1
|
Valdez RM, Rivera BN, Chang Y, Pennington JM, Fischer KA, Löhr CV, Tilton SC. Assessing susceptibility for polycyclic aromatic hydrocarbon toxicity in an in vitro 3D respiratory model for asthma. FRONTIERS IN TOXICOLOGY 2024; 6:1287863. [PMID: 38706568 PMCID: PMC11066177 DOI: 10.3389/ftox.2024.1287863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 04/04/2024] [Indexed: 05/07/2024] Open
Abstract
There is increased emphasis on understanding cumulative risk from the combined effects of chemical and non-chemical stressors as it relates to public health. Recent animal studies have identified pulmonary inflammation as a possible modifier and risk factor for chemical toxicity in the lung after exposure to inhaled pollutants; however, little is known about specific interactions and potential mechanisms of action. In this study, primary human bronchial epithelial cells (HBEC) cultured in 3D at the air-liquid interface (ALI) are utilized as a physiologically relevant model to evaluate the effects of inflammation on toxicity of polycyclic aromatic hydrocarbons (PAHs), a class of contaminants generated from incomplete combustion of fossil fuels. Normal HBEC were differentiated in the presence of IL-13 for 14 days to induce a profibrotic phenotype similar to asthma. Fully differentiated normal and IL-13 phenotype HBEC were treated with benzo[a]pyrene (BAP; 1-40 μg/mL) or 1% DMSO/PBS vehicle at the ALI for 48 h. Cells were evaluated for cytotoxicity, barrier integrity, and transcriptional biomarkers of chemical metabolism and inflammation by quantitative PCR. Cells with the IL-13 phenotype treated with BAP result in significantly (p < 0.05) decreased barrier integrity, less than 50% compared to normal cells. The effect of BAP in the IL-13 phenotype was more apparent when evaluating transcriptional biomarkers of barrier integrity in addition to markers of mucus production, goblet cell hyperplasia, type 2 asthmatic inflammation and chemical metabolism, which all resulted in dose-dependent changes (p < 0.05) in the presence of BAP. Additionally, RNA sequencing data showed that the HBEC with the IL-13 phenotype may have increased potential for uncontrolled proliferation and decreased capacity for immune response after BAP exposure compared to normal phenotype HBEC. These data are the first to evaluate the role of combined environmental factors associated with inflammation from pre-existing disease and PAH exposure on pulmonary toxicity in a physiologically relevant human in vitro model.
Collapse
Affiliation(s)
- Reese M. Valdez
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR, United States
- Superfund Research Program, Oregon State University, Corvallis, OR, United States
| | - Brianna N. Rivera
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR, United States
- Superfund Research Program, Oregon State University, Corvallis, OR, United States
| | - Yvonne Chang
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR, United States
- Superfund Research Program, Oregon State University, Corvallis, OR, United States
| | - Jamie M. Pennington
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR, United States
| | - Kay A. Fischer
- Oregon Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
| | - Christiane V. Löhr
- Oregon Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, United States
| | - Susan C. Tilton
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR, United States
- Superfund Research Program, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
2
|
Pathinayake PS, Awatade NT, Wark PAB. Type 2 Immunity and Its Impact on COVID-19 Infection in the Airways. Viruses 2023; 15:402. [PMID: 36851616 PMCID: PMC9967553 DOI: 10.3390/v15020402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/17/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Type 2 immune responses are characterized by elevated type 2 cytokines and blood eosinophilia. Emerging evidence suggests that people with chronic type 2 inflammatory lung diseases are not particularly susceptible to SARS-CoV-2 infection. Intriguingly, recent in vitro, ex vivo research demonstrates type 2 cytokines, particularly IL-13, reduce the risk of SARS-CoV-2 infection in the airway epithelium. IL-13 treatment in airway epithelial cells followed by SARS-CoV-2 diminished viral entry, replication, spread, and cell death. IL-13 reduces the expression of the angiotensin-converting enzyme 2 (ACE2) receptor in the airway epithelium and transmembrane serine protease 2 (TMPRSS2), particularly in ciliated cells. It also alters the cellular composition toward a secretory-cell-rich phenotype reducing total ciliated cells and, thus, reducing viral tropism. IL-13 enhances Muc5ac mucin and glycocalyx secretion in the periciliary layer, which acts as a physical barrier to restrict virus attachment. Moreover, type 2 airway immune cells, such as M2 alveolar macrophages, CD4+ tissue-resident memory T cells, and innate lymphoid 2 cells, may also rescue type 2 airways from SARS-CoV-2-induced adverse effects. In this review, we discuss recent findings that demonstrate how type 2 immunity alters immune responses against SARS-CoV-2 and its consequences on COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Prabuddha S. Pathinayake
- School of Medicine and Public Health, The University of Newcastle and Immune Health Program Hunter Medical Research Institute, Newcastle, NSW 2308, Australia
| | - Nikhil T. Awatade
- School of Medicine and Public Health, The University of Newcastle and Immune Health Program Hunter Medical Research Institute, Newcastle, NSW 2308, Australia
| | - Peter A. B. Wark
- School of Medicine and Public Health, The University of Newcastle and Immune Health Program Hunter Medical Research Institute, Newcastle, NSW 2308, Australia
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
3
|
Neutrophil Extracellular Traps Do Not Induce Injury and Inflammation in Well-Differentiated RSV-Infected Airway Epithelium. Cells 2022; 11:cells11050785. [PMID: 35269407 PMCID: PMC8909397 DOI: 10.3390/cells11050785] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/15/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
Respiratory syncytial virus (RSV) lower respiratory tract infection (LRTI) causes a major burden of disease. The host response in RSV-LRTI is characterized by airway epithelial injury, inflammation and neutrophil influx, with the formation of neutrophil extracellular traps (NETs). However, the precise role of NETs in the pathophysiology of RSV-LRTI remains to be elucidated. Here, we used well-differentiated human airway epithelial cultures (HAE) of a pediatric and adult donor to study whether NETs cause airway epithelial injury and inflammation in the setting of RSV infection. The exposure of uninfected and RSV-infected HAE cultures to NETs, as produced by stimulation of neutrophils by a low dose of phorbol 12-myristate 13-acetate (PMA), did not induce or aggravate cell injury or inflammation. RSV infection of HAE cultures caused release of pro-inflammatory cytokines such as IL-6 and RANTES in both adult and pediatric cultures, but the differential gene expression for regulated cell death differed between culture donors. In this in vitro airway epithelial model, NETs in the setting of RSV infection did not cause or aggravate epithelial injury or inflammation.
Collapse
|
4
|
Walentek P. Signaling Control of Mucociliary Epithelia: Stem Cells, Cell Fates, and the Plasticity of Cell Identity in Development and Disease. Cells Tissues Organs 2022; 211:736-753. [PMID: 33902038 PMCID: PMC8546001 DOI: 10.1159/000514579] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/19/2021] [Indexed: 01/25/2023] Open
Abstract
Mucociliary epithelia are composed of multiciliated, secretory, and stem cells and line various organs in vertebrates such as the respiratory tract. By means of mucociliary clearance, those epithelia provide a first line of defense against inhaled particles and pathogens. Mucociliary clearance relies on the correct composition of cell types, that is, the proper balance of ciliated and secretory cells. A failure to generate and to maintain correct cell type composition and function results in impaired clearance and high risk to infections, such as in congenital diseases (e.g., ciliopathies) as well as in acquired diseases, including asthma, chronic obstructive pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF). While it remains incompletely resolved how precisely cell types are specified and maintained in development and disease, many studies have revealed important mechanisms regarding the signaling control in mucociliary cell types in various species. Those studies not only provided insights into the signaling contribution to organ development and regeneration but also highlighted the remarkable plasticity of cell identity encountered in mucociliary maintenance, including frequent trans-differentiation events during homeostasis and specifically in disease. This review will summarize major findings and provide perspectives regarding the future of mucociliary research and the treatment of chronic airway diseases associated with tissue remodeling.
Collapse
Affiliation(s)
- Peter Walentek
- Renal Division, Department of Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Freiburg, Germany.,CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
5
|
Carsuzaa F, Béquignon É, Dufour X, de Bonnecaze G, Lecron JC, Favot L. Cytokine Signature and Involvement in Chronic Rhinosinusitis with Nasal Polyps. Int J Mol Sci 2021; 23:ijms23010417. [PMID: 35008843 PMCID: PMC8745309 DOI: 10.3390/ijms23010417] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
Cytokines are well known to play a central role in chronic rhinosinusitis with nasal polyps (CRSwNP), particularly in maintenance of the inflammatory response and the recruitment of eosinophils. The pathophysiological concepts concerning the involvement of inflammatory cytokines in CRSwNP have gradually evolved. Although the Th2 cytokines environment associated with an eosinophilic infiltration has retained a central role in the genesis of polyps, the role of other cytokine subpopulations has also and more recently been detailed, leading to a specific and complex signature in CRSwNP. The purpose of this review is to summarize the current state of knowledge about the cytokine signature in CRSwNP, the role of cytokines in the pathogenesis of this disease and in the intercellular dialog between epithelial cells, fibroblasts and inflammatory cells. Knowledge of this precise cytokine signature in CRSwNP is fundamental in the perspective of potential targeting biotherapies.
Collapse
Affiliation(s)
- Florent Carsuzaa
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines (LITEC), Université de Poitiers, 86000 Poitiers, France; (X.D.); (J.-C.L.); (L.F.)
- Oto-Rhino-Laryngologie et Chirurgie Cervico-Maxillo-Faciale, Centre Hospitalier Universitaire de Poitiers, 86021 Poitiers, France
- Correspondence: ; Tel.: +33-(0)5-49-44-43-28
| | - Émilie Béquignon
- Oto-Rhino-Laryngologie et Chirurgie Cervico-Faciale, Hôpital Henri Mondor et Centre Hospitalier Intercommunal de Créteil, 94010 Créteil, France;
- INSERM U955, Équipe 13, Centre Henri Mondor de Recherche Biomédicale, 94000 Créteil, France
| | - Xavier Dufour
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines (LITEC), Université de Poitiers, 86000 Poitiers, France; (X.D.); (J.-C.L.); (L.F.)
- Oto-Rhino-Laryngologie et Chirurgie Cervico-Maxillo-Faciale, Centre Hospitalier Universitaire de Poitiers, 86021 Poitiers, France
| | - Guillaume de Bonnecaze
- Oto-Rhino-Laryngologie et Chirurgie Cervico-Faciale, Centre Hospitalier Universitaire de Toulouse, 31400 Toulouse, France;
| | - Jean-Claude Lecron
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines (LITEC), Université de Poitiers, 86000 Poitiers, France; (X.D.); (J.-C.L.); (L.F.)
- Service Immunologie et Inflammation, Centre Hospitalier Universitaire de Poitiers, 86021 Poitiers, France
| | - Laure Favot
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines (LITEC), Université de Poitiers, 86000 Poitiers, France; (X.D.); (J.-C.L.); (L.F.)
| |
Collapse
|
6
|
Nicholas TP, Boyes WK, Scoville DK, Workman TW, Kavanagh TJ, Altemeier WA, Faustman EM. The effects of gene × environment interactions on silver nanoparticle toxicity in the respiratory system: An adverse outcome pathway. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1708. [PMID: 33768701 DOI: 10.1002/wnan.1708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 01/07/2021] [Accepted: 01/30/2021] [Indexed: 11/07/2022]
Abstract
The Adverse Outcome Pathway (AOP) framework is serving as a basis to integrate new data streams in order to enhance the power of predictive toxicology. AOP development for engineered nanomaterials (ENM), including silver nanoparticles (AgNP), is currently lagging behind other chemicals of regulatory interest due to our limited understanding of the mechanism by which underlying genetics or diseases directly modify host response to AgNP exposures. This also highlights the importance of considering the Aggregate Exposure Pathway (AEP) framework, which precedes the AOP framework and outlines source to target site exposure. The AEP and AOP frameworks interface at the target site, where a molecular initiating event (MIE) occurs and is followed by key events (KE) for adverse cellular and organ responses along a biological pathway and ends with the adverse organism response. The primary goal of this study is to use AgNP to interrogate the AEP-AOP framework by organizing and integrating in vitro dose-response data and in vivo exposure-response data from previous studies to evaluate the effects of interactions between host genetic and acquired factors, or gene × environment interactions (G × E), on AgNP toxicity in the respiratory system. Using this framework will help us to identify plausible key event relationships (KER) between MIE and adverse organism responses when KE are not measured using the same assay in order to derive future predictive models, guide research, and support development of tools for making risk-based, regulatory decisions on ENM. This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
Collapse
Affiliation(s)
- Tyler P Nicholas
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle, Washington, USA
| | - William K Boyes
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - David K Scoville
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Tomomi W Workman
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Terrance J Kavanagh
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle, Washington, USA
| | - William A Altemeier
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle, Washington, USA
| | - Elaine M Faustman
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
7
|
Terraneo S, Lesma E, Ancona S, Imeri G, Palumbo G, Torre O, Giuliani L, Centanni S, Peron A, Tresoldi S, Cetrangolo P, Di Marco F. Exploring the Role of Matrix Metalloproteinases as Biomarkers in Sporadic Lymphangioleiomyomatosis and Tuberous Sclerosis Complex. A Pilot Study. Front Med (Lausanne) 2021; 8:605909. [PMID: 33981713 PMCID: PMC8107231 DOI: 10.3389/fmed.2021.605909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 03/29/2021] [Indexed: 12/18/2022] Open
Abstract
Background: Lymphangioleiomyomatosis can develop in a sporadic form (S-LAM) or in women with tuberous sclerosis complex (TSC). The matrix metalloproteinases (MMPs) are extracellular matrix-degrading enzymes potentially involved in cystic lung destruction, and in the process of migration of LAM cells. The aim of the study was to explore the role of MMP-2 and MMP-7, such as vascular endothelial growth factor (VEGF) -C and -D in women with LAM, including patients with minor pulmonary disease (i.e., <10 lung cysts), and TSC with or without LAM. Methods: We evaluated 50 patients: 13 individuals affected by S-LAM, 20 with TSC-LAM, of whom six with minor pulmonary disease, and 17 with TSC without pulmonary involvement. Sixteen healthy women were used as controls. Results: MMP-2 resulted higher in LAM compared to healthy volunteers, and TSC patients (p = 0.040). MMP-7 was higher in TSC-LAM patient, with even greater values in patients with TSC-LAM minor pulmonary disease, than in S-LAM patients, and in controls (p = 0.001). VEGF-D level was lower than 800 pg/mL in all healthy controls and resulted higher in S-LAM and TSC-LAM than in TSC patients and controls (p < 0.001). VEGF-C values were not statistically different in the study population (p = 0.354). The area under ROC curves (AUCs) of MMP-2, and MMP-7 for predicting LAM diagnosis were of 0.756 ± 0.079 (p = 0.004), and 0.828 ± 0.060 (p < 0.001), respectively. Considering only patients with TSC, the AUCs for MMP-2, and MMP-7 in predicting LAM were 0.694 ± 0.088 (p = 0.044), and 0.713 ± 0.090 (p = 0.027), respectively. Conclusions: Our data suggest that MMP-2 and MMP-7 could be promising biomarkers for LAM diagnosis.
Collapse
Affiliation(s)
- Silvia Terraneo
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy.,Respiratory Unit, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| | - Elena Lesma
- Laboratory of Pharmacology, Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Silvia Ancona
- Laboratory of Pharmacology, Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Gianluca Imeri
- Respiratory Unit, Azienda Socio Sanitaria Territoriale - Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Giuseppina Palumbo
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy.,Respiratory Unit, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| | - Olga Torre
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy.,Respiratory Unit, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| | - Lisa Giuliani
- Respiratory Unit, Azienda Socio Sanitaria Territoriale - Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Stefano Centanni
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy.,Respiratory Unit, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| | - Angela Peron
- Human Pathology and Medical Genetics, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, San Paolo Hospital, Milan, Italy.,Child Neuropsychiatry Unit - Epilepsy Center, Department of Health Sciences, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, San Paolo Hospital, Università Degli Studi di Milano, Milan, Italy.,Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Silvia Tresoldi
- Radiology Unit - Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, San Paolo Hospital, Milan, Italy
| | - Paola Cetrangolo
- Laboratory of Pharmacology, Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Fabiano Di Marco
- Respiratory Unit, Azienda Socio Sanitaria Territoriale - Papa Giovanni XXIII Hospital, Bergamo, Italy
| |
Collapse
|
8
|
From Submerged Cultures to 3D Cell Culture Models: Evolution of Nasal Epithelial Cells in Asthma Research and Virus Infection. Viruses 2021; 13:v13030387. [PMID: 33670992 PMCID: PMC7997270 DOI: 10.3390/v13030387] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/18/2022] Open
Abstract
Understanding the response to viral infection in the context of respiratory diseases is of significant importance. Recently, there has been more focus on the role of the nasal epithelium in disease modeling. Here, we provide an overview of different submerged, organotypic 3D and spheroid cell culture models of nasal epithelial cells, which were used to study asthma and allergy with a special focus on virus infection. In detail, this review summarizes the importance, benefits, and disadvantages of patient-derived cell culture models of nasal- and bronchial epithelial cells, including a comparison of these cell culture models and a discussion on why investigators should consider using nasal epithelial cells in their research. Exposure experiments, simple virus transduction analyses as well as genetic studies can be performed in these models, which may provide first insights into the complexity of molecular signatures and may open new doors for drug discovery and biomarker research.
Collapse
|
9
|
Tasca A, Helmstädter M, Brislinger MM, Haas M, Mitchell B, Walentek P. Notch signaling induces either apoptosis or cell fate change in multiciliated cells during mucociliary tissue remodeling. Dev Cell 2021; 56:525-539.e6. [PMID: 33400913 PMCID: PMC7904641 DOI: 10.1016/j.devcel.2020.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/13/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023]
Abstract
Multiciliated cells (MCCs) are extremely highly differentiated, presenting >100 cilia and basal bodies. Therefore, MCC fate is thought to be terminal and irreversible. We analyzed how MCCs are removed from the airway-like mucociliary Xenopus epidermis during developmental tissue remodeling. We found that a subset of MCCs undergoes lateral line-induced apoptosis, but that the majority coordinately trans-differentiate into goblet secretory cells. Both processes are dependent on Notch signaling, while the cellular response to Notch is modulated by Jak/STAT, thyroid hormone, and mTOR signaling. At the cellular level, trans-differentiation is executed through the loss of ciliary gene expression, including foxj1 and pcm1, altered proteostasis, cilia retraction, basal body elimination, as well as the initiation of mucus production and secretion. Our work describes two modes for MCC loss during vertebrate development, the signaling regulation of these processes, and demonstrates that even cells with extreme differentiation features can undergo direct fate conversion.
Collapse
Affiliation(s)
- Alexia Tasca
- Renal Division, Department of Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, 79106 Freiburg, Germany; Center for Biological Systems Analysis, University of Freiburg, 79104 Freiburg, Germany
| | - Martin Helmstädter
- Renal Division, Department of Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, 79106 Freiburg, Germany
| | - Magdalena Maria Brislinger
- Renal Division, Department of Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, 79106 Freiburg, Germany; Center for Biological Systems Analysis, University of Freiburg, 79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Maximilian Haas
- Renal Division, Department of Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, 79106 Freiburg, Germany; Center for Biological Systems Analysis, University of Freiburg, 79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Brian Mitchell
- Department of Cell and Developmental Biology, Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Peter Walentek
- Renal Division, Department of Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, 79106 Freiburg, Germany; Center for Biological Systems Analysis, University of Freiburg, 79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
10
|
Unsal AA, Reyes C, Biddinger P, Kountakis SE. Eosinophilic Mucin: A Predictor for Disease Severity in Chronic Rhinosinusitis. Am J Rhinol Allergy 2020; 35:187-194. [PMID: 32689821 DOI: 10.1177/1945892420943828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE The presence of tissue eosinophilia is a determinate of disease severity in patients with chronic rhinosinusitis (CRS). The impact of eosinophilic mucin (EM) as an independent variable has not yet been elucidated. STUDY DESIGN Retrospective review. SETTING Tertiary academic clinic.Subjects Methods: CRS patients who failed medical therapy were classified by tissue eosinophilia, presence of polyps and EM. Tissue eosinophilia count per high power field (HPF) as well as the presence of EM were determined by pathologic examination of sinus tissue removed during surgery. Sinonasal Outcomes Test (SNOT-22), Lund-Mackay (LM), and Lund-Kennedy (LK) scores were compared between all groups preoperatively and postoperatively up to two and a half years (30 months). RESULTS 192 patients with CRS were included in the study. 87 were diagnosed with eosinophilic CRS with polyps, 58 with eosinophilic CRS without polyps, 14 with noneosinophilic CRS with polyps, and 33 with noneosinophilic CRS without polyps. Only patients with eosinophilia had EM on pathology. Of eosinophilic CRS, 50% of patients with polyps and 12% of cases without polyps demonstrated EM, respectively. EM presence portended more severe disease in patients with eosinophilia on subjective and objective scores preoperatively (P < 0.005). Postoperatively, EM patients experienced a greater improvement of symptoms, but continued to have worse endoscopy scores until 1.5 years. A tissue eosinophil count of 30 or greater per HPF was identified as a potential marker for the development of EM. CONCLUSIONS The presence of eosinophilic mucin predicts overall worse disease severity in patients with eosinophilic CRS.
Collapse
Affiliation(s)
- Aykut A Unsal
- Department of Otolaryngology - Head and Neck Surgery, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Camilo Reyes
- Department of Otolaryngology - Head and Neck Surgery, Medical College of Georgia - Augusta University, Augusta, Georgia.,Center for Skull Base Surgery, Medical College of Georgia - Augusta University, Augusta, Georgia
| | - Paul Biddinger
- Department of Pathology, Medical College of Georgia - Augusta University, Augusta, Georgia
| | - Stilianos E Kountakis
- Department of Otolaryngology - Head and Neck Surgery, Medical College of Georgia - Augusta University, Augusta, Georgia.,Center for Skull Base Surgery, Medical College of Georgia - Augusta University, Augusta, Georgia
| |
Collapse
|
11
|
Nicholas TP, Haick AK, Workman TW, Griffith WC, Nolin JD, Kavanagh TJ, Faustman EM, Altemeier WA. The effects of genotype × phenotype interactions on silver nanoparticle toxicity in organotypic cultures of murine tracheal epithelial cells. Nanotoxicology 2020; 14:908-928. [PMID: 32574512 DOI: 10.1080/17435390.2020.1777475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Silver nanoparticles (AgNP) are used in multiple applications but primarily in the manufacturing of antimicrobial products. Previous studies have identified AgNP toxicity in airway epithelial cells, but no in vitro studies to date have used organotypic cultures as a high-content in vitro model of the conducting airway to characterize the effects of interactions between host genetic and acquired factors, or gene × phenotype interactions (G × P), on AgNP toxicity. In the present study, we derived organotypic cultures from primary murine tracheal epithelial cells (MTEC) to characterize nominal and dosimetric dose-response relationships for AgNPs with a gold core on barrier dysfunction, glutathione (GSH) depletion, reactive oxygen species (ROS) production, lipid peroxidation, and cytotoxicity across two genotypes (A/J and C57BL/6J mice), two phenotypes ('Normal' and 'Type 2 [T2]-Skewed'), and two exposures (an acute exposure of 24 h and a subacute exposure of 4 h, every other day, over 5 days [5 × 4 h]). We characterized the 'T2-Skewed' phenotype as an in vitro model of chronic respiratory diseases, which was marked by increased sensitivity to AgNP-induced barrier dysfunction, GSH depletion, ROS production, lipid peroxidation, and cytotoxicity, suggesting that asthmatics are a sensitive population to AgNP exposures in occupational settings. This also suggests that exposure limits, which should be based upon the most sensitive population, should be derived using in vitro and in vivo models of chronic respiratory diseases. This study highlights the importance of considering dosimetry as well as G × P effects when screening and prioritizing potential respiratory toxicants. Such in vitro studies can be used to inform regulatory policy aimed at special protections for all populations.
Collapse
Affiliation(s)
- Tyler P Nicholas
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA.,Center for Lung Biology, University of Washington, Seattle, WA, USA
| | - Anoria K Haick
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Tomomi W Workman
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - William C Griffith
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - James D Nolin
- Center for Lung Biology, University of Washington, Seattle, WA, USA
| | - Terrance J Kavanagh
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA.,Center for Lung Biology, University of Washington, Seattle, WA, USA
| | - Elaine M Faustman
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - William A Altemeier
- Center for Lung Biology, University of Washington, Seattle, WA, USA.,Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
12
|
Frey A, Lunding LP, Ehlers JC, Weckmann M, Zissler UM, Wegmann M. More Than Just a Barrier: The Immune Functions of the Airway Epithelium in Asthma Pathogenesis. Front Immunol 2020; 11:761. [PMID: 32411147 PMCID: PMC7198799 DOI: 10.3389/fimmu.2020.00761] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/03/2020] [Indexed: 12/11/2022] Open
Abstract
Allergic bronchial asthma is a chronic disease of the airways that is characterized by symptoms like respiratory distress, chest tightness, wheezing, productive cough, and acute episodes of broncho-obstruction. This symptom-complex arises on the basis of chronic allergic inflammation of the airway wall. Consequently, the airway epithelium is central to the pathogenesis of this disease, because its multiple abilities directly have an impact on the inflammatory response and thus the formation of the disease. In turn, its structure and functions are markedly impaired by the inflammation. Hence, the airway epithelium represents a sealed, self-cleaning barrier, that prohibits penetration of inhaled allergens, pathogens, and other noxious agents into the body. This barrier is covered with mucus that further contains antimicrobial peptides and antibodies that are either produced or specifically transported by the airway epithelium in order to trap these particles and to remove them from the body by a process called mucociliary clearance. Once this first line of defense of the lung is overcome, airway epithelial cells are the first cells to get in contact with pathogens, to be damaged or infected. Therefore, these cells release a plethora of chemokines and cytokines that not only induce an acute inflammatory reaction but also have an impact on the alignment of the following immune reaction. In case of asthma, all these functions are impaired by the already existing allergic immune response that per se weakens the barrier integrity and self-cleaning abilities of the airway epithelium making it more vulnerable to penetration of allergens as well as of infection by bacteria and viruses. Recent studies indicate that the history of allergy- and pathogen-derived insults can leave some kind of memory in these cells that can be described as imprinting or trained immunity. Thus, the airway epithelium is in the center of processes that lead to formation, progression and acute exacerbation of asthma.
Collapse
Affiliation(s)
- Andreas Frey
- Division of Mucosal Immunology and Diagnostics, Research Center Borstel, Borstel, Germany.,Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany
| | - Lars P Lunding
- Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany.,Division of Asthma Exacerbation & Regulation, Research Center Borstel, Borstel, Germany
| | - Johanna C Ehlers
- Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany.,Division of Experimental Pneumology, Research Center Borstel, Borstel, Germany
| | - Markus Weckmann
- Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany.,Department of Pediatric Pulmonology and Allergology, University Children's Hospital, Lübeck, Germany
| | - Ulrich M Zissler
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany.,Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany
| | - Michael Wegmann
- Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany.,Division of Asthma Exacerbation & Regulation, Research Center Borstel, Borstel, Germany
| |
Collapse
|
13
|
Bequignon E, Mangin D, Bécaud J, Pasquier J, Angely C, Bottier M, Escudier E, Isabey D, Filoche M, Louis B, Papon JF, Coste A. Pathogenesis of chronic rhinosinusitis with nasal polyps: role of IL-6 in airway epithelial cell dysfunction. J Transl Med 2020; 18:136. [PMID: 32209102 PMCID: PMC7092549 DOI: 10.1186/s12967-020-02309-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/16/2020] [Indexed: 12/20/2022] Open
Abstract
Background Chronic rhinosinusitis with nasal polyps (CRSwNP) is characterized by an alteration in airway epithelial cell functions including barrier function, wound repair mechanisms, mucociliary clearance. The mechanisms leading to epithelial cell dysfunction in nasal polyps (NPs) remain poorly understood. Our hypothesis was that among the inflammatory cytokines involved in NPs, IL-6 could alter epithelial repair mechanisms and mucociliary clearance. The aim of this study was to evaluate the in vitro effects of IL-6 on epithelial repair mechanisms in a wound repair model and on ciliary beating in primary cultures of Human Nasal Epithelial Cells (HNEC). Methods Primary cultures of HNEC taken from 38 patients during surgical procedures for CRSwNP were used in an in vitro model of wound healing. Effects of increasing concentrations of IL-6 (1 ng/mL, 10 ng/mL, and 100 ng/mL) and other ILs (IL-5, IL-9, IL-10) on wound closure kinetics were compared to cultures without IL-modulation. After wound closure, the differentiation process was characterized under basal conditions and after IL supplementation using cytokeratin-14, MUC5AC, and βIV tubulin as immunomarkers of basal, mucus, and ciliated cells, respectively. The ciliated edges of primary cultures were analyzed on IL-6 modulation by digital high-speed video-microscopy to measure: ciliary beating frequency (CBF), ciliary length, relative ciliary density, metachronal wavelength and the ciliary beating efficiency index. Results Our results showed that: (i) IL-6 accelerated airway wound repair in vitro, with a dose–response effect whereas no effect was observed after other ILs-stimulation. After 24 h, 79% of wounded wells with IL6-100 were fully repaired, vs 46% in the IL6-10 group, 28% in the IL6-1 group and 15% in the control group; (ii) specific migration analyses of closed wound at late repair stage (Day 12) showed IL-6 had the highest migration compared with other ILs (iii) The study of the IL-6 effect on ciliary function showed that CBF and metachronal wave increased but without significant modifications of ciliary density, length of cilia and efficiency index. Conclusion The up-regulated epithelial cell proliferation observed in polyps could be induced by IL-6 in the case of prior epithelial damage. IL-6 could be a major cytokine in NP physiopathology.
Collapse
Affiliation(s)
- Emilie Bequignon
- Service d'Oto-Rhino-Laryngologie et de Chirurgie cervico-faciale, AP-HP, Hôpital Henri Mondor et Centre Hospitalier Intercommunal de Créteil, 94010, Créteil, France. .,INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France. .,Faculté de Médecine, Université Paris-Est, 94010, Créteil, France. .,CNRS ERL 7000, 94010, Créteil, France.
| | - David Mangin
- Service d'Oto-Rhino-Laryngologie et de Chirurgie cervico-faciale, AP-HP, Hôpital Henri Mondor et Centre Hospitalier Intercommunal de Créteil, 94010, Créteil, France.,INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France.,Faculté de Médecine, Université Paris-Est, 94010, Créteil, France.,CNRS ERL 7000, 94010, Créteil, France
| | - Justine Bécaud
- Service d'Oto-Rhino-Laryngologie et de Chirurgie cervico-faciale, AP-HP, Hôpital Henri Mondor et Centre Hospitalier Intercommunal de Créteil, 94010, Créteil, France.,INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France.,Faculté de Médecine, Université Paris-Est, 94010, Créteil, France.,CNRS ERL 7000, 94010, Créteil, France
| | - Jennifer Pasquier
- Nice Breast Institute, 06000, Nice, France.,Stem Cell & Microenvironment Laboratory, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Christelle Angely
- INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France.,Faculté de Médecine, Université Paris-Est, 94010, Créteil, France.,CNRS ERL 7000, 94010, Créteil, France
| | - Mathieu Bottier
- INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France.,Faculté de Médecine, Université Paris-Est, 94010, Créteil, France.,CNRS ERL 7000, 94010, Créteil, France
| | - Estelle Escudier
- Inserm U933, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Service de génétique et d'embryologie médicale, AP-HP Hôpital Armand-Trousseau, Paris, France
| | - Daniel Isabey
- INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France.,Faculté de Médecine, Université Paris-Est, 94010, Créteil, France.,CNRS ERL 7000, 94010, Créteil, France
| | - Marcel Filoche
- INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France.,Faculté de Médecine, Université Paris-Est, 94010, Créteil, France.,CNRS ERL 7000, 94010, Créteil, France
| | - Bruno Louis
- INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France.,Faculté de Médecine, Université Paris-Est, 94010, Créteil, France.,CNRS ERL 7000, 94010, Créteil, France
| | - Jean-François Papon
- INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France.,CNRS ERL 7000, 94010, Créteil, France.,Service d'Oto-Rhino-Laryngologie et de Chirurgie cervico-faciale, AP-HP, Hôpital Bicêtre, 94270, Le Kremlin-Bicêtre, France.,Faculté de Médecine, Université Paris-Sud, 94275, Le Kremlin-Bicêtre, France
| | - André Coste
- Service d'Oto-Rhino-Laryngologie et de Chirurgie cervico-faciale, AP-HP, Hôpital Henri Mondor et Centre Hospitalier Intercommunal de Créteil, 94010, Créteil, France.,INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France.,Faculté de Médecine, Université Paris-Est, 94010, Créteil, France.,CNRS ERL 7000, 94010, Créteil, France
| |
Collapse
|
14
|
Nasal Cytokine Profiles of Patients Hospitalised with Respiratory Wheeze Associated with Rhinovirus C. Viruses 2019; 11:v11111038. [PMID: 31703379 PMCID: PMC6893661 DOI: 10.3390/v11111038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 12/30/2022] Open
Abstract
Background: Rhinovirus C is an important pathogen of asthmatic and non-asthmatic children hospitalised with episodic wheeze. Previous studies on other respiratory viruses have shown that several host cytokines correlate with duration of hospitalisation, but this has yet to be investigated in children with RV-C infection. We determined the nasal cytokine profiles of these children and investigated their relationship with RV-C load and clinical outcome. Flocked nasal swabs were collected from children aged 24–72 months presenting to the Emergency Department at Princess Margaret Hospital with a clinical diagnosis of acute wheeze and an acute upper respiratory tract viral infection. RV-C load was determined by quantitative RT-PCR and cytokine profiles were characterised by a commercial human cytokine 34-plex panel. RV-C was the most commonly detected virus in pre-school-aged children hospitalised with an episodic wheeze. RV-C load did not significantly differ between asthmatic and non-asthmatic patients. Both groups showed a Th2-based cytokine profile. However, Th17 response cytokines IL-17 and IL-1β were only elevated in RV-C-infected children with pre-existing asthma. Neither RV-C load nor any specific cytokines were associated illness severity in this study. Medically attended RV-C-induced wheeze is characterised by a Th2 inflammatory pattern, independent of viral load. Any therapeutic interventions should be aimed at modulating the host response following infection.
Collapse
|
15
|
Abstract
Asthma is a genetically and phenotypically complex disease that has a major impact on global health. Signs and symptoms of asthma are caused by the obstruction of airflow through the airways. The epithelium that lines the airways plays a major role in maintaining airway patency and in host defense. The epithelium initiates responses to inhaled or aspirated substances, including allergens, viruses, and bacteria, and epithelial-derived cytokines are important in the recruitment and activation of immune cells in the airway. Changes in the structure and function of the airway epithelium are a prominent feature of asthma. Approximately half of individuals with asthma have evidence of active type 2 immune responses in the airway. In these individuals, epithelial cytokines promote type 2 responses, and responses to type 2 cytokines result in increased epithelial mucus production and other effects that cause airway obstruction. Recent work also implicates other epithelial responses, including interleukin-17, interferon and ER stress responses, that may contribute to asthma pathogenesis and provide new targets for therapy.
Collapse
Affiliation(s)
- Luke R Bonser
- Lung Biology Center, University of California San Francisco, San Francisco, CA, United States
| | - David J Erle
- Lung Biology Center, University of California San Francisco, San Francisco, CA, United States.
| |
Collapse
|
16
|
Pezzulo AA, Tudas RA, Stewart CG, Buonfiglio LGV, Lindsay BD, Taft PJ, Gansemer ND, Zabner J. HSP90 inhibitor geldanamycin reverts IL-13- and IL-17-induced airway goblet cell metaplasia. J Clin Invest 2019; 129:744-758. [PMID: 30640172 PMCID: PMC6355221 DOI: 10.1172/jci123524] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/20/2018] [Indexed: 12/29/2022] Open
Abstract
Goblet cell metaplasia, a disabling hallmark of chronic lung disease, lacks curative treatments at present. To identify novel therapeutic targets for goblet cell metaplasia, we studied the transcriptional response profile of IL-13-exposed primary human airway epithelia in vitro and asthmatic airway epithelia in vivo. A perturbation-response profile connectivity approach identified geldanamycin, an inhibitor of heat shock protein 90 (HSP90) as a candidate therapeutic target. Our experiments confirmed that geldanamycin and other HSP90 inhibitors prevented IL-13-induced goblet cell metaplasia in vitro and in vivo. Geldanamycin also reverted established goblet cell metaplasia. Geldanamycin did not induce goblet cell death, nor did it solely block mucin synthesis or IL-13 receptor-proximal signaling. Geldanamycin affected the transcriptome of airway cells when exposed to IL-13, but not when exposed to vehicle. We hypothesized that the mechanism of action probably involves TGF-β, ERBB, or EHF, which would predict that geldanamycin would also revert IL-17-induced goblet cell metaplasia, a prediction confirmed by our experiments. Our findings suggest that persistent airway goblet cell metaplasia requires HSP90 activity and that HSP90 inhibitors will revert goblet cell metaplasia, despite active upstream inflammatory signaling. Moreover, HSP90 inhibitors may be a therapeutic option for airway diseases with goblet cell metaplasia of unknown mechanism.
Collapse
Affiliation(s)
- Alejandro A. Pezzulo
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, and
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, USA
| | - Rosarie A. Tudas
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, and
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, USA
| | - Carley G. Stewart
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, and
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, USA
| | | | - Brian D. Lindsay
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, and
| | - Peter J. Taft
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, and
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, USA
| | - Nicholas D. Gansemer
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, and
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, USA
| | - Joseph Zabner
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, and
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
17
|
Shi Y, Fu X, Cao Q, Mao Z, Chen Y, Sun Y, Liu Z, Zhang Q. Overexpression of miR-155-5p Inhibits the Proliferation and Migration of IL-13-Induced Human Bronchial Smooth Muscle Cells by Suppressing TGF-β-Activated Kinase 1/MAP3K7-Binding Protein 2. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2018; 10:260-267. [PMID: 29676073 PMCID: PMC5911445 DOI: 10.4168/aair.2018.10.3.260] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/16/2017] [Accepted: 12/13/2017] [Indexed: 12/25/2022]
Abstract
Purpose Molecular mechanisms leading to asthma is still ill-defined. Though the function of microRNAs (miRNAs) in asthma was previously reported, the involvement of miR-155 in important features of this disease remains unknown. The present study was designed to uncover the probable involvement of miR-155-5p in the proliferation and migration of IL-13-induced human bronchial smooth muscle cells (BSMCs) and the intrinsic regulatory mechanism. Methods The effects of different concentrations of IL-13 on the proliferation and migration of BSMCs as well as the expression of miR-155-5p and its predicted target transforming growth factor (TGF)-β-activated kinase 1/MAP3K7-binding protein 2 (TAB2) were investigated. The effects of miR-155-5p on the proliferation and migration of interleukin (IL)-13-induced BSMCs was determined in vitro using BSMCs transfected with miR-155 mimic/inhibitor and induced by a high concentration of IL-13. The quantitative real-time polymerase chain reaction (qRTPCR) was employed for determining the expression of miR-155-5p and TAB2. Western blotting was applied to analyze the expression of TAB2 at the protein level. Cell proliferation and migration were assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Transwell assays, respectively. Results The proliferation and migration of BSMCs were dose-dependently increased with IL-13 treatment. Contrariwise, IL-13 dose-dependently inhibited the expression of miR-155-5p in BSMCs. Mechanistic studies showed that inhibition of miR-155-5p further promoted the stimulatory effects of IL-13, whereas overexpression of miR-155 significantly inhibited these effects. In silico studies and luciferase reporter assays indicated that TAB2 was a negatively regulated miR-155-5p target. Conclusions These results suggested that miR-155-5p-inhibit the IL-13-induced proliferation and migration of BSMCs by targeting TAB2 and that the IL-13/miR-155/TAB2 pathway could serve as a therapeutic target for pulmonary diseases, especially asthma.
Collapse
Affiliation(s)
- Yujia Shi
- Department of Respiratory Medicine, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Xingli Fu
- Health Science Center, Jiangsu University, Zhenjiang, China
| | - Qi Cao
- Department of Respiratory Medicine, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Zhengdao Mao
- Department of Respiratory Medicine, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yi Chen
- Department of Respiratory Medicine, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yun Sun
- Department of Respiratory Medicine, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Zhiguang Liu
- Department of Respiratory Medicine, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Qian Zhang
- Department of Respiratory Medicine, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China.
| |
Collapse
|
18
|
Reid AT, Veerati PC, Gosens R, Bartlett NW, Wark PA, Grainge CL, Stick SM, Kicic A, Moheimani F, Hansbro PM, Knight DA. Persistent induction of goblet cell differentiation in the airways: Therapeutic approaches. Pharmacol Ther 2017; 185:155-169. [PMID: 29287707 DOI: 10.1016/j.pharmthera.2017.12.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dysregulated induction of goblet cell differentiation results in excessive production and retention of mucus and is a common feature of several chronic airways diseases. To date, therapeutic strategies to reduce mucus accumulation have focused primarily on altering the properties of the mucus itself, or have aimed to limit the production of mucus-stimulating cytokines. Here we review the current knowledge of key molecular pathways that are dysregulated during persistent goblet cell differentiation and highlights both pre-existing and novel therapeutic strategies to combat this pathology.
Collapse
Affiliation(s)
- Andrew T Reid
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia.
| | - Punnam Chander Veerati
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Nathan W Bartlett
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Peter A Wark
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia; Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Chris L Grainge
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia; Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Stephen M Stick
- School of Paediatrics and Child Health, University of Western Australia, Nedlands 6009, Western Australia, Australia; Telethon Kids Institute, University of Western Australia, Nedlands 6009, Western Australia, Australia; Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth 6001, Western Australia, Australia; Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia, Nedlands 6009, Western Australia, Australia
| | - Anthony Kicic
- School of Paediatrics and Child Health, University of Western Australia, Nedlands 6009, Western Australia, Australia; Telethon Kids Institute, University of Western Australia, Nedlands 6009, Western Australia, Australia; Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth 6001, Western Australia, Australia; Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia, Nedlands 6009, Western Australia, Australia; Occupation and Environment, School of Public Health, Curtin University, Bentley 6102, Western Australia, Australia
| | - Fatemeh Moheimani
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Philip M Hansbro
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Darryl A Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia; Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
19
|
Verma M, Liu S, Michalec L, Sripada A, Gorska MM, Alam R. Experimental asthma persists in IL-33 receptor knockout mice because of the emergence of thymic stromal lymphopoietin-driven IL-9 + and IL-13 + type 2 innate lymphoid cell subpopulations. J Allergy Clin Immunol 2017; 142:793-803.e8. [PMID: 29132961 DOI: 10.1016/j.jaci.2017.10.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 09/07/2017] [Accepted: 10/10/2017] [Indexed: 01/17/2023]
Abstract
BACKGROUND IL-33 plays an important role in the development of experimental asthma. OBJECTIVE We sought to study the role of the IL-33 receptor suppressor of tumorigenicity 2 (ST2) in the persistence of asthma in a mouse model. METHODS We studied allergen-induced experimental asthma in ST2 knockout (KO) and wild-type control mice. We measured airway hyperresponsiveness by using flexiVent; inflammatory indices by using ELISA, histology, and real-time PCR; and type 2 innate lymphoid cells (ILC2s) in lung single-cell preparations by using flow cytometry. RESULTS Airway hyperresponsiveness was increased in allergen-treated ST2 KO mice and comparable with that in allergen-treated wild-type control mice. Peribronchial and perivascular inflammation and mucus production were largely similar in both groups. Persistence of experimental asthma in ST2 KO mice was associated with an increase in levels of thymic stromal lymphopoietin (TSLP), IL-9, and IL-13, but not IL-5, in bronchoalveolar lavage fluid. Expectedly, ST2 deletion caused a reduction in IL-13+ CD4 T cells, forkhead box P3-positive regulatory T cells, and IL-5+ ILC2s. Unexpectedly, ST2 deletion led to an overall increase in innate lymphoid cells (CD45+lin-CD25+ cells) and IL-13+ ILC2s, emergence of a TSLP receptor-positive IL-9+ ILC2 population, and an increase in intraepithelial mast cell numbers in the lung. An anti-TSLP antibody abrogated airway hyperresponsiveness, inflammation, and mucus production in allergen-treated ST2 KO mice. It also caused a reduction in innate lymphoid cell, ILC2, and IL-9+ and IL-13+ ILC2 numbers in the lung. CONCLUSIONS Genetic deletion of the IL-33 receptor paradoxically increases TSLP production, which stimulates the emergence of IL-9+ and IL-13+ ILC2s and mast cells and leads to development of chronic experimental asthma. An anti-TSLP antibody abrogates all pathologic features of asthma in this model.
Collapse
Affiliation(s)
- Mukesh Verma
- Department of Medicine, Division of Allergy & Immunology, National Jewish Health, Denver, Colo
| | - Sucai Liu
- Department of Medicine, Division of Allergy & Immunology, National Jewish Health, Denver, Colo
| | - Lidia Michalec
- Department of Medicine, Division of Allergy & Immunology, National Jewish Health, Denver, Colo; Department of Cytobiology and Proteomics, Medical University of Lodz, Lodz, Poland
| | - Anand Sripada
- Department of Medicine, Division of Allergy & Immunology, National Jewish Health, Denver, Colo
| | - Magdalena M Gorska
- Department of Medicine, Division of Allergy & Immunology, National Jewish Health, Denver, Colo; School of Medicine, University of Colorado Denver, Denver, Colo
| | - Rafeul Alam
- Department of Medicine, Division of Allergy & Immunology, National Jewish Health, Denver, Colo; School of Medicine, University of Colorado Denver, Denver, Colo.
| |
Collapse
|
20
|
Carsin A, Mazenq J, Ilstad A, Dubus JC, Chanez P, Gras D. Bronchial epithelium in children: a key player in asthma. Eur Respir Rev 2017; 25:158-69. [PMID: 27246593 PMCID: PMC9487245 DOI: 10.1183/16000617.0101-2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 01/24/2016] [Indexed: 11/29/2022] Open
Abstract
Bronchial epithelium is a key element of the respiratory airways. It constitutes the interface between the environment and the host. It is a physical barrier with many chemical and immunological properties. The bronchial epithelium is abnormal in asthma, even in children. It represents a key component promoting airway inflammation and remodelling that can lead to chronic symptoms. In this review, we present an overview of bronchial epithelium and how to study it, with a specific focus on children. We report physical, chemical and immunological properties from ex vivo and in vitro studies. The responses to various deleterious agents, such as viruses or allergens, may lead to persistent abnormalities orchestrated by bronchial epithelial cells. As epithelium dysfunctions occur early in asthma, reprogramming the epithelium may represent an ambitious goal to induce asthma remission in children. Bronchial epithelium is a morphological and functional dysregulated gatekeeper in asthmatic childrenhttp://ow.ly/Y4MaM
Collapse
Affiliation(s)
- Ania Carsin
- Unité de Pneumologie Pédiatrique, hôpital Timone-Enfants, Assistance Publique Hopitaux de Marseille, Marseille, France UMR Inserm U1067 CNRS 7333, Aix Marseille University, Marseille, France
| | - Julie Mazenq
- Unité de Pneumologie Pédiatrique, hôpital Timone-Enfants, Assistance Publique Hopitaux de Marseille, Marseille, France UMR Inserm U1067 CNRS 7333, Aix Marseille University, Marseille, France
| | - Alexandra Ilstad
- UMR Inserm U1067 CNRS 7333, Aix Marseille University, Marseille, France
| | - Jean-Christophe Dubus
- CNRS, URMITE 6236, CHU Timone-Enfants, Aix-Marseille Université, Unité de pneumologie et médecine infantile, Marseille, France
| | - Pascal Chanez
- UMR Inserm U1067 CNRS 7333, Aix Marseille University, Marseille, France Clinique des bronches, Allergie et Sommeil, Hôpital Nord, Assistance Publique Hopitaux de Marseille, Marseille, France
| | - Delphine Gras
- UMR Inserm U1067 CNRS 7333, Aix Marseille University, Marseille, France
| |
Collapse
|
21
|
Abstract
Since the discovery of IL-9 almost three decades back as a growth factor, we have come a long way to understand its pleiotropic functions in the immune system. Despite its many functions, IL-9 still remains as an understudied cytokine. In the last decade, renewed emphasis has been provided to understand the biology of IL-9. Any growth factor or cytokine signals via its cognate receptor to mediate biological functions. In this chapter, we discuss the IL-9 signal transduction in different cell types, which would then exert its distinct functions.
Collapse
Affiliation(s)
- Dijendra Nath Roy
- Department of Bioengineering, National Institute of Technology, NIT-Agartala, Jirania, 799046, Tripura, India
| | - Ritobrata Goswami
- School of Bio Science, Sir JC Bose Laboratory Complex, Indian Institute of Technology, Kharagpur, 721302, West Bengal, India.
| |
Collapse
|
22
|
Suzaki I, Kawano S, Komiya K, Tanabe T, Akaba T, Asano K, Suzaki H, Izuhara K, Rubin BK. Inhibition of IL-13-induced periostin in airway epithelium attenuates cellular protein expression of MUC5AC. Respirology 2016; 22:93-100. [DOI: 10.1111/resp.12873] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/31/2016] [Accepted: 06/15/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Isao Suzaki
- Department of Pediatrics; Virginia Commonwealth University School of Medicine; Richmond Virginia USA
- Department of Otorhinolaryngology, School of Medicine; Showa University; Tokyo Japan
| | - Shuichi Kawano
- Department of Pediatrics; Virginia Commonwealth University School of Medicine; Richmond Virginia USA
| | - Kosaku Komiya
- Department of Pediatrics; Virginia Commonwealth University School of Medicine; Richmond Virginia USA
| | - Tsuyoshi Tanabe
- Department of Pediatrics; Virginia Commonwealth University School of Medicine; Richmond Virginia USA
| | - Tomohiro Akaba
- Department of Pediatrics; Virginia Commonwealth University School of Medicine; Richmond Virginia USA
| | - Kazuhito Asano
- Division of Physiology, School of Nursing and Rehabilitation Sciences; Showa University; Yokohama Japan
| | - Harumi Suzaki
- Nasal and Paranasal Sinus Disease and Allergy Institute; Tokyo General Hospital; Tokyo Japan
| | - Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Sciences; Saga Medical School; Saga Japan
| | - Bruce K. Rubin
- Department of Pediatrics; Virginia Commonwealth University School of Medicine; Richmond Virginia USA
| |
Collapse
|
23
|
Mittal R, Patel AP, Debs LH, Nguyen D, Patel K, Grati M, Mittal J, Yan D, Chapagain P, Liu XZ. Intricate Functions of Matrix Metalloproteinases in Physiological and Pathological Conditions. J Cell Physiol 2016; 231:2599-621. [DOI: 10.1002/jcp.25430] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 05/16/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Amit P. Patel
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Luca H. Debs
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Desiree Nguyen
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Kunal Patel
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - M'hamed Grati
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Jeenu Mittal
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Denise Yan
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Prem Chapagain
- Department of Physics; Florida International University; Miami Florida
- Biomolecular Science Institute; Florida International University; Miami Florida
| | - Xue Zhong Liu
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
- Department of Biochemistry; University of Miami Miller School of Medicine; Miami Florida
| |
Collapse
|
24
|
Kim HK, Kook JH, Kang KR, Oh DJ, Kim TH, Lee SH. Increased expression of hCLCA1 in chronic rhinosinusitis and its contribution to produce MUC5AC. Laryngoscope 2016; 126:E347-E355. [PMID: 27296651 DOI: 10.1002/lary.26109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 04/19/2016] [Accepted: 05/02/2016] [Indexed: 11/11/2022]
Abstract
OBJECTIVES/HYPOTHESIS Mucus hypersecretion is a hallmarks of chronic rhinosinusitis. The expression of MUC5AC, a major respiratory mucin gene, is increased in chronic rhinosinusitis. The mechanisms inducing mucus hypersecretion have not been fully evaluated in chronic rhinosinusitis. Human Ca2+ -activated Cl- channel 1 (hCLCA1) is implicated in the regulation of mucus production, airway fluid, and electrolyte transport. The present study objectives was to investigate the expression of hCLCA1 in chronic rhinosinusitis and evaluate whether its level is altered by stimulation with type 1 T helper (Th1) and Th2 cytokines, and to determine the possible role of hCLCA1 on the regulation of mucin 5AC (MUC5AC) production. STUDY DESIGN Controlled prospective study. METHODS The expression of hCLCA1 and MUC5AC in normal and inflammatory ethmoid mucosa was determined by real-time polymerase chain reaction, immunohistochemistry, and Western blot. In cultured cells, the expression of hCLCA1 and MUC5AC was measured after stimulation with Th1 and Th2 cytokines. In a supernatant, the MUC5AC level was analyzed using enzyme-linked immunosorbent assay after treatment with niflumic acid. RESULTS The levels of hCLCA1 and MUC5AC were increased in chronic rhinosinusitis, irrespective of nasal polyp presence, where they were distributed in superficial epithelial cells and submucosal glands. In cultured cells treated with interleukin (IL)-9, IL-4, IL-13, tumor necrosis factor-α, transforming growth factor-β, interferon-γ, and IL-1β, the expression of hCLCA1 and MUC5AC was increased. In cells treated with niflumic acid, the production of MUC5AC was inhibited. CONCLUSIONS The current findings indicate that the expression of hCLCA1 is increased in chronic rhinosinusitis and may be regulated by Th1 and Th2 cytokines, possibly contributing to the production of MUC5AC. LEVEL OF EVIDENCE NA Laryngoscope, 126:E347-E355, 2016.
Collapse
Affiliation(s)
- Ha Kyun Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, South Korea
| | - Jin Ho Kook
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Hallym University, ChunCheon, South Korea
| | - Ka Ram Kang
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, South Korea
| | - Dong Ju Oh
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, South Korea
| | - Tae Hoon Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, South Korea
| | - Sang Hag Lee
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, South Korea.
| |
Collapse
|
25
|
Pathogenesis of eosinophilic chronic rhinosinusitis. JOURNAL OF INFLAMMATION-LONDON 2016; 13:11. [PMID: 27053925 PMCID: PMC4822241 DOI: 10.1186/s12950-016-0121-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 04/01/2016] [Indexed: 01/12/2023]
Abstract
Eosinophilic chronic rhinosinusitis (ECRS) is considered a refractory and intractable disease. Patients with ECRS present with thick mucus production, long-term nasal congestion, loss of sense of smell, and intermittent acute exacerbations secondary to bacterial infections. Despite medical and surgical interventions, there is a high rate of recurrence with significant impairment to quality of life. The recent increasing prevalence of ECRS in south Asian countries and the strong tendency of ECRS to reoccur after surgery should be considered. The majority of cases need repeat surgery, and histological examinations of these cases show eosinophilic-dominant inflammation. The degradation and accumulation of eosinophils, release of cytokines, and mucus secretion have important roles in the pathogenesis of ECRS. ECRS differs from non-ECRS, in which eosinophils are not involved in the pathogenesis of the disease, and also in terms of many clinical characteristics, blood examination and nasal polyp histological findings, clinical features of the disease after surgery, efficacy of medications, and computed tomography findings. This review describes the clinical course, diagnosis, and treatment of ECRS as well as its pathophysiology and the role of eosinophils, mucus, cytokines, and other mediators in the pathogenesis of ECRS.
Collapse
|
26
|
Emura M, Aufderheide M. Challenge for 3D culture technology: Application in carcinogenesis studies with human airway epithelial cells. ACTA ACUST UNITED AC 2016; 68:255-61. [PMID: 26951634 DOI: 10.1016/j.etp.2016.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 11/18/2022]
Abstract
Lung cancer is still one of the major intractable diseases and we urgently need more efficient preventive and curative measures. Recent molecular studies have provided strong evidence that allows us to believe that classically well-known early airway lesions such as hyperplasia, metaplasia, dysplasia and carcinoma in situ are really precancerous lesions progressing toward cancer but not necessarily transient and reversible alteration. This suggests that adequate early control of the precancerous lesions may lead to improved prevention of lung cancer. This knowledge is encouraging in view of the imminent necessity for additional experimental systems to investigate the causal mechanisms of cancers directly in human cells and tissues. There are many questions with regard to various precancerous lesions of the airways. For example, should cells, before reaching a stage of invasive carcinoma, undergo all precancerous stages such as hyperplasia or metaplasia and dysplasia, or is there any shortcut to bypass one or more of the precancerous stages? For the study of such questions, the emerging 3-dimensional (3D) cell culture technology appears to provide an effective and valuable tool. Though a great challenge, it is expected that this in vitro technology will be rapidly and reliably improved to enable the cultures to be maintained in an in vivo-mimicking state of differentiation for much longer than a period of at best a few months, as is currently the case. With the help of a "causes recombination-Lox" (Cre-lox) technology, it has been possible to trace cells giving rise to specific lung tumor types. In this short review we have attempted to assess the future role of 3D technology in the study of lung carcinogenesis.
Collapse
Affiliation(s)
- M Emura
- Cultex(®) Laboratories GmbH, Feodor-Lynen-Str. 21, 30625 Hannover, Germany.
| | - M Aufderheide
- Cultex(®) Laboratories GmbH, Feodor-Lynen-Str. 21, 30625 Hannover, Germany.
| |
Collapse
|
27
|
Tosoni K, Cassidy D, Kerr B, Land SC, Mehta A. Using Drugs to Probe the Variability of Trans-Epithelial Airway Resistance. PLoS One 2016; 11:e0149550. [PMID: 26926476 PMCID: PMC4771809 DOI: 10.1371/journal.pone.0149550] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 02/02/2016] [Indexed: 12/15/2022] Open
Abstract
Background Precision medicine aims to combat the variability of the therapeutic response to a given medicine by delivering the right medicine to the right patient. However, the application of precision medicine is predicated on a prior quantitation of the variance of the reference range of normality. Airway pathophysiology provides a good example due to a very variable first line of defence against airborne assault. Humans differ in their susceptibility to inhaled pollutants and pathogens in part due to the magnitude of trans-epithelial resistance that determines the degree of epithelial penetration to the submucosal space. This initial ‘set-point’ may drive a sentinel event in airway disease pathogenesis. Epithelia differentiated in vitro from airway biopsies are commonly used to model trans-epithelial resistance but the ‘reference range of normality’ remains problematic. We investigated the range of electrophysiological characteristics of human airway epithelia grown at air-liquid interface in vitro from healthy volunteers focusing on the inter- and intra-subject variability both at baseline and after sequential exposure to drugs modulating ion transport. Methodology/Principal Findings Brushed nasal airway epithelial cells were differentiated at air-liquid interface generating 137 pseudostratified ciliated epithelia from 18 donors. A positively-skewed baseline range exists for trans-epithelial resistance (Min/Max: 309/2963 Ω·cm2), trans-epithelial voltage (-62.3/-1.8 mV) and calculated equivalent current (-125.0/-3.2 μA/cm2; all non-normal, P<0.001). A minority of healthy humans manifest a dramatic amiloride sensitivity to voltage and trans-epithelial resistance that is further discriminated by prior modulation of cAMP-stimulated chloride transport. Conclusions/Significance Healthy epithelia show log-order differences in their ion transport characteristics, likely reflective of their initial set-points of basal trans-epithelial resistance and sodium transport. Our data may guide the choice of the background set point in subjects with airway diseases and frame the reference range for the future delivery of precision airway medicine.
Collapse
Affiliation(s)
- Kendra Tosoni
- Division of Cardiovascular and Diabetes Medicine, University of Dundee, Medical Research Institute Ninewells Hospital and Medical School, Dundee, Scotland, United Kingdom
- * E-mail: (AM); (KT)
| | - Diane Cassidy
- Division of Cardiovascular and Diabetes Medicine, University of Dundee, Medical Research Institute Ninewells Hospital and Medical School, Dundee, Scotland, United Kingdom
| | - Barry Kerr
- School of Medicine, University of Dundee, Dundee, Scotland, United Kingdom
| | - Stephen C. Land
- Division of Cardiovascular and Diabetes Medicine, University of Dundee, Medical Research Institute Ninewells Hospital and Medical School, Dundee, Scotland, United Kingdom
| | - Anil Mehta
- Division of Cardiovascular and Diabetes Medicine, University of Dundee, Medical Research Institute Ninewells Hospital and Medical School, Dundee, Scotland, United Kingdom
- * E-mail: (AM); (KT)
| |
Collapse
|
28
|
McLellan K, Shields M, Power U, Turner S. Primary airway epithelial cell culture and asthma in children-lessons learnt and yet to come. Pediatr Pulmonol 2015; 50:1393-405. [PMID: 26178976 DOI: 10.1002/ppul.23249] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 06/09/2015] [Accepted: 06/16/2015] [Indexed: 11/08/2022]
Abstract
Until recently the airway epithelial cell (AEC) was considered a simple barrier that prevented entry of inhaled matter into the lung parenchyma. The AEC is now recognized as having an important role in the inflammatory response of the respiratory system to inhaled exposures, and abnormalities of these responses are thought to be important to asthma pathogenesis. This review first explores how the challenges of studying nasal and bronchial AECs in children have been addressed and then summarizes the results of studies of primary AEC function in children with and without asthma. There is good evidence that nasal AECs may be a suitable surrogate for the study of certain aspects of bronchial AEC function, although bronchial AECs remain the gold standard for asthma research. There are consistent differences between children with and without asthma for nasal and bronchial AEC mediator release following exposure to a range of pro-inflammatory stimulants including interleukins (IL)-1β, IL-4, and IL-13. However, there are inconsistencies between studies, e.g., release of IL-6, an important pro-inflammatory cytokine, is not increased in children with asthma relative to controls in all studies. Future work should expand current understanding of the "upstream" signalling pathways in AEC, study AEC from children before the onset of asthma symptoms and in vitro models should be developed that replicate the in vivo status more completely, e.g., co-culture with dendritic cells. AECs are difficult to obtain from children and collaboration between centers is expected to yield meaningful advances in asthma understanding and ultimately help deliver novel therapies.
Collapse
Affiliation(s)
- Kirsty McLellan
- Child Health, University of Aberdeen, Aberdeen, United Kingdom
| | - Mike Shields
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, United Kingdom
| | - Ultan Power
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, United Kingdom
| | - Steve Turner
- Child Health, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
29
|
Dickinson JD, Alevy Y, Malvin NP, Patel KK, Gunsten SP, Holtzman MJ, Stappenbeck TS, Brody SL. IL13 activates autophagy to regulate secretion in airway epithelial cells. Autophagy 2015; 12:397-409. [PMID: 26062017 DOI: 10.1080/15548627.2015.1056967] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cytokine modulation of autophagy is increasingly recognized in disease pathogenesis, and current concepts suggest that type 1 cytokines activate autophagy, whereas type 2 cytokines are inhibitory. However, this paradigm derives primarily from studies of immune cells and is poorly characterized in tissue cells, including sentinel epithelial cells that regulate the immune response. In particular, the type 2 cytokine IL13 (interleukin 13) drives the formation of airway goblet cells that secrete excess mucus as a characteristic feature of airway disease, but whether this process is influenced by autophagy was undefined. Here we use a mouse model of airway disease in which IL33 (interleukin 33) stimulation leads to IL13-dependent formation of airway goblet cells as tracked by levels of mucin MUC5AC (mucin 5AC, oligomeric mucus/gel forming), and we show that these cells manifest a block in mucus secretion in autophagy gene Atg16l1-deficient mice compared to wild-type control mice. Similarly, primary-culture human tracheal epithelial cells treated with IL13 to stimulate mucus formation also exhibit a block in MUC5AC secretion in cells depleted of autophagy gene ATG5 (autophagy-related 5) or ATG14 (autophagy-related 14) compared to nondepleted control cells. Our findings indicate that autophagy is essential for airway mucus secretion in a type 2, IL13-dependent immune disease process and thereby provide a novel therapeutic strategy for attenuating airway obstruction in hypersecretory inflammatory diseases such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis lung disease. Taken together, these observations suggest that the regulation of autophagy by Th2 cytokines is cell-context dependent.
Collapse
Affiliation(s)
- John D Dickinson
- a Department of Medicine , Washington University , St. Louis , MO , USA
| | - Yael Alevy
- a Department of Medicine , Washington University , St. Louis , MO , USA
| | - Nicole P Malvin
- b Department of Pathology and Immunology , Washington University , St. Louis , MO , USA
| | - Khushbu K Patel
- b Department of Pathology and Immunology , Washington University , St. Louis , MO , USA
| | - Sean P Gunsten
- a Department of Medicine , Washington University , St. Louis , MO , USA
| | - Michael J Holtzman
- a Department of Medicine , Washington University , St. Louis , MO , USA.,c Department of Cell Biology , Washington University , St. Louis , MO , USA
| | - Thaddeus S Stappenbeck
- b Department of Pathology and Immunology , Washington University , St. Louis , MO , USA.,d Department of Developmental Biology , Washington University , St. Louis , MO , USA
| | - Steven L Brody
- a Department of Medicine , Washington University , St. Louis , MO , USA
| |
Collapse
|
30
|
|
31
|
Bai J, Miao B, Wu X, Luo X, Ma R, Zhang J, Li L, Shi J, Li H. Enhanced expression of SAM-pointed domain-containing Ets-like factor in Chronic rhinosinusitis with nasal polyps. Laryngoscope 2014; 125:E97-103. [PMID: 25376946 DOI: 10.1002/lary.25008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/17/2014] [Accepted: 10/07/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Jing Bai
- Department of Otolaryngology; Head and Neck Surgery; Xinhua Hospital, Shanghai Jiaotong University School of Medicine; Shanghai
- Department of Otolaryngology; The First People's Hospital of Foshan City; Foshan
| | - Beiping Miao
- Department of Otolaryngology; The Second People's Hospital of Shenzhen City; Shenzhen
| | - Xingmei Wu
- Department of Otolaryngology; The First Affiliated Hospital of Sun Yat-sen University; Guangzhou China
| | | | - Renqiang Ma
- Department of Otolaryngology; The First Affiliated Hospital of Sun Yat-sen University; Guangzhou China
| | - Jia Zhang
- Department of Otolaryngology; The First Affiliated Hospital of Sun Yat-sen University; Guangzhou China
| | - Lei Li
- Department of Otolaryngology; Head and Neck Surgery; Xinhua Hospital, Shanghai Jiaotong University School of Medicine; Shanghai
| | - Jianbo Shi
- Department of Otolaryngology; The First Affiliated Hospital of Sun Yat-sen University; Guangzhou China
| | - Huabin Li
- Department of Otolaryngology; Head and Neck Surgery; Xinhua Hospital, Shanghai Jiaotong University School of Medicine; Shanghai
- Department of Otolaryngology; The First Affiliated Hospital of Sun Yat-sen University; Guangzhou China
| |
Collapse
|
32
|
D prostanoid receptor 2 (chemoattractant receptor-homologous molecule expressed on TH2 cells) protein expression in asthmatic patients and its effects on bronchial epithelial cells. J Allergy Clin Immunol 2014; 135:395-406. [PMID: 25312757 PMCID: PMC4314591 DOI: 10.1016/j.jaci.2014.08.027] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 07/23/2014] [Accepted: 08/21/2014] [Indexed: 12/27/2022]
Abstract
Background The D prostanoid receptor 2 (DP2; also known as chemoattractant receptor–homologous molecule expressed on TH2 cells) is implicated in the pathogenesis of asthma, but its expression within bronchial biopsy specimens is unknown. Objectives We sought to investigate the bronchial submucosal DP2 expression in asthmatic patients and healthy control subjects and to explore its functional role in epithelial cells. Methods DP2 protein expression was assessed in bronchial biopsy specimens from asthmatic patients (n = 22) and healthy control subjects (n = 10) by using immunohistochemistry and in primary epithelial cells by using flow cytometry, immunofluorescence, and quantitative RT-PCR. The effects of the selective DP2 agonist 13, 14-dihydro-15-keto prostaglandin D2 on epithelial cell migration and differentiation were determined. Results Numbers of submucosal DP2+ cells were increased in asthmatic patients compared with those in healthy control subjects (mean [SEM]: 78 [5] vs 22 [3]/mm2 submucosa, P < .001). The bronchial epithelium expressed DP2, but its expression was decreased in asthmatic patients compared with that seen in healthy control subjects (mean [SEM]: 21 [3] vs 72 [11]/10 mm2 epithelial area, P = .001), with similar differences observed in vitro by primary epithelial cells. Squamous metaplasia of the bronchial epithelium was increased in asthmatic patients and related to decreased DP2 expression (rs = 0.69, P < .001). 13, 14-Dihydro-15-keto prostaglandin D2 promoted epithelial cell migration and at air-liquid interface cultures increased the number of MUC5AC+ and involucrin-positive cells, which were blocked with the DP2-selective antagonist AZD6430. Conclusions DP2 is expressed by the bronchial epithelium, and its activation drives epithelial differentiation, suggesting that in addition to its well-characterized role in inflammatory cell migration, DP2 might contribute to airway remodeling in asthmatic patients.
Collapse
|
33
|
Hong L, Wu Y, Feng J, Yu S, Li C, Wu Y, Li Z, Cao L, Wang F, Zhang Y. Overexpression of the cell adhesion molecule claudin-9 is associated with invasion in pituitary oncocytomas. Hum Pathol 2014; 45:2423-9. [PMID: 25281028 DOI: 10.1016/j.humpath.2014.08.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 08/05/2014] [Accepted: 08/13/2014] [Indexed: 01/23/2023]
Abstract
Pituitary oncocytoma is a subtype of nonfunctioning pituitary adenomas with the potential to be locally invasive. Currently, surgery is the most effective treatment, whereas functional pituitary adenomas can be treated by drugs. We analyzed the invasiveness of pituitary oncocytomas to identify biomarkers that may be useful for guiding future therapeutic decision making. To identify important biomarkers of pituitary oncocytomas, 20 oncocytomas that were negative for hormone-specific immunostaining were confirmed by anti-mitochondria antibody immunostaining and electron microscopy. Our clinical phenotype data showed a prominent male predilection (85%). These tumors were classified as invasive or noninvasive based on preoperative magnetic resonance imaging, intraoperative records, and pathology slide. We observed significantly different expression profiles between pituitary oncocytomas (n = 3) and normal pituitary glands (n = 3). A total of 1937 genes were differentially expressed between the pituitary oncocytomas and normal pituitary glands. Among these 1937 genes, 954 were up-regulated and 983 were down-regulated in pituitary oncocytomas. The most significantly altered gene, claudin-9 (CLDN9), was further confirmed by quantitative real-time polymerase chain reaction, Western blot, and immunohistochemical staining in 10 invasive pituitary oncocytoma samples and 10 noninvasive pituitary oncocytoma samples. High levels of CLDN9 were found in the pituitary oncocytomas, whereas low levels were detected in normal pituitary glands. In addition, the CLDN9 expression level was higher in invasive oncocytomas compared with noninvasive oncocytomas. Bioinformatics Gene Ontology analysis was performed to better understand the critical role of CLDN9 in the development and progression of oncocytomas. Consequently, CLDN9 may be an important biomarker for invasive pituitary oncocytomas.
Collapse
Affiliation(s)
- Lichuan Hong
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, People's Republic of China; School of Medicine, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yonggang Wu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, People's Republic of China; Department of Neurosurgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, People's Republic of China
| | - Jie Feng
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, People's Republic of China
| | - Shengyuan Yu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, People's Republic of China
| | - Chuzhong Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, People's Republic of China
| | - Youtu Wu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, People's Republic of China
| | - Zhenye Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, People's Republic of China
| | - Lei Cao
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, People's Republic of China
| | - Fei Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, People's Republic of China
| | - Yazhuo Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, People's Republic of China.
| |
Collapse
|
34
|
Rezaee F, Georas SN. Breaking barriers. New insights into airway epithelial barrier function in health and disease. Am J Respir Cell Mol Biol 2014; 50:857-69. [PMID: 24467704 DOI: 10.1165/rcmb.2013-0541rt] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Epithelial permeability is a hallmark of mucosal inflammation, but the molecular mechanisms involved remain poorly understood. A key component of the epithelial barrier is the apical junctional complex that forms between neighboring cells. Apical junctional complexes are made of tight junctions and adherens junctions and link to the cellular cytoskeleton via numerous adaptor proteins. Although the existence of tight and adherens junctions between epithelial cells has long been recognized, in recent years there have been significant advances in our understanding of the molecular regulation of junctional complex assembly and disassembly. Here we review the current thinking about the structure and function of the apical junctional complex in airway epithelial cells, emphasizing the translational aspects of relevance to cystic fibrosis and asthma. Most work to date has been conducted using cell culture models, but technical advancements in imaging techniques suggest that we are on the verge of important new breakthroughs in this area in physiological models of airway diseases.
Collapse
Affiliation(s)
- Fariba Rezaee
- 1 Division of Pediatric Pulmonary Medicine, Department of Pediatrics, and
| | | |
Collapse
|
35
|
Epithelial barrier function: at the front line of asthma immunology and allergic airway inflammation. J Allergy Clin Immunol 2014; 134:509-20. [PMID: 25085341 DOI: 10.1016/j.jaci.2014.05.049] [Citation(s) in RCA: 329] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 05/30/2014] [Accepted: 05/30/2014] [Indexed: 02/08/2023]
Abstract
Airway epithelial cells form a barrier to the outside world and are at the front line of mucosal immunity. Epithelial apical junctional complexes are multiprotein subunits that promote cell-cell adhesion and barrier integrity. Recent studies in the skin and gastrointestinal tract suggest that disruption of cell-cell junctions is required to initiate epithelial immune responses, but how this applies to mucosal immunity in the lung is not clear. Increasing evidence indicates that defective epithelial barrier function is a feature of airway inflammation in asthmatic patients. One challenge in this area is that barrier function and junctional integrity are difficult to study in the intact lung, but innovative approaches should provide new knowledge in this area in the near future. In this article we review the structure and function of epithelial apical junctional complexes, emphasizing how regulation of the epithelial barrier affects innate and adaptive immunity. We discuss why defective epithelial barrier function might be linked to TH2 polarization in asthmatic patients and propose a rheostat model of barrier dysfunction that implicates the size of inhaled allergen particles as an important factor influencing adaptive immunity.
Collapse
|