1
|
Patel NF, Letinić BD, Lobb L, Zawada J, Dlamini DM, Mabaso N, Munhenga G, Oliver SV. Comparison of the effect of bacterial stimulation on the global epigenetic landscape and transcription of immune genes in primarily zoophilic members of the Anopheles gambiae complex (Diptera: Culicidae). Mol Biochem Parasitol 2024; 260:111631. [PMID: 38844266 PMCID: PMC11611454 DOI: 10.1016/j.molbiopara.2024.111631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 05/06/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024]
Abstract
Members of the Anopheles gambiae complex vary in their vector competence, and this is often attributed to behavioural differences. Similarly, there are differences in transmission capabilities of the zoophilic members of this complex despite exhibiting similar behaviours. Therefore, behavioural differences alone cannot fully explain vector competence variation within members of the An. gambiae complex. The immune system of mosquitoes plays a key role in determining susceptibility to parasite infection and consequently transmission capacity. This study aimed to examine variations in the immune response of An. arabiensis, An. merus and An. quadriannulatus, a major, minor, and non-vector respectively. The global epigenetic landscape was characterised and the expression of Defensin-1 and Gambicin was assessed in response to Gram-positive (Streptococcus pyogenes) and Gram-negative (Escherichia coli) bacterial infections. The effect of insecticide resistance in An. arabiensis on these aspects was also assessed. The immune system was stimulated by a blood-borne bacterial supplementation. The 5mC, 5hmC, m6A methylation levels and Histone Acetyl Transferase activity were assessed with commercial ELISA kits. The transcript levels of Defensin-1 and Gambicin were assessed by quantitative Real-Time Polymerase Chain Reaction. Species-specific differences in 5mC and m6A methylation existed both constitutively as well as post immune stimulation. The epigenetic patterns observed in the laboratory strains were largely conserved in F1 offspring of wild-caught adults. The methylation patterns in the major vector typically differed from that of the minor/non-vectors. The differences between insecticide susceptible and resistant An. arabiensis were more reflected in the expression of Defensin-1 and Gambicin. The expression of these peptides differed in the strains only after bacterial stimulation. Anopheles merus and An. quadriannulatus expressed significantly higher levels of antimicrobial peptides, both constitutively and after immune stimulation. These findings suggest molecular variations in the immune response of members of the An. gambiae complex.
Collapse
Affiliation(s)
- Nashrin F Patel
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa; Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Blaženka D Letinić
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa; Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Leanne Lobb
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa; Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Clinical HIV Research Unit, Wits Health Consortium, Johannesburg, South Africa
| | - Jacek Zawada
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa; Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; South African National Biodiversity Institute (SANBI) National Zoological Gardens, Pretoria, South Africa
| | - Dumsani M Dlamini
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nondumiso Mabaso
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Givemore Munhenga
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa; Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Shüné V Oliver
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa; Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
2
|
Patel NF, Oliver SV. Generation of specific immune memory by bacterial exposure in the major malaria vector Anopheles arabiensis (Diptera: Culicidae). CURRENT RESEARCH IN INSECT SCIENCE 2024; 5:100085. [PMID: 38779142 PMCID: PMC11109336 DOI: 10.1016/j.cris.2024.100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
There is a growing body of evidence that invertebrates can generate improved secondary responses after a primary challenge. This immunological memory can be primed by a range of pathogens, including bacteria. The generation of immunological memory has been demonstrated in mosquitoes, with the memory primed by a range of initial stimuli. This study aimed to examine whether insecticide resistance affects the capacity to generate immunological memory. The primary hypothesis was tested by examining the capacity of genetically related laboratory-reared Anopheles arabiensis strains that differ by insecticide resistant phenotype to generate immunological memory. The competing hypothesis tested was that the bacterial virulence was the key determinant in generating immunological memory. Immune memory was generated in F1 females but not males. Immunological memory was demonstrated in both laboratory strains, but the efficacy differed by the insecticide resistant phenotype of the strain. An initial oral challenge provided by a blood meal resulted generated better memory than an oral challenge by sugar. The efficacy of memory generation between the two bacterial strains differed between the two mosquito strains. Regardless of the challenge, the two strains differed in their capacity to generate memory. This study therefore demonstrated that insecticide resistant phenotype affected the capacity of the two strains to generate immunological memory. Although this study needs to be replicated with wild mosquitoes, it does suggest that a potential role for insecticide resistance in the functioning of the immune system and memory generation of An. arabiensis.
Collapse
Affiliation(s)
- Nashrin F Patel
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2192, South Africa
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Shüné V Oliver
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2192, South Africa
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| |
Collapse
|
3
|
Hernandez-Caballero I, Hellgren O, Garcia-Longoria Batanete L. Genomic advances in the study of the mosquito vector during avian malaria infection. Parasitology 2023; 150:1330-1339. [PMID: 37614176 PMCID: PMC10941221 DOI: 10.1017/s0031182023000756] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023]
Abstract
Invertebrate host–parasite associations are one of the keystones in order to understand vector-borne diseases. The study of these specific interactions provides information not only about how the vector is affected by the parasite at the gene-expression level, but might also reveal mosquito strategies for blocking the transmission of the parasites. A very well-known vector for human malaria is Anopheles gambiae. This mosquito species has been the main focus for genomics studies determining essential key genes and pathways over the course of a malaria infection. However, to-date there is an important knowledge gap concerning other non-mammophilic mosquito species, for example some species from the Culex genera which may transmit avian malaria but also zoonotic pathogens such as West Nile virus. From an evolutionary perspective, these 2 mosquito genera diverged 170 million years ago, hence allowing studies in both species determining evolutionary conserved genes essential during malaria infections, which in turn might help to find key genes for blocking malaria cycle inside the mosquito. Here, we extensively review the current knowledge on key genes and pathways expressed in Anopheles over the course of malaria infections and highlight the importance of conducting genomic investigations for detecting pathways in Culex mosquitoes linked to infection of avian malaria. By pooling this information, we underline the need to increase genomic studies in mosquito–parasite associations, such as the one in Culex–Plasmodium, that can provide a better understanding of the infection dynamics in wildlife and reduce the negative impact on ecosystems.
Collapse
Affiliation(s)
- Irene Hernandez-Caballero
- Department of Anatomy, Cellular Biology and Zoology, University of Extremadura, E-06071 Badajoz, Spain
| | - Olof Hellgren
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Sölvegatan 37, SE-22362, Sweden
| | | |
Collapse
|
4
|
Nardini L, Brito-Fravallo E, Campagne P, Pain A, Genève C, Vernick KD, Mitri C. The voltage-gated sodium channel, para, limits Anopheles coluzzii vector competence in a microbiota dependent manner. Sci Rep 2023; 13:14572. [PMID: 37666840 PMCID: PMC10477260 DOI: 10.1038/s41598-023-40432-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/10/2023] [Indexed: 09/06/2023] Open
Abstract
The voltage-gated sodium channel, para, is a target of DDT and pyrethroid class insecticides. Single nucleotide mutations in para, called knockdown resistant or kdr, which contribute to resistance against DDT and pyrethroid insecticides, have been correlated with increased susceptibility of Anopheles to the human malaria parasite Plasmodium falciparum. However, a direct role of para activity on Plasmodium infection has not yet been established. Here, using RNA-mediated silencing, we provide in vivo direct evidence for the requirement of wild-type (wt) para function for insecticide activity of deltamethrin. Depletion of wt para, which is susceptible to insecticide, causes deltamethrin tolerance, indicating that insecticide-resistant kdr alleles are likely phenocopies of loss of para function. We then show that normal para activity in An. coluzzii limits Plasmodium infection prevalence for both P. falciparum and P. berghei. A transcriptomic analysis revealed that para activity does not modulate the expression of immune genes. However, loss of para function led to enteric dysbiosis with a significant increase in the total bacterial abundance, and we show that para function limiting Plasmodium infection is microbiota dependent. In the context of the bidirectional "enteric microbiota-brain" axis studied in mammals, these results pave the way for studying whether the activity of the nervous system could control Anopheles vector competence.
Collapse
Affiliation(s)
- Luisa Nardini
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, CNRS, Institut Pasteur, UMR2000, Université de Paris, 75015, Paris, France
| | - Emma Brito-Fravallo
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, CNRS, Institut Pasteur, UMR2000, Université de Paris, 75015, Paris, France
| | - Pascal Campagne
- Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, Université de Paris, 75015, Paris, France
| | - Adrien Pain
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, CNRS, Institut Pasteur, UMR2000, Université de Paris, 75015, Paris, France
| | - Corinne Genève
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, CNRS, Institut Pasteur, UMR2000, Université de Paris, 75015, Paris, France
| | - Kenneth D Vernick
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, CNRS, Institut Pasteur, UMR2000, Université de Paris, 75015, Paris, France
| | - Christian Mitri
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, CNRS, Institut Pasteur, UMR2000, Université de Paris, 75015, Paris, France.
| |
Collapse
|
5
|
Kay GA, Patterson EI, Hughes GL, Lord JS, Reimer LJ. Knockdown resistance allele L1014F introduced by CRISPR/Cas9 is not associated with altered vector competence of Anopheles gambiae for o'nyong nyong virus. PLoS One 2023; 18:e0288994. [PMID: 37561739 PMCID: PMC10414658 DOI: 10.1371/journal.pone.0288994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/09/2023] [Indexed: 08/12/2023] Open
Abstract
Knockdown resistance (kdr) alleles conferring resistance to pyrethroid insecticides are widespread amongst vector populations. Previous research has suggested that these alleles are associated with changes in the vector competence of mosquitoes for arboviruses and Plasmodium, however non-target genetic differences between mosquito strains may have had a confounding effect. Here, to minimise genetic differences, the laboratory Anopheles gambiae Kisumu strain was compared to a CRISPR/Cas9 homozygous kdr L1014F mutant Kisumu-kdr line in order to examine associations with vector competence for o'nyong nyong virus (ONNV). Mosquitoes were infected using either blood feeds or intrathoracic microinjections. There were no significant differences in the prevalence of virus in mosquito body parts between kdr mutant and wildtype lines from either oral or intrathoracic injection routes. The ONNV titre was significantly higher in the legs of the wildtype strain at 7dpi following intrathoracic microinjection, but no other significant differences in viral titre were detected. ONNV was not detected in the saliva of mosquitoes from either strain. Our findings from per os infections suggest that the kdr L1014F allele is not associated with altered infection prevalence for ONNV, a key component of vector competence.
Collapse
Affiliation(s)
- Grant A. Kay
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - Grant L. Hughes
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Jennifer S. Lord
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Lisa J. Reimer
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
6
|
Adams KL, Selland EK, Willett BC, Carew JW, Vidoudez C, Singh N, Catteruccia F. Selection for insecticide resistance can promote Plasmodium falciparum infection in Anopheles. PLoS Pathog 2023; 19:e1011448. [PMID: 37339122 DOI: 10.1371/journal.ppat.1011448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/29/2023] [Indexed: 06/22/2023] Open
Abstract
Insecticide resistance is under strong selective pressure in Anopheles mosquitoes due to widespread usage of insecticides in vector control strategies. Resistance mechanisms likely cause changes that profoundly affect mosquito physiology, yet it remains poorly understood how selective pressures imposed by insecticides may alter the ability of the mosquito to host and transmit a Plasmodium infection. From pyrethroid-resistant field-derived Anopheles gambiae s.l. mosquitoes, we established resistant (RES) and susceptible (SUS) colonies by either selection for, or loss of insecticide resistance. We show increased oocyst intensity and growth rate as well as increased sporozoite prevalence and intensity in RES compared to SUS females infected with Plasmodium falciparum. The increase in infection intensity in RES females was not associated with the presence of the kdrL1014F mutation and was not impacted by inhibition of Cytochrome P450s. The lipid transporter lipophorin (Lp), which was upregulated in RES compared to SUS, was at least partly implicated in the increased intensity of P. falciparum but not directly involved in the insecticide resistance phenotype. Interestingly, we observed that although P. falciparum infections were not affected when RES females were exposed to permethrin, these females had decreased lipid abundance in the fat body following exposure, pointing to a possible role for lipid mobilization in response to damage caused by insecticide challenge. The finding that selection for insecticide resistance can increase P. falciparum infection intensities and growth rate reinforces the need to assess the overall impact on malaria transmission dynamics caused by selective pressures mosquitoes experience during repeated insecticide challenge.
Collapse
Affiliation(s)
- Kelsey L Adams
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Emily K Selland
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Bailey C Willett
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - John W Carew
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Charles Vidoudez
- Harvard Center for Mass Spectrometry, Cambridge, Massachusetts, United States of America
| | - Naresh Singh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Flaminia Catteruccia
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| |
Collapse
|
7
|
Engdahl CS, Caragata EP, Tavadia M, Dimopoulos G. Chromobacterium Biopesticide Exposure Does Not Select for Resistance in Aedes Mosquitoes. mBio 2023; 14:e0048023. [PMID: 37017525 PMCID: PMC10127667 DOI: 10.1128/mbio.00480-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 03/06/2023] [Indexed: 04/06/2023] Open
Abstract
Developing effective tools to control mosquito populations is essential for reducing the incidence of diseases like malaria and dengue. Biopesticides of microbial origin are a rich, underexplored source of mosquitocidal compounds. We previously developed a biopesticide from the bacterium Chromobacterium sp. Panama that rapidly kills vector mosquito larvae, including Aedes aegypti and Anopheles gambiae. Here, we demonstrate that two independent Ae. aegypti colonies exposed to a sublethal dose of that biopesticide over consecutive generations persistently exhibited high mortality and developmental delays, indicating that resistance did not develop during the study period. Critically, the descendants of biopesticide-exposed mosquitoes experienced decreased longevity and did not display increased susceptibility to dengue virus or decreased susceptibility to common chemical insecticides. Through RNA sequencing, we observed no link between biopesticide exposure and the increased activity of xenobiotic metabolism and detoxification genes typically associated with insecticide resistance. These findings indicate that the Chromobacterium biopesticide is an exciting, emerging mosquito control tool. IMPORTANCE Vector control is an essential part of mitigating diseases caused by pathogens that mosquitoes spread. Modern vector control is highly reliant on using synthetic insecticides to eliminate mosquito populations before they can cause disease. However, many of these populations have become resistant to commonly used insecticides. There is a strong need to explore alternative vector control strategies that aim to mitigate disease burden. Biopesticides, insecticides of biological origin, can have unique mosquitocidal activities, meaning they can effectively kill mosquitoes that are already resistant to other insecticides. We previously developed a highly effective mosquito biopesticide from the bacterium Chromobacterium sp. Csp_P. Here, we investigate whether exposure to a sublethal dose of this Csp_P biopesticide over 9 to 10 generations causes resistance to arise in Aedes aegypti mosquitoes. We find no evidence of resistance at the physiological or molecular levels, confirming that the Csp_P biopesticide is a highly promising new tool for controlling mosquito populations.
Collapse
Affiliation(s)
- Cecilia Springer Engdahl
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Eric P. Caragata
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Florida Medical Entomology Laboratory, Department of Entomology & Nematology, Institute of Food & Agricultural Sciences, University of Florida, Vero Beach, Florida, USA
| | - Mihra Tavadia
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Bohounton RB, Djihinto OY, Dedome OSL, Yovo RM, Djossou L, Koba K, Adomou A, Villeneuve P, Djogbénou LS, Tchobo FP. Euclasta condylotricha flowers essential oils: A new source of juvenile hormones and its larvicidal activity against Anopheles gambiae s.s. (Diptera: Culicidae). PLoS One 2023; 18:e0278834. [PMID: 36689494 PMCID: PMC9870135 DOI: 10.1371/journal.pone.0278834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/24/2022] [Indexed: 01/24/2023] Open
Abstract
The essential oil (EO) of plants of the Poaceae family has diverse chemical constituents with several biological properties. But, data on the chemical constituents and toxicity are still unavailable for some species belonging to this family, such as Euclasta condylotricha Steud (Eu. condylotricha). In this study, the chemical composition of the EOs of Eu. condylotricha flowers was evaluated by gas chromatography coupled with mass spectrometry (GC-MS). The EOs larvicidal property was assessed against third instar larvae of three Anopheles gambiae laboratory strains (Kisumu, Acerkis and Kiskdr) according to the WHO standard protocol. The percentage yields of the EOs obtained from hydro distillation of Eu. condylotricha flowers varied 0.070 to 0.097%. Gas Chromatography-Mass Spectrometry (GC-MS) applied to the EOs revealed fifty-five (55) chemical constituents, representing 94.95% to 97.78% of the total essential oils. Although different chemical profiles of the dominant terpenes were observed for each sample, EOs were generally dominated by sesquiterpenoids with juvenile hormones as the major compounds. The primary compounds were juvenile hormone C16 (JH III) (35.97-48.72%), Methyl farnesoate 10,11-diol (18.56-28.73%), tau-Cadinol (18.54%), and β-Eudesmene (12.75-13.46%). Eu. condylotricha EOs showed a strong larvicidal activity with LC50 values ranging from 35.21 to 52.34 ppm after 24 hours of exposition. This study showed that Eu. Condylotricha flowers essential oils are potent sources of juvenile hormones that could be a promising tool for developing an eco-friendly malaria vector control strategy.
Collapse
Affiliation(s)
- Roméo Barnabé Bohounton
- Laboratory of Study and Research of Applied Chemistry, Polytechnic School of Abomey-Calavi, Cotonou, Benin
- Tropical Infectious Diseases Research Centre (TIDRC)/ University of Abomey Calavi, Abomey-Calavi, Benin
| | | | | | - Réné Mahudro Yovo
- Laboratory of Study and Research of Applied Chemistry, Polytechnic School of Abomey-Calavi, Cotonou, Benin
| | - Laurette Djossou
- Tropical Infectious Diseases Research Centre (TIDRC)/ University of Abomey Calavi, Abomey-Calavi, Benin
| | - Koffi Koba
- Unité de Recherche sur les Matériaux et les Agroressources, École Supérieure D’agronomie, Université de Lomé, Lomé, Togo
| | - Aristide Adomou
- Laboratoire de Botanique et Écologie Végétale (LaBEV), Faculté des Sciences et Techniques (FAST), University of Abomey-Calavi, Abomey-Calavi, Benin
| | | | - Luc Salako Djogbénou
- Tropical Infectious Diseases Research Centre (TIDRC)/ University of Abomey Calavi, Abomey-Calavi, Benin
- Institut Régional de Santé Publique (IRSP), University of Abomey-Calavi, Ouidah, Benin
| | - Fidèle Paul Tchobo
- Laboratory of Study and Research of Applied Chemistry, Polytechnic School of Abomey-Calavi, Cotonou, Benin
| |
Collapse
|
9
|
Asymptomatic Plasmodium infection among primary schoolchildren and Anopheles-mediated malaria transmission: A cross-sectional study in Ouidah; south-western Benin. Parasite Epidemiol Control 2023; 21:e00285. [PMID: 36714884 PMCID: PMC9880241 DOI: 10.1016/j.parepi.2023.e00285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/11/2022] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Understanding the contribution of asymptomatic Plasmodium carriers in malaria transmission might be helpful to design and implement new control measures. The present study explored the prevalence of asymptomatic and symptomatic Plasmodium infections (asexual and sexual stages) and the contribution of asymptomatic P. falciparum carriers to Anopheles-mediated malaria transmission in Ouidah (Benin). Thick and thin blood smears were examined from finger-prick blood specimens using light microscopy, and the density of both asexual and sexual stages of Plasmodium species was calculated. Infectivity of gametocyte-infected blood samples to Anopheles gambiae was assessed through direct membrane feeding assays. The prevalence of asymptomatic Plasmodium infections was 28.73% (289/1006). All the asymptomatic gametocyte-carriers (19/19), with gametocytaemia ranging from 10 - 1200 gametocytes/μL of blood, were infectious to An. gambiae mosquitoes. The mean oocyst prevalences varied significantly (χ 2 = 16.42, df = 7, p = 0.02) among laboratory mosquito strains (6.9 - 39.4%) and near-field mosquitoes (4.9 - 27.2%). Likewise, significant variation (χ 2 = 56.85, df = 7, p = 6.39 × 10-10) was observed in oocyst intensity. Our findings indicate that asymptomatic Plasmodium carriers could significantly contribute to malaria transmission. Overall, this study highlights the importance of diagnosing and treating asymptomatic and symptomatic infection carriers during malaria control programmes.
Collapse
Key Words
- An. gambiae
- An., Anopheles
- Asymptomatic
- CX, Carbamates
- DDT, Dichlorodiphenyltrichloroethane
- DMFAs, Direct membrane feeding assays
- G119S, Glycine substitution by Serine at codon 119
- Gametocyte
- IPT, Intermittent Preventive Therapy
- IRS, Indoor residual spraying
- ITNs, Insecticide-treated bed nets
- L1014F, Leucine substitution by Phenylalanine at codon 1014
- MDA, Mass Drug Administration
- MSaT, Mass Screening and Treatment
- NMCP, National Malaria Control Programme
- OP, Organophosphates
- PYR, Pyrethroids
- Plasmodium falciparum
- Transmission
- USA, United States of America
- WBCs, White blood cells
- WHO, Word Health Organization
- s.l., sensu lato
- s.s., sensu stricto
- spp., species
Collapse
|
10
|
Suh PF, Elanga-Ndille E, Tchouakui M, Sandeu MM, Tagne D, Wondji C, Ndo C. Impact of insecticide resistance on malaria vector competence: a literature review. Malar J 2023; 22:19. [PMID: 36650503 PMCID: PMC9847052 DOI: 10.1186/s12936-023-04444-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
Since its first report in Anopheles mosquitoes in 1950s, insecticide resistance has spread very fast to most sub-Saharan African malaria-endemic countries, where it is predicted to seriously jeopardize the success of vector control efforts, leading to rebound of disease cases. Supported mainly by four mechanisms (metabolic resistance, target site resistance, cuticular resistance, and behavioural resistance), this phenomenon is associated with intrinsic changes in the resistant insect vectors that could influence development of invading Plasmodium parasites. A literature review was undertaken using Pubmed database to collect articles evaluating directly or indiretly the impact of insecticide resistance and the associated mechanisms on key determinants of malaria vector competence including sialome composition, anti-Plasmodium immunity, intestinal commensal microbiota, and mosquito longevity. Globally, the evidence gathered is contradictory even though the insecticide resistant vectors seem to be more permissive to Plasmodium infections. The actual body of knowledge on key factors to vectorial competence, such as the immunity and microbiota communities of the insecticide resistant vector is still very insufficient to definitively infer on the epidemiological importance of these vectors against the susceptible counterparts. More studies are needed to fill important knowledge gaps that could help predicting malaria epidemiology in a context where the selection and spread of insecticide resistant vectors is ongoing.
Collapse
Affiliation(s)
- Pierre Fongho Suh
- Department of Parasitology and Microbiology, Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon
- Faculty of Sciences, University of Yaoundé I, P.O. Box 837, Yaoundé, Cameroon
| | - Emmanuel Elanga-Ndille
- Department of Medical Entomology, Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon
| | - Magellan Tchouakui
- Department of Medical Entomology, Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon
| | - Maurice Marcel Sandeu
- Department of Medical Entomology, Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon
- Department of Microbiology and Infectious Diseases, School of Veterinary Medicine and Sciences, University of Ngaoundéré, P.O. Box 454, Ngaoundéré, Cameroon
| | - Darus Tagne
- Department of Parasitology and Microbiology, Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon
- Faculty of Sciences, University of Douala, P.O. Box 24157, Douala, Cameroon
| | - Charles Wondji
- Department of Parasitology and Microbiology, Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Cyrille Ndo
- Department of Parasitology and Microbiology, Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon.
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, P.O. Box 24157, Douala, Cameroon.
| |
Collapse
|
11
|
Joseph Matiya D, Philbert AB, Kidima WB, Matowo JJ. The Effect of Plasmodium falciparum (Welch) (Haemospororida: Plasmodiidae) Infection on the Susceptibility of Anopheles gambiae s.l. and Anopheles funestus (Diptera: Culicidae) to Pyrethroid Insecticides in the North-Western and South-Eastern, Tanzania. JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:112-121. [PMID: 36287642 DOI: 10.1093/jme/tjac163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Indexed: 06/16/2023]
Abstract
The rapid development of insecticide resistance in malaria vectors threatens insecticide-based interventions. It is hypothesized that infection of insecticide-resistant vectors with Plasmodium parasites increases their vulnerability to insecticides, thus assuring the effectiveness of insecticide-based strategies for malaria control. Nonetheless, there is limited field data to support this. We investigated the effect of the Plasmodium falciparum infection on the susceptibility of Anopheles gambiae s.l. and Anopheles funestus to pyrethroids in south-eastern (Kilombero) and north-western (Muleba), Tanzania. The wild-collected mosquitoes were tested against 0.05% deltamethrin and 0.75% permethrin, then assessed for sporozoite rate and resistant gene (kdr) mutations. All Anopheles gambiae s.l. from Kilombero were An. arabiensis (Patton, 1905) while those from Muleba were 87% An. gambiae s.s (Giles, 1902) and 13% An. Arabiensis. High levels of pyrethroid resistance were observed in both areas studied. The kdr mutation was only detected in An. gambiae s.s. at the frequency of 100% in survivors and 97% in dead mosquitoes. The P. falciparum sporozoite rates were slightly higher in susceptible than in resistant mosquitoes. In Muleba, sporozoite rates in An. gambiae s.l. were 8.1% and 6.4% in dead mosquitoes and survivors, respectively (SRR = 1.28, p = 0.19). The sporozoite rates in Kilombero were 1.3% and 0.7% in the dead and survived mosquitoes, respectively (sporozoite rate ratio (SRR) = 1.9, p = 0.33). In An. funestus group sporozoite rates were 6.2% and 4.4% in dead and survived mosquitoes, respectively (SRR = 1.4, p = 0.54). These findings indicate that insecticides might still be effective in malaria control despite the rapid development of insecticide resistance in malaria vectors.
Collapse
Affiliation(s)
- Deokary Joseph Matiya
- Dar es Salaam University College of Education (DUCE), PO Box 2329, Dar es Salaam, Tanzania
- University of Dar es Salaam (UDSM), PO Box 35064, Dar es Salaam, Tanzania
| | - Anitha B Philbert
- University of Dar es Salaam (UDSM), PO Box 35064, Dar es Salaam, Tanzania
| | - Winifrida B Kidima
- University of Dar es Salaam (UDSM), PO Box 35064, Dar es Salaam, Tanzania
| | - Johnson J Matowo
- Kilimanjaro Christian Medical University College (KCMUCo), PO Box 2240, Moshi, Tanzania
| |
Collapse
|
12
|
Wang L, Fontaine A, Gaborit P, Guidez A, Issaly J, Girod R, Kazanji M, Rousset D, Vignuzzi M, Epelboin Y, Dusfour I. Interactions between vector competence to chikungunya virus and resistance to deltamethrin in Aedes aegypti laboratory lines? MEDICAL AND VETERINARY ENTOMOLOGY 2022; 36:486-495. [PMID: 35762523 DOI: 10.1111/mve.12593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
The urban mosquito species Aedes aegypti is the main vector of arboviruses worldwide. Mosquito control with insecticides is the most prevalent method for preventing transmission in the absence of effective vaccines and available treatments; however, the extensive use of insecticides has led to the development of resistance in mosquito populations throughout the world, and the number of epidemics caused by arboviruses has increased. Three mosquito lines with different resistance profiles to deltamethrin were isolated in French Guiana, including one with the I1016 knock-down resistant allele. Significant differences were observed in the cumulative proportion of mosquitoes with a disseminated chikungunya virus infection over time across these lines. In addition, some genes related to resistance (CYP6BB2, CYP6N12, GST2, trypsin) were variably overexpressed in the midgut at 7 days after an infectious bloodmeal in these three lines. Our work shows that vector competence for chikungunya virus varied between Ae. aegypti laboratory lines with different deltamethrin resistance profiles. More accurate verification of the functional association between insecticide resistance and vector competence remains to be demonstrated.
Collapse
Affiliation(s)
- Lanjiao Wang
- Vectopôle Amazonien Emile Abonnenc, Unité de contrôle et adaptation des vecteurs, Institut Pasteur de la Guyane, Cayenne cedex, France
| | - Albin Fontaine
- Unité de Parasitologie et Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
- Aix Marseille Université, IRD, AP-HM, SSA, UMR Vecteurs - Infections Tropicales et Méditerranéennes (VITROME), IHU-Méditerranée Infection, Marseille, cedex 5, France
| | - Pascal Gaborit
- Vectopôle Amazonien Emile Abonnenc, Unité de contrôle et adaptation des vecteurs, Institut Pasteur de la Guyane, Cayenne cedex, France
| | - Amandine Guidez
- Vectopôle Amazonien Emile Abonnenc, Unité de contrôle et adaptation des vecteurs, Institut Pasteur de la Guyane, Cayenne cedex, France
| | - Jean Issaly
- Vectopôle Amazonien Emile Abonnenc, Unité de contrôle et adaptation des vecteurs, Institut Pasteur de la Guyane, Cayenne cedex, France
| | - Romain Girod
- Vectopôle Amazonien Emile Abonnenc, Unité de contrôle et adaptation des vecteurs, Institut Pasteur de la Guyane, Cayenne cedex, France
| | | | - Dominique Rousset
- Laboratoire de Virologie, Institut Pasteur de la Guyane, Cayenne cedex, France
| | - Marco Vignuzzi
- Unité des Populations Virales et Pathogénèse, Institut Pasteur, Paris cedex 15, France
| | - Yanouk Epelboin
- Vectopôle Amazonien Emile Abonnenc, Unité de contrôle et adaptation des vecteurs, Institut Pasteur de la Guyane, Cayenne cedex, France
| | - Isabelle Dusfour
- Vectopôle Amazonien Emile Abonnenc, Unité de contrôle et adaptation des vecteurs, Institut Pasteur de la Guyane, Cayenne cedex, France
| |
Collapse
|
13
|
Gomard Y, Alout H, Lebon C, Latreille A, Benlali A, Mavingui P, Tortosa P, Atyame C. Fitness costs associated with a GABA receptor mutation conferring dieldrin resistance in Aedes albopictus. Heredity (Edinb) 2022; 129:273-280. [PMID: 36220919 PMCID: PMC9614001 DOI: 10.1038/s41437-022-00565-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/08/2022] Open
Abstract
Understanding the dynamics of insecticide resistance genes in mosquito populations is pivotal for a sustainable use of insecticides. Dieldrin resistance in Aedes albopictus is conferred by the alanine to serine substitution (A302S or RdlR allele) in the γ-aminobutyric acid (GABA) receptor encoded by the Rdl gene. On Reunion Island, dieldrin resistance was initially reported in natural Ae. albopictus populations sampled in 2008 despite the ban of dieldrin since 1994. To monitor insecticide resistance in Ae. albopictus on the island and to identify its drivers, we measured (i) the frequency of resistance alleles in 19 distinct natural populations collected between 2016 and 2017, (ii) fitness costs associated with dieldrin resistance in laboratory-controlled experiments, and (iii) the resistance conferred by RdlR to fipronil, an insecticide widely used on the island and reported to cross-react with RdlR. The results show a persistence of RdlR in Ae. albopictus natural populations at low frequencies. Among the measured life history traits, mortality in pre-imaginal stages, adults' survival as well as the proportion of egg-laying females were significantly affected in resistant mosquitoes. Finally, bioassays revealed resistance of RdlR mosquitoes to fipronil, suggesting that the use of fipronil in natura could select for the RdlR allele. This study shows that dieldrin resistance is persistent in natural mosquito populations likely as a result of combined effects between fitness costs associated with RdlR and selection exerted by cross-reacting environmental insecticides such as fipronil.
Collapse
Affiliation(s)
- Yann Gomard
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical) CNRS 9192, INSERM 1187, IRD 249, Université de La Réunion, île de La Réunion, France.
- Université de La Réunion, UMR PVBMT (Peuplements Végétaux et Bioagresseurs en Milieu Tropical), F-97410, Saint-Pierre, île de La Réunion, France.
| | - Haoues Alout
- INRAE, UMR 117 ASTRE, INRAE-CIRAD, F-34598, Montpellier, France
| | - Cyrille Lebon
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical) CNRS 9192, INSERM 1187, IRD 249, Université de La Réunion, île de La Réunion, France
| | - Anne Latreille
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical) CNRS 9192, INSERM 1187, IRD 249, Université de La Réunion, île de La Réunion, France
| | - Aude Benlali
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical) CNRS 9192, INSERM 1187, IRD 249, Université de La Réunion, île de La Réunion, France
| | - Patrick Mavingui
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical) CNRS 9192, INSERM 1187, IRD 249, Université de La Réunion, île de La Réunion, France
| | - Pablo Tortosa
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical) CNRS 9192, INSERM 1187, IRD 249, Université de La Réunion, île de La Réunion, France
| | - Célestine Atyame
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical) CNRS 9192, INSERM 1187, IRD 249, Université de La Réunion, île de La Réunion, France
| |
Collapse
|
14
|
Serrato IM, Moreno-Aguilera D, Caicedo PA, Orobio Y, Ocampo CB, Maestre-Serrano R, Peláez-Carvajal D, Ahumada ML. Vector competence of lambda-cyhalothrin resistant Aedes aegypti strains for dengue-2, Zika and chikungunya viruses in Colombia. PLoS One 2022; 17:e0276493. [PMID: 36282839 PMCID: PMC9595557 DOI: 10.1371/journal.pone.0276493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 10/07/2022] [Indexed: 11/18/2022] Open
Abstract
Aedes aegypti is the primary vector of dengue, Zika, and chikungunya viruses. Studies have shown that insecticide resistance affects vector competence (VC) of some mosquito species. This study evaluates the effect of resistance to lambda-cyhalothrin and kdr V1016I mutation genotypes on the VC of Ae. aegypti strains for DENV-2, ZIKV, and CHIKV. Three Ae. aegypti strains with gradual lambda-cyhalothrin resistance (susceptible, resistant, and highly resistant) were infected with DENV-2, ZIKV, and CHIKV. Individual mosquitoes were tested to detect virus infection in the abdomen and head-salivary glands, using RT-PCR, and genotypes for V1016I mutations using allele-specific PCR. Recorded VC variables were midgut infection rate (MIR), dissemination rate (DIR), and dissemination efficiency (DIE). Lambda-cyhalothrin resistance affects differentially VC variables for ZIKV, DENV-2, and CHIKV. For ZIKV, an apparent gradual increase in DIR and DIE with the increase in insecticide resistance was observed. For DENV-2 the MIR and DIE were higher in insecticide resistant strains. For CHIKV, only MIR could be evaluated, this variable was higher in insecticide resistance strains. The presence of kdr V1016I mutation on mosquito resistant strains did not affect VC variables for three study viruses.
Collapse
Affiliation(s)
- Idalba M. Serrato
- Grupo de Entomología, Instituto Nacional de Salud, Bogotá, D.C., Colombia
- Fundación Salutia, Bogotá, D.C., Colombia
| | - Diana Moreno-Aguilera
- Grupo de Entomología, Instituto Nacional de Salud, Bogotá, D.C., Colombia
- Fundación Salutia, Bogotá, D.C., Colombia
| | - Paola A. Caicedo
- Natural Science Faculty, Universidad Icesi, Cali, Valle del Cauca, Colombia
| | - Yenifer Orobio
- Epidemiology and Biostatistics Unit, Centro Internacional de Entrenamiento e Investigaciones Médicas-CIDEIM, Cali, Colombia
| | - Clara B. Ocampo
- Vector, Biology and Control Unit. Centro Internacional de Entrenamiento e Investigaciones Médicas-CIDEIM, Cali, Colombia
- Dirección de Vocaciones y Formación, Ministerio de Ciencia y Tecnología e Innovación, Minciencias, Bogotá, D.C., Colombia
| | - Ronald Maestre-Serrano
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla, Atlántico, Colombia
| | | | - Martha L. Ahumada
- Grupo de Entomología, Instituto Nacional de Salud, Bogotá, D.C., Colombia
- * E-mail:
| |
Collapse
|
15
|
Oke CE, Ingham VA, Walling CA, Reece SE. Vector control: agents of selection on malaria parasites? Trends Parasitol 2022; 38:890-903. [PMID: 35981937 DOI: 10.1016/j.pt.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/30/2022] [Accepted: 07/21/2022] [Indexed: 10/15/2022]
Abstract
Insect vectors are responsible for spreading many infectious diseases, yet interactions between pathogens/parasites and insect vectors remain poorly understood. Filling this knowledge gap matters because vectors are evolving in response to the deployment of vector control tools (VCTs). Yet, whilst the evolutionary responses of vectors to VCTs are being carefully monitored, the knock-on consequences for parasite evolution have been overlooked. By examining how mosquito responses to VCTs impact upon malaria parasite ecology, we derive a framework for predicting parasite responses. Understanding how VCTs affect the selection pressures imposed on parasites could help to mitigate against parasite evolution that leads to unfavourable epidemiological outcomes. Furthermore, anticipating parasite evolution will inform monitoring strategies for VCT programmes as well as uncovering novel VCT strategies.
Collapse
Affiliation(s)
- Catherine E Oke
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK.
| | - Victoria A Ingham
- Centre for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69210 Heidelberg, Germany
| | - Craig A Walling
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Sarah E Reece
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK; Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| |
Collapse
|
16
|
Medjigbodo AA, Djihinto OY, Salavi EBJ, Sonounameto EG, Abbey E, Djossou L, Djogbénou LS. Organophosphate Insecticide Exposure Impacts Reproductive Success in Insensitive Acetylcholinesterase Anopheles gambiae Mosquitoes. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.903654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Extensive use of insecticides has led to the selection of resistance alleles in malaria vectors threatening the control programs. Even if mosquitoes are not killed directly in the contact of insecticide-treated bed nets, their capacity to transmit malaria parasite could be decreased because of the consequences on their life-history traits after repeated exposure. The current work investigated the effects of organochlorine, carbamate, organophosphate, and pyrethroid insecticide exposure on the reproductive success in Anopheles gambiae s.s. Two Anopheles gambiae strains, AcerKis, KisKdr, were used. According to WHO recommendations, female mosquitoes of these resistant strains were exposed to discriminant doses of DDT, chlorpyriphos-methyl, bendiocarb, and permethrin insecticides. Surviving mosquitoes were then fed and allowed to lay eggs. Fecundity was assessed by examining the number of eggs per mosquito, the number of larvae per egg batch and larval hatching rates were used to evaluate the fertility. The data showed that AcerKis females surviving chlorpyriphos-methyl exposure significantly laid few eggs. No significant difference in the hatching rate was noticed in AcerKis females exposed to bendiocarb compared to their control. No significant effect on the fecundity and fertility was observed in KisKdr females exposed to permethrin. Our finding showed that organophosphate insecticides represented here by chlorpyriphos-methyl could hamper egg-laying in insensitive acetylcholinesterase An. gambiae female mosquitoes. This knowledge could help design alternative vector control strategies targeting fecundity and fertility in resistant malaria vectors.
Collapse
|
17
|
Ratnadass A, Martin T. Crop protection practices and risks associated with infectious tropical parasitic diseases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153633. [PMID: 35124028 DOI: 10.1016/j.scitotenv.2022.153633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Two recent literature reviews have shown that: i) agroecological crop protection (ACP) practices generally reduce risks of viral zoonoses, unlike conventional (agrochemical-based) practices which tend to increase them; ii) substitution-based crop protection (CP) practices (mainly biocontrol-based) could result in fewer health risks from bacterial infectious diseases. Here, we present an analysis of the scientific literature to determine to what extent the conclusions regarding viruses or bacteria can be extended to infectious diseases caused by protozoan or helminthic parasites. This analysis of cases of both vector-transmitted and water- or food-borne parasitic diseases, shows, in terms of reduction of health risks: i) an overall negative effect arising from the use of synthetic plant protection products; ii) the relevance of substitution CP practices not strictly under the ACP banner. On the other hand, the public and veterinary health issue of antiparasitic resistance is not affected by CP practices. The positive effects at the large spatio-temporal scales of ACP approaches remain valid, although to a slightly lesser extent than for bacterial diseases and viral zoonoses, in particular through biodiversity conservation which fosters natural regulations and control, preventing the undesirable effects of synthetic pesticides.
Collapse
Affiliation(s)
- Alain Ratnadass
- CIRAD, UPR HortSys, F-97455 Saint-Pierre, Réunion, France; HortSys, Univ Montpellier, CIRAD, Montpellier, France.
| | - Thibaud Martin
- HortSys, Univ Montpellier, CIRAD, Montpellier, France; CIRAD, UPR HortSys, Abidjan, Côte d'Ivoire
| |
Collapse
|
18
|
Lebon C, Alout H, Zafihita S, Dehecq JS, Weill M, Tortosa P, Atyame C. Spatio-Temporal Dynamics of a Dieldrin Resistance Gene in Aedes albopictus and Culex quinquefasciatus Populations From Reunion Island. JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:6582327. [PMID: 35526103 PMCID: PMC9079611 DOI: 10.1093/jisesa/ieac023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Indexed: 05/31/2023]
Abstract
The control of mosquito populations using insecticides is increasingly threatened by the spread of resistance mechanisms. Dieldrin resistance, conferred by point mutations in the Rdl gene encoding the γ-aminobutyric acid receptor, has been reported at high prevalence in mosquito populations in response to selective pressures. In this study, we monitored spatio-temporal dynamics of the resistance-conferring RdlR allele in Aedes (Stegomyia) albopictus (Skuse, 1895) and Culex (Culex) quinquefasciatus (Say, 1823) populations from Reunion Island. Specimens of both mosquito species were sampled over a 12-month period in three cities and in sites located at lower (<61 m) and higher (between 503 and 564 m) altitudes. Mosquitoes were genotyped using a molecular test detecting the alanine to serine substitution (A302S) in the Rdl gene. Overall, the RdlR frequencies were higher in Cx. quinquefasciatus than Ae. albopictus. For both mosquito species, the RdlR frequencies were significantly influenced by location and altitude with higher RdlR frequencies in the most urbanized areas and at lower altitudes. This study highlights environmental factors that influence the dynamics of insecticide resistance genes, which is critical for the management of insecticide resistance and the implementation of alternative and efficient vector control strategies.
Collapse
Affiliation(s)
- Cyrille Lebon
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical) CNRS 9192, INSERM 1187, IRD 249; 2 rue Maxime Rivière, 97490 Sainte Clotilde, Reunion Island, France
| | - Haoues Alout
- UMR 117 ASTRE, INRAE-CIRAD, Campus International de Baillarguet, 34398 Montpellier Cedex 5, France
| | - Stanislas Zafihita
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical) CNRS 9192, INSERM 1187, IRD 249; 2 rue Maxime Rivière, 97490 Sainte Clotilde, Reunion Island, France
| | - Jean-Sébastien Dehecq
- Service de lutte anti vectorielle, Agence Régionale de Santé-Océan Indien (ARS-OI), 97743 Saint-Denis Cedex 9, Reunion Island, France
| | - Mylène Weill
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, 34095 Montpellier Cedex 5, France
| | - Pablo Tortosa
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical) CNRS 9192, INSERM 1187, IRD 249; 2 rue Maxime Rivière, 97490 Sainte Clotilde, Reunion Island, France
| | - Célestine Atyame
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical) CNRS 9192, INSERM 1187, IRD 249; 2 rue Maxime Rivière, 97490 Sainte Clotilde, Reunion Island, France
| |
Collapse
|
19
|
Juache-Villagrana AE, Pando-Robles V, Garcia-Luna SM, Ponce-Garcia G, Fernandez-Salas I, Lopez-Monroy B, Rodriguez-Sanchez IP, Flores AE. Assessing the Impact of Insecticide Resistance on Vector Competence: A Review. INSECTS 2022; 13:377. [PMID: 35447819 PMCID: PMC9024519 DOI: 10.3390/insects13040377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 01/09/2023]
Abstract
The primary strategy to avoid adverse impacts from insect-mediated pathogen transmission is the chemical control of vector populations through insecticides; its continued use has led to insecticide resistance and unknown consequences on vector competence. This review aims to systematically analyze and synthesize the research on the influence of insecticide resistance (IR) on vector competence (VC). Thirty studies met the inclusion criteria. Twenty studies, conducted either in laboratory or field settings, described the influence of phenotypic insecticide resistance and mechanisms on VC in vectors of human pathogens. Seven studies showed the effect of exposure to insecticides on VC in vectors of human pathogens. Three studies reported the influence of phenotypic resistance and mechanisms on VC in crop pests. The evidence shows that IR could enhance, impair, or have no direct effect on VC in either field or laboratory-designed studies. Similar positive and negative trends are found in pest vectors in crops and studies of insecticide exposure and VC. Even though there is evidence that exposure to insecticides and IR can enhance VC, thus increasing the risk of pathogen transmission, more investigations are needed to confirm the observed patterns and what implications these factors could have in vector control programs.
Collapse
Affiliation(s)
- Alan E. Juache-Villagrana
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Av. Universidad s/n Cd. Universitaria, San Nicolas de los Garza 66455, Nuevo Leon, Mexico; (A.E.J.-V.); (S.M.G.-L.); (G.P.-G.); (I.F.-S.); (B.L.-M.); (I.P.R.-S.)
| | - Victoria Pando-Robles
- Centro de Investigacion Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Publica, Cuernavaca 62100, Morelos, Mexico;
| | - Selene M. Garcia-Luna
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Av. Universidad s/n Cd. Universitaria, San Nicolas de los Garza 66455, Nuevo Leon, Mexico; (A.E.J.-V.); (S.M.G.-L.); (G.P.-G.); (I.F.-S.); (B.L.-M.); (I.P.R.-S.)
| | - Gustavo Ponce-Garcia
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Av. Universidad s/n Cd. Universitaria, San Nicolas de los Garza 66455, Nuevo Leon, Mexico; (A.E.J.-V.); (S.M.G.-L.); (G.P.-G.); (I.F.-S.); (B.L.-M.); (I.P.R.-S.)
| | - Ildefonso Fernandez-Salas
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Av. Universidad s/n Cd. Universitaria, San Nicolas de los Garza 66455, Nuevo Leon, Mexico; (A.E.J.-V.); (S.M.G.-L.); (G.P.-G.); (I.F.-S.); (B.L.-M.); (I.P.R.-S.)
| | - Beatriz Lopez-Monroy
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Av. Universidad s/n Cd. Universitaria, San Nicolas de los Garza 66455, Nuevo Leon, Mexico; (A.E.J.-V.); (S.M.G.-L.); (G.P.-G.); (I.F.-S.); (B.L.-M.); (I.P.R.-S.)
| | - Iram P. Rodriguez-Sanchez
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Av. Universidad s/n Cd. Universitaria, San Nicolas de los Garza 66455, Nuevo Leon, Mexico; (A.E.J.-V.); (S.M.G.-L.); (G.P.-G.); (I.F.-S.); (B.L.-M.); (I.P.R.-S.)
| | - Adriana E. Flores
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Av. Universidad s/n Cd. Universitaria, San Nicolas de los Garza 66455, Nuevo Leon, Mexico; (A.E.J.-V.); (S.M.G.-L.); (G.P.-G.); (I.F.-S.); (B.L.-M.); (I.P.R.-S.)
| |
Collapse
|
20
|
Barreaux P, Koella JC, N'Guessan R, Thomas MB. Use of novel lab assays to examine the effect of pyrethroid-treated bed nets on blood-feeding success and longevity of highly insecticide-resistant Anopheles gambiae s.l. mosquitoes. Parasit Vectors 2022; 15:111. [PMID: 35346334 PMCID: PMC8962112 DOI: 10.1186/s13071-022-05220-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 02/24/2022] [Indexed: 11/28/2022] Open
Abstract
Background There is a pressing need to improve understanding of how insecticide resistance affects the functional performance of insecticide-treated nets (ITNs). Standard WHO insecticide resistance monitoring assays are designed for resistance surveillance and do not necessarily provide insight into how different frequencies, mechanisms or intensities of resistance affect the ability of ITNs to reduce malaria transmission. Methods The current study presents some novel laboratory-based assays that attempt to better simulate realistic exposure of mosquitoes to ITNs and to quantify impact of exposure not only on instantaneous mortality, but also on blood-feeding and longevity, two traits that are central to transmission. The assays evaluated the performance of a standard ITN (Permanet® 2.0; Vestergaard Frandsen), a ‘next generation’ combination ITN with a resistance-breaking synergist (Permanet® 3.0) and an untreated net (UTN), against field-derived Anopheles gambiae sensu lato mosquitoes from Côte d’Ivoire exhibiting a 1500-fold increase in pyrethroid resistance relative to a standard susceptible strain. Results The study revealed that the standard ITN induced negligible instantaneous mortality against the resistant mosquitoes, whereas the resistance-breaking net caused high mortality and a reduction in blood-feeding. However, both ITNs still impacted long-term survival relative to the UTN. The impact on longevity depended on feeding status, with blood-fed mosquitoes living longer than unfed mosquitoes following ITN exposure. Exposure to both ITNs also reduced the blood-feeding success, the time spent on the net and blood-feeding duration, relative to the untreated net. Conclusion Although a standard ITN did not have as substantial instantaneous impact as the resistance-breaking net, it still had significant impacts on traits important for transmission. These results highlight the benefit of improved bioefficacy assays that allow for realistic exposure and consider sub- or pre-lethal effects to help assess the functional significance of insecticide resistance. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05220-y.
Collapse
Affiliation(s)
- Priscille Barreaux
- Liverpool School of Tropical Medicine, Liverpool, UK. .,Pennsylvania State University, State College, PA, USA. .,University of Neuchâtel, Neuchâtel, Switzerland.
| | | | - Raphael N'Guessan
- London School of Tropical Medicine, London, UK.,Vector Control Product Evaluation Centre, Institute Pierre Richet, Bouaké, Côte d'Ivoire
| | - Matthew B Thomas
- Pennsylvania State University, State College, PA, USA.,University of York, York, UK
| |
Collapse
|
21
|
Medjigbodo AA, Djogbénou LS, Djihinto OY, Akoton RB, Abbey E, Kakossou RM, Sonounameto EG, Salavi EBJ, Djossou L, Badolo A. Putative pleiotropic effects of the knockdown resistance (L1014F) allele on the life-history traits of Anopheles gambiae. Malar J 2021; 20:480. [PMID: 34930272 PMCID: PMC8686585 DOI: 10.1186/s12936-021-04005-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/03/2021] [Indexed: 11/23/2022] Open
Abstract
Background Existing mechanisms of insecticide resistance are known to help the survival of mosquitoes following contact with chemical compounds, even though they could negatively affect the life-history traits of resistant malaria vectors. In West Africa, the knockdown resistance mechanism kdrR (L1014F) is the most common. However, little knowledge is available on its effects on mosquito life-history traits. The fitness effects associated with this knockdown resistance allele in Anopheles gambiae sensu stricto (s.s.) were investigated in an insecticide-free laboratory environment. Methods The life-history traits of Kisumu (susceptible) and KisKdr (kdr resistant) strains of An. gambiae s.s. were compared. Larval survivorship and pupation rate were assessed as well as fecundity and fertility of adult females. Female mosquitoes of both strains were directly blood fed through artificial membrane assays and then the blood-feeding success, blood volume and adult survivorship post-blood meal were assessed. Results The An. gambiae mosquitoes carrying the kdrR allele (KisKdr) laid a reduced number of eggs. The mean number of larvae in the susceptible strain Kisumu was three-fold overall higher than that seen in the KisKdr strain with a significant difference in hatching rates (81.89% in Kisumu vs 72.89% in KisKdr). The KisKdr larvae had a significant higher survivorship than that of Kisumu. The blood-feeding success was significantly higher in the resistant mosquitoes (84%) compared to the susceptible ones (34.75%). However, the mean blood volume was 1.36 µL/mg, 1.45 µL/mg and 1.68 µL/mg in Kisumu, homozygote and heterozygote KisKdr mosquitoes, respectively. After blood-feeding, the heterozygote KisKdr mosquitoes displayed highest survivorship when compared to that of Kisumu. Conclusions The presence of the knockdown resistance allele appears to impact the life-history traits, such as fecundity, fertility, larval survivorship, and blood-feeding behaviour in An. gambiae. These data could help to guide the implementation of more reliable strategies for the control of malaria vectors.
Collapse
Affiliation(s)
- Adandé A Medjigbodo
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, 01BP 526, Cotonou, Benin.,Laboratory of Fundamental and Applied Entomology, University Joseph Ki-Zerbo, BP 7021, Ouagadougou 03, Burkina Faso.,Regional Institute of Public Health/University of Abomey-Calavi, BP 384, Ouidah, Benin
| | - Luc S Djogbénou
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, 01BP 526, Cotonou, Benin. .,Regional Institute of Public Health/University of Abomey-Calavi, BP 384, Ouidah, Benin. .,Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | - Oswald Y Djihinto
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, 01BP 526, Cotonou, Benin.,Regional Institute of Public Health/University of Abomey-Calavi, BP 384, Ouidah, Benin
| | - Romaric B Akoton
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, 01BP 526, Cotonou, Benin
| | - Emmanuella Abbey
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, 01BP 526, Cotonou, Benin.,Regional Institute of Public Health/University of Abomey-Calavi, BP 384, Ouidah, Benin
| | - Rosaria M Kakossou
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, 01BP 526, Cotonou, Benin.,Regional Institute of Public Health/University of Abomey-Calavi, BP 384, Ouidah, Benin
| | - Eric G Sonounameto
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, 01BP 526, Cotonou, Benin.,Regional Institute of Public Health/University of Abomey-Calavi, BP 384, Ouidah, Benin
| | - Esther B J Salavi
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, 01BP 526, Cotonou, Benin.,Regional Institute of Public Health/University of Abomey-Calavi, BP 384, Ouidah, Benin
| | - Laurette Djossou
- Regional Institute of Public Health/University of Abomey-Calavi, BP 384, Ouidah, Benin
| | - Athanase Badolo
- Laboratory of Fundamental and Applied Entomology, University Joseph Ki-Zerbo, BP 7021, Ouagadougou 03, Burkina Faso
| |
Collapse
|
22
|
Wolie RZ, Koffi AA, Ahoua Alou LP, Sternberg ED, N'Nan-Alla O, Dahounto A, Yapo FHA, Kanh KMH, Camara S, Oumbouke WA, Tia IZ, Nguetta SPA, Thomas MB, NGuessan R. Evaluation of the interaction between insecticide resistance-associated genes and malaria transmission in Anopheles gambiae sensu lato in central Côte d'Ivoire. Parasit Vectors 2021; 14:581. [PMID: 34801086 PMCID: PMC8605510 DOI: 10.1186/s13071-021-05079-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/22/2021] [Indexed: 11/10/2022] Open
Abstract
Background There is evidence that the knockdown resistance gene (Kdr) L1014F and acetylcholinesterase-1 gene (Ace-1R) G119S mutations involved in pyrethroid and carbamate resistance in Anopheles gambiae influence malaria transmission in sub-Saharan Africa. This is likely due to changes in the behaviour, life history and vector competence and capacity of An. gambiae. In the present study, performed as part of a two-arm cluster randomized controlled trial evaluating the impact of household screening plus a novel insecticide delivery system (In2Care Eave Tubes), we investigated the distribution of insecticide target site mutations and their association with infection status in wild An. gambiae sensu lato (s.l.) populations. Methods Mosquitoes were captured in 40 villages around Bouaké by human landing catch from May 2017 to April 2019. Randomly selected samples of An. gambiae s.l. that were infected or not infected with Plasmodium sp. were identified to species and then genotyped for Kdr L1014F and Ace-1R G119S mutations using quantitative polymerase chain reaction assays. The frequencies of the two alleles were compared between Anopheles coluzzii and Anopheles gambiae and then between infected and uninfected groups for each species. Results The presence of An. gambiae (49%) and An. coluzzii (51%) was confirmed in Bouaké. Individuals of both species infected with Plasmodium parasites were found. Over the study period, the average frequency of the Kdr L1014F and Ace-1R G119S mutations did not vary significantly between study arms. However, the frequencies of the Kdr L1014F and Ace-1R G119S resistance alleles were significantly higher in An. gambiae than in An. coluzzii [odds ratio (95% confidence interval): 59.64 (30.81–131.63) for Kdr, and 2.79 (2.17–3.60) for Ace-1R]. For both species, there were no significant differences in Kdr L1014F or Ace-1R G119S genotypic and allelic frequency distributions between infected and uninfected specimens (P > 0.05). Conclusions Either alone or in combination, Kdr L1014F and Ace-1R G119S showed no significant association with Plasmodium infection in wild An. gambiae and An. coluzzii, demonstrating the similar competence of these species for Plasmodium transmission in Bouaké. Additional factors including behavioural and environmental ones that influence vector competence in natural populations, and those other than allele measurements (metabolic resistance factors) that contribute to resistance, should be considered when establishing the existence of a link between insecticide resistance and vector competence. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Rosine Z Wolie
- Unité de Recherche et de Pédagogie de Génétique, Université Félix Houphouët-Boigny, UFR Biosciences, Abidjan, Côte d'Ivoire. .,Vector Control Product Evaluation Centre, Institut Pierre Richet (VCPEC-IPR), Bouaké, Côte d'Ivoire. .,Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire.
| | - Alphonsine A Koffi
- Vector Control Product Evaluation Centre, Institut Pierre Richet (VCPEC-IPR), Bouaké, Côte d'Ivoire.,Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire
| | - Ludovic P Ahoua Alou
- Vector Control Product Evaluation Centre, Institut Pierre Richet (VCPEC-IPR), Bouaké, Côte d'Ivoire.,Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire
| | - Eleanore D Sternberg
- Department of Entomology, Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA.,Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Oulo N'Nan-Alla
- Unité de Recherche et de Pédagogie de Génétique, Université Félix Houphouët-Boigny, UFR Biosciences, Abidjan, Côte d'Ivoire
| | - Amal Dahounto
- Vector Control Product Evaluation Centre, Institut Pierre Richet (VCPEC-IPR), Bouaké, Côte d'Ivoire
| | - Florent H A Yapo
- Vector Control Product Evaluation Centre, Institut Pierre Richet (VCPEC-IPR), Bouaké, Côte d'Ivoire
| | - Kpahe M H Kanh
- Unité de Recherche et de Pédagogie de Génétique, Université Félix Houphouët-Boigny, UFR Biosciences, Abidjan, Côte d'Ivoire
| | - Soromane Camara
- Vector Control Product Evaluation Centre, Institut Pierre Richet (VCPEC-IPR), Bouaké, Côte d'Ivoire.,Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire
| | - Welbeck A Oumbouke
- Vector Control Product Evaluation Centre, Institut Pierre Richet (VCPEC-IPR), Bouaké, Côte d'Ivoire.,Innovative Vector Control Consortium, IVCC, Liverpool, UK
| | - Innocent Z Tia
- Vector Control Product Evaluation Centre, Institut Pierre Richet (VCPEC-IPR), Bouaké, Côte d'Ivoire.,Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire.,Université Alassane Ouattara, Bouaké, Côte d'Ivoire
| | - Simon-Pierre A Nguetta
- Unité de Recherche et de Pédagogie de Génétique, Université Félix Houphouët-Boigny, UFR Biosciences, Abidjan, Côte d'Ivoire
| | - Matthew B Thomas
- Department of Entomology, Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
| | - Raphael NGuessan
- Vector Control Product Evaluation Centre, Institut Pierre Richet (VCPEC-IPR), Bouaké, Côte d'Ivoire.,Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire.,Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
23
|
Overabundance of Asaia and Serratia Bacteria Is Associated with Deltamethrin Insecticide Susceptibility in Anopheles coluzzii from Agboville, Côte d'Ivoire. Microbiol Spectr 2021; 9:e0015721. [PMID: 34668745 PMCID: PMC8528120 DOI: 10.1128/spectrum.00157-21] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Insecticide resistance among mosquito species is now a pervasive phenomenon that threatens to jeopardize global malaria vector control efforts. Evidence of links between the mosquito microbiota and insecticide resistance is emerging, with significant enrichment of insecticide degrading bacteria and enzymes in resistant populations. Using 16S rRNA amplicon sequencing, we characterized and compared the microbiota of Anopheles coluzzii in relation to their deltamethrin resistance and exposure profiles. Comparisons between 2- and 3-day-old deltamethrin-resistant and -susceptible mosquitoes demonstrated significant differences in microbiota diversity. Ochrobactrum, Lysinibacillus, and Stenotrophomonas genera, each of which comprised insecticide-degrading species, were significantly enriched in resistant mosquitoes. Susceptible mosquitoes had a significant reduction in alpha diversity compared to resistant individuals, with Asaia and Serratia dominating microbial profiles. There was no significant difference in deltamethrin-exposed and -unexposed 5- to 6-day-old individuals, suggesting that insecticide exposure had minimal impact on microbial composition. Serratia and Asaia were also dominant in 5- to 6-day-old mosquitoes, which had reduced microbial diversity compared to 2- to 3-day-old mosquitoes. Our findings revealed significant alterations of Anopheles coluzzii microbiota associated with deltamethrin resistance, highlighting the potential for identification of novel microbial markers for insecticide resistance surveillance. qPCR detection of Serratia and Asaia was consistent with 16S rRNA sequencing, suggesting that population-level field screening of bacterial microbiota may be feasibly integrated into wider resistance monitoring, if reliable and reproducible markers associated with phenotype can be identified. IMPORTANCE Control of insecticide-resistant vector populations remains a significant challenge to global malaria control and while substantial progress has been made elucidating key target site mutations, overexpressed detoxification enzymes and alternate gene families, the contribution of the mosquito microbiota to phenotypic insecticide resistance has been largely overlooked. We focused on determining the effects of deltamethrin resistance intensity on Anopheles coluzzii microbiota and identifying any microbial taxa associated with phenotype. We demonstrated a significant reduction in microbial diversity between deltamethrin-resistant and -susceptible mosquitoes. Insecticide degrading bacterial species belonging to Ochrobactrum, Lysinibacillus, and Stenotrophomonas genera were significantly enriched in resistant mosquitoes, while Asaia and Serratia dominated microbial profiles of susceptible individuals. Our results revealed significant alterations of Anopheles coluzzii microbiota associated with deltamethrin resistance, highlighting the potential for identification of novel microbial markers for surveillance and opportunities for designing innovative control techniques to prevent the further evolution and spread of insecticide resistance.
Collapse
|
24
|
Andreazza F, Oliveira EE, Martins GF. Implications of Sublethal Insecticide Exposure and the Development of Resistance on Mosquito Physiology, Behavior, and Pathogen Transmission. INSECTS 2021; 12:insects12100917. [PMID: 34680686 PMCID: PMC8539869 DOI: 10.3390/insects12100917] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 12/31/2022]
Abstract
Simple Summary Mosquitoes are one of the greatest threats to human lives; they transmit a wide range of pathogens, including viruses that cause lethal diseases. Mosquitoes are found in both aquatic (as larvae or pupae) and terrestrial (as adults) environments during their complex life cycle. For decades, insecticides have been systematically used on mosquitoes with the aim to reduce their population. Little is known about how the stress resulting from the exposure of mosquitoes to insecticides impacts the tri-partite relationship between the mosquitoes, their vertebrate hosts, and the pathogens they transmit. In this work, we review existing experimental evidence to obtain a broad picture on the potential effects of the (sub)lethal exposure of hematophagous mosquitoes to different insecticides. We have focused on studies that have advanced our understanding of their physiological and behavioral responses (including the mechanisms behind insecticide resistance) and the spread of pathogens by these vectors—understudied but critically important issues for epidemiology. Studying these exposure-related effects is of paramount importance for predicting how they respond to insecticide exposure and whether this exposure makes them more or less likely to transmit pathogens. Abstract For many decades, insecticides have been used to control mosquito populations in their larval and adult stages. Although changes in the population genetics, physiology, and behavior of mosquitoes exposed to lethal and sublethal doses of insecticides are expected, the relationships between these changes and their abilities to transmit pathogens remain unclear. Thus, we conducted a comprehensive review on the sublethal effects of insecticides and their contributions to insecticide resistance in mosquitoes, with the main focus on pyrethroids. We discuss the direct and acute effects of sublethal concentrations on individuals and populations, the changes in population genetics caused by the selection for resistance after insecticide exposure, and the major mechanisms underlying such resistance. Sublethal exposures negatively impact the individual’s performance by affecting their physiology and behavior and leaving them at a disadvantage when compared to unexposed organisms. How these sublethal effects could change mosquito population sizes and diversity so that pathogen transmission risks can be affected is less clear. Furthermore, despite the beneficial and acute aspects of lethality, exposure to higher insecticide concentrations clearly impacts the population genetics by selecting resistant individuals, which may bring further and complex interactions for mosquitoes, vertebrate hosts, and pathogens. Finally, we raise several hypotheses concerning how the here revised impacts of insecticides on mosquitoes could interplay with vector-mediated pathogens’ transmission.
Collapse
Affiliation(s)
- Felipe Andreazza
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil; (F.A.); (E.E.O.)
| | - Eugênio E. Oliveira
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil; (F.A.); (E.E.O.)
| | - Gustavo Ferreira Martins
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
- Correspondence:
| |
Collapse
|
25
|
Bohounton RB, Djogbénou LS, Djihinto OY, Dedome OSL, Sovegnon PM, Barea B, Adomou A, Villeneuve P, Tchobo FP. Chemical composition and the insecticidal activity of Aeollanthus pubescens leaf essential oil against Anopheles gambiae sensu stricto. Parasit Vectors 2021; 14:518. [PMID: 34620224 PMCID: PMC8499547 DOI: 10.1186/s13071-021-05012-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The excessive use of synthetic insecticides is responsible for many cases of resistance in insects. Therefore, the use of natural molecules of ecological interest with insecticidal properties is an alternative approach to the use of synthetic insecticides. The aim of this study is to investigating the larvicidal and adulticidal activity and the chemical composition of the essential oil of Aeollanthus pubescens on the major malaria vector, Anopheles gambiae. METHODS Three reference strains of Anopheles gambiae sensu stricto (Kisumu, Kiskdr and Acerkis) were used in this study. The leaves of A. pubescens were collected in southern Benin. The standard World Health Organisation (WHO) guidelines for larvicide evaluation were used, and the chemical composition of the essential oil was analysed by gas chromatography coupled to mass spectrometry. Adult mosquitoes of each strain were exposed to pieces of net coated with the essential oil for 3 min using the WHO cone bioassay method. Probit regression analysis was used to determine the concentrations that would kill 50 and 95% of each test population (LC50, LC95) and the knockdown time for 50 and 95% of each test population (KDT50, and KDT95). The difference between the mortality-dose regressions for the different strains was analysed using the likelihood ratio test (LRT). The log-rank test was performed to evaluate the difference in survival between the strains. RESULTS A total of 14 components were identified, accounting for 98.3% of total oil content. The major components were carvacrol (51.1%), thymyle acetate (14.0%) and ɣ-terpinene (10.6%). The essential oil showed larvicidal properties on the Kisumu, Acerkis and Kiskdr strains, with LC50 of 29.6, 22.9 and 28.4 ppm, respectively. With pieces of netting treated at 165 µg/cm2, the KDT50 of both Acerkis (1.71 s; Z = 3.34, P < 0.001) and Kiskdr (2.67 s; Z = 3.49, P < 0.001) individuals were significantly lower than that of Kisumu (3.8 s). The lifespan of the three mosquito strains decreased to 1 day for Kisumu (χ2 = 99, df = 1, P < 0.001), 2 days for Acerkis (χ2 = 117, df = 1, P < 0.001) and 3 days for Kiskdr (χ2 = 96.9, df = 1, P < 0.001). CONCLUSION Our findings show that A. pubescens essential oil has larvicide and adulticide properties against the malaria vector An. gambiae sensu stricto, suggesting that this essential oil may be a potential candidate for the control of the resistant malaria-transmitting vectors.
Collapse
Affiliation(s)
- Roméo Barnabé Bohounton
- Laboratory of Study and Research of Applied Chemistry, Polytechnic School of Abomey-Calavi, Cotonou, Benin
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey Calavi, Abomey-Calavi, Benin
| | - Luc Salako Djogbénou
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey Calavi, Abomey-Calavi, Benin
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | | | | | - Pierre Marie Sovegnon
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey Calavi, Abomey-Calavi, Benin
| | | | - Aristide Adomou
- Laboratoire de Botanique Et Écologie Végétale (LaBEV), Faculté Des Sciences Et Techniques (FAST), University of Abomey-Calavi, Cotonou, Benin
| | | | - Fidèle Paul Tchobo
- Laboratory of Study and Research of Applied Chemistry, Polytechnic School of Abomey-Calavi, Cotonou, Benin
| |
Collapse
|
26
|
Namias A, Jobe NB, Paaijmans KP, Huijben S. The need for practical insecticide-resistance guidelines to effectively inform mosquito-borne disease control programs. eLife 2021; 10:e65655. [PMID: 34355693 PMCID: PMC8346280 DOI: 10.7554/elife.65655] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Monitoring local mosquito populations for insecticide resistance is critical for effective vector-borne disease control. However, widely used phenotypic assays, which are designed to monitor the emergence and spread of insecticide resistance (technical resistance), do not translate well to the efficacy of vector control products to suppress mosquito numbers in the field (practical resistance). This is because standard testing conditions such as environmental conditions, exposure dose, and type of substrate differ dramatically from those experienced by mosquitoes under field conditions. In addition, field mosquitoes have considerably different physiological characteristics such as age and blood-feeding status. Beyond this, indirect impacts of insecticide resistance and/or exposure on mosquito longevity, pathogen development, host-seeking behavior, and blood-feeding success impact disease transmission. Given the limited number of active ingredients currently available and the observed discordance between resistance and disease transmission, we conclude that additional testing guidelines are needed to determine practical resistance-the efficacy of vector control tools under relevant local conditions- in order to obtain programmatic impact.
Collapse
Affiliation(s)
- Alice Namias
- Département de Biologie, Ecole Normale Supérieure, PSL Research University, Paris, France
- Institut des Sciences de l'Evolution de Montpellier (ISEM), Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Ndey Bassin Jobe
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Life Sciences C, Tempe, United States
| | - Krijn Petrus Paaijmans
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Life Sciences C, Tempe, United States
- The Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Biodesign Institute, Tempe, United States
- ISGlobal, Carrer del Rosselló, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Distrito da Manhiça, Mozambique
| | - Silvie Huijben
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Life Sciences C, Tempe, United States
| |
Collapse
|
27
|
Parker-Crockett C, Connelly CR, Siegfried B, Alto B. Influence of Pyrethroid Resistance on Vector Competency for Zika Virus by Aedes aegypti (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1908-1916. [PMID: 33724374 DOI: 10.1093/jme/tjab035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Indexed: 06/12/2023]
Abstract
The vector competence of mosquitoes for pathogens has been shown to be influenced by the status of insecticide resistance in the mosquito population. However, to date, only two studies has explored the impact of insecticide resistance on arbovirus transmission. The global and widespread use of pyrethroids has led to the development of insecticide resistance in many mosquito species, including Aedes aegypti (Linnaeus) (Diptera: Culicidae), the primary vector of Zika virus. Strains of Ae. aegypti that were genetically similar, but responded differently to pyrethroid exposure, were developed using backcrossing techniques. These populations were orally infected with Zika virus and susceptibility to infection, disseminated infection, and transmission potential were evaluated. Analyses revealed differences in susceptibility to infection and disseminated infection between the pyrethroid susceptible and resistant strains of Ae. aegypti during the infection period. Here, we identify an additional challenge to that of widespread pyrethroid resistance. Specifically, resistance is associated with altered phenotypic traits that influence susceptibility to arbovirus infection and progression of infection in the mosquito, factors which ultimately influence risk of arbovirus transmission. These findings support the need to 1) consider insecticide resistance status during times of arbovirus transmission and 2) to implement insecticide resistance management/ mitigation strategies in vector control programs.
Collapse
Affiliation(s)
- Casey Parker-Crockett
- Institute of Food and Agricultural Sciences, Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL, USA
| | | | - Blair Siegfried
- Institute of Food and Agricultural Sciences, Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| | - Barry Alto
- Institute of Food and Agricultural Sciences, Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL, USA
| |
Collapse
|
28
|
CRISPR/Cas9 modified An. gambiae carrying kdr mutation L1014F functionally validate its contribution in insecticide resistance and combined effect with metabolic enzymes. PLoS Genet 2021; 17:e1009556. [PMID: 34228718 PMCID: PMC8284791 DOI: 10.1371/journal.pgen.1009556] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/16/2021] [Accepted: 06/08/2021] [Indexed: 11/24/2022] Open
Abstract
Insecticide resistance in Anopheles mosquitoes is a major obstacle in maintaining the momentum in reducing the malaria burden; mitigating strategies require improved understanding of the underlying mechanisms. Mutations in the target site of insecticides (the voltage gated sodium channel for the most widely used pyrethroid class) and over-expression of detoxification enzymes are commonly reported, but their relative contribution to phenotypic resistance remain poorly understood. Here we present a genome editing pipeline to introduce single nucleotide polymorphisms in An. gambiae which we have used to study the effect of the classical kdr mutation L1014F (L995F based on An. gambiae numbering), one of the most widely distributed resistance alleles. Introduction of 1014F in an otherwise fully susceptible genetic background increased levels of resistance to all tested pyrethroids and DDT ranging from 9.9-fold for permethrin to >24-fold for DDT. The introduction of the 1014F allele was sufficient to reduce mortality of mosquitoes after exposure to deltamethrin treated bednets, even as the only resistance mechanism present. When 1014F was combined with over-expression of glutathione transferase Gste2, resistance to permethrin increased further demonstrating the critical combined effect between target site resistance and detoxification enzymes in vivo. We also show that mosquitoes carrying the 1014F allele in homozygosity showed fitness disadvantages including increased mortality at the larval stage and a reduction in fecundity and adult longevity, which can have consequences for the strength of selection that will apply to this allele in the field. Escalation of pyrethroid resistance in Anopheles mosquitoes threatens to reduce the effectiveness of our most important tools in malaria control. Studying the mechanisms underlying insecticide resistance is critical to design mitigation strategies. Here, using genome modified mosquitoes, we functionally characterize the most prevalent mutation in resistant mosquitoes, showing that it confers substantial levels of resistance to all tested pyrethroids and undermines the performance of pyrethroid-treated nets. Furthermore, we show that combining this mutation with elevated levels of a detoxification enzyme further increases resistance. The pipeline we have developed provides a robust approach to quantifying the contribution of different combinations of resistance mechanisms to the overall phenotype, providing the missing link between resistance monitoring and predictions of resistance impact.
Collapse
|
29
|
Medjigbodo AA, Sonounameto EG, Djihinto OY, Abbey E, Salavi EB, Djossou L, Badolo A, Djogbénou LS. Interplay Between Oxytetracycline and the Homozygote kdr (L1014F) Resistance Genotype on Fecundity in Anopheles gambiae (Diptera: Culicidae) Mosquitoes. JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:13. [PMID: 34379759 PMCID: PMC8356962 DOI: 10.1093/jisesa/ieab056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Indexed: 06/13/2023]
Abstract
The insecticide resistance in Anopheles gambiae mosquitoes has remained the major threat for vector control programs but the fitness effects conferred by these mechanisms are poorly understood. To fill this knowledge gap, the present study aimed at testing the hypothesis that antibiotic oxytetracycline could have an interaction with insecticide resistance genotypes and consequently inhibit the fecundity in An. gambiae. Four strains of An. gambiae: Kisumu (susceptible), KisKdr (kdr (L1014F) resistant), AcerKis (ace-1 (G119S) resistant) and AcerKdrKis (both kdr (L1014F) and ace-1 (G119S) resistant) were used in this study. The different strains were allowed to bloodfeed on a rabbit previously treated with antibiotic oxytetracycline at a concentration of 39·10-5 M. Three days later, ovarian follicles were dissected from individual mosquito ovaries into physiological saline solution (0.9% NaCl) under a stereomicroscope and the eggs were counted. Fecundity was substantially lower in oxytetracycline-exposed KisKdr females when compared to that of the untreated individuals and oxytetracycline-exposed Kisumu females. The exposed AcerKis females displayed an increased fecundity compared to their nontreated counterparts whereas they had reduced fecundity compared to that of oxytetracycline-exposed Kisumu females. There was no substantial difference between the fecundity in the treated and untreated AcerKdrKis females. The oxytetracycline-exposed AcerKdrKis mosquitoes had an increased fecundity compared to that of the exposed Kisumu females. Our data indicate an indirect effect of oxytetracycline in reducing fecundity of An. gambiae mosquitoes carrying kdrR (L1014F) genotype. These findings could be useful for designing new integrated approaches for malaria vector control in endemic countries.
Collapse
Affiliation(s)
- Adandé A Medjigbodo
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, 01BP 526, Cotonou, Benin
- Laboratory of Fundamental and Applied Entomology, University Joseph KI-ZERBO, BP 7021, Ouagadougou 03, Burkina Faso, West Africa
| | - Eric G Sonounameto
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, 01BP 526, Cotonou, Benin
| | - Oswald Y Djihinto
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, 01BP 526, Cotonou, Benin
| | - Emmanuella Abbey
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, 01BP 526, Cotonou, Benin
| | - Esther B Salavi
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, 01BP 526, Cotonou, Benin
| | - Laurette Djossou
- Regional Institute of Public Health, University of Abomey-Calavi, BP 384, Ouidah, Benin
| | - Athanase Badolo
- Laboratory of Fundamental and Applied Entomology, University Joseph KI-ZERBO, BP 7021, Ouagadougou 03, Burkina Faso, West Africa
| | - Luc S Djogbénou
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, 01BP 526, Cotonou, Benin
- Regional Institute of Public Health, University of Abomey-Calavi, BP 384, Ouidah, Benin
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| |
Collapse
|
30
|
Osoro JK, Machani MG, Ochomo E, Wanjala C, Omukunda E, Munga S, Githeko AK, Yan G, Afrane YA. Insecticide resistance exerts significant fitness costs in immature stages of Anopheles gambiae in western Kenya. Malar J 2021; 20:259. [PMID: 34107949 PMCID: PMC8188659 DOI: 10.1186/s12936-021-03798-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 06/01/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Despite increasing documentation of insecticide resistance in malaria vectors against public health insecticides in sub-Saharan Africa, there is a paucity of information on the potential fitness costs of pyrethroid resistance in malaria vectors, which is important in improving the current resistant management strategies. This study aimed to assess the fitness cost effects of insecticide resistance on the development and survival of immature Anopheles gambiae from western Kenya. METHODS Two-hour old, first instar larvae (L1) were introduced and raised in basins containing soil and rainwater in a semi-field set-up. Each day the number of surviving individuals per larval stage was counted and their stage of development were recorded until they emerged as adults. The larval life-history trait parameters measured include mean larval development time, daily survival and pupal emergence. Pyrethroid-resistant colony of An. gambiae sensu stricto and susceptible colony originating from the same site and with the same genetic background were used. Kisumu laboratory susceptible colony was used as a reference. RESULTS The resistant colony had a significantly longer larval development time through the developmental stages than the susceptible colony. The resistant colony took an average of 2 days longer to develop from first instar (L1) to fourth instar (L4) (8.8 ± 0.2 days) compared to the susceptible colony (6.6 ± 0.2 days). The development time from first instar to pupa formation was significantly longer by 3 days in the resistant colony (10.28 ± 0.3 days) than in susceptible colony (7.5 ± 0.2 days). The time from egg hatching to adult emergence was significantly longer for the resistant colony (12.1 ± 0.3 days) than the susceptible colony (9.6 ± 0.2 days). The pupation rate (80%; 95% (CI: 77.5-83.6) vs 83.5%; 95% (CI: 80.6-86.3)) and adult emergence rate (86.3% vs 92.8%) did not differ between the resistant and susceptible colonies, respectively. The sex ratio of the females to males for the resistant (1:1.2) and susceptible colonies (1:1.07) was significantly different. CONCLUSION The study showed that pyrethroid resistance in An. gambiae had a fitness cost on their pre-imaginal development time and survival. Insecticide resistance delayed the development and reduced the survivorship of An. gambiae larvae. The study findings are important in understanding the fitness cost of insecticide resistance vectors that could contribute to shaping resistant management strategies.
Collapse
Affiliation(s)
- Joyce K Osoro
- Entomology Section, Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
- Department of Medical Laboratory Sciences, Masinde Muliro University of Science and Technology, Kakamega, Kenya
| | - Maxwell G Machani
- Entomology Section, Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Eric Ochomo
- Entomology Section, Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Christine Wanjala
- Department of Medical Laboratory Sciences, Masinde Muliro University of Science and Technology, Kakamega, Kenya
| | - Elizabeth Omukunda
- Department of Medical Laboratory Sciences, Masinde Muliro University of Science and Technology, Kakamega, Kenya
| | - Stephen Munga
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Andrew K Githeko
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California, Irvine, CA, 92697, USA
| | - Yaw A Afrane
- Department of Medical Microbiology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana.
| |
Collapse
|
31
|
Perrier S, Moreau E, Deshayes C, El-Adouzi M, Goven D, Chandre F, Lapied B. Compensatory mechanisms in resistant Anopheles gambiae AcerKis and KdrKis neurons modulate insecticide-based mosquito control. Commun Biol 2021; 4:665. [PMID: 34079061 PMCID: PMC8172894 DOI: 10.1038/s42003-021-02192-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/06/2021] [Indexed: 02/04/2023] Open
Abstract
In the malaria vector Anopheles gambiae, two point mutations in the acetylcholinesterase (ace-1R) and the sodium channel (kdrR) genes confer resistance to organophosphate/carbamate and pyrethroid insecticides, respectively. The mechanisms of compensation that recover the functional alterations associated with these mutations and their role in the modulation of insecticide efficacy are unknown. Using multidisciplinary approaches adapted to neurons isolated from resistant Anopheles gambiae AcerKis and KdrKis strains together with larval bioassays, we demonstrate that nAChRs, and the intracellular calcium concentration represent the key components of an adaptation strategy ensuring neuronal functions maintenance. In AcerKis neurons, the increased effect of acetylcholine related to the reduced acetylcholinesterase activity is compensated by expressing higher density of nAChRs permeable to calcium. In KdrKis neurons, changes in the biophysical properties of the L1014F mutant sodium channel, leading to enhance overlap between activation and inactivation relationships, diminish the resting membrane potential and reduce the fraction of calcium channels available involved in acetylcholine release. Together with the lower intracellular basal calcium concentration observed, these factors increase nAChRs sensitivity to maintain the effect of low concentration of acetylcholine. These results explain the opposite effects of the insecticide clothianidin observed in AcerKis and KdrKis neurons in vitro and in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | - Fabrice Chandre
- MIVEGEC, UMR IRD 224-CNRS 5290-Université de Montpellier, 911 avenue Agropolis, Montpellier, Cedex 05, France
| | - Bruno Lapied
- Univ Angers, INRAE, SIFCIR, SFR QUASAV, Angers, France.
| |
Collapse
|
32
|
Impact of deltamethrin-resistance in Aedes albopictus on its fitness cost and vector competence. PLoS Negl Trop Dis 2021; 15:e0009391. [PMID: 33905415 PMCID: PMC8104426 DOI: 10.1371/journal.pntd.0009391] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/07/2021] [Accepted: 04/15/2021] [Indexed: 11/19/2022] Open
Abstract
Background Aedes albopictus is one of the most invasive species in the world as well as the important vector for mosquito-borne diseases such as dengue fever, chikungunya fever and zika virus disease. Chemical control of mosquitoes is an effective method to control mosquito-borne diseases, however, the wide and improper application of insecticides for vector control has led to serious resistance problems. At present, there have been many reports on the resistance to pyrethroid insecticides in vector mosquitoes including deltamethrin to Aedes albopictus. However, the fitness cost and vector competence of deltamethrin resistant Aedes albopictus remain unknown. To understand the impact of insecticide resistant mosquito is of great significance for the prevention and control mosquitoes and mosquito-borne diseases. Methodology/Principal findings A laboratory resistant strain (Lab-R) of Aedes albopictus was established by deltamethrin insecticide selecting from the laboratory susceptible strain (Lab-S). The life table between the two strains were comparatively analyzed. The average development time of Lab-R and Lab-S in larvae was 9.7 days and 8.2 days (P < 0.005), and in pupae was 2.0 days and 1.8 days respectively (P > 0.05), indicating that deltamethrin resistance prolongs the larval development time of resistant mosquitoes. The average survival time of resistant adults was significantly shorter than that of susceptible adults, while the body weight of resistant female adults was significantly higher than that of the susceptible females. We also compared the vector competence for dengue virus type-2 (DENV-2) between the two strains via RT-qPCR. Considering the results of infection rate (IR) and virus load, there was no difference between the two strains during the early period of infection (4, 7, 10 day post infection (dpi)). However, in the later period of infection (14 dpi), IR and virus load in heads, salivary glands and ovaries of the resistant mosquitoes were significantly lower than those of the susceptible strain (IR of heads, salivary glands and ovaries: P < 0.05; virus load in heads and salivary glands: P < 0.05; virus load in ovaries: P < 0.001). And then, fourteen days after the DENV-2-infectious blood meal, females of the susceptible and resistant strains were allow to bite 5-day-old suckling mice. Both stains of mosquito can transmit DENV-2 to mice, but the onset of viremia was later in the mice biting by resistant group as well as lower virus copies in serum and brains, suggesting that the horizontal transmission of the resistant strain is lower than the susceptible strain. Meanwhile, we also detected IR of egg pools of the two strains on 14 dpi and found that the resistant strain were less capable of vertical transmission than susceptible mosquitoes. In addition, the average survival time of the resistant females infected with DENV-2 was 16 days, which was the shortest among the four groups of female mosquitoes, suggesting that deltamethrin resistance would shorten the life span of female Aedes albopictus infected with DENV-2. Conclusions/Significance As Aedes albopictus developing high resistance to deltamethrin, the resistance prolonged the growth and development of larvae, shorten the life span of adults, as well as reduced the vector competence of resistant Aedes albopictus for DENV-2. It can be concluded that the resistance to deltamethrin in Aedes albopictus is a double-edged sword, which not only endow the mosquito survive under the pressure of insecticide, but also increase the fitness cost and decrease its vector competence. However, Aedes albopictus resistant to deltamethrin can still complete the external incubation period and transmit dengue virus, which remains a potential vector for dengue virus transmission and becomes a threat to public health. Therefore, we should pay high attention for the problem of insecticide resistance so that to better prevent and control mosquito-borne diseases. Worldwide invasion and expansion of Aedes albopictus, the main vector of dengue, chikungunya, and Zika viruses, has become a serious concern in global public health. With the large use of insecticides, especially the most commonly used pyrethroid insecticides, the emergence and development of resistance in Aedes albopictus present vector control challenges. However, it is not clear whether the resistance would affect the fitness cost and vector competence of Aedes albopictus. In this study, a laboratory resistant strain of Aedes albopictus was established by selecting the susceptible strain of Aedes albopictus with deltamethrin. Comparing the resistant strain with the susceptible strain, we found that deltamethrin resistance increased the fitness cost and reduced the vector competence of DENV-2 in Aedes albopictus. These latest findings shared the light for dengue disease prevention and vector control strategies.
Collapse
|
33
|
Connolly JB, Mumford JD, Fuchs S, Turner G, Beech C, North AR, Burt A. Systematic identification of plausible pathways to potential harm via problem formulation for investigational releases of a population suppression gene drive to control the human malaria vector Anopheles gambiae in West Africa. Malar J 2021; 20:170. [PMID: 33781254 PMCID: PMC8006393 DOI: 10.1186/s12936-021-03674-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Population suppression gene drive has been proposed as a strategy for malaria vector control. A CRISPR-Cas9-based transgene homing at the doublesex locus (dsxFCRISPRh) has recently been shown to increase rapidly in frequency in, and suppress, caged laboratory populations of the malaria mosquito vector Anopheles gambiae. Here, problem formulation, an initial step in environmental risk assessment (ERA), was performed for simulated field releases of the dsxFCRISPRh transgene in West Africa. METHODS Building on consultative workshops in Africa that previously identified relevant environmental and health protection goals for ERA of gene drive in malaria vector control, 8 potentially harmful effects from these simulated releases were identified. These were stratified into 46 plausible pathways describing the causal chain of events that would be required for potential harms to occur. Risk hypotheses to interrogate critical steps in each pathway, and an analysis plan involving experiments, modelling and literature review to test each of those risk hypotheses, were developed. RESULTS Most potential harms involved increased human (n = 13) or animal (n = 13) disease transmission, emphasizing the importance to subsequent stages of ERA of data on vectorial capacity comparing transgenics to non-transgenics. Although some of the pathways (n = 14) were based on known anatomical alterations in dsxFCRISPRh homozygotes, many could also be applicable to field releases of a range of other transgenic strains of mosquito (n = 18). In addition to population suppression of target organisms being an accepted outcome for existing vector control programmes, these investigations also revealed that the efficacy of population suppression caused by the dsxFCRISPRh transgene should itself directly affect most pathways (n = 35). CONCLUSIONS Modelling will play an essential role in subsequent stages of ERA by clarifying the dynamics of this relationship between population suppression and reduction in exposure to specific potential harms. This analysis represents a comprehensive identification of plausible pathways to potential harm using problem formulation for a specific gene drive transgene and organism, and a transparent communication tool that could inform future regulatory studies, guide subsequent stages of ERA, and stimulate further, broader engagement on the use of population suppression gene drive to control malaria vectors in West Africa.
Collapse
Affiliation(s)
- John B Connolly
- Department of Life Sciences, Imperial College London, London, UK.
| | - John D Mumford
- Centre for Environmental Policy, Imperial College London, London, UK
| | - Silke Fuchs
- Department of Life Sciences, Imperial College London, London, UK
| | - Geoff Turner
- Department of Life Sciences, Imperial College London, London, UK
| | | | - Ace R North
- Department of Zoology, University of Oxford, Oxford, UK
| | - Austin Burt
- Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
34
|
Medjigbodo AA, Djogbenou LS, Koumba AA, Djossou L, Badolo A, Adoha CJ, Ketoh GK, Mavoungou JF. Phenotypic Insecticide Resistance in Anopheles gambiae (Diptera: Culicidae): Specific Characterization of Underlying Resistance Mechanisms Still Matters. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:730-738. [PMID: 33043968 PMCID: PMC7954100 DOI: 10.1093/jme/tjaa195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Indexed: 06/11/2023]
Abstract
An effective control of malaria vectors requires an extensive knowledge of mechanisms underlying the resistance-phenotypes developed by these vectors against insecticides. We investigated Anopheles gambiae mosquitoes from Benin and Togo for their intensity of insecticide resistance and we discussed the involvement of genotyped mechanisms in the resistance-phenotypes observed. Three- to five-day-old adult mosquitoes emerged from field and laboratory An. gambiae larvae were assayed using WHO tube intensity tests against various doses of deltamethrin: 1× (0.05%); 2× (0.1%); 5× (0.25%); 7.5× (0.375%) and those of pirimiphos-methyl: 0.5× (0.125%); 1× (0.25%). Members of An. gambiae complex were screened in field populations using polymerase chain reaction (PCR) assays. The presence of kdrR(1014F/1014S) and ace-1R(119S) mutations was also investigated using TaqMan and PCR-RFLP techniques, respectively. Anopheles gambiae from field were very resistant to deltamethrin, whereas KisKdr and AcerKdrKis strains displayed 100% mortality rates at 2× the diagnostic dose. In contrast, the field mosquitoes displayed a low resistance-intensity against 1× the diagnostic dose of pirimiphos-methyl, whereas AcerKis and AcerKdrKis strains showed susceptibility at 0.5× the diagnostic dose. Anopheles gambiae s.s., Anopheles coluzzii, and Anopheles arabiensis were identified. Allelic frequencies of kdrR (1014F) and ace-1R (119S) mutations in the field populations varied from 0.65 to 1 and 0 to 0.84, respectively. The field An. gambiae displayed high-resistance levels against deltamethrin and pirimiphos-methyl when compared with those of the laboratory An. gambiae-resistant strains. These results exhibit the complexity of underlying insecticide resistance mechanisms in these field malaria vectors.
Collapse
Affiliation(s)
- Adandé A Medjigbodo
- Laboratory of Infectious Vector-Borne Diseases, Regional Institute of Public Health/University of Abomey-Calavi, Cotonou, Benin
- Laboratory of Fundamental and Applied Entomology, University Joseph KI-ZERBO, BP, Burkina Faso, West Africa
| | - Luc S Djogbenou
- Laboratory of Infectious Vector-Borne Diseases, Regional Institute of Public Health/University of Abomey-Calavi, Cotonou, Benin
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - Aubin A Koumba
- Laboratory of Infectious Vector-Borne Diseases, Regional Institute of Public Health/University of Abomey-Calavi, Cotonou, Benin
- University of Science and Technology of Masuku (USTM), BP, Franceville, Gabon
| | - Laurette Djossou
- Laboratory of Infectious Vector-Borne Diseases, Regional Institute of Public Health/University of Abomey-Calavi, Cotonou, Benin
| | - Athanase Badolo
- Laboratory of Fundamental and Applied Entomology, University Joseph KI-ZERBO, BP, Burkina Faso, West Africa
| | - Constantin J Adoha
- Laboratory of Infectious Vector-Borne Diseases, Regional Institute of Public Health/University of Abomey-Calavi, Cotonou, Benin
| | | | - Jacques F Mavoungou
- University of Science and Technology of Masuku (USTM), BP, Franceville, Gabon
| |
Collapse
|
35
|
Chen TY, Smartt CT, Shin D. Permethrin Resistance in Aedes aegypti Affects Aspects of Vectorial Capacity. INSECTS 2021; 12:71. [PMID: 33466960 PMCID: PMC7830706 DOI: 10.3390/insects12010071] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 01/19/2023]
Abstract
Aedes aegypti, as one of the vectors transmitting several arboviruses, is the main target in mosquito control programs. Permethrin is used to control mosquitoes and Aedes aegypti get exposed due to its overuse and are now resistant. The increasing percentage of permethrin resistant Aedes aegypti has become an important issue around the world and the potential influence on vectorial capacity needs to be studied. Here we selected a permethrin resistant (p-s) Aedes aegypti population from a wild Florida population and confirmed the resistance ratio to its parental population. We used allele-specific PCR genotyping of the V1016I and F1534C sites in the sodium channel gene to map mutations responsible for the resistance. Two important factors, survival rate and vector competence, that impact vectorial capacity were checked. Results indicated the p-s population had 20 times more resistance to permethrin based on LD50 compared to the parental population. In the genotyping study, the p-s population had more homozygous mutations in both mutant sites of the sodium channel gene. The p-s adults survived longer and had a higher dissemination rate for dengue virus than the parental population. These results suggest that highly permethrin resistant Aedes aegypti populations might affect the vectorial capacity, moreover, resistance increased the survival time and vector competence, which should be of concern in areas where permethrin is applied.
Collapse
Affiliation(s)
| | - Chelsea T. Smartt
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, University of Florida, Vero Beach, FL 32962, USA;
| | - Dongyoung Shin
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, University of Florida, Vero Beach, FL 32962, USA;
| |
Collapse
|
36
|
Su T, Thieme J, Cummings R, Cheng ML, Brown MQ. Cross Resistance in S-Methoprene-Resistant Culex quinquefasciatus (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:398-402. [PMID: 32914856 DOI: 10.1093/jme/tjaa182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Indexed: 06/11/2023]
Abstract
The juvenile hormone analog S-methoprene is the only synthetic biopesticide that is registered with the United States Environmental Protection Agency to control arthropods of economic importance in public health, livestock, pets, urban, and stored products. The high activity, relative target specificity, and benign environmental profile of S-methoprene have been well documented. While the risk of resistance in mosquitoes to S-methoprene is generally low, there is a lack of information regarding cross resistance in S-methoprene-resistant mosquitoes to other pesticides. In this paper, a population of the southern house mosquito Culex quinquefasciatus Say from southern California acquired low levels of resistance to S-methoprene in the field, where the resistance ratios ranged 7.0- to 8.8-fold as compared with a laboratory reference colony. After 30 generations of laboratory selections by S-methoprene when resistance was elevated to 57.4- to 168.3-fold relative to an unselected population, various levels of cross resistance to other commonly used pesticides were revealed in the selected population. Cross resistance to the microbial mosquito larvicide Lysinibacillus sphaericus (Meyer & Neide) (Bacillales: Bacillaceae) was the most profound, amounting to 77.50- to 220.50-fold. The mechanism and potential management tactics toward cross resistance are discussed to preserve the unique value of this synthetic biopesticide.
Collapse
Affiliation(s)
- Tianyun Su
- West Valley Mosquito and Vector Control District, Ontario, CA
| | - Jennifer Thieme
- West Valley Mosquito and Vector Control District, Ontario, CA
| | - Robert Cummings
- Orange County Mosquito and Vector Control District, Garden Grove, CA
| | - Min-Lee Cheng
- West Valley Mosquito and Vector Control District, Ontario, CA
| | | |
Collapse
|
37
|
Nkahe DL, Kopya E, Djiappi-Tchamen B, Toussile W, Sonhafouo-Chiana N, Kekeunou S, Mimpfoundi R, Awono-Ambene P, Wondji CS, Antonio-Nkondjio C. Fitness cost of insecticide resistance on the life-traits of a Anopheles coluzzii population from the city of Yaoundé, Cameroon. Wellcome Open Res 2020; 5:171. [PMID: 33029560 PMCID: PMC7525343 DOI: 10.12688/wellcomeopenres.16039.2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Pyrethroid resistance is rapidly expanding in An. gambiae s.l. populations across Sub-Saharan Africa. Yet there is still not enough information on the fitness cost of insecticide resistance . In the present study, the fitness cost of insecticide resistance on Anopheles coluzzii population from the city of Yaoundé was investigated. Methods: A resistant An. coluzzii colony was established from field collected mosquitoes resistant to both DDT and pyrethroid and selected for 12 generations with deltamethrin 0.05%. The Ngousso laboratory susceptible strain was used as control. A total of 100 females of each strain were blood fed and allowed for individual eggs laying, and then different life traits parameters such as fecundity, fertility, larval development time, emergence rate and longevity were measured. The TaqMan assay was used to screen for the presence of the L1014F and L1014S kdr mutations. Results: Field collected mosquitoes from the F0 generation had a mortality rate of 2.05% for DDT, 34.16% for permethrin and 50.23% for deltamethrin. The mortality rate of the F12 generation was 30.48% for deltamethrin, 1.25% for permethrin and 0% for DDT. The number of eggs laid per female was lower in the resistant colony compared to the susceptible (p <0.0001). Insecticide resistant larvae were found with a significantly long larval development time (10.61±0.33 days) compare to susceptible (7.57±0.35 days). The number of emerging females was significantly high in the susceptible group compared to the resistant . The adults lifespan was also significantly high for susceptible (21.73±1.19 days) compared to resistant (14.63±0.68 days). Only the L1014F- kdr allele was detected in resistant population.. Conclusion: The study suggests that pyrethroid resistance is likely associated with a high fitness cost on An.coluzzii populations. The addition of new tools targeting specifically larval stages could improve malaria vectors control and insecticide resistance management.
Collapse
Affiliation(s)
- Diane Leslie Nkahe
- Malaria Research Laboratory, OCEAC, Yaoundé, Centre, PO Box 288, Cameroon
- Department of Animal Biology, University of Yaoundé 1, Yaoundé, Cameroon
| | - Edmond Kopya
- Malaria Research Laboratory, OCEAC, Yaoundé, Centre, PO Box 288, Cameroon
- Department of Animal Biology, University of Yaoundé 1, Yaoundé, Cameroon
| | - Borel Djiappi-Tchamen
- Malaria Research Laboratory, OCEAC, Yaoundé, Centre, PO Box 288, Cameroon
- Department of Animal Biology, University of Dschang, Dschang, Cameroon
| | | | - Nadege Sonhafouo-Chiana
- Malaria Research Laboratory, OCEAC, Yaoundé, Centre, PO Box 288, Cameroon
- Faculty of Sciences, University of Buea, Buea, Cameroon
| | - Sevilor Kekeunou
- Department of Animal Biology, University of Yaoundé 1, Yaoundé, Cameroon
| | - Remy Mimpfoundi
- Department of Animal Biology, University of Yaoundé 1, Yaoundé, Cameroon
| | | | | | - Christophe Antonio-Nkondjio
- Malaria Research Laboratory, OCEAC, Yaoundé, Centre, PO Box 288, Cameroon
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
38
|
Soma DD, Zogo BM, Somé A, Tchiekoi BN, Hien DFDS, Pooda HS, Coulibaly S, Gnambani JE, Ouari A, Mouline K, Dahounto A, Ouédraogo GA, Fournet F, Koffi AA, Pennetier C, Moiroux N, Dabiré RK. Anopheles bionomics, insecticide resistance and malaria transmission in southwest Burkina Faso: A pre-intervention study. PLoS One 2020; 15:e0236920. [PMID: 32745085 PMCID: PMC7398507 DOI: 10.1371/journal.pone.0236920] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/17/2020] [Indexed: 11/21/2022] Open
Abstract
Background Twenty-seven villages were selected in southwest Burkina Faso to implement new vector control strategies in addition to long lasting insecticidal nets (LLINs) through a Randomized Controlled Trial (RCT). We conducted entomological surveys in the villages during the dry cold season (January 2017), dry hot season (March 2017) and rainy season (June 2017) to describe malaria vectors bionomics, insecticide resistance and transmission prior to this trial. Methods We carried out hourly catches (from 17:00 to 09:00) inside and outside 4 houses in each village using the Human Landing Catch technique. Mosquitoes were identified using morphological taxonomic keys. Specimens belonging to the Anopheles gambiae complex and Anopheles funestus group were identified using molecular techniques as well as detection of Plasmodium falciparum infection and insecticide resistance target-site mutations. Results Eight Anopheles species were detected in the area. Anopheles funestus s.s was the main vector during the dry cold season. It was replaced by Anopheles coluzzii during the dry hot season whereas An. coluzzii and An. gambiae s.s. were the dominant species during the rainy season. Species composition of the Anopheles population varied significantly among seasons. All insecticide resistance mechanisms (kdr-w, kdr-e and ace-1 target site mutations) investigated were found in each members of the An. gambiae complex but at different frequencies. We observed early and late biting phenotypes in the main malaria vector species. Entomological inoculation rates were 2.61, 2.67 and 11.25 infected bites per human per month during dry cold season, dry hot season and rainy season, respectively. Conclusion The entomological indicators of malaria transmission were high despite the universal coverage with LLINs. We detected early and late biting phenotypes in the main malaria vector species as well as physiological insecticide resistance mechanisms. These data will be used to evaluate the impact of complementary tools to LLINs in an upcoming RCT.
Collapse
Affiliation(s)
- Dieudonné Diloma Soma
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso
- Université Nazi Boni, Bobo-Dioulasso, Burkina Faso
- MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
- * E-mail:
| | - Barnabas Mahugnon Zogo
- MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
- Institut Pierre Richet (IPR), Bouaké, Côte d’Ivoire
- Université d’Abomey Calavi, Abomey-Calavi, Benin
| | - Anthony Somé
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso
- MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Bertin N’Cho Tchiekoi
- MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
- Institut Pierre Richet (IPR), Bouaké, Côte d’Ivoire
| | | | - Hermann Sié Pooda
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso
- Université de Dédougou, Dédougou, Burkina Faso
| | - Sanata Coulibaly
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| | | | - Ali Ouari
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| | - Karine Mouline
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso
- MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Amal Dahounto
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso
- MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
| | | | - Florence Fournet
- MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
| | | | - Cédric Pennetier
- MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
- Institut Pierre Richet (IPR), Bouaké, Côte d’Ivoire
| | - Nicolas Moiroux
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso
- MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Roch Kounbobr Dabiré
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| |
Collapse
|
39
|
Okumu F. The fabric of life: what if mosquito nets were durable and widely available but insecticide-free? Malar J 2020; 19:260. [PMID: 32690016 PMCID: PMC7370456 DOI: 10.1186/s12936-020-03321-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/04/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Bed nets are the commonest malaria prevention tool and arguably the most cost-effective. Their efficacy is because they prevent mosquito bites (a function of physical durability and integrity), and kill mosquitoes (a function of chemical content and mosquito susceptibility). This essay follows the story of bed nets, insecticides and malaria control, and asks whether the nets must always have insecticides. METHODS Key attributes of untreated or pyrethroid-treated nets are examined alongside observations of their entomological and epidemiological impacts. Arguments for and against adding insecticides to nets are analysed in contexts of pyrethroid resistance, personal-versus-communal protection, outdoor-biting, need for local production and global health policies. FINDINGS Widespread resistance in African malaria vectors has greatly weakened the historical mass mosquitocidal effects of insecticide-treated nets (ITNs), which previously contributed communal benefits to users and non-users. Yet ITNs still achieve substantial epidemiological impact, suggesting that physical integrity, consistent use and population-level coverage are increasingly more important than mosquitocidal properties. Pyrethroid-treatment remains desirable where vectors are sufficiently susceptible, but is no longer universally necessary and should be re-examined alongside other attributes, e.g. durability, coverage, acceptability and access. New ITNs with multiple actives or synergists could provide temporary relief in some settings, but their performance, higher costs, and drawn-out innovation timelines do not justify singular emphasis on insecticides. Similarly, sub-lethal insecticides may remain marginally-impactful by reducing survival of older mosquitoes and disrupting parasite development inside the mosquitoes, but such effects vanish under strong resistance. CONCLUSIONS The public health value of nets is increasingly driven by bite prevention, and decreasingly by lethality to mosquitoes. For context-appropriate solutions, it is necessary to acknowledge and evaluate the potential and cost-effectiveness of durable untreated nets across different settings. Though ~ 90% of malaria burden occurs in Africa, most World Health Organization-prequalified nets are manufactured outside Africa, since many local manufacturers lack capacity to produce the recommended insecticidal nets at competitive scale and pricing. By relaxing conditions for insecticides on nets, it is conceivable that non-insecticidal but durable, and possibly bio-degradable nets, could be readily manufactured locally. This essay aims not to discredit ITNs, but to illustrate how singular focus on insecticides can hinder innovation and sustainability.
Collapse
Affiliation(s)
- Fredros Okumu
- Environmental Health & Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania.
- School of Public Health, University of the Witwatersrand, Johannesburg, Republic of South Africa.
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, UK.
- School of Life Science and Bioengineering, Nelson Mandela African Institution of Science & Technology, Arusha, Tanzania.
| |
Collapse
|
40
|
Nkahe DL, Kopya E, Djiappi-Tchamen B, Toussile W, Sonhafouo-Chiana N, Kekeunou S, Mimpfoundi R, Awono-Ambene P, Wondji CS, Antonio-Nkondjio C. Fitness cost of insecticide resistance on the life-traits of a Anopheles coluzzii population from the city of Yaoundé, Cameroon. Wellcome Open Res 2020; 5:171. [PMID: 33029560 PMCID: PMC7525343 DOI: 10.12688/wellcomeopenres.16039.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2020] [Indexed: 08/03/2024] Open
Abstract
Background: Pyrethroid resistance is rapidly expanding in An. gambiae s.l. populations across Sub-Saharan Africa. Yet there is still not enough information on the fitness cost of insecticide resistance . In the present study, the fitness cost of insecticide resistance on Anopheles coluzzii population from the city of Yaoundé was investigated. Methods: A resistant An. coluzzii colony was established from field collected mosquitoes resistant to both DDT and pyrethroid and selected for 12 generations with deltamethrin 0.05%. The Ngousso laboratory susceptible strain was used as control. A total of 100 females of each strain were blood fed and allowed for individual eggs laying, and then different life traits parameters such as fecundity, fertility, larval development time, emergence rate and longevity were measured. The TaqMan assay was used to screen for the presence of the L1014F and L1014S kdr mutations. Results: Field collected mosquitoes from the F0 generation had a mortality rate of 2.05% for DDT, 34.16% for permethrin and 50.23% for deltamethrin. The mortality rate of the F12 generation was 30.48% for deltamethrin, 1.25% for permethrin and 0% for DDT. The number of eggs laid per female was lower in the resistant colony compared to the susceptible (p <0.0001). Insecticide resistant larvae were found with a significantly long larval development time (10.61±0.33 days) compare to susceptible (7.57±0.35 days). The number of emerging females was significantly high in the susceptible group compared to the resistant . The adults lifespan was also significantly high for susceptible (21.73±1.19 days) compared to resistant (14.63±0.68 days). Only the L1014F- kdr allele was detected in resistant population.. Conclusion: The study suggests that pyrethroid resistance is likely associated with a high fitness cost on An.coluzzii populations. The addition of new tools targeting specifically larval stages could improve malaria vectors control and insecticide resistance management.
Collapse
Affiliation(s)
- Diane Leslie Nkahe
- Malaria Research Laboratory, OCEAC, Yaoundé, Centre, PO Box 288, Cameroon
- Department of Animal Biology, University of Yaoundé 1, Yaoundé, Cameroon
| | - Edmond Kopya
- Malaria Research Laboratory, OCEAC, Yaoundé, Centre, PO Box 288, Cameroon
- Department of Animal Biology, University of Yaoundé 1, Yaoundé, Cameroon
| | - Borel Djiappi-Tchamen
- Malaria Research Laboratory, OCEAC, Yaoundé, Centre, PO Box 288, Cameroon
- Department of Animal Biology, University of Dschang, Dschang, Cameroon
| | | | - Nadege Sonhafouo-Chiana
- Malaria Research Laboratory, OCEAC, Yaoundé, Centre, PO Box 288, Cameroon
- Faculty of Sciences, University of Buea, Buea, Cameroon
| | - Sevilor Kekeunou
- Department of Animal Biology, University of Yaoundé 1, Yaoundé, Cameroon
| | - Remy Mimpfoundi
- Department of Animal Biology, University of Yaoundé 1, Yaoundé, Cameroon
| | | | | | - Christophe Antonio-Nkondjio
- Malaria Research Laboratory, OCEAC, Yaoundé, Centre, PO Box 288, Cameroon
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
41
|
Sougoufara S, Ottih EC, Tripet F. The need for new vector control approaches targeting outdoor biting Anopheline malaria vector communities. Parasit Vectors 2020; 13:295. [PMID: 32522290 PMCID: PMC7285743 DOI: 10.1186/s13071-020-04170-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022] Open
Abstract
Since the implementation of Roll Back Malaria, the widespread use of insecticide-treated nets (ITNs) and indoor residual spraying (IRS) is thought to have played a major part in the decrease in mortality and morbidity achieved in malaria-endemic regions. In the past decade, resistance to major classes of insecticides recommended for public health has spread across many malaria vector populations. Increasingly, malaria vectors are also showing changes in vector behaviour in response to current indoor chemical vector control interventions. Changes in the time of biting and proportion of indoor biting of major vectors, as well as changes in the species composition of mosquito communities threaten the progress made to control malaria transmission. Outdoor biting mosquito populations contribute to malaria transmission in many parts of sub-Saharan Africa and pose new challenges as they cannot be reliably monitored or controlled using conventional tools. Here, we review existing and novel approaches that may be used to target outdoor communities of malaria vectors. We conclude that scalable tools designed specifically for the control and monitoring of outdoor biting and resting malaria vectors with increasingly complex and dynamic responses to intensifying malaria control interventions are urgently needed. These are crucial for integrated vector management programmes designed to challenge current and future vector populations.
Collapse
Affiliation(s)
- Seynabou Sougoufara
- Centre of Applied Entomology and Parasitology, School of Life Sciences, Keele University, Staffordshire, UK
| | - Emmanuel Chinweuba Ottih
- Centre of Applied Entomology and Parasitology, School of Life Sciences, Keele University, Staffordshire, UK
| | - Frederic Tripet
- Centre of Applied Entomology and Parasitology, School of Life Sciences, Keele University, Staffordshire, UK
| |
Collapse
|
42
|
Perugini E, Guelbeogo WM, Calzetta M, Manzi S, Virgillito C, Caputo B, Pichler V, Ranson H, Sagnon N, Della Torre A, Pombi M. Behavioural plasticity of Anopheles coluzzii and Anopheles arabiensis undermines LLIN community protective effect in a Sudanese-savannah village in Burkina Faso. Parasit Vectors 2020; 13:277. [PMID: 32487147 PMCID: PMC7268364 DOI: 10.1186/s13071-020-04142-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/21/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Despite the overall major impact of long-lasting insecticide treated nets (LLINs) in eliciting individual and collective protection to malaria infections, some sub-Saharan countries, including Burkina Faso, still carry a disproportionately high share of the global malaria burden. This study aims to analyse the possible entomological bases of LLIN limited impact, focusing on a LLIN-protected village in the Plateau Central region of Burkina Faso. METHODS Human landing catches (HLCs) were carried out in 2015 for 12 nights both indoors and outdoors at different time windows during the highest biting activity phase for Anopheles gambiae (s.l.). Collected specimens were morphologically and molecularly identified and processed for Plasmodium detection and L1014F insecticide-resistance allele genotyping. RESULTS Almost 2000 unfed An. gambiae (s.l.) (54% Anopheles coluzzii and 44% Anopheles arabiensis) females landing on human volunteers were collected, corresponding to a median number of 23.5 females/person/hour. No significant differences were observed in median numbers of mosquitoes collected indoors and outdoors, nor between sporozoite rates in An. coluzzii (6.1%) and An. arabiensis (5.5%). The estimated median hourly entomological inoculation rate (EIR) on volunteers was 1.4 infective bites/person/hour. Results do not show evidence of the biting peak during night hours typical for An. gambiae (s.l.) in the absence of bednet protection. The frequency of the L1014F resistant allele (n = 285) was 66% in An. coluzzii and 38% in An. arabiensis. CONCLUSIONS The observed biting rate and sporozoite rates are in line with the literature data available for An. gambiae (s.l.) in the same geographical area before LLIN implementation and highlight high levels of malaria transmission in the study village. Homogeneous biting rate throughout the night and lack of preference for indoor-biting activity, suggest the capacity of both An. coluzzii and An. arabiensis to adjust their host-seeking behaviour to bite humans despite bednet protection, accounting for the maintenance of high rates of mosquito infectivity and malaria transmission. These results, despite being limited to a local situation in Burkina Faso, represent a paradigmatic example of how high densities and behavioural plasticity in the vector populations may contribute to explaining the limited impact of LLINs on malaria transmission in holo-endemic Sudanese savannah areas in West Africa.
Collapse
Affiliation(s)
- Eleonora Perugini
- Dipartimento di Sanità Pubblica e Malattie Infettive, Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Sapienza Università di Roma, Rome, 00185, Italy
| | - Wamdaogo Moussa Guelbeogo
- Centre National de Recherche et Formation sur le Paludisme (CNRFP), Ouagadougou 01, BP 2208, Burkina Faso
| | - Maria Calzetta
- Dipartimento di Sanità Pubblica e Malattie Infettive, Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Sapienza Università di Roma, Rome, 00185, Italy
| | - Sara Manzi
- Dipartimento di Sanità Pubblica e Malattie Infettive, Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Sapienza Università di Roma, Rome, 00185, Italy
| | - Chiara Virgillito
- Dipartimento di Sanità Pubblica e Malattie Infettive, Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Sapienza Università di Roma, Rome, 00185, Italy.,Dipartimento di Biodiversità ed Ecologia Molecolare, Centro Ricerca e Innovazione, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy
| | - Beniamino Caputo
- Dipartimento di Sanità Pubblica e Malattie Infettive, Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Sapienza Università di Roma, Rome, 00185, Italy
| | - Verena Pichler
- Dipartimento di Sanità Pubblica e Malattie Infettive, Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Sapienza Università di Roma, Rome, 00185, Italy
| | - Hilary Ranson
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - N'Fale Sagnon
- Centre National de Recherche et Formation sur le Paludisme (CNRFP), Ouagadougou 01, BP 2208, Burkina Faso
| | - Alessandra Della Torre
- Dipartimento di Sanità Pubblica e Malattie Infettive, Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Sapienza Università di Roma, Rome, 00185, Italy.
| | - Marco Pombi
- Dipartimento di Sanità Pubblica e Malattie Infettive, Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Sapienza Università di Roma, Rome, 00185, Italy.
| |
Collapse
|
43
|
Minetti C, Ingham VA, Ranson H. Effects of insecticide resistance and exposure on Plasmodium development in Anopheles mosquitoes. CURRENT OPINION IN INSECT SCIENCE 2020; 39:42-49. [PMID: 32109860 DOI: 10.1016/j.cois.2019.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 05/10/2023]
Abstract
The spread of insecticide resistance in anopheline mosquitoes is a serious threat to the success of malaria control and prospects of elimination, but the potential impact(s) of insecticide resistance or sublethal insecticide exposure on Plasmodium-Anopheles interactions are poorly understood. Only a few studies have attempted to investigate such interactions, despite their clear epidemiological significance for malaria transmission. This short review provides an update on our understanding of the interactions between insecticide resistance and exposure and Plasmodium development, focusing on the mechanisms which might underpin any interactions, and identifying some key knowledge gaps.
Collapse
Affiliation(s)
- Corrado Minetti
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L35QA, United Kingdom
| | - Victoria A Ingham
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L35QA, United Kingdom
| | - Hilary Ranson
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L35QA, United Kingdom.
| |
Collapse
|
44
|
Grossman MK, Oliver SV, Brooke BD, Thomas MB. Use of alternative bioassays to explore the impact of pyrethroid resistance on LLIN efficacy. Parasit Vectors 2020; 13:179. [PMID: 32264935 PMCID: PMC7140572 DOI: 10.1186/s13071-020-04055-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/30/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND There is substantial concern that the spread of insecticide resistance will render long-lasting insecticide-treated nets (LLINs) ineffective. However, there is limited evidence supporting a clear association between insecticide resistance and malaria incidence or prevalence in the field. We suggest that one reason for this disconnect is that the standard WHO assays used in surveillance to classify mosquito populations as resistant are not designed to determine how resistance might impact LLIN efficacy. The standard assays expose young, unfed female mosquitoes to a diagnostic insecticide dose in a single, forced exposure, whereas in the field, mosquitoes vary in their age, blood-feeding status, and the frequency or intensity of LLIN exposure. These more realistic conditions could ultimately impact the capacity of "resistant" mosquitoes to transmit malaria. METHODS Here, we test this hypothesis using two different assays that allow female mosquitoes to contact a LLIN as they host-seek and blood-feed. We quantified mortality after both single and multiple exposures, using seven different strains of Anopheles ranging in pyrethroid resistance intensity. RESULTS We found that strains classified as 1×-resistant to the pyrethroid insecticide deltamethrin in the standard WHO assay exhibited > 90% mortality over 24 h following more realistic LLIN contact. Mosquitoes that were able to blood-feed had increased survival compared to their unfed counterparts, but none of the 1×-resistant strains survived for 12 days post-exposure (the typical period for malaria parasite development within the mosquito). Mosquitoes that were 5×- and 10×-resistant (i.e. moderate or high intensity resistance based on the WHO assays) survived a single LLIN exposure well. However, only about 2-3% of these mosquitoes survived multiple exposures over the course of 12 days and successfully blood-fed during the last exposure. CONCLUSIONS These results suggest that the standard assays provide limited insight into how resistance might impact LLIN efficacy. In our laboratory setting, there appears little functional consequence of 1×-resistance and even mosquitoes with moderate (5×) or high (10×) intensity resistance can suffer substantial reduction in transmission potential. Monitoring efforts should focus on better characterizing intensity of resistance to inform resistance management strategies and prioritize deployment of next generation vector control products.
Collapse
Affiliation(s)
- Marissa K. Grossman
- Department of Entomology, Pennsylvania State University, University Park, PA USA
| | - Shüné V. Oliver
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- Wits Research Institute for Malaria, MRC Collaborating Centre for Multi-disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Basil D. Brooke
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Matthew B. Thomas
- Department of Entomology, Pennsylvania State University, University Park, PA USA
| |
Collapse
|
45
|
Assogba BS, Pasteur N, Makoundou P, Unal S, Baba-Moussa L, Labbé P, Weill M. Dynamic of resistance alleles of two major insecticide targets in Anopheles gambiae (s.l.) populations from Benin, West Africa. Parasit Vectors 2020; 13:134. [PMID: 32171326 PMCID: PMC7071764 DOI: 10.1186/s13071-020-4006-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/03/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Insecticide resistance is a growing concern for malaria control and vector control effectiveness relies on assessing it distribution and understanding its evolution. METHODS We assessed resistance levels and the frequencies of two major target-site mutations, L1014F-VGSC and G119S-ace-1, conferring resistance to pyrethroids (PYRs) and carbamates/organophosphates (CXs/OPs) insecticides. These data were compared to those acquired between 2006 and 2010 to follow resistance evolutionary trends over ten years. RESULTS We report the results of a 3-year survey (2013-2015) of insecticide resistance in 13 localities across the whole country of Benin. Permethrin (PYR) resistance was found in all populations tested, L1014F-VGSC being almost fixed everywhere, while bendiocarb resistance was limited to a few localities, G119S-ace-1 remaining rare, with very limited variations during surveyed period. Interestingly, we found no effect of the type of insecticide pressure on the dynamics of these mutations. CONCLUSIONS These results confirm both the high prevalence of PYR resistance and the potential of CXs/OPs as short- to medium-term alternatives in Benin. They also underline the need for regular resistance monitoring and informed management in their usage, as the G119S-ace-1 mutation is already present in Benin and surrounding countries. Their unwise usage would rapidly lead to its spread, which would jeopardize PYR-resistant Anopheles control.
Collapse
Affiliation(s)
- Benoît S. Assogba
- Institut des Sciences de l’Evolution de Montpellier (ISEM), UMR CNRS-IRD-EPHE-Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier, France
- Faculté des Sciences et Techniques, Laboratoire de Biologie et de Typage Moléculaire en Microbiologie, Université d’Abomey Calavi, 05 BP 1604, Cotonou, Benin
- Institut Régional de Santé Publique, Université d’Abomey Calavi, 01 BP 918, Cotonou, Benin
- Disease Control and Elimination Department, Medical Research Council, Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, Gambia
| | - Nicole Pasteur
- Institut des Sciences de l’Evolution de Montpellier (ISEM), UMR CNRS-IRD-EPHE-Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier, France
| | - Patrick Makoundou
- Institut des Sciences de l’Evolution de Montpellier (ISEM), UMR CNRS-IRD-EPHE-Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier, France
| | - Sandra Unal
- Institut des Sciences de l’Evolution de Montpellier (ISEM), UMR CNRS-IRD-EPHE-Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier, France
| | - Lamine Baba-Moussa
- Faculté des Sciences et Techniques, Laboratoire de Biologie et de Typage Moléculaire en Microbiologie, Université d’Abomey Calavi, 05 BP 1604, Cotonou, Benin
| | - Pierrick Labbé
- Institut des Sciences de l’Evolution de Montpellier (ISEM), UMR CNRS-IRD-EPHE-Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier, France
| | - Mylène Weill
- Institut des Sciences de l’Evolution de Montpellier (ISEM), UMR CNRS-IRD-EPHE-Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier, France
| |
Collapse
|
46
|
Atyame CM, Alout H, Mousson L, Vazeille M, Diallo M, Weill M, Failloux AB. Insecticide resistance genes affect Culex quinquefasciatus vector competence for West Nile virus. Proc Biol Sci 2020; 286:20182273. [PMID: 30963855 DOI: 10.1098/rspb.2018.2273] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Insecticide resistance has been reported to impact the interactions between mosquitoes and the pathogens they transmit. However, the effect on vector competence for arboviruses still remained to be investigated. We examined the influence of two insecticide resistance mechanisms on vector competence of the mosquito Culex quinquefasciatus for two arboviruses, Rift Valley Fever virus (RVFV) and West Nile virus (WNV). Three Cx. quinquefasciatus lines sharing a common genetic background were used: two insecticide-resistant lines, one homozygous for amplification of the Ester2 locus (SA2), the other homozygous for the acetylcholinesterase ace-1 G119S mutation (SR) and the insecticide-susceptible reference line Slab. Statistical analyses revealed no significant effect of insecticide-resistant mechanisms on vector competence for RVFV. However, both insecticide resistance mechanisms significantly influenced the outcome of WNV infections by increasing the dissemination of WNV in the mosquito body, therefore leading to an increase in transmission efficiency by resistant mosquitoes. These results showed that insecticide resistance mechanisms enhanced vector competence for WNV and may have a significant impact on transmission dynamics of arboviruses. Our findings highlight the importance of understanding the impacts of insecticide resistance on the vectorial capacity parameters to assess the overall consequence on transmission.
Collapse
Affiliation(s)
- Célestine M Atyame
- 1 Department of Virology, Institut Pasteur, Arboviruses and Insect Vectors , Paris , France.,2 Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical) CNRS-INSERM-IRD-Université de La Réunion , île de La Réunion , France
| | - Haoues Alout
- 3 INRA, UMR 1309 ASTRE, INRA-CIRAD , 34598 Montpellier , France.,4 Institut des Sciences de l'Evolution de Montpellier (ISEM), UMR CNRS-IRD-EPHE-Université de Montpellier , Montpellier , France
| | - Laurence Mousson
- 1 Department of Virology, Institut Pasteur, Arboviruses and Insect Vectors , Paris , France
| | - Marie Vazeille
- 1 Department of Virology, Institut Pasteur, Arboviruses and Insect Vectors , Paris , France
| | - Mawlouth Diallo
- 5 Institut Pasteur de Dakar, Unité d'Entomologie médicale , Dakar , Sénégal
| | - Mylène Weill
- 4 Institut des Sciences de l'Evolution de Montpellier (ISEM), UMR CNRS-IRD-EPHE-Université de Montpellier , Montpellier , France
| | - Anna-Bella Failloux
- 1 Department of Virology, Institut Pasteur, Arboviruses and Insect Vectors , Paris , France
| |
Collapse
|
47
|
Jeanrenaud ACSN, Brooke BD, Oliver SV. Second generation effects of larval metal pollutant exposure on reproduction, longevity and insecticide tolerance in the major malaria vector Anopheles arabiensis (Diptera: Culicidae). Parasit Vectors 2020; 13:4. [PMID: 31910892 PMCID: PMC6947826 DOI: 10.1186/s13071-020-3886-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/03/2020] [Indexed: 12/27/2022] Open
Abstract
Background Members of the Anopheles gambiae complex breed in clean, sunlit temporary bodies of water. Anthropogenic pollution is, however, altering the breeding sites of the vectors with numerous biological effects. Although the effects of larval metal pollution have previously been examined, this study aims to assess the transgenerational effects of larval metal pollution on the major malaria vector An. arabiensis. Methods Two laboratory strains of An. arabiensis, SENN (insecticide-susceptible) and SENN-DDT (insecticide-resistant), were used in this study. After being bred in water polluted with either cadmium chloride, copper nitrate or lead nitrate, several life history characteristics that can have epidemiological implications (fertility, apoptotic damage to reproductive structures, adult longevity and insecticide tolerance) were examined in the adults and compared to those of adults bred in clean water. Results All metal treatments reduced fecundity in SENN, but only lead treatment reduced fertility in SENN-DDT. Cadmium chloride exposure resulted in apoptosis and deformation of the testes in both strains. After breeding generation F0 in polluted water, F1 larvae bred in clean water showed an increase in longevity in SENN-DDT adult females. In contrast, after breeding the F0 generation in polluted water, longevity was reduced after cadmium and copper exposure in the F1 generation. Larval metal exposure resulted in an increase in insecticide tolerance in adults of the SENN strain, with SENN-DDT adults gaining the greatest fold increase in insecticide tolerance. Conclusions This study demonstrates that a single exposure to metal pollution can have transgenerational effects that are not negated by subsequent breeding in clean water. ![]()
Collapse
Affiliation(s)
- Alexander C S N Jeanrenaud
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa.,Wits Research Institute for Malaria, MRC Collaborating Centre for Multi-disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Basil D Brooke
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa.,Wits Research Institute for Malaria, MRC Collaborating Centre for Multi-disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Shüné V Oliver
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa. .,Wits Research Institute for Malaria, MRC Collaborating Centre for Multi-disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
48
|
Powell JR. An Evolutionary Perspective on Vector-Borne Diseases. Front Genet 2019; 10:1266. [PMID: 31921304 PMCID: PMC6929172 DOI: 10.3389/fgene.2019.01266] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 11/18/2019] [Indexed: 01/22/2023] Open
Abstract
Several aspects of the biology of the three players in a vector-borne disease that affect their evolutionary interactions are outlined. A model of the origin of a human-human cycle of vector-borne diseases is presented emphasizing the narrowing of the niche experienced by the pathogen and vector. Variation in the expected rates of evolution of the three players is discussed with the rapid rate of pathogen evolution providing them with advantages. Population sizes and fluctuations also affect the three players in very different ways. The time since the origin of a vector-borne disease likely determines how stable the interactions are and thus how easily the disease might be eliminated. Stability and variation are also linked. Human technological advances are rapidly upsetting the previously relatively slow coevolutionary adjustment of the three players. Finally, it is pointed out that development of quantitative coevolutionary models specifically addressing details of vector-borne diseases is needed to identify parameters most likely to break transmission cycles and thus control or eliminate diseases.
Collapse
|
49
|
Collins E, Vaselli NM, Sylla M, Beavogui AH, Orsborne J, Lawrence G, Wiegand RE, Irish SR, Walker T, Messenger LA. The relationship between insecticide resistance, mosquito age and malaria prevalence in Anopheles gambiae s.l. from Guinea. Sci Rep 2019; 9:8846. [PMID: 31222175 PMCID: PMC6586859 DOI: 10.1038/s41598-019-45261-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 05/30/2019] [Indexed: 11/15/2022] Open
Abstract
Insecticide resistance across sub-Saharan Africa may impact the continued effectiveness of malaria vector control. We investigated the association between carbamate and pyrethroid resistance with Anopheles gambiae s.l. parity, Plasmodium falciparum infection, and molecular insecticide resistance mechanisms in Guinea. Pyrethroid resistance was intense, with field populations surviving ten times the insecticidal concentration required to kill susceptible individuals. The L1014F kdr-N1575Y haplotype and I1527T mutation were significantly associated with mosquito survival following permethrin exposure (Prevalence Ratio; PR = 1.92, CI = 1.09–3.37 and PR = 2.80, CI = 1.03–7.64, respectively). Partial restoration of pyrethroid susceptibility following synergist pre-exposure suggests a role for mixed-function oxidases. Carbamate resistance was lower and significantly associated with the G119S Ace-1 mutation. Oocyst rates were 6.8% and 4.2% among resistant and susceptible mosquitoes, respectively; survivors of bendiocarb exposure were significantly more likely to be infected. Pyrethroid resistant mosquitoes had significantly lower parity rates than their susceptible counterparts (PR = 1.15, CI = 1.10–1.21). Our findings emphasize the need for additional studies directly assessing the influence of insecticide resistance on mosquito fitness.
Collapse
Affiliation(s)
- Emma Collins
- Department of Disease Control, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Natasha M Vaselli
- Department of Disease Control, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Moussa Sylla
- Centre National de Formation et de Recherche en Santé Rurale de Maferinyah, Maferinyah, Guinea
| | - Abdoul H Beavogui
- Centre National de Formation et de Recherche en Santé Rurale de Maferinyah, Maferinyah, Guinea
| | - James Orsborne
- Department of Disease Control, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Gena Lawrence
- Entomology Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Ryan E Wiegand
- Entomology Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Seth R Irish
- Entomology Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, United States of America.,President's Malaria Initiative, Bureau for Global Health, Office of Infectious Disease, United States Agency for International Development, Washington DC, United States of America
| | - Thomas Walker
- Department of Disease Control, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Louisa A Messenger
- Entomology Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, United States of America. .,American Society for Microbiology, 1752 N Street, NW, Washington DC, 20036, United States of America.
| |
Collapse
|
50
|
Mulatier M, Pennetier C, Porciani A, Chandre F, Dormont L, Cohuet A. Prior contact with permethrin decreases its irritancy at the following exposure among a pyrethroid-resistant malaria vector Anopheles gambiae. Sci Rep 2019; 9:8177. [PMID: 31160750 PMCID: PMC6546682 DOI: 10.1038/s41598-019-44633-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/21/2019] [Indexed: 11/26/2022] Open
Abstract
Insecticide-treated nets (ITNs) remain major components for vector control despite the spread of resistance mechanisms among mosquito populations. Multiple exposures to pyrethroids may induce physiological and behavioral changes in mosquitoes, possibly reducing efficacy of control tools. Despite epidemiological relevance, the effects of multiple exposures to pyrethroids on their efficacy against pyrethroid-resistant mosquitoes has received little interest. In the present study, we assessed the effects of a blood-meal successfully obtained upon a permethrin-treated net on the success at taking a second blood-meal in presence of permethrin in Anopheles gambiae, carrying pyrethroid resistance alleles. We also measured the impact of exposure to permethrin on life-history traits to address the delayed efficacy of ITNs. Our results showed that females that successfully blood-fed upon a permethrin-treated net were no longer inhibited by permethrin at the following exposure. Blood-meal inhibition due to permethrin was not affected by female size nor by exposure of mothers when testing the offspring, allowing to discard the effect of genetic or physiological selection. Besides, in our assays, exposure to permethrin did not affect mosquito fecundity, fertility nor survival. These results give insights to understand the long-term efficacy of ITNs, and allow to reevaluate the criteria used when choosing compounds for fighting malaria mosquitoes.
Collapse
Affiliation(s)
- Margaux Mulatier
- MIVEGEC, IRD, CNRS, Univ. Montpellier, Montpellier, France. .,CEFE, Univ Paul Valéry Montpellier 3, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France.
| | - Cédric Pennetier
- MIVEGEC, IRD, CNRS, Univ. Montpellier, Montpellier, France.,Institut Pierre Richet, Bouaké, Côte d'Ivoire
| | | | | | - Laurent Dormont
- CEFE, Univ Paul Valéry Montpellier 3, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France
| | - Anna Cohuet
- Institut Pierre Richet, Bouaké, Côte d'Ivoire
| |
Collapse
|