy
| | - Chiara Morone
- Regione Piemonte - Phytosanitary Division, Torino, Italy
| | - Antonio Giovino
- Council for Agricultural Research and Economics (CREA)-Research Centre for Plant Protection and Certification (CREA-DC), Palermo, Italy
| | - Safa Oufensou
- Dipartimento di Agraria, Università degli Studi di Sassari, Sassari, Italy
| | - Nicola Luchi
- National Research Council, Institute for Sustainable Plant Protection, (CNR-IPSP), Florence, Italy
| | - Sanaz Yousefi
- Department of Horticultural Science, Bu-Ali Sina University, Hamedan, Iran
| | - Federico Martinelli
- Department of Biology, University of Florence, Florence, Italy
- National Research Council, Institute for Sustainable Plant Protection, (CNR-IPSP), Florence, Italy
| |
Collapse
|
6
|
Li Y, Zhang X, He K, Song X, Yu J, Guo Z, Xu M. Isolation and Identification of Bacillus subtilis LY-1 and Its Antifungal and Growth-Promoting Effects. PLANTS (BASEL, SWITZERLAND) 2023; 12:4158. [PMID: 38140485 PMCID: PMC10747398 DOI: 10.3390/plants12244158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/29/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Peanut root rot, caused by Fusarium spp., is a devastating fungal disease. As part of a program to obtain a biocontrol agent to control peanut root rot in the field, a bacterial strain LY-1 capable of inhibiting the growth of the fungus in vitro was isolated from rhizosphere soil samples collected from wild mint by agar disk dilution and dual-culture assay. Strain LY-1 was identified as Bacillus subtilis based on morphological characteristics, 16S rDNA, and gyrA sequence analyses. The bacterial suspension and cell-free culture filtrate of LY-1 could significantly inhibit the growth of Fusarium oxysporum, Fusarium proliferatum and Fusarium solani, but volatile organic compounds from the cultures had only a weak effect on mycelial growth. The percentage inhibition of 20% concentration of the cell-free culture filtrate of LY-1 on conidium production of each of the three Fusarium species was greater than 72.38%, and the percentage inhibition by the culture filtration on the germination of conidia of the three species was at least 62.37%. The production of extracellular enzyme activity by LY-1 was studied in functional assays, showing protease, cellulase, amylase, chitinase, and β-1,3-glucanase activity, while LY-1 contained a gene encoding iturin, an antifungal lipopeptide. In addition, under pot culture in a greenhouse, culture filtrate of LY-1 significantly promoted the growth of peanut, increasing the fresh and dry mass of the plant by 30.77% and 27.27%, respectively, in comparison with the no-filtrate control. The culture filtrate of LY-1 increased the resistance of peanut plants to F. oxysporum, with the biocontrol efficiency reaching 44.71%. In conclusion, B. subtilis LY-1, a plant-growth-promoting rhizobacterium, was able to protect peanuts from Fusarium spp. infection.
Collapse
Affiliation(s)
- Ying Li
- Shandong Peanut Research Institute, Qingdao 266100, China; (Y.L.); (X.Z.); (K.H.); (X.S.); (J.Y.); (Z.G.)
- National Engineering Research Center for Peanut, Qingdao 266100, China
| | - Xia Zhang
- Shandong Peanut Research Institute, Qingdao 266100, China; (Y.L.); (X.Z.); (K.H.); (X.S.); (J.Y.); (Z.G.)
- National Engineering Research Center for Peanut, Qingdao 266100, China
| | - Kang He
- Shandong Peanut Research Institute, Qingdao 266100, China; (Y.L.); (X.Z.); (K.H.); (X.S.); (J.Y.); (Z.G.)
- National Engineering Research Center for Peanut, Qingdao 266100, China
| | - Xinying Song
- Shandong Peanut Research Institute, Qingdao 266100, China; (Y.L.); (X.Z.); (K.H.); (X.S.); (J.Y.); (Z.G.)
- National Engineering Research Center for Peanut, Qingdao 266100, China
| | - Jing Yu
- Shandong Peanut Research Institute, Qingdao 266100, China; (Y.L.); (X.Z.); (K.H.); (X.S.); (J.Y.); (Z.G.)
- National Engineering Research Center for Peanut, Qingdao 266100, China
| | - Zhiqing Guo
- Shandong Peanut Research Institute, Qingdao 266100, China; (Y.L.); (X.Z.); (K.H.); (X.S.); (J.Y.); (Z.G.)
- National Engineering Research Center for Peanut, Qingdao 266100, China
| | - Manlin Xu
- Shandong Peanut Research Institute, Qingdao 266100, China; (Y.L.); (X.Z.); (K.H.); (X.S.); (J.Y.); (Z.G.)
- National Engineering Research Center for Peanut, Qingdao 266100, China
| |
Collapse
|
7
|
Yadav D, Gaurav H, Yadav R, Waris R, Afzal K, Chandra Shukla A. A comprehensive review on soft rot disease management in ginger ( Zingiber officinale) for enhancing its pharmaceutical and industrial values. Heliyon 2023; 9:e18337. [PMID: 37539157 PMCID: PMC10395546 DOI: 10.1016/j.heliyon.2023.e18337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023] Open
Abstract
Zingiber officinale L. Roscoe is a significant herb that possesses many medicinal and ethnomedicinal properties. Due to the presence of various bioactive compounds, it has immense healing capacity. However, ginger as a crop is susceptible to several fungal pathogens. Among all the fungal pathogens, Pythium and Fusarium spp. are of most concern, causing soft rot (rhizome rot) disease, majorly responsible for the downfall in its production by 50-90%. Pesticides and fungicides spray is generally recommended for the control of soft rot. Ample use of chemicals not only affects the quality of the crop but also disturbs ecological integrity. Therefore, biological methods of disease management involving suitable microbial agents such as Trichoderma harzianum, Pseudomonas spp., Bacillus subtilis, Streptomyces spp. and plant extracts are attracting and gaining importance as a part of integrated approaches (IPM) to manage the soft rot and sustainably enhance the production and improve the medicinal and pharmaceutical values of ginger. The present review is aimed to discuss various means of controlling soft rot disease by physical, chemical, biological, and nanotechnology-based methods. Moreover, various bioactive constituents of ginger and their pharmaceutical importance have been also discussed.
Collapse
Affiliation(s)
- Divyanshu Yadav
- Department of Botany, University of Lucknow, Lucknow, 226007, India
| | - Harshita Gaurav
- Department of Botany, University of Lucknow, Lucknow, 226007, India
| | - Ramanand Yadav
- Department of Botany, University of Lucknow, Lucknow, 226007, India
| | - Raza Waris
- Department of Botany, University of Lucknow, Lucknow, 226007, India
- Plant Diversity, Systematics and Herbarium Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Kareena Afzal
- Department of Botany, University of Lucknow, Lucknow, 226007, India
| | | |
Collapse
|
8
|
Çam S, Küçük Ç, Almaca A. Bacillus strains exhibit various plant growth promoting traits and their biofilm-forming capability correlates to their salt stress alleviation effect on maize seedlings. J Biotechnol 2023; 369:35-42. [PMID: 37207853 DOI: 10.1016/j.jbiotec.2023.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/29/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
Soil salinity interferes with plant growth and development. Bacillus genus has been used to increase the growth and productivity of a wide variety of crops by alleviating the effects of salt stress. A total of thirty two Bacillus isolates were obtained from maize rhizosphere, and their plant growth-promoting (PGP) traits and biocontrol activities were tested. Bacillus isolates displayed varying degrees of PGP properties-the production of extracellular enzymes, indole acetic acid, hydrogen cyanide, phosphate solubilization, biofilm formation, and antifungal potential against several fungal pathogens. The phosphate-solubilizing isolates belong to B. safensis, B. thuringiensis, B. cereus, and B. megaterium species. Each Bacillus isolate demonstrated different levels of antifungal activity against the fungal pathogens tested. Biofilm production by some salt-tolerant isolates significantly increased at elevated levels of NaCl (p<0.05). The strains B. safensis B24, B. halotolerans B7/B18, B. subtilis B26, and B. thuringiensis B10 significantly increased the length of root (by 32.7-38.2%) and shoot (by 19.5-29.8%) of maize (p<0.05). Maize plants treated with some Bacillus strains displayed significantly greater chlorophyll content with an increase of 26.7-32.1% (p <0.05). Among PGP properties, enhanced biofilm formation played a more important role in maize growth under higher salinity. These salt-tolerant biofilm-forming strains could be efficiently used as bio-inoculant for maize under salinity stress.
Collapse
Affiliation(s)
- Sedat Çam
- Department of Biology, Faculty of Arts and Sciences, Harran University, Haliliye/Şanlıurfa, 63050, Turkey.
| | - Çiğdem Küçük
- Department of Biology, Faculty of Arts and Sciences, Harran University, Haliliye/Şanlıurfa, 63050, Turkey
| | - Ahmet Almaca
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Harran University, Haliliye/Şanlıurfa, Turkey
| |
Collapse
|
9
|
Soliman SA, Abdelhameed RE, Metwally RA. In vivo and In vitro evaluation of the antifungal activity of the PGPR Bacillus amyloliquefaciens RaSh1 (MZ945930) against Alternaria alternata with growth promotion influences on Capsicum annuum L. plants. Microb Cell Fact 2023; 22:70. [PMID: 37055827 PMCID: PMC10103514 DOI: 10.1186/s12934-023-02080-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/04/2023] [Indexed: 04/15/2023] Open
Abstract
Alternaria alternata that threatens pepper production and causes major economic harm is responsible for the leaf spot/blight disease. Chemical fungicides have been widely employed; unfortunately, fungicidal resistance is a current concern. Therefore, finding new environmentally friendly biocontrol agents is a future challenge. One of these friendly solutions is the use of bacterial endophytes that have been identified as a source of bioactive compounds. The current study investigates the in vivo and in vitro fungicidal potential of Bacillus amyloliquefaciens RaSh1 (MZ945930) against pathogenic A. alternata. In vitro, the results revealed that RaSh1 exhibited strong antagonistic activity against A. alternata. In addition to this, we inoculated pepper (Capsicum annuum L.) plants with B. amyloliquefaciens RaSh1 and infected them with A. alternata. As a result of A. alternata infection, which generated the highest leaf spot disease incidence (DI), the plant's growth indices and physio-biochemical characteristics significantly decreased, according to our findings. Our results also showed the abnormal and deformed cell structure using light and electron microscopy of A. alternata-infected leaves compared with other treatments. However, DI was greatly reduced with B. amyloliquefaciens RaSh1 application (40%) compared to pepper plants infected with A. alternata (80%), and this led to the largest increases in all identified physio-biochemical parameters, including the activity of the defense-related enzymes. Moreover, inoculation of pepper plants with B. amyloliquefaciens RaSh1 decreased electrolyte leakage by 19.53% and MDA content by 38.60% as compared to A. alternata infected ones. Our results show that the endophyte B. amyloliquefaciens RaSh1 has excellent potential as a biocontrol agent and positively affects pepper plant growth.
Collapse
Affiliation(s)
- Shereen A Soliman
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Reda E Abdelhameed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Rabab A Metwally
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
10
|
Yang B, Zheng M, Dong W, Xu P, Zheng Y, Yang W, Luo Y, Guo J, Niu D, Yu Y, Jiang C. Plant Disease Resistance-Related Pathways Recruit Beneficial Bacteria by Remodeling Root Exudates upon Bacillus cereus AR156 Treatment. Microbiol Spectr 2023; 11:e0361122. [PMID: 36786562 PMCID: PMC10100852 DOI: 10.1128/spectrum.03611-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/20/2023] [Indexed: 02/15/2023] Open
Abstract
The environmentally friendly biological control strategy that relies on beneficial bacterial inoculants to improve plant disease resistance is a promising strategy. Previously, it has been demonstrated that biocontrol bacteria treatments can change the plant rhizosphere microbiota but whether plant signaling pathways, especially those related to disease resistance, mediate the changes in rhizosphere microbiota has not been explored. Here, we investigated the complex interplay among biocontrol strains, plant disease resistance-related pathways, root exudates, rhizosphere microorganisms, and pathogens to further clarify the biocontrol mechanism of biocontrol bacteria by using plant signaling pathway mutants. Bacillus cereus AR156, which was previously isolated from forest soil by our laboratory, can significantly control tomato bacterial wilt disease in greenhouse and field experiments. Moreover, compared with the control treatment, the B. cereus AR156 treatment had a significant effect on the soil microbiome and recruited 35 genera of bacteria to enrich the rhizosphere of tomato. Among them, the relative rhizosphere abundance of nine genera, including Ammoniphilus, Bacillus, Bosea, Candidimonas, Flexivirga, Brevundimonas, Bordetella, Dyella, and Candidatus_Berkiella, was regulated by plant disease resistance-related signaling pathways and B. cereus AR156. Linear correlation analysis showed that the relative abundances of six genera in the rhizosphere were significantly negatively correlated with pathogen colonization in roots. These rhizosphere bacteria were affected by plant root exudates that are regulated by signaling pathways. IMPORTANCE Our data suggest that B. cereus AR156 can promote the enrichment of beneficial microorganisms in the plant rhizosphere by regulating salicylic acid (SA) and jasmonic acid (JA)/ethylene (ET) signaling pathways in plants, thereby playing a role in controlling bacterial wilt disease. Meanwhile, Spearman correlation analysis showed that the relative abundances of these beneficial bacteria were correlated with the secretion of root exudates. Our study reveals a new mechanism for SA and JA/ET signals to participate in the adjustment of plant resistance whereby the signaling pathways adjust the rhizosphere microecology by changing the root exudates and thus change plant resistance. On the other hand, biocontrol strains can utilize this mechanism to recruit beneficial bacteria by activating disease resistance-related signaling pathways to confine the infection and spread of pathogens. Finally, our data also provide a new idea for the in-depth study of biocontrol mechanisms.
Collapse
Affiliation(s)
- Bingye Yang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
| | - Mingzi Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
| | - Wenpan Dong
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
| | - Peiling Xu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
| | - Ying Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Wei Yang
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake/Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai’an, China
| | - Yuming Luo
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake/Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai’an, China
| | - Jianhua Guo
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
| | - Dongdong Niu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
| | - Yiyang Yu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
| | - Chunhao Jiang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
| |
Collapse
|
11
|
Ma M, Taylor PWJ, Chen D, Vaghefi N, He JZ. Major Soilborne Pathogens of Field Processing Tomatoes and Management Strategies. Microorganisms 2023; 11:263. [PMID: 36838227 PMCID: PMC9958975 DOI: 10.3390/microorganisms11020263] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
Globally, tomato is the second most cultivated vegetable crop next to potato, preferentially grown in temperate climates. Processing tomatoes are generally produced in field conditions, in which soilborne pathogens have serious impacts on tomato yield and quality by causing diseases of the tomato root system. Major processing tomato-producing countries have documented soilborne diseases caused by a variety of pathogens including bacteria, fungi, nematodes, and oomycetes, which are of economic importance and may threaten food security. Recent field surveys in the Australian processing tomato industry showed that plant growth and yield were significantly affected by soilborne pathogens, especially Fusarium oxysporum and Pythium species. Globally, different management methods have been used to control diseases such as the use of resistant tomato cultivars, the application of fungicides, and biological control. Among these methods, biocontrol has received increasing attention due to its high efficiency, target-specificity, sustainability and public acceptance. The application of biocontrol is a mix of different strategies, such as applying antagonistic microorganisms to the field, and using the beneficial metabolites synthesized by these microorganisms. This review provides a broad review of the major soilborne fungal/oomycete pathogens of the field processing tomato industry affecting major global producers, the traditional and biological management practices for the control of the pathogens, and the various strategies of the biological control for tomato soilborne diseases. The advantages and disadvantages of the management strategies are discussed, and highlighted is the importance of biological control in managing the diseases in field processing tomatoes under the pressure of global climate change.
Collapse
Affiliation(s)
| | | | | | | | - Ji-Zheng He
- School of Agriculture and Food, Faculty of Science, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
12
|
Malik MS, Rehman A, Khan IU, Khan TA, Jamil M, Rha ES, Anees M. Thermo-neutrophilic cellulases and chitinases characterized from a novel putative antifungal biocontrol agent: Bacillus subtilis TD11. PLoS One 2023; 18:e0281102. [PMID: 36706132 PMCID: PMC9882894 DOI: 10.1371/journal.pone.0281102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Cellulose and chitin are the most abundant naturally occurring biopolymers synthesized in plants and animals and are used for synthesis of different organic compounds and acids in the industry. Therefore, cellulases and chitinases are important for their multiple uses in industry and biotechnology. Moreover, chitinases have a role in the biological control of phytopathogens. A bacterial strain Bacillus subtilis TD11 was previously isolated and characterized as a putative biocontrol agent owing to its significant antifungal potential. In this study, cellulase and chitinase produced by the strain B. subtilis TD11 were purified and characterized. The activity of the cellulases and chitinases were optimized at different pH (2 to 10) and temperatures (20 to 90°C). The substrate specificity of cellulases was evaluated using different substances including carboxymethyl cellulose (CMC), hydroxyethyl cellulose (HEC), and crystalline substrates. The cellulase produced by B. subtilis TD11 had a molecular mass of 45 kDa while that of chitinase was 55 kDa. The optimal activities of the enzymes were found at neutral pH (6.0 to 7.0). The optimum temperature for the purified cellulases was in the range of 50 to 70°C while, purified chitinases were optimally active at 50°C. The highest substrate specificity of the purified cellulase was found for CMC (100%) followed by HEC (>50% activity) while no hydrolysis was observed against the crystalline substrates. Moreover, it was observed that the purified chitinase was inhibitory against the fungi containing chitin in their hyphal walls i.e., Rhizoctonia, Colletotrichum, Aspergillus and Fusarium having a dose-effect relationship.
Collapse
Affiliation(s)
- Muhammad Saqib Malik
- Department of Microbiology, Kohat University of Science and Technology, Kohat, Pakistan
| | - Abdul Rehman
- Department of Microbiology, Kohat University of Science and Technology, Kohat, Pakistan
| | - Irfan Ullah Khan
- Vaccine Development Group, Animal Sciences Division, Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
| | - Taj Ali Khan
- Department of Microbiology, Khyber Medical University Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Jamil
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Pakistan
| | - Eui Shik Rha
- Department of Well-Being Resources, Sunchon National University, Suncheon, Republic of Korea
- * E-mail: (MA); (ESR)
| | - Muhammad Anees
- Department of Microbiology, Kohat University of Science and Technology, Kohat, Pakistan
- * E-mail: (MA); (ESR)
| |
Collapse
|
13
|
Chang X, Wang Y, Sun J, Xiang H, Yang Y, Chen S, Yu J, Yang C. Mitigation of tobacco bacteria wilt with microbial degradation of phenolic allelochemicals. Sci Rep 2022; 12:20716. [PMID: 36456681 PMCID: PMC9715567 DOI: 10.1038/s41598-022-25142-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Long-term continuous monoculture cropping of tobacco leads to high incidence of tobacco bacterial wilt (TBW) caused by Ralstonia solanacearum, which threatening world tobacco production and causing great economy loss. In this study, a safe and effective way to control TBW by microbial degradation of phenolic allelochemicals (PAs) was explored. Eleven kinds of PAs were identified from continuous tobacco cropping soil. These PAs exhibited various effects on the growth, chemotaxis and biofilm formation of R. solanacearum. Then we isolated eight strains of Bacillus, one strain of Brucella, one strain of Enterobacter and one strain of Stenotrophomonas capable of degrading these PAs. The results of degradation assay showed that these isolated strains could degrade PAs both in culture solutions and soil. Besides, the incidence of TBW caused by R. solanacearum and deteriorated by PAs were significantly decreased by treating with these degrading strains. Furthermore, six out of eleven isolated strains were combined to degrade all the identified PAs and ultimately sharply reduced the incidence of TBW by 61.44% in pot experiment. In addition, the combined degrading bacteria could promote the plant growth and defense response. This study will provide a promising strategy for TBW control in tobacco production.
Collapse
Affiliation(s)
- Xiaohan Chang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China
| | - Yi Wang
- Tobacco Research Institute of Hubei Province, Wuhan, 430030, China
| | - Jingguo Sun
- Tobacco Research Institute of Hubei Province, Wuhan, 430030, China
| | - Haibo Xiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China
| | - Yong Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China
| | - Jun Yu
- Tobacco Research Institute of Hubei Province, Wuhan, 430030, China.
| | - Chunlei Yang
- Tobacco Research Institute of Hubei Province, Wuhan, 430030, China.
| |
Collapse
|
14
|
Khanna K, Kohli SK, Sharma N, Kour J, Devi K, Bhardwaj T, Dhiman S, Singh AD, Sharma N, Sharma A, Ohri P, Bhardwaj R, Ahmad P, Alam P, Albalawi TH. Phytomicrobiome communications: Novel implications for stress resistance in plants. Front Microbiol 2022; 13:912701. [PMID: 36274695 PMCID: PMC9583171 DOI: 10.3389/fmicb.2022.912701] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
The agricultural sector is a foremost contributing factor in supplying food at the global scale. There are plethora of biotic as well as abiotic stressors that act as major constraints for the agricultural sector in terms of global food demand, quality, and security. Stresses affect rhizosphere and their communities, root growth, plant health, and productivity. They also alter numerous plant physiological and metabolic processes. Moreover, they impact transcriptomic and metabolomic changes, causing alteration in root exudates and affecting microbial communities. Since the evolution of hazardous pesticides and fertilizers, productivity has experienced elevation but at the cost of impeding soil fertility thereby causing environmental pollution. Therefore, it is crucial to develop sustainable and safe means for crop production. The emergence of various pieces of evidence depicting the alterations and abundance of microbes under stressed conditions proved to be beneficial and outstanding for maintaining plant legacy and stimulating their survival. Beneficial microbes offer a great potential for plant growth during stresses in an economical manner. Moreover, they promote plant growth with regulating phytohormones, nutrient acquisition, siderophore synthesis, and induce antioxidant system. Besides, acquired or induced systemic resistance also counteracts biotic stresses. The phytomicrobiome exploration is crucial to determine the growth-promoting traits, colonization, and protection of plants from adversities caused by stresses. Further, the intercommunications among rhizosphere through a direct/indirect manner facilitate growth and form complex network. The phytomicrobiome communications are essential for promoting sustainable agriculture where microbes act as ecological engineers for environment. In this review, we have reviewed our building knowledge about the role of microbes in plant defense and stress-mediated alterations within the phytomicrobiomes. We have depicted the defense biome concept that infers the design of phytomicrobiome communities and their fundamental knowledge about plant-microbe interactions for developing plant probiotics.
Collapse
Affiliation(s)
- Kanika Khanna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
- Department of Microbiology, DAV University, Jalandhar, India
| | - Sukhmeen Kaur Kohli
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Nandni Sharma
- Department of Zoology, Guru Nanak Dev University, Amritsar, India
| | - Jaspreet Kour
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Kamini Devi
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Tamanna Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Shalini Dhiman
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Arun Dev Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Neerja Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, India
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Parvaiz Ahmad
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Botany, S.P. College Srinagar, Jammu and Kashmir, India
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Thamer H. Albalawi
- Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
15
|
Plant-Microbe Interaction: Mining the Impact of Native Bacillus amyloliquefaciens WS-10 on Tobacco Bacterial Wilt Disease and Rhizosphere Microbial Communities. Microbiol Spectr 2022; 10:e0147122. [PMID: 35913211 PMCID: PMC9430121 DOI: 10.1128/spectrum.01471-22] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ralstonia solanacearum, the causative agent of bacterial wilt disease, has been a major threat to tobacco production globally. Several control methods have failed. Thus, it is imperative to find effective management for this disease. The biocontrol agent Bacillus amyloliquefaciens WS-10 displayed a significant control effect due to biofilm formation, and secretion of hydrolytic enzymes and exopolysaccharides. In addition, strain WS-10 can produce antimicrobial compounds, which was confirmed by the presence of genes encoding antimicrobial lipopeptides (fengycin, iturin, surfactin, and bacillomycinD) and polyketides (difficidin, bacilysin, bacillibactin, and bacillaene). Strain WS-10 successfully colonized tobacco plant roots and rhizosphere soil and suppressed the incidence of bacterial wilt disease up to 72.02% by reducing the R. solanacearum population dynamic in rhizosphere soil. Plant-microbe interaction was considered a key driver of disease outcome. To further explore the impact of strain WS-10 on rhizosphere microbial communities, V3-V4 and ITS1 variable regions of 16S and ITS rRNA were amplified, respectively. Results revealed that strain WS-10 influences the rhizosphere microbial communities and dramatically changed the diversity and composition of rhizosphere microbial communities. Interestingly, the relative abundance of genus Ralstonia significantly decreased when treated with strain WS-10. A complex microbial co-occurrence network was present in a diseased state, and the introduction of strain WS-10 significantly changed the structure of rhizosphere microbiota. This study suggests that strain WS-10 can be used as a novel biocontrol agent to attain sustainability in disease management due to its intense antibacterial activity, efficient colonization in the host plant, and ability to transform the microbial community structure toward a healthy state. IMPORTANCE The plant rhizosphere acts as the first line of defense against the invasion of pathogens. The perturbation in the rhizosphere microbiome is directly related to plant health and disease development. The introduction of beneficial microorganisms in the soil shifted the rhizosphere microbiome, induced resistance in plants, and suppressed the incidence of soilborne disease. Bacillus sp. is widely used as a biocontrol agent against soilborne diseases due to its ability to produce broad-spectrum antimicrobial compounds and colonization with the host plant. In our study, we found that the application of native Bacillus amyloliquefaciens WS-10 significantly suppressed the incidence of tobacco bacterial wilt disease by shifting the rhizosphere microbiome and reducing the interaction between rhizosphere microorganisms and bacterial wilt pathogen.
Collapse
|
16
|
Comparison of Antifungal Activity of Bacillus Strains against Fusarium graminearum In Vitro and In Planta. PLANTS 2022; 11:plants11151999. [PMID: 35956478 PMCID: PMC9370729 DOI: 10.3390/plants11151999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022]
Abstract
Fusarium graminearum (Fg) causes Fusarium head blight (FHB) disease in wheat and barley. This pathogen produces mycotoxins including deoxynivalenol (DON), the T-2 and fumorisin B1. Translocation of the mycotoxins in grains causes important losses in yields and contributes to serious health problems in humans and livestock. We tested the Bacillus strains, two commercial, QST713 (Serenade®) and FZB24 (TAEGRO®) and one non-commercial strain EU07 as microbial biological control agents against the F. graminearum strain Fg-K1-4 both in vitro and in planta. The EU07 strain showed better performance in suppressing the growth of Fg-K1-4. Cell-free bacterial cultures displayed significant antagonistic activity on Fg-K1-4. Remarkably, heat and proteinase K treatment of bacterial broths did not reduce the antagonistic activity of Bacillus cultures. DON assays showed that Bacillus strain was not affected by the presence of DON in the media. Leaf and head infection assays using Brachypodium distachyon (Bd-21) indicated that EU07 inhibits Fg-K1-4 growth in vivo and promotes plant growth. Overall, the EU07 strain performed better, indicating that it could be explored for the molecular investigations and protection of cereal crops against FHB disease.
Collapse
|
17
|
Fisol AFBC, Saidi NB, Al-Obaidi JR, Lamasudin DU, Atan S, Razali N, Sajari R, Rahmad N, Hussin SNIS, Mr NH. Differential Analysis of Mycelial Proteins and Metabolites From Rigidoporus Microporus During In Vitro Interaction With Hevea Brasiliensis. MICROBIAL ECOLOGY 2022; 83:363-379. [PMID: 33890145 DOI: 10.1007/s00248-021-01757-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
Rigidoporus microporus is the fungus accountable for the white root rot disease that is detrimental to the rubber tree, Hevea brasiliensis. The pathogenicity mechanism of R. microporus and the identity of the fungal proteins and metabolites involved during the infection process remain unclear. In this study, the protein and metabolite profiles of two R. microporus isolates, Segamat (SEG) and Ayer Molek (AM), were investigated during an in vitro interaction with H. brasiliensis. The isolates were used to inoculate H. brasiliensis clone RRIM 2025, and mycelia adhering to the roots of the plant were collected for analysis. Transmission electron microscope (TEM) images acquired confirms the hyphae attachment and colonization of the mycelia on the root of the H. brasiliensis clones after 4 days of inoculation. The protein samples were subjected to 2-DE analysis and analyzed using MALDI-ToF MS/MS, while the metabolites were extracted using methanol and analyzed using LC/MS-QTOF. Based on the differential analyses, upregulation of proteins that are essential for fungal evolution such as malate dehydrogenase, fructose 1,6-biphosphate aldolase, and glyceraldehyde-3-phosphate dehydrogenase hints an indirect role in fungal pathogenicity, while metabolomic analysis suggests an increase in acidic compounds which may lead to increased cell wall degrading enzyme activity. Bioinformatics analyses revealed that the carbohydrate and amino acid metabolisms were prominently affected in response to the fungal pathogenicity. In addition to that, other pathways that were significantly affected include "Protein Ubiquitination Pathway," Unfolded Protein Response," "HIFα Signaling," and "Sirtuin Signaling Pathway." The identification of responsive proteins and metabolites from this study promotes a better understanding of mechanisms underlying R. microporus pathogenesis and provides a list of potential biological markers for early recognition of the white root rot disease.
Collapse
Affiliation(s)
- Ahmad Faiz Bin Che Fisol
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Noor Baity Saidi
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Jameel R Al-Obaidi
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900, Tanjong Malim, Perak, Malaysia.
| | - Dhilia Udie Lamasudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Safiah Atan
- Malaysian Rubber Board, 47000, Sungai Buloh, Selangor, Malaysia
| | - Nurhanani Razali
- Membranology Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1, Tancha, Onna-son, Kunigami-kun, Okinawa, 904-0495, Japan
- Department of Hygienic Sciences, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Roslinda Sajari
- Malaysian Rubber Board, 47000, Sungai Buloh, Selangor, Malaysia
| | - Norasfaliza Rahmad
- Agro-Biotechnology Institute Malaysia (ABI), National Institutes of Biotechnology Malaysia (NIBM), c/o MARDI Headquarters, 43400, Serdang, Selangor, Malaysia
| | - Siti Nahdatul Isnaini Said Hussin
- Agro-Biotechnology Institute Malaysia (ABI), National Institutes of Biotechnology Malaysia (NIBM), c/o MARDI Headquarters, 43400, Serdang, Selangor, Malaysia
| | - Nurul Hafiza Mr
- Agro-Biotechnology Institute Malaysia (ABI), National Institutes of Biotechnology Malaysia (NIBM), c/o MARDI Headquarters, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
18
|
Moreno-Velandia CA, Ongena M, Cotes AM. Effects of Fengycins and Iturins on Fusarium oxysporum f. sp. physali and Root Colonization by Bacillus velezensis Bs006 Protect Golden Berry Against Vascular Wilt. PHYTOPATHOLOGY 2021; 111:2227-2237. [PMID: 34032523 DOI: 10.1094/phyto-01-21-0001-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bacillus velezensis Bs006 has shown antagonistic activity on Fusarium oxysporum f. sp. physali and biocontrol activity against Fusarium wilt (FW) in golden berry (Physalis peruviana). We hypothesized that strain Bs006 has the ability to synthesize antimicrobial cyclic lipopeptides (CLPs) like other members of the same species. However, if so, the real effects of CLPs on F. oxysporum f. sp. physali and their potential as a biocontrol tool against Physalis-FW have not been elucidated. In this study the CLPs profile of Bs006 in liquid culture and antagonist-plant-pathogen interactions were characterized. Also, the potential effects of supernatant free of bacteria against F. oxysporum f. sp. physali and FW were explored and compared with the effects of pure CLPs. Ultraperformance liquid chromatography-electrospray ionization-mass spectrometry analysis revealed the capacity of Bs006 to synthesize homologous compounds of iturins, surfactins, and fengycins in liquid culture and on the inhibition zone against F. oxysporum f. sp. physali in dual confrontation tests. Bs006 supernatant reduced the germination and growth of F. oxysporum f. sp. physali and caused vacuolization, swelling, and lysis of F. oxysporum f. sp. physali cells in a concentration-dependent manner. Pure fengycins affected the development of F. oxysporum f. sp. physali from 11 mg/liter and iturins from 21 mg/liter. In a gnotobiotic system, Bs006 colonized the root surface of golden berry, inhibited the growth of F. oxysporum f. sp. physali, and produced CLPs. Individual application of Bs006 and supernatant protected the plants from F. oxysporum f. sp. physali infections by 37 to 53%, respectively. Meanwhile, fengycins reduced the disease progress by 39%. These results suggest further studies to select an optimum combination of Bs006 and supernatant or CLPs, which might be a good option as biofungicide against F. oxysporum f. sp. physali.
Collapse
Affiliation(s)
- Carlos Andrés Moreno-Velandia
- Corporación Colombiana de Investigación Agropecuaria, AGROSAVIA, Centro de Investigación Tibaitatá, Mosquera, Colombia
| | - Marc Ongena
- Microbial Processes and Interactions Laboratory, Terra Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Alba Marina Cotes
- Corporación Colombiana de Investigación Agropecuaria, AGROSAVIA, Centro de Investigación Tibaitatá, Mosquera, Colombia
| |
Collapse
|
19
|
Mirsam H, Kalqutny SH, Suriani, Aqil M, Azrai M, Pakki S, Muis A, Djaenuddin N, Rauf AW, Muslimin. Indigenous fungi from corn as a potential plant growth promoter and its role in Fusarium verticillioides suppression on corn. Heliyon 2021; 7:e07926. [PMID: 34553081 PMCID: PMC8441163 DOI: 10.1016/j.heliyon.2021.e07926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 07/09/2021] [Accepted: 08/31/2021] [Indexed: 01/19/2023] Open
Abstract
Indigenous fungi can suppress infection by pathogens and produce secondary metabolites that directly or indirectly affect plant growth. This study aimed to test indigenous fungi collected from corn plants as biological control agents and their effects on the viability and vigor of corn seeds. Purposive sampling method was used for sampling where soil samples taken from the rhizosphere zone, corn stem and leaf tissue from three locations namely Maros-South Sulawesi, Bone-South Sulawesi, Sigi-Central Sulawesi, Indonesia. Rhizospheric fungi were isolated from soil collected at the rhizosphere and rhizoplane using a serial dilution technique, while the endophytic fungi isolated from the leaves and stem tissues using surface sterilization method. The isolated fungi were cultured on a potato dextrose agar (PDA) medium. An antagonism test was performed using the dual culture method on PDA media with F. verticillioides as target pathogen. Pathogenicity test and the effect of fungi on corn seed germination was carried out using the blotter test method. Parameters observed were; necrotic symptoms on seedlings, growth potential, germination, growth rate, growth simultaneity, vigor index, germination rate, and time needed for 50% of the total germination. The effect of the isolated indigenous fungi on corn growth was carried out in-planta using seedling trays. The results of the blotter test and in-planta test were further confirmed by a physiological characteristic test. And assessing the fungi's ability to dissolve potassium, phosphate, and produce protease enzymes. A total of 89 fungal isolates were isolated and collected from various parts of the corn plant. Nineteen of the 89 fungal isolates showed inhibitory activity against F. verticillioides by ≥ 50% inhibition. The fungal isolates JRP 5 MRS, JRP 9 MRS, JRP 10 MRS, JRP 7 MRS, and JEDF 1B BN were selected based on the tests and showed a consistently positive effect on seed viability and vigor with a value of ≥90%. The isolates did not cause necrosis in corn, and had the ability to suppress the growth of pathogenic F. verticillioides by ≥ 50%.
Collapse
Affiliation(s)
- Hishar Mirsam
- Department of Plant Pest and Disease, Indonesian Cereals Research Institute, Indonesian Agency for Agricultural Research and Development, Ministry of Agriculture, Jl. Dr. Ratulangi 274, Maros, 90514, South Sulawesi, Indonesia
| | - Septian Hary Kalqutny
- Department of Plant Pest and Disease, Indonesian Cereals Research Institute, Indonesian Agency for Agricultural Research and Development, Ministry of Agriculture, Jl. Dr. Ratulangi 274, Maros, 90514, South Sulawesi, Indonesia
| | - Suriani
- Department of Plant Pest and Disease, Indonesian Cereals Research Institute, Indonesian Agency for Agricultural Research and Development, Ministry of Agriculture, Jl. Dr. Ratulangi 274, Maros, 90514, South Sulawesi, Indonesia
| | - Muhammad Aqil
- Department of Ecophysiology, Indonesian Cereals Research Institute, Indonesian Agency for Agricultural Research and Development, Ministry of Agriculture, Jl. Dr. Ratulangi 274, Maros, 90514, South Sulawesi, Indonesia
| | - Muhammad Azrai
- Department of Plant Breeding and Germplasm, Indonesian Cereals Research Institute, Indonesian Agency for Agricultural Research and Development, Ministry of Agriculture, Jl. Dr. Ratulangi 274, Maros, 90514, South Sulawesi, Indonesia
| | - Syahrir Pakki
- Department of Plant Pest and Disease, Indonesian Cereals Research Institute, Indonesian Agency for Agricultural Research and Development, Ministry of Agriculture, Jl. Dr. Ratulangi 274, Maros, 90514, South Sulawesi, Indonesia
| | - Amran Muis
- Department of Plant Pest and Disease, Indonesian Cereals Research Institute, Indonesian Agency for Agricultural Research and Development, Ministry of Agriculture, Jl. Dr. Ratulangi 274, Maros, 90514, South Sulawesi, Indonesia
| | - Nurasiah Djaenuddin
- Department of Plant Pest and Disease, Indonesian Cereals Research Institute, Indonesian Agency for Agricultural Research and Development, Ministry of Agriculture, Jl. Dr. Ratulangi 274, Maros, 90514, South Sulawesi, Indonesia
| | - Abdul Wahid Rauf
- South Sulawesi Assessment Institute for Agricultural Technology, Indonesian Agency for Agricultural Research and Development, Ministry of Agriculture, Jl. Perintis Kemerdekaan Km. 17,5, Makassar, South Sulawesi, Indonesia
| | - Muslimin
- Department of Agricultural Socio-Economic, Indonesian Cereals Research Institute, Indonesian Agency for Agricultural Research and Development, Ministry of Agriculture, Jl. Dr. Ratulangi 274, Maros, 90514, South Sulawesi, Indonesia
| |
Collapse
|
20
|
Fan H, Li S, Zeng L, He P, Xu S, Bai T, Huang Y, Guo Z, Zheng SJ. Biological Control of Fusarium oxysporum f. sp. cubense Tropical Race 4 Using Natively Isolated Bacillus spp. YN0904 and YN1419. J Fungi (Basel) 2021; 7:jof7100795. [PMID: 34682217 PMCID: PMC8537417 DOI: 10.3390/jof7100795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 11/23/2022] Open
Abstract
Fusarium wilt of banana (FWB) is the main threatening factor for banana production worldwide. To explore bacterial biocontrol resources for FWB, the antagonistic effective strains were isolated from banana-producing areas in Yunnan Province, China. Two isolates (YN0904 and YN1419) displaying strong antagonism against Tropical Race 4 (TR4) were identified from a total of 813 strains of endophytic bacteria. TR4 inhibition rates of YN0904 and YN1419 were 79.6% and 81.3%, respectively. By looking at morphological, molecular, physiological and biochemical characteristics, YN0904 was identified as Bacillus amyloliquefaciens, while YN1419 was identified as B. subtillis. The control effects of YN0904 and YN1419 on TR4 in greenhouse experiments were 82.6% and 85.6%, respectively. Furthermore, YN0904 obviously promoted the growth of banana plantlets. In addition, biocontrol marker genes related to the biosynthesis of antibiotics synthesized and auxin key synthetase genes could be detected in YN0904. Surprisingly, the marker gene sboA could be exclusively detected in YN1419, while other marker genes were all absent. Molecular characterization results could provide a theoretical basis for expounding the biocontrol mechanisms of these two strains. We concluded that natively antagonistic strains derived from local banana plantations could provide new biological control resources for FWB.
Collapse
Affiliation(s)
- Huacai Fan
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, 2238 Beijing Road, Kunming 650205, China; (H.F.); (S.L.); (P.H.); (S.X.); (T.B.); (Y.H.); (Z.G.)
| | - Shu Li
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, 2238 Beijing Road, Kunming 650205, China; (H.F.); (S.L.); (P.H.); (S.X.); (T.B.); (Y.H.); (Z.G.)
| | - Li Zeng
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, 2238 Beijing Road, Kunming 650205, China; (H.F.); (S.L.); (P.H.); (S.X.); (T.B.); (Y.H.); (Z.G.)
- Correspondence: (L.Z.); (S.-J.Z.)
| | - Ping He
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, 2238 Beijing Road, Kunming 650205, China; (H.F.); (S.L.); (P.H.); (S.X.); (T.B.); (Y.H.); (Z.G.)
| | - Shengtao Xu
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, 2238 Beijing Road, Kunming 650205, China; (H.F.); (S.L.); (P.H.); (S.X.); (T.B.); (Y.H.); (Z.G.)
| | - Tingting Bai
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, 2238 Beijing Road, Kunming 650205, China; (H.F.); (S.L.); (P.H.); (S.X.); (T.B.); (Y.H.); (Z.G.)
| | - Yuling Huang
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, 2238 Beijing Road, Kunming 650205, China; (H.F.); (S.L.); (P.H.); (S.X.); (T.B.); (Y.H.); (Z.G.)
| | - Zhixiang Guo
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, 2238 Beijing Road, Kunming 650205, China; (H.F.); (S.L.); (P.H.); (S.X.); (T.B.); (Y.H.); (Z.G.)
| | - Si-Jun Zheng
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, 2238 Beijing Road, Kunming 650205, China; (H.F.); (S.L.); (P.H.); (S.X.); (T.B.); (Y.H.); (Z.G.)
- Bioversity International, 2238 Beijing Road, Kunming 650205, China
- Correspondence: (L.Z.); (S.-J.Z.)
| |
Collapse
|
21
|
Reed CJ, Hutinet G, de Crécy-Lagard V. Comparative Genomic Analysis of the DUF34 Protein Family Suggests Role as a Metal Ion Chaperone or Insertase. Biomolecules 2021; 11:1282. [PMID: 34572495 PMCID: PMC8469502 DOI: 10.3390/biom11091282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Members of the DUF34 (domain of unknown function 34) family, also known as the NIF3 protein superfamily, are ubiquitous across superkingdoms. Proteins of this family have been widely annotated as "GTP cyclohydrolase I type 2" through electronic propagation based on one study. Here, the annotation status of this protein family was examined through a comprehensive literature review and integrative bioinformatic analyses that revealed varied pleiotropic associations and phenotypes. This analysis combined with functional complementation studies strongly challenges the current annotation and suggests that DUF34 family members may serve as metal ion insertases, chaperones, or metallocofactor maturases. This general molecular function could explain how DUF34 subgroups participate in highly diversified pathways such as cell differentiation, metal ion homeostasis, pathogen virulence, redox, and universal stress responses.
Collapse
Affiliation(s)
- Colbie J. Reed
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA; (C.J.R.); (G.H.)
| | - Geoffrey Hutinet
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA; (C.J.R.); (G.H.)
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA; (C.J.R.); (G.H.)
- Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
22
|
Hu Y, Zhao W, Li X, Feng J, Li C, Yang X, Guo Q, Wang L, Chen S, Li Y, Yang Y. Integrated biocontrol of tobacco bacterial wilt by antagonistic bacteria and marigold. Sci Rep 2021; 11:16360. [PMID: 34381095 PMCID: PMC8357815 DOI: 10.1038/s41598-021-95741-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023] Open
Abstract
Tobacco bacterial wilt (TBW) is seriously damages the growth of tobacco. There is an urgent need to find a safer and more effective measure to control TBW. In this study, B. amyloliquefaciens ZM9 and marigold powder were applied to the tobacco roots alone or in combination, and the potential inhibition of TBW was assessed. On the other hand, the effects of these treatments on soil physicochemical properties, rhizosphere microbial community and soil metabolites were also evaluated. The results showed that the application of B. amyloliquefaciens ZM9 or marigold powder alone significantly reduced the abundance of R. solanacearum in rhizosphere soil, while the integrated treatment showed the strongest inhibitory effect. Moreover, the integrated treatment can inhibit the secretion of chemoattractants, and affect the change of rhizosphere soil microbial composition. In conclusion, the combination of antagonistic bacteria agent B. amyloliquefaciens ZM9 with marigold powder can enhance the suppression of TBW. Furthermore, B. amyloliquefaciens ZM9 and marigold have synergistic effects on suppressing TBW by regulation soil physicochemical properties, soil metabolites and microbial structure. This study provide a promising strategy for TBW control by integrated applying of B. amyloliquefaciens ZM9 and marigold powder.
Collapse
Affiliation(s)
- Yun Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China
| | - Wan Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China
| | - Xihong Li
- Tobacco Research Institute of Hubei Province, Wuhan, 430030, China
| | - Ji Feng
- Tobacco Research Institute of Hubei Province, Wuhan, 430030, China
| | - Chunli Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China
| | - Xiaoqiong Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China
| | - Qingqing Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China
| | - Lin Wang
- Hubei Tobacco Industry Co., Ltd., Wuhan, 430040, China
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China
| | - Yanyan Li
- Tobacco Research Institute of Hubei Province, Wuhan, 430030, China.
| | - Yong Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
23
|
Insights into the Interactions among Roots, Rhizosphere, and Rhizobacteria for Improving Plant Growth and Tolerance to Abiotic Stresses: A Review. Cells 2021; 10:cells10061551. [PMID: 34205352 PMCID: PMC8234610 DOI: 10.3390/cells10061551] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 01/21/2023] Open
Abstract
Abiotic stresses, such as drought, salinity, heavy metals, variations in temperature, and ultraviolet (UV) radiation, are antagonistic to plant growth and development, resulting in an overall decrease in plant yield. These stresses have direct effects on the rhizosphere, thus severely affect the root growth, and thereby affecting the overall plant growth, health, and productivity. However, the growth-promoting rhizobacteria that colonize the rhizosphere/endorhizosphere protect the roots from the adverse effects of abiotic stress and facilitate plant growth by various direct and indirect mechanisms. In the rhizosphere, plants are constantly interacting with thousands of these microorganisms, yet it is not very clear when and how these complex root, rhizosphere, and rhizobacteria interactions occur under abiotic stresses. Therefore, the present review attempts to focus on root–rhizosphere and rhizobacterial interactions under stresses, how roots respond to these interactions, and the role of rhizobacteria under these stresses. Further, the review focuses on the underlying mechanisms employed by rhizobacteria for improving root architecture and plant tolerance to abiotic stresses.
Collapse
|
24
|
Prasanna S, Prasannakumar MK, Mahesh HB, Babu GV, Kirnaymayee P, Puneeth ME, Narayan KS, Pramesh D. Diversity and biopotential of Bacillus velezensis strains A6 and P42 against rice blast and bacterial blight of pomegranate. Arch Microbiol 2021; 203:4189-4199. [PMID: 34076737 DOI: 10.1007/s00203-021-02400-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 10/21/2022]
Abstract
Bacillus velezensis is widely known for its inherent biosynthetic potential to produce a wide range of bio-macromolecules and secondary metabolites, including polyketides (PKs) and siderophores, as well as ribosomally and non-ribosomally synthesized peptides. In the present study, we aimed to investigate the bio-macromolecules, such as proteins and peptides of Bacillus velezensis strains, namely A6 and P42 by whole-cell sequencing and highlighted the potential application in controlling phytopathogens. The bioactive compounds, specifically secondary metabolites, were characterized by whole-cell protein profiling, Thin-Layer Chromatography, Infra-Red Spectroscopy, Nuclear Magnetic Resonance, Gas Chromatograph and Electro Spray Liquid Chromatography. Gas Chromatography analysis revealed that the A6 and P42 strains exert different functional groups of compounds, such as aromatic ring, aliphatic, alkene, ketone, amine groups and carboxylic acid. Whole-cell protein profiling of A6 and P42 strains of B. velezensis by nano-ESI LC-MS/MS revealed the presence of 945 and 5303 proteins, respectively. The in vitro evaluation of crude extracts (10%) of A6 and P42 significantly inhibited the rice pathogen, Magnaporthe oryzae (MG01), whereas the cell-free culture filtrate (75%) of strain P42 showed 58.97% inhibition. Similarly, in vitro evaluation of crude extract (10%) of P42 strain inhibited bacterial blight of pomegranate pathogen, Xanthomonas axonopodis pv. punicae, which eventually resulted in a higher inhibition zone of 3 cm, whereas the cell-free extract (75%) of the same strain significantly suppressed the growth of the pathogen with an inhibition zone of 1.48 cm. From the results obtained, the crude secondary metabolites and cell-free filtrates (containing bio-macromolecules) of the strains A6 and P42 of B. velezensis can be employed for controlling the bacterial and fungal pathogens of crop plants.
Collapse
Affiliation(s)
- Siddulakshmi Prasanna
- Department of Plant Pathology, University of Agricultural Sciences, GKVK, Bengaluru, 560065, India
| | - M K Prasannakumar
- Department of Plant Pathology, University of Agricultural Sciences, GKVK, Bengaluru, 560065, India.
| | - H B Mahesh
- Department of Plant Pathology, University of Agricultural Sciences, GKVK, Bengaluru, 560065, India
| | - Gopal Venkatesh Babu
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai, 600025, India
| | - P Kirnaymayee
- Department of Cell Biology and Molecular Genetics, Sri Devaraj URS Academy of Higher Education and Research, Kolar, Karnataka, India
| | - M E Puneeth
- Department of Plant Pathology, University of Agricultural Sciences, GKVK, Bengaluru, 560065, India
| | - Karthik S Narayan
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai, 600025, India
| | - D Pramesh
- Agricultural Research Station, Gangavati, University of Agricultural Sciences, Raichur, Karnataka, India
| |
Collapse
|
25
|
Chen L, Zhang H, Zhao S, Xiang B, Yao Z. Lipopeptide production by Bacillus atrophaeus strain B44 and its biocontrol efficacy against cotton rhizoctoniosis. Biotechnol Lett 2021; 43:1183-1193. [PMID: 33738609 DOI: 10.1007/s10529-021-03114-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 03/06/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVES An assay was conducted to show the comparisons the effects of nine metal ions on antagonistic metabolites (lipopeptides, siderophores and gibberellins) by Bacillus atrophaeus strain B44 using well-diffusion assays, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis, chrome azurol S plus mannitol salt agar (CAS-MSA) tests, and reversed-phase high-performance liquid chromatography (RP-HPLC) analysis. This assay is also designed to demonstrate the biocontrol efficacy of B44 against cotton rhizoctoniosis using pot culture tests. RESULTS Both the lipopeptide yield and the antimicrobial activity of B44 increase with the MnSO4, MgSO4, CaCO3, and CuSO4 treatments and either have no effect or decreased lipopeptide yield and antimicrobial activity with the FeSO4, K2HPO4, KCl, KH2PO4 and ZnSO4 treatments. The medium containing MgSO4 has no significant effect on either the lipopeptide yield or antimicrobial activity. MALDI-TOF-MS analysis shows a broad range of m/z peaks, indicating that strain B44 produces a complex mixture of iturin, surfactin, and fengycin lipopeptides. Gibberellin production by strain B44 varies greatly depending on the culture medium, and the siderophore production is not significantly affected by the culture medium. Pot tests show that lipopeptide production affects the disease control efficacy of strain B44. CONCLUSION The biocontrol efficacy of B. atrophaeus strain B44 is related to the lipopeptide yield. Moreover, B. atrophaeus strain B44 significantly increases the size of cotton seedlings, which is related to the GA3 concentration.
Collapse
Affiliation(s)
- Li Chen
- Key Laboratory at Universities of Xinjiang Uygur Autonomous Region for Oasis Agricultural Pest Management and Plant Protection Resource Utilization/College of Agriculture, Shihezi University, Shihezi, 832003, China.
| | - Hui Zhang
- Institute of Agricultural Resources and Environment, Chongqing Academy of Agricultural Sciences, Chongqing, 401329, China
| | - Sifeng Zhao
- Key Laboratory at Universities of Xinjiang Uygur Autonomous Region for Oasis Agricultural Pest Management and Plant Protection Resource Utilization/College of Agriculture, Shihezi University, Shihezi, 832003, China.
| | - Benchun Xiang
- Key Laboratory at Universities of Xinjiang Uygur Autonomous Region for Oasis Agricultural Pest Management and Plant Protection Resource Utilization/College of Agriculture, Shihezi University, Shihezi, 832003, China
| | - Zhaoqun Yao
- Key Laboratory at Universities of Xinjiang Uygur Autonomous Region for Oasis Agricultural Pest Management and Plant Protection Resource Utilization/College of Agriculture, Shihezi University, Shihezi, 832003, China
| |
Collapse
|
26
|
Kaushal M, Mahuku G, Swennen R. Comparative Transcriptome and Expression Profiling of Resistant and Susceptible Banana Cultivars during Infection by Fusarium oxysporum. Int J Mol Sci 2021; 22:3002. [PMID: 33809411 PMCID: PMC7999991 DOI: 10.3390/ijms22063002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 01/10/2023] Open
Abstract
Fusarium wilt caused by Fusarium oxysporum f. sp. cubense (Foc) is one of the most destructive diseases of banana. Methods to control the disease are still inadequate. The present investigation targeted expression of defense-related genes in tissue cultured banana plantlets of Fusarium resistant and susceptible cultivars after infection with biological control agents (BCAs) and Fusarium (Foc race 1). In total 3034 differentially expressed genes were identified which annotated to 58 transcriptional families (TF). TF families such as MYB, bHLH and NAC TFs were mostly up-regulated in response to pathogen stress, whereas AP2/EREBP were mostly down-regulated. Most genes were associated with plant-pathogen response, plant hormone signal transduction, starch and sucrose metabolism, cysteine and methionine metabolism, flavonoid biosynthesis, selenocompound metabolism, phenylpropanoid biosynthesis, mRNA surveillance pathway, mannose type O-glycan biosynthesis, amino acid and nucleotide sugar metabolism, cyanoamino acid metabolism, and hormone signal transduction. Our results showed that the defense mechanisms of resistant and susceptible banana cultivars treated with BCAs, were regulated by differentially expressed genes in various categories of defense pathways. Furthermore, the association with different resistant levels might serve as a strong foundation for the control of Fusarium wilt of banana.
Collapse
Affiliation(s)
- Manoj Kaushal
- International Institute of Tropical Agriculture (IITA), Mikocheni B, Dar es Salaam 34441, Tanzania
| | - George Mahuku
- International Institute of Tropical Agriculture (IITA), Kampala 7878, Uganda;
| | - Rony Swennen
- International Institute of Tropical Agriculture (IITA), Arusha 447, Tanzania;
- Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, KU Leuven, B-3001 Leuven, Belgium
| |
Collapse
|
27
|
Naamala J, Smith DL. Microbial Derived Compounds, a Step Toward Enhancing Microbial Inoculants Technology for Sustainable Agriculture. Front Microbiol 2021; 12:634807. [PMID: 33679668 PMCID: PMC7930237 DOI: 10.3389/fmicb.2021.634807] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/29/2021] [Indexed: 11/16/2022] Open
Abstract
Sustainable agriculture remains a focus for many researchers, in an effort to minimize environmental degradation and climate change. The use of plant growth promoting microorganisms (PGPM) is a hopeful approach for enhancing plant growth and yield. However, the technology faces a number of challenges, especially inconsistencies in the field. The discovery, that microbial derived compounds can independently enhance plant growth, could be a step toward minimizing shortfalls related to PGPM technology. This has led many researchers to engage in research activities involving such compounds. So far, the findings are promising as compounds have been reported to enhance plant growth under stressed and non-stressed conditions in a wide range of plant species. This review compiles current knowledge on microbial derived compounds, taking a reader through a summarized protocol of their isolation and identification, their relevance in present agricultural trends, current use and limitations, with a view to giving the reader a picture of where the technology has come from, and an insight into where it could head, with some suggestions regarding the probable best ways forward.
Collapse
Affiliation(s)
- Judith Naamala
- Smith Laboratory, Department of Plant Science, McGill University, Quebec, QC, Canada
| | - Donald L Smith
- Smith Laboratory, Department of Plant Science, McGill University, Quebec, QC, Canada
| |
Collapse
|
28
|
Kim YS, Lee Y, Cheon W, Park J, Kwon HT, Balaraju K, Kim J, Yoon YJ, Jeon Y. Characterization of Bacillus velezensis AK-0 as a biocontrol agent against apple bitter rot caused by Colletotrichum gloeosporioides. Sci Rep 2021; 11:626. [PMID: 33436839 PMCID: PMC7804190 DOI: 10.1038/s41598-020-80231-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 12/18/2020] [Indexed: 01/29/2023] Open
Abstract
Bacillus genus produces several secondary metabolites with biocontrol ability against various phytopathogens. Bacillus velezensis AK-0 (AK-0), an antagonistic strain isolated from Korean ginseng rhizospheric soil, was found to exhibit antagonistic activity against several phytopathogens. To further display the genetic mechanism of the biocontrol traits of AK-0, we report the complete genome sequence of AK-0 and compared it with complete genome sequences of closely related strains. We report the biocontrol activity of AK-0 against apple bitter rot caused by Colletotrichum gloeosporioides, which could lead to commercialization of this strain as a microbial biopesticide in Korea. To retain its biocontrol efficacy for a longer period, AK-0 has been formulated with ingredients for commercialization, named AK-0 product formulation (AK-0PF). AK-0PF played a role in the suppression of the mycelial growth of the fungicide-resistant pathogen C. gloeosporioides YCHH4 at a greater level than the non-treated control. Moreover, AK-0PF exhibited greater disease suppression of bitter rot in matured under field conditions. Here, we report the complete genome sequence of the AK-0 strain, which has a 3,969,429 bp circular chromosome with 3808 genes and a G+C content of 46.5%. The genome sequence of AK-0 provides a greater understanding of the Bacillus species, which displays biocontrol activity via secondary metabolites. The genome has eight potential secondary metabolite biosynthetic clusters, among which, ituD and bacD genes were expressed at a greater level than other genes. This work provides a better understanding of the strain AK-0, as an effective biocontrol agent (BCA) against phytopathogens, including bitter rot in apple.
Collapse
Affiliation(s)
- Young Soo Kim
- Department of Plant Medicals, Andong National University, Andong, 36729, Republic of Korea
- Central Research Institute, Kyung Nong Co., Ltd., Gyeongju, 38175, Republic of Korea
| | - Younmi Lee
- Department of Plant Medicals, Andong National University, Andong, 36729, Republic of Korea
| | - Wonsu Cheon
- Department of Plant Medicals, Andong National University, Andong, 36729, Republic of Korea
| | - Jungwook Park
- Department of Microbiology, Pusan National University, Pusan, 46241, Republic of Korea
| | - Hyeok-Tae Kwon
- Department of Plant Medicals, Andong National University, Andong, 36729, Republic of Korea
| | - Kotnala Balaraju
- Agricultural Science & Technology Research Institute, Andong National University, Andong, 36729, Republic of Korea
| | - Jungyeon Kim
- Department of Plant Medicals, Andong National University, Andong, 36729, Republic of Korea
| | - Yeo Jun Yoon
- Research Department, KOREABIO Co., Ltd., Hwaseong, 18514, Republic of Korea
| | - Yongho Jeon
- Department of Plant Medicals, Andong National University, Andong, 36729, Republic of Korea.
| |
Collapse
|
29
|
Volatile organic compounds profile synthesized and released by endophytes of tomato (Solanum lycopersici L.) and their antagonistic role. Arch Microbiol 2021; 203:1383-1397. [PMID: 33386869 DOI: 10.1007/s00203-020-02136-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/12/2020] [Accepted: 11/19/2020] [Indexed: 12/15/2022]
Abstract
The endophytic microbiome uses mechanisms such as the secretion of diffusible antibiotic molecules, synthesis and release of volatile organic compounds, and/or toxins to protect plants. The aim of this research was to study the volatile organic compounds (VOCs) profile as well as the diffusible secondary metabolites produced and released by endophytic bacteria isolated from tomato plants that in in-vitro assays prevented growth of pathogenic fungi. Bacteria belonging to seven genera (Acinetobacter, Arthrobacter, Bacillus, Microbacterium, Pantoea, Pseudomonas, and Stenotrophomonas) were isolated from different tissues of tomato plants with and without symptoms of Gray leaf spot, a disease provoked by Stemphylium lycopersici. In vitro, antagonistic assays were performed and the effect of volatile and soluble compounds released by endophytic bacteria on the growth of pathogenic fungi was determined. The VOCs synthesized by the endophytes were extracted, identified and quantified. These isolates representatives of seven bacterial genera inhibited the growth of three fungal pathogens of tomato S. lycopersici, Alternaria alternata and Corynespora cassiicola, which was related to the synthesis of soluble compounds as well as VOCs. Endophytes synthesize and release different VOCs, probably due to the different type of interaction that each bacterium establishes with the fungus, presenting a range of fungal growth inhibition.
Collapse
|
30
|
Goswami M, Deka S. Isolation of a novel rhizobacteria having multiple plant growth promoting traits and antifungal activity against certain phytopathogens. Microbiol Res 2020; 240:126516. [DOI: 10.1016/j.micres.2020.126516] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 10/24/2022]
|
31
|
Jing R, Li N, Wang W, Liu Y. An endophytic strain JK of genus bacillus isolated from the seeds of super hybrid rice (Oryza sativa L., Shenliangyou 5814) has antagonistic activity against rice blast pathogen. Microb Pathog 2020; 147:104422. [DOI: 10.1016/j.micpath.2020.104422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/23/2020] [Accepted: 07/23/2020] [Indexed: 11/28/2022]
|
32
|
Kumbar B, Mahmood R, Nagesha S, Nagaraja M, Prashant D, Kerima OZ, Karosiya A, Chavan M. Field application of Bacillus subtilis isolates for controlling late blight disease of potato caused by Phytophthora infestans. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101366] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Potential biocontrol and superlative plant growth promoting activity of indigenous Bacillus mojavensis PB-35(R11) of soybean (Glycine max) rhizosphere. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-1149-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
34
|
Manan A, Bazai ZA, Fan J, Yu H, Li L. The Nif3-Family Protein YqfO03 from Pseudomonas syringae MB03 Has Multiple Nematicidal Activities against Caenorhabditis elegans and Meloidogyne incognita. Int J Mol Sci 2018; 19:ijms19123915. [PMID: 30563288 PMCID: PMC6321441 DOI: 10.3390/ijms19123915] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/20/2018] [Accepted: 12/04/2018] [Indexed: 11/29/2022] Open
Abstract
The nematicidal activity of the common plant-pathogenic bacterium Pseudomonas syringae against certain nematodes has been recently identified, but little is known about its virulence factors. In the current study, predictive analysis of nematode-virulent factors in the genome of a P. syringae wild-type strain MB03 revealed a variety of factors with the potential to be pathogenic against nematodes. One of these virulence factors that was predicted with a high score, namely, YqfO03, was a protein with structural domains that are similar to the Nif3 superfamily. This protein was expressed and purified in Escherichia coli, and was investigated for nematicidal properties against the model nematode Caenorhabditis elegans and an agriculturally important pest Meloidogyne incognita. Our results showed that YqfO03 exhibits lethal activity toward C. elegans and M. incognita worms, and it also caused detrimental effects on the growth, brood size, and motility of C. elegans worms. However, C. elegans worms were able to defend themselves against YqfO03 via a physical defense response by avoiding contact with the protein. Discovery of the diverse nematicidal activities of YqfO03 provides new knowledge on the biological function of a bacterial Nif3-family protein and insight into the potential of this protein as a specific means of controlling agricultural nematode pests.
Collapse
Affiliation(s)
- Abdul Manan
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- Center for Advance Studies in Vaccinology and Biotechnology, University of Baluchistan, Quetta 87300, Pakistan.
| | - Zahoor Ahmad Bazai
- Department of Botany, University of Baluchistan, Quetta 87300, Pakistan.
| | - Jin Fan
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Huafu Yu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Lin Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
35
|
Devran Z, Kahveci E, Hong Y, Studholme DJ, Tör M. Identifying molecular markers suitable for Frl selection in tomato breeding. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2099-2105. [PMID: 29982848 PMCID: PMC6154021 DOI: 10.1007/s00122-018-3136-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/21/2018] [Indexed: 05/31/2023]
Abstract
Modern plant breeding heavily relies on the use of molecular markers. In recent years, next generation sequencing (NGS) emerged as a powerful technology to discover DNA sequence polymorphisms and generate molecular markers very rapidly and cost effectively, accelerating the plant breeding programmes. A single dominant locus, Frl, in tomato provides resistance to the fungal pathogen Fusarium oxysporum f. sp. radicis-lycopersici (FORL), causative agent of Fusarium crown and root rot. In this study, we describe the generation of molecular markers associated with the Frl locus. An F2 mapping population between an FORL resistant and a susceptible cultivar was generated. NGS technology was then used to sequence the genomes of a susceptible and a resistant parent as well the genomes of bulked resistant and susceptible F2 lines. We zoomed into the Frl locus and mapped the locus to a 900 kb interval on chromosome 9. Polymorphic single-nucleotide polymorphisms (SNPs) within the interval were identified and markers co-segregating with the resistant phenotype were generated. Some of these markers were tested successfully with commercial tomato varieties indicating that they can be used for marker-assisted selection in large-scale breeding programmes.
Collapse
Affiliation(s)
- Zübeyir Devran
- Faculty of Agriculture, Department of Plant Protection, University of Akdeniz, Antalya, Turkey
| | - Erdem Kahveci
- Department of Plant Pathology, M.Y. Genetik Agriculture Technology Laboratory, Antalya, Turkey
| | - Yiguo Hong
- College of Life and Environmental Sciences, Research Centre for Plant RNA Signaling, Hangzhou Normal University, Hangzhou, China
- Institute of Science and the Environment, University of Worcester, Worcester, WR2 6AJ, UK
| | - David J Studholme
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Mahmut Tör
- Institute of Science and the Environment, University of Worcester, Worcester, WR2 6AJ, UK.
| |
Collapse
|
36
|
Microbial Endophytes that Live within the Seeds of Two Tomato Hybrids Cultivated in Argentina. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8080136] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Tomato (Solanum lycopersicum L.) is probably the most important vegetable consumed around the world, and like other produce is affected by stresses and diseases that reduce the yield and production. The purpose of this work was to study the phytobiome of the tomato seeds of two hybrids in order to understand first of all whether tomato cultivars host similar groups of organisms, as well as their effect on the community structure, particularly of those microbes with the potential to promote growth and/or control plant pathogens. Different cultivars of tomato (genotypes) host significantly different endophytic communities, which is also reflected at the order level. These communities are particularly rich in spore-forming bacteria that have the ability either to promote plant growth or synthetize antimicrobial compounds that deter plant pathogens. We conclude that the seeds of the tomato cultivars Elpida and Silverio are sources of endophytic bacteria capable of synthetizing antifungal substances that could potentially be used for biocontrol against plant-pathogenic fungi.
Collapse
|
37
|
Mishra A, Singh SP, Mahfooz S, Bhattacharya A, Mishra N, Shirke PA, Nautiyal CS. Bacterial endophytes modulates the withanolide biosynthetic pathway and physiological performance in Withania somnifera under biotic stress. Microbiol Res 2018; 212-213:17-28. [PMID: 29853165 DOI: 10.1016/j.micres.2018.04.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 03/22/2018] [Accepted: 04/21/2018] [Indexed: 12/14/2022]
Abstract
Despite the vast exploration of endophytic microbes for growth enhancement in various crops, knowledge about their impact on the production of therapeutically important secondary metabolites is scarce. In the current investigation, chitinolytic bacterial endophytes were isolated from selected medicinal plants and assessed for their mycolytic as well as plant growth promoting potentials. Among them the two most efficient bacterial endophytes namely Bacillus amyloliquefaciens (MPE20) and Pseudomonas fluorescens (MPE115) individually as well as in combination were able to modulate withanolide biosynthetic pathway and tolerance against Alternaria alternata in Withania somnifera. Interestingly, the expression level of withanolide biosynthetic pathway genes (3-hydroxy-3-methylglutaryl co-enzyme A reductase, 1-deoxy-D-xylulose-5-phosphate reductase, farnesyl di-phosphate synthase, squalene synthase, cytochrome p450, sterol desaturase, sterol Δ-7 reductase and sterol glycosyl transferases) were upregulated in plants treated with the microbial consortium under A. alternata stress. In addition, application of microbes not only augmented withaferin A, withanolide A and withanolide B content (1.52-1.96, 3.32-5.96 and 12.49-21.47 fold, respectively) during A. alternata pathogenicity but also strengthened host resistance via improvement in the photochemical efficiency, normalizing the oxidized and non-oxidized fraction, accelerating photochemical and non-photochemical quantum yield, and electron transport rate. Moreover, reduction in the passively dissipated energy of PSI and PSII in microbial combination treated plants corroborate well with the above findings. Altogether, the above finding highlights novel insights into the underlying mechanisms in application of endophytes and emphasizes their capability to accelerate biosynthesis of withanolides in W. somnifera under biotic stress caused by A. alternata.
Collapse
Affiliation(s)
- Aradhana Mishra
- Division of Plant Microbe Interaction, Council of Scientific and Industrial Research-National Botanical Research Institute, Lucknow, 226001, India.
| | - Satyendra Pratap Singh
- Division of Plant Microbe Interaction, Council of Scientific and Industrial Research-National Botanical Research Institute, Lucknow, 226001, India; Department of Microbiology, Mewar University, Gangrar, Chittorgarh, Rajasthan, 312901, India
| | - Sahil Mahfooz
- Division of Plant Microbe Interaction, Council of Scientific and Industrial Research-National Botanical Research Institute, Lucknow, 226001, India
| | - Arpita Bhattacharya
- Division of Plant Microbe Interaction, Council of Scientific and Industrial Research-National Botanical Research Institute, Lucknow, 226001, India
| | - Nishtha Mishra
- Division of Plant Microbe Interaction, Council of Scientific and Industrial Research-National Botanical Research Institute, Lucknow, 226001, India
| | - Pramod Arvind Shirke
- Plant Physiology Lab, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India.
| | - C S Nautiyal
- Division of Plant Microbe Interaction, Council of Scientific and Industrial Research-National Botanical Research Institute, Lucknow, 226001, India.
| |
Collapse
|
38
|
Aladdin A, Dib JR, Malek RA, El Enshasy HA. Killer Yeast, a Novel Biological Control of Soilborne Diseases for Good Agriculture Practice. SUSTAINABLE TECHNOLOGIES FOR THE MANAGEMENT OF AGRICULTURAL WASTES 2018:71-86. [DOI: 10.1007/978-981-10-5062-6_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
39
|
Mardanova AM, Fanisovna Hadieva G, Tafkilevich Lutfullin M, Valer’evna Khilyas I, Farvazovna Minnullina L, Gadelevna Gilyazeva A, Mikhailovna Bogomolnaya L, Rashidovna Sharipova M. <i>Bacillus subtilis Strains</i> with Antifungal Activity against the Phytopathogenic Fungi. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/as.2017.81001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Chaves-López C, Serio A, Gianotti A, Sacchetti G, Ndagijimana M, Ciccarone C, Stellarini A, Corsetti A, Paparella A. Diversity of food-borne Bacillus
volatile compounds and influence on fungal growth. J Appl Microbiol 2015; 119:487-99. [DOI: 10.1111/jam.12847] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/02/2015] [Accepted: 05/04/2015] [Indexed: 11/29/2022]
Affiliation(s)
- C. Chaves-López
- Faculty of Bioscience and Technology for Food, Agriculture and Environment; University of Teramo; Mosciano Stazione Italy
| | - A. Serio
- Faculty of Bioscience and Technology for Food, Agriculture and Environment; University of Teramo; Mosciano Stazione Italy
| | - A. Gianotti
- Department of Agri-Food Science and Technology (DISTAL); University of Bologna; Bologna Italy
| | - G. Sacchetti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment; University of Teramo; Mosciano Stazione Italy
| | - M. Ndagijimana
- Department of Agricultural, Food and Nutritional Science (AFNS); Faculty of Agricultural, Life and Environmental Sciences (ALES); 4-10 Agriculture/Forestry Centre; University of Alberta; Edmonton AB Canada
| | - C. Ciccarone
- Department of Agro-Environmental, Chemistry and Crop-Protection; Faculty of Agricultural Science; University of Foggia; Foggia Italy
| | - A. Stellarini
- Faculty of Bioscience and Technology for Food, Agriculture and Environment; University of Teramo; Mosciano Stazione Italy
| | - A. Corsetti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment; University of Teramo; Mosciano Stazione Italy
| | - A. Paparella
- Faculty of Bioscience and Technology for Food, Agriculture and Environment; University of Teramo; Mosciano Stazione Italy
| |
Collapse
|
41
|
Bardot C, Besse-Hoggan P, Carles L, Le Gall M, Clary G, Chafey P, Federici C, Broussard C, Batisson I. How the edaphic Bacillus megaterium strain Mes11 adapts its metabolism to the herbicide mesotrione pressure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 199:198-208. [PMID: 25679981 DOI: 10.1016/j.envpol.2015.01.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 12/23/2014] [Accepted: 01/24/2015] [Indexed: 05/26/2023]
Abstract
Toxicity of pesticides towards microorganisms can have a major impact on ecosystem function. Nevertheless, some microorganisms are able to respond quickly to this stress by degrading these molecules. The edaphic Bacillus megaterium strain Mes11 can degrade the herbicide mesotrione. In order to gain insight into the cellular response involved, the intracellular proteome of Mes11 exposed to mesotrione was analyzed using the two-dimensional differential in-gel electrophoresis (2D-DIGE) approach coupled with mass spectrometry. The results showed an average of 1820 protein spots being detected. The gel profile analyses revealed 32 protein spots whose abundance is modified after treatment with mesotrione. Twenty spots could be identified, leading to 17 non redundant proteins, mainly involved in stress, metabolic and storage mechanisms. These findings clarify the pathways used by B. megaterium strain Mes11 to resist and adapt to the presence of mesotrione.
Collapse
Affiliation(s)
- Corinne Bardot
- Clermont Université, Université Blaise Pascal, LMGE, F-63000 Clermont-Ferrand, France; CNRS, UMR 6023, Laboratoire Microorganismes: Génome et Environnement, F-63177 Aubière, France
| | - Pascale Besse-Hoggan
- Clermont Université, Université Blaise Pascal, ICCF, F-63000 Clermont Ferrand, France; CNRS, UMR 6296, Institut de Chimie de Clermont-Ferrand, BP 80026, F-63171 Aubière Cedex, France
| | - Louis Carles
- Clermont Université, Université Blaise Pascal, LMGE, F-63000 Clermont-Ferrand, France; CNRS, UMR 6023, Laboratoire Microorganismes: Génome et Environnement, F-63177 Aubière, France
| | - Morgane Le Gall
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Descartes, Paris, France; Plate-forme Protéomique 3P5, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Guilhem Clary
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Descartes, Paris, France; Plate-forme Protéomique 3P5, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Philippe Chafey
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Descartes, Paris, France; Plate-forme Protéomique 3P5, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Christian Federici
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Descartes, Paris, France; Plate-forme Protéomique 3P5, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Cédric Broussard
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Descartes, Paris, France; Plate-forme Protéomique 3P5, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Isabelle Batisson
- Clermont Université, Université Blaise Pascal, LMGE, F-63000 Clermont-Ferrand, France; CNRS, UMR 6023, Laboratoire Microorganismes: Génome et Environnement, F-63177 Aubière, France.
| |
Collapse
|
42
|
Huang H, Wu Z, Tian C, Liang Y, You C, Chen L. Identification and characterization of the endophytic bacterium Bacillus atrophaeus XW2, antagonistic towards Colletotrichum gloeosporioides. ANN MICROBIOL 2014. [DOI: 10.1007/s13213-014-0974-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
43
|
Rocha LO, Tralamazza SM, Reis GM, Rabinovitch L, Barbosa CB, Corrêa B. Multi-method approach for characterizing the interaction between Fusarium verticillioides and Bacillus thuringiensis subsp. Kurstaki. PLoS One 2014; 9:e92189. [PMID: 24739804 PMCID: PMC3989188 DOI: 10.1371/journal.pone.0092189] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 02/20/2014] [Indexed: 12/15/2022] Open
Abstract
Bacterial antagonists used as biocontrol agents represent part of an integrated management program to reduce pesticides in the environment. Bacillus thuringiensis is considered a good alternative as a biocontrol agent for suppressing plant pathogens such as Fusarium. In this study, we used microscopy, flow cytometry, indirect immunofluorescence, and high performance liquid chromatography to determine the interaction between B. thuringiensis subsp. kurstaki LFB-FIOCRUZ (CCGB) 257 and F. verticillioides MRC 826, an important plant pathogen frequently associated with maize. B. thuringiensis showed a strong in vitro suppressive effect on F. verticillioides growth and inhibited fumonisin production. Flow cytometry analysis was found to be adequate for characterizing the fungal cell oscillations and death during these interactions. Further studies of the antagonistic effect of this isolate against other fungi and in vivo testing are necessary to determine the efficacy of B. thuringiensis subsp. kurstaki in controlling plant pathogens. This is the first report on the use of flow cytometry for quantifying living and apoptotic F. verticillioides cells and the B. thuringiensis Cry 1Ab toxin.
Collapse
Affiliation(s)
- Liliana O. Rocha
- Department of Microbiology, Laboratory of Mycotoxins and Toxigenic Fungi, University of São Paulo, São Paulo, São Paulo, Brazil
- * E-mail:
| | - Sabina Moser. Tralamazza
- Department of Microbiology, Laboratory of Mycotoxins and Toxigenic Fungi, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Gabriela M. Reis
- Department of Microbiology, Laboratory of Mycotoxins and Toxigenic Fungi, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Leon Rabinovitch
- Department of Bacteriology, Laboratory of Bacterial Physiology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cynara B. Barbosa
- Department of Microbiology, Laboratory of Mycotoxins and Toxigenic Fungi, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Benedito Corrêa
- Department of Microbiology, Laboratory of Mycotoxins and Toxigenic Fungi, University of São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
44
|
Li X, Bai T, Li Y, Ruan X, Li H. Proteomic analysis of Fusarium oxysporum f. sp. cubense tropical race 4-inoculated response to Fusarium wilts in the banana root cells. Proteome Sci 2013; 11:41. [PMID: 24070062 PMCID: PMC3850410 DOI: 10.1186/1477-5956-11-41] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 09/22/2013] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Fusarium wilt of banana is one of the most destructive diseases in the world. This disease has caused heavy losses in major banana production areas. Except for molecular breeding methods based on plant defense mechanisms, effective methods to control the disease are still lacking. Dynamic changes in defense mechanisms between susceptible, moderately resistant, and highly resistant banana and Fusarium oxysporum f. sp. cubense tropical race 4 (Foc4) at the protein level remain unknown. This research reports the proteomic profile of three banana cultivars in response to Foc4 and transcriptional levels correlated with their sequences for the design of disease control strategies by molecular breeding. RESULTS Thirty-eight differentially expressed proteins were identified to function in cell metabolism. Most of these proteins were positively regulated after Foc4 inoculation. These differentially regulated proteins were found to have important functions in banana defense response. Functional categories implicated that these proteins were associated with pathogenesis-related (PR) response; isoflavonoid, flavonoid, and anthocyanin syntheses; cell wall strengthening; cell polarization; reactive oxygen species production and scavenging; jasmonic acid-, abscisic acid-, and auxin-mediated signaling conduction; molecular chaperones; energy; and primary metabolism. By comparing the protein profiles of resistant and susceptible banana cultivars, many proteins showed obvious distinction in their defense mechanism functions. PR proteins in susceptible 'Brazil' were mainly involved in defense. The proteins related to PR response, cell wall strengthening and antifungal compound synthesis in moderately resistant 'Nongke No.1' were mainly involved in defense. The proteins related to PR response, cell wall strengthening, and antifungal compound synthesis in highly resistant 'Yueyoukang I' were mainly involved in defense. 12 differentially regulated genes were selected to validate through quantitative real time PCR method. Quantitative RT-PCR analyses of these selected genes corroborate with their respective protein abundance after pathogen infection. CONCLUSIONS This report is the first to use proteomic profiling to study the molecular mechanism of banana roots infected with Foc4. The differentially regulated proteins involved in different defense pathways are likely associated with different resistant levels of the three banana cultivars.
Collapse
Affiliation(s)
- Xingshen Li
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou, Guangdong 510642, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Tingting Bai
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou, Guangdong 510642, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Yunfeng Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaolei Ruan
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou, Guangdong 510642, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Huaping Li
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou, Guangdong 510642, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|