1
|
Pollenus E, Possemiers H, Knoops S, Prenen F, Vandermosten L, Pham TT, Buysrogge L, Matthys P, Van den Steen PE. NK cells contribute to the resolution of experimental malaria-associated acute respiratory distress syndrome after antimalarial treatment. Front Immunol 2024; 15:1433904. [PMID: 39355242 PMCID: PMC11442241 DOI: 10.3389/fimmu.2024.1433904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/27/2024] [Indexed: 10/03/2024] Open
Abstract
In both humans and mice, natural killer (NK) cells are important lymphocytes of the innate immune system. They are often considered pro-inflammatory effector cells but may also have a regulatory or pro-resolving function by switching their cytokine profile towards the production of anti-inflammatory cytokines, including interleukin-10 (IL-10) and transforming growth factor-β, and by killing pro-inflammatory immune cells. Here, the role of NK cells in the resolution of malaria lung pathology was studied. Malaria complications, such as malaria-associated acute respiratory distress syndrome (MA-ARDS), are often lethal despite the rapid and efficient killing of Plasmodium parasites with antimalarial drugs. Hence, studying the resolution and healing mechanisms involved in the recovery from these complications could be useful to develop adjunctive treatments. Treatment of Plasmodium berghei NK65-infected C57BL/6 mice with a combination of artesunate and chloroquine starting at the appearance of symptoms was used as a model to study the resolution of MA-ARDS. The role of NK cells was studied using anti-NK1.1 depletion antibodies and NK cell-deficient mice. Using both methods, NK cells were found to be dispensable in the development of MA-ARDS, as shown previously. In contrast, NK cells were crucial in the initiation of resolution upon antimalarial treatment, as survival was significantly decreased in the absence of NK cells. Considerably increased IL-10 expression by NK cells suggested an anti-inflammatory and pro-resolving phenotype. Despite the increase in Il10 expression in the NK cells, inhibition of the IL-10/IL-10R axis using anti-IL10R antibodies had no effect on the resolution for MA-ARDS, suggesting that the pro-resolving effect of NK cells cannot solely be attributed to their IL-10 production. In conclusion, NK cells contribute to the resolution of experimental MA-ARDS.
Collapse
Affiliation(s)
- Emilie Pollenus
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Hendrik Possemiers
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Sofie Knoops
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Fran Prenen
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Leen Vandermosten
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Thao-Thy Pham
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
- Clinical Immunology Unit, Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Laura Buysrogge
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Patrick Matthys
- Laboratory of Immunobiology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Philippe E Van den Steen
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Sahni V, Van Dyke TE. Immunomodulation of periodontitis with SPMs. FRONTIERS IN ORAL HEALTH 2023; 4:1288722. [PMID: 37927821 PMCID: PMC10623003 DOI: 10.3389/froh.2023.1288722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Inflammation is a critical component in the pathophysiology of numerous disease processes, with most therapeutic modalities focusing on its inhibition in order to achieve treatment outcomes. The resolution of inflammation is a separate, distinct pathway that entails the reversal of the inflammatory process to a state of homoeostasis rather than selective inhibition of specific components of the inflammatory cascade. The discovery of specialized pro-resolving mediators (SPMs) resulted in a paradigm shift in our understanding of disease etiopathology. Periodontal disease, traditionally considered as one of microbial etiology, is now understood to be an inflammation-driven process associated with dysbiosis of the oral microbiome that may be modulated with SPMs to achieve therapeutic benefit.
Collapse
Affiliation(s)
- Vaibhav Sahni
- Immunology and Infectious Disease, The Forsyth Institute, Cambridge, MA, United States
| | - Thomas E. Van Dyke
- Immunology and Infectious Disease, The Forsyth Institute, Cambridge, MA, United States
- Faculty of Medicine, Harvard University, Boston, MA, United States
| |
Collapse
|
3
|
Rasquel-Oliveira FS, Silva MDVD, Martelossi-Cebinelli G, Fattori V, Casagrande R, Verri WA. Specialized Pro-Resolving Lipid Mediators: Endogenous Roles and Pharmacological Activities in Infections. Molecules 2023; 28:5032. [PMID: 37446699 DOI: 10.3390/molecules28135032] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/07/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
During an infection, inflammation mobilizes immune cells to eliminate the pathogen and protect the host. However, inflammation can be detrimental when exacerbated and/or chronic. The resolution phase of the inflammatory process is actively orchestrated by the specialized pro-resolving lipid mediators (SPMs), generated from omega-3 and -6 polyunsaturated fatty acids (PUFAs) that bind to different G-protein coupled receptors to exert their activity. As immunoresolvents, SPMs regulate the influx of leukocytes to the inflammatory site, reduce cytokine and chemokine levels, promote bacterial clearance, inhibit the export of viral transcripts, enhance efferocytosis, stimulate tissue healing, and lower antibiotic requirements. Metabolomic studies have evaluated SPM levels in patients and animals during infection, and temporal regulation of SPMs seems to be essential to properly coordinate a response against the microorganism. In this review, we summarize the current knowledge on SPM biosynthesis and classifications, endogenous production profiles and their effects in animal models of bacterial, viral and parasitic infections.
Collapse
Affiliation(s)
- Fernanda S Rasquel-Oliveira
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, Paraná, Brazil
| | - Matheus Deroco Veloso da Silva
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, Paraná, Brazil
| | - Geovana Martelossi-Cebinelli
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, Paraná, Brazil
| | - Victor Fattori
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Center of Health Science, Londrina State University, Londrina 86038-440, Paraná, Brazil
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, Paraná, Brazil
| |
Collapse
|
4
|
Royo J, Vianou B, Accrombessi M, Kinkpé E, Ayédadjou L, Dossou-Dagba I, Ladipo Y, Alao MJ, Bertin GI, Cot M, Boumédiène F, Houzé S, Faucher JF, Aubouy A. Elevated plasma interleukin-8 as a risk factor for mortality in children presenting with cerebral malaria. Infect Dis Poverty 2023; 12:8. [PMID: 36759905 PMCID: PMC9909955 DOI: 10.1186/s40249-023-01059-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Cerebral malaria (CM) is a neuropathology which remains one of the deadliest forms of malaria among African children. The kinetics of the pathophysiological mechanisms leading to neuroinflammation and the death or survival of patients during CM are still poorly understood. The increasing production of cytokines, chemokines and other actors of the inflammatory and oxidative response by various local actors in response to neuroinflammation plays a major role during CM, participating in both the amplification of the neuroinflammation phenomenon and its resolution. In this study, we aimed to identify risk factors for CM death among specific variables of inflammatory and oxidative responses to improve our understanding of CM pathogenesis. METHODS Children presenting with CM (n = 70) due to P. falciparum infection were included in southern Benin and divided according to the clinical outcome into 50 children who survived and 20 who died. Clinical examination was complemented by fundoscopic examination and extensive blood biochemical analysis associated with molecular diagnosis by multiplex PCR targeting 14 pathogens in the patients' cerebrospinal fluid to rule out coinfections. Luminex technology and enzyme immunoassay kits were used to measure 17 plasma and 7 urinary biomarker levels, respectively. Data were analysed by univariate analysis using the nonparametric Mann‒Whitney U test and Pearson's Chi2 test. Adjusted and multivariate analyses were conducted separately for plasma and urinary biomarkers to identify CM mortality risk factors. RESULTS Univariate analysis revealed higher plasma levels of tumour necrosis factor (TNF), interleukin-1beta (IL-1β), IL-10, IL-8, C-X-C motif chemokine ligand 9 (CXCL9), granzyme B, and angiopoietin-2 and lower urinary levels of prostanglandine E2 metabolite (PGEM) in children who died compared to those who survived CM (Mann-Whitney U-test, P-values between 0.03 and < 0.0001). The multivariate logistic analysis highlighted elevated plasma levels of IL-8 as the main risk factor for death during CM (adjusted odd ratio = 14.2, P-value = 0.002). Values obtained during follow-up at D3 and D30 revealed immune factors associated with disease resolution, including plasma CXCL5, C-C motif chemokine ligand 17 (CCL17), CCL22, and urinary 15-F2t-isoprostane. CONCLUSIONS The main risk factor of death during CM was thus elevated plasma levels of IL-8 at inclusion. Follow-up of patients until D30 revealed marker profiles of disease aggravation and resolution for markers implicated in neutrophil activation, endothelium activation and damage, inflammatory and oxidative response. These results provide important insight into our understanding of CM pathogenesis and clinical outcome and may have important therapeutic implications.
Collapse
Affiliation(s)
- Jade Royo
- grid.508721.9UMR152 PHARMADEV, IRD, UPS, Toulouse University, 35 Chemin Des Maraichers, 31400 Toulouse, France
| | - Bertin Vianou
- grid.508721.9UMR152 PHARMADEV, IRD, UPS, Toulouse University, 35 Chemin Des Maraichers, 31400 Toulouse, France ,Clinical Research Institute of Benin (IRCB), Abomey Calavi, Benin
| | - Manfred Accrombessi
- Clinical Research Institute of Benin (IRCB), Abomey Calavi, Benin ,grid.8991.90000 0004 0425 469XFaculty of Infectious and Tropical Diseases, Disease Control Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Elisée Kinkpé
- Paediatric Department, Calavi Hospital, Calavi, Benin
| | - Linda Ayédadjou
- Paediatric Department, Mother and Child University and Hospital Center (CHU-MEL), Cotonou, Benin
| | | | - Yélé Ladipo
- Paediatric Department, Mother and Child University and Hospital Center (CHU-MEL), Cotonou, Benin
| | - Maroufou Jules Alao
- Paediatric Department, Mother and Child University and Hospital Center (CHU-MEL), Cotonou, Benin
| | | | - Michel Cot
- grid.462420.6UMR261 MERIT, IRD, Paris University, Paris, France
| | - Farid Boumédiène
- grid.9966.00000 0001 2165 4861UMR 1094 EpiMaCT, Inserm, Limoges University Hospital, Limoges University, Limoges, France
| | - Sandrine Houzé
- grid.462420.6UMR261 MERIT, IRD, Paris University, Paris, France ,grid.411119.d0000 0000 8588 831XFrench Malaria Reference Center, APHP, Bichat Hospital, Paris, France ,grid.411119.d0000 0000 8588 831XParasitology Laboratory, APHP, Bichat-Claude-Bernard Hospital, Paris, France
| | - Jean François Faucher
- grid.9966.00000 0001 2165 4861UMR 1094 EpiMaCT, Inserm, Limoges University Hospital, Limoges University, Limoges, France ,grid.411178.a0000 0001 1486 4131Infectious Diseases and Tropical Medicine Department, Limoges University Hospital, Limoges, France
| | - Agnès Aubouy
- UMR152 PHARMADEV, IRD, UPS, Toulouse University, 35 Chemin Des Maraichers, 31400, Toulouse, France. .,Clinical Research Institute of Benin (IRCB), Abomey Calavi, Benin.
| | | |
Collapse
|
5
|
Kumar V, Yasmeen N, Chaudhary AA, Alawam AS, Al-Zharani M, Suliman Basher N, Harikrishnan S, Goud MD, Pandey A, Lakhawat SS, Sharma PK. Specialized pro-resolving lipid mediators regulate inflammatory macrophages: A paradigm shift from antibiotics to immunotherapy for mitigating COVID-19 pandemic. Front Mol Biosci 2023; 10:1104577. [PMID: 36825200 PMCID: PMC9942001 DOI: 10.3389/fmolb.2023.1104577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
The most severe clinical manifestations of the horrifying COVID-19 disease, that claimed millions of lives during the pandemic time, were Acute respiratory distress syndrome (ARDS), Coagulopathies, septic shock leading eventually to death. ARDS was a consequence of Cytokine storm. The viral SARS-COV2infection lead to avalanche of cytokines and eicosanoids causing "cytokine storm" and "eicosanoid storm." Cytokine storm is one of the macrophage-derived inflammatory responses triggered by binding of virus particles to ACE2 receptors of alveolar macrophages, arise mainly due to over production of various pro-inflammatory mediators like cytokines, e.g., interleukin (IL)-1, IL-2, and tumor necrosis factor (TNF)- α, causing pulmonary edema, acute respiratory distress, and multi-organ failure. Cytokine storm was regarded as the predictor of severity of the disease and was deemed one of the causes of the high mortality rates due to the COVID-19. The basis of cytokine storm is imbalanced switching between an inflammation increasing - pro-inflammatory (M1) and an inflammation regulating-anti-inflammatory (M2) forms of alveolar macrophages which further deteriorates if opportunistic secondary bacterial infections prevail in the lungs. Lack of sufficient knowledge regarding the virus and its influence on co-morbidities, clinical treatment of the diseases included exorbitant use of antibiotics to mitigate secondary bacterial infections, which led to the unwarranted development of multidrug resistance (MDR) among the population across the globe. Antimicrobial resistance (AMR) needs to be addressed from various perspectives as it may deprive future generations of the basic health immunity. Specialized pro-resolving mediators (SPMs) are generated from the stereoselective enzymatic conversions of essential fatty acids that serve as immune resolvents in controlling acute inflammatory responses. SPMs facilitate the clearance of injured tissue and cell debris, the removal of pathogens, and augment the concentration of anti-inflammatory lipid mediators. The SPMs, e.g., lipoxins, protectins, and resolvins have been implicated in exerting inhibitory influence on with cytokine storm. Experimental evidence suggests that SPMS lower antibiotic requirement. Therefore, in this review potential roles of SPMs in enhancing macrophage polarization, triggering immunological functions, hastening inflammation resolution, subsiding cytokine storm and decreasing antibiotic requirement that can reduce AMR load are discussed.
Collapse
Affiliation(s)
- Vikram Kumar
- Amity institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India,*Correspondence: Vikram Kumar,
| | - Nusrath Yasmeen
- Amity institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Abdullah S. Alawam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Mohammed Al-Zharani
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Nosiba Suliman Basher
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - S. Harikrishnan
- Amity institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | | | - Aishwarya Pandey
- INRS, Eau Terre Environnement Research Centre, Québec, QC, Canada
| | | | | |
Collapse
|
6
|
Pro- and anti-inflammatory bioactive lipids imbalance contributes to the pathobiology of autoimmune diseases. Eur J Clin Nutr 2022:10.1038/s41430-022-01173-8. [PMID: 35701524 DOI: 10.1038/s41430-022-01173-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/22/2022] [Accepted: 05/26/2022] [Indexed: 12/27/2022]
Abstract
Autoimmune diseases are driven by TH17 cells that secrete pro-inflammatory cytokines, especially IL-17. Under normal physiological conditions, autoreactive T cells are suppressed by TGF-β and IL-10 secreted by microglia and dendritic cells. When this balance is upset due to injury, infection and other causes, leukocyte recruitment and macrophage activation occurs resulting in secretion of pro-inflammatory IL-6, TNF-α, IL-17 and PGE2, LTs (leukotrienes) accompanied by a deficiency of anti-inflammatory LXA4, resolvins, protecting, and maresins. PGE2 facilitates TH1 cell differentiation and promotes immune-mediated inflammation through TH17 expansion. There is evidence to suggest that autoimmune diseases can be suppressed by anti-inflammatory bioactive lipids LXA4, resolvins, protecting, and maresins. These results imply that systemic and/or local application of LXA4, resolvins, protecting, and maresins and administration of their precursors AA/EPA/DHA could form a potential therapeutic approach in the prevention and treatment of autoimmune diseases.
Collapse
|
7
|
Zhang J, Li Z, Fan M, Jin W. Lipoxins in the Nervous System: Brighter Prospects for Neuroprotection. Front Pharmacol 2022; 13:781889. [PMID: 35153778 PMCID: PMC8826722 DOI: 10.3389/fphar.2022.781889] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/07/2022] [Indexed: 12/28/2022] Open
Abstract
Lipoxins (LXs) are generated from arachidonic acid and are involved in the resolution of inflammation and confer protection in a variety of pathological processes. In the nervous system, LXs exert an array of protective effects against neurological diseases, including ischemic or hemorrhagic stroke, neonatal hypoxia-ischemia encephalopathy, brain and spinal cord injury, Alzheimer's disease, multiple sclerosis, and neuropathic pain. Lipoxin administration is a potential therapeutic strategy in neurological diseases due to its notable efficiency and unique superiority regarding safety. Here, we provide an overview of LXs in terms of their synthesis, signaling pathways and neuroprotective evidence. Overall, we believe that, along with advances in lipoxin-related drug design, LXs will bring brighter prospects for neuroprotection.
Collapse
Affiliation(s)
- Jiayu Zhang
- Graduate School of Hebei Medical University, Shijiazhuang, China.,Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Zhe Li
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Mingyue Fan
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Wei Jin
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| |
Collapse
|
8
|
Das UN. Bioactive lipid-based therapeutic approach to COVID-19 and other similar infections. Arch Med Sci 2021; 19:1327-1359. [PMID: 37732033 PMCID: PMC10507771 DOI: 10.5114/aoms/135703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/11/2021] [Indexed: 09/22/2023] Open
Abstract
COVID-19 is caused by SARS-CoV-2 infection. Epithelial and T, NK, and other immunocytes release bioactive lipids especially arachidonic acid (AA) in response to microbial infections to inactivate them and upregulate the immune system. COVID-19 (coronavirus) and other enveloped viruses including severe acute respiratory syndrome (SARS-CoV-1 of 2002-2003) and Middle East respiratory syndrome (MERS; 2012-ongoing) and hepatitis B and C (HBV and HCV) can be inactivated by AA, γ-linolenic acid (GLA, dihomo-GLA (DGLA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), which are precursors to several eicosanoids. Prostaglandin E1, lipoxin A4, resolvins, protectins and maresins enhance phagocytosis of macrophages and leukocytes to clear debris from the site(s) of infection and injury, enhance microbial clearance and wound healing to restore homeostasis. Bioactive lipids modulate the generation of M1 and M2 macrophages and the activity of other immunocytes. Mesenchymal and adipose tissue-derived stem cells secrete LXA4 and other bioactive lipids to bring about their beneficial actions in COVID-19. Bioactive lipids regulate vasomotor tone, inflammation, thrombosis, immune response, inactivate enveloped viruses, regulate T cell proliferation and secretion of cytokines, stem cell survival, proliferation and differentiation, and leukocyte and macrophage functions, JAK kinase activity and neutrophil extracellular traps and thus, have a critical role in COVID-19.
Collapse
Affiliation(s)
- Undurti N. Das
- UND Life Sciences, Battle Ground, WA, USA
- Department of Medicine, Omega Hospitals, Gachibowli, Hyderabad, India
- International Research Centre, Biotechnologies of the third Millennium, ITMO University, Saint-Petersburg, Russia
- Department of Biotechnology, Indian Institute of Technology-Hyderabad, Telangana, India
| |
Collapse
|
9
|
Pollenus E, Pham TT, Vandermosten L, Possemiers H, Knoops S, Opdenakker G, Van den Steen PE. CCR2 Is Dispensable for Disease Resolution but Required for the Restoration of Leukocyte Homeostasis Upon Experimental Malaria-Associated Acute Respiratory Distress Syndrome. Front Immunol 2021; 11:628643. [PMID: 33664739 PMCID: PMC7921736 DOI: 10.3389/fimmu.2020.628643] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/29/2020] [Indexed: 11/20/2022] Open
Abstract
Malaria complications are often lethal, despite efficient killing of Plasmodium parasites with antimalarial drugs. This indicates the need to study the resolution and healing mechanisms involved in the recovery from these complications. Plasmodium berghei NK65-infected C57BL/6 mice develop malaria-associated acute respiratory distress syndrome (MA-ARDS) at 8 days post infection. Antimalarial treatment was started on this day and resulted in the recovery, as measured by the disappearance of the signs of pathology, in >80% of the mice. Therefore, this optimized model represents an asset in the study of mechanisms and leukocyte populations involved in the resolution of MA-ARDS. C-C chemokine receptor type 2 (CCR2) knock-out mice were used to investigate the role of monocytes and macrophages, since these cells are described to play an important role during the resolution of other inflammatory diseases. CCR2 deficiency was associated with significantly lower numbers of inflammatory monocytes in the lungs during infection and resolution and abolished the increase in non-classical monocytes during resolution. Surprisingly, CCR2 was dispensable for the development and the resolution of MA-ARDS, since no effect of the CCR2 knock-out was observed on any of the disease parameters. In contrast, the reappearance of eosinophils and interstitial macrophages during resolution was mitigated in the lungs of CCR2 knock-out mice. In conclusion, CCR2 is required for re-establishing the homeostasis of pulmonary leukocytes during recovery. Furthermore, the resolution of malaria-induced lung pathology is mediated by unknown CCR2-independent mechanisms.
Collapse
Affiliation(s)
- Emilie Pollenus
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, University of Leuven, Leuven, Belgium
| | - Thao-Thy Pham
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, University of Leuven, Leuven, Belgium
| | - Leen Vandermosten
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, University of Leuven, Leuven, Belgium
| | - Hendrik Possemiers
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, University of Leuven, Leuven, Belgium
| | - Sofie Knoops
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, University of Leuven, Leuven, Belgium
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, University of Leuven, Leuven, Belgium
| | - Philippe E Van den Steen
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, University of Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Silva AR, Moraes BPT, Gonçalves-de-Albuquerque CF. Mediterranean Diet: Lipids, Inflammation, and Malaria Infection. Int J Mol Sci 2020; 21:ijms21124489. [PMID: 32599864 PMCID: PMC7350014 DOI: 10.3390/ijms21124489] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/05/2020] [Accepted: 02/15/2020] [Indexed: 12/11/2022] Open
Abstract
The Mediterranean diet (MedDiet) consists of consumption of vegetables and healthy oils and have beneficial effects on metabolic and inflammatory diseases. Our goal here is to discuss the role of fatty acid content in MedDiet, mostly omega-3, omega-6, and omega-9 on malaria. Malaria affects millions of people around the globe. The parasite Plasmodium causes the disease. The metabolic and inflammatory alterations in the severe forms have damaging consequences to the host. The lipid content in the MedDiet holds anti-inflammatory and pro-resolutive features in the host and have detrimental effects on the Plasmodium. The lipids from the diet impact the balance of pro- and anti-inflammation, thus, lipids intake from the diet is critical to parasite elimination and host tissue damage caused by an immune response. Herein, we go into the cellular and molecular mechanisms and targets of the MedDiet fatty acids in the host and the parasite, reviewing potential benefits of the MedDiet, on inflammation, malaria infection progression, and clinical outcome.
Collapse
Affiliation(s)
- Adriana R. Silva
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Programa de Neurociências da Universidade Federal Fluminense (UFF), Niterói 24020-141, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-900, Brazil
- Correspondence: or (A.R.S.); or (C.F.G.-d.-A.)
| | - Bianca P. T. Moraes
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Programa de Neurociências da Universidade Federal Fluminense (UFF), Niterói 24020-141, Brazil
- Laboratório de Imunofarmacologia, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro 20210-010, Brazil
| | - Cassiano F. Gonçalves-de-Albuquerque
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Programa de Neurociências da Universidade Federal Fluminense (UFF), Niterói 24020-141, Brazil
- Laboratório de Imunofarmacologia, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro 20210-010, Brazil
- Programa de Pós-Graduação em Biologia Molecular e Celular, UNIRIO, Rio de Janeiro 20210-010, Brazil
- Correspondence: or (A.R.S.); or (C.F.G.-d.-A.)
| |
Collapse
|
11
|
Dokalis N, Prinz M. Resolution of neuroinflammation: mechanisms and potential therapeutic option. Semin Immunopathol 2019; 41:699-709. [PMID: 31705317 DOI: 10.1007/s00281-019-00764-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/12/2019] [Indexed: 01/01/2023]
Abstract
The central nervous system (CNS) is comprised by an elaborate neural network that is under constant surveillance by tissue-intrinsic factors for maintenance of its homeostasis. Invading pathogens or sterile injuries might compromise vitally the CNS integrity and function. A prompt anti-inflammatory response is therefore essential to contain and repair the local tissue damage. Although the origin of the insults might be different, the principles of tissue backlashes, however, share striking similarities. CNS-resident cells, such as microglia and astrocytes, together with peripheral immune cells orchestrate an array of events that aim to functional restoration. If the acute inflammatory event remains unresolved, it becomes toxic leading to progressive CNS degeneration. Therefore, the cellular, molecular, and biochemical processes that regulate inflammation need to be on a fine balance with the intrinsic CNS repair mechanisms that influence tissue healing. The purpose of this review is to highlight aspects that facilitate the resolution of CNS inflammation, promote tissue repair, and functional recovery after acute injury and infection that could potentially contribute as therapeutic interventions.
Collapse
Affiliation(s)
- Nikolaos Dokalis
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany. .,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany. .,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
12
|
Krishnamoorthy N, Abdulnour REE, Walker KH, Engstrom BD, Levy BD. Specialized Proresolving Mediators in Innate and Adaptive Immune Responses in Airway Diseases. Physiol Rev 2018; 98:1335-1370. [PMID: 29717929 DOI: 10.1152/physrev.00026.2017] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Airborne pathogens and environmental stimuli evoke immune responses in the lung. It is critical to health that these responses be controlled to prevent tissue damage and the compromise of organ function. Resolution of inflammation is a dynamic process that is coordinated by biochemical and cellular mechanisms. Recently, specialized proresolving mediators (SPMs) have been identified in resolution exudates. These molecules orchestrate anti-inflammatory and proresolving actions that are cell type specific. In this review, we highlight SPM biosynthesis, the influence of SPMs on the innate and adaptive immune responses in the lung, as well as recent insights from SPMs on inflammatory disease pathophysiology. Uncovering these mediators and cellular mechanisms for resolution is providing new windows into physiology and disease pathogenesis.
Collapse
Affiliation(s)
- Nandini Krishnamoorthy
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts ; and Department of Anesthesiology, Center for Experimental Therapeutics and Reperfusion Injury, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Raja-Elie E Abdulnour
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts ; and Department of Anesthesiology, Center for Experimental Therapeutics and Reperfusion Injury, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Katherine H Walker
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts ; and Department of Anesthesiology, Center for Experimental Therapeutics and Reperfusion Injury, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Braden D Engstrom
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts ; and Department of Anesthesiology, Center for Experimental Therapeutics and Reperfusion Injury, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Bruce D Levy
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts ; and Department of Anesthesiology, Center for Experimental Therapeutics and Reperfusion Injury, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
13
|
López-Muñoz RA, Molina-Berríos A, Campos-Estrada C, Abarca-Sanhueza P, Urrutia-Llancaqueo L, Peña-Espinoza M, Maya JD. Inflammatory and Pro-resolving Lipids in Trypanosomatid Infections: A Key to Understanding Parasite Control. Front Microbiol 2018; 9:1961. [PMID: 30186271 PMCID: PMC6113562 DOI: 10.3389/fmicb.2018.01961] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/02/2018] [Indexed: 12/30/2022] Open
Abstract
Pathogenic trypanosomatids (Trypanosoma cruzi, Trypanosoma brucei, and Leishmania spp.) are protozoan parasites that cause neglected diseases affecting millions of people in Africa, Asia, and the Americas. In the process of infection, trypanosomatids evade and survive the immune system attack, which can lead to a chronic inflammatory state that induces cumulative damage, often killing the host in the long term. The immune mediators involved in this process are not entirely understood. Most of the research on the immunologic control of protozoan infections has been focused on acute inflammation. Nevertheless, when this process is not terminated adequately, permanent damage to the inflamed tissue may ensue. Recently, a second process, called resolution of inflammation, has been proposed to be a pivotal process in the control of parasite burden and establishment of chronic infection. Resolution of inflammation is an active process that promotes the normal function of injured or infected tissues. Several mediators are involved in this process, including eicosanoid-derived lipids, cytokines such as transforming growth factor (TGF)-β and interleukin (IL)-10, and other proteins such as Annexin-V. For example, during T. cruzi infection, pro-resolving lipids such as 15-epi-lipoxin-A4 and Resolvin D1 have been associated with a decrease in the inflammatory changes observed in experimental chronic heart disease, reducing inflammation and fibrosis, and increasing host survival. Furthermore, Resolvin D1 modulates the immune response in cells of patients with Chagas disease. In Leishmania spp. infections, pro-resolving mediators such as Annexin-V, lipoxins, and Resolvin D1 are related to the modulation of cutaneous manifestation of the disease. However, these mediators seem to have different roles in visceral or cutaneous leishmaniasis. Finally, although T. brucei infections are less well studied in terms of their relationship with inflammation, it has been found that arachidonic acid-derived lipids act as key regulators of the host immune response and parasite burden. Also, cytokines such as IL-10 and TGF-β may be related to increased infection. Knowledge about the inflammation resolution process is necessary to understand the host–parasite interplay, but it also offers an interesting opportunity to improve the current therapies, aiming to reduce the detrimental state induced by chronic protozoan infections.
Collapse
Affiliation(s)
- Rodrigo A López-Muñoz
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Alfredo Molina-Berríos
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Carolina Campos-Estrada
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso, Chile.,Centro de Investigación Farmacopea Chilena, Universidad de Valparaíso, Valparaíso, Chile
| | - Patricio Abarca-Sanhueza
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Luis Urrutia-Llancaqueo
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Miguel Peña-Espinoza
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Juan D Maya
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
14
|
Genetic analysis of cerebral malaria in the mouse model infected with Plasmodium berghei. Mamm Genome 2018; 29:488-506. [DOI: 10.1007/s00335-018-9752-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 06/05/2018] [Indexed: 12/22/2022]
|
15
|
Pádua TA, Torres ND, Candéa ALP, Costa MFS, Silva JD, Silva‐Filho JL, Costa FTM, Rocco PRM, Souza MC, Henriques MG. Therapeutic effect of Lipoxin A
4
in malaria‐induced acute lung injury. J Leukoc Biol 2018; 103:657-670. [DOI: 10.1002/jlb.3a1016-435rrr] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 05/29/2017] [Accepted: 10/23/2017] [Indexed: 01/04/2023] Open
Affiliation(s)
- Tatiana A. Pádua
- Laboratory of Applied PharmacologyFarmanguinhos, Oswaldo Cruz Foundation Rio de Janeiro Brazil
- National Institute of Science and Technology of Innovation on Diseases of Neglected Populations (INCT‐IDPN) FIOCRUZ Rio de Janeiro Brazil
| | - Natalia D. Torres
- Laboratory of Applied PharmacologyFarmanguinhos, Oswaldo Cruz Foundation Rio de Janeiro Brazil
- National Institute of Science and Technology of Innovation on Diseases of Neglected Populations (INCT‐IDPN) FIOCRUZ Rio de Janeiro Brazil
| | - André L. P. Candéa
- Laboratory of Applied PharmacologyFarmanguinhos, Oswaldo Cruz Foundation Rio de Janeiro Brazil
- National Institute of Science and Technology of Innovation on Diseases of Neglected Populations (INCT‐IDPN) FIOCRUZ Rio de Janeiro Brazil
| | - Maria Fernanda Souza Costa
- Laboratory of Applied PharmacologyFarmanguinhos, Oswaldo Cruz Foundation Rio de Janeiro Brazil
- National Institute of Science and Technology of Innovation on Diseases of Neglected Populations (INCT‐IDPN) FIOCRUZ Rio de Janeiro Brazil
| | - Johnatas D. Silva
- Laboratory of Pulmonary InvestigationCarlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro Rio de Janeiro Brazil
| | - João Luiz Silva‐Filho
- Laboratory of Tropical Diseases – Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution and Bioagents, Institute of Biology (IB)University of Campinas (UNICAMP) Campinas Brazil
| | - Fabio T. M. Costa
- Laboratory of Tropical Diseases – Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution and Bioagents, Institute of Biology (IB)University of Campinas (UNICAMP) Campinas Brazil
| | - Patricia R. M. Rocco
- Laboratory of Pulmonary InvestigationCarlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro Rio de Janeiro Brazil
| | - Mariana C. Souza
- Laboratory of Applied PharmacologyFarmanguinhos, Oswaldo Cruz Foundation Rio de Janeiro Brazil
- National Institute of Science and Technology of Innovation on Diseases of Neglected Populations (INCT‐IDPN) FIOCRUZ Rio de Janeiro Brazil
| | - Maria G. Henriques
- Laboratory of Applied PharmacologyFarmanguinhos, Oswaldo Cruz Foundation Rio de Janeiro Brazil
- National Institute of Science and Technology of Innovation on Diseases of Neglected Populations (INCT‐IDPN) FIOCRUZ Rio de Janeiro Brazil
| |
Collapse
|
16
|
Chiang N, Serhan CN. Structural elucidation and physiologic functions of specialized pro-resolving mediators and their receptors. Mol Aspects Med 2017; 58:114-129. [PMID: 28336292 PMCID: PMC5623601 DOI: 10.1016/j.mam.2017.03.005] [Citation(s) in RCA: 236] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2017] [Indexed: 12/14/2022]
Abstract
The acute inflammatory response is host-protective to contain foreign invaders. Many of today's pharmacopeia that block pro-inflammatory chemical mediators can cause serious unwanted side effects such as immune suppression. Uncontrolled inflammation is now considered a pathophysiologic basis associated with many widely occurring diseases such as cardiovascular disease, neurodegenerative diseases, diabetes, obesity and asthma, as well as the classic inflammatory diseases, e.g. arthritis, periodontal diseases. The inflammatory response is designated to be a self-limited process that produces a superfamily of chemical mediators that stimulate resolution of inflammatory responses. Specialized proresolving mediators (SPM) uncovered in recent years are endogenous mediators that include omega-3-derived families resolvins, protectins and maresins, as well as arachidonic acid-derived (n-6) lipoxins that stimulate and promote resolution of inflammation, clearance of microbes, reduce pain and promote tissue regeneration via novel mechanisms. Here, we review recent evidence from human and preclinical animal studies, together with the structural and functional elucidation of SPM indicating the SPM as physiologic mediators and pharmacologic agonists that stimulate resolution of inflammation and infection. These results suggest that it is time to develop immunoresolvents as agonists for testing resolution pharmacology in nutrition and health as well as in human diseases and during surgery.
Collapse
Affiliation(s)
- Nan Chiang
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
17
|
Surowiec I, Gouveia-Figueira S, Orikiiriza J, Lindquist E, Bonde M, Magambo J, Muhinda C, Bergström S, Normark J, Trygg J. The oxylipin and endocannabidome responses in acute phase Plasmodium falciparum malaria in children. Malar J 2017; 16:358. [PMID: 28886714 PMCID: PMC5591560 DOI: 10.1186/s12936-017-2001-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/29/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Oxylipins and endocannabinoids are low molecular weight bioactive lipids that are crucial for initiation and resolution of inflammation during microbial infections. Metabolic complications in malaria are recognized contributors to severe and fatal malaria, but the impact of malaria infection on the production of small lipid derived signalling molecules is unknown. Knowledge of immunoregulatory patterns of these molecules in malaria is of great value for better understanding of the disease and improvement of treatment regimes, since the action of these classes of molecules is directly connected to the inflammatory response of the organism. METHODS Detection of oxylipins and endocannabinoids from plasma samples from forty children with uncomplicated and severe malaria as well as twenty controls was done after solid phase extraction followed by chromatography mass spectrometry analysis. The stable isotope dilution method was used for compound quantification. Data analysis was done with multivariate (principal component analysis (PCA), orthogonal partial least squares discriminant analysis (OPLS-DA®) and univariate approaches (receiver operating characteristic (ROC) curves, t tests, correlation analysis). RESULTS Forty different oxylipin and thirteen endocannabinoid metabolites were detected in the studied samples, with one oxylipin (thromboxane B2, TXB2) in significantly lower levels and four endocannabinoids (OEA, PEA, DEA and EPEA) at significantly higher levels in infected individuals as compared to controls according to t test analysis with Bonferroni correction. Three oxylipins (13-HODE, 9-HODE and 13-oxo-ODE) were higher in severe compared to uncomplicated malaria cases according to the results from multivariate analysis. Observed changes in oxylipin levels can be connected to activation of cytochrome P450 (CYP) and 5-lipoxygenase (5-LOX) metabolic pathways in malaria infected individuals compared to controls, and related to increased levels of all linoleic acid oxylipins in severe patients compared to uncomplicated ones. The endocannabinoids were extremely responsive to malaria infection with majority of this class of molecules found at higher levels in infected individuals compared to controls. CONCLUSIONS It was possible to detect oxylipin and endocannabinoid molecules that can be potential biomarkers for differentiation between malaria infected individuals and controls and between different classes of malaria. Metabolic pathways that could be targeted towards an adjunctive therapy in the treatment of malaria were also pinpointed.
Collapse
Affiliation(s)
- Izabella Surowiec
- Computational Life Science Cluster (CLiC), Department of Chemistry, Umeå University, Umeå, Sweden
| | - Sandra Gouveia-Figueira
- Computational Life Science Cluster (CLiC), Department of Chemistry, Umeå University, Umeå, Sweden
| | - Judy Orikiiriza
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
- Department of Immunology, Trinity College, Dublin, Ireland
- Rwanda Military Hospital, Kigali, Rwanda
| | | | - Mari Bonde
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | | | - Charles Muhinda
- Rwanda Military Hospital, Kigali, Rwanda
- Department of Immunology and Microbiology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Sven Bergström
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden
- Umeå Center for Microbial Research, Umeå University, Umeå, Sweden
| | - Johan Normark
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden
- Umeå Center for Microbial Research, Umeå University, Umeå, Sweden
- Division of Infectious Diseases, Department Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Johan Trygg
- Computational Life Science Cluster (CLiC), Department of Chemistry, Umeå University, Umeå, Sweden
| |
Collapse
|
18
|
Dalli J. Does promoting resolution instead of inhibiting inflammation represent the new paradigm in treating infections? Mol Aspects Med 2017; 58:12-20. [PMID: 28365269 DOI: 10.1016/j.mam.2017.03.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 12/19/2022]
Abstract
Infections arise when the host response is overwhelmed by pathogens leading to organ dysfunction. In some instances patients progress to more severe conditions, including septic shock, that are associated with increased mortality. Current strategies in treating infections aim at either blocking inflammation using inhibitors to pro-inflammatory molecules and/or inhibiting bacterial growth using antibiotics. These approaches find their origins in studies conducted by Joseph Lister who demonstrated that applying carbolic acid to wounds promoted wound healing without suppuration, reducing both the necessity of amputation and mortality. While this approach is still applicable to certain infections, inhibition of the immune response is also associated with increased mortality, especially in septic patients. In many instances sepsis survivors succumb later to persistent, recurrent, nosocomial and secondary infections. This, together with a rise in resistance to many frontline antibiotics, has prompted a search for alternative ways to treat infections. Recent studies investigating processes engaged by the host response during self-resolving infections identified a novel group of mediators, termed as specialized pro-resolving mediators (SPM). These molecules, produced via the enzymatic conversion of essential fatty acids, actively reprogram the immune response to promote clearance of invading pathogens, and counter-regulate the production of inflammation-initiating molecules. Furthermore, recent studies also demonstrate that these mediators promote tissue repair and regeneration, essential processes in the re-establishment of barrier and prevention of re-infection. The scope of the present review is to discuss the evidence underpinning the endogenous protective roles of these novel mediators, as well as the evidence demonstrating that dysregulation in their production and actions contribute to disease pathogenesis in infections. This review will also discuss the potential of resolution pharmacology-based approaches in developing new therapeutics for combatting infections that do not interfere with the immune response.
Collapse
Affiliation(s)
- Jesmond Dalli
- Lipid Mediator Unit, Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, EC1M 6BQ, United Kingdom.
| |
Collapse
|
19
|
Borges TKS, Alves ÉAR, Vasconcelos HAR, Carneiro FP, Nicola AM, Magalhães KG, Muniz-Junqueira MI. Differences in the modulation of reactive species, lipid bodies, cyclooxygenase-2, 5-lipoxygenase and PPAR-γ in cerebral malaria-susceptible and resistant mice. Immunobiology 2016; 222:604-619. [PMID: 27887739 DOI: 10.1016/j.imbio.2016.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 11/15/2016] [Indexed: 12/13/2022]
Abstract
Proinflammatory responses are associated with the severity of cerebral malaria. NO, H2O2, eicosanoid and PPAR-γ are involved in proinflammatory responses, but regulation of these factors is unclear in malaria. This work aimed to compare the expression of eicosanoid-forming-enzymes in cerebral malaria-susceptible CBA and C57BL/6 and -resistant BALB/c mice. Mice were infected with Plasmodium berghei ANKA, and the survival rates and parasitemia curves were assessed. On the sixth day post-infection, cyclooxygenase-2 and 5-lipoxygenase in brain sections were assessed by immunohistochemistry, and, NO, H2O2, lipid bodies, and PPAR-γ expression were assessed in peritoneal macrophages. The C57BL/6 had more severe disease with a lower survival time, higher parasitemia and lower production of plasmodicidal NO and H2O2 molecules than BALB/c. Enhanced COX-2 and 5-LOX expression were observed in brain tissue cells and vessels from C57BL/6 mice, and these mice expressed higher constitutive PPAR-γ levels. There was no translocation of PPAR-γ from cytoplasm to nucleus in macrophages from these mice. CBA mice had enhanced COX-2 expression in brain tissue cells and vessels and also lacked PPAR-γ cytoplasm-to-nucleus translocation. The resistant BALB/c mice presented higher survival time, lower parasitemia and higher NO and H2O2 production on the sixth day post-infection. These mice did not express either COX-2 or 5-LOX in brain tissue cells and vessels. Our data showed that besides the high parasite burden and lack of microbicidal molecules, an imbalance with high COX-2 and 5-LOX eicosanoid expression and a lack of regulatory PPAR-γ cytoplasm-to-nucleus translocation in macrophages were observed in mice that develop cerebral malaria.
Collapse
Affiliation(s)
- Tatiana K S Borges
- Laboratory of Cellular Immunology, Pathology, Faculty of Medicine, University of Brasilia, Campus Darcy Ribeiro, Brasilia, Distrito Federal 70.910.900, Brazil
| | - Érica A R Alves
- Laboratory of Cellular Immunology, Pathology, Faculty of Medicine, University of Brasilia, Campus Darcy Ribeiro, Brasilia, Distrito Federal 70.910.900, Brazil; Laboratory of Cellular and Molecular Immunology, René Rachou Research Center, Belo Horizonte, Minas Gerais 30.190.002 Brazil
| | - Henda A R Vasconcelos
- Laboratory of Cellular Immunology, Pathology, Faculty of Medicine, University of Brasilia, Campus Darcy Ribeiro, Brasilia, Distrito Federal 70.910.900, Brazil; National Direction of Public Health, Ministry of Health of the Republic of Angola, Luanda, Angola
| | - Fabiana P Carneiro
- Laboratory of Pathology, Pathology, Faculty of Medicine, University of Brasilia, Campus Darcy Ribeiro, Brasilia, Distrito Federal 70.910.900, Brazil
| | - André M Nicola
- Laboratory of Cellular Immunology, Pathology, Faculty of Medicine, University of Brasilia, Campus Darcy Ribeiro, Brasilia, Distrito Federal 70.910.900, Brazil
| | - Kelly G Magalhães
- Laboratory of Immunology and Inflammation, Department of Cellular Biology, Biology Institute, University of Brasilia, Campus Darcy Ribeiro, Brasilia, Distrito Federal 70.910.900, Brazil
| | - Maria Imaculada Muniz-Junqueira
- Laboratory of Cellular Immunology, Pathology, Faculty of Medicine, University of Brasilia, Campus Darcy Ribeiro, Brasilia, Distrito Federal 70.910.900, Brazil.
| |
Collapse
|
20
|
Singh A, Rahman T, Bartiss R, Arabshahi A, Prasain J, Barnes S, Musteata FM, Sellati TJ. Lipoxin A4, a 5-lipoxygenase pathway metabolite, modulates immune response during acute respiratory tularemia. J Leukoc Biol 2016; 101:531-542. [PMID: 27630217 DOI: 10.1189/jlb.4a0815-365rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 08/12/2016] [Accepted: 08/16/2016] [Indexed: 12/15/2022] Open
Abstract
Respiratory infection with Francisella tularensis (Ft) is characterized by a muted, acute host response, followed by sepsis-like syndrome that results in death. Infection with Ft establishes a principally anti-inflammatory environment that subverts host-cell death programs to facilitate pathogen replication. Although the role of cytokines has been explored extensively, the role of eicosanoids in tularemia pathogenesis is not fully understood. Given that lipoxin A4 (LXA4) has anti-inflammatory properties, we investigated whether this lipid mediator affects host responses manifested early during infection. The addition of exogenous LXA4 inhibits PGE2 release by Ft-infected murine monocytes in vitro and diminishes apoptotic cell death. Tularemia pathogenesis was characterized in 5‑lipoxygenase-deficient (Alox5-/-) mice that are incapable of generating LXA4 Increased release of proinflammatory cytokines and chemokines, as well as increased apoptosis, was observed in Alox5-/- mice as compared with their wild-type counterparts. Alox5-/- mice also exhibited elevated recruitment of neutrophils during the early phase of infection and increased resistance to lethal challenge. Conversely, administration of exogenous LXA4 to Alox5-/- mice made them more susceptible to infection thus mimicking wild-type animals. Taken together, our results suggest that 5-LO activity is a critical regulator of immunopathology observed during the acute phase of respiratory tularemia, regulating bacterial burden and neutrophil recruitment and production of proinflammatory modulators and increasing morbidity and mortality. These studies identify a detrimental role for the 5-LO-derived lipid mediator LXA4 in Ft-induced immunopathology. Targeting this pathway may have therapeutic benefit as an adjunct to treatment with antibiotics and conventional antimicrobial peptides, which often have limited efficacy against intracellular bacteria.
Collapse
Affiliation(s)
- Anju Singh
- Trudeau Institute, Saranac Lake, New York, USA
| | - Tabassum Rahman
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | | | - Alireza Arabshahi
- Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, Alabama, USA; and
| | - Jeevan Prasain
- Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, Alabama, USA; and
| | - Stephen Barnes
- Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, Alabama, USA; and
| | - Florin Marcel Musteata
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | | |
Collapse
|
21
|
Elias I, Ferré T, Vilà L, Muñoz S, Casellas A, Garcia M, Molas M, Agudo J, Roca C, Ruberte J, Bosch F, Franckhauser S. ALOX5AP Overexpression in Adipose Tissue Leads to LXA4 Production and Protection Against Diet-Induced Obesity and Insulin Resistance. Diabetes 2016; 65:2139-50. [PMID: 27207555 DOI: 10.2337/db16-0040] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/21/2016] [Indexed: 11/13/2022]
Abstract
Eicosanoids, such as leukotriene B4 (LTB4) and lipoxin A4 (LXA4), may play a key role during obesity. While LTB4 is involved in adipose tissue inflammation and insulin resistance, LXA4 may exert anti-inflammatory effects and alleviate hepatic steatosis. Both lipid mediators derive from the same pathway, in which arachidonate 5-lipoxygenase (ALOX5) and its partner, arachidonate 5-lipoxygenase-activating protein (ALOX5AP), are involved. ALOX5 and ALOX5AP expression is increased in humans and rodents with obesity and insulin resistance. We found that transgenic mice overexpressing ALOX5AP in adipose tissue had higher LXA4 rather than higher LTB4 levels, were leaner, and showed increased energy expenditure, partly due to browning of white adipose tissue (WAT). Upregulation of hepatic LXR and Cyp7a1 led to higher bile acid synthesis, which may have contributed to increased thermogenesis. In addition, transgenic mice were protected against diet-induced obesity, insulin resistance, and inflammation. Finally, treatment of C57BL/6J mice with LXA4, which showed browning of WAT, strongly suggests that LXA4 is responsible for the transgenic mice phenotype. Thus, our data support that LXA4 may hold great potential for the future development of therapeutic strategies for obesity and related diseases.
Collapse
Affiliation(s)
- Ivet Elias
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Barcelona, Spain Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Tura Ferré
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Barcelona, Spain CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Laia Vilà
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Barcelona, Spain Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Sergio Muñoz
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Barcelona, Spain Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Alba Casellas
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Barcelona, Spain CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Miquel Garcia
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Barcelona, Spain Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Maria Molas
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Barcelona, Spain Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Judith Agudo
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Barcelona, Spain Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Carles Roca
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Barcelona, Spain Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Jesús Ruberte
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Barcelona, Spain CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Fatima Bosch
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Barcelona, Spain Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Sylvie Franckhauser
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Barcelona, Spain CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| |
Collapse
|
22
|
Abstract
The immune response comprises not only pro-inflammatory and anti-inflammatory pathways but also pro-resolution mechanisms that serve to balance the need of the host to target microbial pathogens while preventing excess inflammation and bystander tissue damage. Specialized pro-resolving mediators (SPMs) are enzymatically derived from essential fatty acids to serve as a novel class of immunoresolvents that limit acute responses and orchestrate the clearance of tissue pathogens, dying cells and debris from the battlefield of infectious inflammation. SPMs are composed of lipoxins, E-series and D-series resolvins, protectins and maresins. Individual members of the SPM family serve as agonists at cognate receptors to induce cell-type specific responses. Important regulatory roles for SPMs have been uncovered in host responses to several microorganisms, including bacterial, viral, fungal and parasitic pathogens. SPMs also promote the resolution of non-infectious inflammation and tissue injury. Defects in host SPM pathways contribute to the development of chronic inflammatory diseases. With the capacity to enhance host defence and modulate inflammation, SPMs represent a promising translational approach to enlist host resolution programmes for the treatment of infection and excess inflammation.
Here, the authors detail our current understanding of specialized pro-resolving mediators (SPMs), a family of endogenous mediators that have important roles in promoting the resolution of inflammation. With a focus on the lungs, they discuss the contribution of SPMs to infectious and chronic inflammatory diseases and their emerging therapeutic potential. Specialized pro-resolving mediators (SPMs) are enzymatically derived from essential fatty acids and have important roles in orchestrating the resolution of tissue inflammation — that is, catabasis. Host responses to tissue infection elicit acute inflammation in an attempt to control invading pathogens. SPMs are lipid mediators that are part of a larger family of pro-resolving molecules, which includes proteins and gases, that together restrain inflammation and resolve the infection. These immunoresolvents are distinct from immunosuppressive molecules as they not only dampen inflammation but also promote host defence. Here, we focus primarily on SPMs and their roles in lung infection and inflammation to illustrate the potent actions these mediators play in restoring tissue homeostasis after an infection.
Collapse
|
23
|
Lipoxin Inhibits Fungal Uptake by Macrophages and Reduces the Severity of Acute Pulmonary Infection Caused by Paracoccidioides brasiliensis. Mediators Inflamm 2015; 2015:852574. [PMID: 26635449 PMCID: PMC4618125 DOI: 10.1155/2015/852574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/20/2015] [Indexed: 01/01/2023] Open
Abstract
Cysteinyl leukotrienes (CysLTs) and lipoxins (LXs) are lipid mediators that control inflammation, with the former inducing and the latter inhibiting this process. Because the role played by these mediators in paracoccidioidomycosis was not investigated, we aimed to characterize the role of CysLT in the pulmonary infection developed by resistant (A/J) and susceptible (B10.A) mice. 48 h after infection, elevated levels of pulmonary LTC4 and LXA4 were produced by both mouse strains, but higher levels were found in the lungs of susceptible mice. Blocking the CysLTs receptor by MTL reduced fungal loads in B10.A, but not in A/J mice. In susceptible mice, MLT treatment led to reduced influx of PMN leukocytes, increased recruitment of monocytes, predominant synthesis of anti-inflammatory cytokines, and augmented expression of 5- and 15-lipoxygenase mRNA, suggesting a prevalent LXA4 activity. In agreement, MTL-treated macrophages showed reduced fungal burdens associated with decreased ingestion of fungal cells. Furthermore, the addition of exogenous LX reduced, and the specific blockade of the LX receptor increased the fungal loads of B10.A macrophages. This study showed for the first time that inhibition of CysLTs signaling results in less severe pulmonary paracoccidioidomycosis that occurs in parallel with elevated LX activity and reduced infection of macrophages.
Collapse
|
24
|
Endothelial-Leukocyte Interaction in Severe Malaria: Beyond the Brain. Mediators Inflamm 2015; 2015:168937. [PMID: 26491221 PMCID: PMC4605361 DOI: 10.1155/2015/168937] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/25/2015] [Accepted: 09/01/2015] [Indexed: 01/23/2023] Open
Abstract
Malaria is the most important parasitic disease worldwide, accounting for 1 million deaths each year. Severe malaria is a systemic illness characterized by dysfunction of brain tissue and of one or more peripheral organs as lungs and kidney. The most severe and most studied form of malaria is associated with cerebral complications due to capillary congestion and the adhesion of infected erythrocytes, platelets, and leukocytes to brain vasculature. Thus, leukocyte rolling and adhesion in the brain vascular bed during severe malaria is singular and distinct from other models of inflammation. The leukocyte/endothelium interaction and neutrophil accumulation are also observed in the lungs. However, lung interactions differ from brain interactions, likely due to differences in the blood-brain barrier and blood-air barrier tight junction composition of the brain and lung endothelium. Here, we review the importance of endothelial dysfunction and the mechanism of leukocyte/endothelium interaction during severe malaria. Furthermore, we hypothesize a possible use of adjunctive therapies to antimalarial drugs that target the interaction between the leukocytes and the endothelium.
Collapse
|
25
|
Romano M, Cianci E, Simiele F, Recchiuti A. Lipoxins and aspirin-triggered lipoxins in resolution of inflammation. Eur J Pharmacol 2015; 760:49-63. [DOI: 10.1016/j.ejphar.2015.03.083] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/27/2015] [Accepted: 03/30/2015] [Indexed: 02/08/2023]
|
26
|
Huang YH, Wang HM, Cai ZY, Xu FY, Zhou XY. Lipoxin A4 inhibits NF-κB activation and cell cycle progression in RAW264.7 cells. Inflammation 2015; 37:1084-90. [PMID: 24522831 DOI: 10.1007/s10753-014-9832-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lipoxins (LXs), including lipoxin A4 (LXA4), etc., have been approved for potent anti-inflammatory and immunomodulatory properties. Based on the important roles of macrophages in inflammation and immunomodulation, we investigate the effects of LXA4 on lipopolysaccharide (LPS)-induced proliferation and the possible signal transduction pathways in RAW264.7 macrophages. RAW264.7 cells were treated in vitro with or without LPS in the absence or presence of LXA4. [(3)H]-TdR incorporation assay and flow cytometry were used for detecting cell proliferation and cycle, respectively. Moreover, Western blot was applied to evaluate the protein expression levels of Cyclin E, IκBα, nuclear factor-κB (NF-κB), and IκB kinase (IKK). Our research showed that LXA4 suppressed LPS-induced proliferation, increased the proportion of the G0/G1 phase, decreased the proportion of the S phase, and downregulated the expression of Cyclin E. Besides these, LXA4 suppressed LPS-induced IκBα degradation, NF-κB translocation, and the expression of IKK. The data suggested that LXA4 inhibited LPS-induced proliferation through the G0/G1 phase arrest in RAW264.7 macrophages, and the inhibitory effect might depend on NF-κB signaling transduction pathway.
Collapse
Affiliation(s)
- Yong-Hong Huang
- Department of Pathophysiology, Medical College of Nanchang University, No. 461 Ba-Yi Road, Nanchang City, 330006, Jiangxi Province, China
| | | | | | | | | |
Collapse
|
27
|
Souza MC, Pádua TA, Torres ND, Souza Costa MF, Candéa AP, Maramaldo T, Seito LN, Penido C, Estato V, Antunes B, Silva L, Pinheiro AA, Caruso-Neves C, Tibiriçá E, Carvalho L, Henriques MG. Lipoxin A4 attenuates endothelial dysfunction during experimental cerebral malaria. Int Immunopharmacol 2015; 24:400-407. [PMID: 25576659 DOI: 10.1016/j.intimp.2014.12.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/23/2014] [Accepted: 12/24/2014] [Indexed: 01/23/2023]
Abstract
A breakdown of the brain-blood barrier (BBB) due to endothelial dysfunction is a primary feature of cerebral malaria (CM). Lipoxins (LX) are specialized pro-resolving mediators that attenuate endothelial dysfunction in different vascular beds. It has already been shown that LXA4 prolonged Plasmodium berghei-infected mice survival by a mechanism that depends on inhibiting IL-12 production and CD8(+)IFN-γ(+) T cells in brain tissue; however, the effects of this treatment on endothelial dysfunction induced during experimental cerebral malaria (ECM) remains to be elucidated. Herein, we investigate the role of LXA4 on endothelial dysfunction during ECM. The treatment of P. berghei-infected mice with LXA4 prevented BBB breakdown and ameliorated behavioral symptoms but did not modulate TNF-α production. In addition, microcirculation analysis showed that treatment with LXA4 significantly increased functional capillary density in brains of P. berghei-infected C57BL/6 mice. Furthermore, histological analyses of brain sections demonstrated that exogenous LXA4 reduced capillary congestion that was accompanied by reduced ICAM-1 expression in the brain tissue. In agreement, LXA4 treatment of endothelial cells stimulated by Plasmodium berghei (Pb)- or Plasmodium falciparum (Pf)-parasitized red blood cells (RBCs) inhibited ICAM-1 expression. Additionally, LXA4 treatment restored the expression of HO-1 that is reduced during ECM. As well, LXA4 treatment inhibits PbRBC and PfRBC adhesion to endothelial cells that was reversed by the use of an HO-1 inhibitor (ZnPPIX). Our results demonstrate for the first time that LXA4 ameliorates endothelial dysfunction during ECM by modulating ICAM-1 and HO-1 expression in brain tissue.
Collapse
Affiliation(s)
- Mariana C Souza
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil; National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Tatiana A Pádua
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil; National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Natália D Torres
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil; National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Maria Fernanda Souza Costa
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil; National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - André P Candéa
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil; National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Thadeu Maramaldo
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil; National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Leonardo Noboru Seito
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Carmen Penido
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil; National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Vanessa Estato
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Barbara Antunes
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Leandro Silva
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ana Acácia Pinheiro
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Celso Caruso-Neves
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Eduardo Tibiriçá
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Leonardo Carvalho
- Laboratory of Malaria Research, Instituto Oswaldo Cruz, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Maria G Henriques
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil; National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
28
|
Russell CD, Schwarze J. The role of pro-resolution lipid mediators in infectious disease. Immunology 2014; 141:166-73. [PMID: 24400794 PMCID: PMC3904237 DOI: 10.1111/imm.12206] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 10/22/2013] [Accepted: 10/24/2013] [Indexed: 12/27/2022] Open
Abstract
Inflammation is an essential host defence against infection, but can be damaging when excessive. Resolution of inflammation is an active process, and the pro-resolution effects of lipoxins, resolvins and protectins have received significant interest. Here, we review emerging data on the role of these lipid mediators in infectious disease. Lipoxins influence host control of Mycobacterium tuberculosis, Toxoplasma gondii, Trypanosoma cruzi and Plasmodium berghei cerebral malaria in mice. Their effects are protective in toxoplasmosis, T. cruzi infection and cerebral malaria but detrimental in tuberculosis; related to the balance between pathogen-control and excessive immune response. Topical lipoxin abrogates the tissue damage seen in a rabbit model of Porphyromonas gingivalis periodontitis. The increased virulence of H5N1 influenza A virus in mice correlates with reduced expression of SOCS2, required to mediate the effects of lipoxin. Mice unable to synthesize lipoxin suffer increased lung pathology during respiratory syncytial virus infection. Protectin suppresses influenza A virus replication in vitro and increases survival in a mouse model of severe influenza infection. Resolvins were investigated in a number of animal models of systemic bacterial infection, and were found to enhance phagocytic clearance of bacteria, reduce inflammation severity, promote neutrophil apoptosis, modulate neutrophil chemotaxis and importantly, reduce mortality. Interestingly, resolvin also enhances the antibacterial effect of ciprofloxacin and vancomycin. Topical resolvin application reduces the severity of herpes simplex virus ocular infection in mice. If the effects of these mediators translate from pre-clinical studies into successful clinical trials, they represent promising new strategies in managing infectious disease.
Collapse
Affiliation(s)
- Clark D Russell
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
29
|
Age-dependent relevance of endogenous 5-lipoxygenase derivatives in anxiety-like behavior in mice. PLoS One 2014; 9:e85009. [PMID: 24416334 PMCID: PMC3885659 DOI: 10.1371/journal.pone.0085009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 11/25/2013] [Indexed: 11/22/2022] Open
Abstract
When 5-lipoxygenase (5-LO) is inhibited, roughly half of the CNS effect of the prototypic endocannabinoid anandamide (AEA) is lost. Therefore, we decided to investigate whether inhibiting this enzyme would influence physiological functions classically described as being under control of the endocannabinoid system. Although 5-LO inhibition by MK-886 reduced lipoxin A4 levels in the brain, no effect was found in the elevated plus maze (EPM), even at the highest possible doses, via i.p. (10 mg/kg,) or i.c.v. (500 pmol/2 µl) routes. Accordingly, no alterations in anxiety-like behavior in the EPM test were observed in 5-LO KO mice. Interestingly, aged mice, which show reduced circulating lipoxin A4 levels, were sensitive to MK-886, displaying an anxiogenic-like state in response to treatment. Moreover, exogenous lipoxin A4 induced an anxiolytic-like profile in the EPM test. Our findings are in line with other reports showing no difference between FLAP KO or 5-LO KO and their control strains in adult mice, but increased anxiety-like behavior in aged mice. We also show for the first time that lipoxin A4 affects mouse behavior. In conclusion, we propose an age-dependent relevancy of endogenous 5-LO derivatives in the modulation of anxiety-like behavior, in addition to a potential for exogenous lipoxin A4 in producing an anxiolytic-like state.
Collapse
|