1
|
Wang K, Zhang L, Deng B, Zhao K, Chen C, Wang W. Mitochondrial uncoupling protein 2: a central player in pancreatic disease pathophysiology. Mol Med 2024; 30:259. [PMID: 39707176 DOI: 10.1186/s10020-024-01027-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024] Open
Abstract
Pancreatic diseases pose considerable health challenges due to their complex etiology and limited therapeutic options. Mitochondrial uncoupling protein 2 (UCP2), highly expressed in pancreatic tissue, participates in numerous physiological processes and signaling pathways, indicating its potential relevance in these diseases. Despite this, UCP2's role in acute pancreatitis (AP) remains underexplored, and its functions in chronic pancreatitis (CP) and pancreatic steatosis are largely unknown. Additionally, the mechanisms connecting various pancreatic diseases are intricate and not yet fully elucidated. Given UCP2's diverse functionality, broad expression in pancreatic tissue, and the distinct pathophysiological features of pancreatic diseases, this review offers a comprehensive analysis of current findings on UCP2's involvement in these conditions. We discuss recent insights into UCP2's complex regulatory mechanisms, propose that UCP2 may serve as a central regulatory factor in pancreatic disease progression, and hypothesize that UCP2 dysfunction could significantly contribute to disease pathogenesis. Understanding UCP2's role and mechanisms in pancreatic diseases may pave the way for innovative therapeutic and diagnostic approaches.
Collapse
Affiliation(s)
- Kunpeng Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- General Surgery Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lilong Zhang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- General Surgery Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Beiying Deng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Kailiang Zhao
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- General Surgery Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chen Chen
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
- General Surgery Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Weixing Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
- General Surgery Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Chen ZY, Mao SF, Guo LH, Qin J, Yang LX, Liu Y. Effect of maternal pregestational diabetes mellitus on congenital heart diseases. World J Pediatr 2023; 19:303-314. [PMID: 35838899 DOI: 10.1007/s12519-022-00582-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/08/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND The increasing population of diabetes mellitus in adolescent girls and women of childbearing age contributes to a large number of pregnancies with maternal pregestational diabetes mellitus. Congenital heart diseases are a common adverse outcome in mothers with pregestational diabetes mellitus. However, there is little systematic information between maternal pregestational diabetes mellitus and congenital heart diseases in the offspring. DATA SOURCES Literature selection was performed in PubMed. One hundred and seven papers were cited in our review, including 36 clinical studies, 26 experimental studies, 31 reviews, eight meta-analysis articles, and six of other types. RESULTS Maternal pregestational diabetes mellitus poses a high risk of congenital heart diseases in the offspring and causes variety of phenotypes of congenital heart diseases. Factors such as persistent maternal hyperglycemia, oxidative stress, polymorphism of uncoupling protein 2, polymorphism of adiponectin gene, Notch 1 pathway, Nkx2.5 disorders, dysregulation of the hypoxia-inducible factor 1, and viral etiologies are associated with the occurrence of congenital heart diseases in the offspring of mothers with pregestational diabetes mellitus. Treatment options including blood sugar-reducing, anti-oxidative stress drug supplements and exercise can help to prevent maternal pregestational diabetes mellitus from inducing congenital heart diseases. CONCLUSIONS Our review contributes to a better understanding of the association between maternal pregestational diabetes mellitus and congenital heart diseases in the offspring and to a profound thought of the mechanism, preventive and therapeutic measurements of congenital heart diseases caused by maternal pregestational diabetes mellitus.
Collapse
Affiliation(s)
- Zhi-Yan Chen
- Department of Basic Medical Sciences, Sichuan Vocational College of Health and Rehabilitation, Zigong, 643000, China
| | - Shuang-Fa Mao
- Department of Basic Medical Sciences, Sichuan Vocational College of Health and Rehabilitation, Zigong, 643000, China
| | - Ling-Hong Guo
- Department of Pharmacology, West China School of Basic Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Jian Qin
- Department of Basic Medical Sciences, Sichuan Vocational College of Health and Rehabilitation, Zigong, 643000, China
| | - Li-Xin Yang
- Department of Basic Medical Sciences, Sichuan Vocational College of Health and Rehabilitation, Zigong, 643000, China
| | - Yin Liu
- Department of Basic Medical Sciences, Sichuan Vocational College of Health and Rehabilitation, Zigong, 643000, China.
- Department of Pharmacology, West China School of Basic Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
- Department of Anesthesiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, China.
- Animal Research Institute, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Huesca-Gómez C, Torres-Paz YE, Fuentevilla-Álvarez G, González-Moyotl NJ, Ramírez-Marroquín ES, Vásquez-Jiménez X, Sainz-Escarrega V, Soto ME, Samano R, Gamboa R. Expressions of mRNA and encoded proteins of mitochondrial uncoupling protein genes ( UCP1, UCP2, and UCP3) in epicardial and mediastinal adipose tissue and associations with coronary artery disease. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2023; 67:214-223. [PMID: 36651711 PMCID: PMC10689038 DOI: 10.20945/2359-3997000000582] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/03/2022] [Indexed: 01/19/2023]
Abstract
Objective To evaluate the expression of UCP1, UCP2, and UCP3 mRNA and encoded proteins in epicardial and mediastinal adipose tissues in patients with coronary artery disease (CAD). Subjects and methods We studied 60 patients with CAD and 106 patients undergoing valve replacement surgery (controls). Expression levels of UCP1, UCP2, and UCP3 mRNA and encoded proteins were measured by quantitative real-time PCR and Western blot analysis, respectively. Results : We found increased UCP1, UCP2, and UCP3 mRNA levels in the epicardial adipose tissue in the CAD versus the control group, and higher UCP1 and UCP3 mRNA expression in the epicardial compared with the mediastinal tissue in the CAD group. There was also increased expression of UCP1 protein in the epicardial tissue and UCP2 protein in the mediastinum tissue in patients with CAD. Finally, UCP1 expression was associated with levels of fasting plasma glucose, and UCP3 expression was associated with levels of high-density lipoprotein cholesterol and low-density cholesterol in the epicardial tissue. Conclusion Our study supports the hypothesis that higher mRNA expression by UCP genes in the epicardial adipose tissue could be a protective mechanism against the production of reactive oxygen species and may guard the myocardium against damage. Thus, UCP levels are essential to maintain the adaptive phase of cardiac injury in the presence of metabolic disorders.
Collapse
Affiliation(s)
- Claudia Huesca-Gómez
- Instituto Nacional de Cardiología "Ignacio Chávez", Departamento de Fisiología, Ciudad de México, México
| | - Yazmín Estela Torres-Paz
- Instituto Nacional de Cardiología "Ignacio Chávez", Departamento de Fisiología, Ciudad de México, México
| | | | | | | | - Xicótencatl Vásquez-Jiménez
- Instituto Nacional de Cardiología "Ignacio Chávez", Departamento de Cirugía Cardiotorácica, Ciudad de México, México
| | - Víctor Sainz-Escarrega
- Instituto Nacional de Cardiología "Ignacio Chávez", Departamento de Cirugía Cardiotorácica, Ciudad de México, México
| | - María Elena Soto
- Instituto Nacional de Cardiología "Ignacio Chávez", Departamento de Inmunología, Ciudad de México, México
| | - Reyna Samano
- Instituto Nacional de Perinatología, Coordinación de Nutrición y Bioprogramación, Ciudad de México, México
| | - Ricardo Gamboa
- Instituto Nacional de Cardiología "Ignacio Chávez", Departamento de Fisiología, Ciudad de México, México
| |
Collapse
|
4
|
Fortes JS, Pinto RM, de Souza RF, Godoy FR, da Cruz RS, de M e Silva D, Filho HPL, da Cruz AD, Minasi LB. The influence of six polymorphisms of uncoupling protein 3 (UCP3) gene and childhood obesity: a case-control study. BMC Pediatr 2023; 23:87. [PMID: 36810017 PMCID: PMC9942342 DOI: 10.1186/s12887-023-03905-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Obesity is defined as a multifactorial disease, marked by excessive accumulation of body fat, responsible for compromising the individual's health over the years. The energy balance is essential for the proper functioning of the body, as the individual needs to earn and spend energy in a compensatory way. Mitochondrial Uncoupling Proteins (UCP) help in energy expenditure through heat release and genetic polymorphisms could be responsible for reducing energy consumption to release heat and consequently generate an excessive accumulation of fat in the body. Thus, this study aimed to investigate the potential association between six UCP3 polymorphisms, that have not yet been represented in ClinVar®, and pediatric obesity susceptibility. METHODS A case-control study was conducted with 225 children from Central Brazil. The groups were subdivided into obese (123) and eutrophic (102) individuals. The polymorphisms rs15763, rs1685354, rs1800849, rs11235972, rs647126, and rs3781907 were determined by real-time Polymerase Chain Reaction (qPCR). RESULTS Biochemical and anthropometric evaluation of obese group showed higher levels of triglycerides, insulin resistance, and LDL-C and low level of HDL-C. Insulin resistance, age, sex, HDL-C, fasting glucose, triglyceride levels, and parents' BMI explained up to 50% of body mass deposition in the studied population. Additionally, obese mothers contribute 2 × more to the Z-BMI of their children than the fathers. The SNP rs647126 contributed to 20% to the risk of obesity in children and the SNP rs3781907 contribute to 10%. Mutant alleles of UCP3 increase the risk for triglycerides, total cholesterol, and HDL-C levels. The polymorphism rs3781907 is the only one that could not be a biomarker for obesity as the risk allele seem to be protective gains the increase in Z-BMI in our pediatric population. Haplotype analysis demonstrated two SNP blocks (rs15763, rs647126, and rs1685534) and (rs11235972 and rs1800849) that showed linkage disequilibrium, with LOD 76.3% and D' = 0.96 and LOD 57.4% and D' = 0.97, respectively. CONCLUSIONS The causality between UCP3 polymorphism and obesity were not detected. On the other hand, the studied polymorphism contributes to Z-BMI, HOMA-IR, triglycerides, total cholesterol, and HDL-C levels. Haplotypes are concordant with the obese phenotype and contribute minimally to the risk of obesity.
Collapse
Affiliation(s)
- Jakeline S. Fortes
- Replicon Research Group, Genetics Graduate Program, School of Medical and Life Sciences, Pontifical Catholic University of Goiás, Rua 235, N. 40, Setor Leste Universitário, Goiânia, GO 74605-050 Brazil
- Genetics and Molecular Biology Graduate Program, Federal University of Goiás, Campus Samambaia, Goiânia, GO 74690-900 Brazil
| | - Renata M. Pinto
- Pediatrics Department, Federal University of Goiás, Câmpus Colemar Natal E Silva (Câmpus I), Rua 235, Setor Leste Universitário, Goiânia, GO Brazil
| | - Raissa F. de Souza
- Replicon Research Group, Genetics Graduate Program, School of Medical and Life Sciences, Pontifical Catholic University of Goiás, Rua 235, N. 40, Setor Leste Universitário, Goiânia, GO 74605-050 Brazil
| | - Fernanda R. Godoy
- Replicon Research Group, Genetics Graduate Program, School of Medical and Life Sciences, Pontifical Catholic University of Goiás, Rua 235, N. 40, Setor Leste Universitário, Goiânia, GO 74605-050 Brazil
- Genetics and Molecular Biology Graduate Program, Federal University of Goiás, Campus Samambaia, Goiânia, GO 74690-900 Brazil
| | - Raphael S. da Cruz
- Replicon Research Group, Genetics Graduate Program, School of Medical and Life Sciences, Pontifical Catholic University of Goiás, Rua 235, N. 40, Setor Leste Universitário, Goiânia, GO 74605-050 Brazil
- Physiotherapy Undergraduate Course, Centro Universitário de Goiânia – UNICEUG, Goiânia, GO Brazil
| | - Daniela de M e Silva
- Genetics and Molecular Biology Graduate Program, Federal University of Goiás, Campus Samambaia, Goiânia, GO 74690-900 Brazil
| | | | - Aparecido D. da Cruz
- Replicon Research Group, Genetics Graduate Program, School of Medical and Life Sciences, Pontifical Catholic University of Goiás, Rua 235, N. 40, Setor Leste Universitário, Goiânia, GO 74605-050 Brazil
- Genetics and Molecular Biology Graduate Program, Federal University of Goiás, Campus Samambaia, Goiânia, GO 74690-900 Brazil
- Human Cytogenetics and Molecular Genetics Laboratory/CRER, State Health Secretary of Goiás, Goiânia, GO Brazil
| | - Lysa B. Minasi
- Replicon Research Group, Genetics Graduate Program, School of Medical and Life Sciences, Pontifical Catholic University of Goiás, Rua 235, N. 40, Setor Leste Universitário, Goiânia, GO 74605-050 Brazil
| |
Collapse
|
5
|
Wu Y, Zou H. Research Progress on Mitochondrial Dysfunction in Diabetic Retinopathy. Antioxidants (Basel) 2022; 11:2250. [PMID: 36421435 PMCID: PMC9686704 DOI: 10.3390/antiox11112250] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 09/07/2023] Open
Abstract
Diabetic Retinopathy (DR) is one of the most important microvascular complications of diabetes mellitus, which can lead to blindness in severe cases. Mitochondria are energy-producing organelles in eukaryotic cells, which participate in metabolism and signal transduction, and regulate cell growth, differentiation, aging, and death. Metabolic changes of retinal cells and epigenetic changes of mitochondria-related genes under high glucose can lead to mitochondrial dysfunction and induce mitochondrial pathway apoptosis. In addition, mitophagy and mitochondrial dynamics also change adaptively. These mechanisms may be related to the occurrence and progression of DR, and also provide valuable clues for the prevention and treatment of DR. This article reviews the mechanism of DR induced by mitochondrial dysfunction, and the prospects for related treatment.
Collapse
Affiliation(s)
- Yiwei Wu
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Haidong Zou
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
6
|
Dieter C, Brondani LDA, Leitão CB, Gerchman F, Lemos NE, Crispim D. Genetic polymorphisms associated with susceptibility to COVID-19 disease and severity: A systematic review and meta-analysis. PLoS One 2022; 17:e0270627. [PMID: 35793369 PMCID: PMC9258831 DOI: 10.1371/journal.pone.0270627] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/15/2022] [Indexed: 12/17/2022] Open
Abstract
Although advanced age and presence of comorbidities significantly impact the variation observed in the clinical symptoms of COVID-19, it has been suggested that genetic variants may also be involved in the disease. Thus, the aim of this study was to perform a systematic review with meta-analysis of the literature to identify genetic polymorphisms that are likely to contribute to COVID-19 pathogenesis. Pubmed, Embase and GWAS Catalog repositories were systematically searched to retrieve articles that investigated associations between polymorphisms and COVID-19. For polymorphisms analyzed in 3 or more studies, pooled OR with 95% CI were calculated using random or fixed effect models in the Stata Software. Sixty-four eligible articles were included in this review. In total, 8 polymorphisms in 7 candidate genes and 74 alleles of the HLA loci were analyzed in 3 or more studies. The HLA-A*30 and CCR5 rs333Del alleles were associated with protection against COVID-19 infection, while the APOE rs429358C allele was associated with risk for this disease. Regarding COVID-19 severity, the HLA-A*33, ACE1 Ins, and TMPRSS2 rs12329760T alleles were associated with protection against severe forms, while the HLA-B*38, HLA-C*6, and ApoE rs429358C alleles were associated with risk for severe forms of COVID-19. In conclusion, polymorphisms in the ApoE, ACE1, TMPRSS2, CCR5, and HLA loci appear to be involved in the susceptibility to and/or severity of COVID-19.
Collapse
Affiliation(s)
- Cristine Dieter
- Endocrine and Metabolism Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Letícia de Almeida Brondani
- Endocrine and Metabolism Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cristiane Bauermann Leitão
- Endocrine and Metabolism Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernando Gerchman
- Endocrine and Metabolism Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Natália Emerim Lemos
- Endocrine and Metabolism Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Daisy Crispim
- Endocrine and Metabolism Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
7
|
Dinas PC, Nintou E, Vliora M, Pravednikova AE, Sakellariou P, Witkowicz A, Kachaev ZM, Kerchev VV, Larina SN, Cotton J, Kowalska A, Gkiata P, Bargiota A, Khachatryan ZA, Hovhannisyan AA, Antonosyan MA, Margaryan S, Partyka A, Bogdanski P, Szulinska M, Kregielska-Narozna M, Czepczyński R, Ruchała M, Tomkiewicz A, Yepiskoposyan L, Karabon L, Shidlovskii Y, Metsios GS, Flouris AD. Prevalence of uncoupling protein one genetic polymorphisms and their relationship with cardiovascular and metabolic health. PLoS One 2022; 17:e0266386. [PMID: 35482655 PMCID: PMC9049362 DOI: 10.1371/journal.pone.0266386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 03/18/2022] [Indexed: 11/18/2022] Open
Abstract
Contribution of UCP1 single nucleotide polymorphisms (SNPs) to susceptibility for cardiometabolic pathologies (CMP) and their involvement in specific risk factors for these conditions varies across populations. We tested whether UCP1 SNPs A-3826G, A-1766G, Ala64Thr and A-112C are associated with common CMP and their risk factors across Armenia, Greece, Poland, Russia and United Kingdom. This case-control study included genotyping of these SNPs, from 2,283 Caucasians. Results were extended via systematic review and meta-analysis. In Armenia, GA genotype and A allele of Ala64Thr displayed ~2-fold higher risk for CMP compared to GG genotype and G allele, respectively (p<0.05). In Greece, A allele of Ala64Thr decreased risk of CMP by 39%. Healthy individuals with A-3826G GG genotype and carriers of mutant allele of A-112C and Ala64Thr had higher body mass index compared to those carrying other alleles. In healthy Polish, higher waist-to-hip ratio (WHR) was observed in heterozygotes A-3826G compared to AA homozygotes. Heterozygosity of A-112C and Ala64Thr SNPs was related to lower WHR in CMP individuals compared to wild type homozygotes (p<0.05). Meta-analysis showed no statistically significant odds-ratios across our SNPs (p>0.05). Concluding, the studied SNPs could be associated with the most common CMP and their risk factors in some populations.
Collapse
Affiliation(s)
- Petros C. Dinas
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
- Faculty of Education Health and Wellbeing, University of Wolverhampton, Walsall, West Midlands, United Kingdom
| | - Eleni Nintou
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - Maria Vliora
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - Anna E. Pravednikova
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Paraskevi Sakellariou
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - Agata Witkowicz
- L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Zaur M. Kachaev
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Victor V. Kerchev
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Svetlana N. Larina
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - James Cotton
- Royal Wolverhampton NHS Trust, New Cross Hospital, Wolverhampton, United Kingdom
| | - Anna Kowalska
- Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Paraskevi Gkiata
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - Alexandra Bargiota
- Department of Endocrinology and Metabolic Diseases, Medical School, Larissa University Hospital, University of Thessaly, Larissa, Greece
| | - Zaruhi A. Khachatryan
- Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia
| | - Anahit A. Hovhannisyan
- Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia
| | - Mariya A. Antonosyan
- Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia
| | - Sona Margaryan
- Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia
| | - Anna Partyka
- L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Pawel Bogdanski
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Poznań, Poland
| | - Monika Szulinska
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Poznań, Poland
| | - Matylda Kregielska-Narozna
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Poznań, Poland
| | - Rafał Czepczyński
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznań, Poland
| | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznań, Poland
| | - Anna Tomkiewicz
- L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Levon Yepiskoposyan
- Department of Bioengineering, Bioinformatics and Molecular Biology, Russian-Armenian University, Yerevan, Armenia
| | - Lidia Karabon
- L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Yulii Shidlovskii
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - George S. Metsios
- Department of Nutrition and Dietetics, School of Physical Education, Sport Science and Dietetics, University of Thessaly, Trikala, Greece
| | - Andreas D. Flouris
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| |
Collapse
|
8
|
Pouresmaeil V, Ebre S, Yazdi MS. Assessment of the Relationship Between CD34 Antigen and Vitamin D Level and Insulin Resistance in Patients With Type 2 Diabetes. Clin Diabetes 2022; 40:425-433. [PMID: 36385969 PMCID: PMC9606555 DOI: 10.2337/cd21-0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Diabetes causes disorders in the performance of endothelial progenitor cells, and obesity and vitamin D deficiency are associated with endothelial dysfunction and cardiovascular disease. This case-control study investigated the relationship between serum CD34 antigen and vitamin D levels and insulin resistance in type 2 diabetes. The results showed that CD34 has a significant inverse relationship with BMI, A1C, fasting blood glucose, insulin resistance, and insulin levels and has a significant direct relationship with vitamin D levels. Both CD34 and vitamin D were found to be significantly associated with type 2 diabetes. The association between reduced CD34 and vitamin D levels with type 2 diabetes and increased insulin resistance suggests that these parameters may be helpful in assessing diabetes and predicting its complications.
Collapse
Affiliation(s)
- Vahid Pouresmaeil
- Department of Biochemistry, Faculty of Medicine, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran
- Innovative Medical Research Center, Faculty of Medicine, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran
| | - Shaker Ebre
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mohammad Sarafraz Yazdi
- Department of Internal Medicine, Faculty of Medicine, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
9
|
Ethnicity Differences in the Association of UCP1-3826A/G, UCP2-866G/A and Ala55Val, and UCP3-55C/T Polymorphisms with Type 2 Diabetes Mellitus Susceptibility: An Updated Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:3482879. [PMID: 34712730 PMCID: PMC8548105 DOI: 10.1155/2021/3482879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/04/2021] [Indexed: 01/19/2023]
Abstract
Background The relationship between uncoupling protein (UCP) 1-3 polymorphisms and susceptibility to type 2 diabetes mellitus (T2DM) has been extensively studied, while conclusions remain contradictory. Thus, we performed this meta-analysis to elucidate whether the UCP1-3826A/G, UCP2-866G/A, Ala55Val, and UCP3-55C/T polymorphisms are associated with T2DM. Methods Eligible studies were searched from PubMed, Cochrane Library, and Web of Science database before 12 July 2020. Pooled odds ratios (ORs) with corresponding 95% confidence intervals (CIs) were calculated to evaluate the strength of the association. Heterogeneity analysis, subgroup analysis, sensitivity analysis, and publication bias were also performed. Results A total of 38 case-control studies were included in this meta-analysis. The overall results revealed significant association between T2DM and the UCP2 Ala55Val polymorphism (recessive model: OR = 1.25, 95% CI 1.12-1.40, P < 0.01; homozygous model: OR = 1.33, 95% CI 1.03-1.72, P = 0.029, respectively). In subgroup analysis stratified by ethnicity, T2DM risk was increased with the UCP2 Ala55Val polymorphism (allele model: OR = 1.17, 95% CI 1.02-1.34, P = 0.023; recessive model: OR = 1.28, 95% CI 1.13-1.45, P < 0.01; homozygous model: OR = 1.39, 95% CI 1.05-1.86, P = 0.023, respectively), while decreased with the UCP2-866G/A polymorphism in Asians (dominant model: OR = 0.86, 95% CI 0.74-1.00, P = 0.045). Conclusions Our results demonstrate that the UCP2-866G/A polymorphism is protective against T2DM, while the UCP2 Ala55Val polymorphism is susceptible to T2DM in Asians.
Collapse
|
10
|
Polymorphisms in GLIS3 and susceptibility to diabetes mellitus: A systematic review and meta-analysis. Meta Gene 2021. [DOI: 10.1016/j.mgene.2021.100898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
11
|
Min J, Zeng T, Roux M, Lazar D, Chen L, Tudzarova S. The Role of HIF1α-PFKFB3 Pathway in Diabetic Retinopathy. J Clin Endocrinol Metab 2021; 106:2505-2519. [PMID: 34019671 PMCID: PMC8372643 DOI: 10.1210/clinem/dgab362] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Indexed: 12/13/2022]
Abstract
Diabetic retinopathy (DR) is the leading cause of blindness for adults in developed countries. Both microvasculopathy and neurodegeneration are implicated in mechanisms of DR development, with neuronal impairment preceding microvascular abnormalities, which is often underappreciated in the clinic. Most current therapeutic strategies, including anti-vascular endothelial growth factor (anti-VEGF)-antibodies, aim at treating the advanced stages (diabetic macular edema and proliferative diabetic retinopathy) and fail to target the neuronal deterioration. Hence, new therapeutic approach(es) intended to address both vascular and neuronal impairment are urgently needed. The hypoxia-inducible factor 1α (HIF1α)-6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) pathway is critically implicated in the islet pathology of diabetes. Recent evidence highlighted the pathway relevance for pathologic angiogenesis and neurodegeneration, two key aspects in DR. PFKFB3 is key to the sprouting angiogenesis, along with VEGF, by determining the endothelial tip-cell competition. Also, PFKFB3-driven glycolysis compromises the antioxidative capacity of neurons leading to neuronal loss and reactive gliosis. Therefore, the HIF1α-PFKFB3 signaling pathway is unique as being a pervasive pathological component across multiple cell types in the retina in the early as well as late stages of DR. A metabolic point-of-intervention based on HIF1α-PFKFB3 targeting thus deserves further consideration in DR.
Collapse
Affiliation(s)
- Jie Min
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tianshu Zeng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Margaretha Roux
- Groote Schuur and Red Cross Children’s Hospital, University of Cape Town, South Africa
| | - David Lazar
- Lazar Retina Ophthalmology, Los Angeles, CA, USA
| | - Lulu Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Lulu Chen, PhD, Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan, Hubei, 430022, China.
| | - Slavica Tudzarova
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Correspondence: Slavica Tudzarova, PhD, Larry Hillblom Islet Research Center, University of California Los Angeles, 10833 Le Conte Ave, CHS 33-165, Los Angeles, CA 90095, USA.
| |
Collapse
|
12
|
Rezapour S, Khosroshahi SA, Farajnia H, Mohseni F, Khoshbaten M, Farajnia S. Association of 45-bp ins/del polymorphism of uncoupling protein 2 (UCP2) and susceptibility to nonalcoholic fatty liver and type 2 diabetes mellitus in North-west of Iran. BMC Res Notes 2021; 14:169. [PMID: 33957975 PMCID: PMC8101211 DOI: 10.1186/s13104-021-05586-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 04/24/2021] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE Uncoupling protein 2 (UCP2) plays a crucial role in energy homeostasis via insulin secretion regulation, free fatty acid concentrations, and lipid metabolism. This study aimed to investigate the association of 45-bp ins/del polymorphism of UCP2 with susceptibility to NAFLD (Non-Alcoholic Fatty Liver Disease) and T2DM (Type 2 Diabetes Mellitus). DNA was extracted from the white blood cells of the subjects, and the gene polymorphism was determined using polymerase chain reaction (PCR). In this study, 72 patients with NAFLD, 71 healthy individuals as control, 80 patients with T2DM, and 77 healthy controls were enrolled in the study. RESULTS A higher prevalence of insertion/insertion genotype was observed in T2DM patients compared to the controls (p- value˂ 0.05). There was no difference in genotype distribution between NAFLD patients and controls (p-value > 0.05). NAFLD patients with D/D, D/I genotype had higher triglyceride, ALT, and AST levels; however, their HDL levels were lower than healthy controls. Patients with T2DM with D/D or D/I genotype also had significantly higher fasting serum glucose (FSG). While we found an association between the 45 bp I/D polymorphism in 3'UTR of UCP2 and T2DM, no correlation between this polymorphism and NAFLD was identified.
Collapse
Affiliation(s)
- Saleheh Rezapour
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hadi Farajnia
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Mohseni
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Safar Farajnia
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
13
|
Pellenz FM, Dieter C, Lemos NE, Bauer AC, Souza BMD, Crispim D. Association of TYK2 polymorphisms with autoimmune diseases: A comprehensive and updated systematic review with meta-analysis. Genet Mol Biol 2021; 44:e20200425. [PMID: 33949620 PMCID: PMC8097517 DOI: 10.1590/1678-4685-gmb-2020-0425] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/09/2021] [Indexed: 12/05/2022] Open
Abstract
Autoimmune diseases are characterized by the loss of self-tolerance, leading to
immune-mediated tissue destruction and chronic inflammation. Tyrosine kinase 2
(TYK2) protein plays a key role in immunity and apoptosis pathways. Studies have
reported associations between single nucleotide polymorphisms (SNPs) in the
TYK2 gene and autoimmune diseases; however, results are
still inconclusive. Thus, we conducted a systematic review followed by
meta-analysis. A literature search was performed to find studies that
investigated associations between TYK2 SNPs and autoimmune
diseases (multiple sclerosis, systemic lupus erythematosus, Crohn’s disease,
ulcerative colitis, psoriasis, rheumatoid arthritis, type 1 diabetes, and
inflammatory bowel disease). Pooled odds ratios (OR) with 95 % CI were
calculated using random (REM) or fixed (FEM) effects models in the Stata 11.0
Software. Thirty-four articles were eligible for inclusion in the meta-analyses,
comprising 9 different SNPs: rs280496, rs280500, rs280523, rs280519, rs2304256,
rs12720270, rs12720356, rs34536443, and rs35018800. Meta-analysis results showed
the minor alleles of rs2304256, rs12720270, rs12720356, rs34536443, and
rs35018800 SNPs were associated with protection against autoimmune diseases.
Moreover, the A allele of the rs280519 SNP was associated with risk for systemic
lupus erythematosus. Our meta-analyses demonstrated that the rs2304256,
rs12720270, rs12720356, rs34536443, rs35018800, and rs280519 SNPs in the
TYK2 gene are associated with different autoimmune
diseases.
Collapse
Affiliation(s)
- Felipe Mateus Pellenz
- Hospital de Clínicas de Porto Alegre, Serviço de Endocrinologia, Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Programa de Pós-Graduação em Ciências Médicas, Porto Alegre, RS, Brazil
| | - Cristine Dieter
- Hospital de Clínicas de Porto Alegre, Serviço de Endocrinologia, Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Programa de Pós-Graduação em Ciências Médicas, Porto Alegre, RS, Brazil
| | - Natália Emerim Lemos
- Hospital de Clínicas de Porto Alegre, Serviço de Endocrinologia, Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Programa de Pós-Graduação em Ciências Médicas, Porto Alegre, RS, Brazil
| | - Andrea Carla Bauer
- Hospital de Clínicas de Porto Alegre, Serviço de Endocrinologia, Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Programa de Pós-Graduação em Ciências Médicas, Porto Alegre, RS, Brazil.,Hospital de Clínicas de Porto Alegre, Serviço de Nefrologia, Porto Alegre, RS, Brazil
| | - Bianca Marmontel de Souza
- Hospital de Clínicas de Porto Alegre, Serviço de Endocrinologia, Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Programa de Pós-Graduação em Ciências Médicas, Porto Alegre, RS, Brazil
| | - Daisy Crispim
- Hospital de Clínicas de Porto Alegre, Serviço de Endocrinologia, Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Programa de Pós-Graduação em Ciências Médicas, Porto Alegre, RS, Brazil
| |
Collapse
|
14
|
Association and interaction effect of UCP2 gene polymorphisms and dietary factors with congenital heart diseases in Chinese Han population. Sci Rep 2021; 11:8699. [PMID: 33888769 PMCID: PMC8062668 DOI: 10.1038/s41598-021-88057-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 04/06/2021] [Indexed: 12/02/2022] Open
Abstract
Congenital heart diseases (CHDs) are the most common birth defects and the leading cause of non-infectious deaths in infants, with an unknown etiology. We aimed to assess the association of genetic variations in UCP2 gene, dietary factors, and their interactions with the risk of CHDs in offspring. The hospital-based case–control study included 464 mothers of children with CHDs and 504 mothers of healthy children. The exposures of interest were maternal dietary factors in early pregnancy and UCP2 genetic variants. Logistic regression analyses were used to assess the association and interaction of UCP2 gene and dietary factors with CHDs. Our results found that the polymorphisms of UCP2 gene at rs659366 and rs660339, together with maternal dietary factors including excessive intake of pickled vegetables and smoked foods were associated with increased risks of CHDs in offspring. Regular intake of fresh meat, fish and shrimp, and milk products were associated with lower risks of CHDs in offspring. Besides, positive interaction between the dominant model of rs659366 and excessive intake of pickled vegetables was found in the additive interaction model (RERI = 1.19, P = 0.044). These findings provide the theoretical basis for gene screening and a new clue for the prevention of CHDs in offspring.
Collapse
|
15
|
de Oliveira MS, Rodrigues M, Rossoni EA, Sortica DA, Rheinheimer J, Moehlecke M, Heredia MLDC, Horvath JDC, Kops NL, Trindade MRM, Viana LV, Leitão CB, Friedman R, Crispim D, de Souza BM. -866G/A and Ins/Del polymorphisms in UCP2 gene are associated with reduced short-term weight loss in patients who underwent Roux-en-Y gastric bypass. Surg Obes Relat Dis 2021; 17:1263-1270. [PMID: 33941479 DOI: 10.1016/j.soard.2021.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/05/2021] [Accepted: 03/27/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Uncoupling protein 2 (UCP2) plays an important role in energy expenditure regulation. Previous studies have associated the common -866G/A (rs659366) and Ins/Del polymorphisms in the UCP2 gene with metabolic and obesity-related phenotypes. However, it is still unclear whether these polymorphisms influence weight loss after bariatric surgery. OBJECTIVES To investigate whether UCP2 -866G/A and Ins/Del polymorphisms are associated with weight loss outcomes after bariatric surgery. SETTING Longitudinal study in a university hospital. METHODS We retrospectively evaluated 186 patients who underwent Roux-en-Y gastric bypass (RYGB) surgery for clinical and laboratory characteristics in the preoperative period, 6, 12, and 18 months after RYGB. The -866G/A (rs659366) polymorphism was genotyped using real-time PCR, while the Ins/Del polymorphism was genotyped by direct separation of PCR products in 2.5% agarose gels. RESULTS Patients with the -866A/A genotype showed higher body mass index (BMI) after 6, 12, and 18 months of surgery and excess body weight after 6 and 12 months compared with G/G patients. They also showed lower excess weight loss (EWL%) after 6 and 12 months of surgery. Ins allele carriers (Ins/Ins + Ins/Del) had lower delta (Δ) BMI 12 months after surgery compared with Del/Del patients. Accordingly, patients carrying haplotypes with ≥2 risk alleles of these polymorphisms had higher BMI and excess weight and lower EWL% during follow-up. CONCLUSION UCP2 -866A/A genotype is associated with higher BMI and excess weight and lower EWL% during an 18-month follow-up of patients who underwent RYGB, while the Ins allele seems to be associated with lower ΔBMI 12 months after surgery. Further studies are needed to confirm the associations of the -866G/A and Ins/Del polymorphisms with weight loss after bariatric surgery.
Collapse
Affiliation(s)
- Mayara S de Oliveira
- Endocrinology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Faculty of Medicine, Graduate Program of Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Michelle Rodrigues
- Endocrinology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Elis A Rossoni
- Endocrinology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Denise A Sortica
- Endocrinology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Jakeline Rheinheimer
- Endocrinology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Milene Moehlecke
- Department of Endocrinology, Faculdade de Medicina, Universidade Luterana do Brasil, Canoas, Brazil
| | | | | | - Natalia L Kops
- Endocrinology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Manoel R M Trindade
- Digestive Surgery Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Luciana V Viana
- Digestive Surgery Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Cristiane B Leitão
- Endocrinology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Faculty of Medicine, Graduate Program of Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rogério Friedman
- Endocrinology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Daisy Crispim
- Endocrinology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Faculty of Medicine, Graduate Program of Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Bianca M de Souza
- Endocrinology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Faculty of Medicine, Graduate Program of Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
16
|
Maseroli E, Comeglio P, Corno C, Cellai I, Filippi S, Mello T, Galli A, Rapizzi E, Presenti L, Truglia MC, Lotti F, Facchiano E, Beltrame B, Lucchese M, Saad F, Rastrelli G, Maggi M, Vignozzi L. Testosterone treatment is associated with reduced adipose tissue dysfunction and nonalcoholic fatty liver disease in obese hypogonadal men. J Endocrinol Invest 2021; 44:819-842. [PMID: 32772323 PMCID: PMC7946690 DOI: 10.1007/s40618-020-01381-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/31/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE In both preclinical and clinical settings, testosterone treatment (TTh) of hypogonadism has shown beneficial effects on insulin sensitivity and visceral and liver fat accumulation. This prospective, observational study was aimed at assessing the change in markers of fat and liver functioning in obese men scheduled for bariatric surgery. METHODS Hypogonadal patients with consistent symptoms (n = 15) undergoing 27.63 ± 3.64 weeks of TTh were compared to untreated eugonadal (n = 17) or asymptomatic hypogonadal (n = 46) men. A cross-sectional analysis among the different groups was also performed, especially for data derived from liver and fat biopsies. Preadipocytes isolated from adipose tissue biopsies were used to evaluate insulin sensitivity, adipogenic potential and mitochondrial function. NAFLD was evaluated by triglyceride assay and by calculating NAFLD activity score in liver biopsies. RESULTS In TTh-hypogonadal men, histopathological NAFLD activity and steatosis scores, as well as liver triglyceride content were lower than in untreated-hypogonadal men and comparable to eugonadal ones. TTh was also associated with a favorable hepatic expression of lipid handling-related genes. In visceral adipose tissue and preadipocytes, TTh was associated with an increased expression of lipid catabolism and mitochondrial bio-functionality markers. Preadipocytes from TTh men also exhibited a healthier morpho-functional phenotype of mitochondria and higher insulin-sensitivity compared to untreated-hypogonadal ones. CONCLUSIONS The present data suggest that TTh in severely obese, hypogonadal individuals induces metabolically healthier preadipocytes, improving insulin sensitivity, mitochondrial functioning and lipid handling. A potentially protective role for testosterone on the progression of NAFLD, improving hepatic steatosis and reducing intrahepatic triglyceride content, was also envisaged. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02248467, September 25th 2014.
Collapse
Affiliation(s)
- E Maseroli
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50134, Florence, Italy
| | - P Comeglio
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50134, Florence, Italy
| | - C Corno
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50134, Florence, Italy
| | - I Cellai
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50134, Florence, Italy
| | - S Filippi
- Interdepartmental Laboratory of Functional and Cellular Pharmacology of Reproduction, University of Florence, Viale Pieraccini 6, 50134, Florence, Italy
| | - T Mello
- Gastroenterology Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50134, Florence, Italy
| | - A Galli
- Gastroenterology Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50134, Florence, Italy
| | - E Rapizzi
- Endocrinology Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50134, Florence, Italy
| | - L Presenti
- General, Bariatric and Metabolic Surgery Unit, Santa Maria Nuova Hospital, , Piazza Santa Maria Nuova, 1, 50122, Florence, Italy
| | - M C Truglia
- General, Bariatric and Metabolic Surgery Unit, Santa Maria Nuova Hospital, , Piazza Santa Maria Nuova, 1, 50122, Florence, Italy
| | - F Lotti
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50134, Florence, Italy
| | - E Facchiano
- General, Bariatric and Metabolic Surgery Unit, Santa Maria Nuova Hospital, , Piazza Santa Maria Nuova, 1, 50122, Florence, Italy
| | - B Beltrame
- General, Bariatric and Metabolic Surgery Unit, Santa Maria Nuova Hospital, , Piazza Santa Maria Nuova, 1, 50122, Florence, Italy
| | - M Lucchese
- General, Bariatric and Metabolic Surgery Unit, Santa Maria Nuova Hospital, , Piazza Santa Maria Nuova, 1, 50122, Florence, Italy
| | - F Saad
- Medical Affairs, Bayer AG, Kaiser-Wilhelm-Allee 1, 51373, Leverkusen, Germany
| | - G Rastrelli
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50134, Florence, Italy
| | - M Maggi
- Endocrinology Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50134, Florence, Italy
- I.N.B.B. (Istituto Nazionale Biostrutture E Biosistemi), Viale delle Medaglie d'Oro 305, 00136, Rome, Italy
| | - L Vignozzi
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50134, Florence, Italy.
- I.N.B.B. (Istituto Nazionale Biostrutture E Biosistemi), Viale delle Medaglie d'Oro 305, 00136, Rome, Italy.
| |
Collapse
|
17
|
Xu L, Chen S, Zhan L. Association of uncoupling protein-2 -866G/A and Ala55Val polymorphisms with susceptibility to type 2 diabetes mellitus: A meta-analysis of case-control studies. Medicine (Baltimore) 2021; 100:e24464. [PMID: 33578539 PMCID: PMC7886456 DOI: 10.1097/md.0000000000024464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/06/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Recently, the relationships between uncoupling protein-2 (UCP2) -866G/A (rs659366) and Ala55Val (rs660339) polymorphisms and the risk of type 2 diabetes mellitus (T2DM) have been explored considerably, but the results are greatly inconsistent. This meta-analysis was performed to further identify the association of UCP2 rs659366 and rs660339 with the risk of T2DM. METHODS Eligible studies were searched from PubMed, Embase, Cochrane Library, VIP database, Chinese National Knowledge Infrastructure, and Chinese WanFang database until March 8, 2020. The odds ratios with corresponding 95% confidence intervals (CIs), and P-values were used to assess the strength of the association. RESULTS A total of 26 studies were included in this study. UCP2 rs659366 was associated with the risk of T2DM in allele model (OR: 1.112, 95%CI: 1.009-1.224, P = 0.032), dominant model (OR: 1.189, 95%CI: 1.035-1.366, P = 0.014), and heterozygous model (OR: 1.177, 95%CI: 1.032-1.342, P = .015). A significantly increased risk of T2DM was detected in Asians by UCP2 rs659366 allele (OR: 1.132, 95%CI: 1.016-1.262, P = .025), dominant (OR: 1.218, 95%CI: 1.046-1.418, P = .011), homozygous (OR: 1.254, 95%CI: 1.022-1.540, P = .031) or heterozygous (OR: 1.198, 95%CI: 1.047-1.371, P = .009) models. There was no significant correlation between UCP2 rs660339 and the risk of T2DM (P>.05). CONCLUSIONS The UCP2 rs65366 is significantly associated with the risk of T2DM, especially in Asian population, while no evidence is found between the UCP2 rs660339 and the susceptibility to T2DM.
Collapse
Affiliation(s)
- Lu Xu
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine
- Xishanqiao Community Health Service Center of Yuhuatai
| | - Shuyan Chen
- Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Libin Zhan
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine
| |
Collapse
|
18
|
Sharma S, Lalrohlui F, Sharma V, Sharma I, Sharma S, Parihar TJ, Zohmingthanga J, Singh V, Sharma S, Senthil Kumar N, Rai E. Candidate gene association study of UCP3 variant rs1800849 with T2D in Mizo population of Northeast India. Int J Diabetes Dev Ctries 2020. [DOI: 10.1007/s13410-020-00812-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
19
|
Schumann T, König J, Henke C, Willmes DM, Bornstein SR, Jordan J, Fromm MF, Birkenfeld AL. Solute Carrier Transporters as Potential Targets for the Treatment of Metabolic Disease. Pharmacol Rev 2020; 72:343-379. [PMID: 31882442 DOI: 10.1124/pr.118.015735] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The solute carrier (SLC) superfamily comprises more than 400 transport proteins mediating the influx and efflux of substances such as ions, nucleotides, and sugars across biological membranes. Over 80 SLC transporters have been linked to human diseases, including obesity and type 2 diabetes (T2D). This observation highlights the importance of SLCs for human (patho)physiology. Yet, only a small number of SLC proteins are validated drug targets. The most recent drug class approved for the treatment of T2D targets sodium-glucose cotransporter 2, product of the SLC5A2 gene. There is great interest in identifying other SLC transporters as potential targets for the treatment of metabolic diseases. Finding better treatments will prove essential in future years, given the enormous personal and socioeconomic burden posed by more than 500 million patients with T2D by 2040 worldwide. In this review, we summarize the evidence for SLC transporters as target structures in metabolic disease. To this end, we identified SLC13A5/sodium-coupled citrate transporter, and recent proof-of-concept studies confirm its therapeutic potential in T2D and nonalcoholic fatty liver disease. Further SLC transporters were linked in multiple genome-wide association studies to T2D or related metabolic disorders. In addition to presenting better-characterized potential therapeutic targets, we discuss the likely unnoticed link between other SLC transporters and metabolic disease. Recognition of their potential may promote research on these proteins for future medical management of human metabolic diseases such as obesity, fatty liver disease, and T2D. SIGNIFICANCE STATEMENT: Given the fact that the prevalence of human metabolic diseases such as obesity and type 2 diabetes has dramatically risen, pharmacological intervention will be a key future approach to managing their burden and reducing mortality. In this review, we present the evidence for solute carrier (SLC) genes associated with human metabolic diseases and discuss the potential of SLC transporters as therapeutic target structures.
Collapse
Affiliation(s)
- Tina Schumann
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| | - Jörg König
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| | - Christine Henke
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| | - Diana M Willmes
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| | - Stefan R Bornstein
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| | - Jens Jordan
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| | - Martin F Fromm
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| | - Andreas L Birkenfeld
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| |
Collapse
|
20
|
Bornstein R, Gonzalez B, Johnson SC. Mitochondrial pathways in human health and aging. Mitochondrion 2020; 54:72-84. [PMID: 32738358 PMCID: PMC7508824 DOI: 10.1016/j.mito.2020.07.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 12/27/2022]
Abstract
Mitochondria are eukaryotic organelles known best for their roles in energy production and metabolism. While often thought of as simply the 'powerhouse of the cell,' these organelles participate in a variety of critical cellular processes including reactive oxygen species (ROS) production, regulation of programmed cell death, modulation of inter- and intracellular nutrient signaling pathways, and maintenance of cellular proteostasis. Disrupted mitochondrial function is a hallmark of eukaryotic aging, and mitochondrial dysfunction has been reported to play a role in many aging-related diseases. While mitochondria are major players in human diseases, significant questions remain regarding their precise mechanistic role. In this review, we detail mechanisms by which mitochondrial dysfunction participate in disease and aging based on findings from model organisms and human genetics studies.
Collapse
Affiliation(s)
| | - Brenda Gonzalez
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Simon C Johnson
- Department of Neurology, University of Washington, Seattle, WA, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.
| |
Collapse
|
21
|
Pravednikova AE, Shevchenko SY, Kerchev VV, Skhirtladze MR, Larina SN, Kachaev ZM, Egorov AD, Shidlovskii YV. Association of uncoupling protein (Ucp) gene polymorphisms with cardiometabolic diseases. Mol Med 2020; 26:51. [PMID: 32450815 PMCID: PMC7249395 DOI: 10.1186/s10020-020-00180-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/11/2020] [Indexed: 12/23/2022] Open
Abstract
The hereditary aspect of obesity is a major focus of modern medical genetics. The genetic background is known to determine a higher-than-average prevalence of obesity in certain regions, like Oceania. There is evidence that dysfunction of brown adipose tissue (BAT) may be a risk factor for obesity and type 2 diabetes (T2D). A significant number of studies in the field focus on the UCP family. The Ucp genes code for electron transport carriers. UCP1 (thermogenin) is the most abundant protein of the UCP superfamily and is expressed in BAT, contributing to its capability of generating heat. Single nucleotide polymorphisms (SNPs) of Ucp1-Ucp3 were recently associated with risk of cardiometabolic diseases. This review covers the main Ucp SNPs A-3826G, A-1766G, A-112C, Met229Leu, Ala64Thr (Ucp1), Ala55Val, G-866A (Ucp2), and C-55 T (Ucp3), which may be associated with the development of obesity, disturbance in lipid metabolism, T2D, and cardiovascular diseases.
Collapse
Affiliation(s)
- Anna E. Pravednikova
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Sergey Y. Shevchenko
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Victor V. Kerchev
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Manana R. Skhirtladze
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Svetlana N. Larina
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Zaur M. Kachaev
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander D. Egorov
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Yulii V. Shidlovskii
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
22
|
Dong C, Lv Y, Xie L, Yang R, Chen L, Zhang L, Long T, Yang H, Mao X, Fan Q, Chen X, Zhang H. Association of UCP1 polymorphisms with type 2 diabetes mellitus and their interaction with physical activity and sedentary behavior. Gene 2020; 739:144497. [PMID: 32088243 DOI: 10.1016/j.gene.2020.144497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/10/2020] [Accepted: 02/19/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Uncoupling protein 1 (UCP1) has been reported to be associated with type 2 diabetes mellitus (T2DM) in different populations, however, little is reported in Chinese population. The present study aimed to explore the association between some polymorphisms of UCP1 with T2DM and the interactions between UCP1 and physical activity/sedentary behavior (PA/SB) lifestyle in Chinese population. METHODS Three polymorphisms (rs1472268, rs3811790 and rs3811791) were genotyped in 929 T2DM patients and 1044 nondiabetic controls. The data of PA and SB were acquired. Logistic regression and linear regression were conducted to assess the association of UCP1 and T2DM and related traits. RESULTS The CC genotype of rs3811791 was significantly associated with an increased risk of T2DM [odds ratio (OR) = 1.42, P = 0.042] and a higher level of triglyceride (TG) (β = 0.048, P = 0.034). This association still existed in the group of SB ≥ 3 h/d (OR = 1.66, P = 0.009) and the group of PA ≥ 150 min/week and SB ≥ 3 h/d (OR = 1.60, P = 0.034). In the group of PA < 150 min/week and SB < 3h/d, CC genotype was associated with a higher level of homeostatic model assessment of insulin resistance (HOMA-IR) index, and in the group of PA < 150 min/week and SB ≥ 3 h/d, CC genotype was associated with increased level of TG and decreased high-density lipoprotein cholesterol (HDL-C). CONCLUSION This study suggests that rs3811791 of UCP1 may be associated with T2DM and TG. Moreover, we demonstrate that SB interacted with rs3811791 of UCP1 was associated with T2DM, and PA interacted with rs3811791 of UCP1 was associated with the level of HOMA-IR, HDL-C, and TG.
Collapse
Affiliation(s)
- Chunting Dong
- School of Public Health, Guangxi Medical University, Nanning 530021, People's Republic of China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Yingnan Lv
- School of Public Health, Guangxi Medical University, Nanning 530021, People's Republic of China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Lianguang Xie
- School of Public Health, Guangxi Medical University, Nanning 530021, People's Republic of China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Rongqing Yang
- School of Public Health, Guangxi Medical University, Nanning 530021, People's Republic of China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Lulin Chen
- Third Affiliated Hospital of Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Lulu Zhang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Tianzhu Long
- First Affiliated Hospital of Hainan Medical University, Haikou 570102, People's Republic of China
| | - Haisheng Yang
- School of Public Health, Guangxi Medical University, Nanning 530021, People's Republic of China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Xingning Mao
- School of Public Health, Guangxi Medical University, Nanning 530021, People's Republic of China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Qiuyu Fan
- School of Public Health, Guangxi Medical University, Nanning 530021, People's Republic of China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Xiaolang Chen
- School of Public Health, Guangxi Medical University, Nanning 530021, People's Republic of China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Haiying Zhang
- School of Public Health, Guangxi Medical University, Nanning 530021, People's Republic of China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, People's Republic of China; Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, People's Republic of China.
| |
Collapse
|
23
|
Dieter C, Assmann TS, Lemos NE, Massignam ET, de Souza BM, Bauer AC, Crispim D. -866G/A and Ins/Del polymorphisms in the UCP2 gene and diabetic kidney disease: case-control study and meta-analysis. Genet Mol Biol 2020; 43:e20180374. [PMID: 31479096 PMCID: PMC7198021 DOI: 10.1590/1678-4685-gmb-2018-0374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/11/2019] [Indexed: 01/11/2023] Open
Abstract
Uncoupling protein 2 (UCP2) decreases reactive oxygen species (ROS). ROS overproduction is a key contributor to the pathogenesis of diabetic kidney disease (DKD). Thus, UCP2 polymorphisms are candidate risk factors for DKD; however, their associations with this complication are still inconclusive. Here, we describe a case-control study and a meta-analysis conducted to investigate the association between UCP2 -866G/A and Ins/Del polymorphisms and DKD. The case-control study comprised 385 patients with type 1 diabetes mellitus (T1DM): 223 patients without DKD and 162 with DKD. UCP2 -866G/A (rs659366) and Ins/Del polymorphisms were genotyped by real-time PCR and conventional PCR, respectively. For the meta-analysis, a literature search was conducted to identify all studies that investigated associations between UCP2 polymorphisms and DKD in patients with T1DM or type 2 diabetes mellitus. Pooled odds ratios were calculated for different inheritance models. Allele and genotype frequencies of -866G/A and Ins/Del polymorphisms did not differ between T1DM case and control groups. Haplotype frequencies were also similar between groups. Four studies plus the present one were eligible for inclusion in the meta-analysis. In agreement with case-control data, the meta-analysis results showed that the -866G/A and Ins/Del polymorphisms were not associated with DKD. In conclusion, our case-control and meta-analysis studies did not indicate an association between the analyzed UCP2 polymorphisms and DKD.
Collapse
Affiliation(s)
- Cristine Dieter
- Hospital de Clínicas de Porto Alegre, Endocrine Division, Porto
Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Faculdade de
Medicina, Programa de Pós-Graduação em Ciências Médicas: Endocrinologia, Porto
Alegre, RS, Brazil
| | - Taís Silveira Assmann
- Universidad de Navarra, Department of Nutrition, Food Science
and Physiology, Pamplona, Spain
| | - Natália Emerim Lemos
- Hospital de Clínicas de Porto Alegre, Endocrine Division, Porto
Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Faculdade de
Medicina, Programa de Pós-Graduação em Ciências Médicas: Endocrinologia, Porto
Alegre, RS, Brazil
| | | | - Bianca Marmontel de Souza
- Hospital de Clínicas de Porto Alegre, Endocrine Division, Porto
Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Faculdade de
Medicina, Programa de Pós-Graduação em Ciências Médicas: Endocrinologia, Porto
Alegre, RS, Brazil
| | - Andrea Carla Bauer
- Hospital de Clínicas de Porto Alegre, Endocrine Division, Porto
Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Faculdade de
Medicina, Programa de Pós-Graduação em Ciências Médicas: Endocrinologia, Porto
Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre, Nephrology Division, Porto
Alegre, RS, Brazil
| | - Daisy Crispim
- Hospital de Clínicas de Porto Alegre, Endocrine Division, Porto
Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Faculdade de
Medicina, Programa de Pós-Graduação em Ciências Médicas: Endocrinologia, Porto
Alegre, RS, Brazil
| |
Collapse
|
24
|
Jin P, Li Z, Xu X, He J, Chen J, Xu X, Du X, Bai X, Zhang B, He X, Lu L, Zhu J, Shi Y, Zou H. Analysis of association between common variants of uncoupling proteins genes and diabetic retinopathy in a Chinese population. BMC MEDICAL GENETICS 2020; 21:25. [PMID: 32028915 PMCID: PMC7006419 DOI: 10.1186/s12881-020-0956-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 01/20/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND The aim of this study was to explore the association between diabetic retinopathy (DR) and the variants of uncoupling proteins (UCPs) genes in a Chinese population of type 2 diabetes, in total and in patients of different glycemic status separately. METHODS This case-control study included a total of 3107 participants from two datasets, among which 662 were DR patients (21.31%). Eighteen tag single nucleotide polymorphisms (SNPs) of UCP1, UCP2, and UCP3 were selected as genetic markers. TaqMan probes, Sequenom MassARRAY MALDI-TOF mass spectrometry platform and Affymetrix Genome-Wide Human SNP Array were used for genotyping. Online SHEsis software was used for association analysis. Bonferroni correction was used for multiple comparisons correction. RESULTS Three SNPs of UCP1: rs7688743 (A allele, OR = 1.192, p = 0.013), rs3811787 (T allele, OR = 0.863, p = 0.023), and rs10011540 (G allele, OR = 1.368, p = 0.004) showed association with DR after the adjustment of glucose, but only rs10011540 was marginally significantly associated with DR when Bonferroni correction was strictly applied (padj = 0.048). In patients with uncontrolled glucose, rs7688743 (A allele, p = 0.012, OR = 1.309), rs10011540 (G allele, p = 0.033, OR = 1.432), and rs3811787 (T allele, p = 0.022, OR = 0.811) were associated with DR, while in participants with well controlled glucose, the rs2734827 of UCP3 was associated with DR (A allele, p = 0.017, OR = 0.532). Rs3811787 of UCP1 showed a protective effect to sight threatening DR (T allele, p = 0.007, OR = 0.490), and the association existed after the adjustment for environmental factors and the correction. In patients with uncontrolled glucose, the rs3811787 of UCP1 (T allele, p = 0.017, OR = 0.467) and the rs591758 of UCP3 (C allele, p = 0.026, OR = 0.103) were associated with STDR. While in those with well controlled glucose, only the rs7688743 of UCP1 showed a protective effect (A allele, p = 0.024, OR = 0.049). None of the associations remain significant when Bonferroni correction was strictly applied (all p < 0.05). CONCLUSIONS The rs10011540 and rs3811787 of the UCP1 gene was marginally significantly associated with DR in Chinese type 2 diabetes patients. There might be different mechanisms of DR development in patients with different glycemic status.
Collapse
Affiliation(s)
- Peiyao Jin
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (originally named"Shanghai First People's Hospital"), Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, National Clinical Research Center for Eye Diseases, No.100 Haining Road, Shanghai, 20080, China
| | - Zhiqiang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xian Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (originally named"Shanghai First People's Hospital"), Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, National Clinical Research Center for Eye Diseases, No.100 Haining Road, Shanghai, 20080, China
| | - Jiangnan He
- Shanghai Eye Disease Prevention and Treatment Center, Shanghai Eye Hospital, Shanghai, 200040, China
| | - Jianhua Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xun Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (originally named"Shanghai First People's Hospital"), Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, National Clinical Research Center for Eye Diseases, No.100 Haining Road, Shanghai, 20080, China.,Shanghai Eye Disease Prevention and Treatment Center, Shanghai Eye Hospital, Shanghai, 200040, China
| | - Xuan Du
- Shanghai Eye Disease Prevention and Treatment Center, Shanghai Eye Hospital, Shanghai, 200040, China
| | - Xuelin Bai
- Xinjing Community Health Service Centre, Shanghai, 200335, China
| | - Bo Zhang
- Shanghai Eye Disease Prevention and Treatment Center, Shanghai Eye Hospital, Shanghai, 200040, China
| | - Xiangui He
- Shanghai Eye Disease Prevention and Treatment Center, Shanghai Eye Hospital, Shanghai, 200040, China
| | - Lina Lu
- Shanghai Eye Disease Prevention and Treatment Center, Shanghai Eye Hospital, Shanghai, 200040, China
| | - Jianfeng Zhu
- Shanghai Eye Disease Prevention and Treatment Center, Shanghai Eye Hospital, Shanghai, 200040, China
| | - Yongyong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Haidong Zou
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (originally named"Shanghai First People's Hospital"), Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, National Clinical Research Center for Eye Diseases, No.100 Haining Road, Shanghai, 20080, China. .,Shanghai Eye Disease Prevention and Treatment Center, Shanghai Eye Hospital, Shanghai, 200040, China.
| |
Collapse
|
25
|
The A allele of the UCP2 -866G/A polymorphism changes UCP2 promoter activity in HUVECs treated with high glucose. Mol Biol Rep 2019; 46:4735-4741. [DOI: 10.1007/s11033-019-04918-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/13/2019] [Indexed: 01/07/2023]
|
26
|
Rodríguez-Pardo C, Segura A, Zamorano-León JJ, Martínez-Santos C, Martínez D, Collado-Yurrita L, Giner M, García-García JM, Rodríguez-Pardo JM, López-Farre A. Decision tree learning to predict overweight/obesity based on body mass index and gene polymporphisms. Gene 2019; 699:88-93. [DOI: 10.1016/j.gene.2019.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 12/26/2022]
|
27
|
Gomathi P, Samarth AP, Raj NBAJ, Sasikumar S, Murugan PS, Nallaperumal S, Selvam GS. The -866G/A polymorphism in the promoter of the UCP2 gene is associated with risk for type 2 diabetes and with decreased insulin levels. Gene 2019; 701:125-130. [PMID: 30910560 DOI: 10.1016/j.gene.2019.03.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/15/2019] [Accepted: 03/20/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIM Oxidative stress and impaired insulin secretion is an underlying major risk factor for the development of type 2 diabetes (T2D). Uncoupling protein-2 (UCP2) is involved in the regulation of reactive oxygen species production, insulin secretion, and lipid metabolism. Based on this we aimed to find an association of UCP2 (G-866A) polymorphism with the risk of T2D in South Indian population. METHODS A total of 318 T2D patients and 312 controls were enrolled in this study. All the study subjects were genotyped for UCP2 (G-866A) polymorphism using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Fasting blood glucose, HbA1c, serum lipid profile, systolic and diastolic blood pressure were measured by standard biochemical methods. Fasting serum insulin level was measured by ELISA. RESULTS In UCP2 (G-866A) polymorphism, the distribution of GA (46%) and AA (14%) genotypes were significantly higher in T2D patients than the healthy controls. The frequency of GA and AA genotypes have high risk towards the development of T2D with an Odds Ratio (OR) of 1.55 (P = 0.01) and 2.04 (P = 0.01) respectively. Moreover, SNP-866 G>A allele was found to be significantly associated with T2D (OR = 1.48, P = 0.001, 95% CI = 1.16-1.88). Further, the UCP2 AA genotype showed significantly decreased level of insulin by the reduction in pancreatic β-cell function in T2D patients. CONCLUSION UCP2 (G-866A) polymorphism may play a crucial role in the pathogenesis of insulin secretion thus leads to the development of T2D.
Collapse
Affiliation(s)
- Panneerselvam Gomathi
- Department of Biochemistry, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Apurwa P Samarth
- Department of Biochemistry, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | | | - Sundaresan Sasikumar
- Department of Biochemistry, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Ponniah Senthil Murugan
- Department of Biochemistry, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | | | - Govindan Sadasivam Selvam
- Department of Biochemistry, School of Biological Sciences, Madurai Kamaraj University, Madurai, India.
| |
Collapse
|
28
|
Association of uncoupling protein gene polymorphisms with essential hypertension in a northeastern Han Chinese population. J Hum Hypertens 2018; 33:524-530. [PMID: 30518806 DOI: 10.1038/s41371-018-0141-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 11/04/2018] [Accepted: 11/07/2018] [Indexed: 11/08/2022]
Abstract
Uncoupling proteins (UCPs) belong to the family of mitochondrial transporter proteins and mediate regulated proton leak across the inner mitochondrial membrane. The UCPs play an important role in energy homeostasis and reactive oxygen species (ROS) release, and have been established as candidate genes for obesity, diabetes and hypertension. This study examined the possible association between the single nucleotide polymorphisms (SNPs) of UCP1-3 genes and essential hypertension (EH) in a northeastern Han Chinese population. A total of 2207 Chinese Han subjects were enrolled, including 1045 normotensives and 1162 hypertensives. Genotyping of UCP1 rs1800592, UCP1 rs12502572, UCP2 rs659366, UCP2 rs660339, and UCP3 rs3781907 was detected using Sequenom MassArray System. SHEsis was used to analyze linkage disequilibrium and haplotype. No evident association was observed between the genotype distributions and allele frequencies of individual SNPs and EH. Haplotype analysis showed the haplotype GAATA (rs1800592-rs12502572-rs659366-rs660339-rs3781907) was significantly associated with lower EH risk (p = 0.001, χ2 = 10.861, OR = 0.634, 95% CI = 0.483-0.833), and AGATG was associated with increased EH risk (p = 0.012, χ2 = 6.287, OR = 1.265, 95% CI = 1.052-1.521). These findings suggest haplotypes of UCP1-3 genes are linked to EH risk in a northeastern Han Chinese population. Further investigation with larger sample size in multiethnic population is needed to confirm our results.
Collapse
|
29
|
The Oxidative Stress and Mitochondrial Dysfunction during the Pathogenesis of Diabetic Retinopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3420187. [PMID: 30254714 PMCID: PMC6145164 DOI: 10.1155/2018/3420187] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/27/2018] [Accepted: 08/14/2018] [Indexed: 12/14/2022]
Abstract
Diabetic retinopathy is one of the most serious microvascular complications induced by hyperglycemia via five major pathways, including polyol, hexosamine, protein kinase C, and angiotensin II pathways and the accumulation of advanced glycation end products. The hyperglycemia-induced overproduction of reactive oxygen species (ROS) induces local inflammation, mitochondrial dysfunction, microvascular dysfunction, and cell apoptosis. The accumulation of ROS, local inflammation, and cell death are tightly linked and considerably affect all phases of diabetic retinopathy pathogenesis. Furthermore, microvascular dysfunction induces ischemia and local inflammation, leading to neovascularization, macular edema, and neurodysfunction, ultimately leading to long-term blindness. Therefore, it is crucial to understand and elucidate the detailed mechanisms underlying the development of diabetic retinopathy. In this review, we summarized the existing knowledge about the pathogenesis and current strategies for the treatment of diabetic retinopathy, and we believe this systematization will help and support further research in this area.
Collapse
|
30
|
Mandour I, Darwish R, Fayez R, Naguib M, El-Sayegh S. TCF7L2 Gene Polymorphisms and Susceptibility to Type 2 Diabetes Mellitus, A Pilot Study. ACTA ACUST UNITED AC 2018. [DOI: 10.13005/bpj/1465] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Transcription factor 7-like 2 (TCF7L2) variants are known risk factors of type 2 diabetes (T2DM).However, this association is not consistent among different populations. The current study aimed at investigating the relationship between rs 7903146, rs 12255372 variants of TCF7L2 and susceptibility to T2DM and different metabolic parameters in a cohort of Egyptian type 2 diabetic patients. This case control study included 60 diabetic patients and 60 matched unrelated healthy controls. Genotyping was performed by using Real Time-PCR. The frequency of genotypes, alleles, anthropometric measures, glycemic indices, HOMA-IR and lipid profile were evaluated in patients and control. Regarding rs 7903146, TT genotype was more frequent in healthy controls (43.3%) than diabetic patients (20%) (OR = 0.291, 95% CI = 0.108-0.788, P = 0.015). T allele was more frequent in healthy control (61.7%) than diabetic patients (44.2%) and it was associated with lower risk of diabetes (OR = 0.492, 95% CI = 0.294-0.823, P = 0.007).However, there was no significant difference between patients with CC, CT and TT genotypes of rs7903146 regarding HbA1C (p=0.549), HOMA-IR (p=0.359), total cholesterol (p=0.482). In contrast, T allele of rs12255372 had no significant relation to diabetes risk (OR = 0.602, 95% CI = 0.361-1.005, P = 0.052). There was no statistically significant difference of frequency of any rs12255372 genotypes between cases and controls In addition, patients with GG,GT, TT genotypes of rs12255372 had no significant difference regarding HbA1C (p=0.393), HOMA-IR (p=0.985), total cholesterol (p=0.368). The study confirmed the association of TCF7L2 (rs 7903146) and T2DM, while failed to detect any association between TCF7L2 (rs 12255372) and susceptibility to T2DM. No significant difference in respect to metabolic parameters between different genotypes of rs7930146 and rs12255372.
Collapse
Affiliation(s)
- Iman Mandour
- Department of Clinical and Chemical pathology, Kasr Al-Ainy, Cairo University, Egypt
| | - Rania Darwish
- Department of Clinical and Chemical pathology, Kasr Al-Ainy, Cairo University, Egypt
| | - Randa Fayez
- Department of Internal Medicine, Kasr Al-Ainy, Cairo University, Egypt
| | - Mervat Naguib
- Department of Internal Medicine, Kasr Al-Ainy, Cairo University, Egypt
| | - Sarah El-Sayegh
- Department of Clinical and Chemical pathology, Kasr Al-Ainy, Cairo University, Egypt
| |
Collapse
|
31
|
Gamboa R, Huesca-Gómez C, López-Pérez V, Posadas-Sánchez R, Cardoso-Saldaña G, Medina-Urrutia A, Juárez-Rojas JG, Soto ME, Posadas-Romero C, Vargas-Alarcón G. The UCP2 -866G/A, Ala55Val and UCP3 -55C/T polymorphisms are associated with premature coronary artery disease and cardiovascular risk factors in Mexican population. Genet Mol Biol 2018; 41:371-378. [PMID: 29786102 PMCID: PMC6082227 DOI: 10.1590/1678-4685-gmb-2017-0008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 10/18/2017] [Indexed: 11/26/2022] Open
Abstract
We examined the role of UCP gene polymorphisms as susceptibility markers for premature coronary artery disease (pCAD). The UCP2 Ala55Val (C/T rs660339), UCP2 -866G/A (rs659366), and UCP3 -55C/T (rs1800849) polymorphisms were genotyped in 948 patients with pCAD, and 763 controls. The distribution of the UCP2 A55V (C/T rs660339) and UCP3 -55 (rs1800849) was similar in patients and controls. However, under a recessive model, the UCP2 -866 (rs659366) A allele was associated with increased risk of developing pCAD (OR = 1.43, Pc = 0.003). On the other hand, patients with pCAD and UCP2 A55V (rs660339) TT showed high levels of visceral abdominal fat (VAF) (Pc = 0.002), low levels of subcutaneous abdominal fat (SAF) (Pc = 0.001) and high VAT/SAT ratio (Pc < 0.001). Also, patients with UCP2 -866 (rs659366) AA showed increased levels of VAF (Pc = 0.003), low levels of SAF (Pc = 0.001) and a high VAT/SAT ratio (Pc = 0.002), whereas patients with the UCP3 -55 (rs1800849) TT presented high levels of VAF (Pc = 0.002). The results suggest the association of the UCP2 -866 (rs659366) polymorphism with risk of developing pCAD. Some polymorphisms were associated with abdominal fat levels and cardiovascular risk factors.
Collapse
Affiliation(s)
- Ricardo Gamboa
- Instituto Nacional de
CardiologíaInstituto Nacional de
CardiologíaDepartment of PhysiologyMexicoD.F.MexicoDepartment of Physiology, Instituto
Nacional de Cardiología “Ignacio Chávez”, Mexico D.F., Mexico
| | - Claudia Huesca-Gómez
- Instituto Nacional de
CardiologíaInstituto Nacional de
CardiologíaDepartment of PhysiologyMexicoD.F.MexicoDepartment of Physiology, Instituto
Nacional de Cardiología “Ignacio Chávez”, Mexico D.F., Mexico
| | - Vanessa López-Pérez
- Instituto Nacional de
CardiologíaInstituto Nacional de
CardiologíaDepartment of PhysiologyMexicoD.F.MexicoDepartment of Physiology, Instituto
Nacional de Cardiología “Ignacio Chávez”, Mexico D.F., Mexico
| | - Rosalinda Posadas-Sánchez
- Instituto Nacional de
CardiologíaInstituto Nacional de
CardiologíaDepartment of EndocrinologyMexicoD.F.MexicoDepartment of Endocrinology, Instituto
Nacional de Cardiología “Ignacio Chávez”, Mexico D.F., Mexico
| | - Guillermo Cardoso-Saldaña
- Instituto Nacional de
CardiologíaInstituto Nacional de
CardiologíaDepartment of EndocrinologyMexicoD.F.MexicoDepartment of Endocrinology, Instituto
Nacional de Cardiología “Ignacio Chávez”, Mexico D.F., Mexico
| | - Aida Medina-Urrutia
- Instituto Nacional de
CardiologíaInstituto Nacional de
CardiologíaDepartment of EndocrinologyMexicoD.F.MexicoDepartment of Endocrinology, Instituto
Nacional de Cardiología “Ignacio Chávez”, Mexico D.F., Mexico
| | - Juan Gabriel Juárez-Rojas
- Instituto Nacional de
CardiologíaInstituto Nacional de
CardiologíaDepartment of EndocrinologyMexicoD.F.MexicoDepartment of Endocrinology, Instituto
Nacional de Cardiología “Ignacio Chávez”, Mexico D.F., Mexico
| | - María Elena Soto
- Instituto Nacional de
CardiologíaInstituto Nacional de
CardiologíaDepartment of ImmunologyMexicoD.F.MexicoDepartment of Immunology, Instituto
Nacional de Cardiología “Ignacio Chávez”, Mexico D.F., Mexico
| | - Carlos Posadas-Romero
- Instituto Nacional de
CardiologíaInstituto Nacional de
CardiologíaDepartment of EndocrinologyMexicoD.F.MexicoDepartment of Endocrinology, Instituto
Nacional de Cardiología “Ignacio Chávez”, Mexico D.F., Mexico
| | - Gilberto Vargas-Alarcón
- Instituto Nacional de
CardiologíaInstituto Nacional de
CardiologíaDepartment of Molecular
BiologyMexicoD.F.MexicoDepartment of Molecular Biology, Instituto
Nacional de Cardiología “Ignacio Chávez”, Mexico D.F., Mexico
| |
Collapse
|
32
|
Su M, Chen X, Chen Y, Wang C, Li S, Ying X, Xiao T, Wang N, Jiang Q, Fu C. UCP2 and UCP3 variants and gene-environment interaction associated with prediabetes and T2DM in a rural population: a case control study in China. BMC MEDICAL GENETICS 2018. [PMID: 29529994 PMCID: PMC5848510 DOI: 10.1186/s12881-018-0554-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Background There are disparities for the association between uncoupling proteins (UCP) and type 2 diabetes (T2DM). The study was to examine the associations of genetic variants of UCP2 and UCP3 with prediabetes and T2DM in a rural Chinese population. Methods A population-based case-control study of 397 adults with T2DM, 394 with prediabetes and 409 with normal glucose tolerance (NGT) was carried out in 2014 in a rural community in eastern China. Three groups were identified through a community survey and the prediabetes and NGT groups were frequently matched by age and gender with the T2DM group and they were not relatives of T2DM subjects. With r2 ≥ 0.8 and minor allele frequency (MAF) ≥0.05 for tag single nucleotide polymorphisms (SNPs) with potential function, three (rs660339, rs45560234 and rs643064) and six (rs7930460, rs15763, rs647126, rs1800849, rs3781907 and rs1685356) SNPs were selected respectively for UCP2 and UCP3 and genotyped in real time using the MassARRAY system (Sequenom; USA). The haplotypes, gene-environmental interaction and association between genetic variants of UCP2 and UCP3 and prediabetes or T2DM were explored. Results There were no significant differences in age and sex among three study groups. After the adjustment for possible covariates, the A allele of rs1800849 in UCP3 was significantly associated with prediabetes (aORAA vs GG = 1.68, 95% CI: 1.02–2.78), and the association was also significant under the recessive model (aOR AA vs GA + GG = 1.64, 95% CI: 1.02–2.66). Also, rs15763 was found to be marginally significantly associated with T2DM under dominant model (ORGA + AA vs GG = 0.73, 95% CI: 0.52–1.03, P = 0.072). No haplotype was significantly associated with prediabetes or T2DM. Multiplicative interactions for rs660339-overweight on T2DM were observed. In addition, the AA genotype of rs660339 was associated with an increased risk of T2DM in overweight subjects (OR = 1.48, 95%CI: 0.87–2.52) but with a decreased risk in those with normal weight (OR = 0.54, 95%CI: 0.28–1.05). Conclusions Rs1800849 in UCP3 was significantly associated with prediabetes. Overweight might modify the effects of rs660339 of UCP2 on T2DM. Electronic supplementary material The online version of this article (10.1186/s12881-018-0554-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Meifang Su
- Yuhuan County Center for Disease Control and Prevention, Yuhuan, Zhejiang Province, 317600, China
| | - Xiaoying Chen
- School of Public Health, Fudan University, 138 Yi Xue Yuan Road, Xuhui District, Shanghai, 200032, China
| | - Yue Chen
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1G 5Z3, Canada
| | - Congyun Wang
- School of Public Health, Fudan University, 138 Yi Xue Yuan Road, Xuhui District, Shanghai, 200032, China
| | - Songtao Li
- Yuhuan County Center for Disease Control and Prevention, Yuhuan, Zhejiang Province, 317600, China
| | - Xuhua Ying
- Yuhuan County Center for Disease Control and Prevention, Yuhuan, Zhejiang Province, 317600, China
| | - Tian Xiao
- School of Public Health, Fudan University, 138 Yi Xue Yuan Road, Xuhui District, Shanghai, 200032, China
| | - Na Wang
- School of Public Health, Fudan University, 138 Yi Xue Yuan Road, Xuhui District, Shanghai, 200032, China
| | - Qingwu Jiang
- School of Public Health, Fudan University, 138 Yi Xue Yuan Road, Xuhui District, Shanghai, 200032, China
| | - Chaowei Fu
- School of Public Health, Fudan University, 138 Yi Xue Yuan Road, Xuhui District, Shanghai, 200032, China.
| |
Collapse
|
33
|
Rheinheimer J, de Souza BM, Cardoso NS, Bauer AC, Crispim D. Current role of the NLRP3 inflammasome on obesity and insulin resistance: A systematic review. Metabolism 2017; 74:1-9. [PMID: 28764843 DOI: 10.1016/j.metabol.2017.06.002] [Citation(s) in RCA: 195] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/17/2017] [Accepted: 06/07/2017] [Indexed: 12/13/2022]
Abstract
NLRP3 inflammasome activation seems to be a culprit behind the chronic inflammation characteristic of obesity and insulin resistance (IR). Nutrient excess generates danger-associated molecules that activate NLRP3 inflammasome-caspase 1, leading to maturation of IL-1β and IL-18, which are proinflammatory cytokines released by immune cells infiltrating the adipose tissue (AT) from obese subjects. Although several studies have reported an association of the NLRP3 inflammasome with obesity and/or IR; contradictory results were also reported by other studies. Therefore, we conducted a systematic review to summarize results of studies that evaluated the association of the NLRP3 with obesity and IR. Nineteen studies were included in the review. These studies focused on NLRP3 expression/polymorphism analyses in AT. Overall, human studies indicate that obesity and IR are associated with increased NLRP3 expression in AT. Studies in obese mice corroborate this association. Moreover, high fat diet (HFD) increases Nlrp3 expression in murine AT while calorie-restricted diet decreases its expression. Hence, Nlrp3 blockade in mice protects against HFD-induced obesity and IR. NLRP3 rs10754558 polymorphism is associated with risk for T2DM in Chinese Han populations. In conclusion, available studies strongly points for an association between NLRP3 inflammasome and obesity/IR.
Collapse
Affiliation(s)
- Jakeline Rheinheimer
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Post-graduation Program in Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Bianca M de Souza
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Post-graduation Program in Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Natali S Cardoso
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Andrea C Bauer
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Post-graduation Program in Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Daisy Crispim
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Post-graduation Program in Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
34
|
Sreedhar A, Zhao Y. Uncoupling protein 2 and metabolic diseases. Mitochondrion 2017; 34:135-140. [PMID: 28351676 PMCID: PMC5477468 DOI: 10.1016/j.mito.2017.03.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/22/2017] [Accepted: 03/24/2017] [Indexed: 02/06/2023]
Abstract
Mitochondria are fascinating organelles involved in various cellular-metabolic activities that are integral for mammalian development. Although they perform diverse, yet interconnected functions, mitochondria are remarkably regulated by complex signaling networks. Therefore, it is not surprising that mitochondrial dysfunction is involved in plethora of diseases, including neurodegenerative and metabolic disorders. One of the many factors that lead to mitochondrial-associated metabolic diseases is the uncoupling protein-2, a family of mitochondrial anion proteins present in the inner mitochondrial membrane. Since their discovery, uncoupling proteins have attracted considerable attention due to their involvement in mitochondrial-mediated oxidative stress and energy metabolism. This review attempts to provide a summary of recent developments in the field of uncoupling protein 2 relating to mitochondrial associated metabolic diseases.
Collapse
Affiliation(s)
- Annapoorna Sreedhar
- Department of Pharmacology, Toxicology & Neuroscience, LSU Health Sciences Center in Shreveport, Shreveport, LA 71130, USA
| | - Yunfeng Zhao
- Department of Pharmacology, Toxicology & Neuroscience, LSU Health Sciences Center in Shreveport, Shreveport, LA 71130, USA.
| |
Collapse
|
35
|
Villarroya F, Peyrou M, Giralt M. Transcriptional regulation of the uncoupling protein-1 gene. Biochimie 2016; 134:86-92. [PMID: 27693079 DOI: 10.1016/j.biochi.2016.09.017] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/25/2016] [Indexed: 02/08/2023]
Abstract
Regulated transcription of the uncoupling protein-1 (UCP1) gene, and subsequent UCP1 protein synthesis, is a hallmark of the acquisition of the differentiated, thermogenically competent status of brown and beige/brite adipocytes, as well as of the responsiveness of brown and beige/brite adipocytes to adaptive regulation of thermogenic activity. The 5' non-coding region of the UCP1 gene contains regulatory elements that confer tissue specificity, differentiation dependence, and neuro-hormonal regulation to UCP1 gene transcription. Two main regions-a distal enhancer and a proximal promoter region-mediate transcriptional regulation through interactions with a plethora of transcription factors, including nuclear hormone receptors and cAMP-responsive transcription factors. Co-regulators, such as PGC-1α, play a pivotal role in the concerted regulation of UCP1 gene transcription. Multiple interactions of transcription factors and co-regulators at the promoter region of the UCP1 gene result in local chromatin remodeling, leading to activation and increased accessibility of RNA polymerase II and subsequent gene transcription. Moreover, a commonly occurring A-to-G polymorphism in close proximity to the UCP1 gene enhancer influences the extent of UCP1 gene transcription. Notably, it has been reported that specific aspects of obesity and associated metabolic diseases are associated with human population variability at this site. On another front, the unique properties of the UCP1 promoter region have been exploited to develop brown adipose tissue-specific gene delivery tools for experimental purposes.
Collapse
Affiliation(s)
- Francesc Villarroya
- Department of Biochemistry and Molecular Biomedicine, Institut de Biomedicina (IBUB), University of Barcelona, Barcelona, Catalonia, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Spain; Institut de Recerca Pediàtrica Sant Joan de Déu, Barcelona, Catalonia, Spain.
| | - Marion Peyrou
- Department of Biochemistry and Molecular Biomedicine, Institut de Biomedicina (IBUB), University of Barcelona, Barcelona, Catalonia, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Spain; Institut de Recerca Pediàtrica Sant Joan de Déu, Barcelona, Catalonia, Spain
| | - Marta Giralt
- Department of Biochemistry and Molecular Biomedicine, Institut de Biomedicina (IBUB), University of Barcelona, Barcelona, Catalonia, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Spain; Institut de Recerca Pediàtrica Sant Joan de Déu, Barcelona, Catalonia, Spain
| |
Collapse
|
36
|
Assmann TS, Brondani LA, Bouças AP, Rheinheimer J, de Souza BM, Canani LH, Bauer AC, Crispim D. Nitric oxide levels in patients with diabetes mellitus: A systematic review and meta-analysis. Nitric Oxide 2016; 61:1-9. [PMID: 27677584 DOI: 10.1016/j.niox.2016.09.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/30/2016] [Accepted: 09/23/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Altered serum nitric oxide (NO) levels in patients with diabetes mellitus (DM) have been reported by different studies; however, results are still controversial. Until this date, no meta-analysis evaluated the association of NO levels with DM. Thus, this paper describes a meta-analysis conducted to evaluate if there is a relationship between NO levels and type 1 DM (T1DM) or type 2 DM (T2DM). METHODS A literature search was done to identify all studies that investigated NO levels between T1DM or T2DM patients (cases) and non-diabetic subjects (controls). Measurement of nitrate and nitrite (NOx - the stable NO products) were used to estimate NO concentrations because they closely reflect NO bioavailability. Weighted mean differences (WMD) of NOx levels between case and control samples were calculated for T1DM and T2DM groups. RESULTS Thirty studies were eligible for inclusion in the meta-analysis (8 in T1DM samples and 22 in T2DM samples). NOx levels were increased in European T1DM patients compared with controls [random effect model (REM) WMD = 8.55, 95% CI 2.88 - 14.21]. No other ethnicity was evaluated in T1DM studies. NOx levels were also increased in both European (REM WMD = 18.76, 95% CI 1.67 - 35.85) and Asian (REM WMD = 18.41, 95% CI 8.01 - 28.81) T2DM patients, but not in Latin American patients compared with controls. CONCLUSIONS This meta-analysis detected a significant increase in NOx levels in European T1DM patients as well as European and Asian T2DM patients. Further studies in other ethnicities are necessary to confirm these data.
Collapse
Affiliation(s)
- Taís S Assmann
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Post-graduation Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Letícia A Brondani
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Ana P Bouças
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Jakeline Rheinheimer
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Post-graduation Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Bianca M de Souza
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Post-graduation Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Luís H Canani
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Post-graduation Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Andrea C Bauer
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Daisy Crispim
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Post-graduation Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
37
|
Nicoletti CF, de Oliveira APRP, Brochado MJF, de Oliveira BP, Pinhel MADS, Marchini JS, dos Santos JE, Salgado Junior W, Silva Junior WA, Nonino CB. UCP1 -3826 A>G polymorphism affects weight, fat mass, and risk of type 2 diabetes mellitus in grade III obese patients. Nutrition 2016; 32:83-7. [PMID: 26458326 DOI: 10.1016/j.nut.2015.07.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 07/17/2015] [Accepted: 07/29/2015] [Indexed: 01/08/2023]
|
38
|
Song YZ, You HY, Zhu ZH, Wen ZD, Xu HY, Chen BC, Chen ZJ, Huang QK. The C825T Polymorphism of the G-Protein β3 Gene as a Risk Factor for Functional Dyspepsia: A Meta-Analysis. Gastroenterol Res Pract 2015; 2016:5037254. [PMID: 27057160 PMCID: PMC4736015 DOI: 10.1155/2016/5037254] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 11/16/2015] [Indexed: 12/17/2022] Open
Abstract
Background. Functional dyspepsia (FD) is a functional upper gastrointestinal disorder with significant morbidity and medical costs. Previous studies investigated the association of G-protein β3 (GNB3) genetic polymorphisms with FD but with inconsistent results. Therefore, we performed a meta-analysis to derive a precise estimation of the relationship between GNB3 polymorphisms and FD. Methods. We searched different databases including PubMed, EMBASE, CNKI, and the Ovid Library to gather eligible studies on GNB3 polymorphisms and FD. The association was assessed by the odds ratio (OR) with 95% confidence intervals (CI). Results. We identified 12 studies with 1109 cases and 2853 controls for the analysis. We found no associations of GNB3 C825T polymorphism with FD in the overall population (T versus C, OR = 1.06, 95% CI: 0.96-1.18, P = 0.26; TT versus CC + CT, OR = 1.16, 95% CI: 0.97-1.39, P = 0.11; TT + CT versus CC, OR = 1.01, 95% CI: 0.77-1.31, P = 0.96; TT versus CC, OR = 1.15, 95% CI: 0.93-1.44, P = 0.20). Subgroup analyses by genotyping method indicated that the magnitude of association was strengthened for additive model (OR = 1.15, 95% CI: 1.07-2.24, P = 0.02). Sensitivity analysis did not reveal significant associations under all models. Conclusions. This meta-analysis demonstrates that GNB3 C825T polymorphism may not be a risk factor for FD.
Collapse
Affiliation(s)
- Yi-Zuo Song
- Zhejiang Provincial Top Key Discipline in Surgery, Wenzhou Key Laboratory of Surgery, Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - He-Yi You
- Zhejiang Provincial Top Key Discipline in Surgery, Wenzhou Key Laboratory of Surgery, Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Zhe-Hui Zhu
- Zhejiang Provincial Top Key Discipline in Surgery, Wenzhou Key Laboratory of Surgery, Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Zheng-De Wen
- Zhejiang Provincial Top Key Discipline in Surgery, Wenzhou Key Laboratory of Surgery, Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Hui-Ying Xu
- Zhejiang Provincial Top Key Discipline in Surgery, Wenzhou Key Laboratory of Surgery, Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Bi-Cheng Chen
- Zhejiang Provincial Top Key Discipline in Surgery, Wenzhou Key Laboratory of Surgery, Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Zong-Jing Chen
- Zhejiang Provincial Top Key Discipline in Surgery, Wenzhou Key Laboratory of Surgery, Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Qing-Ke Huang
- Department of Gastroenterology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
39
|
Vimaleswaran KS, Cavadino A, Verweij N, Nolte IM, Mateo Leach I, Auvinen J, Veijola J, Elliott P, Penninx BW, Snieder H, Järvelin MR, van der Harst P, Cohen RD, Boucher BJ, Hyppönen E. Interactions between uncoupling protein 2 gene polymorphisms, obesity and alcohol intake on liver function: a large meta-analysed population-based study. Eur J Endocrinol 2015; 173:863-72. [PMID: 26526553 DOI: 10.1530/eje-15-0839] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND AND OBJECTIVE Given the role of uncoupling protein 2 (UCP2) in the accumulation of fat in the hepatocytes and in the enhancement of protective mechanisms in acute ethanol intake, we hypothesised that UCP2 polymorphisms are likely to cause liver disease through their interactions with obesity and alcohol intake. To test this hypothesis, we investigated the interaction between tagging polymorphisms in the UCP2 gene (rs2306819, rs599277 and rs659366), alcohol intake and obesity traits such as BMI and waist circumference (WC) on alanine aminotransferase (ALT) and gamma glutamyl transferase (GGT) in a large meta-analysis of data sets from three populations (n=20 242). DESIGN AND METHODS The study populations included the Northern Finland Birth Cohort 1966 (n=4996), Netherlands Study of Depression and Anxiety (n=1883) and LifeLines Cohort Study (n=13 363). Interactions between the polymorphisms and obesity and alcohol intake on dichotomised ALT and GGT levels were assessed using logistic regression and the likelihood ratio test. RESULTS In the meta-analysis of the three cohorts, none of the three UCP2 polymorphisms were associated with GGT or ALT levels. There was no evidence for interaction between the polymorphisms and alcohol intake on GGT and ALT levels. In contrast, the association of WC and BMI with GGT levels varied by rs659366 genotype (Pinteraction=0.03 and 0.007, respectively; adjusted for age, gender, high alcohol intake, diabetes, hypertension and serum lipid concentrations). CONCLUSION In conclusion, our findings in 20 242 individuals suggest that UCP2 gene polymorphisms may cause liver dysfunction through the interaction with body fat rather than alcohol intake.
Collapse
Affiliation(s)
- Karani S Vimaleswaran
- Hugh Sinclair Unit of Human NutritionDepartment of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Whiteknights, PO Box 226, Reading RG6 6AP, UKPopulationPolicy and Practice, UCL Institute of Child Health, London, UKWolfson Institute of Preventive MedicineCentre for Environmental and Preventive Medicine, Queen Mary University of London, London, UK, Departments of CardiologyEpidemiologyUniversity Medical Center Groningen, University of Groningen, Groningen, The NetherlandsUnit of Primary CareOulu University Hospital, Oulu, FinlandFaculty of MedicineCenter for Life Course EpidemiologyDepartment of PsychiatryCenter for Clinical Neuroscience, University of Oulu, Oulu, FinlandDepartment of PsychiatryMedical Research Center, University Hospital of Oulu, Oulu, FinlandDepartment of Epidemiology and BiostatisticsImperial College London, MRC-PHE Centre for Environment and Health, London, UKDepartment of PsychiatryLeiden University Medical Center, Leiden, The NetherlandsDepartment of PsychiatryEMGO Institute of Health and Care Research, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The NetherlandsBiocenter OuluUniversity of Oulu, Oulu, FinlandDepartment of GeneticsUniversity Medical Center Groningen, University of Groningen, Groningen, The NetherlandsICIN - Netherlands Heart InstituteDurrer Center for Cardiogenetic Research, Utrecht, The NetherlandsBarts and The London School of Medicine and DentistryQueen Mary University of London, Blizard Institute, Newark Street, London, UKCentre for Population Health ResearchSchool of Health Science and Sansom Institute of Health Research, University of South Australia, Adelaide, South Australia, AustraliaSouth Australian Health and Medical Research InstituteAdelaide, South Australia, Australia Hugh Sinclair Unit of Human NutritionDepartment of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Whiteknights, PO Box 226, Readin
| | - Alana Cavadino
- Hugh Sinclair Unit of Human NutritionDepartment of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Whiteknights, PO Box 226, Reading RG6 6AP, UKPopulationPolicy and Practice, UCL Institute of Child Health, London, UKWolfson Institute of Preventive MedicineCentre for Environmental and Preventive Medicine, Queen Mary University of London, London, UK, Departments of CardiologyEpidemiologyUniversity Medical Center Groningen, University of Groningen, Groningen, The NetherlandsUnit of Primary CareOulu University Hospital, Oulu, FinlandFaculty of MedicineCenter for Life Course EpidemiologyDepartment of PsychiatryCenter for Clinical Neuroscience, University of Oulu, Oulu, FinlandDepartment of PsychiatryMedical Research Center, University Hospital of Oulu, Oulu, FinlandDepartment of Epidemiology and BiostatisticsImperial College London, MRC-PHE Centre for Environment and Health, London, UKDepartment of PsychiatryLeiden University Medical Center, Leiden, The NetherlandsDepartment of PsychiatryEMGO Institute of Health and Care Research, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The NetherlandsBiocenter OuluUniversity of Oulu, Oulu, FinlandDepartment of GeneticsUniversity Medical Center Groningen, University of Groningen, Groningen, The NetherlandsICIN - Netherlands Heart InstituteDurrer Center for Cardiogenetic Research, Utrecht, The NetherlandsBarts and The London School of Medicine and DentistryQueen Mary University of London, Blizard Institute, Newark Street, London, UKCentre for Population Health ResearchSchool of Health Science and Sansom Institute of Health Research, University of South Australia, Adelaide, South Australia, AustraliaSouth Australian Health and Medical Research InstituteAdelaide, South Australia, Australia Hugh Sinclair Unit of Human NutritionDepartment of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Whiteknights, PO Box 226, Readin
| | - Niek Verweij
- Hugh Sinclair Unit of Human NutritionDepartment of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Whiteknights, PO Box 226, Reading RG6 6AP, UKPopulationPolicy and Practice, UCL Institute of Child Health, London, UKWolfson Institute of Preventive MedicineCentre for Environmental and Preventive Medicine, Queen Mary University of London, London, UK, Departments of CardiologyEpidemiologyUniversity Medical Center Groningen, University of Groningen, Groningen, The NetherlandsUnit of Primary CareOulu University Hospital, Oulu, FinlandFaculty of MedicineCenter for Life Course EpidemiologyDepartment of PsychiatryCenter for Clinical Neuroscience, University of Oulu, Oulu, FinlandDepartment of PsychiatryMedical Research Center, University Hospital of Oulu, Oulu, FinlandDepartment of Epidemiology and BiostatisticsImperial College London, MRC-PHE Centre for Environment and Health, London, UKDepartment of PsychiatryLeiden University Medical Center, Leiden, The NetherlandsDepartment of PsychiatryEMGO Institute of Health and Care Research, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The NetherlandsBiocenter OuluUniversity of Oulu, Oulu, FinlandDepartment of GeneticsUniversity Medical Center Groningen, University of Groningen, Groningen, The NetherlandsICIN - Netherlands Heart InstituteDurrer Center for Cardiogenetic Research, Utrecht, The NetherlandsBarts and The London School of Medicine and DentistryQueen Mary University of London, Blizard Institute, Newark Street, London, UKCentre for Population Health ResearchSchool of Health Science and Sansom Institute of Health Research, University of South Australia, Adelaide, South Australia, AustraliaSouth Australian Health and Medical Research InstituteAdelaide, South Australia, Australia
| | - Ilja M Nolte
- Hugh Sinclair Unit of Human NutritionDepartment of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Whiteknights, PO Box 226, Reading RG6 6AP, UKPopulationPolicy and Practice, UCL Institute of Child Health, London, UKWolfson Institute of Preventive MedicineCentre for Environmental and Preventive Medicine, Queen Mary University of London, London, UK, Departments of CardiologyEpidemiologyUniversity Medical Center Groningen, University of Groningen, Groningen, The NetherlandsUnit of Primary CareOulu University Hospital, Oulu, FinlandFaculty of MedicineCenter for Life Course EpidemiologyDepartment of PsychiatryCenter for Clinical Neuroscience, University of Oulu, Oulu, FinlandDepartment of PsychiatryMedical Research Center, University Hospital of Oulu, Oulu, FinlandDepartment of Epidemiology and BiostatisticsImperial College London, MRC-PHE Centre for Environment and Health, London, UKDepartment of PsychiatryLeiden University Medical Center, Leiden, The NetherlandsDepartment of PsychiatryEMGO Institute of Health and Care Research, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The NetherlandsBiocenter OuluUniversity of Oulu, Oulu, FinlandDepartment of GeneticsUniversity Medical Center Groningen, University of Groningen, Groningen, The NetherlandsICIN - Netherlands Heart InstituteDurrer Center for Cardiogenetic Research, Utrecht, The NetherlandsBarts and The London School of Medicine and DentistryQueen Mary University of London, Blizard Institute, Newark Street, London, UKCentre for Population Health ResearchSchool of Health Science and Sansom Institute of Health Research, University of South Australia, Adelaide, South Australia, AustraliaSouth Australian Health and Medical Research InstituteAdelaide, South Australia, Australia
| | - Irene Mateo Leach
- Hugh Sinclair Unit of Human NutritionDepartment of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Whiteknights, PO Box 226, Reading RG6 6AP, UKPopulationPolicy and Practice, UCL Institute of Child Health, London, UKWolfson Institute of Preventive MedicineCentre for Environmental and Preventive Medicine, Queen Mary University of London, London, UK, Departments of CardiologyEpidemiologyUniversity Medical Center Groningen, University of Groningen, Groningen, The NetherlandsUnit of Primary CareOulu University Hospital, Oulu, FinlandFaculty of MedicineCenter for Life Course EpidemiologyDepartment of PsychiatryCenter for Clinical Neuroscience, University of Oulu, Oulu, FinlandDepartment of PsychiatryMedical Research Center, University Hospital of Oulu, Oulu, FinlandDepartment of Epidemiology and BiostatisticsImperial College London, MRC-PHE Centre for Environment and Health, London, UKDepartment of PsychiatryLeiden University Medical Center, Leiden, The NetherlandsDepartment of PsychiatryEMGO Institute of Health and Care Research, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The NetherlandsBiocenter OuluUniversity of Oulu, Oulu, FinlandDepartment of GeneticsUniversity Medical Center Groningen, University of Groningen, Groningen, The NetherlandsICIN - Netherlands Heart InstituteDurrer Center for Cardiogenetic Research, Utrecht, The NetherlandsBarts and The London School of Medicine and DentistryQueen Mary University of London, Blizard Institute, Newark Street, London, UKCentre for Population Health ResearchSchool of Health Science and Sansom Institute of Health Research, University of South Australia, Adelaide, South Australia, AustraliaSouth Australian Health and Medical Research InstituteAdelaide, South Australia, Australia
| | - Juha Auvinen
- Hugh Sinclair Unit of Human NutritionDepartment of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Whiteknights, PO Box 226, Reading RG6 6AP, UKPopulationPolicy and Practice, UCL Institute of Child Health, London, UKWolfson Institute of Preventive MedicineCentre for Environmental and Preventive Medicine, Queen Mary University of London, London, UK, Departments of CardiologyEpidemiologyUniversity Medical Center Groningen, University of Groningen, Groningen, The NetherlandsUnit of Primary CareOulu University Hospital, Oulu, FinlandFaculty of MedicineCenter for Life Course EpidemiologyDepartment of PsychiatryCenter for Clinical Neuroscience, University of Oulu, Oulu, FinlandDepartment of PsychiatryMedical Research Center, University Hospital of Oulu, Oulu, FinlandDepartment of Epidemiology and BiostatisticsImperial College London, MRC-PHE Centre for Environment and Health, London, UKDepartment of PsychiatryLeiden University Medical Center, Leiden, The NetherlandsDepartment of PsychiatryEMGO Institute of Health and Care Research, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The NetherlandsBiocenter OuluUniversity of Oulu, Oulu, FinlandDepartment of GeneticsUniversity Medical Center Groningen, University of Groningen, Groningen, The NetherlandsICIN - Netherlands Heart InstituteDurrer Center for Cardiogenetic Research, Utrecht, The NetherlandsBarts and The London School of Medicine and DentistryQueen Mary University of London, Blizard Institute, Newark Street, London, UKCentre for Population Health ResearchSchool of Health Science and Sansom Institute of Health Research, University of South Australia, Adelaide, South Australia, AustraliaSouth Australian Health and Medical Research InstituteAdelaide, South Australia, Australia Hugh Sinclair Unit of Human NutritionDepartment of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Whiteknights, PO Box 226, Readin
| | - Juha Veijola
- Hugh Sinclair Unit of Human NutritionDepartment of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Whiteknights, PO Box 226, Reading RG6 6AP, UKPopulationPolicy and Practice, UCL Institute of Child Health, London, UKWolfson Institute of Preventive MedicineCentre for Environmental and Preventive Medicine, Queen Mary University of London, London, UK, Departments of CardiologyEpidemiologyUniversity Medical Center Groningen, University of Groningen, Groningen, The NetherlandsUnit of Primary CareOulu University Hospital, Oulu, FinlandFaculty of MedicineCenter for Life Course EpidemiologyDepartment of PsychiatryCenter for Clinical Neuroscience, University of Oulu, Oulu, FinlandDepartment of PsychiatryMedical Research Center, University Hospital of Oulu, Oulu, FinlandDepartment of Epidemiology and BiostatisticsImperial College London, MRC-PHE Centre for Environment and Health, London, UKDepartment of PsychiatryLeiden University Medical Center, Leiden, The NetherlandsDepartment of PsychiatryEMGO Institute of Health and Care Research, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The NetherlandsBiocenter OuluUniversity of Oulu, Oulu, FinlandDepartment of GeneticsUniversity Medical Center Groningen, University of Groningen, Groningen, The NetherlandsICIN - Netherlands Heart InstituteDurrer Center for Cardiogenetic Research, Utrecht, The NetherlandsBarts and The London School of Medicine and DentistryQueen Mary University of London, Blizard Institute, Newark Street, London, UKCentre for Population Health ResearchSchool of Health Science and Sansom Institute of Health Research, University of South Australia, Adelaide, South Australia, AustraliaSouth Australian Health and Medical Research InstituteAdelaide, South Australia, Australia Hugh Sinclair Unit of Human NutritionDepartment of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Whiteknights, PO Box 226, Readin
| | - Paul Elliott
- Hugh Sinclair Unit of Human NutritionDepartment of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Whiteknights, PO Box 226, Reading RG6 6AP, UKPopulationPolicy and Practice, UCL Institute of Child Health, London, UKWolfson Institute of Preventive MedicineCentre for Environmental and Preventive Medicine, Queen Mary University of London, London, UK, Departments of CardiologyEpidemiologyUniversity Medical Center Groningen, University of Groningen, Groningen, The NetherlandsUnit of Primary CareOulu University Hospital, Oulu, FinlandFaculty of MedicineCenter for Life Course EpidemiologyDepartment of PsychiatryCenter for Clinical Neuroscience, University of Oulu, Oulu, FinlandDepartment of PsychiatryMedical Research Center, University Hospital of Oulu, Oulu, FinlandDepartment of Epidemiology and BiostatisticsImperial College London, MRC-PHE Centre for Environment and Health, London, UKDepartment of PsychiatryLeiden University Medical Center, Leiden, The NetherlandsDepartment of PsychiatryEMGO Institute of Health and Care Research, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The NetherlandsBiocenter OuluUniversity of Oulu, Oulu, FinlandDepartment of GeneticsUniversity Medical Center Groningen, University of Groningen, Groningen, The NetherlandsICIN - Netherlands Heart InstituteDurrer Center for Cardiogenetic Research, Utrecht, The NetherlandsBarts and The London School of Medicine and DentistryQueen Mary University of London, Blizard Institute, Newark Street, London, UKCentre for Population Health ResearchSchool of Health Science and Sansom Institute of Health Research, University of South Australia, Adelaide, South Australia, AustraliaSouth Australian Health and Medical Research InstituteAdelaide, South Australia, Australia
| | - Brenda W Penninx
- Hugh Sinclair Unit of Human NutritionDepartment of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Whiteknights, PO Box 226, Reading RG6 6AP, UKPopulationPolicy and Practice, UCL Institute of Child Health, London, UKWolfson Institute of Preventive MedicineCentre for Environmental and Preventive Medicine, Queen Mary University of London, London, UK, Departments of CardiologyEpidemiologyUniversity Medical Center Groningen, University of Groningen, Groningen, The NetherlandsUnit of Primary CareOulu University Hospital, Oulu, FinlandFaculty of MedicineCenter for Life Course EpidemiologyDepartment of PsychiatryCenter for Clinical Neuroscience, University of Oulu, Oulu, FinlandDepartment of PsychiatryMedical Research Center, University Hospital of Oulu, Oulu, FinlandDepartment of Epidemiology and BiostatisticsImperial College London, MRC-PHE Centre for Environment and Health, London, UKDepartment of PsychiatryLeiden University Medical Center, Leiden, The NetherlandsDepartment of PsychiatryEMGO Institute of Health and Care Research, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The NetherlandsBiocenter OuluUniversity of Oulu, Oulu, FinlandDepartment of GeneticsUniversity Medical Center Groningen, University of Groningen, Groningen, The NetherlandsICIN - Netherlands Heart InstituteDurrer Center for Cardiogenetic Research, Utrecht, The NetherlandsBarts and The London School of Medicine and DentistryQueen Mary University of London, Blizard Institute, Newark Street, London, UKCentre for Population Health ResearchSchool of Health Science and Sansom Institute of Health Research, University of South Australia, Adelaide, South Australia, AustraliaSouth Australian Health and Medical Research InstituteAdelaide, South Australia, Australia Hugh Sinclair Unit of Human NutritionDepartment of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Whiteknights, PO Box 226, Readin
| | - Harold Snieder
- Hugh Sinclair Unit of Human NutritionDepartment of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Whiteknights, PO Box 226, Reading RG6 6AP, UKPopulationPolicy and Practice, UCL Institute of Child Health, London, UKWolfson Institute of Preventive MedicineCentre for Environmental and Preventive Medicine, Queen Mary University of London, London, UK, Departments of CardiologyEpidemiologyUniversity Medical Center Groningen, University of Groningen, Groningen, The NetherlandsUnit of Primary CareOulu University Hospital, Oulu, FinlandFaculty of MedicineCenter for Life Course EpidemiologyDepartment of PsychiatryCenter for Clinical Neuroscience, University of Oulu, Oulu, FinlandDepartment of PsychiatryMedical Research Center, University Hospital of Oulu, Oulu, FinlandDepartment of Epidemiology and BiostatisticsImperial College London, MRC-PHE Centre for Environment and Health, London, UKDepartment of PsychiatryLeiden University Medical Center, Leiden, The NetherlandsDepartment of PsychiatryEMGO Institute of Health and Care Research, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The NetherlandsBiocenter OuluUniversity of Oulu, Oulu, FinlandDepartment of GeneticsUniversity Medical Center Groningen, University of Groningen, Groningen, The NetherlandsICIN - Netherlands Heart InstituteDurrer Center for Cardiogenetic Research, Utrecht, The NetherlandsBarts and The London School of Medicine and DentistryQueen Mary University of London, Blizard Institute, Newark Street, London, UKCentre for Population Health ResearchSchool of Health Science and Sansom Institute of Health Research, University of South Australia, Adelaide, South Australia, AustraliaSouth Australian Health and Medical Research InstituteAdelaide, South Australia, Australia
| | - Marjo-Riitta Järvelin
- Hugh Sinclair Unit of Human NutritionDepartment of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Whiteknights, PO Box 226, Reading RG6 6AP, UKPopulationPolicy and Practice, UCL Institute of Child Health, London, UKWolfson Institute of Preventive MedicineCentre for Environmental and Preventive Medicine, Queen Mary University of London, London, UK, Departments of CardiologyEpidemiologyUniversity Medical Center Groningen, University of Groningen, Groningen, The NetherlandsUnit of Primary CareOulu University Hospital, Oulu, FinlandFaculty of MedicineCenter for Life Course EpidemiologyDepartment of PsychiatryCenter for Clinical Neuroscience, University of Oulu, Oulu, FinlandDepartment of PsychiatryMedical Research Center, University Hospital of Oulu, Oulu, FinlandDepartment of Epidemiology and BiostatisticsImperial College London, MRC-PHE Centre for Environment and Health, London, UKDepartment of PsychiatryLeiden University Medical Center, Leiden, The NetherlandsDepartment of PsychiatryEMGO Institute of Health and Care Research, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The NetherlandsBiocenter OuluUniversity of Oulu, Oulu, FinlandDepartment of GeneticsUniversity Medical Center Groningen, University of Groningen, Groningen, The NetherlandsICIN - Netherlands Heart InstituteDurrer Center for Cardiogenetic Research, Utrecht, The NetherlandsBarts and The London School of Medicine and DentistryQueen Mary University of London, Blizard Institute, Newark Street, London, UKCentre for Population Health ResearchSchool of Health Science and Sansom Institute of Health Research, University of South Australia, Adelaide, South Australia, AustraliaSouth Australian Health and Medical Research InstituteAdelaide, South Australia, Australia Hugh Sinclair Unit of Human NutritionDepartment of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Whiteknights, PO Box 226, Readin
| | - Pim van der Harst
- Hugh Sinclair Unit of Human NutritionDepartment of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Whiteknights, PO Box 226, Reading RG6 6AP, UKPopulationPolicy and Practice, UCL Institute of Child Health, London, UKWolfson Institute of Preventive MedicineCentre for Environmental and Preventive Medicine, Queen Mary University of London, London, UK, Departments of CardiologyEpidemiologyUniversity Medical Center Groningen, University of Groningen, Groningen, The NetherlandsUnit of Primary CareOulu University Hospital, Oulu, FinlandFaculty of MedicineCenter for Life Course EpidemiologyDepartment of PsychiatryCenter for Clinical Neuroscience, University of Oulu, Oulu, FinlandDepartment of PsychiatryMedical Research Center, University Hospital of Oulu, Oulu, FinlandDepartment of Epidemiology and BiostatisticsImperial College London, MRC-PHE Centre for Environment and Health, London, UKDepartment of PsychiatryLeiden University Medical Center, Leiden, The NetherlandsDepartment of PsychiatryEMGO Institute of Health and Care Research, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The NetherlandsBiocenter OuluUniversity of Oulu, Oulu, FinlandDepartment of GeneticsUniversity Medical Center Groningen, University of Groningen, Groningen, The NetherlandsICIN - Netherlands Heart InstituteDurrer Center for Cardiogenetic Research, Utrecht, The NetherlandsBarts and The London School of Medicine and DentistryQueen Mary University of London, Blizard Institute, Newark Street, London, UKCentre for Population Health ResearchSchool of Health Science and Sansom Institute of Health Research, University of South Australia, Adelaide, South Australia, AustraliaSouth Australian Health and Medical Research InstituteAdelaide, South Australia, Australia Hugh Sinclair Unit of Human NutritionDepartment of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Whiteknights, PO Box 226, Readin
| | - Robert D Cohen
- Hugh Sinclair Unit of Human NutritionDepartment of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Whiteknights, PO Box 226, Reading RG6 6AP, UKPopulationPolicy and Practice, UCL Institute of Child Health, London, UKWolfson Institute of Preventive MedicineCentre for Environmental and Preventive Medicine, Queen Mary University of London, London, UK, Departments of CardiologyEpidemiologyUniversity Medical Center Groningen, University of Groningen, Groningen, The NetherlandsUnit of Primary CareOulu University Hospital, Oulu, FinlandFaculty of MedicineCenter for Life Course EpidemiologyDepartment of PsychiatryCenter for Clinical Neuroscience, University of Oulu, Oulu, FinlandDepartment of PsychiatryMedical Research Center, University Hospital of Oulu, Oulu, FinlandDepartment of Epidemiology and BiostatisticsImperial College London, MRC-PHE Centre for Environment and Health, London, UKDepartment of PsychiatryLeiden University Medical Center, Leiden, The NetherlandsDepartment of PsychiatryEMGO Institute of Health and Care Research, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The NetherlandsBiocenter OuluUniversity of Oulu, Oulu, FinlandDepartment of GeneticsUniversity Medical Center Groningen, University of Groningen, Groningen, The NetherlandsICIN - Netherlands Heart InstituteDurrer Center for Cardiogenetic Research, Utrecht, The NetherlandsBarts and The London School of Medicine and DentistryQueen Mary University of London, Blizard Institute, Newark Street, London, UKCentre for Population Health ResearchSchool of Health Science and Sansom Institute of Health Research, University of South Australia, Adelaide, South Australia, AustraliaSouth Australian Health and Medical Research InstituteAdelaide, South Australia, Australia
| | - Barbara J Boucher
- Hugh Sinclair Unit of Human NutritionDepartment of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Whiteknights, PO Box 226, Reading RG6 6AP, UKPopulationPolicy and Practice, UCL Institute of Child Health, London, UKWolfson Institute of Preventive MedicineCentre for Environmental and Preventive Medicine, Queen Mary University of London, London, UK, Departments of CardiologyEpidemiologyUniversity Medical Center Groningen, University of Groningen, Groningen, The NetherlandsUnit of Primary CareOulu University Hospital, Oulu, FinlandFaculty of MedicineCenter for Life Course EpidemiologyDepartment of PsychiatryCenter for Clinical Neuroscience, University of Oulu, Oulu, FinlandDepartment of PsychiatryMedical Research Center, University Hospital of Oulu, Oulu, FinlandDepartment of Epidemiology and BiostatisticsImperial College London, MRC-PHE Centre for Environment and Health, London, UKDepartment of PsychiatryLeiden University Medical Center, Leiden, The NetherlandsDepartment of PsychiatryEMGO Institute of Health and Care Research, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The NetherlandsBiocenter OuluUniversity of Oulu, Oulu, FinlandDepartment of GeneticsUniversity Medical Center Groningen, University of Groningen, Groningen, The NetherlandsICIN - Netherlands Heart InstituteDurrer Center for Cardiogenetic Research, Utrecht, The NetherlandsBarts and The London School of Medicine and DentistryQueen Mary University of London, Blizard Institute, Newark Street, London, UKCentre for Population Health ResearchSchool of Health Science and Sansom Institute of Health Research, University of South Australia, Adelaide, South Australia, AustraliaSouth Australian Health and Medical Research InstituteAdelaide, South Australia, Australia
| | - Elina Hyppönen
- Hugh Sinclair Unit of Human NutritionDepartment of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Whiteknights, PO Box 226, Reading RG6 6AP, UKPopulationPolicy and Practice, UCL Institute of Child Health, London, UKWolfson Institute of Preventive MedicineCentre for Environmental and Preventive Medicine, Queen Mary University of London, London, UK, Departments of CardiologyEpidemiologyUniversity Medical Center Groningen, University of Groningen, Groningen, The NetherlandsUnit of Primary CareOulu University Hospital, Oulu, FinlandFaculty of MedicineCenter for Life Course EpidemiologyDepartment of PsychiatryCenter for Clinical Neuroscience, University of Oulu, Oulu, FinlandDepartment of PsychiatryMedical Research Center, University Hospital of Oulu, Oulu, FinlandDepartment of Epidemiology and BiostatisticsImperial College London, MRC-PHE Centre for Environment and Health, London, UKDepartment of PsychiatryLeiden University Medical Center, Leiden, The NetherlandsDepartment of PsychiatryEMGO Institute of Health and Care Research, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The NetherlandsBiocenter OuluUniversity of Oulu, Oulu, FinlandDepartment of GeneticsUniversity Medical Center Groningen, University of Groningen, Groningen, The NetherlandsICIN - Netherlands Heart InstituteDurrer Center for Cardiogenetic Research, Utrecht, The NetherlandsBarts and The London School of Medicine and DentistryQueen Mary University of London, Blizard Institute, Newark Street, London, UKCentre for Population Health ResearchSchool of Health Science and Sansom Institute of Health Research, University of South Australia, Adelaide, South Australia, AustraliaSouth Australian Health and Medical Research InstituteAdelaide, South Australia, Australia Hugh Sinclair Unit of Human NutritionDepartment of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Whiteknights, PO Box 226, Readin
| |
Collapse
|
40
|
de Souza BM, Michels M, Sortica DA, Bouças AP, Rheinheimer J, Buffon MP, Bauer AC, Canani LH, Crispim D. Polymorphisms of the UCP2 Gene Are Associated with Glomerular Filtration Rate in Type 2 Diabetic Patients and with Decreased UCP2 Gene Expression in Human Kidney. PLoS One 2015; 10:e0132938. [PMID: 26218518 PMCID: PMC4517748 DOI: 10.1371/journal.pone.0132938] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/20/2015] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Uncoupling protein 2 (UCP2) reduces production of reactive oxygen species (ROS) by mitochondria. ROS overproduction is one of the major contributors to the pathogenesis of chronic diabetic complications, such as diabetic kidney disease (DKD). Thus, deleterious polymorphisms in the UCP2 gene are candidate risk factors for DKD. In this study, we investigated whether UCP2 -866G/A, Ala55Val and Ins/Del polymorphisms were associated with DKD in patients with type 2 diabetes mellitus (T2DM), and whether they had an effect on UCP2 gene expression in human kidney tissue biopsies. MATERIALS AND METHODS In a case-control study, frequencies of the UCP2 -866G/A, Ala55Val and Ins/Del polymorphisms as well as frequencies of the haplotypes constituted by them were analyzed in 287 T2DM patients with DKD and 281 T2DM patients without this complication. In a cross-sectional study, UCP2 gene expression was evaluated in 42 kidney biopsy samples stratified according to the presence of the UCP2 mutated -866A/55Val/Ins haplotype. RESULTS In the T2DM group, multivariate logistic regression analysis showed that the -866A/55Val/Ins haplotype was an independent risk factor for DKD (OR = 2.136, 95% CI 1.036-4.404), although neither genotype nor allele frequencies of the individual polymorphisms differed between case and control groups. Interestingly, T2DM patients carrying the mutated haplotype showed decreased estimated glomerular filtration rate (eGFR) when compared to subjects with the reference haplotype (adjusted P= 0.035). In kidney biopsy samples, UCP2 expression was significantly decreased in UCP2 mutated haplotype carriers when compared to kidneys from patients with the reference haplotype (0.32 ± 1.20 vs. 1.85 ± 1.16 n fold change; adjusted P< 0.000001). DISCUSSION Data reported here suggest that the UCP2 -866A/55Val/Ins haplotype is associated with an increased risk for DKD and with a lower eGFR in T2DM patients. Furthermore, this mutated haplotype was associated with decreased UCP2 gene expression in human kidneys.
Collapse
Affiliation(s)
- Bianca Marmontel de Souza
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Marcus Michels
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Denise Alves Sortica
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Paula Bouças
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jakeline Rheinheimer
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Marjoriê Piuco Buffon
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Andrea Carla Bauer
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Luís Henrique Canani
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Daisy Crispim
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
41
|
Lin C, Chu CM, Lin J, Yang HY, Su SL. Gene-gene and gene-environment interactions in meta-analysis of genetic association studies. PLoS One 2015; 10:e0124967. [PMID: 25923960 PMCID: PMC4414456 DOI: 10.1371/journal.pone.0124967] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 03/19/2015] [Indexed: 01/10/2023] Open
Abstract
Extensive genetic studies have identified a large number of causal genetic variations in many human phenotypes; however, these could not completely explain heritability in complex diseases. Some researchers have proposed that the “missing heritability” may be attributable to gene–gene and gene–environment interactions. Because there are billions of potential interaction combinations, the statistical power of a single study is often ineffective in detecting these interactions. Meta-analysis is a common method of increasing detection power; however, accessing individual data could be difficult. This study presents a simple method that employs aggregated summary values from a “case” group to detect these specific interactions that based on rare disease and independence assumptions. However, these assumptions, particularly the rare disease assumption, may be violated in real situations; therefore, this study further investigated the robustness of our proposed method when it violates the assumptions. In conclusion, we observed that the rare disease assumption is relatively nonessential, whereas the independence assumption is an essential component. Because single nucleotide polymorphisms (SNPs) are often unrelated to environmental factors and SNPs on other chromosomes, researchers should use this method to investigate gene–gene and gene–environment interactions when they are unable to obtain detailed individual patient data.
Collapse
Affiliation(s)
- Chin Lin
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Chi-Ming Chu
- School of Public Health, National Defense Medical Center, Taipei, Taiwan, ROC
| | - John Lin
- Math Teachers' Office, Kaohsiung Municipal Girls' Senior High School, Kaohsiung, Taiwan, ROC
| | - Hsin-Yi Yang
- School of Public Health, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Sui-Lung Su
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, ROC; School of Public Health, National Defense Medical Center, Taipei, Taiwan, ROC
| |
Collapse
|
42
|
Sortica DA, Buffon MP, Souza BM, Nicoletto BB, Santer A, Assmann TS, Crispim D, Canani LH. Association between the ENPP1 K121Q polymorphism and risk of diabetic kidney disease: a systematic review and meta-analysis. PLoS One 2015; 10:e0118416. [PMID: 25794151 PMCID: PMC4368055 DOI: 10.1371/journal.pone.0118416] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/16/2015] [Indexed: 01/05/2023] Open
Abstract
The potential association between the K121Q (A/C, rs1044498) polymorphism in the ectonucleotide pyrophosphatase/phosphodiesterase (ENPP1) gene and risk of diabetic kidney disease (DKD) has been investigated. Nevertheless, the effect of this variant on DKD risk is still under debate, and conflicting results have been reported. To this date, no meta-analysis has evaluated the association of the K121Q polymorphism with DKD. This paper describes the first meta-analysis conducted to evaluate whether the ENPP1K121Q polymorphism is associated with DKD. A literature search was conducted to identify all case-control or cross-sectional studies that evaluated associations between the ENPP1K121Q polymorphism and DKD. Pooled odds ratios (OR) and 95% confidence intervals (95% CI) were calculated for allele contrast, additive, dominant and recessive inheritance models. Seven studies were eligible for inclusion in the meta-analysis, providing data on 3571 type 1 or type 2 diabetic patients (1606 cases with DKD and 1965 diabetic controls without this complication). No significant heterogeneity was observed among the studies included in the meta-analysis when assuming different inheritance models (I² < 50% or P > 0.10 for the entire sample and after stratification by ethnicity). Meta-analysis results revealed significant associations between the K121Q polymorphism and risk of DKD in Asians and Europeans when assuming the different inheritance models analyzed. The most powerful association was observed for the additive model (OR = 1.74, 95% CI 1.27-2.38 for the total sample). In conclusion, the present meta-analysis detected a significant association between the ENPP1K121Q polymorphism and increased susceptibility of DKD in European and Asian populations.
Collapse
Affiliation(s)
- Denise Alves Sortica
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Marjorie Piucco Buffon
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Bianca Marmontel Souza
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Bruna Bellicanta Nicoletto
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Andressa Santer
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Tais Silveira Assmann
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Daisy Crispim
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Luis Henrique Canani
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- * E-mail:
| |
Collapse
|
43
|
Nicoletto BB, Canani LH. The role of progranulin in diabetes and kidney disease. Diabetol Metab Syndr 2015; 7:117. [PMID: 26697121 PMCID: PMC4687133 DOI: 10.1186/s13098-015-0112-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/08/2015] [Indexed: 11/10/2022] Open
Abstract
Progranulin (PGRN) is a cysteine rich secreted protein, expressed in epithelial cells, immune cells, neurons, and adipocytes. It was first identified for its growth factor-like properties, being involved in early embryogenesis and tissue remodeling, acting as an anti-inflammatory molecule. In the central nervous system, PGRN has neurotrophic and neuroprotective actions. There is also evidence of PGRN effects on cancer, contributing to tumor proliferation, invasion and cell survival. Recently, PGRN was recognized as an adipokine related to obesity and insulin resistance, revealing its metabolic function and pro-inflammatory properties. In obesity and type 2 diabetes mellitus, PGRN levels are increased. In renal disease, there is a relevant association, however, it is not known if it could contribute to kidney damage or if it is only a route of PGRN elimination. PGRN is an emerging molecule which demands studies in different fields. Possibly, it plays distinct functions in different tissues/cells and metabolic conditions. Here, we discuss potential mechanisms and recent data of PGRN pro-inflammatory actions, regarding obesity, insulin resistance, type 2 diabetes mellitus and kidney disease.
Collapse
Affiliation(s)
- Bruna Bellincanta Nicoletto
- />Post Graduation Medical Sciences Program: Endocrinology, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), 2400 Ramiro Barcelos Street, 2º floor, Porto Alegre, Rio Grande do Sul 90035-003 Brazil
| | - Luis Henrique Canani
- />Post Graduation Medical Sciences Program: Endocrinology, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), 2400 Ramiro Barcelos Street, 2º floor, Porto Alegre, Rio Grande do Sul 90035-003 Brazil
- />Division of Endocrinology, Hospital de Clínicas de Porto Alegre, 2350 Ramiro Barcelos Street, Building 12, 4° floor, Porto Alegre, 90035-903 Brazil
| |
Collapse
|
44
|
Nakayama K, Miyashita H, Iwamoto S. Seasonal effects of the UCP3 and the RPTOR gene polymorphisms on obesity traits in Japanese adults. J Physiol Anthropol 2014; 33:38. [PMID: 25533680 PMCID: PMC4347541 DOI: 10.1186/1880-6805-33-38] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/02/2014] [Indexed: 11/10/2022] Open
Abstract
Background Non-shivering thermogenesis (NST) involves a substantial amount of energy expenditure in humans and, thus, contributes to reducing the risk for obesity. Molecular evolutionary studies have reported that SNPs in/near the uncoupling protein 3 gene (UCP3) and the regulatory associated protein of mTOR complex 1 gene (RPTOR) might influence NST and confer adaptive advantages for modern human dispersal into cold environments. In the present study, the impact of these SNPs on obesity-related traits was investigated. Methods Study subjects consisted of 2,834 Japanese adults (percentage of female: 46%, mean age: 51.5). Associations of the UCP3-55C/T and the RPTOR-26934C/T - the 2 potential genetic variations involved in cold adaptation and thermogenic mechanisms in mammals, with quantitative obesity-related traits including body mass index (BMI), waist circumference, visceral fat area (VFA), VFA adjusted for BMI, and selected blood parameters - were tested using multiple linear regression models. Sliding windowsampling analysis was applied to depict seasonal effects of the SNPs on the obesity-related phenotypes. Results UCP3-55C/T and the RPTOR-26934C/T did not show any association with obesity traits and blood chemical parameters in multiple linear regression models consisting of the whole subjects. Moreover, sliding window sampling-based association analyses involving seasonality also failed to find associations between these two SNPs and obesity-related traits. Conclusions UCP3-55C/T and the RPTOR-26934C/T may only have subtle effects on the development of obesity-related traits in the present humans. These two SNPs might be irrelevant to inter-individual variations in energy metabolism and efficiency of NST.
Collapse
Affiliation(s)
- Kazuhiro Nakayama
- Division of Human Genetics, Center for Molecular Medicine, Jichi Medical University, Shimotsuke-shi, Tochigi 329-0498, Japan.
| | | | | |
Collapse
|
45
|
Udagawa C, Tada N, Asano J, Ishioka K, Ochiai K, Bonkobara M, Tsuchida S, Omi T. The genetic association study between polymorphisms in uncoupling protein 2 and uncoupling protein 3 and metabolic data in dogs. BMC Res Notes 2014; 7:904. [PMID: 25495519 PMCID: PMC4295406 DOI: 10.1186/1756-0500-7-904] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 11/25/2014] [Indexed: 12/17/2022] Open
Abstract
Background The uncoupling proteins (UCPs) in the mitochondrial inner membrane are members of the mitochondrial anion carrier protein family that play an important role in energy homeostasis. Genetic association studies have shown that human UCP2 and UCP3 variants (SNPs and indels) are associated with obesity, insulin resistance, type 2 diabetes mellitus, and metabolic syndrome. The aim of this study was to examine the genetic association between polymorphisms in UCP2 and UCP3 and metabolic data in dogs. Results We identified 10 SNPs (9 intronic and 1 exonic) and 4 indels (intronic) in UCP2, and 13 SNPs (11 intronic and 2 exonic) and one indel (exonic) in UCP3, by DNA sequence analysis of 11 different dog breeds (n = 119). An association study between these UCP2 and UCP3 variants and the biochemical parameters of glucose, total cholesterol, lactate dehydrogenase and triglyceride in Labrador Retrievers (n = 50) showed that none of the UCP2 polymorphisms were significantly associated with the levels of these parameters. However, four UCP3 SNPs (intron 1) were significantly associated with total cholesterol levels. In addition, the allele frequencies of two of the four SNPs associated with higher total cholesterol levels in a breed that is susceptible to hypercholesterolemia (Shetland Sheepdogs, n = 30), compared with the control breed (Shiba, n = 30). Conclusion The results obtained from a limited number of individuals suggest that the UCP3 gene in dogs may be associated with total cholesterol levels. The examination of larger sample sizes and further analysis will lead to increased precision of these results. Electronic supplementary material The online version of this article (doi:10.1186/1756-0500-7-904) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Toshinori Omi
- Department of Basic Science, School of Veterinary Nursing and Technology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan.
| |
Collapse
|
46
|
Abstract
Obesity is an escalating threat of pandemic proportions, currently affecting billions of people worldwide and exerting a devastating socioeconomic influence in industrialized countries. Despite intensive efforts to curtail obesity, results have proved disappointing. Although it is well recognized that obesity is a result of gene-environment interactions and that predisposition to obesity lies predominantly in our evolutionary past, there is much debate as to the precise nature of how our evolutionary past contributed to obesity. The "thrifty genotype" hypothesis suggests that obesity in industrialized countries is a throwback to our ancestors having undergone positive selection for genes that favored energy storage as a consequence of the cyclical episodes of famine and surplus after the advent of farming 10 000 years ago. Conversely, the "drifty genotype" hypothesis contends that the prevalence of thrifty genes is not a result of positive selection for energy-storage genes but attributable to genetic drift resulting from the removal of predative selection pressures. Both theories, however, assume that selection pressures the ancestors of modern humans living in western societies faced were the same. Moreover, neither theory adequately explains the impact of globalization and changing population demographics on the genetic basis for obesity in developed countries, despite clear evidence for ethnic variation in obesity susceptibility and related metabolic disorders. In this article, we propose that the modern obesity pandemic in industrialized countries is a result of the differential exposure of the ancestors of modern humans to environmental factors that began when modern humans left Africa around 70 000 years ago and migrated through the globe, reaching the Americas around 20 000 years ago. This article serves to elucidate how an understanding of ethnic differences in genetic susceptibility to obesity and the metabolic syndrome, in the context of historic human population redistribution, could be used in the treatment of obesity in industrialized countries.
Collapse
Affiliation(s)
- Dyan Sellayah
- MRC Harwell (D.S., R.D.C.), Genetics of Type 2 Diabetes, Harwell Science and Innovation Campus, Harwell OX11 ORD, United Kingdom; Department of Physiology, Anatomy and Genetics (D.S.), University of Oxford, Oxford OX1 3PT, United Kingdom; and Institute of Developmental Sciences (F.R.C.), University of Southampton, Southampton SO16 6YD, United Kingdom
| | | | | |
Collapse
|
47
|
Brondani LDA, de Almeida Brondani L, de Souza BM, Assmann TS, Bouças AP, Bauer AC, Canani LH, Crispim D. Association of the UCP polymorphisms with susceptibility to obesity: case-control study and meta-analysis. Mol Biol Rep 2014; 41:5053-67. [PMID: 24752406 DOI: 10.1007/s11033-014-3371-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 04/05/2014] [Indexed: 12/25/2022]
Abstract
This paper describes a case-control study and a meta-analysis performed to evaluate if the following polymorphisms are associated with presence of obesity: -3826A/G (UCP1); -866G/A, Ala55Val and Ins/Del (UCP2) and -55C/T (UCP3). The case-control study enrolled 282 obese and 483 non-obese patients with type 2 diabetes. A literature search was made to identify all studies that evaluated associations between UCP1-3 polymorphisms and obesity. In the case-control study the distributions of the UCP variants did not differ between obese and non-obese groups (P > 0.05). Forty-seven studies were eligible for the meta-analysis and the results showed that the UCP2 -866G/A and UCP3 -55C/T polymorphisms were associated with protection to obesity in Europeans (OR = 0.89, 95% CI 0.82-0.97 and OR = 0.88, 95% CI 0.80-0.97, respectively). The UCP2 Ala55 val polymorphism was associated with obesity in Asians (OR = 1.61, 95% CI 1.13-2.30). The UCP2 Ins/Del polymorphism was associated with obesity mainly in Europeans (OR = 1.19, 95% CI 1.00-1.42). There was no significant association of the UCP1 -3826A/G polymorphism with obesity. In our case-control study we were not able to demonstrate any association between UCP polymorphisms and obesity in T2DM patients; however, in the meta-analysis we detected a significant association of UCP2 -866G/A, Ins/Del, Ala55Val and UCP3 -55C/T polymorphisms with obesity.
Collapse
|
48
|
Brondani LA, Duarte GCK, Canani LH, Crispim D. The presence of at least three alleles of the ADRB3 Trp64Arg (C/T) and UCP1 -3826A/G polymorphisms is associated with protection to overweight/obesity and with higher high-density lipoprotein cholesterol levels in Caucasian-Brazilian patients with type 2 diabetes. Metab Syndr Relat Disord 2013; 12:16-24. [PMID: 24138564 DOI: 10.1089/met.2013.0077] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND We investigated whether the -3826A/G polymorphism (rs1800592) of the uncoupling protein 1 gene (UCP1) and the Trp64Arg polymorphism (rs4994) of the β3-adrenergic receptor gene (ADRB3) are associated with type 2 diabetes mellitus (T2DM) and features of metabolic syndrome in a Brazilian-Caucasian population. METHODS Both polymorphisms were genotyped in 1015 T2DM patients and 561 nondiabetic subjects. The combined effect of both polymorphisms on T2DM and metabolic syndrome-related parameters was analyzed according to a triallelic inheritance pattern, by which at least three minor alleles from two loci are necessary for trait manifestation. RESULTS UCP1 -3826A/G and ADRB3 Trp64Arg polymorphisms were not associated with T2DM (P>0.05). Patients carrying the ADRB3 64Arg allele had higher fasting plasma glucose and high-density lipoprotein cholesterol (HDL-C) than patients with the Trp64Trp genotype (P=0.0001 and P=0.015, respectively). The 64Arg allele was also associated with protection against overweight/obesity (body mass index ≥ 25 kg/m(2); odds ratio [OR]=0.598; P=0.014). Interestingly, prevalence of overweight/obesity was lower among carriers of at least three minor alleles of the -3826A/G and ADRB3 Trp64Arg polymorphisms than among patients with fewer than three minor alleles (54.5% vs. 79.1%; OR=0.288; P=0.007, respectively). Subjects with at least three minor alleles also had higher HDL-C levels (P=0.018). CONCLUSIONS UCP1 -3826A/G and ADRB3 Trp64Arg polymorphisms may have a combined effect in the modulation of overweight/obesity and HDL-C levels in type 2 diabetes mellitus (T2DM) Caucasian-Brazilian patients.
Collapse
Affiliation(s)
- Letícia A Brondani
- Endocrine Division, Hospital de Clínicas de Porto Alegre , Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brasil
| | | | | | | |
Collapse
|
49
|
Liu J, Li J, Li WJ, Wang CM. The role of uncoupling proteins in diabetes mellitus. J Diabetes Res 2013; 2013:585897. [PMID: 23841103 PMCID: PMC3687498 DOI: 10.1155/2013/585897] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 05/21/2013] [Indexed: 01/04/2023] Open
Abstract
Uncoupling proteins (UCPs) are anion carriers expressed in the mitochondrial inner membrane that uncouple oxygen consumption by the respiratory chain from ATP synthesis. The physiological functions of UCPs have long been debated since the new UCPs (UCP2 to 5) were discovered, and the role of UCPs in the pathogeneses of diabetes mellitus is one of the hottest topics. UCPs are thought to be activated by superoxide and then decrease mitochondrial free radicals generation; this may provide a protective effect on diabetes mellitus that is under the oxidative stress conditions. UCP1 is considered to be a candidate gene for diabetes because of its role in thermogenesis and energy expenditure. UCP2 is expressed in several tissues and acts in the negative regulation of insulin secretion by β-cells and in fatty acid metabolism. UCP3 plays a role in fatty acid metabolism and energy homeostasis and modulates insulin sensitivity. Several gene polymorphisms of UCP1, UCP2, and UCP3 were reported to be associated with diabetes. The progress in the role of UCP1, UCP2, and UCP3 on diabetes mellitus is summarized in this review.
Collapse
Affiliation(s)
- Jing Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Ji Li
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Wen-Jian Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Chun-Ming Wang
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- *Chun-Ming Wang:
| |
Collapse
|