1
|
Zampar S, Di Gregorio SE, Grimmer G, Watts JC, Ingelsson M. "Prion-like" seeding and propagation of oligomeric protein assemblies in neurodegenerative disorders. Front Neurosci 2024; 18:1436262. [PMID: 39161653 PMCID: PMC11330897 DOI: 10.3389/fnins.2024.1436262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024] Open
Abstract
Intra- or extracellular aggregates of proteins are central pathogenic features in most neurodegenerative disorders. The accumulation of such proteins in diseased brains is believed to be the end-stage of a stepwise aggregation of misfolded monomers to insoluble cross-β fibrils via a series of differently sized soluble oligomers/protofibrils. Several studies have shown how α-synuclein, amyloid-β, tau and other amyloidogenic proteins can act as nucleating particles and thereby share properties with misfolded forms, or strains, of the prion protein. Although the roles of different protein assemblies in the respective aggregation cascades remain unclear, oligomers/protofibrils are considered key pathogenic species. Numerous observations have demonstrated their neurotoxic effects and a growing number of studies have indicated that they also possess seeding properties, enabling their propagation within cellular networks in the nervous system. The seeding behavior of oligomers differs between the proteins and is also affected by various factors, such as size, shape and epitope presentation. Here, we are providing an overview of the current state of knowledge with respect to the "prion-like" behavior of soluble oligomers for several of the amyloidogenic proteins involved in neurodegenerative diseases. In addition to providing new insight into pathogenic mechanisms, research in this field is leading to novel diagnostic and therapeutic opportunities for neurodegenerative diseases.
Collapse
Affiliation(s)
- Silvia Zampar
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Sonja E. Di Gregorio
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Gustavo Grimmer
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Joel C. Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Martin Ingelsson
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Public Health/Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Zhang Y, Bi K, Zhou L, Wang J, Huang L, Sun Y, Peng G, Wu W. Advances in Blood Biomarkers for Alzheimer's Disease: Ultra-Sensitive Detection Technologies and Impact on Clinical Diagnosis. Degener Neurol Neuromuscul Dis 2024; 14:85-102. [PMID: 39100640 PMCID: PMC11297492 DOI: 10.2147/dnnd.s471174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/16/2024] [Indexed: 08/06/2024] Open
Abstract
Alzheimer's disease has escalated into a critical public health concern, marked by its neurodegenerative nature that progressively diminishes cognitive abilities. Recognized as a continuously advancing and presently incurable condition, AD underscores the necessity for early-stage diagnosis and interventions aimed at delaying the decline in mental function. Despite the proven efficacy of cerebrospinal fluid and positron emission tomography in diagnosing AD, their broader utility is constrained by significant costs and the invasive nature of these procedures. Consequently, the innovation of blood biomarkers such as Amyloid-beta, phosphorylated-tau, total-tau et al, distinguished by their high sensitivity, minimal invasiveness, accessibility, and cost-efficiency, emerges as a promising avenue for AD diagnosis. The advent of ultra-sensitive detection methodologies, including single-molecule enzyme-linked immunosorbent assay and immunoprecipitation-mass spectrometry, has revolutionized the detection of AD plasma biomarkers, supplanting previous low-sensitivity techniques. This rapid advancement in detection technology facilitates the more accurate quantification of pathological brain proteins and AD-associated biomarkers in the bloodstream. This manuscript meticulously reviews the landscape of current research on immunological markers for AD, anchored in the National Institute on Aging-Alzheimer's Association AT(N) research framework. It highlights a selection of forefront ultra-sensitive detection technologies now integral to assessing AD blood immunological markers. Additionally, this review examines the crucial pre-analytical processing steps for AD blood samples that significantly impact research outcomes and addresses the practical challenges faced during clinical testing. These discussions are crucial for enhancing our comprehension and refining the diagnostic precision of AD using blood-based biomarkers. The review aims to shed light on potential avenues for innovation and improvement in the techniques employed for detecting and investigating AD, thereby contributing to the broader field of neurodegenerative disease research.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Kefan Bi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Linfu Zhou
- Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Lingtong Huang
- Department of Critical Care Units, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Yan Sun
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Guoping Peng
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Wei Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| |
Collapse
|
3
|
Gallo-Orive Á, Moreno-Guzmán M, Sanchez-Paniagua M, Montero-Calle A, Barderas R, Escarpa A. Gold Nanoparticle-Decorated Catalytic Micromotor-Based Aptassay for Rapid Electrochemical Label-Free Amyloid-β42 Oligomer Determination in Clinical Samples from Alzheimer's Patients. Anal Chem 2024; 96:5509-5518. [PMID: 38551492 PMCID: PMC11007680 DOI: 10.1021/acs.analchem.3c05665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/08/2024] [Accepted: 03/11/2024] [Indexed: 04/10/2024]
Abstract
Micromotor (MM) technology offers a valuable and smart on-the-move biosensing microscale approach in clinical settings where sample availability is scarce in the case of Alzheimer's disease (AD). Soluble amyloid-β protein oligomers (AβO) (mainly AβO42) that circulate in biological fluids have been recognized as a molecular biomarker and therapeutic target of AD due to their high toxicity, and they are correlated much more strongly with AD compared to the insoluble Aβ monomers. A graphene oxide (GO)-gold nanoparticles (AuNPs)/nickel (Ni)/platinum nanoparticles (PtNPs) micromotors (MMGO-AuNPs)-based electrochemical label-free aptassay is proposed for sensitive, accurate, and rapid determination of AβO42 in complex clinical samples such as brain tissue, cerebrospinal fluid (CSF), and plasma from AD patients. An approach that implies the in situ formation of AuNPs on the GO external layer of tubular MM in only one step during MM electrosynthesis was performed (MMGO-AuNPs). The AβO42 specific thiolated-aptamer (AptAβO42) was immobilized in the MMGO-AuNPs via Au-S interaction, allowing for the selective recognition of the AβO42 (MMGO-AuNPs-AptAβO42-AβO42). AuNPs were smartly used not only to covalently bind a specific thiolated-aptamer for the design of a label-free electrochemical aptassay but also to improve the final MM propulsion performance due to their catalytic activity (approximately 2.0× speed). This on-the-move bioplatform provided a fast (5 min), selective, precise (RSD < 8%), and accurate quantification of AβO42 (recoveries 94-102%) with excellent sensitivity (LOD = 0.10 pg mL-1) and wide linear range (0.5-500 pg mL-1) in ultralow volumes of the clinical sample of AD patients (5 μL), without any dilution. Remarkably, our MM-based bioplatform demonstrated the competitiveness for the determination of AβO42 in the target samples against the dot blot analysis, which requires more than 14 h to provide qualitative results only. It is also important to highlight its applicability to the potential analysis of liquid biopsies as plasma and CSF samples, improving the reliability of the diagnosis given the heterogeneity and temporal complexity of neurodegenerative diseases. The excellent results obtained demonstrate the analytical potency of our approach as a future tool for clinical/POCT (Point-of-care testing) routine scenarios.
Collapse
Affiliation(s)
- Álvaro Gallo-Orive
- Department
of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, 28802 Alcalá de Henares, Madrid, Spain
- Department
of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Moncloa-Aravaca, Madrid, Spain
| | - María Moreno-Guzmán
- Department
of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Moncloa-Aravaca, Madrid, Spain
| | - Marta Sanchez-Paniagua
- Department
of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Moncloa-Aravaca, Madrid, Spain
| | - Ana Montero-Calle
- Chronic
Disease Programme, UFIEC, Carlos III Health
Institute, 28220 Majadahonda, Madrid, Spain
| | - Rodrigo Barderas
- Chronic
Disease Programme, UFIEC, Carlos III Health
Institute, 28220 Majadahonda, Madrid, Spain
| | - Alberto Escarpa
- Department
of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, 28802 Alcalá de Henares, Madrid, Spain
- Chemical
Research Institute “Andrés M. Del Rio”, University of Alcalá, 28802 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
4
|
Bigi A, Napolitano L, Vadukul DM, Chiti F, Cecchi C, Aprile FA, Cascella R. A single-domain antibody detects and neutralises toxic Aβ 42 oligomers in the Alzheimer's disease CSF. Alzheimers Res Ther 2024; 16:13. [PMID: 38238842 PMCID: PMC10795411 DOI: 10.1186/s13195-023-01361-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/29/2023] [Indexed: 01/22/2024]
Abstract
BACKGROUND Amyloid-β42 (Aβ42) aggregation consists of a complex chain of nucleation events producing soluble oligomeric intermediates, which are considered the major neurotoxic agents in Alzheimer's disease (AD). Cerebral lesions in the brain of AD patients start to develop 20 years before symptom onset; however, no preventive strategies, effective treatments, or specific and sensitive diagnostic tests to identify people with early-stage AD are currently available. In addition, the isolation and characterisation of neurotoxic Aβ42 oligomers are particularly difficult because of their transient and heterogeneous nature. To overcome this challenge, a rationally designed method generated a single-domain antibody (sdAb), named DesAb-O, targeting Aβ42 oligomers. METHODS We investigated the ability of DesAb-O to selectively detect preformed Aβ42 oligomers both in vitro and in cultured neuronal cells, by using dot-blot, ELISA immunoassay and super-resolution STED microscopy, and to counteract the toxicity induced by the oligomers, monitoring their interaction with neuronal membrane and the resulting mitochondrial impairment. We then applied this approach to CSF samples (CSFs) from AD patients as compared to age-matched control subjects. RESULTS DesAb-O was found to selectively detect synthetic Aβ42 oligomers both in vitro and in cultured cells, and to neutralise their associated neuronal dysfunction. DesAb-O can also identify Aβ42 oligomers present in the CSFs of AD patients with respect to healthy individuals, and completely prevent cell dysfunction induced by the administration of CSFs to neuronal cells. CONCLUSIONS Taken together, our data indicate a promising method for the improvement of an early diagnosis of AD and for the generation of novel therapeutic approaches based on sdAbs for the treatment of AD and other devastating neurodegenerative conditions.
Collapse
Affiliation(s)
- Alessandra Bigi
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence, Italy
| | - Liliana Napolitano
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence, Italy
| | - Devkee M Vadukul
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence, Italy
| | - Cristina Cecchi
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence, Italy
| | - Francesco A Aprile
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Roberta Cascella
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence, Italy.
| |
Collapse
|
5
|
Pais MV, Forlenza OV, Diniz BS. Plasma Biomarkers of Alzheimer's Disease: A Review of Available Assays, Recent Developments, and Implications for Clinical Practice. J Alzheimers Dis Rep 2023; 7:355-380. [PMID: 37220625 PMCID: PMC10200198 DOI: 10.3233/adr-230029] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 05/25/2023] Open
Abstract
Recently, low-sensitive plasma assays have been replaced by new ultra-sensitive assays such as single molecule enzyme-linked immunosorbent assay (Simoa), the Mesoscale Discovery (MSD) platform, and immunoprecipitation-mass spectrometry (IP-MS) with higher accuracy in the determination of plasma biomarkers of Alzheimer's disease (AD). Despite the significant variability, many studies have established in-house cut-off values for the most promising available biomarkers. We first reviewed the most used laboratory methods and assays to measure plasma AD biomarkers. Next, we review studies focused on the diagnostic performance of these biomarkers to identify AD cases, predict cognitive decline in pre-clinical AD cases, and differentiate AD cases from other dementia. We summarized data from studies published until January 2023. A combination of plasma Aβ42/40 ratio, age, and APOE status showed the best accuracy in diagnosing brain amyloidosis with a liquid chromatography-mass spectrometry (LC-MS) assay. Plasma p-tau217 has shown the best accuracy in distinguishing Aβ-PET+ from Aβ-PET-even in cognitively unimpaired individuals. We also summarized the different cut-off values for each biomarker when available. Recently developed assays for plasma biomarkers have undeniable importance in AD research, with improved analytical and diagnostic performance. Some biomarkers have been extensively used in clinical trials and are now clinically available. Nonetheless, several challenges remain to their widespread use in clinical practice.
Collapse
Affiliation(s)
- Marcos V. Pais
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
- Laboratory of Neuroscience (LIM-27), Departamento e Instituto de Psiquiatria, Faculdade de Medicina, Universidade de Sao Paulo (FMUSP), Sao Paulo, SP, Brazil
| | - Orestes V. Forlenza
- Laboratory of Neuroscience (LIM-27), Departamento e Instituto de Psiquiatria, Faculdade de Medicina, Universidade de Sao Paulo (FMUSP), Sao Paulo, SP, Brazil
| | - Breno S. Diniz
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
6
|
Kok FK, van Leerdam SL, de Lange ECM. Potential Mechanisms Underlying Resistance to Dementia in Non-Demented Individuals with Alzheimer's Disease Neuropathology. J Alzheimers Dis 2022; 87:51-81. [PMID: 35275527 PMCID: PMC9198800 DOI: 10.3233/jad-210607] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Alzheimer’s disease (AD) is the most common form of dementia and typically characterized by the accumulation of amyloid-β plaques and tau tangles. Intriguingly, there also exists a group of elderly which do not develop dementia during their life, despite the AD neuropathology, the so-called non-demented individuals with AD neuropathology (NDAN). In this review, we provide extensive background on AD pathology and normal aging and discuss potential mechanisms that enable these NDAN individuals to remain cognitively intact. Studies presented in this review show that NDAN subjects are generally higher educated and have a larger cognitive reserve. Furthermore, enhanced neural hypertrophy could compensate for hippocampal and cingulate neural atrophy in NDAN individuals. On a cellular level, these individuals show increased levels of neural stem cells and ‘von Economo neurons’. Furthermore, in NDAN brains, binding of Aβ oligomers to synapses is prevented, resulting in decreased glial activation and reduced neuroinflammation. Overall, the evidence stated here strengthens the idea that some individuals are more resistant to AD pathology, or at least show an elongation of the asymptomatic state of the disease compared to others. Insights into the mechanisms underlying this resistance could provide new insight in understanding normal aging and AD itself. Further research should focus on factors and mechanisms that govern the NDAN cognitive resilience in order to find clues on novel biomarkers, targets, and better treatments of AD.
Collapse
Affiliation(s)
- Frédérique K Kok
- Predictive Pharmacology, Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| | - Suzanne L van Leerdam
- Predictive Pharmacology, Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| | - Elizabeth C M de Lange
- Predictive Pharmacology, Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
7
|
Chan AWS, Cho IK, Li CX, Zhang X, Patel S, Rusnak R, Raper J, Bachevalier J, Moran SP, Chi T, Cannon KH, Hunter CE, Martin RC, Xiao H, Yang SH, Gumber S, Herndon JG, Rosen RF, Hu WT, Lah JJ, Levey AI, Smith Y, Walker LC. Cerebral Aβ deposition in an Aβ-precursor protein-transgenic rhesus monkey. AGING BRAIN 2022; 2:100044. [PMID: 36589695 PMCID: PMC9802652 DOI: 10.1016/j.nbas.2022.100044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
With the ultimate goal of developing a more representative animal model of Alzheimer's disease (AD), two female amyloid-β-(Aβ) precursor protein-transgenic (APPtg) rhesus monkeys were generated by lentiviral transduction of the APP gene into rhesus oocytes, followed by in vitro fertilization and embryo transfer. The APP-transgene included the AD-associated Swedish K670N/M671L and Indiana V717F mutations (APPSWE/IND) regulated by the human polyubiquitin-C promoter. Overexpression of APP was confirmed in lymphocytes and brain tissue. Upon sacrifice at 10 years of age, one of the monkeys had developed Aβ plaques and cerebral Aβ-amyloid angiopathy in the occipital, parietal, and caudal temporal neocortices. The induction of Aβ deposition more than a decade prior to its usual emergence in the rhesus monkey supports the feasibility of creating a transgenic nonhuman primate model for mechanistic analyses and preclinical testing of treatments for Alzheimer's disease and cerebrovascular amyloidosis.
Collapse
Affiliation(s)
- Anthony W S Chan
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA.,Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - In Ki Cho
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Chun-Xia Li
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Xiaodong Zhang
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Sudeep Patel
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Rebecca Rusnak
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Jessica Raper
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA.,Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jocelyne Bachevalier
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA.,Department of Psychology, Emory College, Atlanta, GA 30322, USA
| | - Sean P Moran
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Tim Chi
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Katherine H Cannon
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Carissa E Hunter
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Ryan C Martin
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Hailian Xiao
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shang-Hsun Yang
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA.,Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sanjeev Gumber
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - James G Herndon
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Rebecca F Rosen
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - William T Hu
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - James J Lah
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Allan I Levey
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yoland Smith
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA.,Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Lary C Walker
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA.,Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
8
|
Park S, Kim Y. Bias-generating factors in biofluid amyloid-β measurements for Alzheimer's disease diagnosis. Biomed Eng Lett 2021; 11:287-295. [PMID: 34616582 DOI: 10.1007/s13534-021-00201-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 01/03/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent cause of dementia worldwide, yet the dearth of readily accessible diagnostic biomarkers is a substantial hindrance towards progressing to effective preventive and therapeutic approaches. Due to a long delay between cerebral amyloid-β (Aβ) accumulation and the onset of cognitive impairments, biomarkers that reflect Aβ pathology and enable routine screening for disease progression are of urgent need for application in the clinical diagnosis of AD. According to accumulating evidences, cerebrospinal fluid (CSF) and plasma offer windows to the brain as they allow monitoring of biochemical changes in the brain. Considering the high availability and accuracy in depicting Aβ deposition in the brain, Aβ levels in CSF and plasma are regarded as promising fluid biomarkers for the diagnosis of AD patients at an early stage. However, clinical data with intra- and interindividual variations in the concentrations of CSF and plasma Aβ implicate the need to reevaluate current Aβ detection methods and establish a standardized operating procedure. Therefore, this review introduces three bias-generating factors in biofluid Aβ measurement that may hamper the accurate Aβ quantification and how such complications can be overcome for the widespread implementation of fluid Aβ detection in clinical practice.
Collapse
Affiliation(s)
- Sohui Park
- Department of Pharmacy, Department of Integrative Biotechnology and Translational Medicine, and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983 Republic of Korea
| | - YoungSoo Kim
- Department of Pharmacy, Department of Integrative Biotechnology and Translational Medicine, and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983 Republic of Korea
| |
Collapse
|
9
|
Kulenkampff K, Wolf Perez AM, Sormanni P, Habchi J, Vendruscolo M. Quantifying misfolded protein oligomers as drug targets and biomarkers in Alzheimer and Parkinson diseases. Nat Rev Chem 2021; 5:277-294. [PMID: 37117282 DOI: 10.1038/s41570-021-00254-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 02/06/2023]
Abstract
Protein misfolding and aggregation are characteristic of a wide range of neurodegenerative disorders, including Alzheimer and Parkinson diseases. A hallmark of these diseases is the aggregation of otherwise soluble and functional proteins into amyloid aggregates. Although for many decades such amyloid deposits have been thought to be responsible for disease progression, it is now increasingly recognized that the misfolded protein oligomers formed during aggregation are, instead, the main agents causing pathological processes. These oligomers are transient and heterogeneous, which makes it difficult to detect and quantify them, generating confusion about their exact role in disease. The lack of suitable methods to address these challenges has hampered efforts to investigate the molecular mechanisms of oligomer toxicity and to develop oligomer-based diagnostic and therapeutic tools to combat protein misfolding diseases. In this Review, we describe methods to quantify misfolded protein oligomers, with particular emphasis on diagnostic applications as disease biomarkers and on therapeutic applications as target biomarkers. The development of these methods is ongoing, and we discuss the challenges that remain to be addressed to establish measurement tools capable of overcoming existing limitations and to meet present needs.
Collapse
|
10
|
Hansen EO, Dias NS, Burgos ICB, Costa MV, Carvalho AT, Teixeira AL, Barbosa IG, Santos LAV, Rosa DVF, Ribeiro AJF, Viana BM, Bicalho MAC. Millipore xMap® Luminex (HATMAG-68K): An Accurate and Cost-Effective Method for Evaluating Alzheimer's Biomarkers in Cerebrospinal Fluid. Front Psychiatry 2021; 12:716686. [PMID: 34531769 PMCID: PMC8438166 DOI: 10.3389/fpsyt.2021.716686] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/21/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Alzheimer's disease (AD) biomarkers are of great relevance in clinical research, especially after the AT(N) framework. They enable early diagnosis, disease staging and research with new promising drugs, monitoring therapeutic response. However, the high cost and low availability of the most well-known methods limits their use in low and medium-income countries. In this context, Millipore xMap® Luminex may be a cost-effective alternative. In our study, using INNOTEST® as reference, we assess the diagnostic accuracy of Millipore xMap® and propose a cutoff point for AD. Methods: We performed lumbar puncture of seven older individuals with clinically defined AD, 17 with amnestic mild cognitive impairment (aMCI) and 11 without objective cognitive impairment-control group (CG). Cerebrospinal fluid (CSF) biomarkers concentrations for aB42, p-Tau, and t-Tau were measured by INNOTEST® and Millipore xMap®, and then the techniques were compared to assess the diagnostic accuracy of the new test and to define a cutoff. Results: INNOTEST® and Millipore xMap® measurements showed all correlations >0.8 for the same biomarker, except for t-Tau that was 0.66. Millipore xMap® measurements showed a robust accuracy for all biomarkers, with AUC higher than 0.808 (t-Tau), and the best for Aβ42 (AUC = 0.952). The most accurate cutoffs were found at 1012.98 pg/ml (Aβ42), 64.54 pg/ml (p-tau), 3251.81 pg/ml (t-tau), 3.370 (t-Tau/Aβ42), and 0.059 (p-Tau/Aβ42). Conclusion: Given its good accuracy and cost-effectiveness, Milliplex xMap® tests seems a reliable and promising tool, especially for low and middle-income countries.
Collapse
Affiliation(s)
- Erika Oliveira Hansen
- Jenny de Andrade Faria Institute- Reference Center for the Elderly, Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Molecular Medicine Program, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Natalia Silva Dias
- Neuroscience Program, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Elderly Psychiatry and Psychology Extension Program (PROEPSI), Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ivonne Carolina Bolaños Burgos
- Adult Health Sciences Applied Program, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Monica Vieira Costa
- Molecular Medicine Program, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Antonio Lucio Teixeira
- Department of Psychiatry and Behavioral Sciences, UT Health, Houston, TX, United States.,Instituto de Ensino e Pesquisa, Santa Casa de Belo Horizonte, Belo Horizonte, Brazil
| | - Izabela Guimarães Barbosa
- Neuroscience Program, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Elderly Psychiatry and Psychology Extension Program (PROEPSI), Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Department of Mental Health, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lorena Aline Valu Santos
- National Institute of Science and Technology of Molecular Medicine (INCT-MM), Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniela Valadão Freitas Rosa
- National Institute of Science and Technology of Molecular Medicine (INCT-MM), Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Bernardo Mattos Viana
- Jenny de Andrade Faria Institute- Reference Center for the Elderly, Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Elderly Psychiatry and Psychology Extension Program (PROEPSI), Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Department of Mental Health, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maria Aparecida Camargos Bicalho
- Jenny de Andrade Faria Institute- Reference Center for the Elderly, Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Molecular Medicine Program, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Elderly Psychiatry and Psychology Extension Program (PROEPSI), Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,National Institute of Science and Technology of Molecular Medicine (INCT-MM), Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Department of Clinical Medicine, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
11
|
Lewczuk P, Łukaszewicz-Zając M, Mroczko P, Kornhuber J. Clinical significance of fluid biomarkers in Alzheimer's Disease. Pharmacol Rep 2020; 72:528-542. [PMID: 32385624 PMCID: PMC7329803 DOI: 10.1007/s43440-020-00107-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 12/23/2022]
Abstract
The number of patients with Alzheimer's Disease (AD) and other types of dementia disorders has drastically increased over the last decades. AD is a complex progressive neurodegenerative disease affecting about 14 million patients in Europe and the United States. The hallmarks of this disease are neurotic plaques consist of the Amyloid-β peptide (Aβ) and neurofibrillary tangles (NFTs) formed of hyperphosphorylated Tau protein (pTau). Currently, four CSF biomarkers: Amyloid beta 42 (Aβ42), Aβ42/40 ratio, Tau protein, and Tau phosphorylated at threonine 181 (pTau181) have been indicated as core neurochemical AD biomarkers. However, the identification of additional fluid biomarkers, useful in the prognosis, risk stratification, and monitoring of drug response is sorely needed to better understand the complex heterogeneity of AD pathology as well as to improve diagnosis of patients with the disease. Several novel biomarkers have been extensively investigated, and their utility must be proved and eventually integrated into guidelines for use in clinical practice. This paper presents the research and development of CSF and blood biomarkers for AD as well as their potential clinical significance. Upper panel: Aβ peptides are released from transmembrane Amyloid Precursor Protein (APP) under physiological conditions (blue arrow). In AD, however, pathologic accumulation of Aβ monomers leads to their accumulation in plaques (red arrow). This is reflected in decreased concentration of Aβ1-42 and decreased Aβ42/40 concentration ratio in the CSF. Lower panel: Phosphorylated Tau molecules maintain axonal structures; hyperphosphorylation of Tau (red arrow) in AD leads to degeneration of axons, and release of pTau molecules, which then accumulate in neurofibrillary tangles. This process is reflected by increased concentrations of Tau and pTau in the CSF.
Collapse
Affiliation(s)
- Piotr Lewczuk
- Lab for Clinical Neurochemistry and Neurochemical Dementia Diagnostics, Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany.
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, Białystok, Poland.
| | | | - Piotr Mroczko
- Department of Criminal Law and Criminology, Faculty of Law, University of Białystok, Białystok, Poland
| | - Johannes Kornhuber
- Lab for Clinical Neurochemistry and Neurochemical Dementia Diagnostics, Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| |
Collapse
|
12
|
Yasuda S, Baba H, Maeshima H, Shimano T, Inoue M, Ichikawa T, Shukuzawa H, Suzuki T, Arai H. Serum levels and mutual correlations of amyloid β in patients with depression. Geriatr Gerontol Int 2019; 20:125-129. [PMID: 31833164 DOI: 10.1111/ggi.13826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/09/2019] [Accepted: 11/11/2019] [Indexed: 11/28/2022]
Abstract
AIM Epidemiological studies have shown that depression is a risk factor for Alzheimer's disease (AD). Although the biological mechanism underlying the link between depression and AD is unclear, altered amyloid β (Aβ) metabolism in patients with depression has been suggested as a potential mechanism. Results from previous studies of Aβ metabolism in patients with depression have been inconsistent, and Aβ polymerization, which is a crucial process in AD pathology, has not previously been assessed. METHODS Serum levels of Aβ40, Aβ42 and Aβ oligomers were evaluated in 104 inpatients with major depressive disorder (MDD) and 132 healthy control individuals. RESULTS Lower serum Aβ42 levels were observed in patients with MDD, but there was no difference in serum Aβ oligomer levels between the MDD group and the healthy control group, even in older adults. Interestingly, serum Aβ oligomer levels in patients with MDD were dependent on serum Aβ42 levels, regardless of age, and this relationship was not observed in the control group. CONCLUSIONS These results suggest that Aβ42 is more prone to aggregation and polymerization in patients with depression than in healthy individuals, suggesting a possible mechanism underlying the transition from depression to AD. Geriatr Gerontol Int 2020; 20: 125-129.
Collapse
Affiliation(s)
- Seita Yasuda
- Department of Psychiatry & Behavioral Science, Juntendo university Graduate School of Medicine, Tokyo, Japan
| | - Hajime Baba
- Department of Psychiatry & Behavioral Science, Juntendo university Graduate School of Medicine, Tokyo, Japan.,Juntendo University Mood Disorder Project (JUMP), Department of Psychiatry, Juntendo Koshigaya Hospital, Saitama, Japan
| | - Hitoshi Maeshima
- Department of Psychiatry & Behavioral Science, Juntendo university Graduate School of Medicine, Tokyo, Japan.,Juntendo University Mood Disorder Project (JUMP), Department of Psychiatry, Juntendo Koshigaya Hospital, Saitama, Japan
| | - Takahisa Shimano
- Juntendo University Mood Disorder Project (JUMP), Department of Psychiatry, Juntendo Koshigaya Hospital, Saitama, Japan
| | - Megumi Inoue
- Juntendo University Mood Disorder Project (JUMP), Department of Psychiatry, Juntendo Koshigaya Hospital, Saitama, Japan
| | - Tomoya Ichikawa
- Department of Psychiatry & Behavioral Science, Juntendo university Graduate School of Medicine, Tokyo, Japan
| | - Hiroko Shukuzawa
- Department of Psychiatry & Behavioral Science, Juntendo university Graduate School of Medicine, Tokyo, Japan.,Juntendo University Mood Disorder Project (JUMP), Department of Psychiatry, Juntendo Koshigaya Hospital, Saitama, Japan
| | - Toshihito Suzuki
- Department of Psychiatry & Behavioral Science, Juntendo university Graduate School of Medicine, Tokyo, Japan.,Juntendo University Mood Disorder Project (JUMP), Department of Psychiatry, Juntendo Koshigaya Hospital, Saitama, Japan
| | - Heii Arai
- Department of Psychiatry & Behavioral Science, Juntendo university Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
13
|
Siddiqi MK, Malik S, Majid N, Alam P, Khan RH. Cytotoxic species in amyloid-associated diseases: Oligomers or mature fibrils. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 118:333-369. [PMID: 31928731 DOI: 10.1016/bs.apcsb.2019.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amyloid diseases especially, Alzheimer's disease (AD), is characterized by an imbalance between the production and clearance of amyloid-β (Aβ) species. Amyloidogenic proteins or peptides can transform structurally from monomers into β-stranded fibrils via multiple oligomeric states. Among various amyloid species, structured oligomers are proposed to be more toxic than fibrils; however, the identification of amyloid oligomers has been challenging due to their heterogeneous and metastable nature. Multiple techniques have recently helped in better understanding of oligomer's assembly details and structural properties. Moreover, some progress on elucidating the mechanisms of oligomer-triggered toxicity has been made. Based on the collection of current findings, there is growing consensus that control of toxic amyloid oligomers could be a valid approach to regulate amyloid-associated toxicity, which could advance development of new diagnostics and therapeutics for amyloid-related diseases. In this review, we have described the recent scenario of amyloid diseases with a great deal of information about the recent understanding of oligomers' assembly, structural properties, and toxicity. Also comprehensive details have been provided to differentiate the degree of toxicity associated with prefibrillar aggregates.
Collapse
Affiliation(s)
| | - Sadia Malik
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Nabeela Majid
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Parvez Alam
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
14
|
Wang J, Gu BJ, Masters CL, Wang YJ. A systemic view of Alzheimer disease - insights from amyloid-β metabolism beyond the brain. Nat Rev Neurol 2019; 13:612-623. [PMID: 28960209 DOI: 10.1038/nrneurol.2017.111] [Citation(s) in RCA: 496] [Impact Index Per Article: 99.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer disease (AD) is the most common type of dementia, and is currently incurable; existing treatments for AD produce only a modest amelioration of symptoms. Research into this disease has conventionally focused on the CNS. However, several peripheral and systemic abnormalities are now understood to be linked to AD, and our understanding of how these alterations contribute to AD is becoming more clearly defined. This Review focuses on amyloid-β (Aβ), a major hallmark of AD. We review emerging findings of associations between systemic abnormalities and Aβ metabolism, and describe how these associations might interact with or reflect on the central pathways of Aβ production and clearance. On the basis of these findings, we propose that these abnormal systemic changes might not only develop secondary to brain dysfunction but might also affect AD progression, suggesting that the interactions between the brain and the periphery have a crucial role in the development and progression of AD. Such a systemic view of the molecular pathogenesis of AD could provide a novel perspective for understanding this disease and present new opportunities for its early diagnosis and treatment.
Collapse
Affiliation(s)
- Jun Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, 10 Changjiang branch road, Daping, Chongqing, 400042, China
| | - Ben J Gu
- The Florey Institute, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
| | - Colin L Masters
- The Florey Institute, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, 10 Changjiang branch road, Daping, Chongqing, 400042, China
| |
Collapse
|
15
|
Detection of amyloid β oligomers toward early diagnosis of Alzheimer's disease. Anal Biochem 2019; 566:40-45. [DOI: 10.1016/j.ab.2018.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 08/28/2018] [Accepted: 09/12/2018] [Indexed: 11/23/2022]
|
16
|
W. Pilkington IV A, Legleiter J. Challenges in understanding the structure/activity relationship of Aβ oligomers. AIMS BIOPHYSICS 2019. [DOI: 10.3934/biophy.2019.1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
17
|
Abstract
INTRODUCTION Depression and posttraumatic stress disorder (PTSD) are two complex and debilitating psychiatric disorders that result in poor life and destructive behaviors against self and others. Currently, diagnosis is based on subjective rather than objective determinations leading to misdiagnose and ineffective treatments. Advances in novel neurobiological methods have allowed assessment of promising biomarkers to diagnose depression and PTSD, which offers a new means of appropriately treating patients. Areas covered: Biomarkers discovery in blood represents a fundamental tool to predict, diagnose, and monitor treatment efficacy in depression and PTSD. The potential role of altered HPA axis, epigenetics, NPY, BDNF, neurosteroid biosynthesis, the endocannabinoid system, and their function as biomarkers for mood disorders is discussed. Insofar, we propose the identification of a biomarker axis to univocally identify and discriminate disorders with large comorbidity and symptoms overlap, so as to provide a base of support for development of targeted treatments. We also weigh in on the feasibility of a future blood test for early diagnosis. Expert commentary: Potential biomarkers have already been assessed in patients' blood and need to be further validated through multisite large clinical trial stratification. Another challenge is to assess the relation among several interdependent biomarkers to form an axis that identifies a specific disorder and secures the best-individualized treatment. The future of blood-based tests for PTSD and depression is not only on the horizon but, possibly, already around the corner.
Collapse
Affiliation(s)
- Dario Aspesi
- a The Psychiatric Institute, Department of Psychiatry , University of Illinois at Chicago , Chicago , IL , USA
| | - Graziano Pinna
- a The Psychiatric Institute, Department of Psychiatry , University of Illinois at Chicago , Chicago , IL , USA
| |
Collapse
|
18
|
Li S, Jin M, Liu L, Dang Y, Ostaszewski BL, Selkoe DJ. Decoding the synaptic dysfunction of bioactive human AD brain soluble Aβ to inspire novel therapeutic avenues for Alzheimer's disease. Acta Neuropathol Commun 2018; 6:121. [PMID: 30409172 PMCID: PMC6225562 DOI: 10.1186/s40478-018-0626-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 12/31/2022] Open
Abstract
Pathologic, biochemical and genetic evidence indicates that accumulation and aggregation of amyloid β-proteins (Aβ) is a critical factor in the pathogenesis of Alzheimer's disease (AD). Several therapeutic interventions attempting to lower Aβ have failed to ameliorate cognitive decline in patients with clinical AD significantly, but most such approaches target only one or two facets of Aβ production/clearance/toxicity and do not consider the heterogeneity of human Aβ species. As synaptic dysfunction may be among the earliest deficits in AD, we used hippocampal long-term potentiation (LTP) as a sensitive indicator of the early neurotoxic effects of Aβ species. Here we confirmed prior findings that soluble Aβ oligomers, much more than fibrillar amyloid plaque cores or Aβ monomers, disrupt synaptic function. Interestingly, not all (84%) human AD brain extracts are able to inhibit LTP and the degree of LTP impairment by AD brain extracts does not correlate with Aβ levels detected by standard ELISAs. Bioactive AD brain extracts also induce neurotoxicity in iPSC-derived human neurons. Shorter forms of Aβ (including Aβ1-37, Aβ1-38, Aβ1-39), pre-Aβ APP fragments (- 30 to - 1) and N-terminally extended Aβs (- 30 to + 40) each showed much less synaptotoxicity than longer Aβs (Aβ1-42 - Aβ1-46). We found that antibodies which target the N-terminus, not the C-terminus, efficiently rescued Aβ oligomer-impaired LTP and oligomer-facilitated LTD. Our data suggest that preventing soluble Aβ oligomer formation and targeting their N-terminal residues with antibodies could be an attractive combined therapeutic approach.
Collapse
|
19
|
Reduced retromer function results in the accumulation of amyloid-beta oligomers. Mol Cell Neurosci 2018; 93:18-26. [PMID: 30257187 DOI: 10.1016/j.mcn.2018.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 11/24/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a progressive loss of multiple cognitive functions. Accumulation of amyloid beta oligomers (oAβ) play a major role in the neurotoxicity associated with the disease process. One of the early affected brain regions is the hippocampus, wherein a reduction of the vacuolar protein sorting-associated protein 35 (VPS35), the core protein comprising the retromer complex involved in cellular cargo sorting, has been identified. To investigate the role of the retromer function on the accumulation and clearance of oAβ, we reduced retromer function by selectively inhibiting VPS35 gene expression using siRNA in differentiated neuronal SH-SY5Y cells. As cell-to-cell transfer of oAβ to new brain regions is believed to be important for disease progression we investigated the effect of VPS35 reduction both in cells with direct uptake of oAβ and in cells receiving oAβ from donor cells. We demonstrate that reduced retromer function increases oAβ accumulation in both cell systems, both the number of cells containing intracellular oAβ and the amount within them. This effect was shown at different time points and regardless if the oAβ originated from the extracellular milieu or via a direct neuronal cell-to-cell transfer. Interestingly, not only did reduced VPS35 cause oAβ accumulation, but oAβ treatment alone also lead to a reduction of VPS35 protein content. The accumulated oAβ seems to co-localize with VPS35 and early endosome markers. Together, these findings provide evidence that reduced retromer function decreases the ability for neurons to transport and clear neurotoxic oAβ received through different routes resulting in the accumulation of oAβ. Thus, enhancing retromer function may be a potential therapeutic strategy to slow down the pathophysiology associated with the progression of AD.
Collapse
|
20
|
Frozza RL, Lourenco MV, De Felice FG. Challenges for Alzheimer's Disease Therapy: Insights from Novel Mechanisms Beyond Memory Defects. Front Neurosci 2018; 12:37. [PMID: 29467605 PMCID: PMC5808215 DOI: 10.3389/fnins.2018.00037] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/16/2018] [Indexed: 12/24/2022] Open
Abstract
Alzheimer's disease (AD), the most common form of dementia in late life, will become even more prevalent by midcentury, constituting a major global health concern with huge implications for individuals and society. Despite scientific breakthroughs during the past decades that have expanded our knowledge on the cellular and molecular bases of AD, therapies that effectively halt disease progression are still lacking, and focused efforts are needed to address this public health challenge. Because AD is classically recognized as a disease of memory, studies have mainly focused on investigating memory-associated brain defects. However, compelling evidence has indicated that additional brain regions, not classically linked to memory, are also affected in the course of disease. In this review, we outline the current understanding of key pathophysiological mechanisms in AD and their clinical manifestation. We also highlight how considering the complex nature of AD pathogenesis, and exploring repurposed drug approaches can pave the road toward the development of novel therapeutics for AD.
Collapse
Affiliation(s)
- Rudimar L. Frozza
- Oswaldo Cruz Institute, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Mychael V. Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Rio de Janeiro, Brazil
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda G. De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Rio de Janeiro, Brazil
- Department of Biomedical and Molecular Sciences, Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| |
Collapse
|
21
|
Rusbridge C, Salguero FJ, David MA, Faller KME, Bras JT, Guerreiro RJ, Richard-Londt AC, Grainger D, Head E, Brandner SGP, Summers B, Hardy J, Tayebi M. An Aged Canid with Behavioral Deficits Exhibits Blood and Cerebrospinal Fluid Amyloid Beta Oligomers. Front Aging Neurosci 2018; 10:7. [PMID: 29441010 PMCID: PMC5797595 DOI: 10.3389/fnagi.2018.00007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 01/09/2018] [Indexed: 01/28/2023] Open
Abstract
Many of the molecular and pathological features associated with human Alzheimer disease (AD) are mirrored in the naturally occurring age-associated neuropathology in the canine species. In aged dogs with declining learned behavior and memory the severity of cognitive dysfunction parallels the progressive build up and location of Aβ in the brain. The main aim of this work was to study the biological behavior of soluble oligomers isolated from an aged dog with cognitive dysfunction through investigating their interaction with a human cell line and synthetic Aβ peptides. We report that soluble oligomers were specifically detected in the dog's blood and cerebrospinal fluid (CSF) via anti-oligomer- and anti-Aβ specific binders. Importantly, our results reveal the potent neurotoxic effects of the dog's CSF on cell viability and the seeding efficiency of the CSF-borne soluble oligomers on the thermodynamic activity and the aggregation kinetics of synthetic human Aβ. The value of further characterizing the naturally occurring Alzheimer-like neuropathology in dogs using genetic and molecular tools is discussed.
Collapse
Affiliation(s)
- Clare Rusbridge
- Department of Pathology and Infectious Diseases, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.,Fitzpatrick Referrals, Godalming, United Kingdom
| | - Francisco J Salguero
- Department of Pathology and Infectious Diseases, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | | | - Kiterie M E Faller
- School of Veterinary Medicine, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jose T Bras
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom.,Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal
| | - Rita J Guerreiro
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom.,Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal
| | - Angela C Richard-Londt
- Division of Neuropathology and Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, United Kingdom
| | - Duncan Grainger
- Department of Pathology and Infectious Diseases, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Elizabeth Head
- Department of Pharmacology and Nutritional Sciences, Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| | - Sebastian G P Brandner
- Division of Neuropathology and Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, United Kingdom
| | | | - John Hardy
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom
| | - Mourad Tayebi
- Department of Pathology and Infectious Diseases, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.,School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| |
Collapse
|
22
|
Schuster J, Funke SA. Methods for the Specific Detection and Quantitation of Amyloid-β Oligomers in Cerebrospinal Fluid. J Alzheimers Dis 2018; 53:53-67. [PMID: 27163804 DOI: 10.3233/jad-151029] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Protein misfolding and aggregation are fundamental features of the majority of neurodegenerative diseases, like Alzheimer's disease (AD), Parkinson's disease, frontotemporal dementia, and prion diseases. Proteinaceous deposits in the brain of the patient, e.g., amyloid plaques consisting of the amyloid-β (Aβ) peptide and tangles composed of tau protein, are the hallmarks of AD. Soluble oligomers of Aβ and tau play a fundamental role in disease progression, and specific detection and quantification of the respective oligomeric proteins in cerebrospinal fluid may provide presymptomatically detectable biomarkers, paving the way for early diagnosis or even prognosis. Several studies on the development of techniques for the specific detection of Aβ oligomers were published, but some of the existing tools do not yet seem to be satisfactory, and the study results are contradicting. The detection of oligomers is challenging due to their polymorphous and unstable nature, their low concentration, and the presence of competing proteins and Aβ monomers in body fluids. Here, we present an overview of the current state of the development of methods for Aβ oligomer specific detection and quantitation. The methods are divided in the three subgroups: (i) enzyme linked immunosorbent assays (ELISA), (ii) methods for single oligomer detection, and (iii) others, which are mainly biosensor based methods.
Collapse
|
23
|
Amyloid β oligomers (AβOs) in Alzheimer's disease. J Neural Transm (Vienna) 2017; 125:177-191. [PMID: 29196815 DOI: 10.1007/s00702-017-1820-x] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 11/27/2017] [Indexed: 01/01/2023]
Abstract
The causative role of amyloid β 1-42 (Aβ42) aggregation in the pathogenesis of Alzheimer's disease (AD) has been under debate for over 25 years. Primarily, scientific efforts have focused on the dyshomeostasis between production and clearance of Aβ42. This imbalance may result from mutations either in genes for the substrate, i.e., amyloid precursor protein or in genes encoding presenilin, the enzyme of the reaction that generates Aβ42. Currently, it is supposed that soluble oligomers of amyloid beta (AβOs) and not fibrillar Aβ42 within neuritic plaques may be the toxic factors acting on a very early stage of AD, perhaps even initiating pathological cascade. For example, soluble AβOs isolated from AD patients' brains reduced number of synapses, inhibited long-term potentiation, and enhanced long-term synaptic depression in brain regions responsible for memory in animal models of AD. Concentrations of AβOs in the cerebrospinal fluid (CSF) of AD patients are often reported higher than in non-demented controls, and show a negative correlation with mini-mental state examination scores. Furthermore, increased Aβ42/oligomer ratio in the CSF of AD/MCI patients indicated that the presence of soluble AβOs in CSF may be linked to lowering of natively measured monomeric Aβ42 by epitopes masking, and hence, concentrations of AβOs in the CSF are postulated to as useful AD biomarkers.
Collapse
|
24
|
Carrico ZM, Le G, Malinow R. A fluorescence assay for detecting amyloid-β using the cytomegalovirus enhancer/promoter. J Biol Methods 2017; 4. [PMID: 29457040 PMCID: PMC5813829 DOI: 10.14440/jbm.2017.200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Robust assays for detecting the effects of elevated concentrations of amyloid-β (Aβ) may facilitate Alzheimer’s disease research. An appropriate assay would be high-throughput and enable identification of drugs and genetic mutations that block the effects of Aβ, potentially leading to treatments for Alzheimer’s disease. We discovered that the commonly used cytomegalovirus (CMV) enhancer/promoter is sensitive to the effects of Aβ. By combining the CMV enhancer/promoter with a fluorescent protein, we created a reporter system that produces changes in intracellular fluorescence in response to Aβ. Using hippocampal neurons, we quantified the ability of a CMV-fluorescent protein recombinant reporter to detect both exogenously applied and overexpressed Aβ. This is the first report of a high-throughput enhancer/promoter-based Aβ detection method. The reporter is able to detect the effects of elevated concentrations of Aβ in a high-throughput fashion, providing a new tool for Alzheimer’s disease research and important knowledge about the commonly used CMV enhancer/promoter.
Collapse
Affiliation(s)
- Zachary M Carrico
- Center for Neural Circuits and Behavior, Departments of Neuroscience and Biology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Geneva Le
- Center for Neural Circuits and Behavior, Departments of Neuroscience and Biology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Roberto Malinow
- Center for Neural Circuits and Behavior, Departments of Neuroscience and Biology, University of California at San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
25
|
Forner S, Baglietto-Vargas D, Martini AC, Trujillo-Estrada L, LaFerla FM. Synaptic Impairment in Alzheimer's Disease: A Dysregulated Symphony. Trends Neurosci 2017; 40:347-357. [PMID: 28494972 DOI: 10.1016/j.tins.2017.04.002] [Citation(s) in RCA: 289] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/13/2017] [Accepted: 04/14/2017] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is characterized by memory loss, cognitive decline, and devastating neurodegeneration, not only as a result of the extracellular accumulation of beta-amyloid peptide (Aβ) and intracellular accumulation of tau, but also as a consequence of the dysfunction and loss of synapses. Although significant advances have been made in our understanding of the relationship of the pathological role of Aβ and tau in synapse dysfunction, several questions remain as to how Aβ and tau interdependently cause impairments in synaptic function in AD. Overall, more insight into these questions should enable researchers in this field to develop novel therapeutic targets to mitigate or delay the cognitive deficits associated with this devastating disease.
Collapse
Affiliation(s)
- Stefania Forner
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - David Baglietto-Vargas
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Alessandra C Martini
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Laura Trujillo-Estrada
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Frank M LaFerla
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA; Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
26
|
Aβ levels in the jugular vein and high molecular weight Aβ oligomer levels in CSF can be used as biomarkers to indicate the anti-amyloid effect of IVIg for Alzheimer's disease. PLoS One 2017; 12:e0174630. [PMID: 28394917 PMCID: PMC5386327 DOI: 10.1371/journal.pone.0174630] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 03/13/2017] [Indexed: 11/19/2022] Open
Abstract
Intravenous immunoglobulin (IVIg) has been a candidate as a potential anti-amyloid immunotherapy for Alzheimer disease (AD) because it contains anti-amyloid β (Aβ) antibodies. Although several studies with IVIg in AD have been published, changing levels of Aβ efflux from the brain, or disaggregation of Aβ species induced by immunotherapy, have not been properly investigated. Here, we carried out an open label study of therapy with IVIg in five patients with AD. We collected plasma from a peripheral vein (peripheral-plasma) and from the internal jugular vein (jugular-plasma) to estimate directly the efflux of soluble Aβ from the brain. We also measured high molecular weight (HMW) Aβ oligomers in CSF as a marker to detect disaggregated Aβ. IVIg infusions were well tolerated in the majority of cases. However, one study subject had epileptic seizures after IVIg. Levels of HMW CSF Aβ oligomers in all participants were significantly increased after IVIg. Aβ40 and Aβ42 levels in jugular-plasma were continuously or temporarily elevated after treatment in three of five patients who showed preserved cognitive function, whereas levels of those in peripheral-plasma did not correlate with reactivity to the treatment. Other conventional biomarkers including 11C-Pittsburgh compound B retention were not altered after the treatment. These findings imply that HMW Aβ oligomer levels could be a better biomarker to reflect the anti-amyloid effects of IVIg than conventional Aβ species; moreover, Aβ in jugular-plasma seems to be a more direct and precise biomarker to estimate clearance of Aβ from the brain rather than Aβ in peripheral-plasma. TRIAL REGISTRATION UMIN000022319.
Collapse
|
27
|
Nikitidou E, Khoonsari PE, Shevchenko G, Ingelsson M, Kultima K, Erlandsson A. Increased Release of Apolipoprotein E in Extracellular Vesicles Following Amyloid-β Protofibril Exposure of Neuroglial Co-Cultures. J Alzheimers Dis 2017; 60:305-321. [PMID: 28826183 PMCID: PMC5676865 DOI: 10.3233/jad-170278] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2017] [Indexed: 12/30/2022]
Abstract
Extracellular vesicles (EVs), including exosomes and larger microvesicles, have been implicated to play a role in several conditions, including Alzheimer's disease (AD). Since the EV content mirrors the intracellular environment, it could contribute with important information about ongoing pathological processes and may be a useful source for biomarkers, reflecting the disease progression. The aim of the present study was to analyze the protein content of EVs specifically released from a mixed co-culture of primary astrocytes, neurons, and oligodendrocytes treated with synthetic amyloid-β (Aβ42) protofibrils. The EV isolation was performed by ultracentrifugation and validated by transmission electron microscopy. Mass spectrometry analysis of the EV content revealed a total of 807 unique proteins, of which five displayed altered levels in Aβ42 protofibril exposed cultures. The most prominent protein was apolipoprotein E (apoE), and by western blot analysis we could confirm a threefold increase of apoE in EVs from Aβ42 protofibril exposed cells, compared to unexposed cells. Moreover, immunoprecipitation studies demonstrated that apoE was primarily situated inside the EVs, whereas immunocytochemistry indicated that the EVs most likely derived from the astrocytes and the neurons in the culture. The identified Aβ-induced sorting of apoE into EVs from cultured neuroglial cells suggests a possible role for intercellular transfer of apoE in AD pathology and encourage future studies to fully elucidate the clinical relevance of this event.
Collapse
Affiliation(s)
- Elisabeth Nikitidou
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Payam Emami Khoonsari
- Department of Medical Sciences, Clinical Chemistry, Uppsala University Academic Hospital, Uppsala, Sweden
| | - Ganna Shevchenko
- Department of Chemistry-BMC, AnalyticalChemistry, Uppsala University, Uppsala, Sweden
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Kim Kultima
- Department of Medical Sciences, Clinical Chemistry, Uppsala University Academic Hospital, Uppsala, Sweden
| | - Anna Erlandsson
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
28
|
Zhou Y, Zhang H, Liu L, Li C, Chang Z, Zhu X, Ye B, Xu M. Fabrication of an antibody-aptamer sandwich assay for electrochemical evaluation of levels of β-amyloid oligomers. Sci Rep 2016; 6:35186. [PMID: 27725775 PMCID: PMC5057102 DOI: 10.1038/srep35186] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/26/2016] [Indexed: 01/21/2023] Open
Abstract
Amyloid β-peptide (Aβ) in its oligomeric form is often considered as the most toxic species in Alzheimer's disease (AD), and thus Aβ oligomer is a potentially promising candidate biomarker for AD diagnosis. The development of a sensitive and reliable method for monitoring the Aβ oligomer levels in body fluids is an urgent requirement in order to predict the severity and progression at early or preclinical stages of AD. Here, we show a proof of concept for a sensitive and specific detection of Aβ oligomers by an antibody-aptamer sandwich assay. The antibodies of Aβ oligomers and a nanocomposite of gold nanoparticles with aptamer and thionine (aptamer-Au-Th) were used as the recognition element and the detection probe for specifically binding to Aβ oligomers, respectively. The electrochemical signal of Th reduction could provide measurable electrochemical signals, and a low limit of detection (100 pM) was achieved due to the signal amplification by high loading of Th on the gold nanoparticles. The feasibility of the assay was verified by test of Aβ oligomers in artificial cerebrospinal fluid. The proposed strategy presents valuable information related to early diagnosis of AD process.
Collapse
Affiliation(s)
- Yanli Zhou
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China.,College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Huanqing Zhang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Lantao Liu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Congming Li
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Zhu Chang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Xu Zhu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Baoxian Ye
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China.,College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
29
|
Ruan Q, D'Onofrio G, Sancarlo D, Greco A, Yu Z. Potential fluid biomarkers for pathological brain changes in Alzheimer's disease: Implication for the screening of cognitive frailty. Mol Med Rep 2016; 14:3184-98. [PMID: 27511317 PMCID: PMC5042792 DOI: 10.3892/mmr.2016.5618] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 07/18/2016] [Indexed: 11/27/2022] Open
Abstract
Cognitive frailty (CF) overlaps with early neuropathological alterations associated with aging-related major neurocognitive disorders, including Alzheimer's disease (AD). Fluid biomarkers for these pathological brain alterations allow for early diagnosis in the preclinical stages of AD, and for objective prognostic assessments in clinical intervention trials. These biomarkers may also be helpful in the screening of CF. The present study reviewed the literature and identified systematic reviews of cohort studies and other authoritative reports. The selection criteria for potentially suitable fluid biomarkers included: i) Frequent use in studies of fluid-derived markers and ii) evidence of novel measurement techniques for fluid-derived markers. The present study focused on studies that assessed these biomarkers in AD, mild cognitive impairment and non-AD demented subjects. At present, widely used fluid biomarkers include cerebrospinal fluid (CSF), total tau, phosphorylated tau and amyloid-β levels. With the development of novel measurement techniques and improvements in understanding regarding the mechanisms underlying aging-related major neurocognitive disorders, numerous novel biomarkers associated with various aspects of AD neuropathology are being explored. These include specific measurements of Aβ oligomer or monomer forms, tau proteins in the peripheral plasma and CSF, and novel markers of synaptic dysfunction, neuronal damage and apoptosis, neuronal activity alteration, neuroinflammation, blood brain barrier dysfunction, oxidative stress, metabolites, mitochondrial function and aberrant lipid metabolism. The proposed panels of fluid biomarkers may be useful in the early diagnosis of AD, prediction of the progression of AD from preclinical stages to the dementia stage, and the differentiation of AD from non-AD dementia. In combination with physical frailty, the present study surmised that these biomarkers may also be used as biomarkers for CF, thus contribute to discovering causes and informing interventions for cognitive impairment in individuals with CF.
Collapse
Affiliation(s)
- Qingwei Ruan
- Shanghai Institute of Geriatrics and Gerontology, Shanghai Key Laboratory of Clinical Geriatrics, Department of Geriatrics, Huadong Hospital, and Research Center of Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai 200040, P.R. China
| | - Grazia D'Onofrio
- Geriatric Unit & Laboratory of Gerontology and Geriatrics, Department of Medical Sciences, IRCCS 'Casa Sollievo della Sofferenza', San Giovanni Rotondo, I‑71013 Foggia, Italy
| | - Daniele Sancarlo
- Geriatric Unit & Laboratory of Gerontology and Geriatrics, Department of Medical Sciences, IRCCS 'Casa Sollievo della Sofferenza', San Giovanni Rotondo, I‑71013 Foggia, Italy
| | - Antonio Greco
- Geriatric Unit & Laboratory of Gerontology and Geriatrics, Department of Medical Sciences, IRCCS 'Casa Sollievo della Sofferenza', San Giovanni Rotondo, I‑71013 Foggia, Italy
| | - Zhuowei Yu
- Shanghai Institute of Geriatrics and Gerontology, Shanghai Key Laboratory of Clinical Geriatrics, Department of Geriatrics, Huadong Hospital, and Research Center of Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
30
|
Takeda S, Commins C, DeVos SL, Nobuhara CK, Wegmann S, Roe AD, Costantino I, Fan Z, Nicholls SB, Sherman AE, Trisini Lipsanopoulos AT, Scherzer CR, Carlson GA, Pitstick R, Peskind ER, Raskind MA, Li G, Montine TJ, Frosch MP, Hyman BT. Seed-competent high-molecular-weight tau species accumulates in the cerebrospinal fluid of Alzheimer's disease mouse model and human patients. Ann Neurol 2016; 80:355-67. [PMID: 27351289 DOI: 10.1002/ana.24716] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 06/04/2016] [Accepted: 06/26/2016] [Indexed: 02/01/2023]
Abstract
OBJECTIVE Cerebrospinal fluid (CSF) tau is an excellent surrogate marker for assessing neuropathological changes that occur in Alzheimer's disease (AD) patients. However, whether the elevated tau in AD CSF is just a marker of neurodegeneration or, in fact, a part of the disease process is uncertain. Moreover, it is unknown how CSF tau relates to the recently described soluble high-molecular-weight (HMW) species that is found in the postmortem AD brain and can be taken up by neurons and seed aggregates. METHODS We have examined seeding and uptake properties of brain extracellular tau from various sources, including interstitial fluid (ISF) and CSF from an AD transgenic mouse model and postmortem ventricular and antemortem lumbar CSF from AD patients. RESULTS We found that brain ISF and CSF tau from the AD mouse model can be taken up by cells and induce intracellular aggregates. Ventricular CSF from AD patients contained a rare HMW tau species that exerted a higher seeding activity. Notably, the HMW tau species was also detected in lumbar CSF from AD patients, and its levels were significantly elevated compared to control subjects. HMW tau derived from CSF of AD patients was seed competent in vitro. INTERPRETATION These findings suggest that CSF from an AD brain contains potentially bioactive HMW tau species, giving new insights into the role of CSF tau and biomarker development for AD. Ann Neurol 2016;80:355-367.
Collapse
Affiliation(s)
- Shuko Takeda
- Alzheimer's Disease Research Laboratory, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA.
| | - Caitlin Commins
- Alzheimer's Disease Research Laboratory, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Sarah L DeVos
- Alzheimer's Disease Research Laboratory, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Chloe K Nobuhara
- Alzheimer's Disease Research Laboratory, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Susanne Wegmann
- Alzheimer's Disease Research Laboratory, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Allyson D Roe
- Alzheimer's Disease Research Laboratory, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Isabel Costantino
- Alzheimer's Disease Research Laboratory, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Zhanyun Fan
- Alzheimer's Disease Research Laboratory, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Samantha B Nicholls
- Alzheimer's Disease Research Laboratory, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Alexis E Sherman
- Alzheimer's Disease Research Laboratory, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | | | - Clemens R Scherzer
- Neurogenomics Lab and Parkinson Personalized Medicine Program, Harvard Medical School and Brigham & Women's Hospital, Cambridge, MA
| | | | | | - Elaine R Peskind
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA.,Mental Illness Research, Education, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA
| | - Murray A Raskind
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA.,Mental Illness Research, Education, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA
| | - Ge Li
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA.,Geriatric Research, Education, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA
| | - Thomas J Montine
- Department of Pathology, University of Washington School of Medicine, Seattle, WA
| | - Matthew P Frosch
- Alzheimer's Disease Research Laboratory, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Bradley T Hyman
- Alzheimer's Disease Research Laboratory, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| |
Collapse
|
31
|
Park MC, Kim M, Lim GT, Kang SM, An SSA, Kim TS, Kang JY. Droplet-based magnetic bead immunoassay using microchannel-connected multiwell plates (μCHAMPs) for the detection of amyloid beta oligomers. LAB ON A CHIP 2016; 16:2245-53. [PMID: 27185215 DOI: 10.1039/c6lc00013d] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Multiwell plates are regularly used in analytical research and clinical diagnosis but often require laborious washing steps and large sample or reagent volumes (typically, 100 μL per well). To overcome such drawbacks in the conventional multiwell plate, we present a novel microchannel-connected multiwell plate (μCHAMP) that can be used for automated disease biomarker detection in a small sample volume by performing droplet-based magnetic bead immunoassay inside the plate. In this μCHAMP-based immunoassay platform, small volumes (30-50 μL) of aqueous-phase working droplets are stably confined within each well by the simple microchannel structure (200-300 μm in height and 0.5-1 mm in width), and magnetic beads are exclusively transported into an adjacent droplet through the oil-filled microchannels assisted by a magnet array aligned beneath and controlled by a XY-motorized stage. Using this μCHAMP-based platform, we were able to perform parallel detection of synthetic amyloid beta (Aβ) oligomers as a model analyte for the early diagnosis of Alzheimer's disease (AD). This platform easily simplified the laborious and consumptive immunoassay procedure by achieving automated parallel immunoassay (32 assays per operation in 3-well connected 96-well plate) within 1 hour and at low sample consumption (less than 10 μL per assay) with no cumbersome manual washing step. Moreover, it could detect synthetic Aβ oligomers even below 10 pg mL(-1) concentration with a calculated detection limit of ∼3 pg mL(-1). Therefore, the μCHAMP and droplet-based magnetic bead immunoassay, with the combination of XY-motorized magnet array, would be a useful platform in the diagnosis of human disease, including AD, which requires low consumption of the patient's body fluid sample and automation of the entire immunoassay procedure for high processing capacity.
Collapse
Affiliation(s)
- Min Cheol Park
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|
32
|
Söllvander S, Nikitidou E, Brolin R, Söderberg L, Sehlin D, Lannfelt L, Erlandsson A. Accumulation of amyloid-β by astrocytes result in enlarged endosomes and microvesicle-induced apoptosis of neurons. Mol Neurodegener 2016; 11:38. [PMID: 27176225 PMCID: PMC4865996 DOI: 10.1186/s13024-016-0098-z] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 04/15/2016] [Indexed: 01/22/2023] Open
Abstract
Background Despite the clear physical association between activated astrocytes and amyloid-β (Aβ) plaques, the importance of astrocytes and their therapeutic potential in Alzheimer’s disease remain elusive. Soluble Aβ aggregates, such as protofibrils, have been suggested to be responsible for the widespread neuronal cell death in Alzheimer’s disease, but the mechanisms behind this remain unclear. Moreover, ineffective degradation is of great interest when it comes to the development and progression of neurodegeneration. Based on our previous results that astrocytes are extremely slow in degrading phagocytosed material, we hypothesized that astrocytes may be an important player in these processes. Hence, the aim of this study was to clarify the role of astrocytes in clearance, spreading and neuronal toxicity of Aβ. Results To examine the role of astrocytes in Aβ pathology, we added Aβ protofibrils to a co-culture system of primary neurons and glia. Our data demonstrates that astrocytes rapidly engulf large amounts of Aβ protofibrils, but then store, rather than degrade the ingested material. The incomplete digestion results in a high intracellular load of toxic, partly N-terminally truncated Aβ and severe lysosomal dysfunction. Moreover, secretion of microvesicles containing N-terminally truncated Aβ, induce apoptosis of cortical neurons. Conclusions Taken together, our results suggest that astrocytes play a central role in the progression of Alzheimer’s disease, by accumulating and spreading toxic Aβ species. Electronic supplementary material The online version of this article (doi:10.1186/s13024-016-0098-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sofia Söllvander
- Department of Public Health & Caring Sciences/Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Elisabeth Nikitidou
- Department of Public Health & Caring Sciences/Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Robin Brolin
- Department of Public Health & Caring Sciences/Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Linda Söderberg
- BioArctic Neuroscience AB, Warfvinges väg 35, SE-112 51, Stockholm, Sweden
| | - Dag Sehlin
- Department of Public Health & Caring Sciences/Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Lars Lannfelt
- Department of Public Health & Caring Sciences/Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Anna Erlandsson
- Department of Public Health & Caring Sciences/Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, SE-751 85, Uppsala, Sweden.
| |
Collapse
|
33
|
Jia XT, Ye-Tian, Yuan-Li, Zhang GJ, Liu ZQ, Di ZL, Ying XP, Fang Y, Song EF, Qi JS, Pan YF. Exendin-4, a glucagon-like peptide 1 receptor agonist, protects against amyloid-β peptide-induced impairment of spatial learning and memory in rats. Physiol Behav 2016; 159:72-9. [PMID: 26992957 DOI: 10.1016/j.physbeh.2016.03.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 03/10/2016] [Accepted: 03/14/2016] [Indexed: 02/08/2023]
Abstract
Type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) share specific molecular mechanisms, and agents with proven efficacy in one may be useful against the other. The glucagon-like peptide-1 (GLP-1) receptor agonist exendin-4 has similar properties to GLP-1 and is currently in clinical use for T2DM treatment. Thus, this study was designed to characterize the effects of exendin-4 on the impairment of learning and memory induced by amyloid protein (Aβ) and its probable molecular underlying mechanisms. The results showed that (1) intracerebroventricular (i.c.v.) injection of Aβ1-42 resulted in a significant decline of spatial learning and memory of rats in water maze tests; (2) pretreatment with exendin-4 effectively and dose-dependently protected against the Aβ1-42-induced impairment of spatial learning and memory; (3) exendin-4 treatment significantly decreased the expression of Bax and cleaved caspase-3 and increased the expression of Bcl2 in Aβ1-42-induced Alzheimer's rats. The vision and swimming speed of the rats among all groups in the visible platform tests did not show any difference. These findings indicate that systemic pretreatment with exendin-4 can effectively prevent the behavioral impairment induced by neurotoxic Aβ1-42, and the underlying protective mechanism of exendin-4 may be involved in the Bcl2, Bax and caspase-3 pathways. Thus, the application of exendin-4 or the activation of its signaling pathways may be a promising strategy to ameliorate the degenerative processes observed in AD.
Collapse
Affiliation(s)
- Xiao-Tao Jia
- Department of Neurology, The Affiliated Xi'an Central Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710003, PR China
| | - Ye-Tian
- Department of Neurology, The Affiliated Xi'an Central Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710003, PR China
| | - Yuan-Li
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, PR China
| | - Ge-Juan Zhang
- Department of Neurology, The Affiliated Xi'an Central Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710003, PR China
| | - Zhi-Qin Liu
- Department of Neurology, The Affiliated Xi'an Central Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710003, PR China
| | - Zheng-Li Di
- Department of Neurology, The Affiliated Xi'an Central Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710003, PR China
| | - Xiao-Ping Ying
- Department of Pathology, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, PR China
| | - Yan Fang
- Department of Pathology, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, PR China
| | - Er-Fei Song
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | - Jin-Shun Qi
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, PR China.
| | - Yan-Fang Pan
- Department of Pathology, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, PR China.
| |
Collapse
|
34
|
Zhou Y, Liu L, Hao Y, Xu M. Detection of Aβ Monomers and Oligomers: Early Diagnosis of Alzheimer's Disease. Chem Asian J 2016; 11:805-17. [DOI: 10.1002/asia.201501355] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 12/27/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Yanli Zhou
- Henan Key Laboratory Cultivation Base of Nanobiological Analytical Chemistry; College of Chemistry and Chemical Engineering; Shangqiu Normal University; Shangqiu 476000 P. R. China
| | - Lantao Liu
- Henan Key Laboratory Cultivation Base of Nanobiological Analytical Chemistry; College of Chemistry and Chemical Engineering; Shangqiu Normal University; Shangqiu 476000 P. R. China
- College of Chemistry and Molecular Engineering; Zhengzhou University; Zhengzhou 450001 P. R. China
| | - Yuanqiang Hao
- Henan Key Laboratory Cultivation Base of Nanobiological Analytical Chemistry; College of Chemistry and Chemical Engineering; Shangqiu Normal University; Shangqiu 476000 P. R. China
| | - Maotian Xu
- Henan Key Laboratory Cultivation Base of Nanobiological Analytical Chemistry; College of Chemistry and Chemical Engineering; Shangqiu Normal University; Shangqiu 476000 P. R. China
- College of Chemistry and Molecular Engineering; Zhengzhou University; Zhengzhou 450001 P. R. China
| |
Collapse
|
35
|
Zhang WI, Antonios G, Rabano A, Bayer TA, Schneider A, Rizzoli SO. Super-Resolution Microscopy of Cerebrospinal Fluid Biomarkers as a Tool for Alzheimer’s Disease Diagnostics. J Alzheimers Dis 2015; 46:1007-20. [DOI: 10.3233/jad-150064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- William I. Zhang
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Gregory Antonios
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Germany
| | - Alberto Rabano
- Department of Neuropathology and Tissue Bank, Fundación CIEN, Instituto de Salud Carlos III, Madrid, Spain
| | - Thomas A. Bayer
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Germany
| | - Anja Schneider
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
- Department of Psychiatry, University Medical Center Göttingen, Germany
- German Center for Neurodegenerative Diseases, DZNE, Göttingen, Germany
| | - Silvio O. Rizzoli
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| |
Collapse
|
36
|
Verma M, Vats A, Taneja V. Toxic species in amyloid disorders: Oligomers or mature fibrils. Ann Indian Acad Neurol 2015; 18:138-45. [PMID: 26019408 PMCID: PMC4445186 DOI: 10.4103/0972-2327.144284] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 09/05/2014] [Accepted: 09/21/2014] [Indexed: 11/04/2022] Open
Abstract
Protein aggregation is the hallmark of several neurodegenerative disorders. These protein aggregation (fibrillization) disorders are also known as amyloid disorders. The mechanism of protein aggregation involves conformation switch of the native protein, oligomer formation leading to protofibrils and finally mature fibrils. Mature fibrils have long been considered as the cause of disease pathogenesis; however, recent evidences suggest oligomeric intermediates formed during fibrillization to be toxic. In this review, we have tried to address the ongoing debate for these toxic amyloid species. We did an extensive literature search and collated information from Pubmed (http://www.ncbi.nlm.nih.gov) and Google search using various permutations and combinations of the following keywords: Neurodegeneration, amyloid disorders, protein aggregation, fibrils, oligomers, toxicity, Alzheimer's Disease, Parkinson's Disease. We describe different instances showing the toxicity of mature fibrils as well as oligomers in Alzheimer's Disease and Parkinson's Disease. Distinct structural framework and morphology of amyloid oligomers suggests difference in toxic effect between oligomers and fibrils. We highlight the difference in structure and proposed toxicity pathways for fibrils and oligomers. We also highlight the evidences indicating that intermediary oligomeric species can act as potential diagnostic biomarker. Since the formation of these toxic species follow a common structural switch among various amyloid disorders, the protein aggregation events can be targeted for developing broad-range therapeutics. The therapeutic trials based on the understanding of different protein conformers (monomers, oligomers, protofibrils and fibrils) in amyloid cascade are also described.
Collapse
Affiliation(s)
- Meenakshi Verma
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research-Institute of Genomics and Integrated Biology, Sir Ganga Ram Hospital, New Delhi, India
| | - Abhishek Vats
- Department of Research, Sir Ganga Ram Hospital, New Delhi, India ; Department of Biotechnology, Jamia Hamdard University, New Delhi, India
| | - Vibha Taneja
- Department of Research, Sir Ganga Ram Hospital, New Delhi, India
| |
Collapse
|
37
|
Ferreira ST, Lourenco MV, Oliveira MM, De Felice FG. Soluble amyloid-β oligomers as synaptotoxins leading to cognitive impairment in Alzheimer's disease. Front Cell Neurosci 2015; 9:191. [PMID: 26074767 PMCID: PMC4443025 DOI: 10.3389/fncel.2015.00191] [Citation(s) in RCA: 245] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/30/2015] [Indexed: 12/22/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia in the elderly, and affects millions of people worldwide. As the number of AD cases continues to increase in both developed and developing countries, finding therapies that effectively halt or reverse disease progression constitutes a major research and public health challenge. Since the identification of the amyloid-β peptide (Aβ) as the major component of the amyloid plaques that are characteristically found in AD brains, a major effort has aimed to determine whether and how Aβ leads to memory loss and cognitive impairment. A large body of evidence accumulated in the past 15 years supports a pivotal role of soluble Aβ oligomers (AβOs) in synapse failure and neuronal dysfunction in AD. Nonetheless, a number of basic questions, including the exact molecular composition of the synaptotoxic oligomers, the identity of the receptor(s) to which they bind, and the signaling pathways that ultimately lead to synapse failure, remain to be definitively answered. Here, we discuss recent advances that have illuminated our understanding of the chemical nature of the toxic species and the deleterious impact they have on synapses, and have culminated in the proposal of an Aβ oligomer hypothesis for Alzheimer’s pathogenesis. We also highlight outstanding questions and challenges in AD research that should be addressed to allow translation of research findings into effective AD therapies.
Collapse
Affiliation(s)
- Sergio T Ferreira
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro Rio de Janeiro, RJ, Brazil ; Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro Rio de Janeiro, RJ, Brazil
| | - Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro Rio de Janeiro, RJ, Brazil
| | - Mauricio M Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro Rio de Janeiro, RJ, Brazil
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro Rio de Janeiro, RJ, Brazil
| |
Collapse
|
38
|
Kim JA, Kim M, Kang SM, Lim KT, Kim TS, Kang JY. Magnetic bead droplet immunoassay of oligomer amyloid β for the diagnosis of Alzheimer′s disease using micro-pillars to enhance the stability of the oil–water interface. Biosens Bioelectron 2015; 67:724-32. [DOI: 10.1016/j.bios.2014.10.042] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 09/30/2014] [Accepted: 10/13/2014] [Indexed: 11/24/2022]
|
39
|
Yang T, O'Malley TT, Kanmert D, Jerecic J, Zieske LR, Zetterberg H, Hyman BT, Walsh DM, Selkoe DJ. A highly sensitive novel immunoassay specifically detects low levels of soluble Aβ oligomers in human cerebrospinal fluid. ALZHEIMERS RESEARCH & THERAPY 2015; 7:14. [PMID: 25802556 PMCID: PMC4369838 DOI: 10.1186/s13195-015-0100-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 01/22/2015] [Indexed: 11/10/2022]
Abstract
INTRODUCTION Amyloid β-protein oligomers play a key role in Alzheimer's disease (AD), but well-validated assays that routinely detect them in cerebrospinal fluid (CSF) are just emerging. We sought to confirm and extend a recent study using the Singulex Erenna platform that reported increased mean CSF oligomer levels in AD. METHODS We tested four antibody pairs and chose one pair that was particularly sensitive, using 1C22, our new oligomer-selective monoclonal antibody, for capture. We applied this new assay to extracts of human brain and CSF. RESULTS A combination of 1C22 for capture and 3D6 for detection yielded an Erenna immunoassay with a lower limit of quantification of approximately 0.15 pg/ml that was highly selective for oligomers over monomers and detected a wide size-range of oligomers. Most CSFs we tested had detectable oligomer levels but with a large overlap between AD and controls and a trend for higher mean levels in mild cognitive impairment (MCI) than controls. CONCLUSION Aβ oligomers are detectable in most human CSFs, but AD and controls overlap. MCI CSFs may have a modest elevation in mean value by this assay.
Collapse
Affiliation(s)
- Ting Yang
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School Boston, 77 Avenue Louis Pasteur, Harvard Institute Medical, Room 730, Boston, MA 02115 USA
| | - Tiernan T O'Malley
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School Boston, 77 Avenue Louis Pasteur, Harvard Institute Medical, Room 730, Boston, MA 02115 USA
| | - Daniel Kanmert
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School Boston, 77 Avenue Louis Pasteur, Harvard Institute Medical, Room 730, Boston, MA 02115 USA
| | - Jasna Jerecic
- Acumen Pharmaceuticals, Inc., 9816 Easton Drive, Beverly Hills, CA 90210 USA
| | - Lynn R Zieske
- Singulex, Inc., 1701 Harbor Bay Parkway, Suite 200, Alameda, CA USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, S-431 80 Mölndal, Sweden ; UCL Institute of Neurology, Queen Square, London, WC1N 3BG UK
| | | | - Dominic M Walsh
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School Boston, 77 Avenue Louis Pasteur, Harvard Institute Medical, Room 730, Boston, MA 02115 USA
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School Boston, 77 Avenue Louis Pasteur, Harvard Institute Medical, Room 730, Boston, MA 02115 USA
| |
Collapse
|
40
|
Cerasoli E, Ryadnov MG, Austen BM. The elusive nature and diagnostics of misfolded Aβ oligomers. Front Chem 2015; 3:17. [PMID: 25853119 PMCID: PMC4365737 DOI: 10.3389/fchem.2015.00017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/24/2015] [Indexed: 11/25/2022] Open
Abstract
Amyloid-beta (Aβ) peptide oligomers are believed to be the causative agents of Alzheimer's disease (AD). Though post-mortem examination shows that insoluble fibrils are deposited in the brains of AD patients in the form of intracellular (tangles) and extracellular (plaques) deposits, it has been observed that cognitive impairment is linked to synaptic dysfunction in the stages of the illness well before the appearance of these mature deposits. Increasing evidence suggests that the most toxic forms of Aβ are soluble low-oligomer ligands whose amounts better correlate with the extent of cognitive loss in patients than the amounts of fibrillar insoluble forms. Therefore, these ligands hold the key to a better understanding of AD prompting the search for clearer correlations between their structure and toxicity. The importance of such correlations and their diagnostic value for the early diagnosis of AD is discussed here with a particular emphasis on the transient nature and structural plasticity of misfolded Aβ oligomers.
Collapse
Affiliation(s)
- Eleonora Cerasoli
- Biotechnology Department, National Physical Laboratory Teddington, UK
| | - Maxim G Ryadnov
- Biotechnology Department, National Physical Laboratory Teddington, UK
| | - Brian M Austen
- Basic Medical Sciences, St. George's University of London London, UK
| |
Collapse
|
41
|
Signal loss due to oligomerization in ELISA analysis of amyloid-beta can be recovered by a novel sample pre-treatment method. MethodsX 2015; 2:112-23. [PMID: 26150979 PMCID: PMC4487349 DOI: 10.1016/j.mex.2015.02.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 02/26/2015] [Indexed: 01/09/2023] Open
Abstract
According to the predominant theories, soluble amyloid-beta (Aβ) aggregates are the principal neurotoxic agents in Alzheimer’s disease pathology, making them a popular target for the development of therapeutics and diagnostic markers. One of the most commonly used methods for determining the concentration of Aβ is ELISA. However, ELISA was developed for monomeric proteins and may be ill-suited for detecting aggregates. Therefore, we investigated the effect of aggregation on the ELISA measurement and developed a novel chemical pre-treatment method, designed to disaggregate Aβ peptides, to improve the ELISA measurement of the total Aβ concentration. Synthetic Aβ40 monomers, Aβ42 oligomers and biological samples from mice and humans were subjected to a chemical pre-treatment protocol with: trifluoroacetic acid (TFA), formic acid (FA) or hexafluoroisopropanol (HFIP) prior to ELISA analysis. In our study we have shown that: Aβ oligomerization leads to epitope masking and steric hindrance and results in an underestimation of the total Aβ content with ELISA. Chemically pre-treating samples to disaggregate oligomers can (partially) recover the signal loss. This novel sample pre-treatment method could provide a more accurate ELISA measurement of the total Aβ concentration in samples with a high oligomer content.
Collapse
Key Words
- AD, Alzheimers disease
- Alzheimer’s disease
- Amyloid-beta
- Aβ, amyloid-beta
- DMSO, dimethyl sulfoxide
- ELISA
- FA, formic acid
- HFIP, hexafluoroisopropanol
- Oligomers
- PBS, phosphate-buffered saline
- PMSF, phenylmethylsulfonyl fluoride
- SDS, sodium dodecyl sulphate
- SP, soluble proteins
- Sample pre-treatment
- Sample pre-treatment for amyloid-beta ELISA analysis
- Steric hindrance
- TFA, trifluoroacetic acid
- WT, wild-type
Collapse
|
42
|
Izzo NJ, Staniszewski A, To L, Fa M, Teich AF, Saeed F, Wostein H, Walko T, Vaswani A, Wardius M, Syed Z, Ravenscroft J, Mozzoni K, Silky C, Rehak C, Yurko R, Finn P, Look G, Rishton G, Safferstein H, Miller M, Johanson C, Stopa E, Windisch M, Hutter-Paier B, Shamloo M, Arancio O, LeVine H, Catalano SM. Alzheimer's therapeutics targeting amyloid beta 1-42 oligomers I: Abeta 42 oligomer binding to specific neuronal receptors is displaced by drug candidates that improve cognitive deficits. PLoS One 2014; 9:e111898. [PMID: 25390368 PMCID: PMC4229098 DOI: 10.1371/journal.pone.0111898] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 10/02/2014] [Indexed: 01/09/2023] Open
Abstract
Synaptic dysfunction and loss caused by age-dependent accumulation of synaptotoxic beta amyloid (Abeta) 1-42 oligomers is proposed to underlie cognitive decline in Alzheimer's disease (AD). Alterations in membrane trafficking induced by Abeta oligomers mediates reduction in neuronal surface receptor expression that is the basis for inhibition of electrophysiological measures of synaptic plasticity and thus learning and memory. We have utilized phenotypic screens in mature, in vitro cultures of rat brain cells to identify small molecules which block or prevent the binding and effects of Abeta oligomers. Synthetic Abeta oligomers bind saturably to a single site on neuronal synapses and induce deficits in membrane trafficking in neuronal cultures with an EC50 that corresponds to its binding affinity. The therapeutic lead compounds we have found are pharmacological antagonists of Abeta oligomers, reducing the binding of Abeta oligomers to neurons in vitro, preventing spine loss in neurons and preventing and treating oligomer-induced deficits in membrane trafficking. These molecules are highly brain penetrant and prevent and restore cognitive deficits in mouse models of Alzheimer's disease. Counter-screening these compounds against a broad panel of potential CNS targets revealed they are highly potent and specific ligands of the sigma-2/PGRMC1 receptor. Brain concentrations of the compounds corresponding to greater than 80% receptor occupancy at the sigma-2/PGRMC1 receptor restore cognitive function in transgenic hAPP Swe/Ldn mice. These studies demonstrate that synthetic and human-derived Abeta oligomers act as pharmacologically-behaved ligands at neuronal receptors--i.e. they exhibit saturable binding to a target, they exert a functional effect related to their binding and their displacement by small molecule antagonists blocks their functional effect. The first-in-class small molecule receptor antagonists described here restore memory to normal in multiple AD models and sustain improvement long-term, representing a novel mechanism of action for disease-modifying Alzheimer's therapeutics.
Collapse
Affiliation(s)
- Nicholas J. Izzo
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| | - Agnes Staniszewski
- Department of Pathology and Cell Biology and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, United States of America
| | - Lillian To
- Stanford University Medical School Behavioral and Functional Neuroscience Laboratory, Palo Alto, California, United States of America
| | - Mauro Fa
- Department of Pathology and Cell Biology and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, United States of America
| | - Andrew F. Teich
- Department of Pathology and Cell Biology and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, United States of America
| | - Faisal Saeed
- Department of Pathology and Cell Biology and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, United States of America
| | - Harrison Wostein
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, United States of America
| | - Thomas Walko
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, United States of America
| | - Anisha Vaswani
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, United States of America
| | - Meghan Wardius
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, United States of America
| | - Zanobia Syed
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, United States of America
| | - Jessica Ravenscroft
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, United States of America
| | - Kelsie Mozzoni
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, United States of America
| | - Colleen Silky
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, United States of America
| | - Courtney Rehak
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, United States of America
| | - Raymond Yurko
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, United States of America
| | - Patricia Finn
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, United States of America
| | - Gary Look
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, United States of America
| | - Gilbert Rishton
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, United States of America
| | - Hank Safferstein
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, United States of America
| | - Miles Miller
- Department of Pathology and Neurosurgery, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Conrad Johanson
- Department of Pathology and Neurosurgery, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Edward Stopa
- Department of Pathology and Neurosurgery, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | | | | | - Mehrdad Shamloo
- Stanford University Medical School Behavioral and Functional Neuroscience Laboratory, Palo Alto, California, United States of America
| | - Ottavio Arancio
- Department of Pathology and Cell Biology and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, United States of America
| | - Harry LeVine
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
| | - Susan M. Catalano
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
43
|
Izzo NJ, Xu J, Zeng C, Kirk MJ, Mozzoni K, Silky C, Rehak C, Yurko R, Look G, Rishton G, Safferstein H, Cruchaga C, Goate A, Cahill MA, Arancio O, Mach RH, Craven R, Head E, LeVine H, Spires-Jones TL, Catalano SM. Alzheimer's therapeutics targeting amyloid beta 1-42 oligomers II: Sigma-2/PGRMC1 receptors mediate Abeta 42 oligomer binding and synaptotoxicity. PLoS One 2014; 9:e111899. [PMID: 25390692 PMCID: PMC4229119 DOI: 10.1371/journal.pone.0111899] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 10/02/2014] [Indexed: 12/18/2022] Open
Abstract
Amyloid beta (Abeta) 1-42 oligomers accumulate in brains of patients with Mild Cognitive Impairment (MCI) and disrupt synaptic plasticity processes that underlie memory formation. Synaptic binding of Abeta oligomers to several putative receptor proteins is reported to inhibit long-term potentiation, affect membrane trafficking and induce reversible spine loss in neurons, leading to impaired cognitive performance and ultimately to anterograde amnesia in the early stages of Alzheimer's disease (AD). We have identified a receptor not previously associated with AD that mediates the binding of Abeta oligomers to neurons, and describe novel therapeutic antagonists of this receptor capable of blocking Abeta toxic effects on synapses in vitro and cognitive deficits in vivo. Knockdown of sigma-2/PGRMC1 (progesterone receptor membrane component 1) protein expression in vitro using siRNA results in a highly correlated reduction in binding of exogenous Abeta oligomers to neurons of more than 90%. Expression of sigma-2/PGRMC1 is upregulated in vitro by treatment with Abeta oligomers, and is dysregulated in Alzheimer's disease patients' brain compared to age-matched, normal individuals. Specific, high affinity small molecule receptor antagonists and antibodies raised against specific regions on this receptor can displace synthetic Abeta oligomer binding to synaptic puncta in vitro and displace endogenous human AD patient oligomers from brain tissue sections in a dose-dependent manner. These receptor antagonists prevent and reverse the effects of Abeta oligomers on membrane trafficking and synapse loss in vitro and cognitive deficits in AD mouse models. These findings suggest sigma-2/PGRMC1 receptors mediate saturable oligomer binding to synaptic puncta on neurons and that brain penetrant, small molecules can displace endogenous and synthetic oligomers and improve cognitive deficits in AD models. We propose that sigma-2/PGRMC1 is a key mediator of the pathological effects of Abeta oligomers in AD and is a tractable target for small molecule disease-modifying therapeutics.
Collapse
Affiliation(s)
- Nicholas J. Izzo
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, United States of America
| | - Jinbin Xu
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri, United States of America
| | - Chenbo Zeng
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri, United States of America
| | - Molly J. Kirk
- Departments of Neurology and Neuroscience, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Neurology, Northeastern University, Boston, Massachusetts, United States of America
| | - Kelsie Mozzoni
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, United States of America
| | - Colleen Silky
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, United States of America
| | - Courtney Rehak
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, United States of America
| | - Raymond Yurko
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, United States of America
| | - Gary Look
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, United States of America
| | - Gilbert Rishton
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, United States of America
| | - Hank Safferstein
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, United States of America
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University, St. Louis, Missouri, United States of America
| | - Alison Goate
- Department of Psychiatry, Washington University, St. Louis, Missouri, United States of America
| | - Michael A. Cahill
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga New South Wales, Australia
| | - Ottavio Arancio
- Department of Pathology and Cell Biology and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University New York, New York, United States of America
| | - Robert H. Mach
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri, United States of America
| | - Rolf Craven
- Department of Molecular and Biological Pharmacology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Elizabeth Head
- Department of Molecular and Biological Pharmacology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Harry LeVine
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
| | - Tara L. Spires-Jones
- Departments of Neurology and Neuroscience, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- The University of Edinburgh, Center for Cognitive and Neural Systems and Euan MacDonald Centre for Motorneurone Disease, Edinburgh, Scotland
| | - Susan M. Catalano
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
44
|
Detection of disease-associated α-synuclein in the cerebrospinal fluid: a feasibility study. Clin Neuropathol 2014; 33:329-34. [PMID: 25131945 PMCID: PMC4151342 DOI: 10.5414/np300796] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
With the aim to evaluate the significance and reliability of detecting disease-specific α-synuclein in the cerebrospinal fluid (CSF) we developed an ELISA and bead-assay. We used a commercial antibody (5G4) that does not bind to the physiological monomeric form of α-synuclein, but is highly specific for the disease-associated forms, including high molecular weight fraction of β-sheet rich oligomers. We applied both tests in CSF from a series of neuropathologically confirmed α-synucleinopathy cases, including Parkinson’s disease dementia (PDD) and dementia with Lewy bodies (DLB) (n = 7), as well as Alzheimer’s disease (n = 6), and control patients without neurodegenerative pathologies (n = 9). Disease-specific α-synuclein was detectable in the CSF in a subset of patients with α-synuclein pathology in the brain. When combined with the analysis of total α-synuclein, the bead-assay for disease-specific α-synuclein was highly specific for PDD/DLB. Detection of disease-associated α-synuclein combined with the total levels of α-synuclein is a promising tool for the in-vivo diagnosis of α-synucleinopathies, including PDD and LBD.
Collapse
|
45
|
Castellazzi G, Palesi F, Casali S, Vitali P, Sinforiani E, Wheeler-Kingshott CAM, D'Angelo E. A comprehensive assessment of resting state networks: bidirectional modification of functional integrity in cerebro-cerebellar networks in dementia. Front Neurosci 2014; 8:223. [PMID: 25126054 PMCID: PMC4115623 DOI: 10.3389/fnins.2014.00223] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 07/07/2014] [Indexed: 01/26/2023] Open
Abstract
In resting state fMRI (rs-fMRI), only functional connectivity (FC) reductions in the default mode network (DMN) are normally reported as a biomarker for Alzheimer's disease (AD). In this investigation we have developed a comprehensive strategy to characterize the FC changes occurring in multiple networks and applied it in a pilot study of subjects with AD and Mild Cognitive Impairment (MCI), compared to healthy controls (HC). Resting state networks (RSNs) were studied in 14 AD (70 ± 6 years), 12 MCI (74 ± 6 years), and 16 HC (69 ± 5 years). RSN alterations were present in almost all the 15 recognized RSNs; overall, 474 voxels presented a reduced FC in MCI and 1244 in AD while 1627 voxels showed an increased FC in MCI and 1711 in AD. The RSNs were then ranked according to the magnitude and extension of FC changes (gFC), putting in evidence 6 RSNs with prominent changes: DMN, frontal cortical network (FCN), lateral visual network (LVN), basal ganglia network (BGN), cerebellar network (CBLN), and the anterior insula network (AIN). Nodes, or hubs, showing alterations common to more than one RSN were mostly localized within the prefrontal cortex and the mesial-temporal cortex. The cerebellum showed a unique behavior where voxels of decreased gFC were only found in AD while a significant gFC increase was only found in MCI. The gFC alterations showed strong correlations (p < 0.001) with psychological scores, in particular Mini-Mental State Examination (MMSE) and attention/memory tasks. In conclusion, this analysis revealed that the DMN was affected by remarkable FC increases, that FC alterations extended over several RSNs, that derangement of functional relationships between multiple areas occurred already in the early stages of dementia. These results warrant future work to verify whether these represent compensatory mechanisms that exploit a pre-existing neural reserve through plasticity, which evolve in a state of lack of connectivity between different networks with the worsening of the pathology.
Collapse
Affiliation(s)
- Gloria Castellazzi
- Department of Industrial and Information Engineering, University of PaviaPavia, Italy
- Brain Connectivity Center, C. Mondino National Neurological InstitutePavia, Italy
| | - Fulvia Palesi
- Brain Connectivity Center, C. Mondino National Neurological InstitutePavia, Italy
- Department of Physics, University of PaviaPavia, Italy
| | - Stefano Casali
- Brain Connectivity Center, C. Mondino National Neurological InstitutePavia, Italy
- Department of Brain and Behavioral Sciences, University of PaviaPavia, Italy
| | - Paolo Vitali
- Brain MRI 3T Mondino Research Center, C. Mondino National Neurological InstitutePavia, Italy
| | - Elena Sinforiani
- Neurology Unit, C. Mondino National Neurological InstitutePavia, Italy
| | | | - Egidio D'Angelo
- Brain Connectivity Center, C. Mondino National Neurological InstitutePavia, Italy
- Department of Brain and Behavioral Sciences, University of PaviaPavia, Italy
| |
Collapse
|
46
|
Goure WF, Krafft GA, Jerecic J, Hefti F. Targeting the proper amyloid-beta neuronal toxins: a path forward for Alzheimer's disease immunotherapeutics. ALZHEIMERS RESEARCH & THERAPY 2014; 6:42. [PMID: 25045405 PMCID: PMC4100318 DOI: 10.1186/alzrt272] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Levels of amyloid-beta monomer and deposited amyloid-beta in the Alzheimer’s
disease brain are orders of magnitude greater than soluble amyloid-beta oligomer
levels. Monomeric amyloid-beta has no known direct toxicity. Insoluble fibrillar
amyloid-beta has been proposed to be an in vivo mechanism for removal of
soluble amyloid-beta and exhibits relatively low toxicity. In contrast, soluble
amyloid-beta oligomers are widely reported to be the most toxic amyloid-beta form,
both causing acute synaptotoxicity and inducing neurodegenerative processes. None of
the amyloid-beta immunotherapies currently in clinical development selectively target
soluble amyloid-beta oligomers, and their lack of efficacy is not unexpected
considering their selectivity for monomeric or fibrillar amyloid-beta (or both)
rather than soluble amyloid-beta oligomers. Because they exhibit acute,
memory-compromising synaptic toxicity and induce chronic neurodegenerative toxicity
and because they exist at very low in vivo levels in the Alzheimer’s
disease brain, soluble amyloid-beta oligomers constitute an optimal immunotherapeutic
target that should be pursued more aggressively.
Collapse
Affiliation(s)
- William F Goure
- Acumen Pharmaceuticals, Inc., 4453 North First Street, #360, Livermore, CA 94551, USA
| | - Grant A Krafft
- Acumen Pharmaceuticals, Inc., 4453 North First Street, #360, Livermore, CA 94551, USA
| | - Jasna Jerecic
- Acumen Pharmaceuticals, Inc., 4453 North First Street, #360, Livermore, CA 94551, USA
| | - Franz Hefti
- Acumen Pharmaceuticals, Inc., 4453 North First Street, #360, Livermore, CA 94551, USA
| |
Collapse
|
47
|
Rosenblum WI. Why Alzheimer trials fail: removing soluble oligomeric beta amyloid is essential, inconsistent, and difficult. Neurobiol Aging 2014; 35:969-74. [DOI: 10.1016/j.neurobiolaging.2013.10.085] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/14/2013] [Accepted: 10/16/2013] [Indexed: 01/08/2023]
|
48
|
Leinonen V, Rinne JO, Wong DF, Wolk DA, Trojanowski JQ, Sherwin PF, Smith A, Heurling K, Su M, Grachev ID. Diagnostic effectiveness of quantitative [¹⁸F]flutemetamol PET imaging for detection of fibrillar amyloid β using cortical biopsy histopathology as the standard of truth in subjects with idiopathic normal pressure hydrocephalus. Acta Neuropathol Commun 2014; 2:46. [PMID: 24755237 PMCID: PMC4003513 DOI: 10.1186/2051-5960-2-46] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 04/10/2014] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION PET imaging of amyloid-β (Aβ) in vivo holds promise for aiding in earlier diagnosis and intervention in Alzheimer's disease (AD) and mild cognitive impairment. AD-like Aβ pathology is a common comorbidity in patients with idiopathic normal pressure hydrocephalus (iNPH). Fifty patients with iNPH needing ventriculo-peritoneal shunting or intracranial pressure monitoring underwent [18F]flutemetamol PET before (N = 28) or after (N = 22) surgery. Cortical uptake of [18F]flutemetamol was assessed visually by blinded reviewers, and also quantitatively via standard uptake value ratio (SUVR) in specific neocortical regions in relation to either cerebellum or pons reference region: the cerebral cortex of (prospective studies) or surrounding (retrospective studies) the biopsy site, the contralateral homolog, and a calculated composite brain measure. Aβ pathology in the biopsy specimen (standard of truth [SoT]) was measured using Bielschowsky silver and thioflavin S plaque scores, percentage area of grey matter positive for monoclonal antibody to Aβ (4G8), and overall pathology impression. We set out to find (1) which pair(s) of PET SUVR and pathology SoT endpoints matched best, (2) whether quantitative measures of [18F]flutemetamol PET were better for predicting the pathology outcome than blinded image examination (BIE), and (3) whether there was a better match between PET image findings in retrospective vs. prospective studies. RESULTS Of the 24 possible endpoint/SoT combinations, the one with composite-cerebellum SUVR and SoT based on overall pathology had the highest Youden index (1.000), receiver operating characteristic area under the curve (1.000), sensitivity (1.000), specificity (1.000), and sum of sensitivity and specificity for the pooled data as well as for the retrospective and prospective studies separately (2.00, for all 3). The BIE sum of sensitivity and specificity, comparable to that for quantitation, was highest using Bielschowsky silver as SoT for all SUVRs (ipsilateral, contralateral, and composite, for both reference regions). The composite SUVR had a 100% positive predictive value (both reference regions) for the overall pathology diagnosis. All SUVRs had a 100% negative predictive value for the Bielschowsky silver result. CONCLUSION Bielschowsky silver stain and overall pathology judgment showed the strongest associations with imaging results.
Collapse
Affiliation(s)
- Ville Leinonen
- Department of Neurosurgery, Kuopio University Hospital NeuroCenter and Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Juha O Rinne
- Turku PET Centre and Department of Neurology, University of Turku and Turku University Hospital, Turku, Finland
| | - Dean F Wong
- The Russell H. Morgan Department of Radiology and Radiological Science, Psychiatry and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David A Wolk
- Department of Neurology, Penn Memory Center, University of Pennsylvania, Philadelphia, PA, USA
| | - John Q Trojanowski
- Department of Pathology, Penn Memory Center, Institute on Aging, and Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | - Mandy Su
- Biostatistics, H2O Clinical, Hunt Valley, MD, USA
| | - Igor D Grachev
- Life Sciences, GE Healthcare, 101 Carnegie Center, Princeton, NJ 08540, USA
| |
Collapse
|
49
|
Abstract
A hallmark of Alzheimer's disease (AD) brain is the amyloid β (Aβ) plaque, which is comprised of Aβ peptides. Multiple lines of evidence suggest that Aβ oligomers are more toxic than other peptide forms. We sought to develop a robust assay to quantify oligomers from CSF. Antibody 19.3 was compared in one-site and competitive ELISAs for oligomer binding specificity. A two-site ELISA for oligomers was developed using 19.3 coupled to a sensitive, bead-based fluorescent platform able to detect single photons of emitted light. The two-site ELISA was >2500× selective for Aβ oligomers over Aβ monomers with a limit of detection ∼ 0.09 pg/ml in human CSF. The lower limit of reliable quantification of the assay was 0.18 pg/ml and the antibody pairs recognized Aβ multimers comprised of either synthetic standards, or endogenous oligomers isolated from confirmed human AD and healthy control brain. Using the assay, a significant 3- to 5-fold increase in Aβ oligomers in human AD CSF compared with comparably aged controls was demonstrated. The increase was seen in three separate human cohorts, totaling 63 AD and 54 controls. CSF oligomers ranged between 0.1 and 10 pg/ml. Aβ oligomer levels did not strongly associate with age or gender, but had an inverse correlation with MMSE score. The C statistic for the Aβ oligomer ROC curve was 0.86, with 80% sensitivity and 88% specificity to detect AD, suggesting reasonable discriminatory power for the AD state and the potential for utility as a diagnostic marker.
Collapse
|