1
|
Xu Y, Jiao J, Wu C, Zhao Z, Ge X, Gao G, Cao Y, Zhou B. Abandonment Leads to Changes in Forest Structural and Soil Organic Carbon Stocks in Moso Bamboo Forests. PLANTS (BASEL, SWITZERLAND) 2024; 13:2301. [PMID: 39204737 PMCID: PMC11359993 DOI: 10.3390/plants13162301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
The important role of soil carbon pools in coping with climate change has become widely recognized. Moso bamboo (Phyllostachys pubescens) is an economically important bamboo species in South China; however, owing to factors such as rising labor costs and increasingly stringent environmental policies, Moso bamboo forests have recently been abandoned. The present study aimed to investigate the effects of abandonment on structural factors and soil organic carbon (SOC) stocks in Moso bamboo forests. We investigated Moso bamboo forests subjected to intensive management or abandonment for different durations and measured forest structural characteristics, mineral properties, soil nutrients, and other soil properties. Although abandonment did not significantly affect the height and diameter at breast height, it increased culm densities, biomass, and SOC stocks. The drivers of SOC stocks depended on soil depth and were mainly controlled by carbon decomposition mediated by soil properties. In the topsoil, mineral protection and soil total nitrogen (TN) exerted significant effects on SOC stocks; in the subsoil, soil TN was the main driver of SOC stocks. As the controlling factors of SOC stocks differed between the subsoil and topsoil, more attention should be paid to the subsoil. Overall, these findings refine our understanding of the structural characteristics and SOC stocks associated with Moso bamboo forest abandonment, serving as a reference for the follow-up management of these forests.
Collapse
Affiliation(s)
- Yaowen Xu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (Y.X.)
- Zhejiang Academy of Forestry, Hangzhou 310022, China
- Qianjiangyuan Forest Ecosystem Research Station, National Forestry and Grassland Administration of China, Hangzhou 311400, China
| | - Jiejie Jiao
- Zhejiang Academy of Forestry, Hangzhou 310022, China
| | - Chuping Wu
- Zhejiang Academy of Forestry, Hangzhou 310022, China
| | - Ziqing Zhao
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (Y.X.)
- Qianjiangyuan Forest Ecosystem Research Station, National Forestry and Grassland Administration of China, Hangzhou 311400, China
| | - Xiaogai Ge
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (Y.X.)
- Qianjiangyuan Forest Ecosystem Research Station, National Forestry and Grassland Administration of China, Hangzhou 311400, China
| | - Ge Gao
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (Y.X.)
- Qianjiangyuan Forest Ecosystem Research Station, National Forestry and Grassland Administration of China, Hangzhou 311400, China
| | - Yonghui Cao
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (Y.X.)
- Qianjiangyuan Forest Ecosystem Research Station, National Forestry and Grassland Administration of China, Hangzhou 311400, China
| | - Benzhi Zhou
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (Y.X.)
- Qianjiangyuan Forest Ecosystem Research Station, National Forestry and Grassland Administration of China, Hangzhou 311400, China
| |
Collapse
|
2
|
Solangi F, Zhu X, Solangi KA, Iqbal R, Elshikh MS, Alarjani KM, Elsalahy HH. Responses of soil enzymatic activities and microbial biomass phosphorus to improve nutrient accumulation abilities in leguminous species. Sci Rep 2024; 14:11139. [PMID: 38750151 PMCID: PMC11096329 DOI: 10.1038/s41598-024-61446-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024] Open
Abstract
Fertilizers application are widely used to get a higher yield in agricultural fields. Nutrient management can be improved by cultivating leguminous species in order to obtain a better understanding of the mechanisms that increase the amount of available phosphorus (P) and potassium (K) through fertilizer treatments. A pot experiment was conducted to identify the leguminous species (i.e., chickpea and pea) under various fertilizer treatments. Experimental design is as follows: T0 (control: no fertilizer was applied), T1: P applied at the level of (90 kg ha-1), T2: (K applied at the level of 90 kg ha-1), and T3: (PK applied both at 90 kg ha-1). All fertilizer treatments significantly (p < 0.05) improved the nutrient accumulation abilities and enzymes activities. The T3 treatment showed highest N uptake in chickpea was 37.0%, compared to T0. While T3 developed greater N uptake in pea by 151.4% than the control. However, T3 treatment also increased microbial biomass phosphorus in both species i.e., 95.7% and 81.5% in chickpeas and peas, respectively, compared to T0 treatment. In chickpeas, T1 treatment stimulated NAGase activities by 52.4%, and T2 developed URase activities by 50.1% higher than control. In contrast, T3 treatment enhanced both BGase and Phase enzyme activities, i.e., 55.8% and 33.9%, respectively, compared to the T0 treatment. Only the T3 treatment improved the activities of enzymes in the pea species (i.e., BGase was 149.7%, URase was 111.9%, Phase was 81.1%, and NAGase was 70.0%) compared to the control. Therefore, adding combined P and K fertilizer applications to the soil can increase the activity of enzymes in both legume species, and changes in microbial biomass P and soil nutrient availability make it easier for plants to uptake the nutrients.
Collapse
Affiliation(s)
- Farheen Solangi
- Research Centre of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang, 212013, China.
| | - Xingye Zhu
- Research Centre of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang, 212013, China.
| | - Kashif Ali Solangi
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Institute of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, 11451, Riyadh, Saudi Arabia
| | - Khaloud Mohammed Alarjani
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, 11451, Riyadh, Saudi Arabia
| | - Heba H Elsalahy
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374, Müncheberg, Germany.
| |
Collapse
|
3
|
Zhou X, Hu Y, Li H, Sheng J, Cheng J, Zhao T, Zhang Y. Phosphorus addition increases stability and complexity of co-occurrence network of soil microbes in an artificial Leymus chinensis grassland. Front Microbiol 2024; 15:1289022. [PMID: 38601937 PMCID: PMC11004269 DOI: 10.3389/fmicb.2024.1289022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/14/2024] [Indexed: 04/12/2024] Open
Abstract
Introduction Understanding the response of cross-domain co-occurrence networks of soil microorganisms to phosphorus stability and the resulting impacts is critical in ecosystems, but the underlying mechanism is unclear in artificial grassland ecosystems. Methods In this study, the effects of four phosphorus concentrations, P0 (0 kg P ha-1), P1 (15.3 kg P ha-1), P2 (30.6 kg P ha-1), and P3 (45.9 kg P ha-1), on the cross-domain co-occurrence network of bacteria and fungi were investigated in an artificial Leymus chinensis grassland in an arid region. Results and discussion The results of the present study showed that phosphorus addition significantly altered the stem number, biomass and plant height of the Leymus chinensis but had no significant effect on the soil bacterial or fungal alpha (ACE) diversity or beta diversity. The phosphorus treatments all increased the cross-domain co-occurrence network edge, node, proportion of positively correlated edges, edge density, average degree, proximity to centrality, and robustness and increased the complexity and stability of the bacterial-fungal cross-domain co-occurrence network after 3 years of continuous phosphorus addition. Among them, fungi (Ascomycota, Basidiomycota, Mortierellomycota and Glomeromycota) play important roles as keystone species in the co-occurrence network, and they are significantly associated with soil AN, AK and EC. Finally, the growth of Leymus chinensis was mainly due to the influence of the soil phosphorus content and AN. This study revealed the factors affecting the growth of Leymus chinense in artificial grasslands in arid areas and provided a theoretical basis for the construction of artificial grasslands.
Collapse
Affiliation(s)
- Xiaoguo Zhou
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, Urumqi, China
| | - Yutong Hu
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, Urumqi, China
| | - Huijun Li
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, China
- The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiandong Sheng
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, Urumqi, China
| | - Junhui Cheng
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, Urumqi, China
| | - Tingting Zhao
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, Urumqi, China
| | - Yuanmei Zhang
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
4
|
Dong H, Hu Y, Qian L, Yan J, Gao L, Mei W, Zhang J, Chen X, Wu P, Sun Y, Fu X, Xie M, Wang L. Preliminary manifestation of the Yangtze River Protection Strategy in improving the carbon sink function of estuary wetlands. iScience 2024; 27:108974. [PMID: 38327790 PMCID: PMC10847750 DOI: 10.1016/j.isci.2024.108974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/24/2023] [Accepted: 01/16/2024] [Indexed: 02/09/2024] Open
Abstract
In 2016, the Yangtze River Protection Strategy was proposed and a series of measures were applied to restore the health and function of the Yangtze River ecosystem. However, the impact of these measures on the carbon (C) sink capacity of the Yangtze River estuary wetlands has not been exhaustively studied. In this work, the effects of these measures on the C sink capacity of Yangtze River estuary wetlands were examined through the long-term monitoring of C fluxes, soil respiration, plant growth and water quality. The C flux of the Yangtze River estuary wetlands has become increasingly negative after the implementation of these measures, mainly owing to reduction in soil CO2 emission. The decrease in the chemical fertilizer release and returning farmland to wetland had led to the improvement of water quality in the estuary area, which further reduced soil heterotrophic microbial activity, and ultimately decreasing soil CO2 emissions of estuary wetlands.
Collapse
Affiliation(s)
- Haoyu Dong
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yu Hu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Urban Construction Design and Research Institute, Shanghai 200125, China
| | - Liwei Qian
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Research Department of Energy and Eco-Environment, Zhejiang Development & Planning Institute, Hangzhou 310030, China
| | - Jianfang Yan
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Lianying Gao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Wenxuan Mei
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jialu Zhang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiuzhi Chen
- Shanghai Jiuduansha Wetland Nature Reserve Management Affairs Center, Shanghai 200136, China
| | - Pengfei Wu
- Shanghai Jiuduansha Wetland Nature Reserve Management Affairs Center, Shanghai 200136, China
| | - Ying Sun
- Shanghai Jiuduansha Wetland Nature Reserve Management Affairs Center, Shanghai 200136, China
| | - Xiaohua Fu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Mengdi Xie
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Lei Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- College of Civil Engineering and Architecture, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
5
|
Xiao S, Wang C, Yu K, Liu G, Wu S, Wang J, Niu S, Zou J, Liu S. Enhanced CO 2 uptake is marginally offset by altered fluxes of non-CO 2 greenhouse gases in global forests and grasslands under N deposition. GLOBAL CHANGE BIOLOGY 2023; 29:5829-5849. [PMID: 37485988 DOI: 10.1111/gcb.16869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/01/2023] [Indexed: 07/25/2023]
Abstract
Despite the increasing impact of atmospheric nitrogen (N) deposition on terrestrial greenhouse gas (GHG) budget, through driving both the net atmospheric CO2 exchange and the emission or uptake of non-CO2 GHGs (CH4 and N2 O), few studies have assessed the climatic impact of forests and grasslands under N deposition globally based on different bottom-up approaches. Here, we quantify the effects of N deposition on biomass C increment, soil organic C (SOC), CH4 and N2 O fluxes and, ultimately, the net ecosystem GHG balance of forests and grasslands using a global comprehensive dataset. We showed that N addition significantly increased plant C uptake (net primary production) in forests and grasslands, to a larger extent for the aboveground C (aboveground net primary production), whereas it only caused a small or insignificant enhancement of SOC pool in both upland systems. Nitrogen addition had no significant effect on soil heterotrophic respiration (RH ) in both forests and grasslands, while a significant N-induced increase in soil CO2 fluxes (RS , soil respiration) was observed in grasslands. Nitrogen addition significantly stimulated soil N2 O fluxes in forests (76%), to a larger extent in grasslands (87%), but showed a consistent trend to decrease soil uptake of CH4 , suggesting a declined sink capacity of forests and grasslands for atmospheric CH4 under N enrichment. Overall, the net GHG balance estimated by the net ecosystem production-based method (forest, 1.28 Pg CO2 -eq year-1 vs. grassland, 0.58 Pg CO2 -eq year-1 ) was greater than those estimated using the SOC-based method (forest, 0.32 Pg CO2 -eq year-1 vs. grassland, 0.18 Pg CO2 -eq year-1 ) caused by N addition. Our findings revealed that the enhanced soil C sequestration by N addition in global forests and grasslands could be only marginally offset (1.5%-4.8%) by the combined effects of its stimulation of N2 O emissions together with the reduced soil uptake of CH4 .
Collapse
Affiliation(s)
- Shuqi Xiao
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Nanjing, China
| | - Chao Wang
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Nanjing, China
| | - Kai Yu
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Nanjing, China
| | - Genyuan Liu
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Nanjing, China
| | - Shuang Wu
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Nanjing, China
- Key Laboratory of Low-carbon and Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jinyang Wang
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Nanjing, China
- Key Laboratory of Low-carbon and Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Shuli Niu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Jianwen Zou
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Nanjing, China
- Key Laboratory of Low-carbon and Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Shuwei Liu
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Nanjing, China
- Key Laboratory of Low-carbon and Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
6
|
Chen Y, Yin S, Shao Y, Zhang K. Soil bacteria are more sensitive than fungi in response to nitrogen and phosphorus enrichment. Front Microbiol 2022; 13:999385. [PMID: 36212871 PMCID: PMC9537584 DOI: 10.3389/fmicb.2022.999385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/30/2022] [Indexed: 11/28/2022] Open
Abstract
Anthropogenic activities have dramatically increased nitrogen (N) and phosphorous (P) enrichments in terrestrial ecosystems. However, it is still unclear on how bacterial and fungal communities would respond to the simultaneously increased N and P enrichment. In this study, we used a field experiment to simulate N and P input, and examined the effects of N and P additions on the abundance, alpha-diversity, and community composition of soil bacteria and fungi in a riparian forest. Six nutrient-addition treatments, including low N (30 kg N ha–1 year–1), high N (150 kg N ha –1 year–1), low P (30 kg P2O5 ha–1 year–1), high P (150 kg P2O5 ha –1 year–1), low N+P, high N+P, and a control (CK) treatment were set up. We found that the N and P additions significantly affected bacterial abundance, community composition, but not the alpha diversity. Specifically, 16S, nirK, and nirS gene copy numbers were significantly reduced after N and P additions, which were correlated with decreases in soil pH and NO-3-N, respectively; Co-additions of N and P showed significantly antagonistic interactions on bacterial gene copies; Nutrient additions significantly increased the relative abundance of Proteobacteria while reduced the relative abundance of Chloroflexi. Mantel’s test showed that the alteration in bacterial composition was associated with the changes in soil pH and NO-3-N. The nutrient additions did not show significant effects on fungal gene copy numbers, alpha diversity, and community composition, which could be due to non-significant alterations in soil C/N and total P concentration. In conclusion, our results suggest that soil bacteria are more sensitive than fungi in response to N and P enrichment; the alterations in soil pH and NO-3-N explain the effects of N and P enrichment on bacterial communities, respectively; and the co-addition of N and P reduces the negative effects of these two nutrients addition in alone. These findings improve our understanding of microbial response to N and P addition, especially in the context of simultaneous enrichment of anthropogenic nutrient inputs.
Collapse
Affiliation(s)
- Youchao Chen
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Shuwei Yin
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yun Shao
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Kerong Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- *Correspondence: Kerong Zhang,
| |
Collapse
|
7
|
Lyu Q, Luo Y, Liu S, Zhang Y, Li X, Hou G, Chen G, Zhao K, Fan C, Li X. Forest gaps alter the soil bacterial community of weeping cypress plantations by modulating the understory plant diversity. FRONTIERS IN PLANT SCIENCE 2022; 13:920905. [PMID: 36061809 PMCID: PMC9437579 DOI: 10.3389/fpls.2022.920905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Weeping cypress is an endemic tree species that is widely planted in China, and the simple stand structure and fragile ecosystem of its plantation are common issues. Exploring the effect of different gap sizes on the soil bacterial community structure of weeping cypress plantations can provide a theoretical basis for the near-natural management of forest plantations. We, therefore, constructed three kinds of forest gaps with different sizes in weeping cypress plantations, namely, small (50-100 m2), medium (100-200 m2), and large gaps (400-667 m2), for identifying the key factors that affect soil bacterial communities following the construction of forest gaps. The results suggested that the herb layer was more sensitive than the shrub layer, while the Simpson, Shannon, and richness indices of the herb layer in plots with gaps were significantly higher than those of designated sampling plots without any gaps (CK). The presence of large gaps significantly increased the understory plant diversity and the Shannon and Simpson indices of the soil bacterial alpha diversity. There were obvious changes in the community composition of soil bacteria following the construction of forest gaps. The dominant bacterial phyla, orders, and functions were similar across the plots with different gap sizes. Of the indicator bacterial species, the abundance of the nitrogen-fixing bacteria, Lysobacter_ yangpyeongensis, and Ensifer_meliloti, was significantly different across plots with different gap sizes and accounted for a large proportion of the bacterial population of plots with medium and large gaps. The understory plant diversity was mostly related to the soil bacterial community than to other soil factors. The results of structural equation modeling indicated that the understory plant diversity was the most important environmental factor in driving the composition and diversity of bacterial communities. The construction of forest gaps significantly improved the understory plant diversity, physicochemical properties of the soil, and bacterial diversity in weeping cypress plantations, and the results of the comprehensive evaluation were in the order: large gaps > small gaps > medium gaps > CK. Our results suggested that large gaps are beneficial for the diversity of above-ground plant communities and underground soil bacterial communities.
Collapse
Affiliation(s)
- Qian Lyu
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Yan Luo
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Size Liu
- Sichuan Academy of Forestry, Chengdu, China
| | - Yan Zhang
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Xiangjun Li
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Guirong Hou
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of National Forestry and Prairie Bureau on Forest Resources Conservation and Ecological Security in the Upper Reaches of Yangtze River, Sichuan Agricultural University, Chengdu, China
- Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Gang Chen
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of National Forestry and Prairie Bureau on Forest Resources Conservation and Ecological Security in the Upper Reaches of Yangtze River, Sichuan Agricultural University, Chengdu, China
- Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Kuangji Zhao
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of National Forestry and Prairie Bureau on Forest Resources Conservation and Ecological Security in the Upper Reaches of Yangtze River, Sichuan Agricultural University, Chengdu, China
- Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Chuan Fan
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of National Forestry and Prairie Bureau on Forest Resources Conservation and Ecological Security in the Upper Reaches of Yangtze River, Sichuan Agricultural University, Chengdu, China
- Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xianwei Li
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of National Forestry and Prairie Bureau on Forest Resources Conservation and Ecological Security in the Upper Reaches of Yangtze River, Sichuan Agricultural University, Chengdu, China
- Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
8
|
Luo R, Kuzyakov Y, Zhu B, Qiang W, Zhang Y, Pang X. Phosphorus addition decreases plant lignin but increases microbial necromass contribution to soil organic carbon in a subalpine forest. GLOBAL CHANGE BIOLOGY 2022; 28:4194-4210. [PMID: 35445477 DOI: 10.1111/gcb.16205] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Increasing phosphorus (P) inputs induced by anthropogenic activities have increased P availability in soils considerably, with dramatic effects on carbon (C) cycling and storage. However, the underlying mechanisms via which P drives plant and microbial regulation of soil organic C (SOC) formation and stabilization remain unclear, hampering the accurate projection of soil C sequestration under future global change scenarios. Taking the advantage of an 8-year field experiment with increasing P addition levels in a subalpine forest on the eastern Tibetan Plateau, we explored plant C inputs, soil microbial communities, plant and microbial biomarkers, as well as SOC physical and chemical fractions. We found that continuous P addition reduced fine root biomass, but did not affect total SOC content. P addition decreased plant lignin contribution to SOC, primarily from declined vanillyl-type phenols, which was coincided with a reduction in methoxyl/N-alkyl C by 2.1%-5.5%. Despite a decline in lignin decomposition due to suppressed oxidase activity by P addition, the content of lignin-derived compounds decreased because of low C input from fine roots. In contrast, P addition increased microbial (mainly fungal) necromass and its contribution to SOC due to the slower necromass decomposition under reduced N-acquisition enzyme activity. The larger microbial necromass contribution to SOC corresponded with a 9.1%-12.4% increase in carbonyl C abundance. Moreover, P addition had no influence on the slow-cycing mineral-associated organic C pool, and SOC chemical stability indicated by aliphaticity and recalcitrance indices. Overall, P addition in the subalpine forest over 8 years influenced SOC composition through divergent alterations of plant- and microbial-derived C contributions, but did not shape SOC physical and chemical stability. Such findings may aid in accurately forecasting SOC dynamics and their potential feedbacks to climate change with future scenarios of increasing soil P availability in Earth system models.
Collapse
Affiliation(s)
- Ruyi Luo
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Göttingen, Göttingen, Germany
- Peoples Friendship University of Russia (RUDN University), Moscow, Russia
- Institute of Environmental Sciences, Kazan Federal University, Kazan, Russia
| | - Biao Zhu
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Wei Qiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xueyong Pang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
9
|
Fall AF, Nakabonge G, Ssekandi J, Founoune-Mboup H, Apori SO, Ndiaye A, Badji A, Ngom K. Roles of Arbuscular Mycorrhizal Fungi on Soil Fertility: Contribution in the Improvement of Physical, Chemical, and Biological Properties of the Soil. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:723892. [PMID: 37746193 PMCID: PMC10512336 DOI: 10.3389/ffunb.2022.723892] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 01/19/2022] [Indexed: 09/26/2023]
Abstract
Many of the world's soils are experiencing degradation at an alarming rate. Climate change and some agricultural management practices, such as tillage and excessive use of chemicals, have all contributed to the degradation of soil fertility. Arbuscular Mycorrhizal Fungi (AMFs) contribute to the improvement of soil fertility. Here, a short review focusing on the role of AMF in improving soil fertility is presented. The aim of this review was to explore the role of AMF in improving the chemical, physical, and biological properties of the soil. We highlight some beneficial effects of AMF on soil carbon sequestration, nutrient contents, microbial activities, and soil structure. AMF has a positive impact on the soil by producing organic acids and glomalin, which protect from soil erosion, chelate heavy metals, improve carbon sequestration, and stabilize soil macro-aggregation. AMF also recruits bacteria that produce alkaline phosphatase, a mineralization soil enzyme associated with organic phosphorus availability. Moreover, AMFs influence the composition, diversity, and activity of microbial communities in the soil through mechanisms of antagonism or cooperation. All of these AMF activities contribute to improve soil fertility. Knowledge gaps are identified and discussed in the context of future research in this review. This will help us better understand AMF, stimulate further research, and help in sustaining the soil fertility.
Collapse
Affiliation(s)
- Abdoulaye Fofana Fall
- African Center of Excellence in Agroecology and Livelihood Systems, Faculty of Agriculture, Uganda Martyrs University, Nkozi, Uganda
- Fungi Biotechnology Laboratory, Plant Biology Department, Cheikh Anta Diop University of Dakar (UCAD), Dakar, Senegal
| | - Grace Nakabonge
- College of Agriculture and Environmental Sciences, Makerere University, Kampala, Uganda
| | - Joseph Ssekandi
- African Center of Excellence in Agroecology and Livelihood Systems, Faculty of Agriculture, Uganda Martyrs University, Nkozi, Uganda
| | - Hassna Founoune-Mboup
- ISRA_LNRPV, Laboratoire National de Recherches sur les Productions Végétales (LNRPV), Dakar, Senegal
| | - Samuel Obeng Apori
- School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
| | - Abibatou Ndiaye
- African Center of Excellence in Agroecology and Livelihood Systems, Faculty of Agriculture, Uganda Martyrs University, Nkozi, Uganda
| | - Arfang Badji
- Department of Agricultural Production, Makerere University, Kampala, Uganda
| | - Khady Ngom
- African Center of Excellence in Agroecology and Livelihood Systems, Faculty of Agriculture, Uganda Martyrs University, Nkozi, Uganda
| |
Collapse
|
10
|
Sherpa MT, Bag N, Das S, Haokip P, Sharma L. Isolation and characterization of plant growth promoting rhizobacteria isolated from organically grown high yielding pole type native pea ( Pisum sativum L.) variety Dentami of Sikkim, India. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100068. [PMID: 34841358 PMCID: PMC8610319 DOI: 10.1016/j.crmicr.2021.100068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 08/22/2021] [Accepted: 08/25/2021] [Indexed: 11/30/2022] Open
Abstract
The present research showcases the significant findings pertaining to the assessment and report of the first ever study on the isolation and identification of plant growth promoting rhizobacterial diversity of organic farming pea variety (Dentami) of Sikkim. Proteobacteria dominated the rhizospheric soil whereas the bulk soil was governed by Actinobacteria. Bacillus cereus P8 (66.5 µg ml−1) and Bacillus mycoides PP1 (45.1 µg ml−1) were the highest IAA producer and also showed other plant growth promoting and biocontrol traits, such as phosphorous and potassium solubilization, nitrogen-fixing activity and siderophore production. As, Sikkim is the first state in India to practice organic agriculture farming, hence, such study on the soil microbiology is of immense significance. In these rhizospheric soil, it was dominated by the Proteobacteria and similar bacterial isolates, suggesting that these soil flora might be playing significant roles to enhancing the crop production and soil fertility. Culture-dependent technique was used to assess plant growth promoting rhizobacterial diversity of pole type pea variety (Dentami) of Sikkim. The dominant phylum was Proteobacteria (56%) from rhizosphere soil and Actinobacteria (58%) from bulk soil. PCA analysis showed that Firmicutes (bulk soil) were positively correlated to SOC, and available K, whereas, Proteobacteria (rhizosphere soil) exhibited a high correlation to pH, and available P. Bacillus cereus P8, Arthrobacter woluwensis DP2, Paenarthrobacter nitroguajacolicus UP1, and Bacillus mycoides PP1 showed plant growth promotion and bio-control traits. Bacillus cereus P8 (66.5 µg mL−1) and Bacillus mycoides PP1 (45.1 µg mL−1) was thehighest IAA producer. Pot experiment confirmed that these isolates can be potential plant growth promoter under the agro-climatic conditions of Sikkim, India.
Organic farming is an eco-friendly and sustainable farming practice that enhances soil fertility and helps in improving soil quality. But with the commencement of more sophisticated advances in agricultural techniques, organic farming has gradually become limited in the world. Culture-dependent plant growth-promoting bacterial isolates were isolated from the bulk and rhizospheric soil, of the native high yielding pole type organic pea (Pisum sativum L.) cultivar Dentami of Dentam, West Sikkim, India. Based on the 16S rRNA gene sequencing identification of these isolates, it was found that from the bulk soil, Actinobacteria (58%) was the dominant phyla followed by Firmicutes (28%), and Proteobacteria (14%). In the rhizospheric soil it was dominated by Proteobacteria (56%), followed by Firmicutes (33%), and Bacteriodetes (11%). A total of 40 bacterial isolates were initially screened for the plant growth-promoting (PGP) activity and out of them only four bacterial isolates i.e., Bacillus cereus P8, Arthrobacter woluwensis DP2, Paenarthrobacter nitroguajacolicus PP3, and Bacillus mycoides PP10 with accession numbers MN589697, MN559516, MN519462 and MN589696 respectively were found to possess higher PGP activity (i.e. phosphorous, potassium solubilization and nitrogen-fixing activity) as compared to the other bacteria present in the soil. Based on the indole-3-acetic acid (IAA) quantitative assay and siderophore production assay, it was found that Bacillus cereus (MN589697) produced the highest IAA (65.5 µg mL−1) and siderophore (71%) when compared with the other isolates. The statistical correlation suggests that pH and available phosphorus were the strongest influencing factors for the distribution of Proteobacteria in the rhizospheric soil. The results indicate that these isolates can be potential plant growth promoter under the agro-climatic conditions of Sikkim, India. To the best of our knowledge the present study is the first report of its kind and showcases significant findings pertaining to the assessment of diversity, isolation and identification of plant growth-promoting rhizobacteria of organic pea grown in Sikkim.
Collapse
Affiliation(s)
- Mingma Thundu Sherpa
- Department of Horticulture, School of Life Sciences, Sikkim University, 6th Mile, Gangtok, Sikkim 737102, India
| | - Niladri Bag
- Department of Horticulture, School of Life Sciences, Sikkim University, 6th Mile, Gangtok, Sikkim 737102, India
| | - Sayak Das
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Gangtok, Sikkim 737102, India
| | - Paolenmang Haokip
- Department of Geology, School of Physical Sciences, Sikkim University, 6th Mile, Gangtok, Sikkim 737102, India
| | - Laxuman Sharma
- Department of Horticulture, School of Life Sciences, Sikkim University, 6th Mile, Gangtok, Sikkim 737102, India
| |
Collapse
|
11
|
From Lab to Farm: Elucidating the Beneficial Roles of Photosynthetic Bacteria in Sustainable Agriculture. Microorganisms 2021; 9:microorganisms9122453. [PMID: 34946055 PMCID: PMC8707939 DOI: 10.3390/microorganisms9122453] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
Photosynthetic bacteria (PSB) possess versatile metabolic abilities and are widely applied in environmental bioremediation, bioenergy production and agriculture. In this review, we summarize examples of purple non-sulfur bacteria (PNSB) through biofertilization, biostimulation and biocontrol mechanisms to promote plant growth. They include improvement of nutrient acquisition, production of phytohormones, induction of immune system responses, interaction with resident microbial community. It has also been reported that PNSB can produce an endogenous 5-aminolevulinic acid (5-ALA) to alleviate abiotic stress in plants. Under biotic stress, these bacteria can trigger induced systemic resistance (ISR) of plants against pathogens. The nutrient elements in soil are significantly increased by PNSB inoculation, thus improving fertility. We share experiences of researching and developing an elite PNSB inoculant (Rhodopseudomonas palustris PS3), including strategies for screening and verifying beneficial bacteria as well as the establishment of optimal fermentation and formulation processes for commercialization. The effectiveness of PS3 inoculants for various crops under field conditions, including conventional and organic farming, is presented. We also discuss the underlying plant growth-promoting mechanisms of this bacterium from both microbial and plant viewpoints. This review improves our understanding of the application of PNSB in sustainable crop production and could inspire the development of diverse inoculants to overcome the changes in agricultural environments created by climate change.
Collapse
|
12
|
Yin Y, Li Q, Du H. Near-natural transformation of Pinus tabuliformis better improve soil nutrients and soil microbial community. PeerJ 2021; 9:e12098. [PMID: 34631311 PMCID: PMC8465996 DOI: 10.7717/peerj.12098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/10/2021] [Indexed: 11/24/2022] Open
Abstract
Pinus tabulaeformis plantations have been established around northern China to restore degraded land and provide timber or fuelwood. In recent years, widely distributed monoculture P. tabulaeformis forests have been transformed into mixed forests due to various ecological problems. However, the current research on the influence of near-natural transformation of P. tabulaeformis on soil microbial diversity and community composition remains limited. Therefore, we examined the effect of forest conversion from monoculture Pinus tabuliformis (PT) to P. tabuliformis-Armeniaca vulgaris (PTAU), P. tabuliformis - Robinia pseudoacacia (PTRP), P. tabuliformis - Vitex negundo L. var. heterophylla (PTVN) forests on soil microbial community diversity and composition. The results indicated that compared to PT, PTAU, PTVN, and PTRP could enhance the soil pH, TC, TN, AN, and AK in different degrees, the most obvious in PTAU. Near-natural transformation of P. tabuliformis could improve soil bacterial Pielou_e index, and Simpson index, as well as soil fungal Chao1 index. Proteobacteria and Ascomycota were the dominant soil microbial community at the phylum level. What’s more, both soil bacterial and fungal community among PT, PTAU, PTRP and PTVN showed clear different, and PTAU obviously altered the soil microbial community structure. Proteobacteria was the predominant group in PT, while, Gemmatimonadetes enriched in PTVN. Ascomycota was the predominant group in PTAU, while, Basidiomycota was the predominant group in PTRP. Near-natural transformation of P. tabuliformis could change soil microbial community via altering soil characteristics. In brief, our research results revealed the influence of tree composition and soil nutrient availability on soil microbial diversity and composition, and provided management guidance for introduction soil microbial community in forest protection and management.
Collapse
Affiliation(s)
- You Yin
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China.,Research Station of Liaohe-River Plain Forest Ecosystem, Chinese Forest Ecosystem Research Network (CFERN), Shenyang Agricultural University, Tieling, Liaoning, China
| | - Qiuli Li
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Haitao Du
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
13
|
Deng Q, Zhang T, Xie D, Yang Y. Rhizosphere Microbial Communities Are Significantly Affected by Optimized Phosphorus Management in a Slope Farming System. Front Microbiol 2021; 12:739844. [PMID: 34589078 PMCID: PMC8473901 DOI: 10.3389/fmicb.2021.739844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/17/2021] [Indexed: 11/24/2022] Open
Abstract
Soil rhizosphere microorganisms play crucial roles in promoting plant nutrient absorption and maintaining soil health. However, the effects of different phosphorus (P) managements on soil microbial communities in a slope farming system are poorly understood. Here, rhizosphere microbial communities under two P fertilization levels-conventional (125 kg P2O5 ha-1, P125) and optimal (90 kg P2O5 ha-1, P90)-were compared at four growth stages of maize in a typical sloped farming system. The richness and diversity of rhizosphere bacterial communities showed significant dynamic changes throughout the growth period of maize, while different results were observed in fungal communities. However, both the P fertilization levels and the growth stages influenced the structure and composition of the maize rhizosphere microbiota. Notably, compared to P125, Pseudomonas, Conexibacter, Mycobacterium, Acidothermus, Glomeromycota, and Talaromyces were significantly enriched in the different growth stages of maize under P90, while the relative abundance of Fusarium was significantly decreased during maize harvest. Soil total nitrogen (TN) and pH are the first environmental drivers of change in bacterial and fungal community structures, respectively. The abundance of Gemmatimonadota, Proteobacteria, and Cyanobacteria showed significant correlations with soil TN, while that of Basidiomycota and Mortierellomycota was significantly related to pH. Additionally, P90 strengthened the connection between bacteria, but reduced the links between fungi at the genus level. Our work helps in understanding the role of P fertilization levels in shaping the rhizosphere microbiota and may manipulate beneficial microorganisms for better P use efficiency.
Collapse
Affiliation(s)
- Qianxin Deng
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Tong Zhang
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Deti Xie
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Yuheng Yang
- College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
14
|
Comparative Effect of Fertilization Practices on Soil Microbial Diversity and Activity: An Overview. Curr Microbiol 2021; 78:3644-3655. [PMID: 34480627 DOI: 10.1007/s00284-021-02634-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022]
Abstract
Continuously increasing human population demands increased food production, which needs greater fertilizer's input in agricultural lands to enhance crop yield. In this respect, different fertilization practices gained acceptance among farmers. We reviewed effect of three main fertilization practices (Conventional-, Organic-, and Bio-fertilization) on soil microbial diversity, activity, and community composition. Studies reported that over application of inorganic fertilizers decline soil pH, change soil osmolarity, cause soil degradation, disturb taxonomic diversity and metabolism of soil microbes and cause accumulation of extra nutrients into the soil such as phosphorous (P) accumulation. On the contrary, organic fertilizers increase organic carbon (OC) input in the soil, which strongly encourage growth of heterotrophic microbes. Organic fertilizer vermicompost application provides readily available nutrients to both plants as well as microbes and encourage overall microbial number in the soil. Most recently, role of beneficial bacteria in long-term sustainable agriculture attracted attention of scientists towards their use as biofertilizer in the soil. Studies documented favorable effect of biofertilization on microbial Shannon, Chao and ACE diversity indices in the soil. It is concluded from intensive review of literature that all the three fertilization practices have their own way to benefit the soil with nutrients, but biofertilization provides long-term sustainability to crop lands. When it is used in integration with organic fertilizers, it makes the soil best for microbial growth and activity and increase microbial diversity, providing nutrients to soil for a longer time, thus improving crop productivity.
Collapse
|
15
|
Nutrient availability is a dominant predictor of soil bacterial and fungal community composition after nitrogen addition in subtropical acidic forests. PLoS One 2021; 16:e0246263. [PMID: 33621258 PMCID: PMC7901772 DOI: 10.1371/journal.pone.0246263] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 01/17/2021] [Indexed: 11/19/2022] Open
Abstract
Nutrient addition to forest ecosystems significantly influences belowground microbial diversity, community structure, and ecosystem functioning. Nitrogen (N) addition in forests is common in China, especially in the southeast region. However, the influence of N addition on belowground soil microbial community diversity in subtropical forests remains unclear. In May 2018, we randomly selected 12 experimental plots in a Pinus taiwanensis forest within the Daiyun Mountain Nature Reserve, Fujian Province, China, and subjected them to N addition treatments for one year. We investigated the responses of the soil microbial communities and identified the major elements that influenced microbial community composition in the experimental plots. The present study included three N treatments, i.e., the control (CT), low N addition (LN, 40 kg N ha-1 yr-1), and high N addition (HN, 80 kg N ha-1 yr-1), and two depths, 0−10 cm (topsoil) and 10−20 cm (subsoil), which were all sampled in the growing season (May) of 2019. Soil microbial diversity and community composition in the topsoil and subsoil were investigated using high-throughput sequencing of bacterial 16S rDNA genes and fungal internal transcribed spacer sequences. According to our results, 1) soil dissolved organic carbon (DOC) significantly decreased after HN addition, and available nitrogen (AN) significantly declined after LN addition, 2) bacterial α-diversity in the subsoil significantly decreased with HN addition, which was affected significantly by the interaction between N addition and soil layer, and 3) soil DOC, rather than pH, was the dominant environmental factor influencing soil bacterial community composition, while AN and MBN were the best predictors of soil fungal community structure dynamics. Moreover, N addition influence both diversity and community composition of soil bacteria more than those of fungi in the subtropical forests. The results of the present study provide further evidence to support shifts in soil microbial community structure in acidic subtropical forests in response to increasing N deposition.
Collapse
|
16
|
Nasanit R, Imklin N, Limtong S. Assessment of yeasts in tropical peat swamp forests in Thailand. Mycol Prog 2020. [DOI: 10.1007/s11557-020-01646-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Xia Z, Yang J, Sang C, Wang X, Sun L, Jiang P, Wang C, Bai E. Phosphorus Reduces Negative Effects of Nitrogen Addition on Soil Microbial Communities and Functions. Microorganisms 2020; 8:E1828. [PMID: 33233486 PMCID: PMC7699539 DOI: 10.3390/microorganisms8111828] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 01/21/2023] Open
Abstract
Increased soil nitrogen (N) from atmospheric N deposition could change microbial communities and functions. However, the underlying mechanisms and whether soil phosphorus (P) status are responsible for these changes still have not been well explained. Here, we investigated the effects of N and P additions on soil bacterial and fungal communities and predicted their functional compositions in a temperate forest. We found that N addition significantly decreased soil bacterial diversity in the organic (O) horizon, but tended to increase bacterial diversity in the mineral (A) horizon soil. P addition alone did not significantly change soil bacterial diversity but mitigated the negative effect of N addition on bacterial diversity in the O horizon. Neither N addition nor P addition significantly influenced soil fungal diversity. Changes in soil microbial community composition under N and P additions were mainly due to the shifts in soil pH and NO3- contents. N addition can affect bacterial functional potentials, such as ureolysis, N fixation, respiration, decomposition of organic matter processes, and fungal guilds, such as pathogen, saprotroph, and mycorrhizal fungi, by which more C probably was lost in O horizon soil under increased N deposition. However, P addition can alleviate or switch the effects of increased N deposition on the microbial functional potentials in O horizon soil and may even be a benefit for more C sequestration in A horizon soil. Our results highlight the different responses of microorganisms to N and P additions between O and A horizons and provides an important insight for predicting the changes in forest C storage status under increasing N deposition in the future.
Collapse
Affiliation(s)
- Zongwei Xia
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (Z.X.); (J.Y.); (C.S.); (X.W.); (L.S.); (P.J.); (E.B.)
| | - Jingyi Yang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (Z.X.); (J.Y.); (C.S.); (X.W.); (L.S.); (P.J.); (E.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changpeng Sang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (Z.X.); (J.Y.); (C.S.); (X.W.); (L.S.); (P.J.); (E.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (Z.X.); (J.Y.); (C.S.); (X.W.); (L.S.); (P.J.); (E.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lifei Sun
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (Z.X.); (J.Y.); (C.S.); (X.W.); (L.S.); (P.J.); (E.B.)
| | - Ping Jiang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (Z.X.); (J.Y.); (C.S.); (X.W.); (L.S.); (P.J.); (E.B.)
| | - Chao Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (Z.X.); (J.Y.); (C.S.); (X.W.); (L.S.); (P.J.); (E.B.)
| | - Edith Bai
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (Z.X.); (J.Y.); (C.S.); (X.W.); (L.S.); (P.J.); (E.B.)
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
18
|
Zhang X, Chen X, Liu M, Xu Z, Wei H. Coupled changes in soil organic carbon fractions and microbial community composition in urban and suburban forests. Sci Rep 2020; 10:15933. [PMID: 32985613 PMCID: PMC7522236 DOI: 10.1038/s41598-020-73119-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 09/10/2020] [Indexed: 12/21/2022] Open
Abstract
Climate change and rapid urbanization have greatly impacted urban forest ecosystems and the carbon (C) cycle. To assess the effects of urbanization on forest soil C and soil microorganisms, six natural forests in a highly-urbanized region were selected as the research objects. Soil samples were collected to investigate the content and fractions of the soil organic carbon (SOC), as well as the soil microbial community composition. The results showed that the SOC content and fractions were substantially lower in the urban forests than in the suburban forests. Meanwhile, the total amount of phospholipid fatty acids (PLFAs) at suburban sites was twice more than that at urban sites, with shifts in microbial community structure. The potential differences in C inputs and nutrient limitation in urban forests may aggravate the low quantity and quality of SOC and consequently impact microbial community abundance and structure. Variation in microbial community structure was found to explain the loss of soil C pools by affecting the C inputs and promoting the decomposition of SOC. Therefore, the coupled changes in SOC and soil microorganisms induced by urbanization may adversely affect soil C sequestration in subtropical forests.
Collapse
Affiliation(s)
- Xueying Zhang
- School of Geographical Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Xiaomei Chen
- School of Geographical Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.
| | - Muying Liu
- School of Geographical Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Zhanying Xu
- School of Geographical Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Hui Wei
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
19
|
How Do Soil Bacterial Diversity and Community Composition Respond under Recommended and Conventional Nitrogen Fertilization Regimes? Microorganisms 2020; 8:microorganisms8081193. [PMID: 32764443 PMCID: PMC7466009 DOI: 10.3390/microorganisms8081193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 11/17/2022] Open
Abstract
Shifts in soil bacterial diversity and community composition are suggested to be induced by elevated input of nitrogen (N) fertilization with implications for soil quality, and consequently production. In this study, we evaluated the impacts of recommended fertilization (RF) and conventional fertilization (CF) on soil chemical properties, crop yield, bacterial diversity, and community composition from two long-term experiments conducted in fluvo-aquic soil and black soil of China. Each site comprised of four treatments, i.e., RF N−, RF N+, CF N−, CF N+. No N fertilization was indicated by N− and N fertilization was indicated by N+. Across both sites, N fertilization significantly increased crop yield compared with no N fertilization and RF successfully enhanced crop yield over CF. Interestingly, the RF maintained bacterial diversity, while CF depressed bacterial diversity in the two soils. Microbial taxa performing important ecological roles such as order Rhodospirillales and Bacillales were significantly enhanced in the RF approach, while Rhizobiales declined under CF. Furthermore, the results of partial least square path modeling revealed that soil available phosphorus (AP) negatively affected bacterial diversity while it positively affected bacterial community structure in fluvo-aquic soils. In contrast, soil pH was positively linked with both bacterial diversity and community structure in black soil. Overall, our study demonstrated that RF is an environmentally friendly approach which not only maintained above ground plant productivity, but also preserved belowground microbial populations and important soil variables regulating bacterial communities varied in different soil types.
Collapse
|
20
|
Xiao H, Wang B, Lu S, Chen D, Wu Y, Zhu Y, Hu S, Bai Y. Soil acidification reduces the effects of short-term nutrient enrichment on plant and soil biota and their interactions in grasslands. GLOBAL CHANGE BIOLOGY 2020; 26:4626-4637. [PMID: 32438518 DOI: 10.1111/gcb.15167] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
Soil nitrogen (N) and phosphorus (P) contents, and soil acidification have greatly increased in grassland ecosystems due to increased industrial and agricultural activities. As major environmental and economic concerns worldwide, nutrient enrichment and soil acidification can lead to substantial changes in the diversity and structure of plant and soil communities. Although the separate effects of N and P enrichment on soil food webs have been assessed across different ecosystems, the combined effects of N and P enrichment on multiple trophic levels in soil food webs have not been studied in semiarid grasslands experiencing soil acidification. Here we conducted a short-term N and P enrichment experiment in non-acidified and acidified soil in a semiarid grassland on the Mongolian Plateau. We found that net primary productivity was not affected by N or P enrichment alone in either non-acidified or acidified soil, but was increased by combined N and P enrichment in both non-acidified and acidified soil. Nutrient enrichment decreased the biomass of most microbial groups in non-acidified soil (the decrease tended to be greatest with combined N and P enrichment) but not in acidified soil, and did not affect most soil nematode variables in non-acidified or acidified soil. Nutrient enrichment also changed plant and microbial community structure in non-acidified but not in acidified soil, and had no effect on nematode community structure in non-acidified or acidified soil. These results indicate that the responses to short-term nutrient enrichment were weaker for higher trophic groups (nematodes) than for lower trophic groups (microorganisms) and primary producers (plants). The findings increase our understanding of the effects of nutrient enrichment on multiple trophic levels of soil food webs, and highlight that soil acidification, as an anthropogenic stressor, reduced the responses of plants and soil food webs to nutrient enrichment and weakened plant-soil interactions.
Collapse
Affiliation(s)
- Hong Xiao
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
- College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Bing Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shunbao Lu
- College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Dima Chen
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
| | - Ying Wu
- Yunnan Key Laboratory of Plant Reproductive Adaption and Evolutionary Ecology, Yunnan University, Kunming, China
| | - Yuhe Zhu
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
| | - Shuijin Hu
- Department of Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Yongfei Bai
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Aldrich-Wolfe L, Black KL, Hartmann EDL, Shivega WG, Schmaltz LC, McGlynn RD, Johnson PG, Asheim Keller RJ, Vink SN. Taxonomic shifts in arbuscular mycorrhizal fungal communities with shade and soil nitrogen across conventionally managed and organic coffee agroecosystems. MYCORRHIZA 2020; 30:513-527. [PMID: 32500441 DOI: 10.1007/s00572-020-00967-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
The composition of arbuscular mycorrhizal fungal (AMF) communities should reflect not only responses to host and soil environments, but also differences in functional roles and costs vs. benefits among arbuscular mycorrhizal fungi. The coffee agroecosystem allows exploration of the effects of both light and soil fertility on AMF communities, because of the variation in shade and soil nutrients farmers generate through field management. We used high-throughput ITS2 sequencing to characterize the AMF communities of coffee roots in 25 fields in Costa Rica that ranged from organic management with high shade and no chemical fertilizers to conventionally managed fields with minimal shade and high N fertilization, and examined relationships between AMF communities and soil and shade parameters with partial correlations, NMDS, PERMANOVA, and partial least squares analysis. Gigasporaceae and Acaulosporaceae dominated coffee AMF communities in terms of relative abundance and richness, respectively. Gigasporaceae richness was greatest in conventionally managed fields, while Glomeraceae richness was greatest in organic fields. While total AMF richness and root colonization did not differ between organic and conventionally managed fields, AMF community composition did; these differences were correlated with soil nitrate and shade. OTUs differing in relative abundance between conventionally managed and organic fields segregated into four groups: Gigasporaceae associated with high light and nitrate availability, Acaulosporaceae with high light and low nitrate availability, Acaulosporaceae and a single relative of Rhizophagus fasciculatus with shade and low nitrate availability, and Claroideoglomus/Glomus with conventionally managed fields but uncorrelated with shade and soil variables. The association of closely related taxa with similar shade and light availabilities is consistent with phylogenetic trait conservatism in AM fungi.
Collapse
Affiliation(s)
- Laura Aldrich-Wolfe
- Department of Biological Sciences, North Dakota State University, Fargo, ND, USA.
| | - Katie L Black
- Biology Department, Concordia College, Moorhead, MN, USA
| | | | - W Gaya Shivega
- Biology Department, Concordia College, Moorhead, MN, USA
| | | | | | | | | | - Stefanie N Vink
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
22
|
Yu M, Wang YP, Baldock JA, Jiang J, Mo J, Zhou G, Yan J. Divergent responses of soil organic carbon accumulation to 14 years of nitrogen addition in two typical subtropical forests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:136104. [PMID: 31864003 DOI: 10.1016/j.scitotenv.2019.136104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
Developing an understanding of the response of soil organic carbon (SOC) to N addition is critical to quantify and predict the terrestrial carbon uptake under increasing N deposition in the future. However, results from field studies on the response of SOC content and composition to N addition are highly variable across different ecosystems. The interpretation of SOC responses to N addition are often complicated by the differences in climate, soil substrate and other factors. To address this question, we measured SOC and its components in adjacent broadleaved and coniferous subtropical forests after 14 years of N addition. SOC in the top 50 cm increased by 2.1 kg m-2, 1.8 kg m-2 and 1.2 kg m-2 for low, medium and high rates of N addition in the broadleaved forest, but did not change significantly in the coniferous forest. Increased SOC in the broadleaved forest was contributed by the significant increases in particulate organic carbon (POC), humus organic carbon (HOC) in the 0-10 cm and 30-50 cm soil layers and resistant organic carbon (ROC) in the 0-10 cm soil layer. 13C nuclear magnetic resonance (NMR) spectra of coarse SOC revealed a decrease in easily decomposed carbon (C) and a shift in recalcitrant C. The increased SOC accumulation in the broadleaved forest was largely driven by altered rates of organic matter decomposition, rather than C inputs to soil. Land-history and low nutrient availability may have contributed to the lack of significant impact of N addition on SOC in the coniferous forest. Our results suggested the different controls of SOC accumulation and less sensitivity of SOC chemical composition at the molecular level to N addition in the two subtropical forest soils.
Collapse
Affiliation(s)
- Mengxiao Yu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying-Ping Wang
- CSIRO Oceans and Atmosphere, PMB 1, Aspendale, Victoria 3195, Australia
| | - Jeffrey A Baldock
- CSIRO Agriculture and Food, Locked Bag 2, Glen Osmond, SA 5064, Australia
| | - Jun Jiang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Jiangming Mo
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Guoyi Zhou
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Junhua Yan
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
23
|
Jones JM, Heath KD, Ferrer A, Dalling JW. Habitat‐specific effects of bark on wood decomposition: Influences of fragmentation, nitrogen concentration and microbial community composition. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13547] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jennifer M. Jones
- Program in Ecology, Evolution and Conservation Biology University of Illinois at Urbana‐Champaign Urbana IL USA
| | - Katy D. Heath
- Department of Plant Biology University of Illinois at Urbana‐Champaign Urbana IL USA
| | - Astrid Ferrer
- Department of Plant Biology University of Illinois at Urbana‐Champaign Urbana IL USA
| | - James W. Dalling
- Department of Plant Biology University of Illinois at Urbana‐Champaign Urbana IL USA
- Smithsonian Tropical Research Institute Balboa Republic of Panama
| |
Collapse
|
24
|
Ali W, Nadeem M, Ashiq W, Zaeem M, Gilani SSM, Rajabi-Khamseh S, Pham TH, Kavanagh V, Thomas R, Cheema M. The effects of organic and inorganic phosphorus amendments on the biochemical attributes and active microbial population of agriculture podzols following silage corn cultivation in boreal climate. Sci Rep 2019; 9:17297. [PMID: 31754161 PMCID: PMC6872752 DOI: 10.1038/s41598-019-53906-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/30/2019] [Indexed: 01/01/2023] Open
Abstract
Phosphorus (P) is the second most important macronutrient that limits the plant growth, development and productivity. Inorganic P fertilization in podzol soils predominantly bound with aluminum and iron, thereby reducing its availability to crop plants. Dairy manure (DM) amendment to agricultural soils can improve physiochemical properties, nutrient cycling through enhanced enzyme and soil microbial activities leading to improved P bioavailability to crops. We hypothesized that DM amendment in podzol soil will improve biochemical attributes and microbial community and abundance in silage corn cropping system under boreal climate. We evaluated the effects of organic and inorganic P amendments on soil biochemical attributes and abundance in podzol soil under boreal climate. Additionally, biochemical attributes and microbial population and abundance under short-term silage corn monocropping system was also investigated. Experimental treatments were [P0 (control); P1: DM with high P2O5; P2: DM with low P2O5; P3: inorganic P and five silage-corn genotypes (Fusion RR, Yukon R, A4177G3RIB, DKC 23-17RIB and DKC 26-28RIB) were laid out in a randomized complete block design in factorial settings with three replications. Results showed that P1 treatment increased acid phosphatase (AP-ase) activity (29% and 44%), and soil available P (SAP) (60% and 39%) compared to control treatment, during 2016 and 2017, respectively. Additionally, P1 treatments significantly increased total bacterial phospholipids fatty acids (ΣB-PLFA), total phospholipids fatty acids (ΣPLFA), fungi, and eukaryotes compared to control and inorganic P. Yukon R and DKC 26-28RIB genotypes exhibited higher total bacterial PLFA, fungi, and total PLFA in their rhizospheres compared to the other genotypes. Redundancy analyses showed promising association between P1 and P2 amendment, biochemical attributes and active microbial population and Yukon R and DKC 26-28RIB genotypes. Pearson correlation also demonstrated significant and positive correlation between AP-ase, SAP and gram negative bacteria (G-), fungi, ΣB-PLFA, and total PLFA. Study results demonstrated that P1 treatment enhanced biochemical attributes, active microbial community composition and abundance and forage production of silage corn. Results further demonstrated higher active microbial population and abundance in rhizosphere of Yukon R and DKC 26-28RIB genotypes. Therefore, we argue that dairy manure amendment with high P2O5 in podzol soils could be a sustainable nutrient source to enhance soil quality, health and forage production of silage corn. Yukon R and DKC 26-28RIB genotypes showed superior agronomic performance, therefore, could be good fit under boreal climatic conditions.
Collapse
Affiliation(s)
- Waqas Ali
- School of Science and the Environment, Grenfell Campus Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador, A2H 5G4, Canada
| | - Muhammad Nadeem
- School of Science and the Environment, Grenfell Campus Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador, A2H 5G4, Canada
| | - Waqar Ashiq
- School of Science and the Environment, Grenfell Campus Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador, A2H 5G4, Canada
| | - Muhammad Zaeem
- School of Science and the Environment, Grenfell Campus Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador, A2H 5G4, Canada
| | - Syed Shah Mohioudin Gilani
- School of Science and the Environment, Grenfell Campus Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador, A2H 5G4, Canada
| | - Sanaz Rajabi-Khamseh
- Shahrekord University, Rahbr Blvd, Shahrekord Chaharmahal and Bakhtiari, Shahrekord, Iran
| | - Thu Huong Pham
- School of Science and the Environment, Grenfell Campus Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador, A2H 5G4, Canada
| | - Vanessa Kavanagh
- Department of Fisheries and Land Resources, Government of Newfoundland and Labrador, Pasadena, A0L 1K0, Canada
| | - Raymond Thomas
- School of Science and the Environment, Grenfell Campus Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador, A2H 5G4, Canada
| | - Mumtaz Cheema
- School of Science and the Environment, Grenfell Campus Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador, A2H 5G4, Canada.
| |
Collapse
|
25
|
Li Y, Tian D, Wang J, Niu S, Tian J, Ha D, Qu Y, Jing G, Kang X, Song B. Differential mechanisms underlying responses of soil bacterial and fungal communities to nitrogen and phosphorus inputs in a subtropical forest. PeerJ 2019; 7:e7631. [PMID: 31534856 PMCID: PMC6733241 DOI: 10.7717/peerj.7631] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/06/2019] [Indexed: 11/20/2022] Open
Abstract
Atmospheric nitrogen (N) deposition and phosphorus (P) addition both can change soil bacterial and fungal community structure with a consequent impact on ecosystem functions. However, which factor plays an important role in regulating responses of bacterial and fungal community to N and P enrichments remains unclear. We conducted a manipulative experiment to simulate N and P inputs (10 g N · m-2 · yr-1 NH4NO3 or 10 g P · m-2 · yr-1 NaH2PO4) and compared their effects on soil bacterial and fungal species richness and community composition. The results showed that the addition of N significantly increased NH4 + and Al3+ by 99.6% and 57.4%, respectively, and consequently led to a decline in soil pH from 4.18 to 3.75 after a 5-year treatment. P addition increased Al3+ and available P by 27.0% and 10-fold, respectively, but had no effect on soil pH. N addition significantly decreased bacterial species richness and Shannon index and resulted in a substantial shift of bacterial community composition, whereas P addition did not. Neither N nor P addition changed fungal species richness, Shannon index, and fungal community composition. A structural equation model showed that the shift in bacterial community composition was related to an increase in soil acid cations. The principal component scores of soil nutrients showed a significantly positive relationship with fungal community composition. Our results suggest that N and P additions affect soil bacterial and fungal communities in different ways in subtropical forest. These findings highlight how the diversity of microbial communities of subtropical forest soil will depend on future scenarios of anthropogenic N deposition and P enrichment, with a particular sensitivity of bacterial community to N addition.
Collapse
Affiliation(s)
- Yong Li
- Beijing Key Laboratory of Wetland Services and Restoration, Institute of Wetland Research, Chinese Academy of Forestry, Beijing, China
| | - Dashuan Tian
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Beijing, China
| | - Jinsong Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Beijing, China
| | - Shuli Niu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Beijing, China
| | - Jing Tian
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Beijing, China
| | | | - Yuxi Qu
- Jigongshan Natural Reserve, Xinyang, China
| | | | - Xiaoming Kang
- Beijing Key Laboratory of Wetland Services and Restoration, Institute of Wetland Research, Chinese Academy of Forestry, Beijing, China
| | - Bing Song
- School of Resources and Environmental Engineering, Ludong University, Yantai, China
| |
Collapse
|
26
|
Armalytė J, Skerniškytė J, Bakienė E, Krasauskas R, Šiugždinienė R, Kareivienė V, Kerzienė S, Klimienė I, Sužiedėlienė E, Ružauskas M. Microbial Diversity and Antimicrobial Resistance Profile in Microbiota From Soils of Conventional and Organic Farming Systems. Front Microbiol 2019; 10:892. [PMID: 31105678 PMCID: PMC6498881 DOI: 10.3389/fmicb.2019.00892] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 04/08/2019] [Indexed: 11/13/2022] Open
Abstract
Soil is one of the biggest reservoirs of microbial diversity, yet the processes that define the community dynamics are not fully understood. Apart from soil management being vital for agricultural purposes, it is also considered a favorable environment for the evolution and development of antimicrobial resistance, which is due to its high complexity and ongoing competition between the microorganisms. Different approaches to agricultural production might have specific outcomes for soil microbial community composition and antibiotic resistance phenotype. Therefore in this study we aimed to compare the soil microbiota and its resistome in conventional and organic farming systems that are continually influenced by the different treatment (inorganic fertilizers and pesticides vs. organic manure and no chemical pest management). The comparison of the soil microbial communities revealed no major differences among the main phyla of bacteria between the two farming styles with similar soil structure and pH. Only small differences between the lower taxa could be observed indicating that the soil community is stable, with minor shifts in composition being able to handle the different styles of treatment and fertilization. It is still unclear what level of intensity can change microbial composition but current conventional farming in Central Europe demonstrates acceptable level of intensity for soil bacterial communities. When the resistome of the soils was assessed by screening the total soil DNA for clinically relevant and soil-derived antibiotic resistance genes, a low variety of resistance determinants was detected (resistance to β-lactams, aminoglycosides, tetracycline, erythromycin, and rifampicin) with no clear preference for the soil farming type. The same soil samples were also used to isolate antibiotic resistant cultivable bacteria, which were predominated by highly resistant isolates of Pseudomonas, Stenotrophomonas, Sphingobacterium and Chryseobacterium genera. The resistance of these isolates was largely dependent on the efflux mechanisms, the soil Pseudomonas spp. relying mostly on RND, while Stenotrophomonas spp. and Chryseobacterium spp. on RND and ABC transporters.
Collapse
Affiliation(s)
- Julija Armalytė
- Life Sciences Center, Institute of Biosciences, Vilnius University, Vilnius, Lithuania
| | - Jūratė Skerniškytė
- Life Sciences Center, Institute of Biosciences, Vilnius University, Vilnius, Lithuania
| | - Elena Bakienė
- Life Sciences Center, Institute of Biosciences, Vilnius University, Vilnius, Lithuania
| | - Renatas Krasauskas
- Life Sciences Center, Institute of Biosciences, Vilnius University, Vilnius, Lithuania
| | - Rita Šiugždinienė
- Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Violeta Kareivienė
- Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Sigita Kerzienė
- Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Irena Klimienė
- Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Edita Sužiedėlienė
- Life Sciences Center, Institute of Biosciences, Vilnius University, Vilnius, Lithuania
| | - Modestas Ružauskas
- Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
27
|
Soil Microbial Community Structure and Physicochemical Properties in Amomum tsaoko-based Agroforestry Systems in the Gaoligong Mountains, Southwest China. SUSTAINABILITY 2019. [DOI: 10.3390/su11020546] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Amomum tsaoko is cultivated in forests of tropical and subtropical regions of China, and the planting area is expanding gradually. However, little attention has been paid to the impact of A. tsaoko cultivation on the soil characteristics of the regions. We analyzed the effects of the A. tsaoko-forest agroforestry system (AFs) on the composition of soil microbial communities with increasing stand ages. We also compared the soil physicochemical properties, microbial biomass, and phospholipid fatty acid (PLFA) composition between native forest (NF) and AFs. The results showed that the level of total carbon, nitrogen, and organic matter dramatically dropped in AFs with increasing stand ages. pH affected other soil properties and showed close correlation to total carbon (P = 0.0057), total nitrogen (P = 0.0146), organic matter (P = 0.0075), hydrolyzable nitrogen (P = 0.0085), available phosphorus (P < 0.0001), and available potassium (P = 0.0031). PLFAs of bacteria (F = 4.650, P = 0.037), gram-positive bacteria (F = 6.640, P = 0.015), anaerobe (F = 5.672, P = 0.022), and total PLFA (F = 4.349, P = 0.043) were significantly affected by different treatments, with the greatest value for NF treatment, and least value for AF5. However, the microbial biomass declined during the initial 5 years of cultivation, but it reached the previous level after more than 10 years of cultivation. Our research suggests that AFs is a profitable land-use practice in the Gaoligong Mountains and that AFs showed a recovering trend of the soil nutrient condition with increasing stand ages. However, the severe loss of nitrogen in the soil of AFs requires additional nitrogen during cultivation to restore it to pre-cultivation levels.
Collapse
|
28
|
Wet tropical soils and global change. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/b978-0-444-63998-1.00008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
29
|
Deng J, Yin Y, Zhu W, Zhou Y. Variations in Soil Bacterial Community Diversity and Structures Among Different Revegetation Types in the Baishilazi Nature Reserve. Front Microbiol 2018; 9:2874. [PMID: 30538689 PMCID: PMC6277578 DOI: 10.3389/fmicb.2018.02874] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 11/09/2018] [Indexed: 01/06/2023] Open
Abstract
We compared patterns of soil bacterial community diversity and structure in six secondary forests (JM, Juglans mandshurica; QM, Quercus mongolica; MB, mixed Broadleaf forest; BE, Betula ermanii; CB, conifer-broadleaf forest; PT, Pinus tabuliformis) and two plantation forests (LG, Larix gmelinii; PK, Pinus koraiensis) of the Baishilazi Nature Reserve, China, based on the 16S rRNA high-throughput Illumina sequencing data. The correlations between the bacterial community and soil environmental factors were also examined. The results showed that the broadleaf forests (JM, QM, MB) had higher levels of total C (TC), total N (TN), available N (AN), and available K (AK) compared to the coniferous forests (PT, LG, PK) and conifer-broadleaf forest (CB). Different revegetation pathways had different effects on the soil bacterial community diversity and structure. For the α-diversity, the highest Shannon index and Simpson index were found in JM. The Simpson index was significantly positively correlated with the available P (AP) (P < 0.05), and the Shannon index was significantly positively correlated with AK (P < 0.05). Compared with others, the increased ACE index and Chao1 index were observed in the CB and MB, and both of these α-diversity were significantly negative with AK (P < 0.05). The relative abundances of bacterial phyla and genera differed among different revegetation types. At the phylum level, the dominant phylum groups in all soils were Proteobacteria, Acidobacteria, Actinobacteria, Verrucomicrobia, Chloroflexi, Bacteroidetes, Gemmatimonadetes, and Planctomycetes. Significant differences in relative abundance of bacteria phyla were found for Acidobacteria, Actinobacteria, Chloroflexi, Gemmatimonadetes, and Proteobacteria. Correlation analysis showed that Soil pH, TC, TN, AP, and AK were the main abiotic factors structuring the bacterial communities. As revealed by the clear differentiation of bacterial communities and the clustering in the heatmap and in the PCA plots, broadleaf forests and coniferous forests harbored distinct bacterial communities, indicating a significant impact of the respective reforestation pathway on soil bacterial communities in the Baishilazi Nature Reserve.
Collapse
Affiliation(s)
- Jiaojiao Deng
- College of Land and Environment, Shenyang Agriculture University, Shenyang, China.,College of Forestry, Shenyang Agriculture University, Shenyang, China
| | - You Yin
- College of Forestry, Shenyang Agriculture University, Shenyang, China.,Research Station of Liaohe-River Plain Forest Ecosystem, Chinese Forest Ecosystem Research Network (CFERN), Shenyang Agricultural University, Shenyang, China
| | - Wenxu Zhu
- College of Forestry, Shenyang Agriculture University, Shenyang, China.,Research Station of Liaohe-River Plain Forest Ecosystem, Chinese Forest Ecosystem Research Network (CFERN), Shenyang Agricultural University, Shenyang, China
| | - Yongbin Zhou
- College of Land and Environment, Shenyang Agriculture University, Shenyang, China.,College of Forestry, Shenyang Agriculture University, Shenyang, China
| |
Collapse
|
30
|
Environmental Controls on Soil Microbial Communities in a Seasonally Dry Tropical Forest. Appl Environ Microbiol 2018; 84:AEM.00342-18. [PMID: 29959251 DOI: 10.1128/aem.00342-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/23/2018] [Indexed: 12/26/2022] Open
Abstract
Several studies have shown that rainfall seasonality, soil heterogeneity, and increased nitrogen (N) deposition may have important effects on tropical forest function. However, the effects of these environmental controls on soil microbial communities in seasonally dry tropical forests are poorly understood. In a seasonally dry tropical forest in the Yucatan Peninsula (Mexico), we investigated the influence of soil heterogeneity (which results in two different soil types, black and red soils), rainfall seasonality (in two successive seasons, wet and dry), and 3 years of repeated N enrichment on soil chemical and microbiological properties, including bacterial gene content and community structure. The soil properties varied with the soil type and the sampling season but did not respond to N enrichment. Greater organic matter content in the black soils was associated with higher microbial biomass, enzyme activities, and abundances of genes related to nitrification (amoA) and denitrification (nirK and nirS) than were observed in the red soils. Rainfall seasonality was also associated with changes in soil microbial biomass and activity levels and N gene abundances. Actinobacteria, Proteobacteria, Firmicutes, and Acidobacteria were the most abundant phyla. Differences in bacterial community composition were associated with soil type and season and were primarily detected at higher taxonomic resolution, where specific taxa drive the separation of communities between soils. We observed that soil heterogeneity and rainfall seasonality were the main correlates of soil bacterial community structure and function in this tropical forest, likely acting through their effects on soil attributes, especially those related to soil organic matter and moisture content.IMPORTANCE Understanding the response of soil microbial communities to environmental factors is important for predicting the contribution of forest ecosystems to global environmental change. Seasonally dry tropical forests are characterized by receiving less than 1,800 mm of rain per year in alternating wet and dry seasons and by high heterogeneity in plant diversity and soil chemistry. For these reasons, N deposition may affect their soils differently than those in humid tropical forests. This study documents the influence of rainfall seasonality, soil heterogeneity, and N deposition on soil chemical and microbiological properties in a seasonally dry tropical forest. Our findings suggest that soil heterogeneity and rainfall seasonality are likely the main factors controlling soil bacterial community structure and function in this tropical forest. Nitrogen enrichment was likely too low to induce significant short-term effects on soil properties, because this tropical forest is not N limited.
Collapse
|
31
|
Wei H, Peng C, Yang B, Song H, Li Q, Jiang L, Wei G, Wang K, Wang H, Liu S, Liu X, Chen D, Li Y, Wang M. Contrasting Soil Bacterial Community, Diversity, and Function in Two Forests in China. Front Microbiol 2018; 9:1693. [PMID: 30108560 PMCID: PMC6080587 DOI: 10.3389/fmicb.2018.01693] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 07/06/2018] [Indexed: 12/03/2022] Open
Abstract
Bacteria are the highest abundant microorganisms in the soil. To investigate bacteria community structures, diversity, and functions, contrasting them in four different seasons all the year round with/within two different forest type soils of China. We analyzed soil bacterial community based on 16S rRNA gene sequencing via Illumina HiSeq platform at a temperate deciduous broad-leaved forest (Baotianman, BTM) and a tropical rainforest (Jianfengling, JFL). We obtained 51,137 operational taxonomic units (OTUs) and classified them into 44 phyla and 556 known genera, 18.2% of which had a relative abundance >1%. The composition in each phylum was similar between the two forest sites. Proteobacteria and Acidobacteria were the most abundant phyla in the soil samples between the two forest sites. The Shannon index did not significantly differ among the four seasons at BTM or JFL and was higher at BTM than JFL in each season. The bacteria community at both BTM and JFL showed two significant (P < 0.05) predicted functions related to carbon cycle (anoxygenic photoautotrophy sulfur oxidizing and anoxygenic photoautotrophy) and three significant (P < 0.05) predicted functions related to nitrogen cycle (nitrous denitrificaton, nitrite denitrification, and nitrous oxide denitrification). We provide the basis on how changes in bacterial community composition and diversity leading to differences in carbon and nitrogen cycles at the two forests.
Collapse
Affiliation(s)
- Hua Wei
- Center for Ecological Forecasting and Global Change, College of Forestry, Northwest A&F University, Yangling, China.,Medical College, Baoji Vocational Technology College, Baoji, China
| | - Changhui Peng
- Center for Ecological Forecasting and Global Change, College of Forestry, Northwest A&F University, Yangling, China.,Départment des Sciences Biologiques, Institut des Sciences de l'Environnement, Université du Québec à Montréal, Montreal, QC, Canada
| | - Bin Yang
- Center for Ecological Forecasting and Global Change, College of Forestry, Northwest A&F University, Yangling, China
| | - Hanxiong Song
- Center for Ecological Forecasting and Global Change, College of Forestry, Northwest A&F University, Yangling, China
| | - Quan Li
- Center for Ecological Forecasting and Global Change, College of Forestry, Northwest A&F University, Yangling, China
| | - Lin Jiang
- Center for Ecological Forecasting and Global Change, College of Forestry, Northwest A&F University, Yangling, China
| | - Gang Wei
- Center for Ecological Forecasting and Global Change, College of Forestry, Northwest A&F University, Yangling, China
| | - Kefeng Wang
- Center for Ecological Forecasting and Global Change, College of Forestry, Northwest A&F University, Yangling, China
| | - Hui Wang
- Center for Ecological Forecasting and Global Change, College of Forestry, Northwest A&F University, Yangling, China
| | - Shirong Liu
- Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Xiaojing Liu
- Baotianman Natural Reserve Administration, Neixiang, China
| | - Dexiang Chen
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Yide Li
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Meng Wang
- Center for Ecological Forecasting and Global Change, College of Forestry, Northwest A&F University, Yangling, China.,State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Institute for Peat and Mire Research, Northeast Normal University, Changchun, China
| |
Collapse
|
32
|
Camenzind T, Hättenschwiler S, Treseder KK, Lehmann A, Rillig MC. Nutrient limitation of soil microbial processes in tropical forests. ECOL MONOGR 2017. [DOI: 10.1002/ecm.1279] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Tessa Camenzind
- Institute of Biology; Freie Universität Berlin; Altensteinstr. 6 14195 Berlin Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB); 14195 Berlin Germany
| | - Stephan Hättenschwiler
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE); UMR 5175; CNRS, Université de Montpellier, Université Paul-Valéry Montpellier, EPHE; 1919 route de Mende 34293 Montpellier Cedex 5 France
| | - Kathleen K. Treseder
- School of Biological Sciences; University of California; Irvine California 92697 USA
| | - Anika Lehmann
- Institute of Biology; Freie Universität Berlin; Altensteinstr. 6 14195 Berlin Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB); 14195 Berlin Germany
| | - Matthias C. Rillig
- Institute of Biology; Freie Universität Berlin; Altensteinstr. 6 14195 Berlin Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB); 14195 Berlin Germany
| |
Collapse
|
33
|
Geml J, Morgado LN, Semenova-Nelsen TA, Schilthuizen M. Changes in richness and community composition of ectomycorrhizal fungi among altitudinal vegetation types on Mount Kinabalu in Borneo. THE NEW PHYTOLOGIST 2017; 215:454-468. [PMID: 28401981 DOI: 10.1111/nph.14566] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/06/2017] [Indexed: 06/07/2023]
Abstract
The distribution patterns of tropical ectomycorrhizal (ECM) fungi along altitudinal gradients remain largely unknown. Furthermore, despite being an iconic site for biodiversity research, virtually nothing is known about the diversity and spatial patterns of fungi on Mt Kinabalu and neighbouring mountain ranges. We carried out deep DNA sequencing of soil samples collected between 425 and 4000 m above sea level to compare richness and community composition of ECM fungi among altitudinal forest types in Borneo. In addition, we tested whether the observed patterns are driven by habitat or by geometric effect of overlapping ranges of species (mid-domain effect). Community composition of ECM fungi was strongly correlated with elevation. In most genera, richness peaked in the mid-elevation montane forest zone, with the exception of tomentelloid fungi, which showed monotonal decrease in richness with increasing altitude. Richness in lower-mid- and mid-elevations was significantly greater than predicted under the mid-domain effect model. We provide the first insight into the composition of ECM fungal communities and their strong altitudinal turnover in Borneo. The high richness and restricted distribution of many ECM fungi in the montane forests suggest that mid-elevation peak richness is primarily driven by environmental characteristics of this habitat and not by the mid-domain effect.
Collapse
Affiliation(s)
- József Geml
- Biodiversity Dynamics Research Group, Naturalis Biodiversity Center, Vondellaan 55, PO Box 9517, 2300 RA, Leiden, the Netherlands
- Faculty of Science, Leiden University, PO Box 9502, 2300 RA, Leiden, the Netherlands
| | - Luis N Morgado
- Biodiversity Dynamics Research Group, Naturalis Biodiversity Center, Vondellaan 55, PO Box 9517, 2300 RA, Leiden, the Netherlands
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, PO Box 1066 Blindern, 0316, Oslo, Norway
| | - Tatiana A Semenova-Nelsen
- Biodiversity Dynamics Research Group, Naturalis Biodiversity Center, Vondellaan 55, PO Box 9517, 2300 RA, Leiden, the Netherlands
| | - Menno Schilthuizen
- Biodiversity Dynamics Research Group, Naturalis Biodiversity Center, Vondellaan 55, PO Box 9517, 2300 RA, Leiden, the Netherlands
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
34
|
Gurmesa GA, Lu X, Gundersen P, Mao Q, Zhou K, Fang Y, Mo J. High retention of 15 N-labeled nitrogen deposition in a nitrogen saturated old-growth tropical forest. GLOBAL CHANGE BIOLOGY 2016; 22:3608-3620. [PMID: 27097744 DOI: 10.1111/gcb.13327] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 03/19/2016] [Indexed: 06/05/2023]
Abstract
The effects of increased reactive nitrogen (N) deposition in forests depend largely on its fate in the ecosystems. However, our knowledge on the fates of deposited N in tropical forest ecosystems and its retention mechanisms is limited. Here, we report the results from the first whole ecosystem 15 N labeling experiment performed in a N-rich old-growth tropical forest in southern China. We added 15 N tracer monthly as 15 NH415 NO3 for 1 year to control plots and to N-fertilized plots (N-plots, receiving additions of 50 kg N ha-1 yr-1 for 10 years). Tracer recoveries in major ecosystem compartments were quantified 4 months after the last addition. Tracer recoveries in soil solution were monitored monthly to quantify leaching losses. Total tracer recovery in plant and soil (N retention) in the control plots was 72% and similar to those observed in temperate forests. The retention decreased to 52% in the N-plots. Soil was the dominant sink, retaining 37% and 28% of the labeled N input in the control and N-plots, respectively. Leaching below 20 cm was 50 kg N ha-1 yr-1 in the control plots and was close to the N input (51 kg N ha-1 yr-1 ), indicating N saturation of the top soil. Nitrogen addition increased N leaching to 73 kg N ha-1 yr-1 . However, of these only 7 and 23 kg N ha-1 yr-1 in the control and N-plots, respectively, originated from the labeled N input. Our findings indicate that deposited N, like in temperate forests, is largely incorporated into plant and soil pools in the short term, although the forest is N-saturated, but high cycling rates may later release the N for leaching and/or gaseous loss. Thus, N cycling rates rather than short-term N retention represent the main difference between temperate forests and the studied tropical forest.
Collapse
Affiliation(s)
- Geshere Abdisa Gurmesa
- Vegetation Restoration and Management of Degraded Ecosystems and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Department of Geosciences and Natural Resource Management, University of Copenhagen, 1958 Frederiksberg C, Denmark
- Sino-Danish Center for Education and Research, DK-8000, Aarhus C, Denmark
| | - Xiankai Lu
- Vegetation Restoration and Management of Degraded Ecosystems and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Per Gundersen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, 1958 Frederiksberg C, Denmark
| | - Qinggong Mao
- Vegetation Restoration and Management of Degraded Ecosystems and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Kaijun Zhou
- Vegetation Restoration and Management of Degraded Ecosystems and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yunting Fang
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164, China
- Qingyuan Forest CERN, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Jiangming Mo
- Vegetation Restoration and Management of Degraded Ecosystems and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
35
|
Kim HM, Lee MJ, Jung JY, Hwang CY, Kim M, Ro HM, Chun J, Lee YK. Vertical distribution of bacterial community is associated with the degree of soil organic matter decomposition in the active layer of moist acidic tundra. J Microbiol 2016; 54:713-723. [DOI: 10.1007/s12275-016-6294-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/29/2016] [Accepted: 09/20/2016] [Indexed: 01/14/2023]
|
36
|
Pajares S, Bohannan BJM. Ecology of Nitrogen Fixing, Nitrifying, and Denitrifying Microorganisms in Tropical Forest Soils. Front Microbiol 2016; 7:1045. [PMID: 27468277 PMCID: PMC4932190 DOI: 10.3389/fmicb.2016.01045] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/22/2016] [Indexed: 01/08/2023] Open
Abstract
Soil microorganisms play important roles in nitrogen cycling within forest ecosystems. Current research has revealed that a wider variety of microorganisms, with unexpected diversity in their functions and phylogenies, are involved in the nitrogen cycle than previously thought, including nitrogen-fixing bacteria, ammonia-oxidizing bacteria and archaea, heterotrophic nitrifying microorganisms, and anammox bacteria, as well as denitrifying bacteria, archaea, and fungi. However, the vast majority of this research has been focused in temperate regions, and relatively little is known regarding the ecology of nitrogen-cycling microorganisms within tropical and subtropical ecosystems. Tropical forests are characterized by relatively high precipitation, low annual temperature fluctuation, high heterogeneity in plant diversity, large amounts of plant litter, and unique soil chemistry. For these reasons, regulation of the nitrogen cycle in tropical forests may be very different from that of temperate ecosystems. This is of great importance because of growing concerns regarding the effect of land use change and chronic-elevated nitrogen deposition on nitrogen-cycling processes in tropical forests. In the context of global change, it is crucial to understand how environmental factors and land use changes in tropical ecosystems influence the composition, abundance and activity of key players in the nitrogen cycle. In this review, we synthesize the limited currently available information regarding the microbial communities involved in nitrogen fixation, nitrification and denitrification, to provide deeper insight into the mechanisms regulating nitrogen cycling in tropical forest ecosystems. We also highlight the large gaps in our understanding of microbially mediated nitrogen processes in tropical forest soils and identify important areas for future research.
Collapse
Affiliation(s)
- Silvia Pajares
- Unidad Académica de Ecología y Biodiversidad Acuática, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de MéxicoCoyoacán, Mexico
| | | |
Collapse
|
37
|
Effects of nitrogen and phosphorus additions on soil microbial biomass and community structure in two reforested tropical forests. Sci Rep 2015; 5:14378. [PMID: 26395406 PMCID: PMC4585765 DOI: 10.1038/srep14378] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 08/25/2015] [Indexed: 11/29/2022] Open
Abstract
Elevated nitrogen (N) deposition may aggravate phosphorus (P) deficiency in forests in the warm humid regions of China. To our knowledge, the interactive effects of long-term N deposition and P availability on soil microorganisms in tropical replanted forests remain unclear. We conducted an N and P manipulation experiment with four treatments: control, N addition (15 g N m−2·yr−1), P addition (15 g P m−2·yr−1), and N and P addition (15 + 15 g N and P m−2·yr−1, respectively) in disturbed (planted pine forest with recent harvests of understory vegetation and litter) and rehabilitated (planted with pine, but mixed with broadleaf returning by natural succession) forests in southern China. Nitrogen addition did not significantly affect soil microbial biomass, but significantly decreased the abundance of gram-negative bacteria PLFAs in both forest types. Microbial biomass increased significantly after P addition in the disturbed forest but not in the rehabilitated forest. No interactions between N and P additions on soil microorganisms were observed in either forest type. Our results suggest that microbial growth in replanted forests of southern China may be limited by P rather than by N, and this P limitation may be greater in disturbed forests.
Collapse
|
38
|
Cong J, Liu X, Lu H, Xu H, Li Y, Deng Y, Li D, Zhang Y. Available nitrogen is the key factor influencing soil microbial functional gene diversity in tropical rainforest. BMC Microbiol 2015; 15:167. [PMID: 26289044 PMCID: PMC4546036 DOI: 10.1186/s12866-015-0491-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 07/21/2015] [Indexed: 02/02/2023] Open
Abstract
Background Tropical rainforests cover over 50 % of all known plant and animal species and provide a variety of key resources and ecosystem services to humans, largely mediated by metabolic activities of soil microbial communities. A deep analysis of soil microbial communities and their roles in ecological processes would improve our understanding on biogeochemical elemental cycles. However, soil microbial functional gene diversity in tropical rainforests and causative factors remain unclear. GeoChip, contained almost all of the key functional genes related to biogeochemical cycles, could be used as a specific and sensitive tool for studying microbial gene diversity and metabolic potential. In this study, soil microbial functional gene diversity in tropical rainforest was analyzed by using GeoChip technology. Results Gene categories detected in the tropical rainforest soils were related to different biogeochemical processes, such as carbon (C), nitrogen (N) and phosphorus (P) cycling. The relative abundance of genes related to C and P cycling detected mostly derived from the cultured bacteria. C degradation gene categories for substrates ranging from labile C to recalcitrant C were all detected, and gene abundances involved in many recalcitrant C degradation gene categories were significantly (P < 0.05) different among three sampling sites. The relative abundance of genes related to N cycling detected was significantly (P < 0.05) different, mostly derived from the uncultured bacteria. The gene categories related to ammonification had a high relative abundance. Both canonical correspondence analysis and multivariate regression tree analysis showed that soil available N was the most correlated with soil microbial functional gene structure. Conclusions Overall high microbial functional gene diversity and different soil microbial metabolic potential for different biogeochemical processes were considered to exist in tropical rainforest. Soil available N could be the key factor in shaping the soil microbial functional gene structure and metabolic potential. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0491-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jing Cong
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China. .,Institute of Forestry Ecology, Environment and Protection, and the Key Laboratory of Forest Ecology and Environment of State Forestry Administration, Chinese Academy of Forestry, Beijing, 100091, China.
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China.
| | - Hui Lu
- Institute of Forestry Ecology, Environment and Protection, and the Key Laboratory of Forest Ecology and Environment of State Forestry Administration, Chinese Academy of Forestry, Beijing, 100091, China.
| | - Han Xu
- Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China.
| | - Yide Li
- Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China.
| | - Ye Deng
- Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Diqiang Li
- Institute of Forestry Ecology, Environment and Protection, and the Key Laboratory of Forest Ecology and Environment of State Forestry Administration, Chinese Academy of Forestry, Beijing, 100091, China.
| | - Yuguang Zhang
- Institute of Forestry Ecology, Environment and Protection, and the Key Laboratory of Forest Ecology and Environment of State Forestry Administration, Chinese Academy of Forestry, Beijing, 100091, China.
| |
Collapse
|
39
|
Nutrient Enrichment Mediates the Relationships of Soil Microbial Respiration with Climatic Factors in an Alpine Meadow. ScientificWorldJournal 2015; 2015:617471. [PMID: 26347902 PMCID: PMC4549573 DOI: 10.1155/2015/617471] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/28/2015] [Accepted: 07/05/2015] [Indexed: 11/17/2022] Open
Abstract
Quantifying the effects of nutrient additions on soil microbial respiration (R m) and its contribution to soil respiration (R s) are of great importance for accurate assessment ecosystem carbon (C) flux. Nitrogen (N) addition either alone (coded as LN and HN) or in combination with phosphorus (P) (coded as LN + P and HN + P) were manipulated in a semiarid alpine meadow on the Tibetan Plateau since 2008. Either LN or HN did not affect R m, while LN + P enhanced R m during peak growing periods, but HN + P did not affect R m. Nutrient addition also significantly affected R m /R s, and the correlations of R m /R s with climatic factors varied with years. Soil water content (Sw) was the main factor controlling the variations of R m /R s. During the years with large rainfall variations, R m /R s was negatively correlated with Sw, while, in years with even rainfall, R m/R s was positively correlated with Sw. Meanwhile, in N + P treatments the controlling effects of climatic factors on R m /R s were more significant than those in CK. Our results indicate that the sensitivity of soil microbes to climatic factors is regulated by nutrient enrichment. The divergent effects of Sw on R m /R s suggest that precipitation distribution patterns are key factors controlling soil microbial activities and ecosystem C fluxes in semiarid alpine meadow ecosystems.
Collapse
|
40
|
Chen H, Gurmesa GA, Zhang W, Zhu X, Zheng M, Mao Q, Zhang T, Mo J. Nitrogen saturation in humid tropical forests after 6 years of nitrogen and phosphorus addition: hypothesis testing. Funct Ecol 2015. [DOI: 10.1111/1365-2435.12475] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hao Chen
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems South China Botanical Garden Chinese Academy of Sciences Guangzhou 510650 China
- Huanjiang Observation and Research Station for Karst Ecosystems Key Laboratory of Agro‐ecological Processes in Subtropical Region Institute of Subtropical Agriculture Chinese Academy of Sciences Changsha 410125 China
| | - Geshere A. Gurmesa
- Sino‐Danish Center for Education and Research Niels Jensens Vej 2‐ DK‐8000 Aarhus C Denmark
- Department of Geosciences and Natural Resource Management University of Copenhagen Rolighedsvej 23 DK‐1958 Frederiksberg C Denmark
- University of Chinese Academy of Sciences Beijing 100039 China
| | - Wei Zhang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems South China Botanical Garden Chinese Academy of Sciences Guangzhou 510650 China
| | - Xiaomin Zhu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems South China Botanical Garden Chinese Academy of Sciences Guangzhou 510650 China
- University of Chinese Academy of Sciences Beijing 100039 China
| | - Mianhai Zheng
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems South China Botanical Garden Chinese Academy of Sciences Guangzhou 510650 China
- University of Chinese Academy of Sciences Beijing 100039 China
| | - Qinggong Mao
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems South China Botanical Garden Chinese Academy of Sciences Guangzhou 510650 China
- University of Chinese Academy of Sciences Beijing 100039 China
| | - Tao Zhang
- Institute of Tropical Pratacultural Science Zhanjiang Normal University Zhanjiang 524048 China
| | - Jiangming Mo
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems South China Botanical Garden Chinese Academy of Sciences Guangzhou 510650 China
| |
Collapse
|
41
|
Zhang Y, Wang L, Hu Y, Xi X, Tang Y, Chen J, Fu X, Sun Y. Water organic pollution and eutrophication influence soil microbial processes, increasing soil respiration of estuarine wetlands: site study in jiuduansha wetland. PLoS One 2015; 10:e0126951. [PMID: 25993326 PMCID: PMC4436345 DOI: 10.1371/journal.pone.0126951] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 04/09/2015] [Indexed: 11/18/2022] Open
Abstract
Undisturbed natural wetlands are important carbon sinks due to their low soil respiration. When compared with inland alpine wetlands, estuarine wetlands in densely populated areas are subjected to great pressure associated with environmental pollution. However, the effects of water pollution and eutrophication on soil respiration of estuarine and their mechanism have still not been thoroughly investigated. In this study, two representative zones of a tidal wetland located in the upstream and downstream were investigated to determine the effects of water organic pollution and eutrophication on soil respiration of estuarine wetlands and its mechanism. The results showed that eutrophication, which is a result of there being an excess of nutrients including nitrogen and phosphorus, and organic pollutants in the water near Shang shoal located upstream were higher than in downstream Xia shoal. Due to the absorption and interception function of shoals, there to be more nitrogen, phosphorus and organic matter in Shang shoal soil than in Xia shoal. Abundant nitrogen, phosphorus and organic carbon input to soil of Shang shoal promoted reproduction and growth of some highly heterotrophic metabolic microorganisms such as β-Proteobacteria, γ-Proteobacteria and Acidobacteria which is not conducive to carbon sequestration. These results imply that the performance of pollutant interception and purification function of estuarine wetlands may weaken their carbon sequestration function to some extent.
Collapse
Affiliation(s)
- Yue Zhang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, School of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Lei Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, School of Environmental Science and Engineering, Tongji University, Shanghai, China
- * E-mail:
| | - Yu Hu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, School of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Xuefei Xi
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, School of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Yushu Tang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, School of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Jinhai Chen
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, School of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Xiaohua Fu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, School of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Ying Sun
- Shanghai Jiuduansha wetland Nature Reserve Administration, Shanghai, China
| |
Collapse
|
42
|
Yu X, Liu X, Zhao Z, Liu J, Zhang S. Effect of monospecific and mixed sea-buckthorn (Hippophae rhamnoides) plantations on the structure and activity of soil microbial communities. PLoS One 2015; 10:e0117505. [PMID: 25658843 PMCID: PMC4319939 DOI: 10.1371/journal.pone.0117505] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/25/2014] [Indexed: 11/21/2022] Open
Abstract
This study aims to evaluate the effect of different afforestation models on soil microbial composition in the Loess Plateau in China. In particular, we determined soil physicochemical properties, enzyme activities, and microbial community structures in the top 0 cm to 10 cm soil underneath a pure Hippophae rhamnoides (SS) stand and three mixed stands, namely, H. rhamnoides and Robinia pseucdoacacia (SC), H. rhamnoides and Pinus tabulaeformis (SY), and H. rhamnoides and Platycladus orientalis (SB). Results showed that total organic carbon (TOC), total nitrogen, and ammonium (NH4+) contents were higher in SY and SB than in SS. The total microbial biomass, bacterial biomass, and Gram+ biomass of the three mixed stands were significantly higher than those of the pure stand. However, no significant difference was found in fungal biomass. Correlation analysis suggested that soil microbial communities are significantly and positively correlated with some chemical parameters of soil, such as TOC, total phosphorus, total potassium, available phosphorus, NH4+ content, nitrate content (NH3−), and the enzyme activities of urease, peroxidase, and phosphatase. Principal component analysis showed that the microbial community structures of SB and SS could clearly be discriminated from each other and from the others, whereas SY and SC were similar. In conclusion, tree species indirectly but significantly affect soil microbial communities and enzyme activities through soil physicochemical properties. In addition, mixing P. tabulaeformis or P. orientalis in H. rhamnoides plantations is a suitable afforestation model in the Loess Plateau, because of significant positive effects on soil nutrient conditions, microbial community, and enzyme activities over pure plantations.
Collapse
Affiliation(s)
- Xuan Yu
- Department of Forestry, College of Forestry, Northwest A&F University, Yangling, China
- Key Laboratory of Environment and Ecology in Western China, Ministry of Education, Yangling, China
| | - Xu Liu
- College of Enology, Northwest A&F University, Yangling, China
| | - Zhong Zhao
- Department of Forestry, College of Forestry, Northwest A&F University, Yangling, China
- Key Laboratory of Environment and Ecology in Western China, Ministry of Education, Yangling, China
- * E-mail:
| | - Jinliang Liu
- Department of Forestry, College of Forestry, Northwest A&F University, Yangling, China
| | - Shunxiang Zhang
- Department of Forestry, College of Forestry, Northwest A&F University, Yangling, China
| |
Collapse
|
43
|
Fanin N, Hättenschwiler S, Schimann H, Fromin N. Interactive effects of
C
,
N
and
P
fertilization on soil microbial community structure and function in an
A
mazonian rain forest. Funct Ecol 2014. [DOI: 10.1111/1365-2435.12329] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nicolas Fanin
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE) CNRS – Université de Montpellier – Université Paul Valéry Montpellier – EPHE 1919 Route de Mende F‐34293 Montpellier Cedex 5 France
- University of Montpellier II Place Eugène BataillonF‐34095 Montpellier Cedex 5 France
| | - Stephan Hättenschwiler
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE) CNRS – Université de Montpellier – Université Paul Valéry Montpellier – EPHE 1919 Route de Mende F‐34293 Montpellier Cedex 5 France
| | - Heidy Schimann
- UMR Ecologie des Forêts de Guyane (EcoFoG) Campus AgronomiqueBP 709 F‐97387 Kourou French Guiana
| | - Nathalie Fromin
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE) CNRS – Université de Montpellier – Université Paul Valéry Montpellier – EPHE 1919 Route de Mende F‐34293 Montpellier Cedex 5 France
| |
Collapse
|
44
|
Zhu F, Yoh M, Gilliam FS, Lu X, Mo J. Nutrient limitation in three lowland tropical forests in southern China receiving high nitrogen deposition: insights from fine root responses to nutrient additions. PLoS One 2013; 8:e82661. [PMID: 24376562 PMCID: PMC3869734 DOI: 10.1371/journal.pone.0082661] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 10/25/2013] [Indexed: 11/23/2022] Open
Abstract
Elevated nitrogen (N) deposition to tropical forests may accelerate ecosystem phosphorus (P) limitation. This study examined responses of fine root biomass, nutrient concentrations, and acid phosphatase activity (APA) of bulk soil to five years of N and P additions in one old-growth and two younger lowland tropical forests in southern China. The old-growth forest had higher N capital than the two younger forests from long-term N accumulation. From February 2007 to July 2012, four experimental treatments were established at the following levels: Control, N-addition (150 kg N ha(-1) yr(-1)), P-addition (150 kg P ha(-1) yr(-1)) and N+P-addition (150 kg N ha(-1) yr(-1) plus 150 kg P ha(-1) yr(-1)). We hypothesized that fine root growth in the N-rich old-growth forest would be limited by P availability, and in the two younger forests would primarily respond to N additions due to large plant N demand. Results showed that five years of N addition significantly decreased live fine root biomass only in the old-growth forest (by 31%), but significantly elevated dead fine root biomass in all the three forests (by 64% to 101%), causing decreased live fine root proportion in the old-growth and the pine forests. P addition significantly increased live fine root biomass in all three forests (by 20% to 76%). The combined N and P treatment significantly increased live fine root biomass in the two younger forests but not in the old-growth forest. These results suggest that fine root growth in all three study forests appeared to be P-limited. This was further confirmed by current status of fine root N:P ratios, APA in bulk soil, and their responses to N and P treatments. Moreover, N addition significantly increased APA only in the old-growth forest, consistent with the conclusion that the old-growth forest was more P-limited than the younger forests.
Collapse
Affiliation(s)
- Feifei Zhu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- United Graduate School of Agriculture Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
- University of Chinese Academy of Sciences, Beijing, China
| | - Muneoki Yoh
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Frank S. Gilliam
- Department of Biological Sciences, Marshall University, Huntington, West Virginia, United States of America
| | - Xiankai Lu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Jiangming Mo
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|