1
|
Yang F, Zhao LY, Yang WQ, Chao S, Ling ZX, Sun BY, Wei LP, Zhang LJ, Yu LM, Cai GY. Quantitative proteomics and multi-omics analysis identifies potential biomarkers and the underlying pathological molecular networks in Chinese patients with multiple sclerosis. BMC Neurol 2024; 24:423. [PMID: 39478468 PMCID: PMC11526627 DOI: 10.1186/s12883-024-03926-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disorder caused by chronic inflammatory reactions in the central nervous system. Currently, little is known about the changes of plasma proteomic profiles in Chinese patients with MS (CpwMS) and its relationship with the altered profiles of multi-omics such as metabolomics and gut microbiome, as well as potential molecular networks that underlie the etiology of MS. To uncover the characteristics of proteomics landscape and potential multi-omics interaction networks in CpwMS, Plasma samples were collected from 22 CpwMS and 22 healthy controls (HCs) and analyzed using a Tandem Mass Tag (TMT)-based quantitative proteomics approach. Our results showed that the plasma proteomics pattern was significantly different in CpwMS compared to HCs. A total of 90 differentially expressed proteins (DEPs), such as LAMP1 and FCG2A, were identified in CpwMS plasma comparing to HCs. Furthermore, we also observed extensive and significant correlations between the altered proteomic profiles and the changes of metabolome, gut microbiome, as well as altered immunoinflammatory responses in MS-affected patients. For instance, the level of LAMP1 and ERN1 were significantly and positively correlated with the concentrations of metabolite L-glutamic acid and pro-inflammatory factor IL-17 (Padj < 0.05). However, they were negatively correlated with the amounts of other metabolites such as L-tyrosine and sphingosine 1-phosphate, as well as the concentrations of IL-8 and MIP-1α. This study outlined the underlying multi-omics integrated mechanisms that might regulate peripheral immunoinflammatory responses and MS progression. These findings are potentially helpful for developing new assisting diagnostic biomarker and therapeutic strategies for MS.
Collapse
Affiliation(s)
- Fan Yang
- Lishui Key Laboratory of Brain Health and Severe Brain Disorders, Department of Rehabilitation & Clinical Laboratory, Lishui Second People's Hospital, Lishui, China.
- Key Laboratory of Cell Engineering in Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.
| | - Long-You Zhao
- Lishui Key Laboratory of Brain Health and Severe Brain Disorders, Department of Rehabilitation & Clinical Laboratory, Lishui Second People's Hospital, Lishui, China
| | - Wen-Qi Yang
- Department of Clinical Laboratory & Gastrointestinal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shan Chao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Zong-Xin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bo-Yao Sun
- Department of Clinical Laboratory & Gastrointestinal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Li-Ping Wei
- Department of Clinical Laboratory & Gastrointestinal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Li-Juan Zhang
- Lishui Key Laboratory of Brain Health and Severe Brain Disorders, Department of Rehabilitation & Clinical Laboratory, Lishui Second People's Hospital, Lishui, China
| | - Li-Mei Yu
- Key Laboratory of Cell Engineering in Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - Guang-Yong Cai
- Lishui Key Laboratory of Brain Health and Severe Brain Disorders, Department of Rehabilitation & Clinical Laboratory, Lishui Second People's Hospital, Lishui, China.
| |
Collapse
|
2
|
Chen C, Shu Y, Yan C, Li H, Huang Z, Shen S, Liu C, Jiang Y, Huang S, Wang Z, Mei F, Qin F, Liu X, Qiu W. Astrocyte-derived clusterin disrupts glial physiology to obstruct remyelination in mouse models of demyelinating diseases. Nat Commun 2024; 15:7791. [PMID: 39242637 PMCID: PMC11379856 DOI: 10.1038/s41467-024-52142-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 08/26/2024] [Indexed: 09/09/2024] Open
Abstract
Multiple sclerosis (MS) is a debilitating demyelinating disease characterized by remyelination failure attributed to inadequate oligodendrocyte precursor cells (OPCs) differentiation and aberrant astrogliosis. A comprehensive cell atlas reanalysis of clinical specimens brings to light heightened clusterin (CLU) expression in a specific astrocyte subtype links to active lesions in MS patients. Our investigation reveals elevated astrocytic CLU levels in both active lesions of patient tissues and female murine MS models. CLU administration stimulates primary astrocyte proliferation while concurrently impeding astrocyte-mediated clearance of myelin debris. Intriguingly, CLU overload directly impedes OPC differentiation and induces OPCs and OLs apoptosis. Mechanistically, CLU suppresses PI3K-AKT signaling in primary OPCs via very low-density lipoprotein receptor. Pharmacological activation of AKT rescues the damage inflicted by excess CLU on OPCs and ameliorates demyelination in the corpus callosum. Furthermore, conditional knockout of CLU emerges as a promising intervention, showcasing improved remyelination processes and reduced severity in murine MS models.
Collapse
Affiliation(s)
- Chen Chen
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Neurosurgery, Lingnan Hospital, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yaqing Shu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chengkai Yan
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huilu Li
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhenchao Huang
- Department of Neurosurgery, Lingnan Hospital, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - ShiShi Shen
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chunxin Liu
- Department of Emergency, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanjun Jiang
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, China
- Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shixiong Huang
- Department of Neurology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Zhanhang Wang
- Department of Neurology, 999 Brain Hospital, Guangzhou, China
| | - Feng Mei
- Department of Histology and Embryology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Feng Qin
- Department of Neurosurgery, Lingnan Hospital, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Xiaodong Liu
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
3
|
Wurtz LI, Knyazhanskaya E, Sohaei D, Prassas I, Pittock S, Willrich MAV, Saadeh R, Gupta R, Atkinson HJ, Grill D, Stengelin M, Thebault S, Freedman MS, Diamandis EP, Scarisbrick IA. Identification of brain-enriched proteins in CSF as biomarkers of relapsing remitting multiple sclerosis. Clin Proteomics 2024; 21:42. [PMID: 38880880 PMCID: PMC11181608 DOI: 10.1186/s12014-024-09494-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a clinically and biologically heterogenous disease with currently unpredictable progression and relapse. After the development and success of neurofilament as a cerebrospinal fluid (CSF) biomarker, there is reinvigorated interest in identifying other markers of or contributors to disease. The objective of this study is to probe the predictive potential of a panel of brain-enriched proteins on MS disease progression and subtype. METHODS This study includes 40 individuals with MS and 14 headache controls. The MS cohort consists of 20 relapsing remitting (RR) and 20 primary progressive (PP) patients. The CSF of all individuals was analyzed for 63 brain enriched proteins using a method of liquid-chromatography tandem mass spectrometry. Wilcoxon rank sum test, Kruskal-Wallis one-way ANOVA, logistic regression, and Pearson correlation were used to refine the list of candidates by comparing relative protein concentrations as well as relation to known imaging and molecular biomarkers. RESULTS We report 30 proteins with some relevance to disease, clinical subtype, or severity. Strikingly, we observed widespread protein depletion in the disease CSF as compared to control. We identified numerous markers of relapsing disease, including KLK6 (kallikrein 6, OR = 0.367, p < 0.05), which may be driven by active disease as defined by MRI enhancing lesions. Other oligodendrocyte-enriched proteins also appeared at reduced levels in relapsing disease, namely CNDP1 (carnosine dipeptidase 1), LINGO1 (leucine rich repeat and Immunoglobin-like domain-containing protein 1), MAG (myelin associated glycoprotein), and MOG (myelin oligodendrocyte glycoprotein). Finally, we identified three proteins-CNDP1, APLP1 (amyloid beta precursor like protein 1), and OLFM1 (olfactomedin 1)-that were statistically different in relapsing vs. progressive disease raising the potential for use as an early biomarker to discriminate clinical subtype. CONCLUSIONS We illustrate the utility of targeted mass spectrometry in generating potential targets for future biomarker studies and highlight reductions in brain-enriched proteins as markers of the relapsing remitting disease stage.
Collapse
Affiliation(s)
- Lincoln I Wurtz
- Medical Scientist Training Program, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Alix School of Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Dorsa Sohaei
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Ioannis Prassas
- Mount Sinai Hospital, Toronto, Canada
- Laboratory Medicine Program, University Health Network, Toronto, Canada
| | - Sean Pittock
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Ruba Saadeh
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Ruchi Gupta
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Hunter J Atkinson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Diane Grill
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | - Simon Thebault
- Department of Medicine and The Ottawa Research Institute, Ottawa, Canada
- Division of Multiple Sclerosis, Department of Neurology, The University of Pennsylvania, Philadelphia, USA
| | - Mark S Freedman
- Department of Medicine and The Ottawa Research Institute, Ottawa, Canada
| | | | - Isobel A Scarisbrick
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA.
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
4
|
Jiménez-Jiménez FJ, Alonso-Navarro H, Salgado-Cámara P, García-Martín E, Agúndez JAG. Oxidative Stress Markers in Multiple Sclerosis. Int J Mol Sci 2024; 25:6289. [PMID: 38927996 PMCID: PMC11203935 DOI: 10.3390/ijms25126289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/10/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
The pathogenesis of multiple sclerosis (MS) is not completely understood, but genetic factors, autoimmunity, inflammation, demyelination, and neurodegeneration seem to play a significant role. Data from analyses of central nervous system autopsy material from patients diagnosed with multiple sclerosis, as well as from studies in the main experimental model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), suggest the possibility of a role of oxidative stress as well. In this narrative review, we summarize the main data from studies reported on oxidative stress markers in patients diagnosed with MS and in experimental models of MS (mainly EAE), and case-control association studies on the possible association of candidate genes related to oxidative stress with risk for MS. Most studies have shown an increase in markers of oxidative stress, a decrease in antioxidant substances, or both, with cerebrospinal fluid and serum/plasma malonyl-dialdehyde being the most reliable markers. This topic requires further prospective, multicenter studies with a long-term follow-up period involving a large number of patients with MS and controls.
Collapse
Affiliation(s)
- Félix Javier Jiménez-Jiménez
- Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey, E-28500 Madrid, Spain; (H.A.-N.); (P.S.-C.)
| | - Hortensia Alonso-Navarro
- Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey, E-28500 Madrid, Spain; (H.A.-N.); (P.S.-C.)
| | - Paula Salgado-Cámara
- Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey, E-28500 Madrid, Spain; (H.A.-N.); (P.S.-C.)
| | - Elena García-Martín
- University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, E-10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| | - José A. G. Agúndez
- University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, E-10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| |
Collapse
|
5
|
Amiri H, Javid H, Hashemi SF, Reihani A, Esparham A, Hashemy SI. The protective effects of hesperidin as an antioxidant against quinolinic acid-induced toxicity on oligodendroglia cells: An in vitro study. Mult Scler Relat Disord 2024; 82:105401. [PMID: 38154346 DOI: 10.1016/j.msard.2023.105401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023]
Abstract
INTRODUCTION Multiple sclerosis (MS) is a complex central nervous system disorder, marked by neurodegenerative and inflammatory processes, where overproduction of reactive oxygen species (ROS) is a key factor in demyelination and neurodegeneration. The current study aims to investigate the effect of hesperidin and Quinolinic acid (QA) on ROS and antioxidant levels, and cell viability of OLN-93 cells. METHODS OLN-93 cell lines were treated with hesperidin and QA. OLN-93 cells were cultured in Dulbecco's modified Eagle's medium under controlled conditions. Cell viability assays were performed using resazurin to assess the toxicity of hesperidin and QA. Additionally, ROS levels were measured using DCFDA, and malondialdehyde (MDA) levels were determined to evaluate oxidative stress. Superoxide dismutase (SOD) activity and cell viability were assessed by trypan blue staining after exposure to hesperidin and QA. RESULTS The results of the current study showed that co-administration of 8 mM QA with 50, 100, and 200 μM hesperidin significantly reduced both ROS and MDA levels, demonstrating a substantial attenuation in comparison to the elevated ROS and MDA levels induced by 8 mM QA (p-value < 0.01). Furthermore, 8 mM QA + 50, 100, and 200 μM hesperidin significantly increased SOD levels compared with QA alone (p-value < 0.01). In addition, treatment of OLN cells with 8 mM QA + 50, 100, and 200 μM hesperidin led to higher cell viability compared to QA alone (p value <0.0001). CONCLUSION The current study demonstrated the antioxidant effect of hesperidin on OLN-93 cells suggesting new insights into the clinical application of hesperidin as an effective treatment for patients with MS. Future in vivo studies, focusing on cellular mechanisms are recommended.
Collapse
Affiliation(s)
- Hamed Amiri
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran; Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Fatemeh Hashemi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirali Reihani
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Esparham
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Cadenas-Garrido P, Schonvandt-Alarcos A, Herrera-Quintana L, Vázquez-Lorente H, Santamaría-Quiles A, Ruiz de Francisco J, Moya-Escudero M, Martín-Oliva D, Martín-Guerrero SM, Rodríguez-Santana C, Aragón-Vela J, Plaza-Diaz J. Using Redox Proteomics to Gain New Insights into Neurodegenerative Disease and Protein Modification. Antioxidants (Basel) 2024; 13:127. [PMID: 38275652 PMCID: PMC10812581 DOI: 10.3390/antiox13010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Antioxidant defenses in biological systems ensure redox homeostasis, regulating baseline levels of reactive oxygen and nitrogen species (ROS and RNS). Oxidative stress (OS), characterized by a lack of antioxidant defenses or an elevation in ROS and RNS, may cause a modification of biomolecules, ROS being primarily absorbed by proteins. As a result of both genome and environment interactions, proteomics provides complete information about a cell's proteome, which changes continuously. Besides measuring protein expression levels, proteomics can also be used to identify protein modifications, localizations, the effects of added agents, and the interactions between proteins. Several oxidative processes are frequently used to modify proteins post-translationally, including carbonylation, oxidation of amino acid side chains, glycation, or lipid peroxidation, which produces highly reactive alkenals. Reactive alkenals, such as 4-hydroxy-2-nonenal, are added to cysteine (Cys), lysine (Lys), or histidine (His) residues by a Michael addition, and tyrosine (Tyr) residues are nitrated and Cys residues are nitrosylated by a Michael addition. Oxidative and nitrosative stress have been implicated in many neurodegenerative diseases as a result of oxidative damage to the brain, which may be especially vulnerable due to the large consumption of dioxygen. Therefore, the current methods applied for the detection, identification, and quantification in redox proteomics are of great interest. This review describes the main protein modifications classified as chemical reactions. Finally, we discuss the importance of redox proteomics to health and describe the analytical methods used in redox proteomics.
Collapse
Affiliation(s)
- Paula Cadenas-Garrido
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Avda, del Conocimiento s/n, 18016 Armilla, Spain; (P.C.-G.); (A.S.-A.); (A.S.-Q.); (J.R.d.F.); (M.M.-E.)
| | - Ailén Schonvandt-Alarcos
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Avda, del Conocimiento s/n, 18016 Armilla, Spain; (P.C.-G.); (A.S.-A.); (A.S.-Q.); (J.R.d.F.); (M.M.-E.)
| | - Lourdes Herrera-Quintana
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.); (C.R.-S.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Héctor Vázquez-Lorente
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.); (C.R.-S.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Alicia Santamaría-Quiles
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Avda, del Conocimiento s/n, 18016 Armilla, Spain; (P.C.-G.); (A.S.-A.); (A.S.-Q.); (J.R.d.F.); (M.M.-E.)
| | - Jon Ruiz de Francisco
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Avda, del Conocimiento s/n, 18016 Armilla, Spain; (P.C.-G.); (A.S.-A.); (A.S.-Q.); (J.R.d.F.); (M.M.-E.)
| | - Marina Moya-Escudero
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Avda, del Conocimiento s/n, 18016 Armilla, Spain; (P.C.-G.); (A.S.-A.); (A.S.-Q.); (J.R.d.F.); (M.M.-E.)
| | - David Martín-Oliva
- Department of Cell Biology, Faculty of Science, University of Granada, 18071 Granada, Spain;
| | - Sandra M. Martín-Guerrero
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9RT, UK
| | - César Rodríguez-Santana
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.); (C.R.-S.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Jerónimo Aragón-Vela
- Department of Health Sciences, Area of Physiology, Building B3, Campus s/n “Las Lagunillas”, University of Jaén, 23071 Jaén, Spain
| | - Julio Plaza-Diaz
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS, Complejo Hospitalario Universitario de Granada, 18071 Granada, Spain
| |
Collapse
|
7
|
Kartau M, Kartau J, Pohja M, Verkkoniemi‐Ahola A. Plasma antioxidant potential measured by total radical trapping antioxidant parameter in a cohort of multiple sclerosis patients. Brain Behav 2024; 14:e3377. [PMID: 38376020 PMCID: PMC10794128 DOI: 10.1002/brb3.3377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 12/12/2023] [Accepted: 12/16/2023] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Oxidative injury has been implicated as a mediator of demyelination, axonal damage, and neurodegeneration in multiple sclerosis (MS). There is a high demand for oxidative injury biomarkers. The aim of the study was to evaluate MS patients' plasma antioxidant potential using the total radical trapping parameter (TRAP) assay and examine its usefulness as an MS disease biomarker. METHODS A total number of 112 MS patients underwent an analysis of TRAP. In addition, plasma uric acid (UA) levels were analyzed. The neurological and radiological data were collected from patient records from Helsinki University Hospital during 2012-2013 when first-line injectables of moderate-efficacy, natalizumab (NTZ), and fingolimod (FTY) of high efficacy disease modifying therapies and in some cases azathioprine (AZT) were used to treat MS. RESULTS TRAP values were negatively associated with expanded disability status scale (EDSS) score with p-value .052, β = -28. There was also a negative association in TRAP values between patients with no medication (n = 22, TRAP mean 1255 μmol/L (95% confidence interval [CI] 1136-1374)) and patients who received NTZ, p-value .020 (n = 19, TRAP mean was 991 μmol/L (95% CI 849-1133) or FTY treatment, p-value .030 (n = 5, TRAP mean 982 μmol/L (95% CI 55-1909). Due to a small sample size, these results were not significant after applying a false discovery rate correction at a 0.05 significance level but are worth highlighting. Men in the study had higher TRAP values, p-value = .001 (TRAP mean 1320 ± 293 μmol/L) than women (TRAP mean 1082 ± 288 μmol/L). UA was positively associated with TRAP values, p-value <.001 and UA levels in men (UA mean 334.5 ± 62.6 μmol/L) were higher compared to women (UA mean 240 ± 55.8 μmol/L), t-test p-value <.001. The significant difference in TRAP levels between genders, with men showing higher TRAP values than women, may be attributed to the variation in UA levels. CONCLUSION Our findings suggest that lower plasma antioxidant potential is linked to more severe disability measured by EDSS scores. Patients treated with NTZ and FTY had reduced antioxidant power, which might be influenced by the active MS disease rather than the treatments themselves. The study reveals a strong positive correlation between UA levels and TRAP, particularly among women. However, men on average had better antioxidant potential than women. Neither the disease type nor the duration influences TRAP levels. While serving as a marker of antioxidant potential, plasma TRAP in MS patients does not reliably reflect overall oxidative stress (OS) and should not be solely used as an indicator of OS.
Collapse
Affiliation(s)
- Marge Kartau
- Clinical Neurosciences, NeurologyHelsinki University Hospital and Helsinki UniversityHelsinkiFinland
| | - Joonas Kartau
- Department of Mathematics and StatisticsUniversity of HelsinkiHelsinkiFinland
| | - Marjatta Pohja
- Clinical Neurosciences, NeurologyHelsinki University HospitalHelsinkiFinland
| | | |
Collapse
|
8
|
de la Rubia Ortí JE, Platero Armero JL, Cuerda-Ballester M, Sanchis-Sanchis CE, Navarro-Illana E, Lajara-Romance JM, Benlloch M, Ceron JJ, Tvarijonaviciute A, Proaño B. Lipid Profile in Multiple Sclerosis: Functional Capacity and Therapeutic Potential of Its Regulation after Intervention with Epigallocatechin Gallate and Coconut Oil. Foods 2023; 12:3730. [PMID: 37893623 PMCID: PMC10606609 DOI: 10.3390/foods12203730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Multiple sclerosis (MS) patients present dyslipidemia and functional disability. Epigallocatechin gallate (EGCG) and coconut oil have been shown to be effective against dyslipidemia. OBJECTIVE To analyze the relationship between lipid profiles, fat consumption, and functional disability in patients with MS after administering EGCG and coconut oil. METHODS A four-month pilot study was conducted on 45 MS patients, divided into an intervention group (IG) and a control group (CG). The IG received 800 mg of EGCG and 60 mL of coconut oil. Lipid profiles were measured before and after the intervention, along with other data such as dietary habits, inflammatory markers, and functional capacity. RESULTS Dyslipidemia did not correlate with the patients' fat consumption. After the intervention, triglycerides (TG) levels were lower in IG compared to CG. This decrease was positively correlated with an improvement in functional disability (determined by the Expanded Disability Status Scale (EDSS)) and negatively with high-density cholesterol (HDL) and apolipoprotein A1. Significant and positive correlations were observed between EDSS and C-reactive protein (CRP) in the IG. These changes in the IG could be related to body fat decrease, whose percentage shows a positive correlation with CRP and TG levels, and a negative correlation with HDL levels. CONCLUSIONS Patients with MS present a certain type of dyslipemia not associated with their nutritional habits. The administration of EGCG and coconut oil seems to decrease blood TG levels, which could explain the functional improvements.
Collapse
Affiliation(s)
- Jose Enrique de la Rubia Ortí
- Department of Nursing, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain; (J.E.d.l.R.O.); (J.L.P.A.); (C.E.S.-S.); (E.N.-I.); (B.P.)
| | - Jose Luis Platero Armero
- Department of Nursing, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain; (J.E.d.l.R.O.); (J.L.P.A.); (C.E.S.-S.); (E.N.-I.); (B.P.)
| | - María Cuerda-Ballester
- Doctoral Degree School, Health Sciences, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain;
| | - Claudia Emmanuela Sanchis-Sanchis
- Department of Nursing, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain; (J.E.d.l.R.O.); (J.L.P.A.); (C.E.S.-S.); (E.N.-I.); (B.P.)
| | - Esther Navarro-Illana
- Department of Nursing, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain; (J.E.d.l.R.O.); (J.L.P.A.); (C.E.S.-S.); (E.N.-I.); (B.P.)
| | | | - María Benlloch
- Department of Nursing, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain; (J.E.d.l.R.O.); (J.L.P.A.); (C.E.S.-S.); (E.N.-I.); (B.P.)
| | - Jose Joaquín Ceron
- Interdisciplinary Laboratory of Clinical Analysis, Campus of Excellence Mare Nostrum, University of Murcia, 30100 Murcia, Spain; (J.J.C.); (A.T.)
| | - Asta Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Analysis, Campus of Excellence Mare Nostrum, University of Murcia, 30100 Murcia, Spain; (J.J.C.); (A.T.)
| | - Belén Proaño
- Department of Nursing, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain; (J.E.d.l.R.O.); (J.L.P.A.); (C.E.S.-S.); (E.N.-I.); (B.P.)
| |
Collapse
|
9
|
Khalatbari Mohseni G, Hosseini SA, Majdinasab N, Cheraghian B. Effects of N-acetylcysteine on oxidative stress biomarkers, depression, and anxiety symptoms in patients with multiple sclerosis. Neuropsychopharmacol Rep 2023; 43:382-390. [PMID: 37386885 PMCID: PMC10496087 DOI: 10.1002/npr2.12360] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/18/2023] [Accepted: 06/11/2023] [Indexed: 07/01/2023] Open
Abstract
AIM N-acetylcysteine (NAC), a thiol-containing antioxidant and glutathione (GSH) precursor, attenuates oxidative stress, and possibly improves psychiatric disorders. This study aimed to evaluate the effects of oral NAC on oxidative stress, depression, and anxiety symptoms in patients with multiple sclerosis (MS). METHODS This clinical trial was conducted on 42 MS patients randomly assigned to intervention (n = 21) and control (n = 21) groups. The intervention group received 600 mg of NAC twice daily for 8 weeks, and the control group received a placebo with the same prescription form. An analysis of serum malondialdehyde (MDA), serum nitric oxide (NO), and erythrocyte GSH was carried out on both groups, along with a complete blood count. The Hospital Anxiety and Depression Scale (HADS) was used to assess symptoms of depression (HADS-D) and anxiety (HADS-A). RESULTS Compared to the control group, NAC consumption significantly decreased serum MDA concentrations (-0.33 [-5.85-2.50] vs. 2.75 [-0.25-5.22] μmol/L; p = 0.03) and HADS-A scores (-1.6 ± 2.67 vs. 0.33 ± 2.83; p = 0.02). No significant changes were observed in serum NO concentrations, erythrocyte GSH levels, and HADS-D scores (p > 0.05). CONCLUSIONS Based on the findings of the present study, NAC supplementation for 8 weeks decreased lipid peroxidation and improved anxiety symptoms in MS patients. The aforementioned results suggest that adjunctive therapy with NAC can be considered an effective strategy for MS management. Further randomized controlled studies are warranted.
Collapse
Affiliation(s)
- Golsa Khalatbari Mohseni
- Nutrition and Metabolic Diseases Research CenterAhvaz Jundishapur University of Medical SciencesAhvazIran
- Department of Nutrition, School of Allied Medical SciencesAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Seyed Ahmad Hosseini
- Nutrition and Metabolic Diseases Research CenterAhvaz Jundishapur University of Medical SciencesAhvazIran
- Department of Nutrition, School of Allied Medical SciencesAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Nastaran Majdinasab
- Department of Neurology, School of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Bahman Cheraghian
- Department of Statistics and Epidemiology, School of Public HealthAhvaz Jundishapur University of Medical SciencesAhvazIran
| |
Collapse
|
10
|
Vezzoli A, Mrakic-Sposta S, Dellanoce C, Montorsi M, Vietti D, Ferrero ME. Chelation Therapy Associated with Antioxidant Supplementation Can Decrease Oxidative Stress and Inflammation in Multiple Sclerosis: Preliminary Results. Antioxidants (Basel) 2023; 12:1338. [PMID: 37507878 PMCID: PMC10376540 DOI: 10.3390/antiox12071338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
An imbalance of oxy-inflammation status has been involved in axonal damage and demyelination in multiple sclerosis (MS). The aim of this study was to investigate the efficacy of an antioxidant treatment (calcium disodium ethylenediaminetetracetic acid-EDTA) chelation therapy associated with a micronutrient complex in MS patients. A total of 20 MS patients and 20 healthy subjects, enrolled as a control group (CTR), were recruited. We measured the plasma ROS production and total antioxidant capacity (TAC) by a direct assessment using Electron Paramagnetic Resonance; activities of the antioxidant system (thiols' redox status and enzymes); and the urinary presence of biomarkers of oxidative stress by immunoenzymatic assays. We also evaluated the levels of inflammation by plasmatic cytokines (TNFα, IL-1β, and IL-6) and assessed the sICAM levels, as well as the nitric oxide (NO) catabolism and transthyretin (TTR) concentration. Comparing CTR and MS, in the latter ROS production, oxidative damage, inflammatory biomarkers, and NO metabolite concentrations results were significantly higher, while TAC was significantly lower. Treatment in MS induced significant (p < 0.05) down-regulating of pro-inflammatory sICAM1, TNF-α, IL6, as well as biomarkers of lipid peroxidation and DNA damage production. The protective effect exhibited may occur by decreasing ROS production and increasing antioxidant capacity, turning into a more reduced thiols' status.
Collapse
Affiliation(s)
- Alessandra Vezzoli
- Institute of Clinical Physiology, National Research Council (IFC-CNR), Piazza Ospedale Maggiore 3, 20159 Milano, Italy
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology, National Research Council (IFC-CNR), Piazza Ospedale Maggiore 3, 20159 Milano, Italy
| | - Cinzia Dellanoce
- Institute of Clinical Physiology, National Research Council (IFC-CNR), Piazza Ospedale Maggiore 3, 20159 Milano, Italy
| | - Michela Montorsi
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Via di val Cannuta 247, 00166 Roma, Italy
| | - Daniele Vietti
- Driatec Srl, Via Leonardo da Vinci 21/E, 20060 Cassina de' Pecchi, Italy
| | - Maria Elena Ferrero
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milano, Italy
| |
Collapse
|
11
|
Martynova E, Khaibullin T, Salafutdinov I, Markelova M, Laikov A, Lopukhov L, Liu R, Sahay K, Goyal M, Baranwal M, Rizvanov AA, Khaiboullina S. Seasonal Changes in Serum Metabolites in Multiple Sclerosis Relapse. Int J Mol Sci 2023; 24:3542. [PMID: 36834957 PMCID: PMC9959388 DOI: 10.3390/ijms24043542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/27/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Multiple sclerosis (MS) is a debilitating chronic disease of unknown etiology. There are limited treatment options due to an incomplete understanding of disease pathology. The disease is shown to have seasonal exacerbation of clinical symptoms. The mechanisms of such seasonal worsening of symptoms remains unknown. In this study, we applied targeted metabolomics analysis of serum samples using LC-MC/MC to determine seasonal changes in metabolites throughout the four seasons. We also analyzed seasonal serum cytokine alterations in patients with relapsed MS. For the first time, we can demonstrate seasonal changes in various metabolites in MS compared to the control. More metabolites were affected in MS in the fall season followed by spring, while summer MS was characterized by the smallest number of affected metabolites. Ceramides were activated in all seasons, suggesting their central role in the disease pathogenesis. Substantial changes in glucose metabolite levels were found in MS, indicating a potential shift to glycolysis. An increased serum level of quinolinic acid was demonstrated in winter MS. Histidine pathways were affected, suggesting their role in relapse of MS in the spring and fall. We also found that spring and fall seasons had a higher number of overlapping metabolites affected in MS. This could be explained by patients having a relapse of symptoms during these two seasons.
Collapse
Affiliation(s)
- Ekaterina Martynova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Timur Khaibullin
- Republican Clinical Neurological Center, Republic of Tatarstan, 420021 Kazan, Russia
| | - Ilnur Salafutdinov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
- Department of Medical Biology and Genetic, Kazan State Medical University, 420088 Kazan, Russia
| | - Maria Markelova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Alexander Laikov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Leonid Lopukhov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Rongzeng Liu
- Department of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang 471003, China
| | - Kritika Sahay
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Mehendi Goyal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Svetlana Khaiboullina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| |
Collapse
|
12
|
Asgari R, Yarani R, Mohammadi P, Emami Aleagha MS. HIF-1α in the Crosstalk Between Reactive Oxygen Species and Autophagy Process: A Review in Multiple Sclerosis. Cell Mol Neurobiol 2022; 42:2121-2129. [PMID: 34089426 PMCID: PMC11421632 DOI: 10.1007/s10571-021-01111-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/27/2021] [Indexed: 12/16/2022]
Abstract
Cellular stress can lead to the production of reactive oxygen species (ROS) while autophagy, as a catabolic pathway, protects the cells against stress. Autophagy in its turn plays a pivotal role in the pathophysiology of multiple sclerosis (MS). In the current review, we first summarized the contribution of ROS and autophagy to MS pathogenesis. Then probable crosstalk between these two pathways through HIF-1α for the first time has been proposed with the hope of employing a better understanding of MS pathophysiology and probable therapeutic approaches.
Collapse
Affiliation(s)
- Rezvan Asgari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Yarani
- Translational Type 1 Diabetes Biology, Department of Clinical Research, Steno Diabetes Center Copenhagen, Copenhagen, Denmark
| | - Pantea Mohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | |
Collapse
|
13
|
Changing Perspectives from Oxidative Stress to Redox Signaling-Extracellular Redox Control in Translational Medicine. Antioxidants (Basel) 2022; 11:antiox11061181. [PMID: 35740078 PMCID: PMC9228063 DOI: 10.3390/antiox11061181] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 12/07/2022] Open
Abstract
Extensive research has changed the understanding of oxidative stress that has been linked to every major disease. Today we distinguish oxidative eu- and distress, acknowledging that redox modifications are crucial for signal transduction in the form of specific thiol switches. Long underestimated, reactive species and redox proteins of the Thioredoxin (Trx) family are indeed essential for physiological processes. Moreover, extracellular redox proteins, low molecular weight thiols and thiol switches affect signal transduction and cell–cell communication. Here, we highlight the impact of extracellular redox regulation for health, intermediate pathophenotypes and disease. Of note, recent advances allow the analysis of redox changes in body fluids without using invasive and expensive techniques. With this new knowledge in redox biochemistry, translational strategies can lead to innovative new preventive and diagnostic tools and treatments in life sciences and medicine.
Collapse
|
14
|
Grut V, Biström M, Salzer J, Stridh P, Lindam A, Alonso-Magdalena L, Andersen O, Jons D, Gunnarsson M, Vrethem M, Hultdin J, Sundström P. Free Vitamin D 3 Index and Vitamin D-binding protein in multiple sclerosis - a presymptomatic case-control study. Eur J Neurol 2022; 29:2335-2342. [PMID: 35582958 PMCID: PMC9545920 DOI: 10.1111/ene.15407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/12/2022] [Indexed: 11/28/2022]
Abstract
Background and purpose High levels of 25‐hydroxyvitamin D3 (25[OH]D3) are associated with a lower risk for multiple sclerosis (MS). The bioavailability of 25(OH)D3 is regulated by its main plasma carrier, vitamin D‐binding protein (DBP). Free 25(OH)D3 can be estimated by also measuring DBP concentration. In addition, DBP has immunomodulatory functions that may independently affect MS pathogenesis. No previous studies have assessed free 25(OH)D3 or DBP in presymptomatically collected samples. This study was undertaken to assess free 25(OH)D3 and DBP as risk factors for MS. Methods A nested case–control study was performed with presymptomatic serum samples identified through cross‐linkage of MS registries and Swedish biobanks. Concentration of 25(OH)D3 was measured with liquid chromatography and DBP levels with sandwich immunoassay. Free 25(OH)D3 was approximated as free vitamin D3 index: (25[OH]D3/DBP) × 103. MS risk was analyzed by conditional logistic regression, calculating odds ratios (ORs) with 95% confidence intervals (CIs). Results Serum samples from 660 pairs of matched cases and controls were included. At <20 years of age, high levels of free vitamin D3 index were associated with a lower risk of MS (highest vs. lowest quintile: OR = 0.37, 95% CI = 0.15–0.91, p for trend across quintiles = 0.04). At age 30–39 years, high levels of DBP were associated with a lower MS risk (highest vs. lowest quintile: OR = 0.36, 95% CI = 0.15–0.85, p for trend = 0.02). Conclusions These findings support the hypothesis that high levels of free 25(OH)D3 at a young age reduce the risk of MS later in life. They also implicate a role for DBP in MS etiology. The association of free vitamin D3 index, vitamin D‐binding protein, and the risk of developing multiple sclerosis was assessed in a case–control study of presymptomatically collected samples. High free vitamin D3 index before the age of 20 years was associated with a lower risk of developing multiple sclerosis later in life. High levels of vitamin D binding protein after the age of 30 years were associated with a lower risk of developing multiple sclerosis.
Collapse
Affiliation(s)
- Viktor Grut
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| | - Martin Biström
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| | - Jonatan Salzer
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| | - Pernilla Stridh
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Lindam
- Department of Public Health and Clinical Medicine, Unit of Research, Education and Development Östersund Hospital, Umeå University, Umeå, Sweden
| | - Lucia Alonso-Magdalena
- Department of Neurology, Skåne University Hospital in Malmö/Lund and Department of Clinical Sciences, Neurology, Lund University, Lund, Sweden
| | - Oluf Andersen
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Daniel Jons
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Martin Gunnarsson
- Department of Neurology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Magnus Vrethem
- Department of Neurology and Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Johan Hultdin
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, Sweden
| | - Peter Sundström
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| |
Collapse
|
15
|
Proteomics in Multiple Sclerosis: The Perspective of the Clinician. Int J Mol Sci 2022; 23:ijms23095162. [PMID: 35563559 PMCID: PMC9100097 DOI: 10.3390/ijms23095162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 02/08/2023] Open
Abstract
Multiple sclerosis (MS) is the inflammatory demyelinating and neurodegenerative disease of the central nervous system (CNS) that affects approximately 2.8 million people worldwide. In the last decade, a new era was heralded in by a new phenotypic classification, a new diagnostic protocol and the first ever therapeutic guideline, making personalized medicine the aim of MS management. However, despite this great evolution, there are still many aspects of the disease that are unknown and need to be further researched. A hallmark of these research are molecular biomarkers that could help in the diagnosis, differential diagnosis, therapy and prognosis of the disease. Proteomics, a rapidly evolving discipline of molecular biology may fulfill this dire need for the discovery of molecular biomarkers. In this review, we aimed to give a comprehensive summary on the utility of proteomics in the field of MS research. We reviewed the published results of the method in case of the pathogenesis of the disease and for biomarkers of diagnosis, differential diagnosis, conversion of disease courses, disease activity, progression and immunological therapy. We found proteomics to be a highly effective emerging tool that has been providing important findings in the research of MS.
Collapse
|
16
|
Carl E, Shevorykin A, Liskiewicz A. Methodological Investigation of Time Perspective Scoring and Quality of Life among Individuals with Multiple Sclerosis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:5038. [PMID: 35564432 PMCID: PMC9102034 DOI: 10.3390/ijerph19095038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 11/17/2022]
Abstract
Achieving and maintaining a high quality of life following the diagnosis of chronic illness has a positive impact on the experience of illness, including delayed disease progression and fewer relapses. Time perspective has shown promising relationships with quality of life, though studies using the construct in samples with chronic illness are sparse and methodologically heterogeneous. Participants (n = 123) were diagnosed with relapsing-remitting multiple sclerosis at least five years prior to enrollment and were beginning a new disease modifying therapy (DMT). The Zimbardo Time Perspective Inventory (ZTPI) and the World Health Organization Quality of Life (WHOQoL-100) assessment were administered at baseline and the WHOQoL-100 was administered six-weeks after starting the new DMT. This study investigated the utility of three common methods of scoring and interpreting ZTPI (balanced vs. deviation-from-balanced, categorical, and continuous scores) to predict change in quality of life. Independent sample t-tests revealed no difference in quality of life for balanced vs. deviation-from-balanced. One-way ANOVA revealed no difference in quality of life across time perspective categories. Linear regression analysis found that past-negative scores predicted decreases in all quality of life domains as well as overall score while present hedonistic scores predicted increases in psychological and overall quality of life.
Collapse
Affiliation(s)
- Ellen Carl
- Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA; (A.S.); (A.L.)
| | | | | |
Collapse
|
17
|
Escribano BM, Muñoz-Jurado A, Caballero-Villarraso J, Valdelvira ME, Giraldo AI, Paz-Rojas E, Gascón F, Santamaría A, Agüera E, Túnez I. Protective effects of melatonin on changes occurring in the experimental autoimmune encephalomyelitis model of multiple sclerosis. Mult Scler Relat Disord 2022; 58:103520. [PMID: 35038645 DOI: 10.1016/j.msard.2022.103520] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/27/2021] [Accepted: 01/09/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Melatonin has been related to the pathophysiology of multiple sclerosis (MS), and its anti-inflammatory and immunomodulatory properties have been proved in numerous neurodegenerative diseases. This study aimed to find out whether a melatonin supplement in MS is able to act as a benefit to its clinical status, i.e. oxidative stress, inflammation and indirect biomarkers of bacterial dysbiosis, lipopolysaccharide (LPS) and LPS-binding protein (LBP), verifying its therapeutic potential and its possible clinical use in patients with MS. METHODS The animal MS model, experimental autoimmune encephalomyelitis (EAE), was employed whereby 25 male Dark Agouti rats (5 animals per group) were divided into: a control group (not manipulated); a control+vehicle group; a control+melatonin group; an EAE group; an EAE+melatonin group. Melatonin was administered daily for 51 days, at a dose of 1 mg/kg body weight/i.p., once a day, five days a week. RESULTS The results from the administration of melatonin demonstrated an improvement in clinical status, a diminution in oxidative stress and inflammation, as well as in bacterial dysbiosis. CONCLUSION Melatonin could play an effective role against MS, either alone or as a therapy combined with traditional agents.
Collapse
Affiliation(s)
- Begoña María Escribano
- Department of Cell Biology, Physiology and Immunology, Faculty of Veterinary Medicine, Campus of Rabanales, University of Cordoba, Cordoba 14071, Spain; Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBC), Cordoba, Spain.
| | - A Muñoz-Jurado
- Department of Cell Biology, Physiology and Immunology, Faculty of Veterinary Medicine, Campus of Rabanales, University of Cordoba, Cordoba 14071, Spain
| | - J Caballero-Villarraso
- Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBC), Cordoba, Spain; Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Cordoba, Av. Menendez Pidal, Cordoba 14004, Spain; Clinical Analysis Service, Reina Sofia University Hospital, Cordoba, Spain
| | - M E Valdelvira
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Cordoba, Av. Menendez Pidal, Cordoba 14004, Spain
| | - A I Giraldo
- Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBC), Cordoba, Spain; Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Cordoba, Av. Menendez Pidal, Cordoba 14004, Spain
| | - E Paz-Rojas
- Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBC), Cordoba, Spain; Multiplex Biopharma S.L., Rabanales 21, Cordoba, Spain
| | - F Gascón
- Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBC), Cordoba, Spain; Clinical Analysis Service, Valle de los Pedroches, Hospital, Cordoba, Spain
| | - A Santamaría
- Laboratory of Exciting Amino Acids, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - E Agüera
- Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBC), Cordoba, Spain; Neurology Service, Reina Sofia University Hospital, Cordoba, Spain
| | - Isaac Túnez
- Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBC), Cordoba, Spain; Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Cordoba, Av. Menendez Pidal, Cordoba 14004, Spain; Cooperative Research Thematic Excellent Network on Brain Stimulation (REDESTIM), Spain.
| |
Collapse
|
18
|
Xie H, Yang X, Cao Y, Long X, Shang H, Jia Z. Role of lipoic acid in multiple sclerosis. CNS Neurosci Ther 2021; 28:319-331. [PMID: 34964271 PMCID: PMC8841304 DOI: 10.1111/cns.13793] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 02/05/2023] Open
Abstract
Lipoic acid (LA) is an endogenous antioxidant that exists widely in nature. Supplementation with LA is a promising approach to improve the outcomes of patients with multiple sclerosis (MS). This systematic review aimed to provide a comprehensive overview of both in vitro and in vivo studies describing the pharmacokinetics, efficacy, safety, and mechanism of LA in MS‐related experiments and clinical trials. A total of 516 records were identified by searching five databases, including PubMed, Web of Science, Embase, Scopus, and Cochrane Library. Overall, we included 20 studies reporting LA effects in cell and mouse models of MS and 12 studies reporting LA effects in patients with MS. Briefly, cell experiments revealed that LA protected neurons by inhibiting the expression of inflammatory mediators and activities of immune cells. Experimental autoimmune encephalomyelitis mouse experiments demonstrated that LA consistently reduced the number of infiltrating immune cells in the central nervous system and decreased the clinical disability scores. Patients with MS showed relatively stable Expanded Disability Status Scale scores and better walking performance with few adverse events after the oral administration of LA. Notably, heterogeneity of this evidence existed among modeling methods, LA usage, MS stage, and trial duration. In conclusion, this review provides evidence for the anti‐inflammatory and antioxidative effects of LA in both in vitro and in vivo experiments; therefore, patients with MS may benefit from LA administration. Whether LA can be a routine supplementary therapy warrants further study.
Collapse
Affiliation(s)
- Hongsheng Xie
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Xiufang Yang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Cao
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Xipeng Long
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Huifang Shang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiyun Jia
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Borisovs V, Bodrenko J, Kalnina J, Sjakste N. Nitrosative stress parameters and the level of oxidized DNA bases in patients with multiple sclerosis. Metab Brain Dis 2021; 36:1935-1941. [PMID: 34417942 DOI: 10.1007/s11011-021-00786-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 07/01/2021] [Indexed: 10/20/2022]
Abstract
Multiple sclerosis (MS) is a neurodegenerative disease with various factors affecting its etiology. Overproduction of nitric oxide and subsequent lesions of biopolymers are some of the possible causes of the disease. This study aimed to measure the most relevant nitrosative and oxidative stress biomarkers and the level of modified DNA bases in patients with MS. Each parameter was assayed in 25 patients with MS and 25 healthy controls. This study involved detecting blood plasma and serum nitric oxide metabolites by chemiluminescence detector Sievers NOA-280i, malondialdehyde (MDA) measurements with thiobarbituric acid reactive substance (TBARS) assay, detection of oxidized purines and pyrimidines with the enzyme-modified comet assay. Statistical analysis of the results was performed by one-way analysis of variance (ANOVA) and unpaired t test for the comparison of less than three data sets. DNA single-strand breaks, levels of modified purines and pyrimidines, as well as nitrite and nitrate levels in plasma and serum samples, were significantly higher in patients with MS than in healthy controls. On the contrary, MDA levels appeared to be lower in patients with MS.
Collapse
Affiliation(s)
- Vitalijs Borisovs
- Faculty of Medicine, Academic Centre for Natural Sciences, University of Latvia, Jelgavas Str. 1, Riga, LV1004, Latvia.
| | - Jevgenijs Bodrenko
- Faculty of Medicine, Academic Centre for Natural Sciences, University of Latvia, Jelgavas Str. 1, Riga, LV1004, Latvia
| | - Jolanta Kalnina
- Genomics and Bioinformatics, Institute of Biology of the University of Latvia, Riga, Latvia
| | - Nikolajs Sjakste
- Faculty of Medicine, Academic Centre for Natural Sciences, University of Latvia, Jelgavas Str. 1, Riga, LV1004, Latvia
- Genomics and Bioinformatics, Institute of Biology of the University of Latvia, Riga, Latvia
| |
Collapse
|
20
|
López-Pedrera C, Villalba JM, Patiño-Trives AM, Luque-Tévar M, Barbarroja N, Aguirre MÁ, Escudero-Contreras A, Pérez-Sánchez C. Therapeutic Potential and Immunomodulatory Role of Coenzyme Q 10 and Its Analogues in Systemic Autoimmune Diseases. Antioxidants (Basel) 2021; 10:antiox10040600. [PMID: 33924642 PMCID: PMC8069673 DOI: 10.3390/antiox10040600] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/14/2022] Open
Abstract
Coenzyme Q10 (CoQ10) is a mitochondrial electron carrier and a powerful lipophilic antioxidant located in membranes and plasma lipoproteins. CoQ10 is endogenously synthesized and obtained from the diet, which has raised interest in its therapeutic potential against pathologies related to mitochondrial dysfunction and enhanced oxidative stress. Novel formulations of solubilized CoQ10 and the stabilization of reduced CoQ10 (ubiquinol) have improved its bioavailability and efficacy. Synthetic analogues with increased solubility, such as idebenone, or accumulated selectively in mitochondria, such as MitoQ, have also demonstrated promising properties. CoQ10 has shown beneficial effects in autoimmune diseases. Leukocytes from antiphospholipid syndrome (APS) patients exhibit an oxidative perturbation closely related to the prothrombotic status. In vivo ubiquinol supplementation in APS modulated the overexpression of inflammatory and thrombotic risk-markers. Mitochondrial abnormalities also contribute to immune dysregulation and organ damage in systemic lupus erythematosus (SLE). Idebenone and MitoQ improved clinical and immunological features of lupus-like disease in mice. Clinical trials and experimental models have further demonstrated a therapeutic role for CoQ10 in Rheumatoid Arthritis, multiple sclerosis and type 1 diabetes. This review summarizes the effects of CoQ10 and its analogs in modulating processes involved in autoimmune disorders, highlighting the potential of these therapeutic approaches for patients with immune-mediated diseases.
Collapse
Affiliation(s)
- Chary López-Pedrera
- Rheumatology Service, Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Córdoba (IMIBIC), University of Córdoba, 14004 Córdoba, Spain; (A.M.P.-T.); (M.L.-T.); (N.B.); (M.Á.A.); (A.E.-C.)
- Correspondence: ; Tel.: +34-957-213795
| | - José Manuel Villalba
- Department of Cell Biology, Immunology and Physiology, Agrifood Campus of International Excellence, University of Córdoba, ceiA3, 14014 Córdoba, Spain; (J.M.V.); (C.P.-S.)
| | - Alejandra Mª Patiño-Trives
- Rheumatology Service, Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Córdoba (IMIBIC), University of Córdoba, 14004 Córdoba, Spain; (A.M.P.-T.); (M.L.-T.); (N.B.); (M.Á.A.); (A.E.-C.)
| | - Maria Luque-Tévar
- Rheumatology Service, Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Córdoba (IMIBIC), University of Córdoba, 14004 Córdoba, Spain; (A.M.P.-T.); (M.L.-T.); (N.B.); (M.Á.A.); (A.E.-C.)
| | - Nuria Barbarroja
- Rheumatology Service, Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Córdoba (IMIBIC), University of Córdoba, 14004 Córdoba, Spain; (A.M.P.-T.); (M.L.-T.); (N.B.); (M.Á.A.); (A.E.-C.)
| | - Mª Ángeles Aguirre
- Rheumatology Service, Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Córdoba (IMIBIC), University of Córdoba, 14004 Córdoba, Spain; (A.M.P.-T.); (M.L.-T.); (N.B.); (M.Á.A.); (A.E.-C.)
| | - Alejandro Escudero-Contreras
- Rheumatology Service, Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Córdoba (IMIBIC), University of Córdoba, 14004 Córdoba, Spain; (A.M.P.-T.); (M.L.-T.); (N.B.); (M.Á.A.); (A.E.-C.)
| | - Carlos Pérez-Sánchez
- Department of Cell Biology, Immunology and Physiology, Agrifood Campus of International Excellence, University of Córdoba, ceiA3, 14014 Córdoba, Spain; (J.M.V.); (C.P.-S.)
| |
Collapse
|
21
|
Redox Imbalance in CD4+ T Cells of Relapsing-Remitting Multiple Sclerosis Patients. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8860813. [PMID: 33354282 PMCID: PMC7735833 DOI: 10.1155/2020/8860813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/01/2020] [Accepted: 11/15/2020] [Indexed: 11/17/2022]
Abstract
As a prevalent autoimmune disease of the central nervous system in young adults, multiple sclerosis (MS) is mediated by T cells, particularly CD4+ subsets. Given the evidence that the perturbation in reactive oxygen species (ROS) production has a pivotal role in the onset and progression of MS, its regulation through the antioxidant molecules is too important. Here, we investigated the level of the redox system components in lymphocytes and CD4+ T cells of MS patients. The study was performed on relapsing-remitting MS (RRMS) patients (n = 29) and age- and sex-matched healthy controls (n = 15). Peripheral blood mononuclear cells (PBMCs) were cultured and stimulated by anti-CD3/CD28. The level of ROS, anion superoxide (O2 -), and L-𝛾-glutamyl-Lcysteinylglycine (GSH) was measured by flow cytometry in lymphocytes/CD4+ T cells. The gene expression level of gp91phox, catalase, superoxide dismutase 1/2 (SOD), and nuclear factor-E2-related factor (Nrf2) was also measured by real-time PCR. We found that lymphocytes/CD4+ T cells of RRMS patients at the relapse phase significantly produced higher levels of ROS and O2 - compared to patients at the remission phase (P value < 0.001) and healthy controls (P value < 0.001 and P value < 0.05, respectively). Interestingly, the gene expression level of gp91phox, known as the catalytic subunit of the NADPH oxidase, significantly increased in MS patients at the relapse phase (P value < 0.05). Furthermore, the catalase expression augmented in patients at the acute phase (P value < 0.05), while an increased expression of SOD1 and Nrf2 was found in RRMS patients at relapse and remission phases (P value < 0.05). The increased production of ROS in CD4+ T cells of RRMS patients highlights the importance of amplifying antioxidant components as an efficient approach to ameliorate disease activity in MS patients.
Collapse
|
22
|
Koudriavtseva T, Stefanile A, Fiorelli M, Lapucci C, Lorenzano S, Zannino S, Conti L, D'Agosto G, Pimpinelli F, Di Domenico EG, Mandoj C, Giannarelli D, Donzelli S, Blandino G, Salvetti M, Inglese M. Coagulation/Complement Activation and Cerebral Hypoperfusion in Relapsing-Remitting Multiple Sclerosis. Front Immunol 2020; 11:548604. [PMID: 33193314 PMCID: PMC7655134 DOI: 10.3389/fimmu.2020.548604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/25/2020] [Indexed: 01/08/2023] Open
Abstract
Introduction Multiple sclerosis (MS) is a demyelinating disease of the central nervous system with an underlying immune-mediated and inflammatory pathogenesis. Innate immunity, in addition to the adaptive immune system, plays a relevant role in MS pathogenesis. It represents the immediate non-specific defense against infections through the intrinsic effector mechanism “immunothrombosis” linking inflammation and coagulation. Moreover, decreased cerebral blood volume (CBV), cerebral blood flow (CBF), and prolonged mean transit time (MTT) have been widely demonstrated by MRI in MS patients. We hypothesized that coagulation/complement and platelet activation during MS relapse, likely during viral infections, could be related to CBF decrease. Our specific aims are to evaluate whether there are differences in serum/plasma levels of coagulation/complement factors between relapsing-remitting (RR) MS patients (RRMS) in relapse and those in remission and healthy controls as well as to assess whether brain hemodynamic changes detected by MRI occur in relapse compared with remission. This will allow us to correlate coagulation status with perfusion and demographic/clinical features in MS patients. Materials and Methods This is a multi-center, prospective, controlled study. RRMS patients (1° group: 30 patients in relapse; 2° group: 30 patients in remission) and age/sex-matched controls (3° group: 30 subjects) will be enrolled in the study. Patients and controls will be tested for either coagulation/complement (C3, C4, C4a, C9, PT, aPTT, fibrinogen, factor II, VIII, and X, D-dimer, antithrombin, protein C, protein S, von-Willebrand factor), soluble markers of endothelial damage (thrombomodulin, Endothelial Protein C Receptor), antiphospholipid antibodies, lupus anticoagulant, complete blood count, viral serological assays, or microRNA microarray. Patients will undergo dynamic susceptibility contrast-enhanced MRI using a 3.0-T scanner to evaluate CBF, CBV, MTT, lesion number, and volume. Statistical Analysis ANOVA and unpaired t-tests will be used. The level of significance was set at p ≤ 0.05. Discussion Identifying a link between activation of coagulation/complement system and cerebral hypoperfusion could improve the identification of novel molecular and/or imaging biomarkers and targets, leading to the development of new effective therapeutic strategies in MS. Clinical Trial Registration Clinicaltrials.gov, identifier NCT04380220.
Collapse
Affiliation(s)
- Tatiana Koudriavtseva
- Department of Clinical Experimental Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Annunziata Stefanile
- Department of Clinical Experimental Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Marco Fiorelli
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Caterina Lapucci
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Svetlana Lorenzano
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Silvana Zannino
- Department of Clinical Experimental Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Conti
- Department of Clinical Experimental Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giovanna D'Agosto
- Clinical Pathology and Microbiology Unit, IRCC San Gallicano Institute, Rome, Italy
| | - Fulvia Pimpinelli
- Clinical Pathology and Microbiology Unit, IRCC San Gallicano Institute, Rome, Italy
| | | | - Chiara Mandoj
- Department of Clinical Experimental Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Diana Giannarelli
- Biostatistics, Scientific Direction, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Sara Donzelli
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Marco Salvetti
- Department of Neuroscience Mental Health and Sensory Organs (NEMOS), Sapienza University, Sant'Andrea Hospital, Rome, Italy
| | - Matilde Inglese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy.,Department of Neurology, Radiology and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
23
|
Tanaka M, Vécsei L. Monitoring the Redox Status in Multiple Sclerosis. Biomedicines 2020; 8:E406. [PMID: 33053739 PMCID: PMC7599550 DOI: 10.3390/biomedicines8100406] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
Worldwide, over 2.2 million people suffer from multiple sclerosis (MS), a multifactorial demyelinating disease of the central nervous system. MS is characterized by a wide range of motor, autonomic, and psychobehavioral symptoms, including depression, anxiety, and dementia. The blood, cerebrospinal fluid, and postmortem brain samples of MS patients provide evidence on the disturbance of reduction-oxidation (redox) homeostasis, such as the alterations of oxidative and antioxidative enzyme activities and the presence of degradation products. This review article discusses the components of redox homeostasis, including reactive chemical species, oxidative enzymes, antioxidative enzymes, and degradation products. The reactive chemical species cover frequently discussed reactive oxygen/nitrogen species, infrequently featured reactive chemicals such as sulfur, carbonyl, halogen, selenium, and nucleophilic species that potentially act as reductive, as well as pro-oxidative stressors. The antioxidative enzyme systems cover the nuclear factor erythroid-2-related factor 2 (NRF2)-Kelch-like ECH-associated protein 1 (KEAP1) signaling pathway. The NRF2 and other transcriptional factors potentially become a biomarker sensitive to the initial phase of oxidative stress. Altered components of the redox homeostasis in MS were discussed in search of a diagnostic, prognostic, predictive, and/or therapeutic biomarker. Finally, monitoring the battery of reactive chemical species, oxidative enzymes, antioxidative enzymes, and degradation products helps to evaluate the redox status of MS patients to expedite the building of personalized treatment plans for the sake of a better quality of life.
Collapse
Affiliation(s)
- Masaru Tanaka
- MTA-SZTE, Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary;
- Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - László Vécsei
- MTA-SZTE, Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary;
- Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| |
Collapse
|
24
|
Mullen L, Mengozzi M, Hanschmann EM, Alberts B, Ghezzi P. How the redox state regulates immunity. Free Radic Biol Med 2020; 157:3-14. [PMID: 31899344 DOI: 10.1016/j.freeradbiomed.2019.12.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/05/2019] [Accepted: 12/19/2019] [Indexed: 12/30/2022]
Abstract
Oxidative stress is defined as an imbalance between the levels of reactive oxygen species (ROS) and antioxidant defences. The view of oxidative stress as a cause of cell damage has evolved over the past few decades to a much more nuanced view of the role of oxidative changes in cell physiology. This is no more evident than in the field of immunity, where oxidative changes are now known to regulate many aspects of the immune response, and inflammatory pathways in particular. Our understanding of redox regulation of immunity now encompasses not only increases in reactive oxygen and nitrogen species, but also changes in the activities of oxidoreductase enzymes. These enzymes are important regulators of immune pathways both via changes in their redox activity, but also via other more recently identified cytokine-like functions. The emerging picture of redox regulation of immune pathways is one of increasing complexity and while therapeutic targeting of the redox environment to treat inflammatory disease is a possibility, any such strategy is likely to be more nuanced than simply inhibiting ROS production.
Collapse
Affiliation(s)
- Lisa Mullen
- Brighton and Sussex Medical School, Falmer, Brighton, UK
| | | | - Eva-Maria Hanschmann
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany
| | - Ben Alberts
- Brighton and Sussex Medical School, Falmer, Brighton, UK
| | - Pietro Ghezzi
- Brighton and Sussex Medical School, Falmer, Brighton, UK.
| |
Collapse
|
25
|
The Influence of Reactive Oxygen Species in the Immune System and Pathogenesis of Multiple Sclerosis. Autoimmune Dis 2020; 2020:5793817. [PMID: 32789026 PMCID: PMC7334772 DOI: 10.1155/2020/5793817] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 04/14/2020] [Accepted: 05/22/2020] [Indexed: 02/08/2023] Open
Abstract
Multiple roles have been indicated for reactive oxygen species (ROS) in the immune system in recent years. ROS have been extensively studied due to their ability to damage DNA and other subcellular structures. Noticeably, they have been identified as a pivotal second messenger for T-cell receptor signaling and T-cell activation and participate in antigen cross-presentation and chemotaxis. As an agent with direct toxic effects on cells, ROS lead to the initiation of the autoimmune response. Moreover, ROS levels are regulated by antioxidant systems, which include enzymatic and nonenzymatic antioxidants. Enzymatic antioxidants include superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase. Nonenzymatic antioxidants contain vitamins C, A, and E, glutathione, and thioredoxin. Particularly, cellular antioxidant systems have important functions in maintaining the redox system homeostasis. This review will discuss the significant roles of ROS generation and antioxidant systems under normal conditions, in the immune system, and pathogenesis of multiple sclerosis.
Collapse
|
26
|
Oxidative Stress and Vitamin D as Predictors in Multiple Sclerosis. CURRENT HEALTH SCIENCES JOURNAL 2020; 46:371-378. [PMID: 33717511 PMCID: PMC7948027 DOI: 10.12865/chsj.46.04.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/18/2020] [Indexed: 11/08/2022]
Abstract
Multiple Sclerosis (MS) is a multifactorial demyelinating diseases that affect mostly the young and active people. Here, is crucial to identify new strategies in order to slow down the diseases progression and maintain a good functional outcome. Our hypothesis was that the interconnection between anti-oxidant molecules and anti-inflammatory or neuroprotective molecules can act as predictors of diseases progression. In the study were included 36 patients with MS. Inclusion criteria were the following: patients over 18 years old were divided in three groups, 16 relapsing-remitting MS (RRMS) group, 10 secondary progressive MS (SPMS) group and 10 healthy control group. We showed that the vitamin D sufficiency did not improve de EDSS score in the later stage of diseases. Also, we showed that in the early stage (RRMS) the vitamin D status can significantly improve the EDSS and IADL score and may slow down the diseases progression. started with the early stage of diseases (RRMS) we found that catalase activity, an enzyme that act as anti-oxidant, is significantly decreased compare with healthy people, and can be associated with a low level of vitamin D. we concluded that a pro-oxidative and anti-oxidative balance is an important player in the multifactorial mechanism of MS diseases progression and additional prospective studies are needed to determine optimal vitamin D levels that lead to clinical and immunological benefits for patients with MS. Long-term follow-up studies using high-dose vitamin D supplementation are needed to confirm the preliminary results of the studies.
Collapse
|
27
|
Skarlis C, Anagnostouli M. The role of melatonin in Multiple Sclerosis. Neurol Sci 2019; 41:769-781. [PMID: 31845043 DOI: 10.1007/s10072-019-04137-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/31/2019] [Indexed: 12/20/2022]
Abstract
Melatonin is a neurohormone mainly produced by the pineal gland following a circadian rhythm. It is characterized as a pleiotropic factor because it not only regulates the wake-sleep rhythm but also exerts antinociceptive, antidepressant, anxiolytic, and immunomodulating properties. Recent studies suggest that dysregulation of melatonin secretion is associated with the pathogenesis of various autoimmune diseases, such as, rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and multiple sclerosis (MS). MS is an autoimmune disorder characterized by an abnormal immune response directed against the myelin sheath in the central nervous system, demyelination, oligodendrocyte death, and axonal degeneration. Recent evidence reveals that melatonin secretion is dysregulated in MS patients, suggesting that melatonin could be a potential target for therapeutic intervention. Here, we summarize the available literature regarding the role of melatonin in immune processes relevant for experimental autoimmune encephalomyelitis (EAE), MS, and the current clinical trials of melatonin supplementation in MS patients.
Collapse
Affiliation(s)
- Charalampos Skarlis
- Immunogenetics Laboratory, 1st Department of Neurology, Medical School of National and Kapodistrian University of Athens, Aeginition Hospital, Vas. Sophias, 74, 115 28, Athens, Greece.
| | - Maria Anagnostouli
- Immunogenetics Laboratory, 1st Department of Neurology, Medical School of National and Kapodistrian University of Athens, Aeginition Hospital, Vas. Sophias, 74, 115 28, Athens, Greece. .,Demyelinating Diseases Clinic, 1st Department of Neurology, Medical School of National and Kapodistrian University of Athens, Aeginition Hospital, Athens, Greece.
| |
Collapse
|
28
|
Tobore TO. Towards a comprehensive etiopathogenetic and pathophysiological theory of multiple sclerosis. Int J Neurosci 2019; 130:279-300. [PMID: 31588832 DOI: 10.1080/00207454.2019.1677648] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background: Multiple sclerosis (MS) is a neurodegenerative disease caused by dysfunction of the immune system that affects the central nervous system (CNS). It is characterized by demyelination, chronic inflammation, neuronal and oligodendrocyte loss and reactive astrogliosis. It can result in physical disability and acute neurological and cognitive problems. Despite the gains in knowledge of immunology, cell biology, and genetics in the last five decades, the ultimate etiology or specific elements that trigger MS remain unknown. The objective of this review is to propose a theoretical basis for MS etiopathogenesis.Methods: Search was done by accessing PubMed/Medline, EBSCO, and PsycINFO databases. The search string used was "(multiple sclerosis* OR EAE) AND (pathophysiology* OR etiopathogenesis)". The electronic databases were searched for titles or abstracts containing these terms in all published articles between January 1, 1960, and June 30, 2019. The search was filtered down to 362 articles which were included in this review.Results: A framework to better understand the etiopathogenesis and pathophysiology of MS can be derived from four essential factors; mitochondria dysfunction (MtD) & oxidative stress (OS), vitamin D (VD), sex hormones and thyroid hormones. These factors play a direct role in MS etiopathogenesis and have a modulatory effect on many other factors involved in the disease.Conclusions: For better MS prevention and treatment outcomes, efforts should be geared towards treating thyroid problems, sex hormone alterations, VD deficiency, sleep problems and melatonin alterations. MS patients should be encouraged to engage in activities that boost total antioxidant capacity (TAC) including diet and regular exercise and discouraged from activities that promote OS including smoking and alcohol consumption.
Collapse
|
29
|
Extra-Virgin Olive Oil Modifies the Changes Induced in Non-Nervous Organs and Tissues by Experimental Autoimmune Encephalomyelitis Models. Nutrients 2019; 11:nu11102448. [PMID: 31615022 PMCID: PMC6848921 DOI: 10.3390/nu11102448] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/02/2019] [Accepted: 10/10/2019] [Indexed: 12/28/2022] Open
Abstract
This study reveals the existence of oxidative stress (reactive oxygen species (ROS)) in non-nervous organs and tissues in multiple sclerosis (MS) by means of a model of experimental autoimmune encephalomyelitis (EAE) in rats. This model reproduces a similar situation to MS, as well as its relationship with intestinal microbiota starting from the changes in bacterial lipopolysaccharide levels (LPS) in the outer wall of the gram-negative bacteria. Finally, the administration of extra-virgin olive oil (EVOO), hydroxytirosol (HT), and oleic acid (OA) exert beneficial effects. Twenty-five Dark Agouti two-month-old male rats, weighing around 190 g, were distributed into the following groups: Control, EAE (experimental autoimmune encephalomyelitis group), EAE + EVOO, EAE + HT, and EAE + OA. The glutathione redox system with the EAE was measured in heart, kidney, liver, and small and large intestines. The LPS and the correlation with oxidative stress in the small and large intestines were also investigated. The results showed that (1) the oxidative damage in the EAE model affects non-nervous organs and tissues; (2) The LPS is related to inflammatory phenomena and oxidative stress in the intestinal tissue and in other organs; (3) The administration of EVOO, HT, and OA reduces the LPS levels at the same time as minimizing the oxidative damage; (4) EVOO, HT, and OA improve the disease's clinical score; and (5) on balance, EVOO offers a better neuroprotective effect.
Collapse
|
30
|
Tobore TO. On elucidation of the role of mitochondria dysfunction and oxidative stress in multiple sclerosis. ACTA ACUST UNITED AC 2019. [DOI: 10.1111/ncn3.12335] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Gonzalo H, Nogueras L, Gil-Sánchez A, Hervás JV, Valcheva P, González-Mingot C, Martin-Gari M, Canudes M, Peralta S, Solana MJ, Pamplona R, Portero-Otin M, Boada J, Serrano JCE, Brieva L. Impairment of Mitochondrial Redox Status in Peripheral Lymphocytes of Multiple Sclerosis Patients. Front Neurosci 2019; 13:938. [PMID: 31551694 PMCID: PMC6738270 DOI: 10.3389/fnins.2019.00938] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/21/2019] [Indexed: 11/13/2022] Open
Abstract
Literature suggests that oxidative stress (OS) may be involved in the pathogenesis of multiple sclerosis (MS), in which the immune system is known to play a key role. However, to date, the OS in peripheral lymphocytes and its contribution to the disease remain unknown. The aim of the present study was to explore the influence of OS in peripheral lymphocytes of MS patients. To that end, a cross-sectional, observational pilot study was conducted [n = 58: 34 MS and 24 healthy subjects (control group)]. We have measured superoxide production and protein mitochondrial complex levels in peripheral blood mononuclear cells (PBMCs) isolated from MS patients and control. Lactate levels and the antioxidant capacity were determined in plasma. We adjusted the comparisons between study groups by age, sex and cell count according to case. Results demonstrated that PBMCs, specifically T cells, from MS patients exhibited significantly increased superoxide anion production compared to control group (p = 0.027 and p = 0.041, respectively). Increased superoxide production in PBMCs was maintained after the adjustment (p = 0.044). Regarding mitochondrial proteins, we observe a significant decrease in the representative protein content of the mitochondrial respiratory chain complexes I-V in PBMCs of MS patients (p = 0.002, p = 0.037, p = 0.03, p = 0.044, and p = 0.051, respectively), which was maintained for complexes I, III, and V after the adjustment (p = 0.026; p = 0.033; p = 0.033, respectively). In MS patients, a trend toward increased plasma lactate concentration was detected [8.04 mg lactate/dL (5.25, 9.49) in the control group, 11.36 mg lactate/dL (5.41, 14.81) in MS patients] that was statistically significant after the adjustment (p = 0.013). This might be indicative of compromised mitochondrial function. Finally, antioxidant capacity was also decreased in plasma from MS patients, both before (p = 0.027) and after adjusting for sex and age (p = 0.006). Our findings demonstrate that PBMCs of MS patients show impaired mitochondrial redox status and deficient antioxidant capacity. These results demonstrate for the first time the existence of mitochondrial alterations in the cells immune cells of MS patients already at the peripheral level.
Collapse
Affiliation(s)
- Hugo Gonzalo
- Institut de Recerca Biomèdica de Lleida, Lleida, Spain.,Clinical University Hospital of Valladolid (HCUV), Department of Research and Innovation, SACYL/IECSCYL, Valladolid, Spain
| | - Lara Nogueras
- Universitat de Lleida, Departament de Medicina Experimental, Lleida, Spain
| | | | | | | | | | | | - Marc Canudes
- Institut de Recerca Biomèdica de Lleida, Lleida, Spain
| | | | | | - Reinald Pamplona
- Universitat de Lleida, Departament de Medicina Experimental, Lleida, Spain
| | | | - Jordi Boada
- Universitat de Lleida, Departament de Medicina Experimental, Lleida, Spain
| | | | - Luis Brieva
- Hospital Universitario Arnau de Vilanova, Lleida, Spain
| |
Collapse
|
32
|
Gajofatto A, Donisi V, Busch IM, Gobbin F, Butturini E, Calabrese M, Carcereri de Prati A, Cesari P, Del Piccolo L, Donadelli M, Fabene P, Fochi S, Gomez-Lira M, Magliozzi R, Malerba G, Mariotti R, Mariotto S, Milanese C, Romanelli MG, Sbarbati A, Schena F, Mazzi MA, Rimondini M. Biopsychosocial model of resilience in young adults with multiple sclerosis (BPS-ARMS): an observational study protocol exploring psychological reactions early after diagnosis. BMJ Open 2019; 9:e030469. [PMID: 31377712 PMCID: PMC6687017 DOI: 10.1136/bmjopen-2019-030469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/06/2019] [Accepted: 07/12/2019] [Indexed: 11/14/2022] Open
Abstract
INTRODUCTION Multiple sclerosis (MS), the most common neurological disease causing disability in young adults, is widely recognised as a major stress factor. Studies have shown that the first years after the diagnosis are distressing in terms of adjustment to the disease and that MS negatively affects patients' psychological well-being, quality of life (QoL) and social functioning. However, the links between disease-specific variables at diagnosis, resilience and psychological adjustment of patients with MS remain largely unexplored, especially in adolescents and young adults. This observational study aims to fill the gap of knowledge on biopsychosocial characteristics and resilience of young adults with MS to evaluate the relationship among these variables and to develop a biopsychosocial model of resilience. METHODS AND ANALYSIS Biological and clinical characteristics of young adults newly diagnosed with MS will be investigated by collecting clinical information, performing neurological examinations, MRI and analysing cerebrospinal fluid and blood biomarkers (eg, measures of inflammation), body composition, gut microbiota and movement/perceptual markers. Psychosocial characteristics (eg, psychological distress, coping strategies), QoL, psychological well-being and resilience will be assessed by self-report questionnaires. Comparative statistics (ie, analysis of variance or unpaired samples t-test, correlation and regression analyses) will be applied to evaluate the relationship among biological, psychological and social factors. The results are expected to allow a comprehensive understanding of the determinants of resilience in young patients with MS and to inform resilience interventions, tailored to young patients' specific needs, aiming to reduce the risk of maladaptive reactions to the disease and to improve psychological well-being and QoL. ETHICS AND DISSEMINATION The study has been approved by the Verona University Hospital Ethics Committee (approval number: 2029CESC). The findings will be disseminated through scientific publications in peer-reviewed journals, conference presentations, social media and specific websites. TRIAL REGISTRATION NUMBER ClinicalTrials.gov (NCT03825055).
Collapse
Affiliation(s)
- Alberto Gajofatto
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Valeria Donisi
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Isolde Martina Busch
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Francesca Gobbin
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Elena Butturini
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Massimiliano Calabrese
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Paola Cesari
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Lidia Del Piccolo
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Massimo Donadelli
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Paolo Fabene
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Stefania Fochi
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Macarena Gomez-Lira
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Roberta Magliozzi
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Giovanni Malerba
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Raffaella Mariotti
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Sofia Mariotto
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Chiara Milanese
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Maria Grazia Romanelli
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Andrea Sbarbati
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Federico Schena
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Maria Angela Mazzi
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Michela Rimondini
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
33
|
Singh V, Tripathi A, Dutta R. Proteomic Approaches to Decipher Mechanisms Underlying Pathogenesis in Multiple Sclerosis Patients. Proteomics 2019; 19:e1800335. [PMID: 31119864 PMCID: PMC6690771 DOI: 10.1002/pmic.201800335] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 05/15/2019] [Indexed: 12/13/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating and neurodegenerative disease of the central nervous system (CNS). The cause of MS is unknown, with no effective therapies available to halt the progressive neurological disability. Development of new and improvement of existing therapeutic strategies therefore require a better understanding of MS pathogenesis, especially during the progressive phase of the disease. This can be achieved through development of biomarkers that can help to identify disease pathophysiology and monitor disease progression. Proteomics is a powerful and promising tool to accelerate biomarker detection and contribute to novel therapeutics. In this review, an overview of how proteomic technology using CNS tissues and biofluids from MS patients has provided important clues to the pathogenesis of MS is provided. Current publications, pitfalls, as well as directions of future research involving proteomic approaches to understand the pathogenesis of MS are discussed.
Collapse
Affiliation(s)
- Vaibhav Singh
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Ajai Tripathi
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Ranjan Dutta
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH, 44195, USA
| |
Collapse
|
34
|
Gopalasingam G, Bartlett CA, McGonigle T, Majimbi M, Warnock A, Ford A, Gough A, Toomey LM, Fitzgerald M. The effects of a combination of ion channel inhibitors on pathology in a model of demyelinating disease. Mult Scler Relat Disord 2019; 34:1-8. [PMID: 31202958 DOI: 10.1016/j.msard.2019.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 05/16/2019] [Accepted: 06/07/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) has been shown to feature oxidative damage, which can be modelled using the cuprizone model of demyelinating disease. Oxidative damage can occur as a result of excessive influx of calcium ions (Ca2+) and oligodendroglia are particularly vulnerable. However, the effects of limiting excess Ca2+ influx on oxidative damage, oligodendroglia and myelin structure are unknown. OBJECTIVE This study investigated the effects of limiting excess Ca2+ flux on oxidative damage and associated changes in oligodendroglial densities and Node of Ranvier structure in the cuprizone model. METHODS The effects of three weeks of cuprizone administration and of treatment with a combination of three ion channel inhibitors (Lomerizine, Brilliant Blue G (BBG) and YM872), were semi-quantified immunohistochemically. Outcomes assessed were protein nitration (3-nitrotyrosine (3NT)) oxidative damage to DNA (8-hydroxy deoxyguanosine (8OHDG)), advanced glycation end-products (carboxymethyl lysine (CML)), immunoreactivity of microglia (Iba1) and astrocytes (glial acidic fibrillary protein (GFAP)), densities of oligodendrocyte precursor cells (OPCs) (platelet derived growth factor alpha receptor (PDGFαR) with olig2) and oligodendrocytes (olig2 and CC1), and structural elements of the Node of Ranvier (contactin associated protein (Caspr)). RESULTS The administration of cuprizone resulted in increased protein nitration, DNA damage, and astrocyte and microglial immunoreactivity, a decrease in the density of oligodendrocytes and OPCs, together with altered structure of the Node of Ranvier and reduced myelin basic protein immunoreactivity. Treatment with the ion channel inhibitor combination significantly lowered protein nitration, increased the density of OPCs and reduced the number of atypical Node of Ranvier complexes; other outcomes were unaffected. CONCLUSION Our findings suggest that excess Ca2+ influx contributes to protein nitration, and associated changes to OPC densities and Node of Ranvier structure in demyelinating disease.
Collapse
Affiliation(s)
- Gopana Gopalasingam
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Nedlands, Western Australia 6009, Australia; School of Human Sciences, The University of Western Australia, 35 Stirling Hwy, Nedlands, Western Australia 6009, Australia
| | - Carole A Bartlett
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Nedlands, Western Australia 6009, Australia
| | - Terence McGonigle
- Curtin Health Innovation Research Institute, Curtin University, Belmont, Western Australia, Australia
| | - Maimuna Majimbi
- Curtin Health Innovation Research Institute, Curtin University, Belmont, Western Australia, Australia
| | - Andrew Warnock
- Curtin Health Innovation Research Institute, Curtin University, Belmont, Western Australia, Australia
| | - Abbey Ford
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Nedlands, Western Australia 6009, Australia
| | - Alexander Gough
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Nedlands, Western Australia 6009, Australia
| | - Lillian M Toomey
- Curtin Health Innovation Research Institute, Curtin University, Belmont, Western Australia, Australia; Perron Institute for Neurological and Translational Science, Sarich Neuroscience Research Institute Building, 8 Verdun St, Nedlands, Western Australia 6009, Australia
| | - Melinda Fitzgerald
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Nedlands, Western Australia 6009, Australia; Curtin Health Innovation Research Institute, Curtin University, Belmont, Western Australia, Australia; Perron Institute for Neurological and Translational Science, Sarich Neuroscience Research Institute Building, 8 Verdun St, Nedlands, Western Australia 6009, Australia.
| |
Collapse
|
35
|
Plantone D, Inglese M, Salvetti M, Koudriavtseva T. A Perspective of Coagulation Dysfunction in Multiple Sclerosis and in Experimental Allergic Encephalomyelitis. Front Neurol 2019; 9:1175. [PMID: 30692962 PMCID: PMC6340371 DOI: 10.3389/fneur.2018.01175] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/18/2018] [Indexed: 01/09/2023] Open
Abstract
A key role of both coagulation and vascular thrombosis has been reported since the first descriptions of multiple sclerosis (MS). Subsequently, the observation of a close concordance between perivascular fibrin(ogen) deposition and the occurrence of clinical signs in experimental allergic encephalomyelitis (EAE), an animal model of MS, led to numerous investigations focused on the role of thrombin and fibrin(ogen). Indeed, the activation of microglia, resident innate immune cells, occurs early after fibrinogen leakage in the pre-demyelinating lesion stage of EAE and MS. Thrombin has both neuroprotective and pro-apoptotic effects according to its concentration. After exposure to high concentrations of thrombin, astrocytes become reactive and lose their neuroprotective and supportive functions, microglia proliferate, and produce reactive oxygen species, IL-1β, and TNFα. Heparin inhibits the thrombin generation and suppresses EAE. Platelets play an important role too. Indeed, in the acute phase of the disease, they begin the inflammatory response in the central nervous system by producing of IL-1alpha and triggering and amplifying the immune response. Their depletion, on the contrary, ameliorates the course of EAE. Finally, it has been proven that the use of several anticoagulant agents can successfully improve EAE. Altogether, these studies highlight the role of the coagulation pathway in the pathophysiology of MS and suggest possible therapeutic targets that may complement existing treatments.
Collapse
Affiliation(s)
| | - Matilde Inglese
- Department of Neurology, Radiology and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Marco Salvetti
- Department of Neuroscience Mental Health and Sensory Organs (NEMOS), Sapienza University, Sant'Andrea Hospital, Rome, Italy.,Department of Clinical Experimental Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Tatiana Koudriavtseva
- Department of Clinical Experimental Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
36
|
Adamczyk B, Koziarska D, Kasperczyk S, Adamczyk-Sowa M. Are antioxidant parameters in serum altered in patients with relapsing-remitting multiple sclerosis treated with II-line immunomodulatory therapy? Free Radic Res 2018; 52:1083-1093. [DOI: 10.1080/10715762.2018.1535176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Bożena Adamczyk
- Department of Neurology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Dorota Koziarska
- Department of Neurology, Pomeranian Medical University, Szczecin, Poland
| | - Sławomir Kasperczyk
- Department of Biochemistry, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Monika Adamczyk-Sowa
- Department of Neurology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
37
|
Vural G, Gümüşyayla Ş, Deniz O, Neşelioğlu S, Erel Ö. Relationship between thiol-disulphide homeostasis and visual evoked potentials in patients with multiple sclerosis. Neurol Sci 2018; 40:385-391. [PMID: 30506120 DOI: 10.1007/s10072-018-3660-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 11/23/2018] [Indexed: 12/20/2022]
Abstract
PURPOSE To examine the thiol-disulphide homeostasis during an optic neuritis episode in patients with multiple sclerosis and the relationship between this homeostasis and P100 wave latency. MATERIALS AND METHOD Visual evoked potential reviews of multiple sclerosis patients who presented with an optic neuritis episode were conducted and P100 latencies were measured. Peripheral blood samples were collected from all patients. Native thiol and total thiol concentrations were measured with the automated method that was recently developed. Their amount of disulphide bonds, disulphide/native thiol, disulphide/total thiol and native thiol/total thiol ratios were calculated. The relationship between P100 latency and thiol-disulphide homeostasis was investigated. RESULTS A significant positive correlation was determined between the disulphide/native thiol ratio and both mean P100 latency and maximum P100 latency (p = 0.021, r = 0.136; p = 0.030, r = 0.177, respectively). DISCUSSION As the balance of the plasma dominated by antioxidants moves towards the oxidant side, in other words as a higher rate of thiol is oxidised from the thiol pool, P100 latency is extended. N-acetylcysteine and alpha lipoic acid as well as thiol supplements can improve the thiol-disulphide balance, reinforce antioxidant defence and it can help in slowing down the demyelinating damage.
Collapse
Affiliation(s)
- Gönül Vural
- Department of Neurology, Faculty of Medicine, Yıldırım Beyazıt University, 06800, Ankara, Turkey.
| | - Şadiye Gümüşyayla
- Department of Neurology, Faculty of Medicine, Yıldırım Beyazıt University, 06800, Ankara, Turkey
| | - Orhan Deniz
- Department of Neurology, Faculty of Medicine, Yıldırım Beyazıt University, 06800, Ankara, Turkey
| | - Salim Neşelioğlu
- Department of Clinical Biochemistry, Faculty of Medicine, Yıldırım Beyazıt University, Ankara, Turkey
| | - Özcan Erel
- Department of Clinical Biochemistry, Faculty of Medicine, Yıldırım Beyazıt University, Ankara, Turkey
| |
Collapse
|
38
|
Srivastava D, Kukkuta Sarma GR, Dsouza DS, Muralidharan M, Srinivasan K, Mandal AK. Characterization of residue-specific glutathionylation of CSF proteins in multiple sclerosis - A MS-based approach. Anal Biochem 2018; 564-565:108-115. [PMID: 30367882 DOI: 10.1016/j.ab.2018.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/12/2018] [Accepted: 10/14/2018] [Indexed: 12/27/2022]
Abstract
Reduction of a disulfide linkage between cysteine residues in proteins, a standard step in the preanalytical preparation of samples in conventional proteomics approach, presents a challenge to characterize S-glutathionylation of proteins. S-glutathionylation of proteins has been reported in medical conditions associated with high oxidative stress. In the present study, we attempted to characterize glutathionylation of CSF proteins in patients with multiple sclerosis which is associated with high oxidative stress. Using the nano-LC/ESI-MS platform, we adopted a modified proteomics approach and a targeted database search to investigate glutathionylation at the residue level of CSF proteins. Compared to patients with Intracranial hypertension, the following CSF proteins: Extracellular Superoxide dismutase (ECSOD) at Cys195, α1-antitrypsin (A1AT) at Cys232, Phospholipid transfer protein (PLTP) at Cys318, Alpha-2-HS-glycoprotein at Cys340, Ectonucleotide pyrophosphate (ENPP-2) at Cys773, Gelsolin at Cys304, Interleukin-18 (IL-18) at Cys38 and Ig heavy chain V III region POM at Cys22 were found to be glutathionylated in patients with multiple sclerosis during a relapse. ECSOD, A1AT, and PLTP were observed to be glutathionylated at the functionally important cysteine residues. In conclusion, in the present study using a modified proteomics approach we have identified and characterized glutathionylation of CSF proteins in patients with multiple sclerosis.
Collapse
Affiliation(s)
- Deepsikha Srivastava
- Division of Molecular Medicine, Clinical Proteomics Unit, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, 560034, India
| | - Gosala Raja Kukkuta Sarma
- Department of Neurology, St. John's Hospital, St. John's National Academy of Health Sciences, Bangalore, 560034, India
| | - Delon Snehal Dsouza
- Department of Neurology, St. John's Hospital, St. John's National Academy of Health Sciences, Bangalore, 560034, India
| | - Monita Muralidharan
- Division of Molecular Medicine, Clinical Proteomics Unit, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, 560034, India
| | - Krishnamachari Srinivasan
- Department of Psychiatry, St. John's Medical College and Hospital, St. John's National Academy of Health Sciences, Bangalore, 560034, India
| | - Amit Kumar Mandal
- Division of Molecular Medicine, Clinical Proteomics Unit, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, 560034, India.
| |
Collapse
|
39
|
Golomb BA. Diplomats' Mystery Illness and Pulsed Radiofrequency/Microwave Radiation. Neural Comput 2018; 30:2882-2985. [PMID: 30183509 DOI: 10.1162/neco_a_01133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Importance: A mystery illness striking U.S. and Canadian diplomats to Cuba (and now China) "has confounded the FBI, the State Department and US intelligence agencies" (Lederman, Weissenstein, & Lee, 2017). Sonic explanations for the so-called health attacks have long dominated media reports, propelled by peculiar sounds heard and auditory symptoms experienced. Sonic mediation was justly rejected by experts. We assessed whether pulsed radiofrequency/microwave radiation (RF/MW) exposure can accommodate reported facts in diplomats, including unusual ones. Observations: (1) Noises: Many diplomats heard chirping, ringing or grinding noises at night during episodes reportedly triggering health problems. Some reported that noises were localized with laser-like precision or said the sounds seemed to follow them (within the territory in which they were perceived). Pulsed RF/MW engenders just these apparent "sounds" via the Frey effect. Perceived "sounds" differ by head dimensions and pulse characteristics and can be perceived as located behind in or above the head. Ability to hear the "sounds" depends on high-frequency hearing and low ambient noise. (2) Signs/symptoms: Hearing loss and tinnitus are prominent in affected diplomats and in RF/MW-affected individuals. Each of the protean symptoms that diplomats report also affect persons reporting symptoms from RF/MW: sleep problems, headaches, and cognitive problems dominate in both groups. Sensations of pressure or vibration figure in each. Both encompass vision, balance, and speech problems and nosebleeds. Brain injury and brain swelling are reported in both. (3) Mechanisms: Oxidative stress provides a documented mechanism of RF/MW injury compatible with reported signs and symptoms; sequelae of endothelial dysfunction (yielding blood flow compromise), membrane damage, blood-brain barrier disruption, mitochondrial injury, apoptosis, and autoimmune triggering afford downstream mechanisms, of varying persistence, that merit investigation. (4) Of note, microwaving of the U.S. embassy in Moscow is historically documented. Conclusions and relevance: Reported facts appear consistent with pulsed RF/MW as the source of injury in affected diplomats. Nondiplomats citing symptoms from RF/MW, often with an inciting pulsed-RF/MW exposure, report compatible health conditions. Under the RF/MW hypothesis, lessons learned for diplomats and for RF/MW-affected civilians may each aid the other.
Collapse
|
40
|
Gauzzi MC. Vitamin D-binding protein and multiple sclerosis: Evidence, controversies, and needs. Mult Scler 2018; 24:1526-1535. [PMID: 30113253 DOI: 10.1177/1352458518792433] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The vitamin D-binding protein (DBP) occupies a key node in the regulation of the vitamin D system. Being the main plasma carrier of vitamin D metabolites, it regulates their stability and bioavailability. However, DBP is also a multifunctional protein with roles in the organism's actin scavenging system and immunomodulation. All these activities may affect multiple sclerosis (MS) pathophysiology. DBP can be measured in blood and cerebrospinal fluid, body fluids that have been investigated as sources of accessible biomarkers of MS. Yet, available data on DBP expression and function in MS are scattered and somewhat controversial. Aims of this review are to summarize current evidence from studies on DBP in MS patients, to discuss possible shortcomings and to highlight key points that need to be addressed to gain deeper insight into the role of DBP in MS.
Collapse
|
41
|
Morris G, Reiche EMV, Murru A, Carvalho AF, Maes M, Berk M, Puri BK. Multiple Immune-Inflammatory and Oxidative and Nitrosative Stress Pathways Explain the Frequent Presence of Depression in Multiple Sclerosis. Mol Neurobiol 2018; 55:6282-6306. [PMID: 29294244 PMCID: PMC6061180 DOI: 10.1007/s12035-017-0843-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/14/2017] [Indexed: 12/21/2022]
Abstract
Patients with a diagnosis of multiple sclerosis (MS) or major depressive disorder (MDD) share a wide array of biological abnormalities which are increasingly considered to play a contributory role in the pathogenesis and pathophysiology of both illnesses. Shared abnormalities include peripheral inflammation, neuroinflammation, chronic oxidative and nitrosative stress, mitochondrial dysfunction, gut dysbiosis, increased intestinal barrier permeability with bacterial translocation into the systemic circulation, neuroendocrine abnormalities and microglial pathology. Patients with MS and MDD also display a wide range of neuroimaging abnormalities and patients with MS who display symptoms of depression present with different neuroimaging profiles compared with MS patients who are depression-free. The precise details of such pathology are markedly different however. The recruitment of activated encephalitogenic Th17 T cells and subsequent bidirectional interaction leading to classically activated microglia is now considered to lie at the core of MS-specific pathology. The presence of activated microglia is common to both illnesses although the pattern of such action throughout the brain appears to be different. Upregulation of miRNAs also appears to be involved in microglial neurotoxicity and indeed T cell pathology in MS but does not appear to play a major role in MDD. It is suggested that the antidepressant lofepramine, and in particular its active metabolite desipramine, may be beneficial not only for depressive symptomatology but also for the neurological symptoms of MS. One clinical trial has been carried out thus far with, in particular, promising MRI findings.
Collapse
Affiliation(s)
- Gerwyn Morris
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Barwon Health, Geelong, Australia
| | - Edna Maria Vissoci Reiche
- Department of Pathology, Clinical Analysis, and Toxicology, Health Sciences Center, State University of Londrina, Londrina, Paraná, Brazil
| | - Andrea Murru
- Bipolar Disorders Program, Hospital Clínic Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
| | - André F Carvalho
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Barwon Health, Geelong, Australia
- Department of Psychiatry, Medical University Plovdiv, Plovdiv, Bulgaria
- Department of Psychiatry, Faculty of Medicine, State University of Londrina, Londrina, Brazil
- Revitalis, Waalre, The Netherlands
- Orygen - The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Basant K Puri
- Department of Medicine, Imperial College London, Hammersmith Hospital, London, UK.
| |
Collapse
|
42
|
Morris G, Maes M, Murdjeva M, Puri BK. Do Human Endogenous Retroviruses Contribute to Multiple Sclerosis, and if So, How? Mol Neurobiol 2018; 56:2590-2605. [PMID: 30047100 PMCID: PMC6459794 DOI: 10.1007/s12035-018-1255-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/17/2018] [Indexed: 12/24/2022]
Abstract
The gammaretroviral human endogenous retrovirus (HERV) families MRSV/HERV-W and HERV-H (including the closely related HERV-Fc1) are associated with an increased risk of multiple sclerosis (MS). Complete HERV sequences betray their endogenous retroviral origin, with open reading frames in gag, pro, pol and env being flanked by two long terminal repeats containing promoter and enhancer sequences with the capacity to regulate HERV transactivation and the activity of host genes in spite of endogenous epigenetic repression mechanisms. HERV virions, RNA, cDNA, Gag and Env, and antibodies to HERV transcriptional products, have variously been found in the blood and/or brain and/or cerebrospinal fluid of MS patients, with the HERV expression level being associated with disease status. Furthermore, some HERV-associated single nucleotide polymorphisms (SNPs), such as rs662139 T/C in a 3-kb region of Xq22.3 containing a HERV-W env locus, and rs391745, upstream of the HERV-Fc1 locus on the X chromosome, are associated with MS susceptibility, while a negative association has been reported with SNPs in the tripartite motif-containing (TRIM) protein-encoding genes TRIM5 and TRIM22. Factors affecting HERV transcription include immune activation and inflammation, since HERV promoter regions possess binding sites for related transcription factors; oxidative stress, with oxidation of guanine to 8-oxoguanine and conversion of cytosine to 5-hydroxymethylcytosine preventing binding of methyl groups transferred by DNA methyltransferases; oxidative stress also inhibits the activity of deacetylases, thereby favouring the acetylation of histone lysine residues favouring gene expression; interferon beta; natalizumab treatment; impaired epigenetic regulation; and the sex of patients.
Collapse
Affiliation(s)
- Gerwyn Morris
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Marianna Murdjeva
- Department of Microbiology and Immunology, Medical University, Plovdiv, Bulgaria
| | - Basant K Puri
- Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK.
| |
Collapse
|
43
|
Hajipour MJ, Ghasemi F, Aghaverdi H, Raoufi M, Linne U, Atyabi F, Nabipour I, Azhdarzadeh M, Derakhshankhah H, Lotfabadi A, Bargahi A, Alekhamis Z, Aghaie A, Hashemi E, Tafakhori A, Aghamollaii V, Mashhadi MM, Sheibani S, Vali H, Mahmoudi M. Sensing of Alzheimer's Disease and Multiple Sclerosis Using Nano-Bio Interfaces. J Alzheimers Dis 2018; 59:1187-1202. [PMID: 28759965 DOI: 10.3233/jad-160206] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
It is well understood that patients with different diseases may have a variety of specific proteins (e.g., type, amount, and configuration) in their plasmas. When nanoparticles (NPs) are exposed to these plasmas, the resulting coronas may incorporate some of the disease-specific proteins. Using gold (Au) NPs with different surface properties and corona composition, we have developed a technology for the discrimination and detection of two neurodegenerative diseases, Alzheimer's disease (AD) and multiple sclerosis (MS). Applying a variety of techniques, including UV-visible spectra, colorimetric response analyses and liquid chromatography-tandem mass spectrometry, we found the corona-NP complexes, obtained from different human serums, had distinct protein composition, including some specific proteins that are known as AD and MS biomarkers. The colorimetric responses, analyzed by chemometrics and statistical methods, demonstrate promising capabilities of the technology to unambiguously identify and discriminate AD and MS. The developed colorimetric technology might enable a simple, inexpensive and rapid detection/discrimination of neurodegenerative diseases.
Collapse
Affiliation(s)
- Mohammad Javad Hajipour
- Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.,Department of Nanotechnology and Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Forough Ghasemi
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Haniyeh Aghaverdi
- Department of Nanotechnology and Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Raoufi
- Department of Nanotechnology and Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Uwe Linne
- Fachbereich Physik/Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Fatemeh Atyabi
- Department of Nanotechnology and Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Iraj Nabipour
- Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Morteza Azhdarzadeh
- Department of Nanotechnology and Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Derakhshankhah
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Lotfabadi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Afshar Bargahi
- Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Zahra Alekhamis
- Department of Nanotechnology and Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Afsaneh Aghaie
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Ehsan Hashemi
- National Research Center for Transgenic Mouse, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Abbas Tafakhori
- Iranian Center of Neurological Research, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Marzie Maserat Mashhadi
- Iranian Center of Neurological Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Sheibani
- Department of Anatomy and Cell Biology and Facility for Electron Microscopy Research, McGill University, Montréal, QC, Canada
| | - Hojatollah Vali
- Department of Anatomy and Cell Biology and Facility for Electron Microscopy Research, McGill University, Montréal, QC, Canada
| | - Morteza Mahmoudi
- Department of Nanotechnology and Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
44
|
De Riccardis L, Buccolieri A, Muci M, Pitotti E, De Robertis F, Trianni G, Manno D, Maffia M. Copper and ceruloplasmin dyshomeostasis in serum and cerebrospinal fluid of multiple sclerosis subjects. Biochim Biophys Acta Mol Basis Dis 2018. [PMID: 29524632 DOI: 10.1016/j.bbadis.2018.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Although many studies have been carried out in order to understand the implication of copper (Cu) in the pathogenesis of multiple sclerosis (MS), the exact role that this metal plays in the disease is not still clear. Because of the lack of information in this subject, the present study compared the serum and cerebrospinal (CSF) levels of copper in MS patients in respect to a control group, matched for age and sex, finding a significant increase of metal concentrations, in both biological fluids of MS subjects. To confirm the possible impairment of Cu metabolism, we analyzed ceruloplasmin (Cp) level and activity, seeing as this protein is an established peripheral marker in diseases associated with Cu imbalance. By comparing these two parameters between control and MS subjects, we found an increase of Cp levels, associated with a decrease in Cp activity, in the second group. By analysing these data, free copper levels were calculated, significantly increased in serum of MS subjects; the increase in free copper could be one of the predisposing factors responsible for the Cu altered levels in CSF of MS patients. At the same time, this alteration could be attributable to the inability to incorporate Cu by Cp, probably due to the high oxidative environment found in serum of MS patients. Overall, all these copper alterations may play a role in MS pathogenesis.
Collapse
Affiliation(s)
- L De Riccardis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, Lecce, Italy
| | - A Buccolieri
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, Lecce, Italy
| | - M Muci
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, Lecce, Italy
| | - E Pitotti
- Laboratory of Clinical Proteomic, "Giovanni Paolo II" Hospital, ASL-Lecce, Piazzetta F. Muratore, Lecce, Italy
| | - F De Robertis
- Department of Neurology, "Vito Fazzi" Hospital, ASL-Lecce, Italy
| | - G Trianni
- Department of Neurology, "Vito Fazzi" Hospital, ASL-Lecce, Italy
| | - D Manno
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Lecce, Italy
| | - M Maffia
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, Lecce, Italy; Laboratory of Clinical Proteomic, "Giovanni Paolo II" Hospital, ASL-Lecce, Piazzetta F. Muratore, Lecce, Italy.
| |
Collapse
|
45
|
Cooper JD, Ozcan S, Gardner RM, Rustogi N, Wicks S, van Rees GF, Leweke FM, Dalman C, Karlsson H, Bahn S. Schizophrenia-risk and urban birth are associated with proteomic changes in neonatal dried blood spots. Transl Psychiatry 2017; 7:1290. [PMID: 29249827 PMCID: PMC5802534 DOI: 10.1038/s41398-017-0027-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/12/2017] [Accepted: 08/20/2017] [Indexed: 12/22/2022] Open
Abstract
In the present study, we tested whether there were proteomic differences in blood between schizophrenia patients after the initial onset of the disorder and controls; and whether those differences were also present at birth among neonates who later developed schizophrenia compared to those without a psychiatric admission. We used multiple reaction monitoring mass spectrometry to quantify 77 proteins (147 peptides) in serum samples from 60 first-onset drug-naive schizophrenia patients and 77 controls, and 96 proteins (152 peptides) in 892 newborn blood-spot (NBS) samples collected between 1975 and 1985. Both serum and NBS studies showed significant alterations in protein levels. Serum results revealed that Haptoglobin and Plasma protease C1 inhibitor were significantly upregulated in first-onset schizophrenia patients (corrected P < 0.05). Alpha-2-antiplasmin, Complement C4-A and Antithrombin-III were increased in first-onset schizophrenia patients (uncorrected P-values 0.041, 0.036 and 0.013, respectively) and also increased in newborn babies who later develop schizophrenia (P-values 0.0058, 0.013 and 0.044, respectively). We also tested whether protein abundance at birth was associated with exposure to an urban environment during pregnancy and found highly significant proteomic differences at birth between urban and rural environments. The prediction model for urbanicity had excellent predictive performance in both discovery (area under the receiver operating characteristic curve (AUC) = 0.90) and validation (AUC = 0.89) sample sets. We hope that future biomarker studies based on stored NBS samples will identify prognostic disease indicators and targets for preventive measures for neurodevelopmental conditions, particularly those with onset during early childhood, such as autism spectrum disorder.
Collapse
Affiliation(s)
- Jason D. Cooper
- 0000000121885934grid.5335.0Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Sureyya Ozcan
- 0000000121885934grid.5335.0Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Renee M. Gardner
- 0000 0004 1937 0626grid.4714.6Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden
| | - Nitin Rustogi
- 0000000121885934grid.5335.0Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Susanne Wicks
- 0000 0004 1937 0626grid.4714.6Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden ,0000 0001 2326 2191grid.425979.4Centre for Epidemiology and Community Medicine, Stockholm County Council, Stockholm, Sweden
| | - Geertje F. van Rees
- 0000000121885934grid.5335.0Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - F. Markus Leweke
- 0000 0004 1936 834Xgrid.1013.3Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Christina Dalman
- 0000 0004 1937 0626grid.4714.6Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden ,0000 0001 2326 2191grid.425979.4Centre for Epidemiology and Community Medicine, Stockholm County Council, Stockholm, Sweden
| | - Håkan Karlsson
- 0000 0004 1937 0626grid.4714.6Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden
| | - Sabine Bahn
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
46
|
Oxidative Modification of Blood Serum Proteins in Multiple Sclerosis after Interferon Beta and Melatonin Treatment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7905148. [PMID: 29181127 PMCID: PMC5664347 DOI: 10.1155/2017/7905148] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/24/2017] [Indexed: 11/17/2022]
Abstract
Multiple sclerosis (MS) is a disease involving oxidative stress (OS). This study was aimed at examination of the effect of melatonin supplementation on OS parameters, especially oxidative protein modifications of blood serum proteins, in MS patients. The study included 11 control subjects, 14 de novo diagnosed MS patients with the relapsing-remitting form of MS (RRMS), 36 patients with RRMS receiving interferon beta-1b (250 μg every other day), and 25 RRMS patients receiving interferon beta-1b plus melatonin (5 mg daily). The levels of N′-formylkynurenine, kynurenine, dityrosine, carbonyl groups, advanced glycation products (AGEs), advanced oxidation protein products (AOPP), and malondialdehyde were elevated in nontreated RRSM patients. N′-Formylkynurenine, kynurenine, AGEs, and carbonyl contents were decreased only in the group treated with interferon beta plus melatonin, while dityrosine and AOPP contents were decreased both in the group of patients treated with interferon beta and in the group treated with interferon beta-1b plus melatonin. These results demonstrate that melatonin ameliorates OS in MS patients supporting the view that combined administration of interferon beta-1b and melatonin can be more effective in reducing OS in MS patients than interferon beta-1b alone.
Collapse
|
47
|
The Evaluation of Oxidative Stress Parameters in Serum Patients with Relapsing-Remitting Multiple Sclerosis Treated with II-Line Immunomodulatory Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9625806. [PMID: 29138683 PMCID: PMC5613460 DOI: 10.1155/2017/9625806] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/30/2017] [Accepted: 08/20/2017] [Indexed: 11/20/2022]
Abstract
Objectives The assessment of oxidative stress (OS) in serum relapsing-remitting multiple sclerosis patients treated with II-line immunomodulatory therapy (fingolimod, natalizumab) compared to newly diagnosed patients (de novo group) treated with interferon (IFN) beta and controls. The relationship between OS parameters and gender, age, disease duration, Expanded Disability Status Scale, annualized relapse rate, MRI lesions in patients treated with II-line. Materials and Methods One hundred and twenty-one patients with RRMS were enrolled in the study. Patients were divided into groups: de novo group, IFN, fingolimod (FG), natalizumab (NT), and controls. Lipid hydroperoxides (LHP), malondialdehyde (MDA), lipofuscin (LPS), and total oxidative status (TOS) were determined. Results LHP, MDA, and TOS were lower in NT and FG groups compared to the de novo group. Levels of OS were different between NT and FG patients and the IFN group. Women treated with FG and NT had lower MDA, LPH, and TOS than women who were not treated while in men only LPH was lowered. Positive correlations were found between MDA, LHP, TOS, and ARR in the NT group. Conclusion The II-line immunomodulatory treatment decreased OS particularly among women. No difference in OS levels was observed between II-line therapy and IFN beta.
Collapse
|
48
|
Morel A, Bijak M, Niwald M, Miller E, Saluk J. Markers of oxidative/nitrative damage of plasma proteins correlated with EDSS and BDI scores in patients with secondary progressive multiple sclerosis. Redox Rep 2017; 22:547-555. [PMID: 28521618 DOI: 10.1080/13510002.2017.1325571] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES The objective of the present study was to evaluate oxidative/nitrative stress in the plasma of 50 patients suffering from the secondary progressive course of multiple sclerosis (MS), and to verify its correlation with physical and mental disability as assessed by the Expanded Disability Status Scale (EDSS), and the Beck Depression Inventory (BDI). METHODS Oxidative and nitrative damage to proteins was determined by the level of carbonyl groups and 3-nitrotyrosine using ELISA test. Based on the reaction with Ellman's reagent, we estimated the concentration of oxidized thiol groups. Additionally, we measured the level of lipid peroxidation. RESULTS In plasma drawn from MS patients, we observed a significantly higher level of 3-NT (92%; P < 0.0003), carbonyl groups (29%; P < 0.0001) and thiobarbituric acid reactive substances (73%; P < 0.0001), as well as a lower concentration of thiol groups (33%; P < 0.0001), in comparison to healthy subjects. We noted positive correlations between the level of carbonyl groups or 3-NT and both diagnostic parameters, EDSS and BDI. Negative correlations were observed between concentration of -SH groups and EDSS and BDI. CONCLUSION Our results indicate that impaired red-ox balance can significantly promote neurodegeneration in secondary progressive MS.
Collapse
Affiliation(s)
- Agnieszka Morel
- a Faculty of Biology and Environmental Protection, Department of General Biochemistry , University of Lodz , Lodz , Poland
| | - Michał Bijak
- a Faculty of Biology and Environmental Protection, Department of General Biochemistry , University of Lodz , Lodz , Poland
| | - Marta Niwald
- b Department of Physical Medicine , Medical University of Lodz , Lodz , Poland.,c Neurorehabilitation Ward , III General Hospital in Lodz , Lodz , Poland
| | - Elżbieta Miller
- b Department of Physical Medicine , Medical University of Lodz , Lodz , Poland.,c Neurorehabilitation Ward , III General Hospital in Lodz , Lodz , Poland
| | - Joanna Saluk
- a Faculty of Biology and Environmental Protection, Department of General Biochemistry , University of Lodz , Lodz , Poland
| |
Collapse
|
49
|
Rajda C, Pukoli D, Bende Z, Majláth Z, Vécsei L. Excitotoxins, Mitochondrial and Redox Disturbances in Multiple Sclerosis. Int J Mol Sci 2017; 18:ijms18020353. [PMID: 28208701 PMCID: PMC5343888 DOI: 10.3390/ijms18020353] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/20/2017] [Accepted: 01/22/2017] [Indexed: 01/03/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS). There is increasing evidence that MS is not only characterized by immune mediated inflammatory reactions, but also by neurodegenerative processes. There is cumulating evidence that neurodegenerative processes, for example mitochondrial dysfunction, oxidative stress, and glutamate (Glu) excitotoxicity, seem to play an important role in the pathogenesis of MS. The alteration of mitochondrial homeostasis leads to the formation of excitotoxins and redox disturbances. Mitochondrial dysfunction (energy disposal failure, apoptosis, etc.), redox disturbances (oxidative stress and enhanced reactive oxygen and nitrogen species production), and excitotoxicity (Glu mediated toxicity) may play an important role in the progression of the disease, causing axonal and neuronal damage. This review focuses on the mechanisms of mitochondrial dysfunction (including mitochondrial DNA (mtDNA) defects and mitochondrial structural/functional changes), oxidative stress (including reactive oxygen and nitric species), and excitotoxicity that are involved in MS and also discusses the potential targets and tools for therapeutic approaches in the future.
Collapse
Affiliation(s)
- Cecilia Rajda
- Department of Neurology, University of Szeged, 6725 Szeged, Hungary.
| | - Dániel Pukoli
- Department of Neurology, University of Szeged, 6725 Szeged, Hungary.
- Department of Neurology, Vaszary Kolos Hospital, 2500 Esztergom, Hungary.
| | - Zsuzsanna Bende
- Department of Neurology, University of Szeged, 6725 Szeged, Hungary.
| | - Zsófia Majláth
- Department of Neurology, University of Szeged, 6725 Szeged, Hungary.
| | - László Vécsei
- Department of Neurology, University of Szeged, 6725 Szeged, Hungary.
- MTA-SZTE Neuroscience Research Group, 6725 Szeged, Hungary.
| |
Collapse
|
50
|
Mostek A, Dietrich MA, Słowińska M, Ciereszko A. Cryopreservation of bull semen is associated with carbonylation of sperm proteins. Theriogenology 2017; 92:95-102. [PMID: 28237350 DOI: 10.1016/j.theriogenology.2017.01.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/05/2017] [Accepted: 01/05/2017] [Indexed: 12/15/2022]
Abstract
Artificial insemination with cryopreserved semen enables affordable, large-scale dissemination of gametes with superior genetics. However, cryopreservation can cause functional and structural damage to spermatozoa that is associated with reactive oxygen species (ROS) production, impairment of sperm motility and decreased fertilizing potential, but little attention has been paid to protein changes. The goal of this study was to investigate the oxidative modifications (measured as carbonylation level changes) of bull spermatozoa proteins triggered by the cryopreservation process. Flow cytometry and computer-assisted sperm analysis were used to evaluate changes in viability, ROS level and motility of spermatozoa. Western blotting, in conjunction with two-dimensional electrophoresis (2D-oxyblot) and matrix-assisted laser desorption/ionization time-of-flight/time-of-flight spectrometry, was employed to identify and quantify the specifically carbonylated spermatozoa proteins. Cryopreservation decreased motility and viability but increased the number of ROS-positive cells. We identified 11 proteins (ropporin-1, outer dense fiber protein 2, glutathione S-transferase, triosephosphate isomerase, capping protein beta 3 isoform, actin-related protein M1, actin-related protein T2, NADH dehydrogenase, isocitrate dehydrogenase, cilia- and flagella-associated protein 161, phosphatidylethanolamine-binding protein 4) showing differences in protein carbonylation in response to cryopreservation. The identified proteins are associated with cytoskeleton and flagella organization, detoxification and energy metabolism. Moreover, almost all of the identified carbonylated proteins are involved in capacitation. Our results indicate for the first time that cryopreservation induces oxidation of selected sperm proteins via carbonylation. We suggest that carbonylation of sperm proteins could be a direct result of oxidative stress and potentially lead to disturbances of capacitation-involved proteins or could indicate cryopreservation-induced premature capacitation.
Collapse
Affiliation(s)
- Agnieszka Mostek
- Institute of Animal Reproduction and Food Research, Department of Gamete and Embryo Biology, Polish Academy of Sciences, Tuwima 10 Str., 10-748 Olsztyn, Poland.
| | - Mariola Aleksandra Dietrich
- Institute of Animal Reproduction and Food Research, Department of Gamete and Embryo Biology, Polish Academy of Sciences, Tuwima 10 Str., 10-748 Olsztyn, Poland
| | - Mariola Słowińska
- Institute of Animal Reproduction and Food Research, Department of Gamete and Embryo Biology, Polish Academy of Sciences, Tuwima 10 Str., 10-748 Olsztyn, Poland
| | - Andrzej Ciereszko
- Institute of Animal Reproduction and Food Research, Department of Gamete and Embryo Biology, Polish Academy of Sciences, Tuwima 10 Str., 10-748 Olsztyn, Poland
| |
Collapse
|