1
|
Ahmed AF, Madi MA, Ali AH, Mokhemer SA. The ameliorating effects of adipose-derived stromal vascular fraction cells on blue light-induced rat retinal injury via modulation of TLR4 signaling, apoptosis, and glial cell activity. Cell Tissue Res 2024:10.1007/s00441-024-03925-3. [PMID: 39441358 DOI: 10.1007/s00441-024-03925-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
Blue light (BL)-induced retinal injury has become a very common problem due to over exposure to blue light-emitting sources. This study aimed to investigate the possible ameliorating impact of stromal vascular fraction cells (SVFCs) on BL-induced retinal injury. Forty male albino rats were randomly allocated into four groups. The control group rats were kept in 12-h light/12-h dark. Rats of SVFC-control as the control group, but rats were intravenously injected once by SVFCs. Rats of both the BL-group and BL-SVFC group were exposed to BL for 2 weeks; then rats of the BL-SVFC group were intravenously injected once by SVFCs. Following the BL exposure, rats were kept for 8 weeks. Physical and physiological studies were performed; then retinal tissues were collected for biochemical and histological studies. The BL-group showed physical and physiological changes indicating affection of the visual function. Biochemical marker assessment showed a significant increase in MDA, TLR4 and MYD88 tissue levels with a significant decrease in TAC levels. Histological and ultrastructural assessment showed disruption of the normal histological architecture with retinal pigment epithelium, photoreceptors, and ganglion cell deterioration. A significant increase in NF-κB, caspase-3, and GFAP immunoreactivity was also detected. BL-SVFC group showed a significant improvement in physical, physiological, and biochemical parameters. Retinal tissues revealed amelioration of retinal structural and ultrastructural deterioration and a significant decrease in NF-κB and caspase-3 immunoreactivity with a significant increase in GFAP immunoreaction. This study concluded that SVFCs could ameliorate the BL-induced retinal injury through TLR-4/MYD-88/NF-κB signaling inhibition, regenerative, anti-oxidative, and anti-apoptotic effects.
Collapse
Affiliation(s)
- Amira Fathy Ahmed
- Histology and Cell Biology Department, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Maha Ahmed Madi
- Histology and Cell Biology Department, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Azza Hussein Ali
- Histology and Cell Biology Department, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Sahar A Mokhemer
- Histology and Cell Biology Department, Faculty of Medicine, Minia University, El-Minia, Egypt.
| |
Collapse
|
2
|
Adegboro CO, Luo W, Kabra M, McAdams RM, York NW, Wijenayake RI, Suchla KM, Pillers DAM, Pattnaik BR. Transplacental Transfer of Oxytocin and Its Impact on Neonatal Cord Blood and In Vitro Retinal Cell Activity. Cells 2024; 13:1735. [PMID: 39451253 PMCID: PMC11506339 DOI: 10.3390/cells13201735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
The development of fetal organs can be impacted by systemic changes in maternal circulation, with the placenta playing a pivotal role in maintaining pregnancy homeostasis and nutrient exchange. In clinical obstetrics, oxytocin (OXT) is commonly used to induce labor. To explore the potential role of OXT in the placental homeostasis of OXT, we compared OXT levels in neonatal cord blood among neonates (23-42 weeks gestation) whose mothers either received prenatal OXT or experienced spontaneous labor. Our previous research revealed that the oxytocin receptor (OXTR), essential in forming the blood-retina barrier, is expressed in the retinal pigment epithelium (RPE). We hypothesized that perinatal OXT administration might influence the development of the neural retina and its vasculature, offering therapeutic potential for retinal diseases such as retinopathy of prematurity (ROP). Plasma OXT levels were measured using a commercial OXT ELISA kit. Human fetal RPE (hfRPE) cells treated with OXT (10 µM) were assessed for gene expression via RNA sequencing, revealing 14 downregulated and 32 upregulated genes. To validate these differentially expressed genes (DEGs), hfRPE cells were exposed to OXT (0.01, 0.1, 1, or 10 µM) for 12 h, followed by RNA analysis via real-time PCR. Functional, enrichment, and network analyses (Gene Ontology term, FunRich, Cytoscape) were performed to predict the affected pathways. This translational study suggests that OXT likely crosses the placenta, altering fetal OXT concentrations. RNA sequencing identified 46 DEGs involved in vital metabolic and signaling pathways and critical cellular components. Our results indicate that the perinatal administration of OXT may affect neural retina and retinal vessel development, making OXT a potential therapeutic option for developmental eye diseases, including ROP.
Collapse
Affiliation(s)
- Claudette O. Adegboro
- Department of Pediatrics, Division of Neonatology and Newborn Nursery, University of Wisconsin–Madison, 1300 University Avenue, SMI 112, Madison, WI 53706, USA; (C.O.A.); (M.K.); (R.M.M.); (N.W.Y.); (R.I.W.); (K.M.S.)
| | - Wenxiang Luo
- Department of Pediatrics, Division of Neonatology, University of Illinois at Chicago, Chicago, IL 60612, USA; (W.L.); (D.-A.M.P.)
| | - Meha Kabra
- Department of Pediatrics, Division of Neonatology and Newborn Nursery, University of Wisconsin–Madison, 1300 University Avenue, SMI 112, Madison, WI 53706, USA; (C.O.A.); (M.K.); (R.M.M.); (N.W.Y.); (R.I.W.); (K.M.S.)
- McPherson Eye Research Institute, University of Wisconsin–Madison, 1300 University Avenue, SMI 112, Madison, WI 53706, USA
| | - Ryan M. McAdams
- Department of Pediatrics, Division of Neonatology and Newborn Nursery, University of Wisconsin–Madison, 1300 University Avenue, SMI 112, Madison, WI 53706, USA; (C.O.A.); (M.K.); (R.M.M.); (N.W.Y.); (R.I.W.); (K.M.S.)
| | - Nathaniel W. York
- Department of Pediatrics, Division of Neonatology and Newborn Nursery, University of Wisconsin–Madison, 1300 University Avenue, SMI 112, Madison, WI 53706, USA; (C.O.A.); (M.K.); (R.M.M.); (N.W.Y.); (R.I.W.); (K.M.S.)
- Endocrine and Reproductive Physiology Program, University of Wisconsin–Madison, 1300 University Avenue, SMI 112, Madison, WI 53706, USA
| | - Ruwandi I. Wijenayake
- Department of Pediatrics, Division of Neonatology and Newborn Nursery, University of Wisconsin–Madison, 1300 University Avenue, SMI 112, Madison, WI 53706, USA; (C.O.A.); (M.K.); (R.M.M.); (N.W.Y.); (R.I.W.); (K.M.S.)
| | - Kiana M. Suchla
- Department of Pediatrics, Division of Neonatology and Newborn Nursery, University of Wisconsin–Madison, 1300 University Avenue, SMI 112, Madison, WI 53706, USA; (C.O.A.); (M.K.); (R.M.M.); (N.W.Y.); (R.I.W.); (K.M.S.)
| | - De-Ann M. Pillers
- Department of Pediatrics, Division of Neonatology, University of Illinois at Chicago, Chicago, IL 60612, USA; (W.L.); (D.-A.M.P.)
- Children’s Hospital University of Illinois, University of Illinois Hospital & Health Sciences System, Chicago, IL 60612, USA
| | - Bikash R. Pattnaik
- Department of Pediatrics, Division of Neonatology and Newborn Nursery, University of Wisconsin–Madison, 1300 University Avenue, SMI 112, Madison, WI 53706, USA; (C.O.A.); (M.K.); (R.M.M.); (N.W.Y.); (R.I.W.); (K.M.S.)
- McPherson Eye Research Institute, University of Wisconsin–Madison, 1300 University Avenue, SMI 112, Madison, WI 53706, USA
- Endocrine and Reproductive Physiology Program, University of Wisconsin–Madison, 1300 University Avenue, SMI 112, Madison, WI 53706, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin–Madison, 1300 University Avenue, SMI 112, Madison, WI 53706, USA
| |
Collapse
|
3
|
Xu J, Zhao C, Kang Y. The Formation and Renewal of Photoreceptor Outer Segments. Cells 2024; 13:1357. [PMID: 39195247 DOI: 10.3390/cells13161357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
The visual system is essential for humans to perceive the environment. In the retina, rod and cone photoreceptor neurons are the initial sites where vision forms. The apical region of both cone and rod photoreceptors contains a light-sensing organelle known as the outer segment (OS), which houses tens of thousands of light-sensitive opsins. The OSs of photoreceptors are not static; they require rhythmic renewal to maintain normal physiological functions. Disruptions in OS renewal can lead to various genetic disorders, such as retinitis pigmentosa (RP). Understanding the patterns and molecular mechanisms of photoreceptor OS renewal remains one of the most intriguing topics in visual biology. This review aims to elucidate the structure of photoreceptor OSs, the molecular mechanisms underlying photoreceptor OS renewal, and the retinal diseases resulting from defects in this renewal process. Additionally, we will explore retinal diseases related to photoreceptor OS renewal and potential therapeutic strategies, concluding with a discussion on future research directions for OS renewal.
Collapse
Affiliation(s)
- Jingjin Xu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- MoE Key Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Chengtian Zhao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- MoE Key Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Yunsi Kang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- MoE Key Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
4
|
Ding J, Kim TH, Ma G, Yao X. Intrinsic signal optoretinography of dark adaptation abnormality due to rod photoreceptor degeneration. Exp Biol Med (Maywood) 2024; 249:10024. [PMID: 38463390 PMCID: PMC10911128 DOI: 10.3389/ebm.2024.10024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/04/2024] [Indexed: 03/12/2024] Open
Abstract
This research aims to investigate the potential of using intrinsic optical signal (IOS) optoretinography (ORG) to objectively detect dark adaptation (DA) abnormalities related to rod photoreceptor degeneration. Functional optical coherence tomography (OCT) was employed in both wild-type (WT) and retinal degeneration 10 (rd10) mice to conduct this assessment. Dynamic OCT measurements captured the changes in retinal thickness and reflectance from light-to-dark transition. Comparative analysis revealed significant IOS alterations within the outer retina. Specifically, a reduction in thickness from external limiting membrane (ELM) peak to retinal pigment epithelium (RPE) peak was observed (WT: 1.13 ± 0.69 µm, 30 min DA; rd10: 2.64 ± 0.86 µm, 30 min DA), as well as a decrease in the intensity of the inner segment ellipsoid zone (EZ) in 30 min DA compared to light adaptation (LA). The reduction of relative EZ intensity was notable in rd10 after 5 min DA and in WT after 15 min DA, with a distinguishable difference between rd10 and WT after 10 min DA. Furthermore, our findings indicated a significant decrease in the relative intensity of the hypo-reflective band between EZ and RPE in rd10 retinas during DA, which primarily corresponds to the outer segment (OS) region. In conclusion, the observed DA-IOS abnormalities, including changes in ELM-RPE thickness, EZ, and OS intensity, hold promise as differentiators between WT and rd10 mice before noticeable morphological abnormalities occur. These findings suggest the potential of this non-invasive imaging technique for the early detection of dysfunction in retinal photoreceptors.
Collapse
Affiliation(s)
- Jie Ding
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL, United States
| | - Tae-Hoon Kim
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL, United States
| | - Guangying Ma
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL, United States
| | - Xincheng Yao
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL, United States
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL, United States
| |
Collapse
|
5
|
Upreti S, Nag TC, Ghosh MP. Trolox aids coenzyme Q 10 in neuroprotection against NMDA induced damage via upregulation of VEGF in rat model of glutamate excitotoxicity. Exp Eye Res 2024; 238:109740. [PMID: 38056553 DOI: 10.1016/j.exer.2023.109740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/19/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023]
Abstract
Glutamate induced damage to retinal ganglion cells (RGCs) requires tight physiological regulation of the N-methyl-D-aspartate (NMDA) receptors. Previously, studies have demonstrated the neuroprotective abilities of antioxidants like coenzyme Q10 (CoQ10) and vitamin E analogs like α-tocopherol against neuropathies resulting from NMDA insult, but have failed to shed light on the effect of CoQ10 and trolox, a hydrophilic analog of vitamin E, on glaucomatous neurodegeneration. In the current study, we wanted to investigate whether the combined effect of trolox with CoQ10 could alleviate NMDA-induced death of retinal cells while also trying to elucidate the underlying mechanism in relation to the yet unexplained role of vascular endothelial growth factor (VEGF) in NMDA-mediated excitotoxicity. After successful NMDA-induced degeneration, we followed it up with the treatment of combination of Trolox and CoQ10. The structural damage by NMDA was repaired significantly and retina retained structural integrity comparable to levels of control in the treatment group of Trolox and CoQ10. Detection of ROS generation after NMDA insult showed that together, Trolox and CoQ10 could significantly bring down the high levels of free radicals while also rescuing mitochondrial membrane potential (MMP). A significant increase in NMDA receptor Grin2A by CoQ10 alone as well as by CoQ10 and trolox was accompanied by a lowered Grin2B receptor expression, suggesting neuroprotective action of Trolox and CoQ10. Subsequently, lowered VEGFR1 and VEGFR2 receptor expression by NMDA treatment also recovered when subjected to combined treatment of Trolox and CoQ10. Western blot analyses also indicated the same whereby Trolox and CoQ10 could increase the diminished levels of phosphorylated VEGFR2. Immunofluorescence studies also indicated a positive correlation between recovered VEGFR2 and NMDAR2A levels and diminished levels of NMDAR2D, confirming the results obtained by RT-PCR analysis. This is the first report in our knowledge that demonstrates the efficacy of trolox in combination with CoQ10 highlighting the importance of maintaining VEGF levels that are lowered in ocular diseases due to NMDA-related toxicities.
Collapse
Affiliation(s)
- Shikha Upreti
- Ocular Pharmacology and Therapeutics Lab, Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201313, India.
| | - Tapas Chandra Nag
- Department of Anatomy, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| | - Madhumita P Ghosh
- Ocular Pharmacology and Therapeutics Lab, Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201313, India.
| |
Collapse
|
6
|
Goo H, Lee MY, Lee YJ, Lee S, Ahn JC, Hong N. Multi-Wavelength Photobiomodulation Ameliorates Sodium Iodate-Induced Age-Related Macular Degeneration in Rats. Int J Mol Sci 2023; 24:17394. [PMID: 38139223 PMCID: PMC10743884 DOI: 10.3390/ijms242417394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Age-related macular degeneration (AMD) is a global health challenge. AMD causes visual impairment and blindness, particularly in older individuals. This multifaceted disease progresses through various stages, from asymptomatic dry to advanced wet AMD, driven by various factors including inflammation and oxidative stress. Current treatments are effective mainly for wet AMD; the therapeutic options for dry AMD are limited. Photobiomodulation (PBM) using low-energy light in the red-to-near-infrared range is a promising treatment for retinal diseases. This study investigated the effects of multi-wavelength PBM (680, 780, and 830 nm) on sodium iodate-induced oxidatively damaged retinal tissue. In an in vivo rat model of AMD induced by sodium iodate, multi-wavelength PBM effectively protected the retinal layers, reduced retinal apoptosis, and prevented rod bipolar cell depletion. Furthermore, PBM inhibited photoreceptor degeneration and reduced retinal pigment epithelium toxicity. These results suggest that multi-wavelength PBM may be a useful therapeutic strategy for AMD, mitigating oxidative stress, preserving retinal integrity, and preventing apoptosis.
Collapse
Affiliation(s)
- Hyeyoon Goo
- Department of Medical Laser, Graduate School of Medicine, Dankook University, Cheonan 31116, Republic of Korea;
- Beckman Laser Institute-Korea, Dankook University, Cheonan 31116, Republic of Korea; (M.Y.L.); (Y.-J.L.)
| | - Min Young Lee
- Beckman Laser Institute-Korea, Dankook University, Cheonan 31116, Republic of Korea; (M.Y.L.); (Y.-J.L.)
- Department of Otolaryngology-Head & Neck Surgery, College of Medicine, Dankook University Hospital, Dankook University, Cheonan 31116, Republic of Korea
| | - Yea-Jin Lee
- Beckman Laser Institute-Korea, Dankook University, Cheonan 31116, Republic of Korea; (M.Y.L.); (Y.-J.L.)
| | - Sangkeun Lee
- MEDI-IOT Co., Ltd., Seoul 02708, Republic of Korea;
| | - Jin-Chul Ahn
- Beckman Laser Institute-Korea, Dankook University, Cheonan 31116, Republic of Korea; (M.Y.L.); (Y.-J.L.)
| | - Namgue Hong
- Beckman Laser Institute-Korea, Dankook University, Cheonan 31116, Republic of Korea; (M.Y.L.); (Y.-J.L.)
| |
Collapse
|
7
|
Böhm EW, Buonfiglio F, Voigt AM, Bachmann P, Safi T, Pfeiffer N, Gericke A. Oxidative stress in the eye and its role in the pathophysiology of ocular diseases. Redox Biol 2023; 68:102967. [PMID: 38006824 PMCID: PMC10701459 DOI: 10.1016/j.redox.2023.102967] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023] Open
Abstract
Oxidative stress occurs through an imbalance between the generation of reactive oxygen species (ROS) and the antioxidant defense mechanisms of cells. The eye is particularly exposed to oxidative stress because of its permanent exposure to light and due to several structures having high metabolic activities. The anterior part of the eye is highly exposed to ultraviolet (UV) radiation and possesses a complex antioxidant defense system to protect the retina from UV radiation. The posterior part of the eye exhibits high metabolic rates and oxygen consumption leading subsequently to a high production rate of ROS. Furthermore, inflammation, aging, genetic factors, and environmental pollution, are all elements promoting ROS generation and impairing antioxidant defense mechanisms and thereby representing risk factors leading to oxidative stress. An abnormal redox status was shown to be involved in the pathophysiology of various ocular diseases in the anterior and posterior segment of the eye. In this review, we aim to summarize the mechanisms of oxidative stress in ocular diseases to provide an updated understanding on the pathogenesis of common diseases affecting the ocular surface, the lens, the retina, and the optic nerve. Moreover, we discuss potential therapeutic approaches aimed at reducing oxidative stress in this context.
Collapse
Affiliation(s)
- Elsa Wilma Böhm
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Anna Maria Voigt
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Philipp Bachmann
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Tarek Safi
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| |
Collapse
|
8
|
Brunner SM, Schrödl F, Preishuber-Pflügl J, Runge C, Koller A, Lenzhofer M, Reitsamer HA, Trost A. Distribution of the cysteinyl leukotriene system components in the human, rat and mouse eye. Exp Eye Res 2023; 232:109517. [PMID: 37211287 DOI: 10.1016/j.exer.2023.109517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
The cysteinyl leukotrienes (CysLTs) have important functions in the regulation of inflammation and cellular stress. Blocking the CysLT receptors (CysLTRs) with specific antagonists is beneficial against progression of retinopathies (e.g. diabetic retinopathy, wet AMD). However, the exact cellular localization of the CysLTRs and their endogenous ligands in the eye have not been elucidated in detail yet. It is also not known whether the expression patterns differ between humans and animal models. Therefore, the present study aimed to describe and compare the distribution of two important enzymes in CysLT biosynthesis, 5-lipoxygenase (5-LOX) and 5-lipoxygenase-activating protein (FLAP), and of CysLTR1 and CysLTR2 in healthy human, rat and mouse eyes. Human donor eyes (n = 10) and eyes from adult Sprague Dawley rats (n = 5) and CD1 mice (n = 8) of both sexes were collected. The eyes were fixed in 4% paraformaldehyde and cross-sections were investigated by immunofluorescence with specific antibodies against 5-LOX, FLAP (human tissue only), CysLTR1 and CysLTR2. Flat-mounts of the human choroid were prepared and processed similarly. Expression patterns were assessed and semiquantitatively evaluated using a confocal fluorescence microscope (LSM710, Zeiss). We observed so far unreported expression sites for CysLT system components in various ocular tissues. Overall, we detected expression of 5-LOX, CysLTR1 and CysLTR2 in the human, rat and mouse cornea, conjunctiva, iris, lens, ciliary body, retina and choroid. Importantly, expression profiles of CysLTR1 and CysLTR2 were highly similar between human and rodent eyes. FLAP was expressed in all human ocular tissues except the lens. Largely weak immunoreactivity of FLAP and 5-LOX was observed in a few, yet unidentified, cells of diverse ocular tissues, indicating low levels of CysLT biosynthesis in healthy eyes. CysLTR1 was predominantly detected in ocular epithelial cells, supporting the involvement of CysLTR1 in stress and immune responses. CysLTR2 was predominantly expressed in neuronal structures, suggesting neuromodulatory roles of CysLTR2 in the eye and revealing disparate functions of CysLTRs in ocular tissues. Taken together, we provide a comprehensive protein expression atlas of CysLT system components in the human and rodent eye. While the current study is purely descriptive and therefore does not allow significant functional conclusions yet, it represents an important basis for future studies in diseased ocular tissues in which distribution patterns or expression levels of the CysLT system might be altered. Furthermore, this is the first comprehensive study to elucidate expression patterns of CysLT system components in human and animal models that will help to identify and understand functions of the system as well as mechanisms of action of potential CysLTR ligands in the eye.
Collapse
Affiliation(s)
- Susanne M Brunner
- Research Program for Experimental Ophthalmology and Glaucoma Research, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University Salzburg, Muellner Hauptstr. 48, 5020 Salzburg, Austria.
| | - Falk Schrödl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria.
| | - Julia Preishuber-Pflügl
- Research Program for Experimental Ophthalmology and Glaucoma Research, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University Salzburg, Muellner Hauptstr. 48, 5020 Salzburg, Austria.
| | - Christian Runge
- Research Program for Experimental Ophthalmology and Glaucoma Research, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University Salzburg, Muellner Hauptstr. 48, 5020 Salzburg, Austria; Cornea Eye Bank, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University Salzburg, Muellner Hauptstr. 48, 5020 Salzburg, Austria.
| | - Andreas Koller
- Research Program for Experimental Ophthalmology and Glaucoma Research, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University Salzburg, Muellner Hauptstr. 48, 5020 Salzburg, Austria.
| | - Markus Lenzhofer
- Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University Salzburg, Muellner Hauptstr. 48, 5020 Salzburg, Austria.
| | - Herbert A Reitsamer
- Research Program for Experimental Ophthalmology and Glaucoma Research, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University Salzburg, Muellner Hauptstr. 48, 5020 Salzburg, Austria; Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University Salzburg, Muellner Hauptstr. 48, 5020 Salzburg, Austria.
| | - Andrea Trost
- Research Program for Experimental Ophthalmology and Glaucoma Research, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University Salzburg, Muellner Hauptstr. 48, 5020 Salzburg, Austria.
| |
Collapse
|
9
|
Markitantova Y, Simirskii V. Endogenous and Exogenous Regulation of Redox Homeostasis in Retinal Pigment Epithelium Cells: An Updated Antioxidant Perspective. Int J Mol Sci 2023; 24:10776. [PMID: 37445953 DOI: 10.3390/ijms241310776] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The retinal pigment epithelium (RPE) performs a range of necessary functions within the neural layers of the retina and helps ensure vision. The regulation of pro-oxidative and antioxidant processes is the basis for maintaining RPE homeostasis and preventing retinal degenerative processes. Long-term stable changes in the redox balance under the influence of endogenous or exogenous factors can lead to oxidative stress (OS) and the development of a number of retinal pathologies associated with RPE dysfunction, and can eventually lead to vision loss. Reparative autophagy, ubiquitin-proteasome utilization, the repair of damaged proteins, and the maintenance of their conformational structure are important interrelated mechanisms of the endogenous defense system that protects against oxidative damage. Antioxidant protection of RPE cells is realized as a result of the activity of specific transcription factors, a large group of enzymes, chaperone proteins, etc., which form many signaling pathways in the RPE and the retina. Here, we discuss the role of the key components of the antioxidant defense system (ADS) in the cellular response of the RPE against OS. Understanding the role and interactions of OS mediators and the components of the ADS contributes to the formation of ideas about the subtle mechanisms in the regulation of RPE cellular functions and prospects for experimental approaches to restore RPE functions.
Collapse
Affiliation(s)
- Yuliya Markitantova
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Vladimir Simirskii
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
10
|
Huang KT, Poganik JR, Parvez S, Raja S, Miller B, Long MJC, Fetcho JR, Aye Y. Z-REX: shepherding reactive electrophiles to specific proteins expressed tissue specifically or ubiquitously, and recording the resultant functional electrophile-induced redox responses in larval fish. Nat Protoc 2023; 18:1379-1415. [PMID: 37020146 PMCID: PMC11150335 DOI: 10.1038/s41596-023-00809-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 12/05/2022] [Indexed: 04/07/2023]
Abstract
This Protocol Extension describes the adaptation of an existing Protocol detailing the use of targetable reactive electrophiles and oxidants, an on-demand redox targeting toolset in cultured cells. The adaptation described here is for use of reactive electrophiles and oxidants technologies in live zebrafish embryos (Z-REX). Zebrafish embryos expressing a Halo-tagged protein of interest (POI)-either ubiquitously or tissue specifically-are treated with a HaloTag-specific small-molecule probe housing a photocaged reactive electrophile (either natural electrophiles or synthetic electrophilic drug-like fragments). The reactive electrophile is then photouncaged at a user-defined time, enabling proximity-assisted electrophile-modification of the POI. Functional and phenotypic ramifications of POI-specific modification can then be monitored, by coupling to standard downstream assays, such as click chemistry-based POI-labeling and target-occupancy quantification; immunofluorescence or live imaging; RNA-sequencing and real-time quantitative polymerase chain reaction analyses of downstream-transcript modulations. Transient expression of requisite Halo-POI in zebrafish embryos is achieved by messenger RNA injection. Procedures associated with generation of transgenic zebrafish expressing a tissue-specific Halo-POI are also described. The Z-REX experiments can be completed in <1 week using standard techniques. To successfully execute Z-REX, researchers should have basic skills in fish husbandry, imaging and pathway analysis. Experience with protein or proteome manipulation is useful. This Protocol Extension is aimed at helping chemical biologists study precision redox events in a model organism and fish biologists perform redox chemical biology.
Collapse
Affiliation(s)
- Kuan-Ting Huang
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Jesse R Poganik
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Saba Parvez
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Sruthi Raja
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Brian Miller
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | | | - Joseph R Fetcho
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA.
| | - Yimon Aye
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
11
|
Hebbar S, Traikov S, Hälsig C, Knust E. Modulating the Kynurenine pathway or sequestering toxic 3-hydroxykynurenine protects the retina from light-induced damage in Drosophila. PLoS Genet 2023; 19:e1010644. [PMID: 36952572 PMCID: PMC10035932 DOI: 10.1371/journal.pgen.1010644] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/30/2023] [Indexed: 03/25/2023] Open
Abstract
Tissue health is regulated by a myriad of exogenous or endogenous factors. Here we investigated the role of the conserved Kynurenine pathway (KP) in maintaining retinal homeostasis in the context of light stress in Drosophila melanogaster. cinnabar, cardinal and scarlet are fly genes that encode different steps in the KP. Along with white, these genes are known regulators of brown pigment (ommochrome) biosynthesis. Using white as a sensitized genetic background, we show that mutations in cinnabar, cardinal and scarlet differentially modulate light-induced retinal damage. Mass Spectrometric measurements of KP metabolites in flies with different genetic combinations support the notion that increased levels of 3-hydroxykynurenine (3OH-K) and Xanthurenic acid (XA) enhance retinal damage, whereas Kynurenic Acid (KYNA) and Kynurenine (K) are neuro-protective. This conclusion was corroborated by showing that feeding 3OH-K results in enhanced retinal damage, whereas feeding KYNA protects the retina in sensitized genetic backgrounds. Interestingly, the harmful effects of free 3OH-K are diminished by its sub-cellular compartmentalization. Sequestering of 3OH-K enables the quenching of its toxicity through conversion to brown pigment or conjugation to proteins. This work enabled us to decouple the role of these KP genes in ommochrome formation from their role in retinal homeostasis. Additionally, it puts forward new hypotheses on the importance of the balance of KP metabolites and their compartmentalization in disease alleviation.
Collapse
Affiliation(s)
- Sarita Hebbar
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Sofia Traikov
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Catrin Hälsig
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Elisabeth Knust
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
12
|
Bola S, Subramanian P, Calzia D, Dahl A, Panfoli I, Funk RHW, Roehlecke C. Analysis of Electric Field Stimulation in Blue Light Stressed 661W Cells. Int J Mol Sci 2023; 24:ijms24043433. [PMID: 36834840 PMCID: PMC9965974 DOI: 10.3390/ijms24043433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/11/2023] Open
Abstract
Though electrical stimulation is used as a therapeutic approach to treat retinal and spinal injuries, many protective mechanisms at cellular level have not been elucidated. We performed a detailed analysis of cellular events in blue light (Li) stressed 661W cells, which were subjected to direct current electric field (EF) stimulation. Our findings revealed that EF stimulation induced protective effects in 661W cells from Li-induced stress by multiple defense mechanisms, such as increase in mitochondrial activity, gain in mitochondrial potential, increase in superoxide levels, and the activation of unfolded protein response (UPR) pathways, all leading to an enhanced cell viability and decreased DNA damage. Here, our genetic screen results revealed the UPR pathway to be a promising target to ameliorate Li-induced stress by EF stimulation. Thus, our study is important for a knowledgeable transfer of EF stimulation into clinical application.
Collapse
Affiliation(s)
- Sharanya Bola
- Institute of Anatomy, TU Dresden, D-01304 Dresden, Germany
| | - Pallavi Subramanian
- Institute of Clinical Chemistry and Laboratory Medicine, TU Dresden, D-01069 Dresden, Germany
| | - Daniela Calzia
- Department of Pharmacy—DIFAR, Biochemistry and Physiology Lab., University of Genoa, 16126 Genova, Italy
| | - Andreas Dahl
- Deep Sequencing Group SFB 655, Biotechnology Center, TU Dresden, D-01069 Dresden, Germany
| | - Isabella Panfoli
- Department of Pharmacy—DIFAR, Biochemistry and Physiology Lab., University of Genoa, 16126 Genova, Italy
| | - Richard H. W. Funk
- Institute of Anatomy, TU Dresden, D-01304 Dresden, Germany
- Correspondence:
| | - Cora Roehlecke
- Institute of Anatomy, TU Dresden, D-01304 Dresden, Germany
| |
Collapse
|
13
|
Shu DY, Chaudhary S, Cho KS, Lennikov A, Miller WP, Thorn DC, Yang M, McKay TB. Role of Oxidative Stress in Ocular Diseases: A Balancing Act. Metabolites 2023; 13:187. [PMID: 36837806 PMCID: PMC9960073 DOI: 10.3390/metabo13020187] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Redox homeostasis is a delicate balancing act of maintaining appropriate levels of antioxidant defense mechanisms and reactive oxidizing oxygen and nitrogen species. Any disruption of this balance leads to oxidative stress, which is a key pathogenic factor in several ocular diseases. In this review, we present the current evidence for oxidative stress and mitochondrial dysfunction in conditions affecting both the anterior segment (e.g., dry eye disease, keratoconus, cataract) and posterior segment (age-related macular degeneration, proliferative vitreoretinopathy, diabetic retinopathy, glaucoma) of the human eye. We posit that further development of therapeutic interventions to promote pro-regenerative responses and maintenance of the redox balance may delay or prevent the progression of these major ocular pathologies. Continued efforts in this field will not only yield a better understanding of the molecular mechanisms underlying the pathogenesis of ocular diseases but also enable the identification of novel druggable redox targets and antioxidant therapies.
Collapse
Affiliation(s)
- Daisy Y. Shu
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Suman Chaudhary
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Kin-Sang Cho
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Anton Lennikov
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - William P. Miller
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - David C. Thorn
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Menglu Yang
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Tina B. McKay
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
14
|
The Flavone Cirsiliol from Salvia x jamensis Binds the F 1 Moiety of ATP Synthase, Modulating Free Radical Production. Cells 2022; 11:cells11193169. [PMID: 36231131 PMCID: PMC9562182 DOI: 10.3390/cells11193169] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/25/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Several studies have shown that mammalian retinal rod outer segments (OS) are peculiar structures devoid of mitochondria, characterized by ectopic expression of the molecular machinery for oxidative phosphorylation. Such ectopic aerobic metabolism would provide the chemical energy for the phototransduction taking place in the OS. Natural polyphenols include a large variety of molecules having pleiotropic effects, ranging from anti-inflammatory to antioxidant and others. Our goal in the present study was to investigate the potential of the flavonoid cirsiliol, a trihydroxy-6,7-dimethoxyflavone extracted from Salvia x jamensis, in modulating reactive oxygen species production by the ectopic oxidative phosphorylation taking place in the OS. Our molecular docking analysis identified cirsiliol binding sites inside the F1 moiety of the nanomotor F1Fo-ATP synthase. The experimental approach was based on luminometry, spectrophotometry and cytofluorimetry to evaluate ATP synthesis, respiratory chain complex activity and H2O2 production, respectively. The results showed significant dose-dependent inhibition of ATP production by cirsiliol. Moreover, cirsiliol was effective in reducing the free radical production by the OS exposed to ambient light. We report a considerable protective effect of cirsiliol on the structural stability of rod OS, suggesting it may be considered a promising compound against oxidative stress.
Collapse
|
15
|
Manoj KM, Tamagawa H, Bazhin N, Jaeken L, Nirusimhan V, Faraci F, Gideon DA. Murburn model of vision: Precepts and proof of concept. J Cell Physiol 2022; 237:3338-3355. [PMID: 35662017 DOI: 10.1002/jcp.30786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/05/2022] [Accepted: 05/14/2022] [Indexed: 11/08/2022]
Abstract
The classical paradigm of visual physiology comprises of the following features: (i) rod/cone cells located at the rear end of the retina serve as the primary transducers of incoming photo-information, (ii) cis-trans retinal (C20 H28 O) transformations on rhodopsin act as the transduction switch to generate a transmittable signal, (iii) signal amplification occurs via GDP-GTP exchange at transducin, and (iv) the amplified signal is relayed (as an action potential) as a flux-based ripple of Na-K ions along the axons of neurons. Fundamental physical principles, chemical kinetics, and awareness of architecture of eye/retina prompt a questioning of these classical assumptions. In lieu, based on experimental and in silico findings, a simple space-time resolved murburn model for the physiology of phototransduction in the retina is presented wherein molecular oxygen plays key roles. It is advocated that: (a) photo-induced oxygen to superoxide conversion serves as the key step in signal transduction in the visual cycle, (b) all photoactive cells of the retina serve as photoreceptors and rods/cones serve as the ultimate electron source in the retina (deriving oxygen and nutrients from retinal pigmented epithelium), (c) signal amplification is through superoxide mediated phosphorylation of GDP bound to inactive transducin, thereby activating a GDP-based cascade (a new mechanism for trimeric G-proteins), and (d) signal relay is primarily an electron movement along the neuron, from dendritic source to synaptic sink. In particular, we specify the roles for the various modules of transducin and GDP-based activation of phosphodiesterase-6 in the physiology of visual transduction.
Collapse
Affiliation(s)
- Kelath Murali Manoj
- Satyamjayatu: The Science & Ethics Foundation, Kulappully, Shoranur-2 (PO), Palakkad District, Kerala, India
| | | | - Nikolai Bazhin
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk, Russia
| | - Laurent Jaeken
- Karel de Grote-Hogeschool, Association University and High Schools Antwerp, Antwerpen, Belgium
| | - Vijay Nirusimhan
- Satyamjayatu: The Science & Ethics Foundation, Kulappully, Shoranur-2 (PO), Palakkad District, Kerala, India
| | - Federico Faraci
- Satyamjayatu: The Science & Ethics Foundation, Kulappully, Shoranur-2 (PO), Palakkad District, Kerala, India
| | - Daniel A Gideon
- Satyamjayatu: The Science & Ethics Foundation, Kulappully, Shoranur-2 (PO), Palakkad District, Kerala, India
| |
Collapse
|
16
|
The Molecular Mechanism of Retina Light Injury Focusing on Damage from Short Wavelength Light. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8482149. [PMID: 35498134 PMCID: PMC9042598 DOI: 10.1155/2022/8482149] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/31/2022] [Indexed: 12/30/2022]
Abstract
Natural visible light is an electromagnetic wave composed of a spectrum of monochromatic wavelengths, each with a characteristic color. Photons are the basic units of light, and their wavelength correlates to the energy of light; short-wavelength photons carry high energy. The retina is a fragile neuronal tissue that senses light and generates visual signals conducted to the brain. However, excessive and intensive light exposure will cause retinal light damage. Within the visible spectrum, short-wavelength light, such as blue light, carries higher energy, and thus the retinal injury, is more significant when exposed to these wavelengths. The damage mechanism triggered by different short-wavelength light varies due to photons carrying different energy and being absorbed by different photosensitive molecules in the retinal neurons. However, photooxidation might be a common molecular step to initiate cell death. Herein, we summarize the historical understanding of light, the key molecular steps related to retinal light injury, and the death pathways of photoreceptors to further decipher the molecular mechanism of retinal light injury and explore potential neuroprotective strategies.
Collapse
|
17
|
Nakayama E, Kushibiki T, Mayumi Y, Azuma R, Ishihara M, Kiyosawa T. Blue Laser Irradiation Decreases the ATP Level in Mouse Skin and Increases the Production of Superoxide Anion and Hypochlorous Acid in Mouse Fibroblasts. BIOLOGY 2022; 11:biology11020301. [PMID: 35205166 PMCID: PMC8869339 DOI: 10.3390/biology11020301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/24/2022] [Accepted: 02/10/2022] [Indexed: 12/16/2022]
Abstract
Simple Summary Photobiomodulation studies have reported that blue light irradiation induces the production of reactive oxygen species. We examined the effect of blue laser (405 nm) irradiation on ATP level in the skin and measured the types of reactive oxygen species and reactive nitrogen species. The decrease in the skin ATP level due to blue light irradiation may be caused by oxidative stress due to the generation of reactive oxygen species. These findings highlight the need to consider the effects on the skin when performing photobiomodulation treatment using blue light. Abstract Photobiomodulation studies have reported that blue light irradiation induces the production of reactive oxygen species. We investigated the effect of blue laser (405 nm) irradiation on the ATP levels in mouse skin and determined the types of reactive oxygen species and reactive nitrogen species using cultured mouse fibroblasts. Blue laser irradiation caused a decrease in the ATP level in the mouse skin and triggered the generation of superoxide anion and hypochlorous acid, whereas nitric oxide and peroxynitrite were not detected. Moreover, blue laser irradiation resulted in reduced cell viability. It is believed that the decrease in the skin ATP level due to blue light irradiation results from the increased levels of oxidative stress due to the generation of reactive oxygen species. This method of systematically measuring the levels of reactive oxygen species and reactive nitrogen species may be useful for understanding the effects of irradiation conditions.
Collapse
Affiliation(s)
- Eiko Nakayama
- Department of Plastic Surgery, National Defense Medical College, Saitama 3598513, Japan; (R.A.); (T.K.)
- Correspondence: ; Tel.: +81-4-2995-1596
| | - Toshihiro Kushibiki
- Department of Medical Engineering, National Defense Medical College, Saitama 3598513, Japan; (T.K.); (Y.M.); (M.I.)
| | - Yoshine Mayumi
- Department of Medical Engineering, National Defense Medical College, Saitama 3598513, Japan; (T.K.); (Y.M.); (M.I.)
| | - Ryuichi Azuma
- Department of Plastic Surgery, National Defense Medical College, Saitama 3598513, Japan; (R.A.); (T.K.)
| | - Miya Ishihara
- Department of Medical Engineering, National Defense Medical College, Saitama 3598513, Japan; (T.K.); (Y.M.); (M.I.)
| | - Tomoharu Kiyosawa
- Department of Plastic Surgery, National Defense Medical College, Saitama 3598513, Japan; (R.A.); (T.K.)
| |
Collapse
|
18
|
Modulation of SOD3 Levels Is Detrimental to Retinal Homeostasis. Antioxidants (Basel) 2021; 10:antiox10101595. [PMID: 34679728 PMCID: PMC8533566 DOI: 10.3390/antiox10101595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 01/08/2023] Open
Abstract
Retinal oxidative stress is a common secondary feature of many retinal diseases. Though it may not be the initial insult, it is a major contributor to the pathogenesis of highly prevalent retinal dystrophic diseases like macular degeneration, diabetic retinopathy, and retinitis pigmentosa. We explored the role of superoxide dismutase 3 (SOD3) in retinal homeostasis since SOD3 protects the extracellular matrix (ECM) from oxidative injury. We show that SOD3 is mainly extracellularly localized and is upregulated as a result of environmental and pathogenic stress. Ablation of SOD3 resulted in reduced functional electroretinographic responses and number of photoreceptors, which is exacerbated with age. By contrast, overexpression showed increased electroretinographic responses and increased number of photoreceptors at young ages, but appears deleterious as the animal ages, as determined from the associated functional decline. Our exploration shows that SOD3 is vital to retinal homeostasis but its levels are tightly regulated. This suggests that SOD3 augmentation to combat oxidative stress during retinal degenerative changes may only be effective in the short-term.
Collapse
|
19
|
Sahu B, Leon LM, Zhang W, Puranik N, Periasamy R, Khanna H, Volkert M. Oxidative Stress Resistance 1 Gene Therapy Retards Neurodegeneration in the rd1 Mutant Mouse Model of Retinopathy. Invest Ophthalmol Vis Sci 2021; 62:8. [PMID: 34505865 PMCID: PMC8434758 DOI: 10.1167/iovs.62.12.8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/19/2021] [Indexed: 12/17/2022] Open
Abstract
Purpose Oxidative stress is a major factor underlying many neurodegenerative diseases. However, antioxidant therapy has had mixed results, possibly because of its indiscriminate activity. The purpose of our study was to determine if the human OXR1 (hOXR1) antioxidant regulatory gene could protect neurons from oxidative stress and delay photoreceptor cell death. Methods The cone-like 661W cell line was transfected to stably express the hOXR1 gene. Oxidative stress was induced by the addition of hydrogen peroxide (H2O2). Intracellular levels of reactive oxygen species (ROS), caspase cleavage, and cellular resistance to oxidative stress were determined and compared between the control and hOXR1 cells. For in vivo analysis, AAV8-hOXR1 was injected subretinally into the rd1 mouse model of retinal degeneration. Functional and structural integrity of the photoreceptors were assessed using electroretinography (ERG), histology, and immunofluorescence analysis. Results Expression of hOXR1 increased cellular resistance and reduced ROS levels and caspase cleavage in the 661W cell line after H2O2-induced oxidative stress. Subretinal injection of AAV8-hOXR1 in the rd1 mice improved their photoreceptor light response, expression and localization of photoreceptor-specific proteins, and delayed retinal degeneration. Conclusions Our results suggest that OXR1 is a potential therapy candidate for retinal degeneration. Because OXR1 targets oxidative stress, a common feature of many retinal degenerative diseases, it should be of therapeutic value to multiple retinal degenerative diseases.
Collapse
Affiliation(s)
- Bhubanananda Sahu
- Department of Ophthalmology and Visual Science, University of Massachusetts Medical School, Worcester, Massachusetts, United States
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, United States
| | - Laura Moreno Leon
- Department of Ophthalmology and Visual Science, University of Massachusetts Medical School, Worcester, Massachusetts, United States
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, United States
| | - Wei Zhang
- Department of Ophthalmology and Visual Science, University of Massachusetts Medical School, Worcester, Massachusetts, United States
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, United States
| | - Nikita Puranik
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States
| | - Ramesh Periasamy
- Department of Ophthalmology and Visual Science, University of Massachusetts Medical School, Worcester, Massachusetts, United States
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, United States
| | - Hemant Khanna
- Department of Ophthalmology and Visual Science, University of Massachusetts Medical School, Worcester, Massachusetts, United States
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, United States
- NeuroNexus Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States
| | - Michael Volkert
- NeuroNexus Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States
| |
Collapse
|
20
|
Lee SJ, Kim SJ, Jo DH, Park KS, Kim JH. Blockade of mTORC1-NOX signaling pathway inhibits TGF-β1-mediated senescence-like structural alterations of the retinal pigment epithelium. FASEB J 2021; 35:e21403. [PMID: 33559185 DOI: 10.1096/fj.202001939rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/04/2021] [Accepted: 01/15/2021] [Indexed: 11/11/2022]
Abstract
The retinal pigment epithelium (RPE) undergoes characteristic structural changes and epithelial-mesenchymal transition (EMT) during normal aging, which are exacerbated in age-related macular degeneration (AMD). Although the pathogenic mechanisms of aging and AMD remain unclear, transforming growth factor-β1 (TGF-β1) is known to induce oxidative stress, morphometric changes, and EMT as a senescence-promoting factor. In this study, we examined whether intravitreal injection of TGF-β1 into the mouse eye elicits senescence-like morphological alterations in the RPE and if this can be prevented by suppressing mammalian target of rapamycin complex 1 (mTORC1) or NADPH oxidase (NOX) signaling. We verified that intravitreal TGF-β1-induced stress fiber formation and EMT in RPE cells, along with age-associated morphometric changes, including increased variation in cell size and reduced cell density. In RPE cells, exogenous TGF-β1 increased endogenous expression of TGF-β1 and upregulated Smad3-ERK1/2-mTORC1 signaling, increasing reactive oxygen species (ROS) production and EMT. We demonstrated that inhibition of the mTORC1-NOX4 pathway by pretreatment with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), an activator of AMP-dependent protein kinase, or GKT137831, a NOX1/4 inhibitor, decreased ROS generation, prevented stress fiber formation, attenuated EMT, and improved the regularity of the RPE structure in vitro and in vivo. These results suggest that intravitreal TGF-β1 injection could be used as a screening model to investigate the aging-related structural and functional changes to the RPE. Furthermore, the regulation of TGF-β-mTORC1-NOX signaling could be a potential therapeutic target for reducing pathogenic alterations in aged RPE and AMD.
Collapse
Affiliation(s)
- Seok Jae Lee
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Soo-Jin Kim
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Dong Hyun Jo
- Department of Anatomy & Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyu-Sang Park
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Jeong Hun Kim
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Ophthalmology, College of Medicine, Seoul National University, Seoul, Republic of Korea.,Advanced Biomedical Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Republic of Korea
| |
Collapse
|
21
|
Fernández J, del Valle Fernández I, Villar CJ, Lombó F. Combined laser and ozone therapy for onychomycosis in an in vitro and ex vivo model. PLoS One 2021; 16:e0253979. [PMID: 34191858 PMCID: PMC8244860 DOI: 10.1371/journal.pone.0253979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 06/17/2021] [Indexed: 02/07/2023] Open
Abstract
In order to develop a fast combined method for onychomycosis treatment using an in vitro and an ex vivo models, a combination of two dual-diode lasers at 405 nm and 639 nm wavelengths, in a continuous manner, together with different ozone concentrations (until 80 ppm), was used for performing the experiments on fungal strains growing on PDA agar medium or on pig’s hooves samples. In the in vitro model experiments, with 30 min combined treatment, all species are inhibited at 40 ppm ozone concentration, except S. brevicaulis, which didn’t show an inhibition in comparison with only ozone treatment. In the ex vivo model experiments, with the same duration and ozone concentration, A. chrysogenum and E. floccosum showed total inhibition; T. mentagrophytes and T. rubrum showed a 75% growth inhibition; M. canis showed a delay in sporulation; and S. brevicaulis and A. terreus did not show growth inhibition. This combined laser and ozone treatment may be developed as a fast therapy for human onychomycosis, as a potential alternative to the use of antifungal drugs with potential side effects and long duration treatments.
Collapse
Affiliation(s)
- Javier Fernández
- Departamento de Biología Funcional, Research Unit “Biotechnology in Nutraceuticals and Bioactive Compounds-BIONUC”, Área de Microbiología, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | | | - Claudio J. Villar
- Departamento de Biología Funcional, Research Unit “Biotechnology in Nutraceuticals and Bioactive Compounds-BIONUC”, Área de Microbiología, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Felipe Lombó
- Departamento de Biología Funcional, Research Unit “Biotechnology in Nutraceuticals and Bioactive Compounds-BIONUC”, Área de Microbiología, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
- * E-mail:
| |
Collapse
|
22
|
Chen Z, Huang S, Liu M. The review of the light parameters and mechanisms of Photobiomodulation on melanoma cells. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2021; 38:3-11. [PMID: 34181781 DOI: 10.1111/phpp.12715] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 05/27/2021] [Accepted: 06/25/2021] [Indexed: 11/30/2022]
Abstract
Photobiomodulation (PBM) uses low-intensity visible or near-infrared light to produce beneficial effects on cells or tissues, such as brain therapy, wound healing. Still there is no consistent recommendation on the parameters (dose, light mode, wavelength, irradiance) and protocols (repetition, treatment duration) for its clinical application. Herein, we summarize the current PBM parameters for the treatment of melanoma, and we also discuss the potential photoreceptors and downstream signaling mechanisms in the PBM treatment of melanoma cells. It is hypothesized that PBM may inhibit the melanoma cells by activating mitochondria, OPNs, and other receptors. Regardless of the underlying mechanisms, PBM has been shown to be beneficial in treating melanoma. Through further in-depth studies of the underlying potential mechanisms, it can strengthen the applications of PBM for the therapy of melanoma.
Collapse
Affiliation(s)
- Zeqing Chen
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Shijie Huang
- Zhongshan Fudan Joint Innovation Center, Zhongshan City, China.,Institute for Electric Light Sources, Fudan University, Shanghai, China
| | - Muqing Liu
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai, China.,Zhongshan Fudan Joint Innovation Center, Zhongshan City, China.,Institute for Electric Light Sources, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Han G, Ling R, Sun C, Wang X, Zhou Y, Yu L, Liu S. HMGB1 knockdown increases the radiosensitivity of esophageal squamous cell carcinoma by regulating the expression of molecules involved in DNA repair. Oncol Lett 2021; 22:503. [PMID: 33986864 PMCID: PMC8114541 DOI: 10.3892/ol.2021.12764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 03/26/2021] [Indexed: 01/01/2023] Open
Abstract
Radiotherapy is an effective therapeutic strategy in esophageal squamous cell carcinoma (ESCC). However, acquired radioresistance of cancer cells leads to radiotherapy failure. The present study aimed to investigate the mechanisms of the effect of high mobility group box 1 (HMGB1) on the radiation sensitivity of ESCC. Small interfering RNA (si) transfection was used to generate three groups of TE-1 cells (TE-1, negative control and TE-1+siHMGB1), and the protein expression levels of HMGB1 in TE-1 cells were detected by western blotting. These groups of TE-1 cells were irradiated with different doses (0, 2, 4, 6 and 8 Gy) of X-rays after transfection. Subsequently, the viability of TE-1 cells was detected using an MTT assay, and the survival fraction of TE-1 cells was observed using a colony formation assay. The apoptotic rate, reactive oxygen species (ROS) content and levels of phosphorylated (p)-histone H2AX at S139 (p-γH2AX) of the cells were detected by flow cytometry. The alterations in mRNA expression levels of nicotinamide adenine nucleotide phosphate oxidase (NOX)1 and NOX5 were detected by reverse transcription-quantitative PCR, while the changes in protein levels of caspase-3, poly(ADP-ribose) polymerase, p-p38, p-ERK1/2 and p-JNK were detected by western blotting. The results revealed that HMGB1 knockdown significantly decreased cell viability, and the apoptosis rate of TE-1 cells transfected with siHMGB1 combined with radiation treatment was increased compared with that in cells with either siHMGB1 transfection or radiation treatment alone. HMGB1 knockdown increased nicotinamide adenine nucleotide phosphate oxidase-mediated ROS production and induced DNA damage via the MAPK signaling pathway, which may promote apoptosis and radiosensitivity after radiation in TE-1 cells. In conclusion, targeting HMGB1 may represent a promising strategy to increase the efficacy of radiation therapy for ESCC.
Collapse
Affiliation(s)
- Guohu Han
- Department of Oncology, Jingjiang People's Hospital, The Seventh Affiliated Hospital of Yangzhou University, Jingjiang, Jiangsu 214500, P.R. China
| | - Rui Ling
- Department of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Changchun Sun
- Department of Oncology, Jingjiang People's Hospital, The Seventh Affiliated Hospital of Yangzhou University, Jingjiang, Jiangsu 214500, P.R. China
| | - Xuefeng Wang
- Department of Central Laboratory, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Yuepeng Zhou
- Department of Nuclear Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Lijiang Yu
- Department of Oncology, Jingjiang People's Hospital, The Seventh Affiliated Hospital of Yangzhou University, Jingjiang, Jiangsu 214500, P.R. China
| | - Shenzha Liu
- Department of Oncology, Jingjiang People's Hospital, The Seventh Affiliated Hospital of Yangzhou University, Jingjiang, Jiangsu 214500, P.R. China
| |
Collapse
|
24
|
Hydrogen Sulfide: Novel Endogenous and Exogenous Modulator of Oxidative Stress in Retinal Degeneration Diseases. Molecules 2021; 26:molecules26092411. [PMID: 33919146 PMCID: PMC8122398 DOI: 10.3390/molecules26092411] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 11/29/2022] Open
Abstract
Oxidative stress (OS) damage can cause significant injury to cells, which is related to the occurrence and development of many diseases. This pathological process is considered to be the first step to trigger the death of outer retinal neurons, which is related to the pathology of retinal degenerative diseases. Hydrogen sulfide (H2S) has recently received widespread attention as a physiological signal molecule and gas neuromodulator and plays an important role in regulating OS in eyes. In this article, we reviewed the OS responses and regulatory mechanisms of H2S and its donors as endogenous and exogenous regulators in retinal degenerative diseases. Understanding the relevant mechanisms will help to identify the therapeutic potential of H2S in retinal degenerative diseases.
Collapse
|
25
|
Santana-Garrido Á, Reyes-Goya C, Fernández-Bobadilla C, Blanca AJ, André H, Mate A, Vázquez CM. NADPH oxidase-induced oxidative stress in the eyes of hypertensive rats. Mol Vis 2021; 27:161-178. [PMID: 33907371 PMCID: PMC8056463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 03/31/2021] [Indexed: 11/18/2022] Open
Abstract
Purpose Increased reactive oxygen species (ROS) released by NADPH oxidase and inflammation are associated with arterial hypertension and eye diseases associated with high blood pressure, including glaucoma, retinopathies (e.g., age-related macular degeneration), and choroidopathies affecting ocular function; however, the mechanisms underlying these adverse outcomes remain undefined. The present study was designed to highlight the importance of oxidative stress in severe hypertension-related eye damage. Methods Male Wistar rats (n = 7, unless otherwise specified for specific experiments) were administered an oral dose of 30 mg of Nω-nitro-L-arginine methyl ester (L-NAME) per kilogram of bodyweight and day for 3 weeks; chronic administration with L-NAME is a validated experimental approach resulting in severe hypertension secondary to nitric oxide (NO) depletion and subsequent vasoconstriction in the systemic circulation. Upon treatment completion, histomorphometric studies, NADPH oxidase activity, and ROS production were measured in eyecup homogenates and paraffin-embedded sections from control and L-NAME-treated animals. In addition, immunohistofluorescence, western blotting, and real-time PCR (RT-qPCR) analyses were performed in the eye and the retina to evaluate the expression of i) NADPH oxidase main isoforms (NOX1, NOX2, and NOX4) and subunits (p22phox and p47phox); ii) glial fibrillary acidic protein (GFAP), as a marker of microglial activation in the retina; iii) antioxidant enzymes; and iv) endothelial constitutive (eNOS) and inflammation inducible (iNOS) nitric oxide synthase isoforms, and nitrotyrosine as a versatile biomarker of oxidative stress. Results Increased activity of NADPH oxidase and superoxide anion production, accompanied by transcriptional upregulation of this enzyme isoforms, was found in the retina and choroid of the hypertensive rats in comparison with the untreated controls. Histomorphometric analyses revealed a significant reduction in the thickness of the ganglion cell layer and the outer retinal layers in the hypertensive animals, which also showed a positive strong signal of GFAP in the retinal outer segment and plexiform layers. In addition, L-NAME-treated animals presented with upregulation of nitric oxide synthase (including inducible and endothelial isoforms) and abnormally elevated nitrotyrosine levels. Experiments on protein and mRNA expression of antioxidant enzymes revealed depletion of superoxide dismutase and glutathione peroxidase in the eyes of the hypertensive animals; however, glutathione reductase was significantly higher than in the normotensive controls. Conclusions The present study demonstrated structural changes in the retinas of the L-NAME-treated hypertensive animals and strengthens the importance of NADPH oxidase as a major ROS-generating enzyme system in the oxidative and inflammatory processes surrounding hypertensive eye diseases. These observations might contribute to unveiling pathogenic mechanisms responsible for developing ocular disturbances in the context of severe hypertension.
Collapse
Affiliation(s)
- Álvaro Santana-Garrido
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla. CL Profesor García González, Sevilla, Spain,Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío – Consejo Superior de Investigaciones Científicas – Universidad de Sevilla. Avda. Manuel Siurot s/n, Sevilla, Spain
| | - Claudia Reyes-Goya
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla. CL Profesor García González, Sevilla, Spain
| | - Carmen Fernández-Bobadilla
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla. CL Profesor García González, Sevilla, Spain
| | - Antonio J. Blanca
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla. CL Profesor García González, Sevilla, Spain
| | - Helder André
- Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Alfonso Mate
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla. CL Profesor García González, Sevilla, Spain,Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío – Consejo Superior de Investigaciones Científicas – Universidad de Sevilla. Avda. Manuel Siurot s/n, Sevilla, Spain
| | - Carmen M. Vázquez
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla. CL Profesor García González, Sevilla, Spain,Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío – Consejo Superior de Investigaciones Científicas – Universidad de Sevilla. Avda. Manuel Siurot s/n, Sevilla, Spain
| |
Collapse
|
26
|
Ruan Y, Jiang S, Gericke A. Age-Related Macular Degeneration: Role of Oxidative Stress and Blood Vessels. Int J Mol Sci 2021; 22:ijms22031296. [PMID: 33525498 PMCID: PMC7866075 DOI: 10.3390/ijms22031296] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Age-related macular degeneration (AMD) is a common irreversible ocular disease characterized by vision impairment among older people. Many risk factors are related to AMD and interact with each other in its pathogenesis. Notably, oxidative stress and choroidal vascular dysfunction were suggested to be critically involved in AMD pathogenesis. In this review, we give an overview on the factors contributing to the pathophysiology of this multifactorial disease and discuss the role of reactive oxygen species and vascular function in more detail. Moreover, we give an overview on therapeutic strategies for patients suffering from AMD.
Collapse
Affiliation(s)
- Yue Ruan
- Correspondence: (Y.R.); (A.G.); Tel.: +49-6131-178-276 (Y.R. & A.G.)
| | | | - Adrian Gericke
- Correspondence: (Y.R.); (A.G.); Tel.: +49-6131-178-276 (Y.R. & A.G.)
| |
Collapse
|
27
|
Ravera S, Esposito A, Degan P, Caicci F, Manni L, Liguori A, Bisio A, Iobbi V, Schito A, Traverso CE, Panfoli I. The diterpene Manool extracted from Salvia tingitana lowers free radical production in retinal rod outer segments by inhibiting the extramitochondrial F 1 F o ATP synthase. Cell Biochem Funct 2021; 39:528-535. [PMID: 33472276 DOI: 10.1002/cbf.3618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/17/2020] [Accepted: 12/28/2020] [Indexed: 11/05/2022]
Abstract
Uncontrolled oxidative stress production, especially in the outer retina is one of the causes of retinal degenerations. Mitochondria are considered the principal source of oxidative stress. However, a Reactive Oxygen Intermediates (ROI) production in the retinal photoreceptor layer seems to depend also on the expression of an extramitochondrial oxidative phosphorylation (OxPhos) machinery in the rod outer segments (OS). In fact, OS conduct aerobic metabolism, producing ATP through oxygen consumption, although it is devoid of mitochondria. As diterpenes display an antioxidant effect, we have evaluated the effect Manool, extracted from Salvia tingitana, on the extramitochondrial OxPhos and the ROI production in the retinal rod OS. Results confirm that the OxPhos machinery is ectopically expressed in the OS and that F1 Fo -ATP synthase is a target of Manool, which inhibited the OS ATP synthesis, binding the F1 moiety with high affinity, as analysed by molecular docking. Moreover, the overall slowdown of OxPhos metabolism reduced the ROI production elicited in the OS by light exposure, in vitro. In conclusion, data are consistent with the antioxidant properties of Salvia spp., suggesting its ability to lower oxidative stress production, a primary risk factor for degenerative retinal diseases. SIGNIFICANCE OF THE STUDY: Here we show that Manool, a diterpene extracted from Salvia tingitana has the potential to lower the free radical production by light-exposed rod outer segments in vitro, by specifically targeting the rod OS F1 Fo -ATP synthase belonging to the extramitochondrial OxPhos expressed on the disk membrane. The chosen experimental model allowed to show that the rod OS is a primary producer of oxidative stress linked to the pathogenesis of degenerative retinal diseases. Data are also consistent with the antioxidant and anti-inflammatory action of Salvia spp., suggesting a beneficial effect also in vivo.
Collapse
Affiliation(s)
- Silvia Ravera
- Dipartimento di Medicina Sperimentale, Università di Genova, Genova, Italy
| | - Alfonso Esposito
- Centro di Biologia Integrata (CIBIO), Università di Trento, Trento, Italy
| | - Paolo Degan
- UOC Mutagenesi, IRCCS Policlinico San Martino -IST (Istituto Nazionale per la Ricerca sul Cancro), Genova, Italy
| | - Federico Caicci
- Dipartimento di Biologia, Università di Padova, Padova, Italy
| | - Lucia Manni
- Dipartimento di Biologia, Università di Padova, Padova, Italy
| | - Anna Liguori
- Dipartimento di Farmacia (DIFAR), Università di Genova, Genova, Italy
| | - Angela Bisio
- Dipartimento di Farmacia (DIFAR), Università di Genova, Genova, Italy
| | - Valeria Iobbi
- Dipartimento di Farmacia (DIFAR), Università di Genova, Genova, Italy
| | - Anna Schito
- Dipartimento di Scienze Chirurgiche e Diagnostiche Integrate (DISC), Sezione di Microbiologia, Università di Genova, Genova, Italy
| | | | - Isabella Panfoli
- Dipartimento di Farmacia (DIFAR), Università di Genova, Genova, Italy
| |
Collapse
|
28
|
Kutsyr O, Sánchez-Sáez X, Martínez-Gil N, de Juan E, Lax P, Maneu V, Cuenca N. Gradual Increase in Environmental Light Intensity Induces Oxidative Stress and Inflammation and Accelerates Retinal Neurodegeneration. Invest Ophthalmol Vis Sci 2021; 61:1. [PMID: 32744596 PMCID: PMC7441298 DOI: 10.1167/iovs.61.10.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose Retinitis pigmentosa (RP) is a blinding neurodegenerative disease of the retina that can be affected by many factors. The present study aimed to analyze the effect of different environmental light intensities in rd10 mice retina. Methods C57BL/6J and rd10 mice were bred and housed under three different environmental light intensities: scotopic (5 lux), mesopic (50 lux), and photopic (300 lux). Visual function was studied using electroretinography and optomotor testing. The structural and morphological integrity of the retinas was evaluated by optical coherence tomography imaging and immunohistochemistry. Additionally, inflammatory processes and oxidative stress markers were analyzed by flow cytometry and western blotting. Results When the environmental light intensity was higher, retinal function decreased in rd10 mice and was accompanied by light-dependent photoreceptor loss, followed by morphological alterations, and synaptic connectivity loss. Moreover, light-dependent retinal degeneration was accompanied by an increased number of inflammatory cells, which became more activated and phagocytic, and by an exacerbated reactive gliosis. Furthermore, light-dependent increment in oxidative stress markers in rd10 mice retina pointed to a possible mechanism for light-induced photoreceptor degeneration. Conclusions An increase in rd10 mice housing light intensity accelerates retinal degeneration, activating cell death, oxidative stress pathways, and inflammatory cells. Lighting intensity is a key factor in the progression of retinal degeneration, and standardized lighting conditions are advisable for proper analysis and interpretation of experimental results from RP animal models, and specifically from rd10 mice. Also, it can be hypothesized that light protection could be an option to slow down retinal degeneration in some cases of RP.
Collapse
|
29
|
Volkert MR, Crowley DJ. Preventing Neurodegeneration by Controlling Oxidative Stress: The Role of OXR1. Front Neurosci 2020; 14:611904. [PMID: 33384581 PMCID: PMC7770112 DOI: 10.3389/fnins.2020.611904] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/23/2020] [Indexed: 12/31/2022] Open
Abstract
Parkinson’s disease, diabetic retinopathy, hyperoxia induced retinopathy, and neuronal damage resulting from ischemia are among the notable neurodegenerative diseases in which oxidative stress occurs shortly before the onset of neurodegeneration. A shared feature of these diseases is the depletion of OXR1 (oxidation resistance 1) gene products shortly before the onset of neurodegeneration. In animal models of these diseases, restoration of OXR1 has been shown to reduce or eliminate the deleterious effects of oxidative stress induced cell death, delay the onset of symptoms, and reduce overall severity. Moreover, increasing OXR1 expression in cells further increases oxidative stress resistance and delays onset of disease while showing no detectable side effects. Thus, restoring or increasing OXR1 function shows promise as a therapeutic for multiple neurodegenerative diseases. This review examines the role of OXR1 in oxidative stress resistance and its impact on neurodegenerative diseases. We describe the potential of OXR1 as a therapeutic in light of our current understanding of its function at the cellular and molecular level and propose a possible cascade of molecular events linked to OXR1’s regulatory functions.
Collapse
Affiliation(s)
- Michael R Volkert
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
| | - David J Crowley
- Department of Biological and Physical Sciences, Assumption University, Worcester, MA, United States
| |
Collapse
|
30
|
Baeza Moyano D, Baeza Moyano S, Gómez López M, Salcedo Aznal A, González Lezcano RA. Nominal risk analysis of the blue light from LED luminaires in indoor lighting design. OPTIK 2020. [DOI: 10.1016/j.ijleo.2020.165599] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
31
|
Ravera S, Esposito A, Degan P, Caicci F, Calzia D, Perrotta E, Manni L, Bisio A, Iobbi V, Schito A, Traverso CE, Panfoli I. Sclareol modulates free radical production in the retinal rod outer segment by inhibiting the ectopic f 1f o-atp synthase. Free Radic Biol Med 2020; 160:368-375. [PMID: 32853720 DOI: 10.1016/j.freeradbiomed.2020.08.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 01/06/2023]
Abstract
We have previously shown that the retinal rod outer segments (OS) produce reactive oxygen species in the function of illumination in vitro, establishing a relationship among the extra-mitochondrial oxidative phosphorylation and phototransduction. This source of oxidative stress in the OS can be modulated by polyphenols, acting as inhibitors of F1Fo-ATP synthase. The present study aimed at exploring whether sclareol, a diterpene, interacts with F1Fo-ATP synthase mitigating the light-induced free radical production in the rod OS. Characterization of bovine retinal sections was conducted by immunogold analysis. Reactive oxygen intermediates production, oxygen consumption, the activity of the four respiratory complexes and ATP synthesis were evaluated in purified bovine rod OS. Molecular docking analyses were also conducted. Sclareol reduced free radical production by light-exposed rod OS. Such antioxidant effect was associated with an inhibition of the respiratory complexes and oxygen consumption (OCR), in coupled conditions. Sclareol also inhibited the rod OS ATP synthetic ability. Since the inhibitor effect on respiratory complexes and OCR is not observed in uncoupled conditions, it is supposed that the modulating effect of sclareol on the ectopic oxidative phosphorylation in the rod OS targets specifically the F1Fo-ATP synthase. This hypothesis is confirmed by the in silico molecular docking analyses, which shows that sclareol binds the F1 moiety of ATP synthase with high affinity. In conclusion, a beneficial effect of sclareol can be envisaged as a modulator of oxidative stress in the photoreceptor, a risk factor for the degenerative retinal diseases, suggestive of its potential beneficial action also in vivo.
Collapse
Affiliation(s)
- Silvia Ravera
- Dipartimento di Medicina Sperimentale, Università di Genoa, Via De Toni 14, 16132, Genova, Italy
| | - Alfonso Esposito
- Centro di Biologia Integrata (CIBIO), Università di Trento, Via Sommarive, 9, Povo, 38123, Trento, Italy
| | - Paolo Degan
- UOC Mutagenesi, IRCCS Policlinico San Martino -IST, Istituto Nazionale per La Ricerca Sul Cancro), Largo Rosanna Benzi 10, 16132, Genova, Italy
| | - Federico Caicci
- Dipartimento di Biologia, Università di Padova, Via U. Bassi 58/B, 35121, Padova, Italy
| | - Daniela Calzia
- Dipartimento di Farmacia (DIFAR), Università di Genova, V.le Benedetto XV 3, 16132, Genova, Italy
| | - Eleonora Perrotta
- Dipartimento di Medicina Sperimentale, Università di Genoa, Via De Toni 14, 16132, Genova, Italy
| | - Lucia Manni
- Dipartimento di Biologia, Università di Padova, Via U. Bassi 58/B, 35121, Padova, Italy
| | - Angela Bisio
- Dipartimento di Farmacia (DIFAR), Università di Genova, V.le Benedetto XV 3, 16132, Genova, Italy
| | - Valeria Iobbi
- Dipartimento di Farmacia (DIFAR), Università di Genova, V.le Benedetto XV 3, 16132, Genova, Italy
| | - Anna Schito
- Dipartimento di Scienze Chirurgiche e Diagnostiche Integrate (DISC), Sezione di Microbiologia, Università di Genova, Largo Rosanna Benzi 8, 16145, Genova, Italy
| | - Carlo Enrico Traverso
- Clinica Oculistica, (DINOGMI) Università di Genova, V.le Benedetto XV 6, 16132, Genova, Italy
| | - Isabella Panfoli
- Dipartimento di Farmacia (DIFAR), Università di Genova, V.le Benedetto XV 3, 16132, Genova, Italy.
| |
Collapse
|
32
|
Ravera S, Caicci F, Degan P, Maggi D, Manni L, Puddu A, Nicolò M, Traverso CE, Panfoli I. Inhibitory Action of Antidiabetic Drugs on the Free Radical Production by the Rod Outer Segment Ectopic Aerobic Metabolism. Antioxidants (Basel) 2020; 9:E1133. [PMID: 33203090 PMCID: PMC7696108 DOI: 10.3390/antiox9111133] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/04/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022] Open
Abstract
Rod outer segments (OS) express the FoF1-ATP synthase and the respiratory chain, conducting an ectopic aerobic metabolism that produces free radicals in vitro. Diabetic retinopathy, a leading cause of vision loss, is associated with oxidative stress in the outer retina. Since metformin and glibenclamide, two anti-type 2 diabetes drugs, target the respiratory complexes, we studied the effect of these two drugs, individually or in association, on the free radical production in purified bovine rod OS. ATP synthesis, oxygen consumption, and oxidative stress production were assayed by luminometry, oximetry and flow cytometry, respectively. The expression of FoF1-ATP synthase was studied by immunogold electron microscopy. Metformin had a hormetic effect on the OS complex I and ATP synthetic activities, being stimulatory at concentrations below 1 mM, and inhibitory above. Glibenclamide inhibited complexes I and III, as well as ATP production in a concentration-dependent manner. Maximal concentrations of both drugs inhibited the ROI production by the light-exposed OS. Data, consistent with the delaying effect of these drugs on the onset of diabetic retinopathy, suggest that a combination of the two drugs at the beginning of the treatment might reduce the oxidative stress production helping the endogenous antioxidant defences in avoiding retinal damage.
Collapse
Affiliation(s)
- Silvia Ravera
- Dipartimento di Medicina Sperimentale, Università di Genoa, Via De Toni 14, 16132 Genova, Italy;
| | - Federico Caicci
- Dipartimento di Biologia, Università di Padova, via U. Bassi 58/B, 35121 Padova, Italy; (F.C.); (L.M.)
| | - Paolo Degan
- U.O. Mutagenesis and Preventive Oncology, IRCCS Ospedale Policlinico San Martino, L.go R. Benzi, 10, 16132 Genova, Italy;
| | - Davide Maggi
- Department of Internal Medicine and Medical Specialties, University of Genova, 16132 Genova, Italy; (D.M.); (A.P.)
| | - Lucia Manni
- Dipartimento di Biologia, Università di Padova, via U. Bassi 58/B, 35121 Padova, Italy; (F.C.); (L.M.)
| | - Alessandra Puddu
- Department of Internal Medicine and Medical Specialties, University of Genova, 16132 Genova, Italy; (D.M.); (A.P.)
| | - Massimo Nicolò
- Clinica Oculistica (DINOGMI), Università di Genova, V.le Benedetto XV 6, 16132 Genova, Italy; (M.N.); (C.E.T.)
- Fondazione per la Macula onlus, Università di Genova, V.le Benedetto XV 6, 16132 Genova, Italy
| | - Carlo E. Traverso
- Clinica Oculistica (DINOGMI), Università di Genova, V.le Benedetto XV 6, 16132 Genova, Italy; (M.N.); (C.E.T.)
| | - Isabella Panfoli
- Dipartimento di Farmacia (DIFAR), Università di Genova, V.le Benedetto XV 3, 16132 Genova, Italy
| |
Collapse
|
33
|
Picture perfect: Imaging mitochondrial membrane potential changes in retina slices with minimal stray fluorescence. Exp Eye Res 2020; 202:108318. [PMID: 33091432 DOI: 10.1016/j.exer.2020.108318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/24/2020] [Accepted: 10/14/2020] [Indexed: 11/23/2022]
Abstract
Mitochondrial membrane potential (Ψm) is a critical parameter that can be used to determine cellular well-being. As it is a direct measure of the cell's ATP generating capability, in recent years, this key component in cell biology has been the subject of thousands of biochemical and biophysical investigations. Membrane-permeant fluorescent dyes, like tetramethylrhodamine ethyl ester (TMRE), have been predominantly employed to monitor ΔΨm in cells. These dyes are typically lipophilic cationic compounds that equilibrate across membranes in a Nernstian fashion, thus accumulating into the mitochondrial membrane matrix space in inverse proportion to Ψm. However, the bath loading method practiced for labelling tissue slices with these cationic dyes poses limitations in the form of non-specificity and low signal to noise ratio, which compromises the precision of the results. Therefore, we introduce an alternative way for TMRE loading to image the ΔΨm in tissue slices by utilizing a low resistance glass pipette attached to a pressure injector. This method shows highly precise fluorescent dye labelling of the mitochondria and offers maximum output intensity, in turn enhancing signal to noise ratio.
Collapse
|
34
|
An In-Vitro Cell Model of Intracellular Protein Aggregation Provides Insights into RPE Stress Associated with Retinopathy. Int J Mol Sci 2020; 21:ijms21186647. [PMID: 32932802 PMCID: PMC7555953 DOI: 10.3390/ijms21186647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/30/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022] Open
Abstract
Impaired cargo trafficking and the aggregation of intracellular macromolecules are key features of neurodegeneration, and a hallmark of aged as well as diseased retinal pigment epithelial (RPE) cells in the eye. Here, photoreceptor outer segments (POS), which are internalized daily by RPE cells, were modified by UV-irradiation to create oxidatively modified POS (OxPOS). Oxidative modification was quantified by a protein carbonyl content assay. Human ARPE-19 cells were synchronously pulsed with POS or OxPOS to study whether oxidatively modified cargos can recapitulate features of RPE pathology associated with blinding diseases. Confocal immunofluorescence microscopy analysis showed that OxPOS was trafficked to LAMP1, LAMP2 lysosomes and to LC3b autophagy vacuoles. Whilst POS were eventually degraded, OxPOS cargos were sequestered in late compartments. Co-localization of OxPOS was also associated with swollen autolysosomes. Ultrastructural analysis revealed the presence of electron-dense OxPOS aggregates in RPE cells, which appeared to be largely resistant to degradation. Measurement of cellular autofluorescence, using parameters used to assess fundus autofluorescence (FAF) in age-related macular disease (AMD) patients, revealed that OxPOS contributed significantly to a key feature of aged and diseased RPE. This in vitro cell model therefore represents a versatile tool to study disease pathways linked with RPE damage and sight-loss.
Collapse
|
35
|
Shen W, Teo KYC, Wood JPM, Vaze A, Chidlow G, Ao J, Lee SR, Yam MX, Cornish EE, Fraser-Bell S, Casson RJ, Gillies MC. Preclinical and clinical studies of photobiomodulation therapy for macular oedema. Diabetologia 2020; 63:1900-1915. [PMID: 32661752 DOI: 10.1007/s00125-020-05189-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/16/2020] [Indexed: 12/23/2022]
Abstract
AIMS/HYPOTHESIS Diabetic macular oedema (DME) is the leading cause of visual impairment in people with diabetes. Intravitreal injections of vascular endothelial growth factor inhibitors or corticosteroids prevent loss of vision by reducing DME, but the injections must be given frequently and usually for years. Here we report laboratory and clinical studies on the safety and efficacy of 670 nm photobiomodulation (PBM) for treatment of centre-involving DME. METHODS The therapeutic effect of PBM delivered via a light-emitting diode (LED) device was tested in transgenic mice in which induced Müller cell disruption led to photoreceptor degeneration and retinal vascular leakage. We also developed a purpose-built 670 nm retinal laser for PBM to treat DME in humans. The effect of laser-delivered PBM on improving mitochondrial function and protecting against oxidative stress was studied in cultured rat Müller cells and its safety was studied in pigmented and non-pigmented rat eyes. We then used the retinal laser to perform PBM in an open-label, dose-escalation Phase IIa clinical trial involving 21 patients with centre-involving DME. Patients received 12 sessions of PBM over 5 weeks for 90 s per treatment at a setting of 25, 100 or 200 mW/cm2 for the three sequential cohorts of 6-8 patients each. Patients were recruited from the Sydney Eye Hospital, over the age of 18 and had centre-involving DME with central macular thickness (CMT) of >300 μm with visual acuity of 75-35 Log minimum angle of resolution (logMAR) letters (Snellen visual acuity equivalent of 20/30-20/200). The objective of this trial was to assess the safety and efficacy of laser-delivered PBM at 2 and 6 months. The primary efficacy outcome was change in CMT at 2 and 6 months. RESULTS LED-delivered PBM enhanced photoreceptor mitochondrial membrane potential, protected Müller cells and photoreceptors from damage and reduced retinal vascular leakage resulting from induced Müller cell disruption in transgenic mice. PBM delivered via the retinal laser enhanced mitochondrial function and protected against oxidative stress in cultured Müller cells. Laser-delivered PBM did not damage the retina in pigmented rat eyes at 100 mW/cm2. The completed clinical trial found a significant reduction in CMT at 2 months by 59 ± 46 μm (p = 0.03 at 200 mW/cm2) and significant reduction at all three settings at 6 months (25 mW/cm2: 53 ± 24 μm, p = 0.04; 100 mW/cm2: 129 ± 51 μm, p < 0.01; 200 mW/cm2: 114 ± 60 μm, p < 0.01). Laser-delivered PBM was well tolerated in humans at settings up to 200 mW/cm2 with no significant side effects. CONCLUSIONS/INTERPRETATION PBM results in anatomical improvement of DME over 6 months and may represent a safe and non-invasive treatment. Further testing is warranted in randomised clinical trials. TRIAL REGISTRATION ClinicalTrials.gov NCT02181400 Graphical abstract.
Collapse
Affiliation(s)
- Weiyong Shen
- Save Sight Institute, Discipline of Ophthalmology, Sydney Medical School, The University of Sydney, 8 Macquarie Street, Sydney, NSW, 2000, Australia
| | - Kelvin Yi Chong Teo
- Save Sight Institute, Discipline of Ophthalmology, Sydney Medical School, The University of Sydney, 8 Macquarie Street, Sydney, NSW, 2000, Australia
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Republic of Singapore
| | - John P M Wood
- Department of Ophthalmology and Visual Sciences, Adelaide Health and Medical Sciences Building, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Anagha Vaze
- Save Sight Institute, Discipline of Ophthalmology, Sydney Medical School, The University of Sydney, 8 Macquarie Street, Sydney, NSW, 2000, Australia
- Sydney Eye Hospital, 8 Macquarie Street, Sydney, NSW, 2000, Australia
| | - Glyn Chidlow
- Department of Ophthalmology and Visual Sciences, Adelaide Health and Medical Sciences Building, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Jack Ao
- Department of Ophthalmology and Visual Sciences, Adelaide Health and Medical Sciences Building, University of Adelaide, Adelaide, SA, 5000, Australia
| | - So-Ra Lee
- Save Sight Institute, Discipline of Ophthalmology, Sydney Medical School, The University of Sydney, 8 Macquarie Street, Sydney, NSW, 2000, Australia
| | - Michelle X Yam
- Save Sight Institute, Discipline of Ophthalmology, Sydney Medical School, The University of Sydney, 8 Macquarie Street, Sydney, NSW, 2000, Australia
| | - Elisa E Cornish
- Save Sight Institute, Discipline of Ophthalmology, Sydney Medical School, The University of Sydney, 8 Macquarie Street, Sydney, NSW, 2000, Australia
- Sydney Eye Hospital, 8 Macquarie Street, Sydney, NSW, 2000, Australia
| | - Samantha Fraser-Bell
- Save Sight Institute, Discipline of Ophthalmology, Sydney Medical School, The University of Sydney, 8 Macquarie Street, Sydney, NSW, 2000, Australia
- Sydney Eye Hospital, 8 Macquarie Street, Sydney, NSW, 2000, Australia
| | - Robert J Casson
- Department of Ophthalmology and Visual Sciences, Adelaide Health and Medical Sciences Building, University of Adelaide, Adelaide, SA, 5000, Australia.
| | - Mark C Gillies
- Save Sight Institute, Discipline of Ophthalmology, Sydney Medical School, The University of Sydney, 8 Macquarie Street, Sydney, NSW, 2000, Australia.
- Sydney Eye Hospital, 8 Macquarie Street, Sydney, NSW, 2000, Australia.
| |
Collapse
|
36
|
Towards a Sustainable Indoor Lighting Design: Effects of Artificial Light on the Emotional State of Adolescents in the Classroom. SUSTAINABILITY 2020. [DOI: 10.3390/su12104263] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In recent years, articles have been published on the non-visual effects of light, specifically the light emitted by the new luminaires with light emitting diodes (LEDs) and by the screens of televisions, computer equipment, and mobile phones. Professionals from the world of optometry have raised the possibility that the blue part of the visible light from sources that emit artificial light could have pernicious effects on the retina. The aim of this work is to analyze the articles published on this subject, and to use existing information to elucidate the spectral composition and irradiance of new LED luminaires for use in the home and in public spaces such as educational centers, as well as considering the consequences of the light emitted by laptops for teenagers. The results of this research show that the amount of blue light emitted by electronic equipment is lower than that emitted by modern luminaires and thousands of times less than solar irradiance. On the other hand, the latest research warns that these small amounts of light received at night can have pernicious non-visual effects on adolescents. The creation of new LED luminaires for interior lighting, including in educational centers, where the intensity of blue light can be increased without any specific legislation for its control, makes regulatory developments imperative due to the possible repercussions on adolescents with unknown and unpredictable consequences.
Collapse
|
37
|
Apigenin Protects Mouse Retina against Oxidative Damage by Regulating the Nrf2 Pathway and Autophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9420704. [PMID: 32509154 PMCID: PMC7244986 DOI: 10.1155/2020/9420704] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023]
Abstract
Oxidative stress is a critical factor in the pathology of age-related macular degeneration (AMD). Apigenin (AP) is a flavonoid with an outstanding antioxidant activity. We had previously observed that AP protected APRE-19 cells against oxidative injury in vitro. However, AP has poor water and fat solubility, which determines its low oral bioavailability. In this study, we prepared the solid dispersion of apigenin (AP-SD). The solubility and dissolution of AP-SD was significantly better than that of the original drug, so the oral bioavailability in rats was better than that of the original drug. Then, the effects of AP-SD on the retina of a model mouse with dry AMD were assessed by fundus autofluorescence (FAF), optical coherence tomography (OCT), and electron microscopy; the results revealed that AP-SD alleviated retinopathy. Further research found that AP-SD promoted the nuclear translocation of Nrf2 and increased expression levels of the Nrf2 and target genes HO-1 and NQO-1. AP-SD enhanced the activities of SOD and GSH-Px and decreased the levels of ROS and MDA. Furthermore, AP-SD upregulated the expressions of p62 and LC3II in an Nrf2-dependent manner. However, these effects of AP-SD were observed only in the retina of Nrf2 WT mice, not in Nrf2 KO mice. In addition, the therapeutic effect of AP-SD was dose dependent, and AP did not work. In conclusion, AP-SD significantly enhanced the bioavailability of the original drug and reduced retinal oxidative injury in the model mouse of dry AMD in vivo. The results of the underlying mechanism showed that AP-SD upregulated the expression of antioxidant enzymes through the Nrf2 pathway and upregulated autophagy, thus inhibiting retinal oxidative damage. AP-SD may be a potential compound for the treatment of dry AMD.
Collapse
|
38
|
Bruschi M, Bartolucci M, Petretto A, Calzia D, Caicci F, Manni L, Traverso CE, Candiano G, Panfoli I. Differential expression of the five redox complexes in the retinal mitochondria or rod outer segment disks is consistent with their different functionality. FASEB Bioadv 2020; 2:315-324. [PMID: 32395704 PMCID: PMC7211042 DOI: 10.1096/fba.2019-00093] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 11/27/2019] [Accepted: 03/05/2020] [Indexed: 12/28/2022] Open
Abstract
PURPOSE The retinal rod outer segment (OS) disk membranes, devoid of mitochondria, conducts oxidative phosphorylation (OxPhos). This study aimed at identifying which proteins expressed in the retinal rod OS disks determined the considerable adenosine-5'-triphosphate production and oxygen consumption observed in comparison with retinal mitochondria. PROCEDURES Characterization was conducted by immunogold transmission electron microscopy on retinal sections. OxPhos was studied by oximetry and luminometry. The proteomes of OS disks and mitochondria purified from bovine retinas were studied by mass spectrometry. Statistical and bioinformatic analyses were conducted by univariate, multivariate, and machine learning methods. RESULTS Weighted gene coexpression network analysis identified two protein expression profile modules functionally associated with either retinal mitochondria or disk samples, in function of a strikingly different ability of each sample to utilized diverse substrate for F1Fo-ATP synthase. The OS disk proteins correlated better than mitochondria with the tricarboxylic acids cycle and OxPhos proteins. CONCLUSIONS The differential enrichment of the expression profile of the OxPhos proteins in the disks versus mitochondria suggests that these proteins may represent a true proteome component of the former, with different functionality. These findings may shed new light on the pathogenesis of rod-driven retinal degenerative diseases.
Collapse
Affiliation(s)
- Maurizio Bruschi
- Laboratory of Molecular NephrologyIstituto Giannina GasliniGenoaItaly
| | - Martina Bartolucci
- Laboratory of Mass Spectrometry‐Core FacilitiesIstituto Giannina GasliniGenovaItaly
| | - Andrea Petretto
- Laboratory of Mass Spectrometry‐Core FacilitiesIstituto Giannina GasliniGenovaItaly
| | - Daniela Calzia
- Dipartimento di Farmacia‐DIFARUniversità di GenovaGenoaItaly
| | | | - Lucia Manni
- Department of BiologyUniversità di PadovaPadovaItaly
| | - Carlo Enrico Traverso
- Clinica Oculistica, (Di.N.O.G.M.I.) Università Department of Intensive Care di GenovaIRCCS Azienda Ospedaliera Universitaria San Martino‐ISTGenoaItaly
| | - Giovanni Candiano
- Laboratory of Molecular NephrologyIstituto Giannina GasliniGenoaItaly
| | | |
Collapse
|
39
|
Collin GB, Gogna N, Chang B, Damkham N, Pinkney J, Hyde LF, Stone L, Naggert JK, Nishina PM, Krebs MP. Mouse Models of Inherited Retinal Degeneration with Photoreceptor Cell Loss. Cells 2020; 9:cells9040931. [PMID: 32290105 PMCID: PMC7227028 DOI: 10.3390/cells9040931] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022] Open
Abstract
Inherited retinal degeneration (RD) leads to the impairment or loss of vision in millions of individuals worldwide, most frequently due to the loss of photoreceptor (PR) cells. Animal models, particularly the laboratory mouse, have been used to understand the pathogenic mechanisms that underlie PR cell loss and to explore therapies that may prevent, delay, or reverse RD. Here, we reviewed entries in the Mouse Genome Informatics and PubMed databases to compile a comprehensive list of monogenic mouse models in which PR cell loss is demonstrated. The progression of PR cell loss with postnatal age was documented in mutant alleles of genes grouped by biological function. As anticipated, a wide range in the onset and rate of cell loss was observed among the reported models. The analysis underscored relationships between RD genes and ciliary function, transcription-coupled DNA damage repair, and cellular chloride homeostasis. Comparing the mouse gene list to human RD genes identified in the RetNet database revealed that mouse models are available for 40% of the known human diseases, suggesting opportunities for future research. This work may provide insight into the molecular players and pathways through which PR degenerative disease occurs and may be useful for planning translational studies.
Collapse
Affiliation(s)
- Gayle B. Collin
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Navdeep Gogna
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Bo Chang
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Nattaya Damkham
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Jai Pinkney
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Lillian F. Hyde
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Lisa Stone
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Jürgen K. Naggert
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Patsy M. Nishina
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
- Correspondence: (P.M.N.); (M.P.K.); Tel.: +1-207-2886-383 (P.M.N.); +1-207-2886-000 (M.P.K.)
| | - Mark P. Krebs
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
- Correspondence: (P.M.N.); (M.P.K.); Tel.: +1-207-2886-383 (P.M.N.); +1-207-2886-000 (M.P.K.)
| |
Collapse
|
40
|
Markitantova YV, Simirskii VN. Role of the Redox System in Initiation of a Regenerative Response of Neural Eye Tissues in Vertebrates. Russ J Dev Biol 2020. [DOI: 10.1134/s106236042001004x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Photobiomodulation Mediates Neuroprotection against Blue Light Induced Retinal Photoreceptor Degeneration. Int J Mol Sci 2020; 21:ijms21072370. [PMID: 32235464 PMCID: PMC7177783 DOI: 10.3390/ijms21072370] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/21/2020] [Accepted: 03/27/2020] [Indexed: 12/12/2022] Open
Abstract
Potent neuroprotective effects of photobiomodulation with 670 nm red light (RL) have been demonstrated in several models of retinal disease. RL improves mitochondrial metabolism, reduces retinal inflammation and oxidative cell stress, showing its ability to enhance visual function. However, the current knowledge is limited to the main hypothesis that the respiratory chain complex IV, cytochrome c oxidase, serves as the primary target of RL. Here, we demonstrate a comprehensive cellular, molecular, and functional characterization of neuroprotective effects of 670 nm RL and 810 nm near-infrared light (NIRL) on blue light damaged murine primary photoreceptors. We show that respiratory chain complexes I and II are additional PBM targets, besides complex IV, leading to enhanced mitochondrial energy metabolism. Accordingly, our study identified mitochondria related RL- and NIRL-triggered defense mechanisms promoting photoreceptor neuroprotection. The observed improvement of mitochondrial and extramitochondrial respiration in both inner and outer segments is linked with reduced oxidative stress including its cellular consequences and reduced mitochondria-induced apoptosis. Analysis of regulatory mechanisms using gene expression analysis identified upregulation α-crystallins that indicate enhanced production of proteins with protective functions that point to the rescued mitochondrial function. The results support the hypothesis that energy metabolism is a major target for retinal light therapy.
Collapse
|
42
|
Sinha T, Ikelle L, Naash MI, Al-Ubaidi MR. The Intersection of Serine Metabolism and Cellular Dysfunction in Retinal Degeneration. Cells 2020; 9:cells9030674. [PMID: 32164325 PMCID: PMC7140600 DOI: 10.3390/cells9030674] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/14/2022] Open
Abstract
In the past, the importance of serine to pathologic or physiologic anomalies was inadequately addressed. Omics research has significantly advanced in the last two decades, and metabolomic data of various tissues has finally brought serine metabolism to the forefront of metabolic research, primarily for its varied role throughout the central nervous system. The retina is one of the most complex neuronal tissues with a multitude of functions. Although recent studies have highlighted the importance of free serine and its derivatives to retinal homeostasis, currently few reviews exist that comprehensively analyze the topic. Here, we address this gap by emphasizing how and why the de novo production and demand for serine is exceptionally elevated in the retina. Many basic physiological functions of the retina require serine. Serine-derived sphingolipids and phosphatidylserine for phagocytosis by the retinal pigment epithelium (RPE) and neuronal crosstalk of the inner retina via D-serine require proper serine metabolism. Moreover, serine is involved in sphingolipid–ceramide balance for both the outer retina and the RPE and the reductive currency generation for the RPE via serine biosynthesis. Finally and perhaps the most vital part of serine metabolism is free radical scavenging in the entire retina via serine-derived scavengers like glycine and GSH. It is hard to imagine that a single tissue could have such a broad and extensive dependency on serine homeostasis. Any dysregulation in serine mechanisms can result in a wide spectrum of retinopathies. Therefore, most critically, this review provides a strong argument for the exploration of serine-based clinical interventions for retinal pathologies.
Collapse
Affiliation(s)
| | | | - Muna I. Naash
- Correspondence: (M.I.N.); (M.R.A.-U.); Tel.: +1-713-743-1651 (M.I.N.); Fax: +1-713-743-0226 (M.I.N.)
| | - Muayyad R. Al-Ubaidi
- Correspondence: (M.I.N.); (M.R.A.-U.); Tel.: +1-713-743-1651 (M.I.N.); Fax: +1-713-743-0226 (M.I.N.)
| |
Collapse
|
43
|
Fu Z, Sun Y, Cakir B, Tomita Y, Huang S, Wang Z, Liu CH, S. Cho S, Britton W, S. Kern T, Antonetti DA, Hellström A, E.H. Smith L. Targeting Neurovascular Interaction in Retinal Disorders. Int J Mol Sci 2020; 21:E1503. [PMID: 32098361 PMCID: PMC7073081 DOI: 10.3390/ijms21041503] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/13/2020] [Accepted: 02/21/2020] [Indexed: 02/07/2023] Open
Abstract
The tightly structured neural retina has a unique vascular network comprised of three interconnected plexuses in the inner retina (and choroid for outer retina), which provide oxygen and nutrients to neurons to maintain normal function. Clinical and experimental evidence suggests that neuronal metabolic needs control both normal retinal vascular development and pathological aberrant vascular growth. Particularly, photoreceptors, with the highest density of mitochondria in the body, regulate retinal vascular development by modulating angiogenic and inflammatory factors. Photoreceptor metabolic dysfunction, oxidative stress, and inflammation may cause adaptive but ultimately pathological retinal vascular responses, leading to blindness. Here we focus on the factors involved in neurovascular interactions, which are potential therapeutic targets to decrease energy demand and/or to increase energy production for neovascular retinal disorders.
Collapse
Affiliation(s)
- Zhongjie Fu
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (Y.S.); (B.C.); (Y.T.); (S.H.); (Z.W.); (C.-H.L.); (S.S.C.); (W.B.)
- Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Ye Sun
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (Y.S.); (B.C.); (Y.T.); (S.H.); (Z.W.); (C.-H.L.); (S.S.C.); (W.B.)
| | - Bertan Cakir
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (Y.S.); (B.C.); (Y.T.); (S.H.); (Z.W.); (C.-H.L.); (S.S.C.); (W.B.)
| | - Yohei Tomita
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (Y.S.); (B.C.); (Y.T.); (S.H.); (Z.W.); (C.-H.L.); (S.S.C.); (W.B.)
| | - Shuo Huang
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (Y.S.); (B.C.); (Y.T.); (S.H.); (Z.W.); (C.-H.L.); (S.S.C.); (W.B.)
| | - Zhongxiao Wang
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (Y.S.); (B.C.); (Y.T.); (S.H.); (Z.W.); (C.-H.L.); (S.S.C.); (W.B.)
| | - Chi-Hsiu Liu
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (Y.S.); (B.C.); (Y.T.); (S.H.); (Z.W.); (C.-H.L.); (S.S.C.); (W.B.)
| | - Steve S. Cho
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (Y.S.); (B.C.); (Y.T.); (S.H.); (Z.W.); (C.-H.L.); (S.S.C.); (W.B.)
| | - William Britton
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (Y.S.); (B.C.); (Y.T.); (S.H.); (Z.W.); (C.-H.L.); (S.S.C.); (W.B.)
| | - Timothy S. Kern
- Center for Translational Vision Research, Gavin Herbert Eye Institute, Irvine, CA 92697, USA;
| | - David A. Antonetti
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA;
| | - Ann Hellström
- Section for Ophthalmology, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 405 30 Göteborg, Sweden;
| | - Lois E.H. Smith
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (Y.S.); (B.C.); (Y.T.); (S.H.); (Z.W.); (C.-H.L.); (S.S.C.); (W.B.)
| |
Collapse
|
44
|
Kim H, Islam S, Park M, Kim A, Hwang G. A Comprehensive Analysis of Near‐Contact Photobiomodulation Therapy in the Host–Bacteria Interaction Model Using 3D‐Printed Modular LED Platform. ACTA ACUST UNITED AC 2020; 4:e1900227. [DOI: 10.1002/adbi.201900227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/09/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Hye‐Eun Kim
- Department of Preventive and Restorative SciencesCenter for Innovation & Precision DentistrySchool of Dental MedicineUniversity of Pennsylvania Philadelphia PA 19104 USA
| | - Sayemul Islam
- Department of Electrical and Computer EngineeringTemple University Philadelphia PA 19122 USA
| | - Moonchul Park
- Department of Electrical and Computer EngineeringTemple University Philadelphia PA 19122 USA
| | - Albert Kim
- Department of Electrical and Computer EngineeringTemple University Philadelphia PA 19122 USA
| | - Geelsu Hwang
- Department of Preventive and Restorative SciencesCenter for Innovation & Precision DentistrySchool of Dental MedicineUniversity of Pennsylvania Philadelphia PA 19104 USA
| |
Collapse
|
45
|
Hyttinen JMT, Kannan R, Felszeghy S, Niittykoski M, Salminen A, Kaarniranta K. The Regulation of NFE2L2 (NRF2) Signalling and Epithelial-to-Mesenchymal Transition in Age-Related Macular Degeneration Pathology. Int J Mol Sci 2019; 20:ijms20225800. [PMID: 31752195 PMCID: PMC6888570 DOI: 10.3390/ijms20225800] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 12/19/2022] Open
Abstract
Age-related macular degeneration (AMD) is a mounting cause of loss of sight in the elderly in the developed countries, a trend enhanced by the continual ageing of the population. AMD is a multifactorial and only partly understood, malady. Unfortunately, there is no effective treatment for most AMD patients. It is known that oxidative stress (OS) damages the retinal pigment epithelium (RPE) and contributes to the progression of AMD. We review here the potential importance of two OS-related cellular systems in relation to AMD. First, the nuclear factor erythroid 2-related factor 2 (NFE2L2; NRF2)-mediated OS response signalling pathway is important in the prevention of oxidative damage and a failure of this system could be critical in the development of AMD. Second, epithelial-to-mesenchymal transition (EMT) represents a change in the cellular phenotype, which ultimately leads to the fibrosis encountered in RPE, a characteristic of AMD. Many of the pathways triggering EMT are promoted by OS. The possible interconnections between these two signalling routes are discussed here. From a broader perspective, the control of NFE2L2 and EMT as ways of preventing OS-derived cellular damage could be potentially valuable in the therapy of AMD.
Collapse
Affiliation(s)
- Juha M. T. Hyttinen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
- Correspondence:
| | - Ram Kannan
- The Stephen J. Ryan Initiative for Macular Research (RIMR), Doheny Eye Institute, DVRC 203, 1355 San Pablo Street, Los Angeles, CA 90033, USA
| | - Szabolcs Felszeghy
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
- Institute of Dentistry, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Minna Niittykoski
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
| | - Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
- Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, 70029 KYS Kuopio, Finland
| |
Collapse
|
46
|
García-Ayuso D, Di Pierdomenico J, Vidal-Sanz M, Villegas-Pérez MP. Retinal Ganglion Cell Death as a Late Remodeling Effect of Photoreceptor Degeneration. Int J Mol Sci 2019; 20:ijms20184649. [PMID: 31546829 PMCID: PMC6770703 DOI: 10.3390/ijms20184649] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/09/2019] [Accepted: 09/17/2019] [Indexed: 12/16/2022] Open
Abstract
Inherited or acquired photoreceptor degenerations, one of the leading causes of irreversible blindness in the world, are a group of retinal disorders that initially affect rods and cones, situated in the outer retina. For many years it was assumed that these diseases did not spread to the inner retina. However, it is now known that photoreceptor loss leads to an unavoidable chain of events that cause neurovascular changes in the retina including migration of retinal pigment epithelium cells, formation of “subretinal vascular complexes”, vessel displacement, retinal ganglion cell (RGC) axonal strangulation by retinal vessels, axonal transport alteration and, ultimately, RGC death. These events are common to all photoreceptor degenerations regardless of the initial trigger and thus threaten the outcome of photoreceptor substitution as a therapeutic approach, because with a degenerating inner retina, the photoreceptor signal will not reach the brain. In conclusion, therapies should be applied early in the course of photoreceptor degeneration, before the remodeling process reaches the inner retina.
Collapse
Affiliation(s)
- Diego García-Ayuso
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), 30120 Murcia, Spain.
| | - Johnny Di Pierdomenico
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), 30120 Murcia, Spain.
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), 30120 Murcia, Spain.
| | - María P Villegas-Pérez
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), 30120 Murcia, Spain.
| |
Collapse
|
47
|
Marek V, Reboussin E, Dégardin-Chicaud J, Charbonnier A, Domínguez-López A, Villette T, Denoyer A, Baudouin C, Réaux-Le Goazigo A, Mélik Parsadaniantz S. Implication of Melanopsin and Trigeminal Neural Pathways in Blue Light Photosensitivity in vivo. Front Neurosci 2019; 13:497. [PMID: 31178682 PMCID: PMC6543920 DOI: 10.3389/fnins.2019.00497] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/30/2019] [Indexed: 01/30/2023] Open
Abstract
Photophobia may arise from various causes and frequently accompanies numerous ocular diseases. In modern highly illuminated world, complaints about greater photosensitivity to blue light increasingly appear. However, the pathophysiology of photophobia is still debated. In the present work, we investigated in vivo the role of various neural pathways potentially implicated in blue-light aversion. Moreover, we studied the light-induced neuroinflammatory processes on the ocular surface and in the trigeminal pathways. Adult male C57BL/6J mice were exposed either to blue (400-500 nm) or to yellow (530-710 nm) LED light (3 h, 6 mW/cm2). Photosensitivity was measured as the time spent in dark or illuminated parts of the cage. Pharmacological treatments were applied: topical instillation of atropine, pilocarpine or oxybuprocaine, intravitreal injection of lidocaine, norepinephrine or "blocker" of the visual photoreceptor transmission, and intraperitoneal injection of a melanopsin antagonist. Clinical evaluations (ocular surface state, corneal mechanical sensitivity and tear quantity) were performed directly after exposure to light and after 3 days of recovery in standard light conditions. Trigeminal ganglia (TGs), brainstems and retinas were dissected out and conditioned for analyses. Mice demonstrated strong aversion to blue but not to yellow light. The only drug that significantly decreased the blue-light aversion was the intraperitoneally injected melanopsin antagonist. After blue-light exposure, dry-eye-related inflammatory signs were observed, notably after 3 days of recovery. In the retina, we observed the increased immunoreactivity for GFAP, ATF3, and Iba1; these data were corroborated by RT-qPCR. Moreover, retinal visual and non-visual photopigments distribution was altered. In the trigeminal pathway, we detected the increased mRNA expression of cFOS and ATF3 as well as alterations in cytokines' levels. Thus, the wavelength-dependent light aversion was mainly mediated by melanopsin-containing cells, most likely in the retina. Other potential pathways of light reception were also discussed. The phototoxic message was transmitted to the trigeminal system, inducing both inflammation at the ocular surface and stress in the retina. Further investigations of retina-TG connections are needed.
Collapse
Affiliation(s)
- Veronika Marek
- R&D, Essilor International, Paris, France
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, France
| | - Elodie Reboussin
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, France
| | - Julie Dégardin-Chicaud
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, France
| | - Angéline Charbonnier
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, France
| | - Alfredo Domínguez-López
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, France
| | | | - Alexandre Denoyer
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, France
- Centre Hospitalier Nationale d’Ophtalmologie des Quinze-Vingts, Paris, France
- CHU Robert Debré, Université Reims Champagne-Ardenne, Reims, France
| | - Christophe Baudouin
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, France
- Centre Hospitalier Nationale d’Ophtalmologie des Quinze-Vingts, Paris, France
- Versailles Saint-Quentin-en-Yvelines Université, Versailles, France
| | - Annabelle Réaux-Le Goazigo
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, France
| | - Stéphane Mélik Parsadaniantz
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, France
| |
Collapse
|
48
|
Olchawa M, Krzysztynska-Kuleta O, Duda M, Pawlak A, Pabisz P, Czuba-Pelech B, Sarna T. In vitro phototoxicity of rhodopsin photobleaching products in the retinal pigment epithelium (RPE). Free Radic Res 2019; 53:456-471. [DOI: 10.1080/10715762.2019.1603377] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Magdalena Olchawa
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics, Jagiellonian University, Kraków, Poland
| | - Olga Krzysztynska-Kuleta
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics, Jagiellonian University, Kraków, Poland
- Laboratory of Imaging and Atomic Force Spectroscopy, Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Mariusz Duda
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics, Jagiellonian University, Kraków, Poland
- Laboratory of Imaging and Atomic Force Spectroscopy, Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Anna Pawlak
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics, Jagiellonian University, Kraków, Poland
| | - Pawel Pabisz
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics, Jagiellonian University, Kraków, Poland
| | - Barbara Czuba-Pelech
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics, Jagiellonian University, Kraków, Poland
| | - Tadeusz Sarna
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics, Jagiellonian University, Kraków, Poland
| |
Collapse
|
49
|
Fernando N, Wooff Y, Aggio-Bruce R, Chu-Tan JA, Jiao H, Dietrich C, Rutar M, Rooke M, Menon D, Eells JT, Valter K, Board PG, Provis J, Natoli R. Photoreceptor Survival Is Regulated by GSTO1-1 in the Degenerating Retina. Invest Ophthalmol Vis Sci 2019; 59:4362-4374. [PMID: 30193308 DOI: 10.1167/iovs.18-24627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Glutathione-S-transferase omega 1-1 (GSTO1-1) is a cytosolic glutathione transferase enzyme, involved in glutathionylation, toll-like receptor signaling, and calcium channel regulation. GSTO1-1 dysregulation has been implicated in oxidative stress and inflammation, and contributes to the pathogenesis of several diseases and neurological disorders; however, its role in retinal degenerations is unknown. The aim of this study was to investigate the role of GSTO1-1 in modulating oxidative stress and consequent inflammation in the normal and degenerating retina. Methods The role of GSTO1-1 in retinal degenerations was explored by using Gsto1-/- mice in a model of retinal degeneration. The expression and localization of GSTO1-1 were investigated with immunohistochemistry and Western blot. Changes in the expression of inflammatory (Ccl2, Il-1β, and C3) and oxidative stress (Nox1, Sod2, Gpx3, Hmox1, Nrf2, and Nqo1) genes were investigated via quantitative real-time polymerase chain reaction. Retinal function in Gsto1-/- mice was investigated by using electroretinography. Results GSTO1-1 was localized to the inner segment of cone photoreceptors in the retina. Gsto1-/- photo-oxidative damage (PD) mice had decreased photoreceptor cell death as well as decreased expression of inflammatory (Ccl2, Il-1β, and C3) markers and oxidative stress marker Nqo1. Further, retinal function in the Gsto1-/- PD mice was increased as compared to wild-type PD mice. Conclusions These results indicate that GSTO1-1 is required for inflammatory-mediated photoreceptor death in retinal degenerations. Targeting GSTO1-1 may be a useful strategy to reduce oxidative stress and inflammation and ameliorate photoreceptor loss, slowing the progression of retinal degenerations.
Collapse
Affiliation(s)
- Nilisha Fernando
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Yvette Wooff
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia.,The ANU Medical School, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Riemke Aggio-Bruce
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Joshua A Chu-Tan
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Haihan Jiao
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Catherine Dietrich
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Matt Rutar
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Melissa Rooke
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Deepthi Menon
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia.,School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Janis T Eells
- Department of Biomedical Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States
| | - Krisztina Valter
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia.,The ANU Medical School, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Philip G Board
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jan Provis
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia.,The ANU Medical School, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Riccardo Natoli
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia.,The ANU Medical School, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
50
|
Benedetto MM, Contin MA. Oxidative Stress in Retinal Degeneration Promoted by Constant LED Light. Front Cell Neurosci 2019; 13:139. [PMID: 31105526 PMCID: PMC6499158 DOI: 10.3389/fncel.2019.00139] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/20/2019] [Indexed: 01/24/2023] Open
Abstract
Light pollution by artificial light, might accelerate retinal diseases and circadian asynchrony. The excess of light exposure is a growing problem in societies, so studies on the consequences of long-term exposure to low levels of light are needed to determine the effects on vision. The possibility to understand the molecular mechanisms of light damage will contribute to the knowledge about visual disorders related to defects in the phototransduction. Several animal models have been used to study retinal degeneration (RD) by light; however, some important aspects remain to be established. Previously, we demonstrated that cool white treatment of 200 lux light-emitting diode (LED) induces retinal transformation with rods and cones cell death and significant changes in opsin expression in the inner nuclear layer (INL) and ganglion cell layer (GCL). Therefore, to further develop describing the molecular pathways of RD, we have examined here the oxidative stress and the fatty acid composition in rat retinas maintained at constant light. We demonstrated the existence of oxidative reactions after 5 days in outer nuclear layer (ONL), corresponding to classical photoreceptors; catalase (CAT) enzyme activity did not show significant differences in all times studied and the fatty acid study showed that docosahexaenoic acid decreased after 4 days. Remarkably, the docosahexaenoic acid diminution showed a correlation with the rise in stearic acid indicating a possible association between them. We assumed that the reduction in docosahexaenoic acid may be affected by the oxidative stress in photoreceptors outer segment which in turn affects the stearic acid composition with consequences in the membrane properties. All these miss-regulation affects the photoreceptor survival through unknown mechanisms involved. We consider that oxidative stress might be one of the pathways implicated in RD promoted by light.
Collapse
Affiliation(s)
- Maria M Benedetto
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Maria A Contin
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|