1
|
Tariq AR, Lee M, Kim M. Endothelial Progenitor Cells: A Brief Update. Int J Stem Cells 2024; 17:374-380. [PMID: 38030386 PMCID: PMC11612220 DOI: 10.15283/ijsc23106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/30/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
An enormous amount of current data has suggested involvement of endothelial progenitor cells (EPCs) in neovasculogenesis in both human and animal models. EPC level is an indicator of possible cardiovascular risk such as Alzheimer disease. EPC therapeutics requires its identification, isolation, differentiation and thus expansion. We approach here the peculiar techniques through current and previous reports available to find the most plausible and fast way of their expansion to be used in therapeutics. We discuss here the techniques for EPCs isolation from different resources like bone marrow and peripheral blood circulation. EPCs have been isolated by methods which used fibronectin plating and addition of various growth factors to culture media. Particularly, the investigations which tried to enhance EPC differentiation while inducing with growth factors and endothelial nitric oxide synthase are shared. We also include the cryopreservation and other storage methods of EPCs for a longer time. Sufficient amount of EPCs are required in transplantation and other therapeutics which signifies their in vitro expansion. We highlight the role of EPCs in transplantation which improved neurogenesis in animal models of ischemic stroke and human with acute cerebral infarct in the brain. Accumulatively, these data suggest the exhilarating route for enhancing EPC number to make their use in the clinic. Finally, we identify the expression of specific biomarkers in EPCs under the influence of growth factors. This review provides a brief overview of factors involved in EPC expansion and transplantation and raises interesting questions at every stage with constructive suggestions.
Collapse
Affiliation(s)
- Amna Rashid Tariq
- Department of Neurology, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Mijung Lee
- Department of Neurology, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Manho Kim
- Department of Neurology, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Neuroscience Dementia Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Protein Metabolism Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
2
|
Cheng YW, Yang LY, Chen YT, Chou SC, Chen KW, Chen YH, Deng CR, Chen IC, Chou WJ, Chang CC, Chen YR, Hwa HL, Wang KC, Kuo MF. Endothelial progenitor cell-derived conditioned medium mitigates chronic cerebral ischemic injury through macrophage migration inhibitory factor-activated AKT pathway. Stem Cell Res Ther 2024; 15:428. [PMID: 39543689 PMCID: PMC11566597 DOI: 10.1186/s13287-024-04015-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 10/26/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Chronic cerebral ischemia (CCI) is a significant health issue characterized by hypoperfusion due to damage or occlusion of the cerebral or carotid arteries. CCI may lead to progressive cognitive impairment that is considered as a prelude to neurodegenerative diseases, including dementia and Alzheimer's disease (AD). Endothelial progenitor cells (EPCs) have been implicated in vascular repair in ischemic cerebrovascular diseases, primarily by differentiating into endothelial cells (ECs) or through paracrine effects. However, the clinical transplantation of stem cell therapies remains limited. In this study, we investigated the effects of EPC-derived conditioned medium (EPC-CM) on the impaired vasculature and neurological function in a rodent model of CCI and the mechanism involved. METHODS EPC-CM was analyzed by cytokine array to identify key factors involved in angiogenesis and cellular senescence. The effects and mechanism of the candidate factors in the EPC-CM were validated in vitro using oxygen-glucose deprivation (OGD)-injured ECs and EPCs. The therapeutic effects of EPC-CM and the identified key factor were further examined in a rat model of CCI, which was induced by bilateral internal carotid artery ligation (BICAL). EPC-CM was administered via intracisternal injection one week post BICAL. The cerebral microvasculature and neurobehavior of the rats were examined three weeks after BICAL. RESULTS Macrophage migration inhibitory factor (MIF) was identified as a key factor in the EPC-CM. Recombinant MIF protein promoted angiogenesis and prevented senescence in the injured EPCs and ECs. The effect was similar to that of the EPC-CM. These therapeutic effects were diminished when the EPC-CM was co-treated with MIF-specific antibody (Ab). Additionally, the vascular, motor, and cognitive improvements observed in the BICAL rats treated with EPC-CM were abolished by co-treated with MIF Ab. Furthermore, we found MIF promoted angiogenesis and anti-senescence via activating the AKT pathway. Inhibition of the AKT pathway diminished the protective effects of MIF in the in vitro study. CONCLUSIONS We demonstrated that EPC-CM protected the brain from chronic ischemic injury and promoted functional recovery through MIF-mediated AKT pathway. These findings suggest EPC-CM holds potential as a novel cell-free therapeutic approach for treating CCI through the actions of MIF.
Collapse
Affiliation(s)
- Ya-Wen Cheng
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, No.7, Chung-Shan South Road, Taipei, 100, Taiwan
| | - Ling-Yu Yang
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, No.7, Chung-Shan South Road, Taipei, 100, Taiwan
| | - Yi-Tzu Chen
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, No.7, Chung-Shan South Road, Taipei, 100, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Sheng-Che Chou
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, No.7, Chung-Shan South Road, Taipei, 100, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Kuo-Wei Chen
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, No.7, Chung-Shan South Road, Taipei, 100, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Hsing Chen
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, No.7, Chung-Shan South Road, Taipei, 100, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chuan-Rou Deng
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, No.7, Chung-Shan South Road, Taipei, 100, Taiwan
| | - I-Chin Chen
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, No.7, Chung-Shan South Road, Taipei, 100, Taiwan
| | - Wan-Ju Chou
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, No.7, Chung-Shan South Road, Taipei, 100, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chen-Chih Chang
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yong-Ren Chen
- Non-Invasive Cancer Therapy Research Institute, Taipei, Taiwan
- Adjunct Visiting Staff, Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsiao-Lin Hwa
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Kuo-Chuan Wang
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, No.7, Chung-Shan South Road, Taipei, 100, Taiwan.
| | - Meng-Fai Kuo
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, No.7, Chung-Shan South Road, Taipei, 100, Taiwan.
| |
Collapse
|
3
|
de la Riva P, Marta-Enguita J, Rodríguez-Antigüedad J, Bergareche A, de Munain AL. Understanding Endothelial Dysfunction and Its Role in Ischemic Stroke After the Outbreak of Recanalization Therapies. Int J Mol Sci 2024; 25:11631. [PMID: 39519182 PMCID: PMC11546609 DOI: 10.3390/ijms252111631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Despite recent advances in treatment options, stroke remains a highly prevalent and devastating condition with significant socioeconomic impact. Recanalization therapies, including intravenous thrombolysis and endovascular treatments, have revolutionized stroke management and prognosis, providing a promising framework for exploring new therapeutic strategies. Endothelial dysfunction plays a critical role in the pathophysiology, progression, and prognosis of stroke. This review aims to synthesize the current evidence regarding the involvement of the nitric oxide (NO)/endothelium pathway in ischemic stroke, with a particular focus on aging, response to recanalization therapies, and therapeutic approaches. While significant progress has been made in recent years in understanding the relationship between endothelial dysfunction and stroke, many uncertainties persist, and although treatments targeting this pathway are promising, they have yet to demonstrate clear clinical benefits.
Collapse
Affiliation(s)
- Patricia de la Riva
- Department of Neurology, Donostia University Hospital, Dr Begiristain sn., 20003 San Sebastian, Spain; (P.d.l.R.); (A.B.); (A.L.d.M.)
- Ictus, Biogipuzkoa Institute, Doctor Begiristain sn., 20003 San Sebastian, Spain
- Facultad de Ciencias de la Salud, Deusto University, Mundaiz 50, 20003 San Sebastian, Spain
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus, Instituto Salud Carlos III, 28029 Madrid, Spain
| | - Juan Marta-Enguita
- Department of Neurology, Donostia University Hospital, Dr Begiristain sn., 20003 San Sebastian, Spain; (P.d.l.R.); (A.B.); (A.L.d.M.)
- Ictus, Biogipuzkoa Institute, Doctor Begiristain sn., 20003 San Sebastian, Spain
- Facultad de Ciencias de la Salud, Deusto University, Mundaiz 50, 20003 San Sebastian, Spain
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus, Instituto Salud Carlos III, 28029 Madrid, Spain
| | - Jon Rodríguez-Antigüedad
- Movement Disorders Unit and Institut d’Investigacions Biomediques-Sant Pau, Hospital Sant Pau, 08025 Barcelona, Spain;
| | - Alberto Bergareche
- Department of Neurology, Donostia University Hospital, Dr Begiristain sn., 20003 San Sebastian, Spain; (P.d.l.R.); (A.B.); (A.L.d.M.)
| | - Adolfo López de Munain
- Department of Neurology, Donostia University Hospital, Dr Begiristain sn., 20003 San Sebastian, Spain; (P.d.l.R.); (A.B.); (A.L.d.M.)
- Ictus, Biogipuzkoa Institute, Doctor Begiristain sn., 20003 San Sebastian, Spain
| |
Collapse
|
4
|
Loiola RA, Hachani J, Duban-Deweer S, Sevin E, Bugno P, Kowalska A, Rizzi E, Shimizu F, Kanda T, Mysiorek C, Mazurek M, Gosselet F. Secretome of brain microvascular endothelial cells promotes endothelial barrier tightness and protects against hypoxia-induced vascular leakage. Mol Med 2024; 30:132. [PMID: 39187765 PMCID: PMC11348522 DOI: 10.1186/s10020-024-00897-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024] Open
Abstract
Cell-based therapeutic strategies have been proposed as an alternative for brain and blood vessels repair after stroke, but their clinical application is hampered by potential adverse effects. We therefore tested the hypothesis that secretome of these cells might be used instead to still focus on cell-based therapeutic strategies. We therefore characterized the composition and the effect of the secretome of brain microvascular endothelial cells (BMECs) on primary in vitro human models of angiogenesis and vascular barrier. Two different secretome batches produced in high scale (scHSP) were analysed by mass spectrometry. Human primary CD34+-derived endothelial cells (CD34+-ECs) were used as well as in vitro models of EC monolayer (CMECs) and blood-brain barrier (BBB). Cells were also exposed to oxygen-glucose deprivation (OGD) conditions and treated with scHSP during reoxygenation. Protein yield and composition of scHSP batches showed good reproducibility. scHSP increased CD34+-EC proliferation, tubulogenesis, and migration. Proteomic analysis of scHSP revealed the presence of growth factors and proteins modulating cell metabolism and inflammatory pathways. scHSP improved the integrity of CMECs, and upregulated the expression of junctional proteins. Such effects were mediated through the activation of the interferon pathway and downregulation of Wnt signalling. Furthermore, OGD altered the permeability of both CMECs and BBB, while scHSP prevented the OGD-induced vascular leakage in both models. These effects were mediated through upregulation of junctional proteins and regulation of MAPK/VEGFR2. Finally, our results highlight the possibility of using secretome from BMECs as a therapeutic alternative to promote brain angiogenesis and to protect from ischemia-induced vascular leakage.
Collapse
Affiliation(s)
- Rodrigo Azevedo Loiola
- UR 2465, Laboratory of the Blood-Brain Barrier (LBHE), Sciences Faculty Jean Perrin, Artois University, 62300, Lens, France
| | - Johan Hachani
- UR 2465, Laboratory of the Blood-Brain Barrier (LBHE), Sciences Faculty Jean Perrin, Artois University, 62300, Lens, France
| | - Sophie Duban-Deweer
- UR 2465, Laboratory of the Blood-Brain Barrier (LBHE), Sciences Faculty Jean Perrin, Artois University, 62300, Lens, France
| | - Emmanuel Sevin
- UR 2465, Laboratory of the Blood-Brain Barrier (LBHE), Sciences Faculty Jean Perrin, Artois University, 62300, Lens, France
| | - Paulina Bugno
- Pure Biologics S.A., Duńska 11, 54-427, Wroclaw, Poland
| | | | - Eleonora Rizzi
- UR 2465, Laboratory of the Blood-Brain Barrier (LBHE), Sciences Faculty Jean Perrin, Artois University, 62300, Lens, France
| | - Fumitaka Shimizu
- Department of Neurology and Clinical Neuroscience, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Takashi Kanda
- Department of Neurology and Clinical Neuroscience, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Caroline Mysiorek
- UR 2465, Laboratory of the Blood-Brain Barrier (LBHE), Sciences Faculty Jean Perrin, Artois University, 62300, Lens, France
| | | | - Fabien Gosselet
- UR 2465, Laboratory of the Blood-Brain Barrier (LBHE), Sciences Faculty Jean Perrin, Artois University, 62300, Lens, France.
| |
Collapse
|
5
|
Detante O, Legris L, Moisan A, Rome C. Cell Therapy and Functional Recovery of Stroke. Neuroscience 2024; 550:79-88. [PMID: 38013148 DOI: 10.1016/j.neuroscience.2023.11.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 11/29/2023]
Abstract
Stroke is the most common cause of disability. Brain repair mechanisms are often insufficient to allow a full recovery. Stroke damage involve all brain cell type and extracellular matrix which represent the crucial "glio-neurovascular niche" useful for brain plasticity. Regenerative medicine including cell therapies hold great promise to decrease post-stroke disability of many patients, by promoting both neuroprotection and neural repair through direct effects on brain lesion and/or systemic effects such as immunomodulation. Mechanisms of action vary according to each grafted cell type: "peripheral" stem cells, such as mesenchymal stem cells (MSC), can provide paracrine trophic support, and neural stem/progenitor cells (NSC) or neurons can act as direct cells' replacements. Optimal time window, route, and doses are still debated, and may depend on the chosen medicinal product and its expected mechanism such as neuroprotection, delayed brain repair, systemic effects, or graft survival and integration in host network. MSC, mononuclear cells (MNC), umbilical cord stem cells and NSC are the most investigated. Innovative approaches are implemented concerning combinatorial approaches with growth factors and biomaterials such as injectable hydrogels which could protect a cell graft and/or deliver drugs into the post-stroke cavity at chronic stages. Through main publications of the last two decades, we provide in this review concepts and suggestions to improve future translational researches and larger clinical trials of cell therapy in stroke.
Collapse
Affiliation(s)
- Olivier Detante
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institute Neurosciences, 38000 Grenoble, France; Stroke Unit, Neurology, CHU Grenoble Alpes, CS10217, 38043 Grenoble, France; Axe Neurosciences Cliniques - Innovative Brain Therapies, CHU Grenoble Alpes, 38000 Grenoble, France.
| | - Loic Legris
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institute Neurosciences, 38000 Grenoble, France; Stroke Unit, Neurology, CHU Grenoble Alpes, CS10217, 38043 Grenoble, France; Axe Neurosciences Cliniques - Innovative Brain Therapies, CHU Grenoble Alpes, 38000 Grenoble, France.
| | - Anaick Moisan
- Axe Neurosciences Cliniques - Innovative Brain Therapies, CHU Grenoble Alpes, 38000 Grenoble, France; Cell Therapy and Engineering Unit, EFS Rhône Alpes, 464 route de Lancey, 38330 Saint Ismier, France.
| | - Claire Rome
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institute Neurosciences, 38000 Grenoble, France; Stroke Unit, Neurology, CHU Grenoble Alpes, CS10217, 38043 Grenoble, France; Axe Neurosciences Cliniques - Innovative Brain Therapies, CHU Grenoble Alpes, 38000 Grenoble, France.
| |
Collapse
|
6
|
Huang YQ, Gu X, Chen X, Du YT, Chen BC, Sun FY. BMECs Ameliorate High Glucose-Induced Morphological Aberrations and Synaptic Dysfunction via VEGF-Mediated Modulation of Glucose Uptake in Cortical Neurons. Cell Mol Neurobiol 2023; 43:3575-3592. [PMID: 37418138 PMCID: PMC10477237 DOI: 10.1007/s10571-023-01366-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/23/2023] [Indexed: 07/08/2023]
Abstract
It has been demonstrated that diabetes cause neurite degeneration in the brain and cognitive impairment and neurovascular interactions are crucial for maintaining brain function. However, the role of vascular endothelial cells in neurite outgrowth and synaptic formation in diabetic brain is still unclear. Therefore, present study investigated effects of brain microvascular endothelial cells (BMECs) on high glucose (HG)-induced neuritic dystrophy using a coculture model of BMECs with neurons. Multiple immunofluorescence labelling and western blot analysis were used to detect neurite outgrowth and synapsis formation, and living cell imaging was used to detect uptake function of neuronal glucose transporters. We found cocultured with BMECs significantly reduced HG-induced inhibition of neurites outgrowth (including length and branch formation) and delayed presynaptic and postsynaptic development, as well as reduction of neuronal glucose uptake capacity, which was prevented by pre-treatment with SU1498, a vascular endothelial growth factor (VEGF) receptor antagonist. To analyse the possible mechanism, we collected BMECs cultured condition medium (B-CM) to treat the neurons under HG culture condition. The results showed that B-CM showed the same effects as BMEC on HG-treated neurons. Furthermore, we observed VEGF administration could ameliorate HG-induced neuronal morphology aberrations. Putting together, present results suggest that cerebral microvascular endothelial cells protect against hyperglycaemia-induced neuritic dystrophy and restorate neuronal glucose uptake capacity by activation of VEGF receptors and endothelial VEGF release. This result help us to understand important roles of neurovascular coupling in pathogenesis of diabetic brain, providing a new strategy to study therapy or prevention for diabetic dementia. Hyperglycaemia induced inhibition of neuronal glucose uptake and impaired to neuritic outgrowth and synaptogenesis. Cocultured with BMECs/B-CM and VEGF treatment protected HG-induced inhibition of glucose uptake and neuritic outgrowth and synaptogenesis, which was antagonized by blockade of VEGF receptors. Reduction of glucose uptake may further deteriorate impairment of neurites outgrowth and synaptogenesis.
Collapse
Affiliation(s)
- Yu-Qi Huang
- Department of Neurobiology and Research Institute for Aging and Medicine, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 138 Yi-Xue-Yuan Road, Shanghai, 200032, People's Republic of China
- National Clinical Research Center for Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xiao Gu
- Department of Neurobiology and Research Institute for Aging and Medicine, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 138 Yi-Xue-Yuan Road, Shanghai, 200032, People's Republic of China
- National Clinical Research Center for Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xiao Chen
- Department of Neurobiology and Research Institute for Aging and Medicine, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 138 Yi-Xue-Yuan Road, Shanghai, 200032, People's Republic of China
- National Clinical Research Center for Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Yi-Ting Du
- Department of Neurobiology and Research Institute for Aging and Medicine, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 138 Yi-Xue-Yuan Road, Shanghai, 200032, People's Republic of China
- National Clinical Research Center for Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Bin-Chi Chen
- Department of Neurobiology and Research Institute for Aging and Medicine, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 138 Yi-Xue-Yuan Road, Shanghai, 200032, People's Republic of China
- National Clinical Research Center for Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Feng-Yan Sun
- Department of Neurobiology and Research Institute for Aging and Medicine, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 138 Yi-Xue-Yuan Road, Shanghai, 200032, People's Republic of China.
- National Clinical Research Center for Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
- Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
7
|
Esposito E, Licastro E, Cuomo O, Lo EH, Hayakawa K, Pignataro G. Postconditioning promotes recovery in the neurovascular unit after stroke. Front Cell Neurosci 2023; 17:1260389. [PMID: 37744881 PMCID: PMC10515625 DOI: 10.3389/fncel.2023.1260389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
Background and purpose Experimental studies suggest that ischemic postconditioning interferes with cell death mechanisms and reduces infarction during the acute phase after focal cerebral ischemia. Postconditioning may be a practically feasible way to promote stroke recovery, but many drawbacks prevent its clinical translation. First, all existing studies are mostly on acute 24 h outcomes. Second, the mechanisms of protection and augmented long-term benefits remain unclear. Our study aims to define some of the mechanisms that explain long-term benefits of improved recovery. Methods Male Sprague-Dawley rats were subjected to 100-min transient middle cerebral artery occlusion (MCAO) or postconditioning (100-min middle cerebral artery occlusion plus 10-min reperfusion plus 10-min reocclusion). After 3 days or 2 weeks, infarct volumes, western blot, and immunohistochemical markers of neurogenesis and angiogenesis were quantified. Fluorocitrate (FC) or saline were administrated ICV (intraventricular injection) every other day starting on day 5 after focal cerebral ischemia, animals were recovered for 2 weeks. Results After postconditioning BDNF protein expression levels increased compared to animals subjected to MCAO. Immunostaining showed that BDNF increased specifically in astrocytes. Moreover, when astrocytes were metabolically inhibited by fluorocitrate the postconditioning neuroprotective effect together with the postconditioning-dependent new angiogenesis and neurogenesis, were no longer observed. Conclusion These results suggest for the first time that therapeutic effects of postconditioning may involve the promotion of neurogenesis and angiogenic remodeling, via BDNF released by astrocytes, during the recovery phase after focal cerebral ischemia.
Collapse
Affiliation(s)
- Elga Esposito
- Neuroprotection Research Laboratories, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA)
| | - Ester Licastro
- Neuroprotection Research Laboratories, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Ornella Cuomo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Eng H. Lo
- Neuroprotection Research Laboratories, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA)
| | - Kazuhide Hayakawa
- Neuroprotection Research Laboratories, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples Federico II, Naples, Italy
| |
Collapse
|
8
|
Dorschel KB, Wanebo JE. Physiological and pathophysiological mechanisms of the molecular and cellular biology of angiogenesis and inflammation in moyamoya angiopathy and related vascular diseases. Front Neurol 2023; 14:661611. [PMID: 37273690 PMCID: PMC10236939 DOI: 10.3389/fneur.2023.661611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 01/16/2023] [Indexed: 06/06/2023] Open
Abstract
Rationale The etiology and pathophysiological mechanisms of moyamoya angiopathy (MMA) remain largely unknown. MMA is a progressive, occlusive cerebrovascular disorder characterized by recurrent ischemic and hemorrhagic strokes; with compensatory formation of an abnormal network of perforating blood vessels that creates a collateral circulation; and by aberrant angiogenesis at the base of the brain. Imbalance of angiogenic and vasculogenic mechanisms has been proposed as a potential cause of MMA. Moyamoya vessels suggest that aberrant angiogenic, arteriogenic, and vasculogenic processes may be involved in the pathophysiology of MMA. Circulating endothelial progenitor cells have been hypothesized to contribute to vascular remodeling in MMA. MMA is associated with increased expression of angiogenic factors and proinflammatory molecules. Systemic inflammation may be related to MMA pathogenesis. Objective This literature review describes the molecular mechanisms associated with cerebrovascular dysfunction, aberrant angiogenesis, and inflammation in MMA and related cerebrovascular diseases along with treatment strategies and future research perspectives. Methods and results References were identified through a systematic computerized search of the medical literature from January 1, 1983, through July 29, 2022, using the PubMed, EMBASE, BIOSIS Previews, CNKI, ISI web of science, and Medline databases and various combinations of the keywords "moyamoya," "angiogenesis," "anastomotic network," "molecular mechanism," "physiology," "pathophysiology," "pathogenesis," "biomarker," "genetics," "signaling pathway," "blood-brain barrier," "endothelial progenitor cells," "endothelial function," "inflammation," "intracranial hemorrhage," and "stroke." Relevant articles and supplemental basic science articles almost exclusively published in English were included. Review of the reference lists of relevant publications for additional sources resulted in 350 publications which met the study inclusion criteria. Detection of growth factors, chemokines, and cytokines in MMA patients suggests the hypothesis of aberrant angiogenesis being involved in MMA pathogenesis. It remains to be ascertained whether these findings are consequences of MMA or are etiological factors of MMA. Conclusions MMA is a heterogeneous disorder, comprising various genotypes and phenotypes, with a complex pathophysiology. Additional research may advance our understanding of the pathophysiology involved in aberrant angiogenesis, arterial stenosis, and the formation of moyamoya collaterals and anastomotic networks. Future research will benefit from researching molecular pathophysiologic mechanisms and the correlation of clinical and basic research results.
Collapse
Affiliation(s)
- Kirsten B. Dorschel
- Medical Faculty, Heidelberg University Medical School, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - John E. Wanebo
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
- Department of Neuroscience, HonorHealth Research Institute, Scottsdale, AZ, United States
| |
Collapse
|
9
|
Bell A, Watt AP, Dudink I, Pham Y, Sutherland AE, Allison BJ, McDonald CA, Castillo-Melendez M, Jenkin G, Malhotra A, Miller SL, Yawno T. Endothelial colony forming cell administration promotes neurovascular unit development in growth restricted and appropriately grown fetal lambs. Stem Cell Res Ther 2023; 14:29. [PMID: 36788590 PMCID: PMC9930266 DOI: 10.1186/s13287-023-03249-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/01/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Fetal growth restriction (FGR) is associated with deficits in the developing brain, including neurovascular unit (NVU) dysfunction. Endothelial colony forming cells (ECFC) can mediate improved vascular stability, and have demonstrated potential to enhance vascular development and protection. This investigation examined whether ECFCs from human umbilical cord blood (UCB) enhanced NVU development in FGR and appropriate for gestational age (AGA) fetal sheep. METHODS Twin-bearing ewes had surgery performed at 88-90 days' gestation, inducing FGR in one fetus. At 113 days, ECFCs (1 × 107 cells) cultured from human UCB were administered intravenously to fetal sheep in utero. At 127 days, ewes and their fetuses were euthanised, fetal brains collected, and NVU components analysed by immunohistochemistry. RESULTS Twenty-four fetal lambs, arranged in four groups: AGA (n = 7), FGR (n = 5), AGA + ECFC (n = 6), and FGR + ECFC (n = 6), were included in analyses. FGR resulted in lower body weight than AGA (P = 0.002) with higher brain/body weight ratio (P = 0.003). ECFC treatment was associated with increased vascular density throughout the brain in both AGA + ECFC and FGR + ECFC groups, as well as increased vascular-astrocyte coverage and VEGF expression in the cortex (P = 0.003, P = 0.0006, respectively) and in the subcortical white matter (P = 0.01, P = 0.0002, respectively) when compared with the untreated groups. CONCLUSIONS ECFC administration enhanced development of NVU components in both the AGA and FGR fetal brain. Further investigation is required to assess how to optimise the enhanced angiogenic capabilities of ECFCs to provide a therapeutic strategy to protect the developing NVU against vulnerabilities associated with FGR.
Collapse
Affiliation(s)
- Alexander Bell
- grid.452824.dThe Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia ,grid.1002.30000 0004 1936 7857Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Ashalyn P. Watt
- grid.452824.dThe Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia
| | - Ingrid Dudink
- grid.452824.dThe Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia ,grid.1002.30000 0004 1936 7857Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Yen Pham
- grid.452824.dThe Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia
| | - Amy E. Sutherland
- grid.452824.dThe Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia
| | - Beth J. Allison
- grid.452824.dThe Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia ,grid.1002.30000 0004 1936 7857Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Courtney A. McDonald
- grid.452824.dThe Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia ,grid.1002.30000 0004 1936 7857Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | | | - Graham Jenkin
- grid.452824.dThe Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia ,grid.1002.30000 0004 1936 7857Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Atul Malhotra
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia. .,Department of Paediatrics, Monash University, 246 Clayton Road, Clayton, Melbourne, VIC, 3168, Australia. .,Monash Newborn, Monash Children's Hospital, Melbourne, Australia.
| | - Suzanne L. Miller
- grid.452824.dThe Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia ,grid.1002.30000 0004 1936 7857Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Tamara Yawno
- grid.452824.dThe Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia ,grid.1002.30000 0004 1936 7857Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia ,grid.1002.30000 0004 1936 7857Department of Paediatrics, Monash University, 246 Clayton Road, Clayton, Melbourne, VIC 3168 Australia
| |
Collapse
|
10
|
Shi X, Seidle KA, Simms KJ, Dong F, Chilian WM, Zhang P. Endothelial progenitor cells in the host defense response. Pharmacol Ther 2023; 241:108315. [PMID: 36436689 PMCID: PMC9944665 DOI: 10.1016/j.pharmthera.2022.108315] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Extensive injury of endothelial cells in blood vasculature, especially in the microcirculatory system, frequently occurs in hosts suffering from sepsis and the accompanied systemic inflammation. Pathological factors, including toxic components derived from invading microbes, oxidative stress associated with tissue ischemia/reperfusion, and vessel active mediators generated during the inflammatory response, are known to play important roles in mediating endothelial injury. Collapse of microcirculation and tissue edema developed from the failure of endothelial barrier function in vital organ systems, including the lung, brain, and kidney, are detrimental, which often predict fatal outcomes. The host body possesses a substantial capacity for maintaining vascular homeostasis and repairing endothelial damage. Bone marrow and vascular wall niches house endothelial progenitor cells (EPCs). In response to septic challenges, EPCs in their niche environment are rapidly activated for proliferation and angiogenic differentiation. In the meantime, release of EPCs from their niches into the blood stream and homing of these vascular precursors to tissue sites of injury are markedly increased. The recruited EPCs actively participate in host defense against endothelial injury and repair of damage in blood vasculature via direct differentiation into endothelial cells for re-endothelialization as well as production of vessel active mediators to exert paracrine and autocrine effects on angiogenesis/vasculogenesis. In recent years, investigations on significance of EPCs in host defense and molecular signaling mechanisms underlying regulation of the EPC response have achieved substantial progress, which promotes exploration of vascular precursor cell-based approaches for effective prevention and treatment of sepsis-induced vascular injury as well as vital organ system failure.
Collapse
Affiliation(s)
- Xin Shi
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America
| | - Kelly A Seidle
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America
| | - Kevin J Simms
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America
| | - Feng Dong
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America
| | - William M Chilian
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America
| | - Ping Zhang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America.
| |
Collapse
|
11
|
Rudnicka-Drożak E, Drożak P, Mizerski G, Drożak M. Endothelial Progenitor Cells in Neurovascular Disorders—A Comprehensive Overview of the Current State of Knowledge. Biomedicines 2022; 10:biomedicines10102616. [PMID: 36289878 PMCID: PMC9599182 DOI: 10.3390/biomedicines10102616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/11/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
Endothelial progenitor cells (EPCs) are a population of cells that circulate in the blood looking for areas of endothelial or vascular injury in order to repair them. Endothelial dysfunction is an important component of disorders with neurovascular involvement. Thus, the subject of involvement of EPCs in such conditions has been gaining increasing scientific interest in recent years. Overall, decreased levels of EPCs are associated with worse disease outcome. Moreover, their functionalities appear to decline with severity of disease. These findings inspired the application of EPCs as therapeutic targets and agents. So far, EPCs appear safe and promising based on the results of pre-clinical studies conducted on their use in the treatment of Alzheimer’s disease and ischemic stroke. In the case of the latter, human clinical trials have recently started to be performed in this subject and provided optimistic results thus far. Whereas in the case of migraine, existing findings pave the way for testing EPCs in in vitro studies. This review aims to thoroughly summarize current knowledge on the role EPCs in four disorders with neurovascular involvement, which are Alzheimer’s disease, cerebral small vessel disease, ischemic stroke and migraine, with a particular focus on the potential practical use of these cells as a treatment remedy.
Collapse
Affiliation(s)
- Ewa Rudnicka-Drożak
- Department of Family Medicine, Medical University of Lublin, Langiewicza 6a, 20-035 Lublin, Poland
| | - Paulina Drożak
- Student Scientific Society, Department of Family Medicine, Medical University of Lublin, Langiewicza 6a, 20-035 Lublin, Poland
- Correspondence: ; Tel.: +48-669-084-455
| | - Grzegorz Mizerski
- Department of Family Medicine, Medical University of Lublin, Langiewicza 6a, 20-035 Lublin, Poland
| | - Martyna Drożak
- Student Scientific Society, Department of Family Medicine, Medical University of Lublin, Langiewicza 6a, 20-035 Lublin, Poland
| |
Collapse
|
12
|
Custodia A, Ouro A, Sargento-Freitas J, Aramburu-Núñez M, Pías-Peleteiro JM, Hervella P, Rosell A, Ferreira L, Castillo J, Romaus-Sanjurjo D, Sobrino T. Unraveling the potential of endothelial progenitor cells as a treatment following ischemic stroke. Front Neurol 2022; 13:940682. [PMID: 36158970 PMCID: PMC9492921 DOI: 10.3389/fneur.2022.940682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Ischemic stroke is becoming one of the most common causes of death and disability in developed countries. Since current therapeutic options are quite limited, focused on acute reperfusion therapies that are hampered by a very narrow therapeutic time window, it is essential to discover novel treatments that not only stop the progression of the ischemic cascade during the acute phase, but also improve the recovery of stroke patients during the sub-acute or chronic phase. In this regard, several studies have shown that endothelial progenitor cells (EPCs) can repair damaged vessels as well as generate new ones following cerebrovascular damage. EPCs are circulating cells with characteristics of both endothelial cells and adult stem cells presenting the ability to differentiate into mature endothelial cells and self-renew, respectively. Moreover, EPCs have the advantage of being already present in healthy conditions as circulating cells that participate in the maintenance of the endothelium in a direct and paracrine way. In this scenario, EPCs appear as a promising target to tackle stroke by self-promoting re-endothelization, angiogenesis and vasculogenesis. Based on clinical data showing a better neurological and functional outcome in ischemic stroke patients with higher levels of circulating EPCs, novel and promising therapeutic approaches would be pharmacological treatment promoting EPCs-generation as well as EPCs-based therapies. Here, we will review the latest advances in preclinical as well as clinical research on EPCs application following stroke, not only as a single treatment but also in combination with new therapeutic approaches.
Collapse
Affiliation(s)
- Antía Custodia
- NeuroAging Laboratory (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Alberto Ouro
- NeuroAging Laboratory (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - João Sargento-Freitas
- Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculdade de Medicina da Universidade de Coimbra, Coimbra, Portugal
- Centro Neurociências e Biologia Celular, Coimbra, Portugal
| | - Marta Aramburu-Núñez
- NeuroAging Laboratory (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Juan Manuel Pías-Peleteiro
- NeuroAging Laboratory (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Pablo Hervella
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Anna Rosell
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lino Ferreira
- Faculdade de Medicina da Universidade de Coimbra, Coimbra, Portugal
- Centro Neurociências e Biologia Celular, Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, UC, Biotech Parque Tecnológico de Cantanhede, University of Coimbra, Coimbra, Portugal
| | - José Castillo
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Daniel Romaus-Sanjurjo
- NeuroAging Laboratory (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- *Correspondence: Daniel Romaus-Sanjurjo
| | - Tomás Sobrino
- NeuroAging Laboratory (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Tomás Sobrino
| |
Collapse
|
13
|
Ramos MD, Briyal S, Prazad P, Gulati A. Neuroprotective Effect of Sovateltide (IRL 1620, PMZ 1620) in a Neonatal Rat Model of Hypoxic-Ischemic Encephalopathy. Neuroscience 2022; 480:194-202. [PMID: 34826534 DOI: 10.1016/j.neuroscience.2021.11.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 11/25/2022]
Abstract
Therapeutic hypothermia with modest results is the only treatment currently available for neonatal hypoxic ischemic encephalopathy (HIE). Endothelin B (ETB) receptors in the brain are shown to have neural restorative capacity. ETB receptors agonist sovateltide alone or as an adjuvant therapy may enhance neurovascular remodeling in HIE. Sprague-Dawley rat pups were grouped based on treatments into (1) Control; (2) HIE + Vehicle; (3) HIE + Hypothermia; (4) HIE + sovateltide; and (5) HIE + sovateltide + hypothermia. HIE was induced on postnatal day (PND) 7, followed by sovateltide (5 µg/kg) intracerebroventricular injection and/or hypothermia. On PND 10, brains were analyzed for the expression of vascular endothelial growth factor (VEGF), nerve growth factor (NGF), ETB receptors, oxidative stress and cellular damage markers. Vehicle-treated animals had high oxidative stress level as indicated by an increase in lipid peroxidation factor, malondialdehyde, and decreased antioxidants, reduced glutathione and superoxide dismutase, compared to control. These effects were reversed in sovateltide alone (p < 0.001) or in combination with the therapeutic hypothermia (p < 0.001), indicating that ETB receptor activation reduces oxidative stress injury following HIE. Animals receiving sovateltide demonstrated a significant (p < 0.0001) upregulation of ETB receptor, VEGF, and NGF expression in the brain compared to vehicle-treated animals. Additionally, sovateltide alone or in combination with therapeutic hypothermia significantly (p < 0.001) reduced cell death when compared to vehicle or therapeutic hypothermia alone, demonstrating that sovateltide is neuroprotective and attenuates neural damage following HIE. These findings are important and merit additional studies for development of new interventions for improving neurodevelopmental outcomes after HIE.
Collapse
Affiliation(s)
- Michelle Davis Ramos
- Advocate Children's Hospital, Department of Neonatology, Park Ridge, IL 60068 United States.
| | - Seema Briyal
- Midwestern University, College of Pharmacy, Downers Grove, IL 60515, United States.
| | - Preetha Prazad
- Advocate Children's Hospital, Department of Neonatology, Park Ridge, IL 60068 United States
| | - Anil Gulati
- Midwestern University, College of Pharmacy, Downers Grove, IL 60515, United States; Pharmazz Inc. Research and Development, Willowbrook, IL 60527, United States
| |
Collapse
|
14
|
Loiola RA, García-Gabilondo M, Grayston A, Bugno P, Kowalska A, Duban-Deweer S, Rizzi E, Hachani J, Sano Y, Shimizu F, Kanda T, Mysiorek C, Mazurek MP, Rosell A, Gosselet F. Secretome of endothelial progenitor cells from stroke patients promotes endothelial barrier tightness and protects against hypoxia-induced vascular leakage. Stem Cell Res Ther 2021; 12:552. [PMID: 34702368 PMCID: PMC8549346 DOI: 10.1186/s13287-021-02608-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/25/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Cell-based therapeutic strategies have been proposed as an alternative for brain repair after stroke, but their clinical application has been hampered by potential adverse effects in the long term. The present study was designed to test the effect of the secretome of endothelial progenitor cells (EPCs) from stroke patients (scCM) on in vitro human models of angiogenesis and vascular barrier. METHODS Two different scCM batches were analysed by mass spectrometry and a proteome profiler. Human primary CD34+-derived endothelial cells (CD34+-ECs) were used for designing angiogenesis studies (proliferation, migration, and tubulogenesis) or in vitro models of EC monolayer (confluent monolayer ECs-CMECs) and blood-brain barrier (BBB; brain-like ECs-BLECs). Cells were treated with scCM (5 μg/mL) or protein-free endothelial basal medium (scEBM-control). CMECs or BLECs were exposed (6 h) to oxygen-glucose deprivation (OGD) conditions (1% oxygen and glucose-free medium) or normoxia (control-5% oxygen, 1 g/L of glucose) and treated with scCM or scEBM during reoxygenation (24 h). RESULTS The analysis of different scCM batches showed a good reproducibility in terms of protein yield and composition. scCM increased CD34+-EC proliferation, tubulogenesis, and migration compared to the control (scEBM). The proteomic analysis of scCM revealed the presence of growth factors and molecules modulating cell metabolism and inflammatory pathways. Further, scCM decreased the permeability of CMECs and upregulated the expression of the junctional proteins such as occludin, VE-cadherin, and ZO-1. Such effects were possibly mediated through the activation of the interferon pathway and a moderate downregulation of Wnt signalling. Furthermore, OGD increased the permeability of both CMECs and BLECs, while scCM prevented the OGD-induced vascular leakage in both models. These effects were possibly mediated through the upregulation of junctional proteins and the regulation of MAPK/VEGFR2 activity. CONCLUSION Our results suggest that scCM promotes angiogenesis and the maturation of newly formed vessels while restoring the BBB function in ischemic conditions. In conclusion, our results highlight the possibility of using EPC-secretome as a therapeutic alternative to promote brain angiogenesis and protect from ischemia-induced vascular leakage.
Collapse
Affiliation(s)
| | - Miguel García-Gabilondo
- Neurovascular Research Laboratory, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035, Barcelona, Catalonia, Spain
| | - Alba Grayston
- Neurovascular Research Laboratory, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035, Barcelona, Catalonia, Spain
| | - Paulina Bugno
- Pure Biologics S.A., Duńska 11, 54-427, Wroclaw, Poland
| | | | - Sophie Duban-Deweer
- UR 2465, Blood-Brain Barrier Laboratory (LBHE), Univ. Artois, 62300, Lens, France
| | - Eleonora Rizzi
- UR 2465, Blood-Brain Barrier Laboratory (LBHE), Univ. Artois, 62300, Lens, France
| | - Johan Hachani
- UR 2465, Blood-Brain Barrier Laboratory (LBHE), Univ. Artois, 62300, Lens, France
| | - Yasuteru Sano
- Department of Neurology and Clinical Neuroscience, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Fumitaka Shimizu
- Department of Neurology and Clinical Neuroscience, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Takashi Kanda
- Department of Neurology and Clinical Neuroscience, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Caroline Mysiorek
- UR 2465, Blood-Brain Barrier Laboratory (LBHE), Univ. Artois, 62300, Lens, France
| | | | - Anna Rosell
- Neurovascular Research Laboratory, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035, Barcelona, Catalonia, Spain
| | - Fabien Gosselet
- UR 2465, Blood-Brain Barrier Laboratory (LBHE), Univ. Artois, 62300, Lens, France.
- Laboratory of the Blood-Brain Barrier, Sciences Faculty Jean Perrin, Artois University, Lens, France.
| |
Collapse
|
15
|
Moon S, Chang MS, Koh SH, Choi YK. Repair Mechanisms of the Neurovascular Unit after Ischemic Stroke with a Focus on VEGF. Int J Mol Sci 2021; 22:ijms22168543. [PMID: 34445248 PMCID: PMC8395233 DOI: 10.3390/ijms22168543] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/22/2021] [Accepted: 08/02/2021] [Indexed: 12/23/2022] Open
Abstract
The functional neural circuits are partially repaired after an ischemic stroke in the central nervous system (CNS). In the CNS, neurovascular units, including neurons, endothelial cells, astrocytes, pericytes, microglia, and oligodendrocytes maintain homeostasis; however, these cellular networks are damaged after an ischemic stroke. The present review discusses the repair potential of stem cells (i.e., mesenchymal stem cells, endothelial precursor cells, and neural stem cells) and gaseous molecules (i.e., nitric oxide and carbon monoxide) with respect to neuroprotection in the acute phase and regeneration in the late phase after an ischemic stroke. Commonly shared molecular mechanisms in the neurovascular unit are associated with the vascular endothelial growth factor (VEGF) and its related factors. Stem cells and gaseous molecules may exert therapeutic effects by diminishing VEGF-mediated vascular leakage and facilitating VEGF-mediated regenerative capacity. This review presents an in-depth discussion of the regeneration ability by which endogenous neural stem cells and endothelial cells produce neurons and vessels capable of replacing injured neurons and vessels in the CNS.
Collapse
Affiliation(s)
- Sunhong Moon
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 05029, Korea;
| | - Mi-Sook Chang
- Department of Oral Anatomy, Seoul National University School of Dentistry, Seoul 03080, Korea;
| | - Seong-Ho Koh
- Department of Neurology, Hanyang University Guri Hospital, Guri 11923, Korea;
| | - Yoon Kyung Choi
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 05029, Korea;
- Correspondence: ; Tel.: +82-2-450-0558; Fax: +82-2-444-3490
| |
Collapse
|
16
|
Caveolin-1, a novel player in cognitive decline. Neurosci Biobehav Rev 2021; 129:95-106. [PMID: 34237390 DOI: 10.1016/j.neubiorev.2021.06.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 06/29/2021] [Indexed: 12/12/2022]
Abstract
Cognitive decline (CD), which related to vascular dementia, Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and diabetes mellitus, is a growing health concern that has a great impact on the patients' quality of life. Although extensive efforts, the mechanisms of CD are still far from being clarified, not to mention the effective treatment and prevention strategies. Caveolin-1 (Cav-1), a trans-membrane protein, is a major component of the caveolae structure and scaffolding proteins. Recently, ample evidence depicts a strong correlation between Cav-1 and CD, however, the specific role of Cav-1 in CD has not been clearly examined and how they might be connected have yet to be identified. This review seeks to provide a comprehensive overview about how Cav-1 modulates pathogeneses of CD-associated diseases. In summary, Cav-1 can promote structural and functional plasticity of neurons, improve neurogenesis, relieve mitochondrial dysfunction, inhibit inflammation and suppress oxidative stress, which have shed light on the idea that Cav-1 may be an efficacious therapeutic target to treat CD.
Collapse
|
17
|
Santo SD, Seiler S, Guzman R, Widmer HR. Endothelial Progenitor Cell-Derived Factors Exert Neuroprotection in Cultured Cortical Neuronal Progenitor Cells. Cell Transplant 2021; 29:963689720912689. [PMID: 32193955 PMCID: PMC7444205 DOI: 10.1177/0963689720912689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
There is substantial evidence that stem and progenitor cells secrete
trophic factors that have potential for repairing injured tissues. We
have previously reported that the conditioned medium (CM) obtained
from endothelial progenitor cells (EPC) cultures protects striatal
neurons against 3-nitropropionic acid-induced toxicity. In the present
study we tested the hypothesis that EPC-CM may support cortical
neuronal cell function and/or survival. EPC were isolated from the
peripheral blood of healthy human donors and cultured in hypoxic
conditions (1.5% O2) to stimulate the secretion of growth
factors. The supernatant or conditioned medium (EPC-CM) was then
collected and used for the various experiments. Primary cultures of
cerebral cortex from fetal rat embryonic day 14 were treated with
EPC-CM and challenged by glucose and serum deprivation. We observed
that EPC-CM treatment significantly increased total cell number and
cell viability in the cultures. Similarly, the number of
lba1-expressing cells was significantly upregulated by EPC-CM, while
western blot analyses for the astroglial marker glial fibrillary
acidic protein did not show a marked difference. Importantly, the
number of beta-lll-tubulin-positive neurons in the cultures was
significantly augmented after EPC-CM treatment. Similarly, western
blot analyses for beta-III-tubulin showed significant higher signal
intensities. Furthermore, EPC-CM administration protected neurons
against glucose- and serum deprivation-induced cell loss. In sum, our findings identified EPC-CM as a means to promote viability
and/or differentiation of cortical neurons and suggest that EPC-CM
might be useful for neurorestorative approaches.
Collapse
Affiliation(s)
- Stefano Di Santo
- Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, Bern University Hospital, University of Bern, Bern, Switzerland.,Departments of Neurosurgery and Biomedicine, Basel University Hospital, University of Basel, Basel, Switzerland
| | - Stefanie Seiler
- Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Raphael Guzman
- Departments of Neurosurgery and Biomedicine, Basel University Hospital, University of Basel, Basel, Switzerland.,Both the authors share senior authorship
| | - Hans Rudolf Widmer
- Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, Bern University Hospital, University of Bern, Bern, Switzerland.,Both the authors share senior authorship
| |
Collapse
|
18
|
Conditioned medium-preconditioned EPCs enhanced the ability in oligovascular repair in cerebral ischemia neonatal rats. Stem Cell Res Ther 2021; 12:118. [PMID: 33579354 PMCID: PMC7881622 DOI: 10.1186/s13287-021-02157-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/11/2021] [Indexed: 11/30/2022] Open
Abstract
Background Oligovascular niche mediates interactions between cerebral endothelial cells and oligodendrocyte precursor cells (OPCs). Disruption of OPC-endothelium trophic coupling may aggravate the progress of cerebral white matter injury (WMI) because endothelial cells could not provide sufficient support under diseased conditions. Endothelial progenitor cells (EPCs) have been reported to ameliorate WMI in the adult brain by boosting oligovascular remodeling. It is necessary to clarify the role of the conditioned medium from hypoxic endothelial cells preconditioned EPCs (EC-pEPCs) in WMI since EPCs usually were recruited and play important roles under blood-brain barrier disruption. Here, we investigated the effects of EC-pEPCs on oligovascular remodeling in a neonatal rat model of WMI. Methods In vitro, OPC apoptosis induced by the conditioned medium from oxygen-glucose deprivation-injured brain microvascular endothelial cells (OGD-EC-CM) was analyzed by TUNEL and FACS. The effects of EPCs on EC damage and the expression of cytomokine C-X-C motif ligand 12 (CXCL12) were examined by western blot and FACS. The effect of the CM from EC-pEPCs against OPC apoptosis was also verified by western blot and silencing RNA. In vivo, P3 rat pups were subjected to right common carotid artery ligation and hypoxia and treated with EPCs or EC-pEPCs at P7, and then angiogenesis and myelination together with cognitive outcome were evaluated at the 6th week. Results In vitro, EPCs enhanced endothelial function and decreased OPC apoptosis. Meanwhile, it was confirmed that OGD-EC-CM induced an increase of CXCL12 in EPCs, and CXCL12-CXCR4 axis is a key signaling since CXCR4 knockdown alleviated the anti-apoptosis effect of EPCs on OPCs. In vivo, the number of EPCs and CXCL12 protein level markedly increased in the WMI rats. Compared to the EPCs, EC-pEPCs significantly decreased OPC apoptosis, increased vascular density and myelination in the corpus callosum, and improved learning and memory deficits in the neonatal rat WMI model. Conclusions EC-pEPCs more effectively promote oligovascular remodeling and myelination via CXCL12-CXCR4 axis in the neonatal rat WMI model. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02157-4.
Collapse
|
19
|
Wang L, Xiong X, Zhang L, Shen J. Neurovascular Unit: A critical role in ischemic stroke. CNS Neurosci Ther 2021; 27:7-16. [PMID: 33389780 PMCID: PMC7804897 DOI: 10.1111/cns.13561] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Ischemic stroke (IS), a common cerebrovascular disease, results from a sudden blockage of a blood vessel in the brain, thereby restricting blood supply to the area in question, and making a significantly negative impact on human health. Unfortunately, current treatments, that are mainly based on a recanalization of occluded blood vessels, are insufficient or inaccessible to many stroke patients. Recently, the profound influence of the neurovascular unit (NVU) on recanalization and the prognosis of IS have become better understood; in‐depth studies of the NVU have also provided novel approaches for IS treatment. In this article, we review the intimate connections between the changes in the NVU and IS outcomes, and discuss possible new management strategies having practical significance to IS. We discuss the concept of the NVU, as well as its roles in IS blood‐brain barrier regulation, cell preservation, inflammatory immune response, and neurovascular repair. Besides, we also summarize the influence of noncoding RNAs in NVU, and IS therapies targeting the NVU. We conclude that both the pathophysiological and neurovascular repair processes of IS are strongly associated with the homeostatic state of the NVU and that further research into therapies directed at the NVU could expand the range of treatments available for IS.
Collapse
Affiliation(s)
- Liyun Wang
- Department of Neurosurgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Shengzhou, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Luyuan Zhang
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jian Shen
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Alwjwaj M, Kadir RRA, Bayraktutan U. The secretome of endothelial progenitor cells: a potential therapeutic strategy for ischemic stroke. Neural Regen Res 2021; 16:1483-1489. [PMID: 33433461 PMCID: PMC8323700 DOI: 10.4103/1673-5374.303012] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ischemic stroke continues to be a leading cause of mortality and morbidity in the world. Despite recent advances in the field of stroke medicine, thrombolysis with recombinant tissue plasminogen activator remains as the only pharmacological therapy for stroke patients. However, due to short therapeutic window (4.5 hours of stroke onset) and increased risk of hemorrhage beyond this point, each year globally less than 1% of stroke patients receive this therapy which necessitate the discovery of safe and efficacious therapeutics that can be used beyond the acute phase of stroke. Accumulating evidence indicates that endothelial progenitor cells (EPCs), equipped with an inherent capacity to migrate, proliferate and differentiate, may be one such therapeutics. However, the limited availability of EPCs in peripheral blood and early senescence of few isolated cells in culture conditions adversely affect their application as effective therapeutics. Given that much of the EPC-mediated reparative effects on neurovasculature is realized by a wide range of biologically active substances released by these cells, it is possible that EPC-secretome may serve as an important therapeutic after an ischemic stroke. In light of this assumption, this review paper firstly discusses the main constituents of EPC-secretome that may exert the beneficial effects of EPCs on neurovasculature, and then reviews the currently scant literature that focuses on its therapeutic capacity.
Collapse
Affiliation(s)
- Mansour Alwjwaj
- Stroke, Division of Clinical Neuroscience, University of Nottingham, Clinical Sciences Building, City Hospital, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Rais Reskiawan A Kadir
- Stroke, Division of Clinical Neuroscience, University of Nottingham, Clinical Sciences Building, City Hospital, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Ulvi Bayraktutan
- Stroke, Division of Clinical Neuroscience, University of Nottingham, Clinical Sciences Building, City Hospital, Hucknall Road, Nottingham, NG5 1PB, UK
| |
Collapse
|
21
|
Endothelial Progenitor Cells as a Marker of Vascular Damage But not a Predictor in Acute Microangiopathy-Associated Stroke. J Clin Med 2020; 9:jcm9072248. [PMID: 32679827 PMCID: PMC7408782 DOI: 10.3390/jcm9072248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 02/02/2023] Open
Abstract
Background: The aim of the study was to assess the number of endothelial progenitor cells (EPCs) in patients with acute stroke due to cerebral microangiopathy and evaluate whether there is a relationship between their number and clinical status, radiological findings, risk factors, selected biochemical parameters, and prognosis, both in ischemic and hemorrhagic stroke. Methods: In total, 66 patients with lacunar ischemic stroke, 38 patients with typical location hemorrhagic stroke, and 22 subjects from the control group without acute cerebrovascular incidents were included in the prospective observational study. The number of EPCs was determined in serum on the first and eighth day after stroke onset using flow cytometry and identified with the immune-phenotype classification determinant (CD)45−, CD34+, CD133+. Results: We demonstrated a significantly higher number of EPCs on the first day of stroke compared to the control group (med. 17.75 cells/µL (0–488 cells/µL) vs. 5.24 cells/µL (0–95 cells/µL); p = 0.0006). We did not find a relationship between the number of EPCs in the acute phase of stroke and the biochemical parameters, vascular risk factors, or clinical condition. In females, the higher number of EPCs on the first day of stroke is related to a favorable functional outcome on the eighth day after the stroke onset compared to males (p = 0.0355). We found that a higher volume of the hemorrhagic focus on the first day was correlated with a lower number of EPCs on the first day (correlation coefficient (R) = −0.3378, p = 0.0471), and a higher number of EPCs on the first day of the hemorrhagic stroke was correlated with a lower degree of regression of the hemorrhagic focus (R = −0.3896, p = 0.0367). Conclusion: The study showed that endothelial progenitor cells are an early marker in acute microangiopathy-associated stroke regardless of etiology and may affect the radiological findings in hemorrhagic stroke. Nevertheless, their prognostic value remains doubtful in stroke patients.
Collapse
|
22
|
Abstract
Stroke remains a major unmet clinical need that warrants novel therapies. Following an ischemic insult, the cerebral vasculature secretes inflammatory molecules, creating the stroke vasculome profile. The present study evaluated the therapeutic effects of endothelial cells on the inflammation-associated stroke vasculome. qRT-PCR analysis revealed that specific inflammation-related vasculome genes BRM, IκB, Foxf1, and ITIH-5 significantly upregulated by oxygen glucose deprivation (OGD. Interestingly, co-culture of human endothelial cells (HEN6) with human endothelial cells (EPCs) during OGD significantly blocked the elevations of BRM, IκB, and Foxf1, but not ITIH-5. Next, employing the knockdown/antisense technology, silencing the inflammation-associated stroke vasculome gene, IκB, as opposed to scrambled knockdown, blocked the EPC-mediated protection of HEN6 against OGD. In vivo, stroke animals transplanted with intracerebral human EPCs (300,000 cells) into the striatum and cortex 4 h post ischemic stroke displayed significant behavioral recovery up to 30 days post-transplantation compared to vehicle-treated stroke animals. At 7 days post-transplantation, quantification of the fluorescent staining intensity in the cortex and striatum revealed significant upregulation of the endothelial marker RECA1 and a downregulation of the stroke-associated vasculome BRM, IKB, Foxf1, ITIH-5 and PMCA2 in the ipsilateral side of cortex and striatum of EPC-transplanted stroke animals relative to vehicle-treated stroke animals. Altogether, these results demonstrate that EPCs exert therapeutic effects in experimental stroke possibly by modulating the inflammation-plagued vasculome.
Collapse
|
23
|
Heller L, Thinard R, Chevalier M, Arpag S, Jing Y, Greferath R, Heller R, Nicolau C. Secretion of proteins and antibody fragments from transiently transfected endothelial progenitor cells. J Cell Mol Med 2020; 24:8772-8778. [PMID: 32610368 PMCID: PMC7412409 DOI: 10.1111/jcmm.15511] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 01/01/2023] Open
Abstract
In neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis and amyotrophic lateral sclerosis, neuroinflammation can lead to blood‐brain barrier (BBB) breakdown. After intravenous or intra‐arterial injection into mice, endothelial progenitor cells (EPCs) home to the damaged BBB to promote neurovascular repair. Autologous EPCs transfected to express specific therapeutic proteins offer an innovative therapeutic option. Here, we demonstrate that EPC transfection by electroporation with plasmids encoding the reporter protein GFP or an anti‐β‐amyloid antibody fragment (Fab) leads to secretion of each protein. We also demonstrate the secreted anti‐β‐amyloid Fab protein functions in β‐amyloid aggregate solubilization.
Collapse
Affiliation(s)
- Loree Heller
- Department of Medical Engineering, University of South Florida, Tampa, Florida, USA
| | - Reynald Thinard
- ALSaTECH, Tufts Biolabs Launchpad, Boston, Massachusetts, USA
| | | | - Sezgi Arpag
- Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, USA
| | - Yu Jing
- Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, USA
| | - Ruth Greferath
- ALSaTECH, Tufts Biolabs Launchpad, Boston, Massachusetts, USA
| | - Richard Heller
- Department of Medical Engineering, University of South Florida, Tampa, Florida, USA
| | - Claude Nicolau
- ALSaTECH, Tufts Biolabs Launchpad, Boston, Massachusetts, USA.,Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
24
|
Doppelt O, Cohen G, Tamari T, Elimelech R, Sabbah N, Zigdon-Giladi H. Endothelial progenitors increase vascularization and improve fibroblasts function that prevent medication-related osteonecrosis of the jaw. Oral Dis 2020; 26:1523-1531. [PMID: 32400918 DOI: 10.1111/odi.13412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/22/2020] [Accepted: 05/03/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVES In a previous rat model, MRONJ occurrence was 50%. Our aim was to investigate the potential of endothelial progenitor cells (EPCs) to improve fibroblasts function and prevent MRONJ. METHODS Human gingival fibroblasts were cultured with EPC-conditioned media (EPC-CM); endothelial growth media (EGM-2) or DMEM followed by incubation with 10 µM zoledronic (ZOL) and dexamethasone (DEX). Cell proliferation and migration were assessed by XTT and scratch wound healing assays. In vivo, ten Lewis rats were treated weekly with ZOL and DEX for 11 weeks. After a week, EPCs or EGM-2 were injected to the gingiva around the molars. At 3 weeks, bilateral molars were extracted. After 8 weeks, wound healing was assessed, and serum VEGF and blood vessels were quantified. RESULTS ZOL/DEX significantly reduced fibroblasts proliferation and wound healing. Treatment with EPC-CM before ZOL/DEX improved cell proliferation, and scratch healing (p = .007, p = .023). In vivo, local EPC injection before tooth extraction increased serum VEGF (p = .01) and soft tissue vascularization (p = .05). Normal healing was similar (80%) in EPCs and EGM-2 groups. CONCLUSION EPC rescued fibroblasts from the cytotoxic effect of ZOL/DEX and elevated serum VEGF and vessel density that might reduce MRONJ occurrence to 20% compared to 50% in a similar model.
Collapse
Affiliation(s)
- Ofri Doppelt
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Gal Cohen
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa, Israel
| | - Tal Tamari
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa, Israel
| | - Rina Elimelech
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa, Israel.,Department of Periodontology, School of Graduate Dentistry, Rambam Health Care Campus, Haifa, Israel
| | - Nadin Sabbah
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Hadar Zigdon-Giladi
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.,Department of Periodontology, School of Graduate Dentistry, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
25
|
Yang G, Mahadik B, Choi JY, Fisher JP. Vascularization in tissue engineering: fundamentals and state-of-art. ACTA ACUST UNITED AC 2020; 2. [PMID: 34308105 DOI: 10.1088/2516-1091/ab5637] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vascularization is among the top challenges that impede the clinical application of engineered tissues. This challenge has spurred tremendous research endeavor, defined as vascular tissue engineering (VTE) in this article, to establish a pre-existing vascular network inside the tissue engineered graft prior to implantation. Ideally, the engineered vasculature can be integrated into the host vasculature via anastomosis to supply nutrient to all cells instantaneously after surgery. Moreover, sufficient vascularization is of great significance in regenerative medicine from many other perspectives. Due to the critical role of vascularization in successful tissue engineering, we aim to provide an up-to-date overview of the fundamentals and VTE strategies in this article, including angiogenic cells, biomaterial/bio-scaffold design and bio-fabrication approaches, along with the reported utility of vascularized tissue complex in regenerative medicine. We will also share our opinion on the future perspective of this field.
Collapse
Affiliation(s)
- Guang Yang
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, United States of America.,Center for Engineering Complex Tissues, University of Maryland, College Park, MD, United States of America
| | - Bhushan Mahadik
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, United States of America.,Center for Engineering Complex Tissues, University of Maryland, College Park, MD, United States of America
| | - Ji Young Choi
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, United States of America
| | - John P Fisher
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, United States of America.,Center for Engineering Complex Tissues, University of Maryland, College Park, MD, United States of America
| |
Collapse
|
26
|
Stefanis AJ, Groh T, Arenbergerova M, Arenberger P, Bauer PO. Stromal Vascular Fraction and its Role in the Management of Alopecia: A Review. THE JOURNAL OF CLINICAL AND AESTHETIC DERMATOLOGY 2019; 12:35-44. [PMID: 32038756 PMCID: PMC6937163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Adipose cells organized in small clusters under the reticular dermis closely interact with hair follicular cells and regulate the hair cycle. Intradermal adipocyte progenitor cells are activated toward the end of the telogen phase to proliferate and differentiate into mature adipocytes. These cells, surrounding the hair follicles, secrete signaling molecules that control the progression of the hair cycle. Diseases associated with defects in adipocyte homeostasis, such as lipodystrophy and focal dermal hypoplasia, lead to alopecia. In this review, we discuss the potential influence of stromal vascular fraction from adipose tissue in the management of alopecia as well as its involvement in preclinical and clinical trials.
Collapse
Affiliation(s)
- Athanasios J Stefanis
- Drs. Stefanis, Arenbergerova, and Arenberger are with the Department of Dermatology and Venereology, Faculty Hospital Kralovske Vinohrady and Third Medical Faculty of Charles University in Prague, the Czech Republic
- Drs. Groh and Bauer are with Bioinova, Ltd. in Prague, the Czech Republic
| | - Tomas Groh
- Drs. Stefanis, Arenbergerova, and Arenberger are with the Department of Dermatology and Venereology, Faculty Hospital Kralovske Vinohrady and Third Medical Faculty of Charles University in Prague, the Czech Republic
- Drs. Groh and Bauer are with Bioinova, Ltd. in Prague, the Czech Republic
| | - Monika Arenbergerova
- Drs. Stefanis, Arenbergerova, and Arenberger are with the Department of Dermatology and Venereology, Faculty Hospital Kralovske Vinohrady and Third Medical Faculty of Charles University in Prague, the Czech Republic
- Drs. Groh and Bauer are with Bioinova, Ltd. in Prague, the Czech Republic
| | - Petr Arenberger
- Drs. Stefanis, Arenbergerova, and Arenberger are with the Department of Dermatology and Venereology, Faculty Hospital Kralovske Vinohrady and Third Medical Faculty of Charles University in Prague, the Czech Republic
- Drs. Groh and Bauer are with Bioinova, Ltd. in Prague, the Czech Republic
| | - Peter O Bauer
- Drs. Stefanis, Arenbergerova, and Arenberger are with the Department of Dermatology and Venereology, Faculty Hospital Kralovske Vinohrady and Third Medical Faculty of Charles University in Prague, the Czech Republic
- Drs. Groh and Bauer are with Bioinova, Ltd. in Prague, the Czech Republic
| |
Collapse
|
27
|
Shao Y, Chen J, Dong LJ, He X, Cheng R, Zhou K, Liu J, Qiu F, Li XR, Ma JX. A Protective Effect of PPARα in Endothelial Progenitor Cells Through Regulating Metabolism. Diabetes 2019; 68:2131-2142. [PMID: 31451517 PMCID: PMC6804623 DOI: 10.2337/db18-1278] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 08/23/2019] [Indexed: 12/12/2022]
Abstract
Deficiency of endothelial progenitor cells, including endothelial colony-forming cells (ECFCs) and circulating angiogenic cells (CACs), plays an important role in retinal vascular degeneration in diabetic retinopathy (DR). Fenofibrate, an agonist of peroxisome proliferator-activated receptor α (PPARα), has shown therapeutic effects on DR in both patients and diabetic animal models. However, the function of PPARα in ECFC/CACs has not been defined. In this study, we determined the regulation of ECFC/CAC by PPARα. As shown by flow cytometry and Seahorse analysis, ECFC/CAC numbers and mitochondrial function were decreased in the bone marrow, circulation, and retina of db/db mice, correlating with PPARα downregulation. Activation of PPARα by fenofibrate normalized ECFC/CAC numbers and mitochondrial function in diabetes. In contrast, PPARα knockout exacerbated ECFC/CAC number decreases and mitochondrial dysfunction in diabetic mice. Primary ECFCs from PPARα -/- mice displayed impaired proliferation, migration, and tube formation. Furthermore, PPARα -/- ECFCs showed reduced mitochondrial oxidation and glycolysis compared with wild type, correlating with decreases of Akt phosphorylation and expression of its downstream genes regulating ECFC fate and metabolism. These findings suggest that PPARα is an endogenous regulator of ECFC/CAC metabolism and cell fate. Diabetes-induced downregulation of PPARα contributes to ECFC/CAC deficiency and retinal vascular degeneration in DR.
Collapse
Affiliation(s)
- Yan Shao
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Jianglei Chen
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Li-Jie Dong
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Xuemin He
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Rui Cheng
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Kelu Zhou
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Juping Liu
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Fangfang Qiu
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Xiao-Rong Li
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Jian-Xing Ma
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Harold Hamm Diabetes Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
28
|
Sadanandan N, Di Santo S, Widmer HR. Another win for endothelial progenitor cells: Endothelial progenitor cell-derived conditioned medium promotes proliferation and exerts neuroprotection in cultured neuronal progenitor cells. Brain Circ 2019; 5:106-111. [PMID: 31620656 PMCID: PMC6785943 DOI: 10.4103/bc.bc_41_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 01/08/2023] Open
Abstract
Progress in stem cell research demonstrates stem cells' potential for treating neurodegenerative diseases. Stem cells have proliferative/differentiative properties and produce a variety of paracrine factors that can potentially be used to regenerate nervous tissue. Previous studies have shown the positive regenerative effects of endothelial progenitor cells (EPCs), and thus, they may be used as a tool for regeneration. A study by Di Santo et al. explored whether EPC-derived conditioned medium (EPC-CM) promotes the survival of cultured striatal progenitor cells and attempted to find the paracrine factors and signaling pathways involved with EPC-CM's effects. The neuronal progenitor cells that were cultured with EPC-CM had much higher densities of GABA-immunoreactive (GABA-ir) neurons. It was shown that phosphatidylinositol-3-kinase/AKT and mitogen-activated protein kinase/ERK signaling pathways are involved in the proliferation of GABAergic neurons, as inhibition of these pathways decreased GABAergic densities. In addition, the results suggest that paracrine factors from EPC, both proteinaceous and lipidic, significantly elevated the viability and/or differentiation in the cultures. Importantly, it was found that EPC-CM provided neuroprotection against toxins from 3-nitropropionic acid. In sum, EPC-CM engendered proliferation and regeneration of the cultured striatal cells through paracrine factors and imparted neuroprotection. Furthermore, the effects of EPC-CM may generate a cell-free therapeutic strategy to address neurodegeneration.
Collapse
Affiliation(s)
- Nadia Sadanandan
- Department of Neurosurgery and Brain Repair, College of Medicine, University of South Florida Morsani, Tampa, FL, USA
| | - Stefano Di Santo
- Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Hans Rudolf Widmer
- Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
29
|
Song P, Kwon Y, Joo JY, Kim DG, Yoon JH. Secretomics to Discover Regulators in Diseases. Int J Mol Sci 2019; 20:ijms20163893. [PMID: 31405033 PMCID: PMC6720857 DOI: 10.3390/ijms20163893] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/01/2019] [Accepted: 08/08/2019] [Indexed: 01/03/2023] Open
Abstract
Secretory proteins play important roles in the cross-talk of individual functional units, including cells. Since secretory proteins are essential for signal transduction, they are closely related with disease development, including metabolic and neural diseases. In metabolic diseases, adipokines, myokines, and hepatokines are secreted from respective organs under specific environmental conditions, and play roles in glucose homeostasis, angiogenesis, and inflammation. In neural diseases, astrocytes and microglia cells secrete cytokines and chemokines that play roles in neurotoxic and neuroprotective responses. Mass spectrometry-based secretome profiling is a powerful strategy to identify and characterize secretory proteins. This strategy involves stepwise processes such as the collection of conditioned medium (CM) containing secretome proteins and concentration of the CM, peptide preparation, mass analysis, database search, and filtering of secretory proteins; each step requires certain conditions to obtain reliable results. Proteomic analysis of extracellular vesicles has become a new research focus for understanding the additional extracellular functions of intracellular proteins. Here, we provide a review of the insights obtained from secretome analyses with regard to disease mechanisms, and highlight the future prospects of this technology. Continued research in this field is expected to provide valuable information on cell-to-cell communication and uncover new pathological mechanisms.
Collapse
Affiliation(s)
- Parkyong Song
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Yonghoon Kwon
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Jae-Yeol Joo
- Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu 41062, Korea
| | - Do-Geun Kim
- Dementia Research Group, Korea Brain Research Institute, Daegu 41062, Korea
| | - Jong Hyuk Yoon
- Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu 41062, Korea.
| |
Collapse
|
30
|
Montaner J, Ramiro L, Simats A, Hernández-Guillamon M, Delgado P, Bustamante A, Rosell A. Matrix metalloproteinases and ADAMs in stroke. Cell Mol Life Sci 2019; 76:3117-3140. [PMID: 31165904 PMCID: PMC11105215 DOI: 10.1007/s00018-019-03175-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 12/27/2022]
Abstract
Stroke is a leading cause of death and disability worldwide. However, after years of in-depth research, the pathophysiology of stroke is still not fully understood. Increasing evidence shows that matrix metalloproteinases (MMPs) and "a disintegrin and metalloproteinase" (ADAMs) participate in the neuro-inflammatory cascade that is triggered during stroke but also in recovery phases of the disease. This review covers the involvement of these proteins in brain injury following cerebral ischemia which has been widely studied in recent years, with efforts to modulate this group of proteins in neuroprotective therapies, together with their implication in neurorepair mechanisms. Moreover, the review also discusses the role of these proteins in specific forms of neurovascular disease, such as small vessel diseases and intracerebral hemorrhage. Finally, the potential use of MMPs and ADAMs as guiding biomarkers of brain injury and repair for decision-making in cases of stroke is also discussed.
Collapse
Affiliation(s)
- Joan Montaner
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain.
| | - Laura Ramiro
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Alba Simats
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Mar Hernández-Guillamon
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Pilar Delgado
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Alejandro Bustamante
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Anna Rosell
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| |
Collapse
|
31
|
Mikami T, Suzuki H, Komatsu K, Mikuni N. Influence of Inflammatory Disease on the Pathophysiology of Moyamoya Disease and Quasi-moyamoya Disease. Neurol Med Chir (Tokyo) 2019; 59:361-370. [PMID: 31281171 PMCID: PMC6796064 DOI: 10.2176/nmc.ra.2019-0059] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Moyamoya disease is a unique cerebrovascular disease that is characterized by progressive bilateral stenotic alteration at the terminal portion of the internal carotid arteries. These changes induce the formation of an abnormal vascular network composed of collateral pathways known as moyamoya vessels. In quasi-moyamoya disease, a similar stenotic vascular abnormality is associated with an underlying disease, which is sometimes an inflammatory disease. Recent advances in moyamoya disease research implicate genetic background and immunological mediators, and postulate an association with inflammatory disease as a cause of, or progressive factor in, quasi-moyamoya disease. Although this disease has well-defined clinical and radiological characteristics, the role of inflammation has not been rigorously explored. Herein, we focused on reviewing two main themes: (1) molecular biology of inflammation in moyamoya disease, and (2) clinical significance of inflammation in quasi-moyamoya disease. We have summarized the findings of the former theme according to the following topics: (1) inflammatory biomarkers, (2) genetic background of inflammatory response, (3) endothelial progenitor cells, and (4) noncoding ribonucleic acids. Under the latter theme, we summarized the findings according to the following topics: (1) influence of inflammatory disease, (2) vascular remodeling, and (3) mechanisms gleaned from clinical cases. This review includes articles published up to February 2019 and provides novel insights for the treatment of the moyamoya disease and quasi-moyamoya disease.
Collapse
Affiliation(s)
| | - Hime Suzuki
- Department of Neurosurgery, Sapporo Medical University
| | | | | |
Collapse
|
32
|
Endothelial progenitor cells: Potential novel therapeutics for ischaemic stroke. Pharmacol Res 2019; 144:181-191. [DOI: 10.1016/j.phrs.2019.04.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/08/2019] [Accepted: 04/16/2019] [Indexed: 01/15/2023]
|
33
|
Santo SD, Seiler S, Andres R, Widmer HR. Endothelial Progenitor Cells Conditioned Medium Supports Number of GABAergic Neurons and Exerts Neuroprotection in Cultured Striatal Neuronal Progenitor Cells. Cell Transplant 2019; 28:367-378. [PMID: 31017468 PMCID: PMC6628568 DOI: 10.1177/0963689719835192] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
There is growing evidence that stem and progenitor cells exert regenerative actions by means of paracrine factors. In line with these notions, we recently demonstrated that endothelial progenitor cell (EPC)-derived conditioned medium (EPC-CM) substantially increased viability of brain microvascular cells. In the present study, we aimed at investigating whether EPC-CM supports cell survival of cultured striatal progenitor cells. For that purpose, primary cultures from fetal rat embryonic (E14) ganglionic eminence were prepared and grown for 7 days in vitro (DIV). EPC-CM was administered from DIV5–7. Treatment of the striatal cultures with EPC-CM resulted in significantly increased densities of GABA-immunoreactive (-ir) neurons. Inhibition of mitogen-activated protein kinase and phosphatidylinositol-3-kinase, but not of the ROCK pathway, significantly attenuated the EPC-CM induced increase in GABA-ir cell densities. Similar results were observed when EPC-CM was subjected to proteolytic digestion and lipid extraction. Furthermore, inhibition of translation abolished the EPC-CM induced effects. Importantly, EPC-CM displayed neuroprotection against 3-nitropropionic acid induced toxicity. These findings demonstrate that EPC-derived paracrine factors substantially promote survival and/or differentiation of cultured striatal progenitor cells involving both proteinaceous factors and lipidic factors. In sum, EPC-CM constituents might lead to a novel cell-free therapeutic strategy to challenge neuronal degeneration.
Collapse
Affiliation(s)
- Stefano Di Santo
- 1 Department of Neurosurgery, Bern University Hospital, Switzerland
| | - Stefanie Seiler
- 1 Department of Neurosurgery, Bern University Hospital, Switzerland
| | - Robert Andres
- 1 Department of Neurosurgery, Bern University Hospital, Switzerland
| | | |
Collapse
|
34
|
Ozaki T, Nakamura H, Kishima H. Therapeutic strategy against ischemic stroke with the concept of neurovascular unit. Neurochem Int 2019; 126:246-251. [PMID: 30946849 DOI: 10.1016/j.neuint.2019.03.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/05/2019] [Accepted: 03/28/2019] [Indexed: 01/01/2023]
Abstract
Stroke is one of the leading causes of death and disability globally. Although thrombolytic therapy by t-PA and mechanical thrombectomy have improved outcomes of ischemic stroke patients, both of these approaches are applicable to limited numbers of patients owing to their time constraints. Therefore, development of other treatment approaches such as developing neuroprotective drugs and nerve regeneration therapy is required to overcome ischemic stroke. The concept of the neurovascular unit (NVU) was formalized by the Stroke Progress Review Group of the National Institute of Neurological Disorders and Stroke in 2001. This concept emphasizes the importance not just of neurons but of the interactions between neurons, endothelial cells, astroglia, microglia and associated tissue matrix proteins to investigate the pathological condition of ischemic stroke. Many reports have been published about these interactions. This review focuses on the roles of cells that surround cerebral vasculature, especially endothelial cells, and reports therapeutic strategies against ischemic stroke from four points of view including angiogenesis, neurotrophic effects, protection of NVU components and regenerative therapy.
Collapse
Affiliation(s)
- Tomohiko Ozaki
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Japan; Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Japan.
| | - Hajime Nakamura
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Japan
| |
Collapse
|
35
|
Nakayama T, Nagata E, Masuda H, Asahara T, Takizawa S. Regeneration-associated cell transplantation contributes to tissue recovery in mice with acute ischemic stroke. PLoS One 2019; 14:e0210198. [PMID: 30682162 PMCID: PMC6347160 DOI: 10.1371/journal.pone.0210198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 12/18/2018] [Indexed: 01/05/2023] Open
Abstract
Various cell-based therapeutic strategies have been investigated for vascular and tissue regeneration after ischemic stroke. We have developed a novel cell population, called regeneration-associated cells (RACs), by quality- and quantity-controlled culture of unfractionated mononuclear cells. RACs were trans-arterially injected into 10-week-old syngeneic male mice at 1, 3, 5 or 7 days after permanent middle cerebral artery occlusion (MCAO) to determine the optimal timing for administration in terms of outcome at day 21. Next, we examined the effects of RACs injection at day 1 after MCAO on neurological deficits, infarct volume, and mediators of vascular regeneration and anti-inflammation at days 7 and 21. Infarct volume at day 21 was significantly reduced by transplantation of RACs at day 1 or 3. RACs injected at day 1 reduced the infarct volume at day 7 and 21. Angiogenesis and anti-inflammatory mediators, VEGF and IL-10, were increased at day 7, and VEGF was still upregulated at day 21. We also observed significantly enhanced ink perfusion in vivo, tube formation in vitro, and definitive endothelial progenitor cell colonies in colony assay. These results suggest that RAC transplantation in MCAO models promoted significant recovery of neural tissues through intensified anti-inflammatory and angiogenic effects.
Collapse
Affiliation(s)
- Taira Nakayama
- Department of Neurology, Tokai University School of Medicine, Isehara, Japan
| | - Eiichiro Nagata
- Department of Neurology, Tokai University School of Medicine, Isehara, Japan
| | - Haruchika Masuda
- Department of Physiology, Tokai University School of Medicine, Isehara, Japan
| | - Takayuki Asahara
- Department of Regenerative Medicine Science, Tokai University School of Medicine, Isehara, Japan
| | - Shunya Takizawa
- Department of Neurology, Tokai University School of Medicine, Isehara, Japan
- * E-mail:
| |
Collapse
|
36
|
Astrocyte Signaling in the Neurovascular Unit After Central Nervous System Injury. Int J Mol Sci 2019; 20:ijms20020282. [PMID: 30642007 PMCID: PMC6358919 DOI: 10.3390/ijms20020282] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/24/2018] [Accepted: 01/07/2019] [Indexed: 12/20/2022] Open
Abstract
Astrocytes comprise the major non-neuronal cell population in the mammalian neurovascular unit. Traditionally, astrocytes are known to play broad roles in central nervous system (CNS) homeostasis, including the management of extracellular ion balance and pH, regulation of neurotransmission, and control of cerebral blood flow and metabolism. After CNS injury, cell–cell signaling between neuronal, glial, and vascular cells contribute to repair and recovery in the neurovascular unit. In this mini-review, we propose the idea that astrocytes play a central role in organizing these signals. During CNS recovery, reactive astrocytes communicate with almost all CNS cells and peripheral progenitors, resulting in the promotion of neurogenesis and angiogenesis, regulation of inflammatory response, and modulation of stem/progenitor response. Reciprocally, changes in neurons and vascular components of the remodeling brain should also influence astrocyte signaling. Therefore, understanding the complex and interdependent signaling pathways of reactive astrocytes after CNS injury may reveal fundamental mechanisms and targets for re-integrating the neurovascular unit and augmenting brain recovery.
Collapse
|
37
|
Rikhtegar R, Yousefi M, Dolati S, Kasmaei HD, Charsouei S, Nouri M, Shakouri SK. Stem cell-based cell therapy for neuroprotection in stroke: A review. J Cell Biochem 2018; 120:8849-8862. [PMID: 30506720 DOI: 10.1002/jcb.28207] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/15/2018] [Indexed: 12/15/2022]
Abstract
Neurological disorders, such as stroke, are triggered by a loss of neurons and glial cells. Ischemic stroke remains a substantial problem for industrialized countries. Over the previous few decades our understanding about the pathophysiology of stroke has enhanced, nevertheless, more awareness is required to advance the field of stroke recovery. Existing therapies are incapable to adequately relief the disease outcome and are not appropriate to all patients. Meanwhile, the majority of patients continue to show neurological deficits even subsequent effective thrombolysis, recuperative therapies are immediately required that stimulate brain remodeling and repair once stroke damage has happened. Cell therapy is emergent as a hopeful new modality for increasing neurological recovery in ischemic stroke. Numerous types of stem cells from various sources have been identified and their possibility and efficiency for the treatment of stroke have been investigated. Stem cell therapy in patients with stroke using adult stem cells have been first practiced in clinical trials since 15 years ago. Even though stem cells have revealed a hopeful role in ischemic stroke in investigational studies besides early clinical pilot studies, cellular therapy in human is still at a primary stage. In this review, we summarize the types of stem cells, various delivery routes, and clinical application of stem cell-based therapy for stroke treatment.
Collapse
Affiliation(s)
- Reza Rikhtegar
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanam Dolati
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hosein Delavar Kasmaei
- Department of Neurology, Shohada-e-Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Charsouei
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Kazem Shakouri
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Physical Medicine and Rehabilitation Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
38
|
Hou Y, Li C. Stem/Progenitor Cells and Their Therapeutic Application in Cardiovascular Disease. Front Cell Dev Biol 2018; 6:139. [PMID: 30406100 PMCID: PMC6200850 DOI: 10.3389/fcell.2018.00139] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/28/2018] [Indexed: 12/26/2022] Open
Abstract
Cardiovascular disease is the leading cause of death in the world. The stem/progenitor cell-based therapy has emerged as a promising approach for the treatment of a variety of cardiovascular diseases including myocardial infarction, stroke, peripheral arterial disease, and diabetes. An increasing number of evidence has shown that stem/progenitor cell transplantation could replenish damaged cells, improve cardiac and vascular functions, and repair injured tissues in many pre-clinical studies and clinical trials. In this review, we have outlined the major types of stem/progenitor cells, and summarized the studies in applying these cells, especially endothelial stem/progenitor cells and their derivatives, in the treatment of cardiovascular disease. Here the strategies used to improve the stem/progenitor cell-based therapies in cardiovascular disease and the challenges with these therapies in clinical applications are also reviewed.
Collapse
Affiliation(s)
- Yuning Hou
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, United States
| | - Chunying Li
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
39
|
A preventive injection of endothelial progenitor cells prolongs lifespan in stroke-prone spontaneously hypertensive rats. Clin Sci (Lond) 2018; 132:1797-1810. [PMID: 30006482 DOI: 10.1042/cs20180360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/06/2018] [Accepted: 07/10/2018] [Indexed: 11/17/2022]
Abstract
There is a pressing need for new approaches to prevent stroke. Endothelial progenitor cells (EPCs) promote vascular repair and revascularization in the ischemic brain. The present study sought to evaluate whether preventive delivery of EPCs could prevent or protect against stroke. Stroke-prone spontaneously hypertensive rats (SHR-SP) received a single injection of EPCs, and their survival time was monitored. In addition, at 28 and/or 42 days after a single injection of EPCs, SHR-SP and mice were subjected to cerebral ischemia, and cerebral ischemic injury, local angiogenesis and in vivo EPC integration were determined. Other experiments examined the effects of EPC conditioned medium, and the distribution of donor EPCs taken from GFP transgenic mice. It was found that EPC-pretreated SHR-SP showed longer lifespans than untreated controls. A single preventive injection of EPCs could produce persistent protective effects against cerebral ischemic injury (lasting at least 42 days), and promote local angiogenesis in the ischemic brain, in two types of animals (SHR-SP and normotensive mice). EPCs of donor origin could be detected in the recipient peripheral blood, and integrated into the recipient ischemic brains. Furthermore, it was suggested that mouse EPCs might exert paracrine effects on cerebral ischemic injury in addition to their direct angiogenic effects. In conclusion, a single preventive injection of EPCs prolonged the lifespan of SHR-SP, and protected against cerebral ischemic injury for at least 7 weeks. It is implied that EPC injection might be a promising candidate for a preventive role in patients at high risk for stroke.
Collapse
|
40
|
Esquiva G, Grayston A, Rosell A. Revascularization and endothelial progenitor cells in stroke. Am J Physiol Cell Physiol 2018; 315:C664-C674. [PMID: 30133323 DOI: 10.1152/ajpcell.00200.2018] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Stroke is one of the leading causes of death and disability worldwide. Tremendous improvements have been achieved in the acute care of stroke patients with the implementation of stroke units, thrombolytic drugs, and endovascular trombectomies. However, stroke survivors with neurological deficits require long periods of neurorehabilitation, which is the only approved therapy for poststroke recovery. With this scenario, more treatments are urgently needed, and only the understanding of the mechanisms of brain recovery might contribute to identify new therapeutic agents. Fortunately, brain injury after stroke is counteracted by the birth and migration of several populations of progenitor cells towards the injured areas, where angiogenesis and vascular remodeling play a key role providing trophic support and guidance during neurorepair. Endothelial progenitor cells (EPCs) constitute a pool of circulating bone-marrow derived cells that mobilize after an ischemic injury with the potential to incorporate into the damaged endothelium, to form new vessels, or to secrete trophic factors stimulating vessel remodeling. The circulating levels of EPCs are altered after stroke, and several subpopulations have proved to boost brain neurorepair in preclinical models of cerebral ischemia. The goal of this review is to discuss the current state of the neuroreparative actions of EPCs, focusing on their paracrine signaling mechanisms thorough their secretome and released extracellular vesicles.
Collapse
Affiliation(s)
- Gema Esquiva
- Neurovascular Research Laboratory and Neurology Department, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona , Barcelona , Spain
| | - Alba Grayston
- Neurovascular Research Laboratory and Neurology Department, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona , Barcelona , Spain
| | - Anna Rosell
- Neurovascular Research Laboratory and Neurology Department, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona , Barcelona , Spain
| |
Collapse
|
41
|
Li Y, Chang S, Li W, Tang G, Ma Y, Liu Y, Yuan F, Zhang Z, Yang GY, Wang Y. cxcl12-engineered endothelial progenitor cells enhance neurogenesis and angiogenesis after ischemic brain injury in mice. Stem Cell Res Ther 2018; 9:139. [PMID: 29751775 PMCID: PMC5948880 DOI: 10.1186/s13287-018-0865-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/08/2018] [Accepted: 04/10/2018] [Indexed: 12/31/2022] Open
Abstract
Background Ischemic stroke causes a multitude of brain damage. Neurovascular injury and myelin sheath degradation are two manifestations of ischemic brain damage. Therapeutic strategies aiming only at repairing the neural components or the vessels cannot efficiently restore neurological function. Endothelial progenitor cells (EPCs) have the advantages of both promoting angiogenesis and secreting trophic factors that would promote neurogenesis. Chemokine cxcl12 gene therapy has also been shown to promote angiogenesis, neurogenesis, and remyelination, attracting EPCs, neural progenitor cells, and oligodendrocyte progenitor cells (OPCs) to the injured sites of the brain. In this work, we tested whether these two therapeutics can be combined by genetically engineering the EPCs with cxcl12 to harness the synergistic effects of these two interventions. Methods We used lentivirus (LV) to deliver cxcl12 gene into human umbilical cord blood EPCs to generate the engineered CXCL12-EPCs, which were then delivered into the perifocal region at 1 week after permanent middle cerebral artery occlusion to investigate the effects of CXCL12-EPCs on the functional recovery and angiogenesis, neurogenesis, and remyelination in ischemic stroke mice. Green fluorescent protein (gfp) gene-modified EPCs and LV-CXCL12 gene therapy were used as controls. Results CXCL12-EPC treatment significantly reduced brain atrophy and improved neurobehavioral function at 5 weeks after brain ischemia. The treatment resulted in increased blood vessel density and myelin sheath integrity, and promoted neurogenesis, angiogenesis, and the proliferation and migration of OPCs. In-vitro data showed that CXCL12-EPCs performed better in proliferation and tube formation assays and expressed a higher level of vascular endothelial growth factor compared to GFP-EPCs. Conclusions The synergistic treatment of CXCL12-EPCs outperformed the single therapies of GFP-EPCs or LV-CXCL12 gene therapy in various aspects related to post-ischemic brain repair. cxcl12-engineered EPCs hold great potential in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yaning Li
- School of Biomedical Engineering and Shanghai Jiao Tong University, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China
| | - Shuang Chang
- School of Biomedical Engineering and Shanghai Jiao Tong University, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China
| | - Wanlu Li
- School of Biomedical Engineering and Shanghai Jiao Tong University, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China
| | - Guanghui Tang
- School of Biomedical Engineering and Shanghai Jiao Tong University, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China
| | - Yuanyuan Ma
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yanqun Liu
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Fang Yuan
- School of Biomedical Engineering and Shanghai Jiao Tong University, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China
| | - Zhijun Zhang
- School of Biomedical Engineering and Shanghai Jiao Tong University, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China
| | - Guo-Yuan Yang
- School of Biomedical Engineering and Shanghai Jiao Tong University, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China. .,Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Yongting Wang
- School of Biomedical Engineering and Shanghai Jiao Tong University, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China.
| |
Collapse
|
42
|
Maki T, Morancho A, Segundo PMS, Hayakawa K, Takase H, Liang AC, Gabriel-Salazar M, Medina-Gutiérrez E, Washida K, Montaner J, Lok J, Lo EH, Arai K, Rosell A. Endothelial Progenitor Cell Secretome and Oligovascular Repair in a Mouse Model of Prolonged Cerebral Hypoperfusion. Stroke 2018; 49:1003-1010. [PMID: 29511131 PMCID: PMC5871569 DOI: 10.1161/strokeaha.117.019346] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 01/05/2018] [Accepted: 01/31/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND PURPOSE Endothelial progenitor cells (EPCs) have been extensively investigated as a therapeutic approach for repairing the vascular system in cerebrovascular diseases. Beyond vascular regeneration per se, EPCs may also release factors that affect the entire neurovascular unit. Here, we aim to study the effects of the EPC secretome on oligovascular remodeling in a mouse model of white matter injury after prolonged cerebral hypoperfusion. METHODS The secretome of mouse EPCs was analyzed with a proteome array. In vitro, the effects of the EPC secretome and its factor angiogenin were assessed on primary oligodendrocyte precursor cells and mature human cerebral microvascular endothelial cells (hCMED/D3). In vivo, mice were subjected to permanent bilateral common carotid artery stenosis, then treated with EPC secretome at 24 hours and at 1 week, and cognitive outcome was evaluated with the Y maze test together with oligodendrocyte precursor cell proliferation/differentiation and vascular density in white matter at 4 weeks. RESULTS Multiple growth factors, cytokines, and proteases were identified in the EPC secretome, including angiogenin. In vitro, the EPC secretome significantly enhanced endothelial and oligodendrocyte precursor cell proliferation and potentiated oligodendrocyte precursor cell maturation. Angiogenin was proved to be a key factor since pharmacological blockade of angiogenin signaling negated the positive effects of the EPC secretome. In vivo, treatment with the EPC secretome increased vascular density, myelin, and mature oligodendrocytes in white matter and rescued cognitive function in the mouse hypoperfusion model. CONCLUSIONS Factors secreted by EPCs may ameliorate white matter damage in the brain by boosting oligovascular remodeling.
Collapse
Affiliation(s)
- Takakuni Maki
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Anna Morancho
- Neurovascular Research Laboratory, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, Spain
| | - Pablo Martinez-San Segundo
- Neurovascular Research Laboratory, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, Spain
| | - Kazuhide Hayakawa
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Hajime Takase
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Anna C. Liang
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Marina Gabriel-Salazar
- Neurovascular Research Laboratory, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, Spain
| | - Esperanza Medina-Gutiérrez
- Neurovascular Research Laboratory, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, Spain
| | - Kazuo Washida
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Joan Montaner
- Neurovascular Research Laboratory, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, Spain
| | - Josephine Lok
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Eng H. Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Anna Rosell
- From the Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown (T.M., K.H., H.T., A.C.L., K.W., J.L., E.H.L., K.A.); and Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Spain (A.M., P.M.-S.S., M.G.-S., E.M.-G., J.M., A.R.).
| |
Collapse
|
43
|
Yuan F, Chang S, Luo L, Li Y, Wang L, Song Y, Qu M, Zhang Z, Yang GY, Wang Y. cxcl12 gene engineered endothelial progenitor cells further improve the functions of oligodendrocyte precursor cells. Exp Cell Res 2018; 367:222-231. [PMID: 29614310 DOI: 10.1016/j.yexcr.2018.03.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/28/2018] [Accepted: 03/30/2018] [Indexed: 11/18/2022]
Abstract
Oligodendrocyte precursor cells (OPCs) are needed for white matter repair after various brain injury. Means that promote OPC functions could benefit white matter recovery after injury. Chemokine CXCL12 and endothelial progenitor cells (EPCs) both have been shown to promote remyelination. We hypothesize that the beneficial effects of EPCs and CXCL12 can be harnessed by genetically modifying EPCs with cxcl12 to synergistically improve the functions of OPCs. In this work, CXCL12-EPC was generated using virus-mediated gene transfer. OPCs were cultured with CXCL12-EPC conditioned media (CM) to analyze its impact on the proliferation, migration, differentiation and survival properties of OPCs. We blocked or knocked-down the receptors of CXCL12, namely CXCR4 and CXCR7, respectively to investigate their functions in regulating OPCs properties. Results revealed that CXCL12-EPC CM further promoted OPCs behavioral properties and upregulated the expression of PDGFR-α, bFGF, CXCR4 and CXCR7 in OPCs, albeit following different time course. Blocking CXCR4 diminished the beneficial effects of CXCL12 on OPCs proliferation and migration, while knocking down CXCR7 inhibited OPCs differentiation. Our results supported that cxcl12 gene modification of EPCs further promoted EPCs' ability in augmenting the remyelination properties of OPCs, suggesting that CXCL12-EPC hold great potential in white matter repair.
Collapse
Affiliation(s)
- Fang Yuan
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Shuang Chang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Longlong Luo
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yaning Li
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Liping Wang
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Yaying Song
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Meijie Qu
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Zhijun Zhang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Guo-Yuan Yang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200030, China; Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China.
| | - Yongting Wang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
44
|
Pozhilenkova EA, Lopatina OL, Komleva YK, Salmin VV, Salmina AB. Blood-brain barrier-supported neurogenesis in healthy and diseased brain. Rev Neurosci 2018; 28:397-415. [PMID: 28195555 DOI: 10.1515/revneuro-2016-0071] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/23/2016] [Indexed: 12/23/2022]
Abstract
Adult neurogenesis is one of the most important mechanisms contributing to brain development, learning, and memory. Alterations in neurogenesis underlie a wide spectrum of brain diseases. Neurogenesis takes place in highly specialized neurogenic niches. The concept of neurogenic niches is becoming widely accepted due to growing evidence of the important role of the microenvironment established in the close vicinity to stem cells in order to provide adequate control of cell proliferation, differentiation, and apoptosis. Neurogenic niches represent the platform for tight integration of neurogenesis and angiogenesis supported by specific properties of cerebral microvessel endothelial cells contributing to establishment of partially compromised blood-brain barrier (BBB) for the adjustment of local conditions to the current metabolic needs of stem and progenitor cells. Here, we review up-to-date data on microvascular dynamics in activity-dependent neurogenesis, specific properties of BBB in neurogenic niches, endothelial-driven mechanisms of clonogenic activity, and future perspectives for reconstructing the neurogenic niches in vitro.
Collapse
|
45
|
Meng ZY, Kang HL, Duan W, Zheng J, Li QN, Zhou ZJ. MicroRNA-210 Promotes Accumulation of Neural Precursor Cells Around Ischemic Foci After Cerebral Ischemia by Regulating the SOCS1-STAT3-VEGF-C Pathway. J Am Heart Assoc 2018; 7:JAHA.116.005052. [PMID: 29478968 PMCID: PMC5866312 DOI: 10.1161/jaha.116.005052] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Neural precursor cell (NPC) migration toward lesions is key for neurological functional recovery. The neovasculature plays an important role in guiding NPC migration. MicroRNA‐210 (miR‐210) promotes angiogenesis and neurogenesis in the subventricular zone and hippocampus after cerebral ischemia; however, whether miR‐210 regulates NPC migration and the underlying mechanism is still unclear. This study investigated the role of miR‐210 in NPC migration. Methods and Results Neovascularization and NPC accumulation was detected around ischemic foci in a mouse model of middle cerebral artery occlusion (MCAO) and reperfusion. Bone marrow–derived endothelial progenitor cells (EPCs) were found to participate in neovascularization. miR‐210 was markedly upregulated after focal cerebral ischemia/reperfusion. Overexpressed miR‐210 enhanced neovascularization and NPC accumulation around the ischemic lesion and vice versa, strongly suggesting that miR‐210 might be involved in neovascularization and NPC accumulation after focal cerebral ischemia/reperfusion. In vitro experiments were conducted to explore the underlying mechanism. The transwell assay showed that EPCs facilitated NPC migration, which was further promoted by miR‐210 overexpression in EPCs. In addition, miR‐210 facilitated VEGF‐C (vascular endothelial growth factor C) expression both in vitro and in vivo. Moreover, the luciferase reporter assay demonstrated that miR‐210 directly targeted the 3′ untranslated region of SOCS1 (suppressor of cytokine signaling 1), and miR‐210 overexpression in HEK293 cells or EPCs decreased SOCS1 and increased STAT3 (signal transducer and activator of transcription 3) and VEGF‐C expression. When EPCs were simultaneously transfected with miR‐210 mimics and SOCS1, the expression of STAT3 and VEGF‐C was reversed. Conclusions miR‐210 promoted neovascularization and NPC migration via the SOCS1–STAT3–VEGF‐C pathway.
Collapse
Affiliation(s)
- Zhao-You Meng
- Department of Neurology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hua-Li Kang
- Institute of Cardiovascular Diseases of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wei Duan
- Department of Neurology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jian Zheng
- Department of Neurology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Qian-Ning Li
- Department of Neurology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhu-Juan Zhou
- Department of Neurology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
46
|
Devetzi M, Goulielmaki M, Khoury N, Spandidos DA, Sotiropoulou G, Christodoulou I, Zoumpourlis V. Genetically‑modified stem cells in treatment of human diseases: Tissue kallikrein (KLK1)‑based targeted therapy (Review). Int J Mol Med 2018; 41:1177-1186. [PMID: 29328364 PMCID: PMC5819898 DOI: 10.3892/ijmm.2018.3361] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/02/2018] [Indexed: 12/12/2022] Open
Abstract
The tissue kallikrein-kinin system (KKS) is an endogenous multiprotein metabolic cascade which is implicated in the homeostasis of the cardiovascular, renal and central nervous system. Human tissue kallikrein (KLK1) is a serine protease, component of the KKS that has been demonstrated to exert pleiotropic beneficial effects in protection from tissue injury through its anti-inflammatory, anti-apoptotic, anti-fibrotic and anti-oxidative actions. Mesenchymal stem cells (MSCs) or endothelial progenitor cells (EPCs) constitute populations of well-characterized, readily obtainable multipotent cells with special immunomodulatory, migratory and paracrine properties rendering them appealing potential therapeutics in experimental animal models of various diseases. Genetic modification enhances their inherent properties. MSCs or EPCs are competent cellular vehicles for drug and/or gene delivery in the targeted treatment of diseases. KLK1 gene delivery using adenoviral vectors or KLK1 protein infusion into injured tissues of animal models has provided particularly encouraging results in attenuating or reversing myocardial, renal and cerebrovascular ischemic phenotype and tissue damage, thus paving the way for the administration of genetically modified MSCs or EPCs with the human tissue KLK1 gene. Engraftment of KLK1-modified MSCs and/or KLK1-modified EPCs resulted in advanced beneficial outcome regarding heart and kidney protection and recovery from ischemic insults. Collectively, findings from pre-clinical studies raise the possibility that tissue KLK1 may be a novel future therapeutic target in the treatment of a wide range of cardiovascular, cerebrovascular and renal disorders.
Collapse
Affiliation(s)
- Marina Devetzi
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Maria Goulielmaki
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Nicolas Khoury
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | | | - Ioannis Christodoulou
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece
| |
Collapse
|
47
|
Modulation of Post-Stroke Plasticity and Regeneration by Stem Cell Therapy and Exogenic Factors. CELLULAR AND MOLECULAR APPROACHES TO REGENERATION AND REPAIR 2018. [DOI: 10.1007/978-3-319-66679-2_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
48
|
Park E, Park K, Liu E, Jiang R, Zhang J, Baker AJ. Bone-Marrow–Derived Endothelial Progenitor Cell Treatment in a Model of Lateral Fluid Percussion Injury in Rats: Evaluation of Acute and Subacute Outcome Measures. J Neurotrauma 2017; 34:2801-2811. [DOI: 10.1089/neu.2016.4560] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Eugene Park
- Keenan Research Center in the Li Ka Shing Knowledge Institute at St. Michael's Hospital, Toronto, Ontario, Canada
| | - Katya Park
- Keenan Research Center in the Li Ka Shing Knowledge Institute at St. Michael's Hospital, Toronto, Ontario, Canada
| | - Elaine Liu
- Keenan Research Center in the Li Ka Shing Knowledge Institute at St. Michael's Hospital, Toronto, Ontario, Canada
| | - Rongcai Jiang
- Department of Neurosurgery, Tianjin Medical University, Tianjin Neurological Institute, Tianjin, China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University, Tianjin Neurological Institute, Tianjin, China
| | - Andrew J. Baker
- Keenan Research Center in the Li Ka Shing Knowledge Institute at St. Michael's Hospital, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Departments of Anesthesia & Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
49
|
Zhang N, Song C, Zhao B, Xing M, Luo L, Gordon ML, Cheng Y. Neovascularization and Synaptic Function Regulation with Memantine and Rosuvastatin in a Rat Model of Chronic Cerebral Hypoperfusion. J Mol Neurosci 2017; 63:223-232. [PMID: 28920182 DOI: 10.1007/s12031-017-0974-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 09/08/2017] [Indexed: 12/16/2022]
Abstract
Cerebral hypoperfusion is an important factor in the pathogenesis of cerebrovascular diseases and neurodegenerative disorders. We investigated the effects of memantine and rosuvastatin on both neovascularization and synaptic function in a rat model of chronic cerebral hypoperfusion, which was established by the bilateral common carotid occlusion (2VO) method. We tested learning and memory ability, synaptic function, circulating endothelial progenitor cell (EPC) number, expression of neurotrophic factors, and markers of neovasculogenesis and cell proliferation after memantine and/or rosuvastatin treatment. Rats treated with memantine and/or rosuvastatin showed significant improvement in Morris water maze task and long-term potentiation (LTP) in the hippocampus, compared with untreated 2VO model rats. Circulating EPCs, expression of brain-derived neurotrophic factor, and vascular endothelial growth factor, markers of microvessel density were increased by each of the three interventions. Rosuvastatin also increased cell proliferation in the hippocampus. Combined treatment with memantine and rosuvastatin showed greater effect on enhancement of LTP and expression of neurotrophic factors than either single medication treatment alone. Both memantine and rosuvastatin improved learning and memory, enhanced neovascularization and synaptic function, and upregulated neurotrophic factors in a rat model of chronic cerebral hypoperfusion.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, 154, Anshan Road, Tianjin, 300052, China.
- The Litwin-Zucker Research Center, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.
| | - Chenchen Song
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, 154, Anshan Road, Tianjin, 300052, China
- Department of Neurology, No.254 Hospital of the PLA, Tianjin, China
| | - Baomin Zhao
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, 154, Anshan Road, Tianjin, 300052, China
- Department of Neurology, Yidu Central Hospital of Weifang, Qingzhou, China
| | - Mengya Xing
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, 154, Anshan Road, Tianjin, 300052, China
| | - Lanlan Luo
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, 154, Anshan Road, Tianjin, 300052, China
| | - Marc L Gordon
- The Litwin-Zucker Research Center, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.
| | - Yan Cheng
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, 154, Anshan Road, Tianjin, 300052, China
| |
Collapse
|
50
|
Dong XH, Peng C, Zhang YY, Tao YL, Tao X, Zhang C, Chen AF, Xie HH. Chronic Exposure to Subtherapeutic Antibiotics Aggravates Ischemic Stroke Outcome in Mice. EBioMedicine 2017; 24:116-126. [PMID: 28928014 PMCID: PMC5652002 DOI: 10.1016/j.ebiom.2017.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/18/2017] [Accepted: 09/05/2017] [Indexed: 11/24/2022] Open
Abstract
Subtherapeutic antibiotics have been widely used in agriculture since the 1950s, which can be accumulated in human body through various approaches and may have long-term consequences. However, there is limited information about the link between chronic subtherapeutic antibiotic exposure and the outcome of ischemic brain injury. Here we showed that long-term treatment with subtherapeutic chlortetracycline, penicillin or vancomycin, which were widely used in agriculture approved by US Food and Drug Administration (FDA), could impair EPC functions, reduce ischemic brain angiogenesis and aggravate cerebral ischemic injury and long-term stroke outcomes in mice. In addition, transplantated EPCs from chronic antibiotic-treated mice showed a lower therapeutic effect on cerebral ischemic injury reduction and local angiogenesis promotion compared to those from control mice, and EPCs from the donor animals could integrate into the recipient ischemic brain in mice. Furthermore, transplanted EPCs might exert paracrine effects on cerebral ischemic injury reduction in mice, which could be impaired by chronic antibiotic exposure. In conclusion, chronic subtherapeutic antibiotic exposure aggravated cerebral ischemic injury in mice, which might be partly attributed to the impairment of both EPC-mediated angiogenesis and EPCs' paracrine effects. These findings reveal a previously unrecognized impact of chronic subtherapeutic antibiotic exposure on ischemic injury. Chronic exposure to subtherapeutic antibiotics aggravates long-term stroke outcome in mice. Chronic exposure to subtherapeutic antibiotics impairs endothelial progenitor cell functions in mice. Chronic exposure to subtherapeutic antibiotics reduces ischemic brain angiogenesis in mice.
Subtherapeutic antibiotics have been widely used in agriculture since the 1950s, which can be accumulated in human body through various approaches and may have long-term consequences. However, there is limited information about the link between chronic subtherapeutic antibiotic exposure and the outcome of ischemic brain injury. Here we showed that chronic treatment with subtherapeutic chlortetracycline, penicillin or vancomycin, which were widely used in agriculture approved by US Food and Drug Administration (FDA), could impair endothelial progenitor cells-mediated angiogenesis and aggravate long-term stroke outcome in mice. These findings reveal a previously unrecognized impact of chronic subtherapeutic antibiotic exposure on ischemic injury.
Collapse
Affiliation(s)
- Xiao-Hui Dong
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Pharmacy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Cheng Peng
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yu-Yi Zhang
- Department of Pharmacy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yu-Long Tao
- Department of Pharmacy, Shanghai Changzheng Hospital, The Second Military Medical University, Shanghai 200120, China
| | - Xia Tao
- Department of Pharmacy, Shanghai Changzheng Hospital, The Second Military Medical University, Shanghai 200120, China
| | - Chuan Zhang
- Department of Identification of Traditional Chinese Medicine, The Second Military Medical University, Shanghai 200433, China
| | - Alex F Chen
- Third Xiangya Hospital, The Institute of Vascular Disease and Translational Medicine, Central South University, Changsha, Hunan 410013, China
| | - He-Hui Xie
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Third Xiangya Hospital, The Institute of Vascular Disease and Translational Medicine, Central South University, Changsha, Hunan 410013, China; Department of Identification of Traditional Chinese Medicine, The Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|