1
|
Xie Y, Wang S, Liu Y, Deng J, Su X, Huang Z, Zheng H. Israeli Acute Paralysis Virus Is an Emerging Pathogen Contributing to Brood Disease of Apis cerana. Viruses 2024; 16:1395. [PMID: 39339872 PMCID: PMC11437426 DOI: 10.3390/v16091395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Larval mortality is the primary symptom of diseased Apis cerana colonies, often attributed to sacbrood virus (SBV) and Melissococcus plutonius. However, the impact of other common honeybee viruses is frequently overlooked, and their pathogenicity to A. cerana remains poorly understood. To investigate the causes of the increasing disease incidence in A. cerana brood, we conducted an epidemiological survey, collecting 70 samples from 19 sites across nine provinces in China. Furthermore, we examined the pathogenicity of Israeli acute paralysis virus (IAPV) in A. cerana brood through artificial inoculation experiments. Our results demonstrate that, besides SBV and M. plutonius, the infection rate and viral load of IAPV in diseased brood are significantly high. Brood artificially inoculated with high concentrations of IAPV exhibited a significant increase in mortality and displayed clinical symptoms similar to those observed in naturally infected colonies. Moreover, a limited resistance to IAPV was observed in A. cerana brood, with some individuals able to restrict viral proliferation. Our study highlights the previously unrecognized pathogenicity of IAPV to A. cerana brood, demonstrating that IAPV poses a significant threat similar to SBV and M. plutonius. We emphasize that IAPV should be recognized as an emerging pathogen causing brood disease in A. cerana and managed accordingly in beekeeping practices.
Collapse
Affiliation(s)
- Yanling Xie
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shuai Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yao Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jie Deng
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoling Su
- Jinhua Academy of Agricultural Sciences, Jinhua 321017, China
| | - Zhichu Huang
- Jinhua Academy of Agricultural Sciences, Jinhua 321017, China
| | - Huoqing Zheng
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Lu RX, Bhatia S, Simone-Finstrom M, Rueppell O. Quantitative trait loci mapping for survival of virus infection and virus levels in honey bees. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 116:105534. [PMID: 38036199 DOI: 10.1016/j.meegid.2023.105534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 12/02/2023]
Abstract
Israeli acute paralysis virus (IAPV) is a highly virulent, Varroa-vectored virus that is of global concern for honey bee health. Little is known about the genetic basis of honey bees to withstand infection with IAPV or other viruses. We set up and analyzed a backcross between preselected honey bee colonies of low and high IAPV susceptibility to identify quantitative trait loci (QTL) associated with IAPV susceptibility. Experimentally inoculated adult worker bees were surveyed for survival and selectively sampled for QTL analysis based on SNPs identified by whole-genome resequencing and composite interval mapping. Additionally, natural titers of other viruses were quantified in the abdomen of these workers via qPCR and also used for QTL mapping. In addition to the full dataset, we analyzed distinct subpopulations of susceptible and non-susceptible workers separately. These subpopulations are distinguished by a single, suggestive QTL on chromosome 6, but we identified numerous other QTL for different abdominal virus titers, particularly in the subpopulation that was not susceptible to IAPV. The pronounced QTL differences between the susceptible and non-susceptible subpopulations indicate either an interaction between IAPV infection and the bees' interaction with other viruses or heterogeneity among workers of a single cohort that manifests itself as IAPV susceptibility and results in distinct subgroups that differ in their interaction with other viruses. Furthermore, our results indicate that low susceptibility of honey bees to viruses can be caused by both, virus tolerance and virus resistance. QTL were partially overlapping among different viruses, indicating a mixture of shared and specific processes that control viruses. Some functional candidate genes are located in the QTL intervals, but their genomic co-localization with numerous genes of unknown function delegates any definite characterization of the underlying molecular mechanisms to future studies.
Collapse
Affiliation(s)
- Robert X Lu
- Department of Biological Sciences, University of Alberta, 116 Street & 85 Avenue, Edmonton, Alberta, T6G 2E9, Canada
| | - Shilpi Bhatia
- Department of Biology, North Carolina Agricultural and Technical State University, 1601 E Market Street, Greensboro, NC 27411, USA
| | - Michael Simone-Finstrom
- USDA-ARS Honey Bee Breeding, Genetics and Physiology Research Laboratory, 1157 Ben Hur Road, Baton Rouge, LA 70820, USA
| | - Olav Rueppell
- Department of Biological Sciences, University of Alberta, 116 Street & 85 Avenue, Edmonton, Alberta, T6G 2E9, Canada; Department of Biology, University of North Carolina at Greensboro, 321 McIver Street, Greensboro, NC 27412, USA.
| |
Collapse
|
3
|
Bava R, Castagna F, Ruga S, Nucera S, Caminiti R, Serra M, Bulotta RM, Lupia C, Marrelli M, Conforti F, Statti G, Domenico B, Palma E. Plants and Their Derivatives as Promising Therapeutics for Sustainable Control of Honeybee ( Apis mellifera) Pathogens. Pathogens 2023; 12:1260. [PMID: 37887776 PMCID: PMC10610010 DOI: 10.3390/pathogens12101260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/08/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
The most important pollinator for agricultural crops is the Western honeybee (Apis mellifera). During the winter and summer seasons, diseases and stresses of various kinds endanger honeybee numbers and production, resulting in expenses for beekeepers and detrimental effects on agriculture and ecosystems. Researchers are continually in search of therapies for honeybees using the resources of microbiology, molecular biology, and chemistry to combat diseases and improve the overall health of these important pollinating insects. Among the most investigated and most promising solutions are medicinal plants and their derivatives. The health of animals and their ability to fight disease can be supported by natural products (NPs) derived from living organisms such as plants and microbes. NPs contain substances that can reduce the effects of diseases by promoting immunity or directly suppressing pathogens, and parasites. This literature review summarises the advances that the scientific community has achieved over the years regarding veterinary treatments in beekeeping through the use of NPs. Their impact on the prevention and control of honeybee diseases is investigated both in trials that have been conducted in the laboratory and field studies.
Collapse
Affiliation(s)
- Roberto Bava
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (S.R.); (S.N.); (R.C.); (M.S.); (R.M.B.); (B.D.); (E.P.)
| | - Fabio Castagna
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (S.R.); (S.N.); (R.C.); (M.S.); (R.M.B.); (B.D.); (E.P.)
| | - Stefano Ruga
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (S.R.); (S.N.); (R.C.); (M.S.); (R.M.B.); (B.D.); (E.P.)
| | - Saverio Nucera
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (S.R.); (S.N.); (R.C.); (M.S.); (R.M.B.); (B.D.); (E.P.)
| | - Rosamaria Caminiti
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (S.R.); (S.N.); (R.C.); (M.S.); (R.M.B.); (B.D.); (E.P.)
| | - Maria Serra
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (S.R.); (S.N.); (R.C.); (M.S.); (R.M.B.); (B.D.); (E.P.)
| | - Rosa Maria Bulotta
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (S.R.); (S.N.); (R.C.); (M.S.); (R.M.B.); (B.D.); (E.P.)
| | - Carmine Lupia
- Mediterranean Ethnobotanical Conservatory, Sersale (CZ), 88054 Catanzaro, Italy;
- National Ethnobotanical Conservatory, Castelluccio Superiore, 85040 Potenza, Italy
| | - Mariangela Marrelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy; (M.M.); (F.C.); (G.S.)
| | - Filomena Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy; (M.M.); (F.C.); (G.S.)
| | - Giancarlo Statti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy; (M.M.); (F.C.); (G.S.)
| | - Britti Domenico
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (S.R.); (S.N.); (R.C.); (M.S.); (R.M.B.); (B.D.); (E.P.)
| | - Ernesto Palma
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (S.R.); (S.N.); (R.C.); (M.S.); (R.M.B.); (B.D.); (E.P.)
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FISH), University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| |
Collapse
|
4
|
Fellows CJ, Simone-Finstrom M, Anderson TD, Swale DR. Potassium ion channels as a molecular target to reduce virus infection and mortality of honey bee colonies. Virol J 2023; 20:134. [PMID: 37349817 PMCID: PMC10286336 DOI: 10.1186/s12985-023-02104-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/16/2023] [Indexed: 06/24/2023] Open
Abstract
Declines in managed honey bee populations are multifactorial but closely associated with reduced virus immunocompetence and thus, mechanisms to enhance immune function are likely to reduce viral infection rates and increase colony viability. However, gaps in knowledge regarding physiological mechanisms or 'druggable' target sites to enhance bee immunocompetence has prevented therapeutics development to reduce virus infection. Our data bridge this knowledge gap by identifying ATP-sensitive inward rectifier potassium (KATP) channels as a pharmacologically tractable target for reducing virus-mediated mortality and viral replication in bees, as well as increasing an aspect of colony-level immunity. Bees infected with Israeli acute paralysis virus and provided KATP channel activators had similar mortality rates as uninfected bees. Furthermore, we show that generation of reactive oxygen species (ROS) and regulation of ROS concentrations through pharmacological activation of KATP channels can stimulate antiviral responses, highlighting a functional framework for physiological regulation of the bee immune system. Next, we tested the influence of pharmacological activation of KATP channels on infection of 6 viruses at the colony level in the field. Data strongly support that KATP channels are a field-relevant target site as colonies treated with pinacidil, a KATP channel activator, had reduced titers of seven bee-relevant viruses by up to 75-fold and reduced them to levels comparable to non-inoculated colonies. Together, these data indicate a functional linkage between KATP channels, ROS, and antiviral defense mechanisms in bees and define a toxicologically relevant pathway that can be used for novel therapeutics development to enhance bee health and colony sustainability in the field.
Collapse
Affiliation(s)
- Christopher J Fellows
- Department of Entomology, Louisiana State University AgCenter, Baton Rouge, LA, 70803, USA
| | - Michael Simone-Finstrom
- USDA-ARS Honey Bee Breeding, Genetics, and Physiology Laboratory, Baton Rouge, LA, 70820, USA
| | - Troy D Anderson
- Department of Entomology, University of Nebraska, Lincoln, NE, 68583, USA
| | - Daniel R Swale
- Department of Entomology, Louisiana State University AgCenter, Baton Rouge, LA, 70803, USA.
- Department of Entomology and Nematology, Emerging Pathogens Institute, University of Florida, 2055 Mowry Road, PO Box 100009, Gainesville, FL, 32610, USA.
| |
Collapse
|
5
|
McCormick EC, Cohen OR, Dolezal AG, Sadd BM. Consequences of microsporidian prior exposure for virus infection outcomes and bumble bee host health. Oecologia 2023:10.1007/s00442-023-05394-x. [PMID: 37284861 DOI: 10.1007/s00442-023-05394-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 05/24/2023] [Indexed: 06/08/2023]
Abstract
Host-parasite interactions do not occur in a vacuum, but in connected multi-parasite networks that can result in co-exposures and coinfections of individual hosts. These can affect host health and disease ecology, including disease outbreaks. However, many host-parasite studies examine pairwise interactions, meaning we still lack a general understanding of the influence of co-exposures and coinfections. Using the bumble bee Bombus impatiens, we study the effects of larval exposure to a microsporidian Nosema bombi, implicated in bumble bee declines, and adult exposure to Israeli Acute Paralysis Virus (IAPV), an emerging infectious disease from honey bee parasite spillover. We hypothesize that infection outcomes will be modified by co-exposure or coinfection. Nosema bombi is a potentially severe, larval-infecting parasite, and we predict that prior exposure will result in decreased host resistance to adult IAPV infection. We predict double parasite exposure will also reduce host tolerance of infection, as measured by host survival. Although our larval Nosema exposure mostly did not result in viable infections, it partially reduced resistance to adult IAPV infection. Nosema exposure also negatively affected survival, potentially due to a cost of immunity in resisting the exposure. There was a significant negative effect of IAPV exposure on survivorship, but prior Nosema exposure did not alter this survival outcome, suggesting increased tolerance given the higher IAPV infections in the bees previously exposed to Nosema. These results again demonstrate that infection outcomes can be non-independent when multiple parasites are present, even when exposure to one parasite does not result in a substantial infection.
Collapse
Affiliation(s)
- Elyse C McCormick
- School of Biological Sciences, Illinois State University, Normal, IL, 61790, USA
| | - Olivia R Cohen
- School of Biological Sciences, Illinois State University, Normal, IL, 61790, USA
| | - Adam G Dolezal
- School of Integrated Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ben M Sadd
- School of Biological Sciences, Illinois State University, Normal, IL, 61790, USA.
| |
Collapse
|
6
|
Yang S, Deng Y, Zhang L, Wang X, Deng S, Dai P, Hou C. Recovery and genetic characterization of black queen cell virus. J Gen Virol 2022; 103. [PMID: 35947094 DOI: 10.1099/jgv.0.001770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Black queen cell virus (BQCV) is a severe threat to the honeybee (Apis mellifera) worldwide. Although several BQCV strains have been reported in China, the molecular basis for BQCV pathogenicity has not been well understood. Thus, a reverse genetic system of BQCV is required for studying viral replication and its pathogenic mechanism. Here, the complete genome sequence of BQCV was obtained from honeybees using reverse transcription PCR (RT-PCR), namely a BQCV China-GS1 strain (KY741959). Then, a phylogenetic tree was built to analyse the genetic relationships among BQCV strains from different regions. Our results showed that the BQCV China-GS1 contained two ORFs, consistent with the known reference strains, except for the BQCV China-JL1 strain (KP119603). Furthermore, the infectious clone of BQCV was constructed based on BQCV China-GS1 using a low copy vector pACYC177 and gene recombination. Due to the lack of culture cells for bee viruses, we infected the healthy bees with infectious clone of BQCV, and the rescued BQCV resulted in the recovery of recombinant virus, which induced higher mortality than those of the control group. Immune response after inoculated with BQCV further confirmed that the infectious clone of BQCV caused the cellular and humoral immune response of honeybee (A. mellifera). In conclusion, the full nucleotide sequence of BQCV China-GS1 strain was determined, and the infectious clone of BQCV was constructed in this study. These data will improve the understanding of pathogenesis and the host immune responses to viral infection.
Collapse
Affiliation(s)
- Sa Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, PR China.,Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing, PR China.,Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Yanchun Deng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China
| | - Li Zhang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, PR China.,Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing, PR China
| | - Xinling Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, PR China.,Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing, PR China
| | - Shuai Deng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China
| | - Pingli Dai
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, PR China.,Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing, PR China
| | - Chunsheng Hou
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China
| |
Collapse
|
7
|
Penn HJ, Simone-Finstrom MD, Chen Y, Healy KB. Honey Bee Genetic Stock Determines Deformed Wing Virus Symptom Severity but not Viral Load or Dissemination Following Pupal Exposure. Front Genet 2022; 13:909392. [PMID: 35719388 PMCID: PMC9204523 DOI: 10.3389/fgene.2022.909392] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/22/2022] [Indexed: 12/15/2022] Open
Abstract
Honey bees exposed to Varroa mites incur substantial physical damage in addition to potential exposure to vectored viruses such as Deformed wing virus (DWV) that exists as three master variants (DWV-A, DWV-B, and DWV-C) and recombinants. Although mite-resistant bees have been primarily bred to mitigate the impacts of Varroa mites, mite resistance may be associated with increased tolerance or resistance to the vectored viruses. The goal of our study is to determine if five honey bee stocks (Carniolan, Italian, Pol-Line, Russian, and Saskatraz) differ in their resistance or tolerance to DWV based on prior breeding for mite resistance. We injected white-eyed pupae with a sublethal dose (105) of DWV or exposed them to mites and then evaluated DWV levels and dissemination and morphological symptoms upon adult emergence. While we found no evidence of DWV resistance across stocks (i.e., similar rates of viral replication and dissemination), we observed that some stocks exhibited reduced symptom severity suggestive of differential tolerance. However, DWV tolerance was not consistent across mite-resistant stocks as Russian bees were most tolerant, while Pol-Line exhibited the most severe symptoms. DWV variants A and B exhibited differential dissemination patterns that interacted significantly with the treatment group but not bee stock. Furthermore, elevated DWV-B levels reduced adult emergence time, while both DWV variants were associated with symptom likelihood and severity. These data indicate that the genetic differences underlying bee resistance to Varroa mites are not necessarily correlated with DWV tolerance and may interact differentially with DWV variants, highlighting the need for further work on mechanisms of tolerance and bee stock-specific physiological interactions with pathogen variants.
Collapse
Affiliation(s)
- Hannah J. Penn
- United States Department of Agriculture, Agricultural Research Service, Sugarcane Research Unit, Houma, LA, United States
| | - Michael D. Simone-Finstrom
- United States Department of Agriculture, Agricultural Research Service, Honey Bee Breeding, Genetics and Physiology Research Unit, Baton Rouge, LA, United States
| | - Yanping Chen
- United States Department of Agriculture, Agricultural Research Service, Bee Research Laboratory, Beltsville, MD, United States
| | - Kristen B. Healy
- Department of Entomology, Louisiana State University and AgCenter, Baton Rouge, LA, United States
| |
Collapse
|
8
|
Effects of planted pollinator habitat on pathogen prevalence and interspecific detection between bee species. Sci Rep 2022; 12:7806. [PMID: 35551218 PMCID: PMC9098541 DOI: 10.1038/s41598-022-11734-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/28/2022] [Indexed: 11/28/2022] Open
Abstract
Shared resources can instigate pathogen spread due to large congregations of individuals in both natural and human modified resources. Of current concern is the addition of pollinator habitat in conservation efforts as it attracts bees of various species, potentially instigating interspecific sharing of pathogens. Common pathogens have been documented across a wide variety of pollinators with shared floral resources instigating their spread in some, but not all, cases. To evaluate the impact of augmented pollinator habitat on pathogen prevalence, we extracted RNA from samples of eight bee species across three families and screened these samples for nine pathogens using RT-qPCR. We found that some habitat characteristics influenced pathogen detection; however, we found no evidence that pathogen detection in one bee species was correlated with pathogen detection in another. In fact, pathogen detection was rare in wild bees. While gut parasites were detected in 6 out of the 8 species included in this study, viruses were only detected in honey bees. Further, virus detection in honey bees was low with a maximum 21% of samples testing positive for BQCV, for example. These findings suggest factors other than the habitat itself may be more critical in the dissemination of pathogens among bee species. However, we found high relative prevalence and copy number of gut parasites in some bee species which may be of concern, such as Bombus pensylvanicus. Long-term monitoring of pathogens in different bee species at augmented pollinator habitat is needed to evaluate if these patterns will change over time.
Collapse
|
9
|
Lang S, Simone-Finstrom M, Healy K. Context-Dependent Viral Transgenerational Immune Priming in Honey Bees (Hymenoptera: Apidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:19. [PMID: 35137131 PMCID: PMC8826052 DOI: 10.1093/jisesa/ieac001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Indexed: 06/01/2023]
Abstract
Transgenerational immune priming is the process of increased resistance to infection in offspring due to parental pathogen exposure. Honey bees (Apis mellifera L. (Hymenoptera: Apidae)) are hosts to multiple pathogens, and this complex immune function could help protect against overwhelming infection. Honey bees have demonstrated transgenerational immune priming for the bacterial pathogen Paenibacillus larvae; however, evidence for viral transgenerational immune priming is lacking across insects in general. Here we test for the presence of transgenerational immune priming in honey bees with Deformed wing virus (DWV) by injecting pupae from DWV-exposed queens and measuring virus titer and immune gene expression. Our data suggest that there is evidence for viral transgenerational immune priming in honey bees, but it is highly context-dependent based on route of maternal exposure and potentially host genetics or epigenetic factors.
Collapse
Affiliation(s)
- Sarah Lang
- Department of Entomology, Louisiana State University and AgCenter Louisiana State University 404 Life Sciences Building, Louisiana State University, Baton Rouge, LA 70803, USA
- USDA ARS Honey Bee, Breeding and Physiology Lab, 1157 Ben Hur Road, Baton Rouge, LA 70820, USA
| | - Michael Simone-Finstrom
- USDA ARS Honey Bee, Breeding and Physiology Lab, 1157 Ben Hur Road, Baton Rouge, LA 70820, USA
| | - Kristen Healy
- Department of Entomology, Louisiana State University and AgCenter Louisiana State University 404 Life Sciences Building, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
10
|
Penn HJ, Simone-Finstrom M, Lang S, Chen J, Healy K. Host Genotype and Tissue Type Determine DWV Infection Intensity. FRONTIERS IN INSECT SCIENCE 2021; 1:756690. [PMID: 38468897 PMCID: PMC10926404 DOI: 10.3389/finsc.2021.756690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/12/2021] [Indexed: 03/13/2024]
Abstract
Varroa mite-vectored viruses such as Deformed wing virus (DWV) are of great concern for honey bee health as they can cause disease in individuals and increase colony mortality. Two genotypes of DWV (A and B) are prevalent in the United States and may have differential virulence and pathogenicity. Honey bee genetic stocks bred to resist Varroa mites also exhibit differential infection responses to the Varroa mite-vectored viruses. The goal of this project was to determine if interactions between host genotype could influence the overall infection levels and dissemination of DWV within honey bees. To do this, we injected DWV isolated from symptomatic adult bees into mite-free, newly emerged adult bees from five genetic stocks with varying levels of resistance to Varroa mites. We measured DWV-A and DWV-B dissemination among tissues chosen based on relevance to general health outcomes for 10 days. Injury from sham injections did not increase DWV-A levels but did increase DWV-B infections. DWV injection increased both DWV-A and DWV-B levels over time with significant host stock interactions. While we did not observe any differences in viral dissemination among host stocks, we found differences in virus genotype dissemination to different body parts. DWV-A exhibited the highest initial levels in heads and legs while the highest initial levels of DWV-B were found in heads and abdomens. These interactions underscore the need to evaluate viral genotype and tissue specificity in conjunction with host genotype, particularly when the host has been selected for traits relative to virus-vector and virus resistance.
Collapse
Affiliation(s)
- Hannah J. Penn
- United States Department of Agriculture (USDA) Agricultural Research Service (ARS), Sugarcane Research Unit, Houma, LA, United States
| | - Michael Simone-Finstrom
- United States Department of Agriculture (USDA) Agricultural Research Service (ARS), Honey Bee Breeding, Genetics and Physiology Research Laboratory, Baton Rouge, LA, United States
| | - Sarah Lang
- United States Department of Agriculture (USDA) Agricultural Research Service (ARS), Honey Bee Breeding, Genetics and Physiology Research Laboratory, Baton Rouge, LA, United States
| | - Judy Chen
- United States Department of Agriculture (USDA) Agricultural Research Service (ARS), Bee Research Laboratory, Beltsville, MD, United States
| | - Kristen Healy
- Department of Entomology, Louisiana State University Agriculture Center, Baton Rouge, LA, United States
| |
Collapse
|
11
|
IAPV-Induced Paralytic Symptoms Associated with Tachypnea via Impaired Tracheal System Function. Int J Mol Sci 2021; 22:ijms221810078. [PMID: 34576241 PMCID: PMC8469059 DOI: 10.3390/ijms221810078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
Although it had been reported that Israeli acute paralysis virus (IAPV) can cause systemic infection in honey bees, little is known about how it establishes this infection and results in the typical symptoms, paralysis and trembling. Here, we used our previously constructed IAPV infectious clone to investigate viral loads in different tissues of honey bees and further identify the relation between tissue tropism and paralytic symptoms. Our results showed that tracheae showed a greater concentration of viral abundance than other tissues. The abundance of viral protein in the tracheae was positively associated with viral titers, and was further confirmed by immunological and ultrastructural evidence. Furthermore, higher viral loads in tracheae induced remarkable down-regulation of succinate dehydrogenase and cytochrome c oxidase genes, and progressed to causing respiratory failure of honey bees, resulting in the appearance of typical symptoms, paralysis and body trembling. Our results showed that paralysis symptoms or trembling was actually to mitigate tachypnea induced by IAPV infection due to the impairment of honey bee tracheae, and revealed a direct causal link between paralysis symptoms and tissue tropism. These findings provide new insights into the understanding of the underlying mechanism of paralysis symptoms of honey bees after viral infection and have implications for viral disease prevention and specific therapeutics in practice.
Collapse
|
12
|
Henriques D, Lopes AR, Chejanovsky N, Dalmon A, Higes M, Jabal-Uriel C, Le Conte Y, Reyes-Carreño M, Soroker V, Martín-Hernández R, Pinto MA. A SNP assay for assessing diversity in immune genes in the honey bee (Apis mellifera L.). Sci Rep 2021; 11:15317. [PMID: 34321557 PMCID: PMC8319136 DOI: 10.1038/s41598-021-94833-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023] Open
Abstract
With a growing number of parasites and pathogens experiencing large-scale range expansions, monitoring diversity in immune genes of host populations has never been so important because it can inform on the adaptive potential to resist the invaders. Population surveys of immune genes are becoming common in many organisms, yet they are missing in the honey bee (Apis mellifera L.), a key managed pollinator species that has been severely affected by biological invasions. To fill the gap, here we identified single nucleotide polymorphisms (SNPs) in a wide range of honey bee immune genes and developed a medium-density assay targeting a subset of these genes. Using a discovery panel of 123 whole-genomes, representing seven A. mellifera subspecies and three evolutionary lineages, 180 immune genes were scanned for SNPs in exons, introns (< 4 bp from exons), 3' and 5´UTR, and < 1 kb upstream of the transcription start site. After application of multiple filtering criteria and validation, the final medium-density assay combines 91 quality-proved functional SNPs marking 89 innate immune genes and these can be readily typed using the high-sample-throughput iPLEX MassARRAY system. This medium-density-SNP assay was applied to 156 samples from four countries and the admixture analysis clustered the samples according to their lineage and subspecies, suggesting that honey bee ancestry can be delineated from functional variation. In addition to allowing analysis of immunogenetic variation, this newly-developed SNP assay can be used for inferring genetic structure and admixture in the honey bee.
Collapse
Affiliation(s)
- Dora Henriques
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Ana R Lopes
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Nor Chejanovsky
- Agricultural Research Organization, The Volcani Center, Rishon LeTsiyon, Israel
| | - Anne Dalmon
- INRAE, Unité Abeilles et Environnement, Avignon, France
| | - Mariano Higes
- IRIAF, Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, Spain
| | - Clara Jabal-Uriel
- IRIAF, Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, Spain
| | - Yves Le Conte
- INRAE, Unité Abeilles et Environnement, Avignon, France
| | | | - Victoria Soroker
- Agricultural Research Organization, The Volcani Center, Rishon LeTsiyon, Israel
| | - Raquel Martín-Hernández
- IRIAF, Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, Spain
- Instituto de Recursos Humanos para la Ciencia y la Tecnología (INCRECYT-FEDER), Fundación Parque Científico y Tecnológico de Castilla-La Mancha, 02006, Albacete, Spain
| | - M Alice Pinto
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal.
| |
Collapse
|
13
|
McMenamin AJ, Parekh F, Lawrence V, Flenniken ML. Investigating Virus-Host Interactions in Cultured Primary Honey Bee Cells. INSECTS 2021; 12:653. [PMID: 34357313 PMCID: PMC8329929 DOI: 10.3390/insects12070653] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 12/23/2022]
Abstract
Honey bee (Apis mellifera) health is impacted by viral infections at the colony, individual bee, and cellular levels. To investigate honey bee antiviral defense mechanisms at the cellular level we further developed the use of cultured primary cells, derived from either larvae or pupae, and demonstrated that these cells could be infected with a panel of viruses, including common honey bee infecting viruses (i.e., sacbrood virus (SBV) and deformed wing virus (DWV)) and an insect model virus, Flock House virus (FHV). Virus abundances were quantified over the course of infection. The production of infectious virions in cultured honey bee pupal cells was demonstrated by determining that naïve cells became infected after the transfer of deformed wing virus or Flock House virus from infected cell cultures. Initial characterization of the honey bee antiviral immune responses at the cellular level indicated that there were virus-specific responses, which included increased expression of bee antiviral protein-1 (GenBank: MF116383) in SBV-infected pupal cells and increased expression of argonaute-2 and dicer-like in FHV-infected hemocytes and pupal cells. Additional studies are required to further elucidate virus-specific honey bee antiviral defense mechanisms. The continued use of cultured primary honey bee cells for studies that involve multiple viruses will address this knowledge gap.
Collapse
Affiliation(s)
- Alexander J. McMenamin
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (A.J.M.); (F.P.); (V.L.)
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA
| | - Fenali Parekh
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (A.J.M.); (F.P.); (V.L.)
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA
| | - Verena Lawrence
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (A.J.M.); (F.P.); (V.L.)
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA
| | - Michelle L. Flenniken
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (A.J.M.); (F.P.); (V.L.)
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
14
|
Yuan C, Jiang X, Liu M, Yang S, Deng S, Hou C. An Investigation of Honey Bee Viruses Prevalence in Managed Honey Bees (Apis mellifera and Apis cerana) Undergone Colony Decline. Open Microbiol J 2021. [DOI: 10.2174/1874285802115010058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Objective:
In the absence of known clinical symptoms, viruses were considered to be the most probable key pathogens of honey bee. Therefore, the aim of this study was to investigate the prevalence and distribution of honey bee viruses in managed Apis mellifera and Apis cerana in China.
Methods:
We conducted a screening of 8 honey bee viruses on A. mellifera and A. cerana samples collected from 54 apiaries from 13 provinces in China using RT-PCR.
Results:
We found that the types and numbers of viral species significantly differed between A. mellifera and A. cerana. Black Queen Cell Virus (BQCV), Chronic Bee Paralysis Virus (CBPV), Apis mellifera filamentous virus (AmFV), and Kakugo virus (DWV-A/KV) were the primary viruses found in A. mellifera colonies, whereas Chinese Sacbrood Bee Virus (CSBV) and Sacbrood Bee Virus (SBV) were the primary viruses found in A. cerana. The percentage infection of BQCV and CSBV were 84.6% and 61.6% in all detected samples. We first detected the occurrences of Varroa destructor virus-1 (VDV-1 or DWV-B) and DWV-A/KV in China but not ABPV in both A. mellifera and A. cerana.
Conclusion:
This study showed that BQCV and CSBV are the major threat to investigated A. mellifera and A. cerana colonies.
Collapse
|
15
|
Kennedy A, Herman J, Rueppell O. Reproductive activation in honeybee ( Apis mellifera) workers protects against abiotic and biotic stress. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190737. [PMID: 33678021 DOI: 10.1098/rstb.2019.0737] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Social insect reproductives exhibit exceptional longevity instead of the classic trade-off between somatic maintenance and reproduction. Even normally sterile workers experience a significant increase in life expectancy when they assume a reproductive role. The mechanisms that enable the positive relation between the antagonistic demands of reproduction and somatic maintenance are unclear. To isolate the effect of reproductive activation, honeybee workers were induced to activate their ovaries. These reproductively activated workers were compared to controls for survival and gene expression patterns after exposure to Israeli Acute Paralysis Virus or the oxidative stressor paraquat. Reproductive activation increased survival, indicating better immunity and oxidative stress resistance. After qPCR analysis confirmed our experimental treatments at the physiological level, whole transcriptome analysis revealed that paraquat treatment significantly changed the expression of 1277 genes in the control workers but only two genes in reproductively activated workers, indicating that reproductive activation preemptively protects against oxidative stress. Significant overlap between genes that were upregulated by reproductive activation and in response to paraquat included prominent members of signalling pathways and anti-oxidants known to affect ageing. Thus, while our results confirm a central role of vitellogenin, they also point to other mechanisms to explain the molecular basis of the lack of a cost of reproduction and the exceptional longevity of social insect reproductives. Thus, socially induced reproductive activation preemptively protects honeybee workers against stressors, explaining their longevity. This article is part of the theme issue 'Ageing and sociality: why, when and how does sociality change ageing patterns?'
Collapse
Affiliation(s)
- Anissa Kennedy
- Department of Biology, University of North Carolina Greensboro, 321 McIver Street, Greensboro, NC 27403, USA
| | - Jacob Herman
- Department of Biology, University of North Carolina Greensboro, 321 McIver Street, Greensboro, NC 27403, USA
| | - Olav Rueppell
- Department of Biology, University of North Carolina Greensboro, 321 McIver Street, Greensboro, NC 27403, USA
| |
Collapse
|
16
|
Leponiemi M, Amdam GV, Freitak D. Exposure to Inactivated Deformed Wing Virus Leads to Trans-Generational Costs but Not Immune Priming in Honeybees (Apis mellifera). Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.626670] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pathogens are identified as one of the major drivers behind the honeybee colony losses, as well as one of the reasons for the reported declines in terrestrial insect abundances in recent decades. To fight infections, animals rely on their immune system. The immune system of many invertebrates can be primed by exposure to a pathogen, so that upon further exposure the animal is better protected. The protective priming effect can even extend to the next generation, but the species capable of priming the immune system of their offspring are still being investigated. Here we studied whether honeybees could prime their offspring against a viral pathogen, by challenging honeybee queens orally with an inactivated deformed wing virus (DWV), one of the most devastating honeybee viruses. The offspring were then infected by viral injection. The effects of immune priming were assayed by measuring viral loads and two typical symptoms of the virus, pupal mortality, and abnormal wing phenotype. We saw a low amount of wing deformities and low pupal mortality. While no clear priming effect against the virus was seen, we found that the maternal immune challenge, when combined with the stress caused by an injection during development, manifested in costs in the offspring, leading to an increased number of deformed wings.
Collapse
|
17
|
Bhatia S, Baral SS, Vega Melendez C, Amiri E, Rueppell O. Comparing Survival of Israeli Acute Paralysis Virus Infection among Stocks of U.S. Honey Bees. INSECTS 2021; 12:60. [PMID: 33445412 PMCID: PMC7827508 DOI: 10.3390/insects12010060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 12/21/2022]
Abstract
Among numerous viruses that infect honey bees (Apis mellifera), Israeli acute paralysis virus (IAPV) can be linked to severe honey bee health problems. Breeding for virus resistance may improve honey bee health. To evaluate the potential for this approach, we compared the survival of IAPV infection among stocks from the U.S. We complemented the survival analysis with a survey of existing viruses in these stocks and assessing constitutive and induced expression of immune genes. Worker offspring from selected queens in a common apiary were inoculated with IAPV by topical applications after emergence to assess subsequent survival. Differences among stocks were small compared to variation within stocks, indicating the potential for improving honey bee survival of virus infections in all stocks. A positive relation between worker survival and virus load among stocks further suggested that honey bees may be able to adapt to better cope with viruses, while our molecular studies indicate that toll-6 may be related to survival differences among virus-infected worker bees. Together, these findings highlight the importance of viruses in queen breeding operations and provide a promising starting point for the quest to improve honey bee health by selectively breeding stock to be better able to survive virus infections.
Collapse
Affiliation(s)
- Shilpi Bhatia
- Department of Biology, University of North Carolina Greensboro, 321 McIver Street, Greensboro, NC 27403, USA; (S.B.); (S.S.B.); (C.V.M.); (E.A.)
- Department of Applied Science & Technology, North Carolina Agricultural & Technical University, 1601 E Market Street, Greensboro, NC 27411, USA
| | - Saman S. Baral
- Department of Biology, University of North Carolina Greensboro, 321 McIver Street, Greensboro, NC 27403, USA; (S.B.); (S.S.B.); (C.V.M.); (E.A.)
| | - Carlos Vega Melendez
- Department of Biology, University of North Carolina Greensboro, 321 McIver Street, Greensboro, NC 27403, USA; (S.B.); (S.S.B.); (C.V.M.); (E.A.)
- US Dairy Forage Research Center, USDA-ARS, 1925 Linden Drive, Madison, WI 53706, USA
| | - Esmaeil Amiri
- Department of Biology, University of North Carolina Greensboro, 321 McIver Street, Greensboro, NC 27403, USA; (S.B.); (S.S.B.); (C.V.M.); (E.A.)
| | - Olav Rueppell
- Department of Biology, University of North Carolina Greensboro, 321 McIver Street, Greensboro, NC 27403, USA; (S.B.); (S.S.B.); (C.V.M.); (E.A.)
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
18
|
Deng Y, Zhao H, Shen S, Yang S, Yang D, Deng S, Hou C. Identification of Immune Response to Sacbrood Virus Infection in Apis cerana Under Natural Condition. Front Genet 2020; 11:587509. [PMID: 33193724 PMCID: PMC7649357 DOI: 10.3389/fgene.2020.587509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/05/2020] [Indexed: 12/03/2022] Open
Abstract
Chinese sacbrood virus (CSBV) is a serious threat to eastern honeybees (Apis cerana), especially larvae. However, the pathological mechanism of this deadly disease remains unclear. Here, we employed mRNA and small RNA (sRNA) transcriptome approach to investigate the microRNAs (miRNAs) and small interfering RNAs (siRNAs) expression changes of A. cerana larvae infected with CSBV under natural condition. We found that serine proteases involved in immune response were down-regulated, while the expression of siRNAs targeted to serine proteases were up-regulated. In addition, CSBV infection also affected the expression of larvae cuticle proteins such as larval cuticle proteins A1A and A3A, resulting in increased susceptibility to CSBV infection. Together, our results provide insights into sRNAs that they are likely to be involved in regulating honeybee immune response.
Collapse
Affiliation(s)
- Yanchun Deng
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Pollinating Insect Biology, Ministry of Agricultural and Rural Affairs, Beijing, China.,Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongxia Zhao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangdong Academy of Science, Guangzhou, China
| | - Shuo Shen
- Qinghai Academy of Agriculture and Forestry Sciences (Academy of Agriculture and Forestry Sciences), Qinghai University, Xining, China
| | - Sa Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Pollinating Insect Biology, Ministry of Agricultural and Rural Affairs, Beijing, China
| | - Dahe Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Pollinating Insect Biology, Ministry of Agricultural and Rural Affairs, Beijing, China
| | - Shuai Deng
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Pollinating Insect Biology, Ministry of Agricultural and Rural Affairs, Beijing, China
| | - Chunsheng Hou
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Pollinating Insect Biology, Ministry of Agricultural and Rural Affairs, Beijing, China
| |
Collapse
|
19
|
Li-Byarlay H, Boncristiani H, Howell G, Herman J, Clark L, Strand MK, Tarpy D, Rueppell O. Transcriptomic and Epigenomic Dynamics of Honey Bees in Response to Lethal Viral Infection. Front Genet 2020; 11:566320. [PMID: 33101388 PMCID: PMC7546774 DOI: 10.3389/fgene.2020.566320] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/17/2020] [Indexed: 12/28/2022] Open
Abstract
Honey bees (Apis mellifera L.) suffer from many brood pathogens, including viruses. Despite considerable research, the molecular responses and dynamics of honey bee pupae to viral pathogens remain poorly understood. Israeli Acute Paralysis Virus (IAPV) is emerging as a model virus since its association with severe colony losses. Using worker pupae, we studied the transcriptomic and methylomic consequences of IAPV infection over three distinct time points after inoculation. Contrasts of gene expression and 5 mC DNA methylation profiles between IAPV-infected and control individuals at these time points - corresponding to the pre-replicative (5 h), replicative (20 h), and terminal (48 h) phase of infection - indicate that profound immune responses and distinct manipulation of host molecular processes accompany the lethal progression of this virus. We identify the temporal dynamics of the transcriptomic response to with more genes differentially expressed in the replicative and terminal phases than in the pre-replicative phase. However, the number of differentially methylated regions decreased dramatically from the pre-replicative to the replicative and terminal phase. Several cellular pathways experienced hyper- and hypo-methylation in the pre-replicative phase and later dramatically increased in gene expression at the terminal phase, including the MAPK, Jak-STAT, Hippo, mTOR, TGF-beta signaling pathways, ubiquitin mediated proteolysis, and spliceosome. These affected biological functions suggest that adaptive host responses to combat the virus are mixed with viral manipulations of the host to increase its own reproduction, all of which are involved in anti-viral immune response, cell growth, and proliferation. Comparative genomic analyses with other studies of viral infections of honey bees and fruit flies indicated that similar immune pathways are shared. Our results further suggest that dynamic DNA methylation responds to viral infections quickly, regulating subsequent gene activities. Our study provides new insights of molecular mechanisms involved in epigenetic that can serve as foundation for the long-term goal to develop anti-viral strategies for honey bees, the most important commercial pollinator.
Collapse
Affiliation(s)
- Hongmei Li-Byarlay
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Humberto Boncristiani
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Gary Howell
- High Performance Cluster, Office of Information Technology, North Carolina State University, Raleigh, NC, United States
| | - Jake Herman
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Lindsay Clark
- High Performance Computing in Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Micheline K. Strand
- Army Research Office, Army Research Laboratory, Research Triangle Park, NC, United States
| | - David Tarpy
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
- W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, United States
| | - Olav Rueppell
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, United States
| |
Collapse
|
20
|
Yongsawas R, Chaimanee V, Pettis JS, Boncristiani Junior HF, Lopez D, In-on A, Chantawannakul P, Disayathanoowat T. Impact of Sacbrood Virus on Larval Microbiome of Apis mellifera and Apis cerana. INSECTS 2020; 11:insects11070439. [PMID: 32668740 PMCID: PMC7411915 DOI: 10.3390/insects11070439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 11/17/2022]
Abstract
In this study, we examined the impact of Sacbrood virus (SBV), the cause of larval honeybee (Apis mellifera) death, producing a liquefied a larva sac, on the gut bacterial communities on two larval honeybee species, Apis mellifera and Apis cerana. SBV was added into a worker jelly food mixture and bee larvae were grafted into each of the treatment groups for 24 h before DNA/RNA extraction. Confirmation of SBV infection was achieved using quantitative reverse transcription polymerase chain reaction (RT-qPCR) and visual symptomology. The 16S rDNA was sequenced by Illumina sequencing. The results showed the larvae were infected with SBV. The gut communities of infected A. cerana larvae exhibited a dramatic change compared with A. mellifera. In A. mellifera larvae, the Illumina sequencing revealed the proportion of Gilliamella, Snodgrassella and Fructobacillus was not significantly different, whereas in A. cerana, Gilliamella was significantly decreased (from 35.54% to 2.96%), however, with significant increase in Snodgrassella and Fructobacillus. The possibility of cross-infection should be further investigated.
Collapse
Affiliation(s)
- Rujipas Yongsawas
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (R.Y.); (P.C.)
| | - Veeranan Chaimanee
- Department of Agro-Industrial Biotechnology, Maejo University Phrae Campus, Rong Kwang, Phrae 54140, Thailand
- Correspondence: (V.C.); (T.D.); Tel.: +66-81-7249624 (T.D.)
| | | | | | - Dawn Lopez
- Bee Research Laboratory, USDA-ARS, Beltsville, MD 20705, USA;
| | - Ammarin In-on
- Bioinformatics & Systems Biology Program, King Mongkut’s University of Technology Thonburi (Bang Khun Thian Campus), Bang Khun Thian, Bangkok 10150, Thailand;
| | - Panuwan Chantawannakul
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (R.Y.); (P.C.)
| | - Terd Disayathanoowat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (R.Y.); (P.C.)
- Research Center in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (V.C.); (T.D.); Tel.: +66-81-7249624 (T.D.)
| |
Collapse
|
21
|
Yañez O, Piot N, Dalmon A, de Miranda JR, Chantawannakul P, Panziera D, Amiri E, Smagghe G, Schroeder D, Chejanovsky N. Bee Viruses: Routes of Infection in Hymenoptera. Front Microbiol 2020; 11:943. [PMID: 32547504 PMCID: PMC7270585 DOI: 10.3389/fmicb.2020.00943] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 04/20/2020] [Indexed: 11/13/2022] Open
Abstract
Numerous studies have recently reported on the discovery of bee viruses in different arthropod species and their possible transmission routes, vastly increasing our understanding of these viruses and their distribution. Here, we review the current literature on the recent advances in understanding the transmission of viruses, both on the presence of bee viruses in Apis and non-Apis bee species and on the discovery of previously unknown bee viruses. The natural transmission of bee viruses will be discussed among different bee species and other insects. Finally, the research potential of in vivo (host organisms) and in vitro (cell lines) serial passages of bee viruses is discussed, from the perspective of the host-virus landscape changes and potential transmission routes for emerging bee virus infections.
Collapse
Affiliation(s)
- Orlando Yañez
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Agroscope, Swiss Bee Research Centre, Bern, Switzerland
| | - Niels Piot
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Anne Dalmon
- INRAE, Unité de Recherche Abeilles et Environnement, Avignon, France
| | | | - Panuwan Chantawannakul
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Delphine Panziera
- General Zoology, Institute for Biology, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
- Halle-Jena-Leipzig, German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| | - Esmaeil Amiri
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, United States
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Declan Schroeder
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Nor Chejanovsky
- Entomology Department, Institute of Plant Protection, The Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
22
|
Harwood GP, Dolezal AG. Pesticide-Virus Interactions in Honey Bees: Challenges and Opportunities for Understanding Drivers of Bee Declines. Viruses 2020; 12:E566. [PMID: 32455815 PMCID: PMC7291294 DOI: 10.3390/v12050566] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023] Open
Abstract
Honey bees are key agricultural pollinators, but beekeepers continually suffer high annual colony losses owing to a number of environmental stressors, including inadequate nutrition, pressures from parasites and pathogens, and exposure to a wide variety of pesticides. In this review, we examine how two such stressors, pesticides and viruses, may interact in additive or synergistic ways to affect honey bee health. Despite what appears to be a straightforward comparison, there is a dearth of studies examining this issue likely owing to the complexity of such interactions. Such complexities include the wide array of pesticide chemical classes with different modes of actions, the coupling of many bee viruses with ectoparasitic Varroa mites, and the intricate social structure of honey bee colonies. Together, these issues pose a challenge to researchers examining the effects pesticide-virus interactions at both the individual and colony level.
Collapse
Affiliation(s)
- Gyan P. Harwood
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| | | |
Collapse
|
23
|
Yang S, Zhao H, Deng Y, Deng S, Wang X, Diao Q, Hou C. A Reverse Genetics System for the Israeli Acute Paralysis Virus and Chronic Bee Paralysis Virus. Int J Mol Sci 2020; 21:ijms21051742. [PMID: 32143291 PMCID: PMC7084666 DOI: 10.3390/ijms21051742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 11/19/2022] Open
Abstract
Honey bee viruses are associated with honey bee colony decline. Israeli acute paralysis virus (IAPV) is considered to have a strong impact on honey bee survival. Phylogenetic analysis of the viral genomes from several regions of the world showed that various IAPV lineages had substantial differences in virulence. Chronic bee paralysis virus (CBPV), another important honey bee virus, can induce two significantly different symptoms. However, the infection characteristics and pathogenesis of IAPV and CBPV have not been completely elucidated. Here, we constructed infectious clones of IAPV and CBPV using a universal vector to provide a basis for studying their replication and pathogenesis. Infectious IAPV and CBPV were rescued from molecular clones of IAPV and CBPV genomes, respectively, that induced typical paralysis symptoms. The replication levels and expression proteins of IAPV and CBPV in progeny virus production were confirmed by qPCR and Western blot. Our results will allow further dissection of the role of each gene in the context of viral infection while helping to study viral pathogenesis and develop antiviral drugs using reverse genetics systems.
Collapse
Affiliation(s)
- Sa Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (S.Y.); (Y.D.); (S.D.); (X.W.); (Q.D.)
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Hongxia Zhao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou 510260, China;
| | - Yanchun Deng
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (S.Y.); (Y.D.); (S.D.); (X.W.); (Q.D.)
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Shuai Deng
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (S.Y.); (Y.D.); (S.D.); (X.W.); (Q.D.)
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Xinling Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (S.Y.); (Y.D.); (S.D.); (X.W.); (Q.D.)
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Qingyun Diao
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (S.Y.); (Y.D.); (S.D.); (X.W.); (Q.D.)
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Chunsheng Hou
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (S.Y.); (Y.D.); (S.D.); (X.W.); (Q.D.)
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
- Correspondence: ; Tel.: +86-10-62597285
| |
Collapse
|
24
|
Yang S, Gayral P, Zhao H, Wu Y, Jiang X, Wu Y, Bigot D, Wang X, Yang D, Herniou EA, Deng S, Li F, Diao Q, Darrouzet E, Hou C. Occurrence and Molecular Phylogeny of Honey Bee Viruses in Vespids. Viruses 2019; 12:v12010006. [PMID: 31861567 PMCID: PMC7019919 DOI: 10.3390/v12010006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/15/2019] [Accepted: 12/16/2019] [Indexed: 11/26/2022] Open
Abstract
Since the discovery that honey bee viruses play a role in colony decline, researchers have made major breakthroughs in understanding viral pathology and infection processes in honey bees. Work on virus transmission patterns and virus vectors, such as the mite Varroa destructor, has prompted intense efforts to manage honey bee health. However, little is known about the occurrence of honey bee viruses in bee predators, such as vespids. In this study, we characterized the occurrence of 11 honey bee viruses in five vespid species and one wasp from four provinces in China and two vespid species from four locations in France. The results showed that all the species from China carried certain honey bee viruses, notably Apis mellifera filamentous virus (AmFV), Deformed wing virus (DWV), and Israeli acute paralysis virus (IAPV); furthermore, in some vespid colonies, more than three different viruses were identified. In France, DWV was the most common virus; Sacbrood virus (SBV) and Black queen cell virus (BQCV) were observed in one and two samples, respectively. Phylogenetic analyses of IAPV and BQCV sequences indicated that most of the IAPV sequences belonged to a single group, while the BQCV sequences belonged to several groups. Additionally, our study is the first to detect Lake Sinai virus (LSV) in a hornet from China. Our findings can guide further research into the origin and transmission of honey bee viruses in Vespidae, a taxon of ecological, and potentially epidemiological, relevance.
Collapse
Affiliation(s)
- Sa Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (S.Y.); (Y.W.); (X.W.); (D.Y.); (S.D.); (Q.D.)
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, China
| | - Philippe Gayral
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS—Université de Tours, F-37200 Tours, France; (P.G.); (D.B.); (E.A.H.)
| | - Hongxia Zhao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou 510260, China;
| | - Yaojun Wu
- Institute of Forestry Protection, Guangxi Zhuang Autonomous Region Forestry Research Institute, Nanning 530002, China
| | - Xuejian Jiang
- Institute of Forestry Protection, Guangxi Zhuang Autonomous Region Forestry Research Institute, Nanning 530002, China
| | - Yanyan Wu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (S.Y.); (Y.W.); (X.W.); (D.Y.); (S.D.); (Q.D.)
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, China
| | - Diane Bigot
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS—Université de Tours, F-37200 Tours, France; (P.G.); (D.B.); (E.A.H.)
| | - Xinling Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (S.Y.); (Y.W.); (X.W.); (D.Y.); (S.D.); (Q.D.)
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, China
| | - Dahe Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (S.Y.); (Y.W.); (X.W.); (D.Y.); (S.D.); (Q.D.)
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, China
| | - Elisabeth A. Herniou
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS—Université de Tours, F-37200 Tours, France; (P.G.); (D.B.); (E.A.H.)
| | - Shuai Deng
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (S.Y.); (Y.W.); (X.W.); (D.Y.); (S.D.); (Q.D.)
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, China
| | - Fei Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (S.Y.); (Y.W.); (X.W.); (D.Y.); (S.D.); (Q.D.)
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, China
| | - Qingyun Diao
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (S.Y.); (Y.W.); (X.W.); (D.Y.); (S.D.); (Q.D.)
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, China
| | - Eric Darrouzet
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS—Université de Tours, F-37200 Tours, France; (P.G.); (D.B.); (E.A.H.)
- Correspondence: (E.D.); (C.H.); Tel.: +33-(0)2-47-36-71-60 (E.D.); +86-1062597285 (C.H.)
| | - Chunsheng Hou
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (S.Y.); (Y.W.); (X.W.); (D.Y.); (S.D.); (Q.D.)
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, China
- Correspondence: (E.D.); (C.H.); Tel.: +33-(0)2-47-36-71-60 (E.D.); +86-1062597285 (C.H.)
| |
Collapse
|
25
|
Phokasem P, de Guzman LI, Khongphinitbunjong K, Frake AM, Chantawannakul P. Feeding by Tropilaelaps mercedesae on pre- and post-capped brood increases damage to Apis mellifera colonies. Sci Rep 2019; 9:13044. [PMID: 31506594 PMCID: PMC6737106 DOI: 10.1038/s41598-019-49662-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 08/29/2019] [Indexed: 01/29/2023] Open
Abstract
Tropilaelaps mercedesae parasitism can cause Apis mellifera colony mortality in Asia. Here, we report for the first time that tropilaelaps mites feed on both pre- and post-capped stages of honey bees. Feeding on pre-capped brood may extend their survival outside capped brood cells, especially in areas where brood production is year-round. In this study, we examined the types of injury inflicted by tropilaelaps mites on different stages of honey bees, the survival of adult honey bees, and level of honey bee viruses in 4th instar larvae and prepupae. The injuries inflicted on different developing honey bee stages were visualised by staining with trypan blue. Among pre-capped stages, 4th instar larvae sustained the highest number of wounds (4.6 ± 0.5/larva) while 2nd-3rd larval instars had at least two wounds. Consequently, wounds were evident on uninfested capped brood (5th-6th instar larvae = 3.91 ± 0.64 wounds; prepupae = 5.25 ± 0.73 wounds). Tropilaelaps mite infestations resulted in 3.4- and 6-fold increases in the number of wounds in 5th-6th instar larvae and prepupae as compared to uninfested capped brood, respectively. When wound-inflicted prepupae metamorphosed to white-eyed pupae, all wound scars disappeared with the exuviae. This healing of wounds contributed to the reduction of the number of wounds (≤10) observed on the different pupal stages. Transmission of mite-borne virus such as Deformed Wing Virus (DWV) was also enhanced by mites feeding on early larval stages. DWV and Black Queen Cell Virus (BQCV) were detected in all 4th instar larvae and prepupae analysed. However, viral levels were more pronounced in scarred 4th instar larvae and infested prepupae. The remarkably high numbers of wounds and viral load on scarred or infested developing honey bees may have caused significant weight loss and extensive injuries observed on the abdomen, wings, legs, proboscis and antennae of adult honey bees. Together, the survival of infested honey bees was significantly compromised. This study demonstrates the ability of tropilaelaps mites to inflict profound damage on A. mellifera hosts. Effective management approaches need to be developed to mitigate tropilaelaps mite problems.
Collapse
Affiliation(s)
- Patcharin Phokasem
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
- Graduate School, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Lilia I de Guzman
- USDA-ARS, Honey Bee Breeding, Genetics and Physiology Laboratory, Baton Rouge, Louisiana, 70820, USA.
| | | | - Amanda M Frake
- USDA-ARS, Honey Bee Breeding, Genetics and Physiology Laboratory, Baton Rouge, Louisiana, 70820, USA
| | - Panuwan Chantawannakul
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
26
|
Coulon M, Schurr F, Martel AC, Cougoule N, Bégaud A, Mangoni P, Di Prisco G, Dalmon A, Alaux C, Ribière-Chabert M, Le Conte Y, Thiéry R, Dubois E. Influence of chronic exposure to thiamethoxam and chronic bee paralysis virus on winter honey bees. PLoS One 2019; 14:e0220703. [PMID: 31415597 PMCID: PMC6695216 DOI: 10.1371/journal.pone.0220703] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 07/22/2019] [Indexed: 11/18/2022] Open
Abstract
Co-exposure to pesticides and viruses is likely to occur in honey bee colonies. Pesticides can be present in pollen, nectar, and persist in stored food (honey and bee bread), and viruses can be highly prevalent in honey bee colonies. Therefore, the present study describes the influence of chronic co-exposure to thiamethoxam and Chronic bee paralysis virus (CBPV) on bee survival, virus loads, expression level of immune and detoxication genes, and pesticide metabolism Experiments were performed on honey bees collected from a winter apiary with reduced viral contaminations. No synergistic effect of co-exposure was observed on bee survival, nor on the ability of bees to metabolise the pesticide into clothianidin. However, we found that co-exposure caused an increase in CBPV loads that reached the viral levels usually found in overt infections. The effect of co-exposure on CBPV replication was associated with down-regulation of vitellogenin and dorsal-1a gene transcription. Nevertheless, the observed effects might be different to those occurring in spring or summer bees, which are more likelyco-exposed to thiamethoxam and CBPV and exhibit a different physiology.
Collapse
Affiliation(s)
- Marianne Coulon
- ANSES Sophia Antipolis, Unit of Honey bee Pathology, Sophia Antipolis, France
- INRA PACA, UR 406 Abeilles et Environnement, Avignon, France
| | - Frank Schurr
- ANSES Sophia Antipolis, Unit of Honey bee Pathology, Sophia Antipolis, France
| | - Anne-Claire Martel
- ANSES Sophia Antipolis, Unit of Honey bee Pathology, Sophia Antipolis, France
| | - Nicolas Cougoule
- ANSES Sophia Antipolis, Unit of Honey bee Pathology, Sophia Antipolis, France
| | - Adrien Bégaud
- ANSES Sophia Antipolis, Unit of Honey bee Pathology, Sophia Antipolis, France
| | - Patrick Mangoni
- ANSES Sophia Antipolis, Unit of Honey bee Pathology, Sophia Antipolis, France
| | - Gennaro Di Prisco
- University of Napoli “Federico II”—Department of Agriculture, Portici, Napoli, Italy
- CREA, Council for Agricultural Research and Economics—Research Center for Agriculture and Environment, Bologna, Italy
| | - Anne Dalmon
- INRA PACA, UR 406 Abeilles et Environnement, Avignon, France
| | - Cédric Alaux
- INRA PACA, UR 406 Abeilles et Environnement, Avignon, France
| | | | - Yves Le Conte
- INRA PACA, UR 406 Abeilles et Environnement, Avignon, France
| | - Richard Thiéry
- ANSES Sophia Antipolis, Unit of Honey bee Pathology, Sophia Antipolis, France
| | - Eric Dubois
- ANSES Sophia Antipolis, Unit of Honey bee Pathology, Sophia Antipolis, France
| |
Collapse
|
27
|
Caesar L, Cibulski SP, Canal CW, Blochtein B, Sattler A, Haag KL. The virome of an endangered stingless bee suffering from annual mortality in southern Brazil. J Gen Virol 2019; 100:1153-1164. [PMID: 31169486 DOI: 10.1099/jgv.0.001273] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Meliponiculture - the management of stingless bee colonies - is an expanding activity in Brazil with economic, social and environmental potential. However, unlike in apiculture, the pathogens that impact on meliponiculture remain largely unknown. In southern Brazil, every year at the end of the summer, managed colonies of the stingless bee Melipona quadrifasciata manifest a syndrome that eventually leads to collapse. Here we characterize the M. quadrifasciata virome using high-throughput sequencing, with the aim of identifying potentially pathogenic viruses, and test whether they are related to the syndrome outbreaks. Two paired viromes are explored, one from healthy bees and another from unhealthy ones. Each virome is built from metagenomes assembled from sequencing reads derived either from RNA or DNA. A total of 40 621 reads map to viral contigs of the unhealthy bees' metagenomes, whereas only 11 reads map to contigs identified as viruses of healthy bees. The viruses showing the largest copy numbers in the virome of unhealthy bees belong to the family Dicistroviridae - common pathogenic honeybee viruses - as well as Parvoviridae and Circoviridae, which have never been reported as being pathogenic in insects. Our analyses indicate that they represent seven novel viruses associated with stingless bees. PCR-based detection of these viruses in individual bees (healthy or unhealthy) from three different localities revealed a statistically significant association between viral infection and symptom manifestation in one meliponary. We conclude that although viral infections may contribute to colony collapses in the annual syndrome in some meliponaries, viruses spread opportunistically during the outbreak, perhaps due to colony weakness.
Collapse
Affiliation(s)
- Lílian Caesar
- 1 Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, CEP 91501-970, Porto Alegre, RS, Brazil
| | - Samuel Paulo Cibulski
- 2 Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, CEP 91540-000, Porto Alegre, RS, Brazil
| | - Cláudio Wageck Canal
- 2 Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, CEP 91540-000, Porto Alegre, RS, Brazil
| | - Betina Blochtein
- 3 Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, CEP 90619-900, Porto Alegre, RS, Brazil
| | - Aroni Sattler
- 4 Laboratório de Apicultura, Departamento de Fitossanidade, Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 7712, CEP 91540-000, Porto Alegre, RS, Brazil
| | - Karen Luisa Haag
- 1 Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, CEP 91501-970, Porto Alegre, RS, Brazil
- 5 Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, CEP 91501-970, Porto Alegre, RS, Brazil
| |
Collapse
|
28
|
The Dynamics of Deformed Wing Virus Concentration and Host Defensive Gene Expression after Varroa Mite Parasitism in Honey Bees, Apis mellifera. INSECTS 2019; 10:insects10010016. [PMID: 30626033 PMCID: PMC6358901 DOI: 10.3390/insects10010016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/30/2018] [Accepted: 12/11/2018] [Indexed: 12/22/2022]
Abstract
The synergistic interactions between the ectoparasitic mite Varroa destructor and Deformed wing virus (DWV) lead to the reduction in lifespan of the European honey bee Apis mellifera and often have been implicated in colony losses worldwide. However, to date, the underlying processes and mechanisms that form the multipartite interaction between the bee, mite, and virus have not been fully explained. To gain a better understanding of honey bees’ defense response to Varroa mite infestation and DWV infection, the DWV titers and transcription profiles of genes originating from RNAi, immunity, wound response, and homeostatic signaling pathways were monitored over a period of eight days. With respect to DWV, we observed low viral titers at early timepoints that coincided with high levels of Toll pathway transcription factor Dorsal, and its downstream immune effector molecules Hymenoptaecin, Apidaecin, Abaecin, and Defensin 1. However, we observed a striking increase in viral titers beginning after two days that coincided with a decrease in Dorsal levels and its corresponding immune effector molecules, and the small ubiquitin-like modifier (SUMO) ligase repressor of Dorsal, PIAS3. We observed a similar expression pattern for genes expressing transcripts for the RNA interference (Dicer/Argonaute), wound/homeostatic (Janus Kinase), and tissue growth (Map kinase/Wnt) pathways. Our results demonstrate that on a whole, honey bees are able to mount an immediate, albeit, temporally limited, immune and homeostatic response to Varroa and DWV infections, after which downregulation of these pathways leaves the bee vulnerable to expansive viral replication. The critical insights into the defense response upon Varroa and DWV challenges generated in this study may serve as a solid base for future research on the development of effective and efficient disease management strategies in honey bees.
Collapse
|
29
|
Amiri E, Seddon G, Zuluaga Smith W, Strand MK, Tarpy DR, Rueppell O. Israeli Acute Paralysis Virus: Honey Bee Queen⁻Worker Interaction and Potential Virus Transmission Pathways. INSECTS 2019; 10:E9. [PMID: 30626038 PMCID: PMC6359674 DOI: 10.3390/insects10010009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/14/2018] [Accepted: 08/28/2018] [Indexed: 11/23/2022]
Abstract
Queen loss or failure is an important cause of honey bee colony loss. A functional queen is essential to a colony, and the queen is predicted to be well protected by worker bees and other mechanisms of social immunity. Nevertheless, several honey bee pathogens (including viruses) can infect queens. Here, we report a series of experiments to test how virus infection influences queen⁻worker interactions and the consequences for virus transmission. We used Israeli acute paralysis virus (IAPV) as an experimental pathogen because it is relevant to bee health but is not omnipresent. Queens were observed spending 50% of their time with healthy workers, 32% with infected workers, and 18% without interaction. However, the overall bias toward healthy workers was not statistically significant, and there was considerable individual to individual variability. We found that physical contact between infected workers and queens leads to high queen infection in some cases, suggesting that IAPV infections also spread through close bodily contact. Across experiments, queens exhibited lower IAPV titers than surrounding workers. Thus, our results indicate that honey bee queens are better protected by individual and social immunity, but this protection is insufficient to prevent IAPV infections completely.
Collapse
Affiliation(s)
- Esmaeil Amiri
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402-6170, USA.
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, USA.
| | - Gregory Seddon
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402-6170, USA.
| | - Wendy Zuluaga Smith
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402-6170, USA.
| | - Micheline K Strand
- Life Science Division, U.S. Army Research Office, Research Triangle Park, Durham, NC 27709-2211, USA.
| | - David R Tarpy
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, USA.
| | - Olav Rueppell
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402-6170, USA.
| |
Collapse
|
30
|
Comb Irradiation Has Limited, Interactive Effects on Colony Performance or Pathogens in Bees, Varroa destructor and Wax Based on Two Honey Bee Stocks. INSECTS 2019; 10:insects10010015. [PMID: 30626028 PMCID: PMC6359134 DOI: 10.3390/insects10010015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/26/2018] [Accepted: 12/08/2018] [Indexed: 11/25/2022]
Abstract
Parasitic mites and pathogens compromise honey bee health. Development of sustainable and integrative methods of managing these problems will minimize their detrimental impact on honey bees. Here, we aimed to determine if the combination of using mite-resistant stocks along with gamma-irradiated combs influences colony health and productivity. The major finding concerned honey bee genotype confirming that Russian honey bees are more resistant to Varroa destructor than Italian honey bees. The effect of comb irradiation was inconsistent showing a significant increase in adult bee population and amount of stored pollen in 2015, but not in 2016. The increased amount of stored pollen was probably associated with larger adult population in colonies with irradiated combs in September 2015 regardless of honey bee stock. Nevertheless, the ability of bees to collect and store more pollen in the irradiated group does not appear to compensate the negative impacts of mite parasitism on honey bees especially in the Italian bees, which consistently suffered significant colony losses during both years. Results of viral analyses of wax, newly emerged bees, and Varroa and their pupal hosts showed common detections of Deformed wing virus (DWV), Varroa destructor virus (VDV-1), Chronic bee paralysis virus (CBPV), and Black queen cell virus (BQCV). Wax samples had on average ~4 viruses or pathogens detected in both irradiated and non-irradiated combs. Although pathogen levels varied by month, some interesting effects of honey bee stock and irradiation treatment were notable, indicating how traits of mite resistance and alternative treatments may have additive effects. Further, this study indicates that wax may be a transmission route of viral infection. In addition, pupae and their infesting mites from Italian colonies exhibited higher levels of DWV than those from Russian colonies suggesting potential DWV resistance by Russian honey bees. CBPV levels were also reduced in mites from Russian colonies in general and in mites, mite-infested pupae, and newly emerged bees that were collected from irradiated combs. However, BQCV levels were not reduced by comb irradiation. Overall, the contribution of irradiating comb in improving honey bee health and colony survival appears to be subtle, but may be useful as part of an integrated pest management strategy with the addition of using mite-resistant stocks.
Collapse
|
31
|
Quinn O, Gruber MAM, Brown RL, Baty JW, Bulgarella M, Lester PJ. A metatranscriptomic analysis of diseased social wasps (Vespula vulgaris) for pathogens, with an experimental infection of larvae and nests. PLoS One 2018; 13:e0209589. [PMID: 30596703 PMCID: PMC6312278 DOI: 10.1371/journal.pone.0209589] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 12/07/2018] [Indexed: 01/08/2023] Open
Abstract
Social wasps are a major pest in many countries around the world. Pathogens may influence wasp populations and could provide an option for population management via biological control. We investigated the pathology of nests of apparently healthy common wasps, Vespula vulgaris, with nests apparently suffering disease. First, next-generation sequencing and metatranscriptomic analysis were used to examine pathogen presence. The transcriptome of healthy and diseased V. vulgaris showed 27 known microbial phylotypes. Four of these were observed in diseased larvae alone (Aspergillus fumigatus, Moellerella wisconsensis, Moku virus, and the microsporidian Vavraia culicis). Kashmir Bee Virus (KBV) was found to be present in both healthy and diseased larvae. Moellerella wisconsensis is a human pathogen that was potentially misidentified in our wasps by the MEGAN analysis: it is more likely to be the related bacteria Hafnia alvei that is known to infect social insects. The closest identification to the putative pathogen identified as Vavraia culicis was likely to be another microsporidian Nosema vulgaris. PCR and subsequent Sanger sequencing using published or our own designed primers, confirmed the identity of Moellerella sp. (which may be Hafnia alvei), Aspergillus sp., KBV, Moku virus and Nosema. Secondly, we used an infection study by homogenising diseased wasp larvae and feeding them to entire nests of larvae in the laboratory. Three nests transinfected with diseased larvae all died within 19 days. No pathogen that we monitored, however, had a significantly higher prevalence in diseased than in healthy larvae. RT-qPCR analysis indicated that pathogen infections were significantly correlated, such as between KBV and Aspergillus sp. Social wasps clearly suffer from an array of pathogens, which may lead to the collapse of nests and larval death.
Collapse
Affiliation(s)
- Oliver Quinn
- Centre for Biodiversity and Restoration Ecology, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Monica A. M. Gruber
- Centre for Biodiversity and Restoration Ecology, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Pacific Biosecurity, Victoria Link Limited, Victoria University of Wellington, Wellington, New Zealand
| | - Robert L. Brown
- Biodiversity and Conservation, Manaaki Whenua–Landcare Research, Lincoln, New Zealand
| | - James W. Baty
- Centre for Biodiversity and Restoration Ecology, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Mariana Bulgarella
- Centre for Biodiversity and Restoration Ecology, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Philip J. Lester
- Centre for Biodiversity and Restoration Ecology, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Pacific Biosecurity, Victoria Link Limited, Victoria University of Wellington, Wellington, New Zealand
- * E-mail:
| |
Collapse
|
32
|
McMenamin AJ, Daughenbaugh KF, Parekh F, Pizzorno MC, Flenniken ML. Honey Bee and Bumble Bee Antiviral Defense. Viruses 2018; 10:E395. [PMID: 30060518 PMCID: PMC6115922 DOI: 10.3390/v10080395] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 12/12/2022] Open
Abstract
Bees are important plant pollinators in both natural and agricultural ecosystems. Managed and wild bees have experienced high average annual colony losses, population declines, and local extinctions in many geographic regions. Multiple factors, including virus infections, impact bee health and longevity. The majority of bee-infecting viruses are positive-sense single-stranded RNA viruses. Bee-infecting viruses often cause asymptomatic infections but may also cause paralysis, deformity or death. The severity of infection is governed by bee host immune responses and influenced by additional biotic and abiotic factors. Herein, we highlight studies that have contributed to the current understanding of antiviral defense in bees, including the Western honey bee (Apis mellifera), the Eastern honey bee (Apis cerana) and bumble bee species (Bombus spp.). Bee antiviral defense mechanisms include RNA interference (RNAi), endocytosis, melanization, encapsulation, autophagy and conserved immune pathways including Jak/STAT (Janus kinase/signal transducer and activator of transcription), JNK (c-Jun N-terminal kinase), MAPK (mitogen-activated protein kinases) and the NF-κB mediated Toll and Imd (immune deficiency) pathways. Studies in Dipteran insects, including the model organism Drosophila melanogaster and pathogen-transmitting mosquitos, provide the framework for understanding bee antiviral defense. However, there are notable differences such as the more prominent role of a non-sequence specific, dsRNA-triggered, virus limiting response in honey bees and bumble bees. This virus-limiting response in bees is akin to pathways in a range of organisms including other invertebrates (i.e., oysters, shrimp and sand flies), as well as the mammalian interferon response. Current and future research aimed at elucidating bee antiviral defense mechanisms may lead to development of strategies that mitigate bee losses, while expanding our understanding of insect antiviral defense and the potential evolutionary relationship between sociality and immune function.
Collapse
Affiliation(s)
- Alexander J McMenamin
- Department of Plant Sciences and Plant Pathology, Bozeman, MT 59717, USA.
- Department of Microbiology and Immunology, Bozeman, MT 59717, USA.
- Center for Pollinator Health, Montana State University, Bozeman, MT 59717, USA.
| | - Katie F Daughenbaugh
- Department of Plant Sciences and Plant Pathology, Bozeman, MT 59717, USA.
- Center for Pollinator Health, Montana State University, Bozeman, MT 59717, USA.
| | - Fenali Parekh
- Department of Plant Sciences and Plant Pathology, Bozeman, MT 59717, USA.
- Department of Microbiology and Immunology, Bozeman, MT 59717, USA.
- Center for Pollinator Health, Montana State University, Bozeman, MT 59717, USA.
| | - Marie C Pizzorno
- Biology Department, Bucknell University, Lewisburg, PA 17837, USA.
| | - Michelle L Flenniken
- Department of Plant Sciences and Plant Pathology, Bozeman, MT 59717, USA.
- Department of Microbiology and Immunology, Bozeman, MT 59717, USA.
- Center for Pollinator Health, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|
33
|
Li G, Zhao H, Liu Z, Wang H, Xu B, Guo X. The Wisdom of Honeybee Defenses Against Environmental Stresses. Front Microbiol 2018; 9:722. [PMID: 29765357 PMCID: PMC5938604 DOI: 10.3389/fmicb.2018.00722] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/27/2018] [Indexed: 12/27/2022] Open
Abstract
As one of the predominant pollinator, honeybees provide important ecosystem service to crops and wild plants, and generate great economic benefit for humans. Unfortunately, there is clear evidence of recent catastrophic honeybee colony failure in some areas, resulting in markedly negative environmental and economic effects. It has been demonstrated that various environmental stresses, including both abiotic and biotic stresses, functioning singly or synergistically, are the potential drivers of colony collapse. Honeybees can use many defense mechanisms to decrease the damage from environmental stress to some extent. Here, we synthesize and summarize recent advances regarding the effects of environmental stress on honeybees and the wisdom of honeybees to respond to external environmental stress. Furthermore, we provide possible future research directions about the response of honeybees to various form of stressors.
Collapse
Affiliation(s)
- Guilin Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Hang Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
34
|
Amiri E, Kryger P, Meixner MD, Strand MK, Tarpy DR, Rueppell O. Quantitative patterns of vertical transmission of deformed wing virus in honey bees. PLoS One 2018; 13:e0195283. [PMID: 29596509 PMCID: PMC5875871 DOI: 10.1371/journal.pone.0195283] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/19/2018] [Indexed: 12/24/2022] Open
Abstract
Deformed wing virus (DWV) is an important pathogen in a broad range of insects, including honey bees. Concordant with the spread of Varroa, DWV is present in the majority of honey bee colonies and can result in either low-level infections with asymptomatic bees that nonetheless exhibit increased colony loss under stress, or high-level infections with acute effects on bee health and viability. DWV can be transmitted vertically or horizontally and evidence suggests that horizontal transmission via Varroa is associated with acute symptomatic infections. Vertical transmission also occurs and is presumably important for the maintenance of DWV in honey bee populations. To further our understanding the vertical transmission of DWV through queens, we performed three experiments: we studied the quantitative effectiveness of vertical transmission, surveyed the prevalence of successful egg infection under commercial conditions, and distinguished among three possible mechanisms of transmission. We find that queen-infection level predicts the DWV titers in their eggs, although the transmission is not very efficient. Our quantitative assessment of DWV demonstrates that eggs in 1/3 of the colonies are infected with DWV and highly infected eggs are rare in newly-installed spring colonies. Additionally, our results indicate that DWV transmission occurs predominantly by virus adhering to the surface of eggs (transovum) rather than intracellularly. Our combined results suggest that the queens' DWV vectoring capacity in practice is not as high as its theoretical potential. Thus, DWV transmission by honey bee queens is part of the DWV epidemic with relevant practical implications, which should be further studied.
Collapse
Affiliation(s)
- Esmaeil Amiri
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, United States of America
- Department of Agroecology, Aarhus University, Slagelse, Denmark
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC, United States of America
| | - Per Kryger
- Department of Agroecology, Aarhus University, Slagelse, Denmark
| | - Marina D. Meixner
- Bieneninstitut Kirchhain, Landesbetrieb Landwirtschaft Hessen, Kirchhain, Germany
| | - Micheline K. Strand
- Life Sciences Division, U.S. Army Research Office, Research Triangle Park, NC, United States of America
| | - David R. Tarpy
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC, United States of America
| | - Olav Rueppell
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, United States of America
| |
Collapse
|
35
|
Gamma irradiation inactivates honey bee fungal, microsporidian, and viral pathogens and parasites. J Invertebr Pathol 2018; 153:57-64. [DOI: 10.1016/j.jip.2018.02.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 02/02/2018] [Accepted: 02/12/2018] [Indexed: 11/21/2022]
|
36
|
Brutscher LM, Daughenbaugh KF, Flenniken ML. Virus and dsRNA-triggered transcriptional responses reveal key components of honey bee antiviral defense. Sci Rep 2017; 7:6448. [PMID: 28743868 PMCID: PMC5526946 DOI: 10.1038/s41598-017-06623-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/04/2017] [Indexed: 12/22/2022] Open
Abstract
Recent high annual losses of honey bee colonies are associated with many factors, including RNA virus infections. Honey bee antiviral responses include RNA interference and immune pathway activation, but their relative roles in antiviral defense are not well understood. To better characterize the mechanism(s) of honey bee antiviral defense, bees were infected with a model virus in the presence or absence of dsRNA, a virus associated molecular pattern. Regardless of sequence specificity, dsRNA reduced virus abundance. We utilized next generation sequencing to examine transcriptional responses triggered by virus and dsRNA at three time-points post-infection. Hundreds of genes exhibited differential expression in response to co-treatment of dsRNA and virus. Virus-infected bees had greater expression of genes involved in RNAi, Toll, Imd, and JAK-STAT pathways, but the majority of differentially expressed genes are not well characterized. To confirm the virus limiting role of two genes, including the well-characterized gene, dicer, and a probable uncharacterized cyclin dependent kinase in honey bees, we utilized RNAi to reduce their expression in vivo and determined that virus abundance increased, supporting their involvement in antiviral defense. Together, these results further our understanding of honey bee antiviral defense, particularly the role of a non-sequence specific dsRNA-mediated antiviral pathway.
Collapse
Affiliation(s)
- Laura M Brutscher
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA.,Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA.,Pollinator Health Center, Montana State University, Bozeman, MT, USA
| | - Katie F Daughenbaugh
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA.,Pollinator Health Center, Montana State University, Bozeman, MT, USA
| | - Michelle L Flenniken
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA. .,Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA. .,Pollinator Health Center, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
37
|
Doublet V, Poeschl Y, Gogol-Döring A, Alaux C, Annoscia D, Aurori C, Barribeau SM, Bedoya-Reina OC, Brown MJF, Bull JC, Flenniken ML, Galbraith DA, Genersch E, Gisder S, Grosse I, Holt HL, Hultmark D, Lattorff HMG, Le Conte Y, Manfredini F, McMahon DP, Moritz RFA, Nazzi F, Niño EL, Nowick K, van Rij RP, Paxton RJ, Grozinger CM. Unity in defence: honeybee workers exhibit conserved molecular responses to diverse pathogens. BMC Genomics 2017; 18:207. [PMID: 28249569 PMCID: PMC5333379 DOI: 10.1186/s12864-017-3597-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/20/2017] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Organisms typically face infection by diverse pathogens, and hosts are thought to have developed specific responses to each type of pathogen they encounter. The advent of transcriptomics now makes it possible to test this hypothesis and compare host gene expression responses to multiple pathogens at a genome-wide scale. Here, we performed a meta-analysis of multiple published and new transcriptomes using a newly developed bioinformatics approach that filters genes based on their expression profile across datasets. Thereby, we identified common and unique molecular responses of a model host species, the honey bee (Apis mellifera), to its major pathogens and parasites: the Microsporidia Nosema apis and Nosema ceranae, RNA viruses, and the ectoparasitic mite Varroa destructor, which transmits viruses. RESULTS We identified a common suite of genes and conserved molecular pathways that respond to all investigated pathogens, a result that suggests a commonality in response mechanisms to diverse pathogens. We found that genes differentially expressed after infection exhibit a higher evolutionary rate than non-differentially expressed genes. Using our new bioinformatics approach, we unveiled additional pathogen-specific responses of honey bees; we found that apoptosis appeared to be an important response following microsporidian infection, while genes from the immune signalling pathways, Toll and Imd, were differentially expressed after Varroa/virus infection. Finally, we applied our bioinformatics approach and generated a gene co-expression network to identify highly connected (hub) genes that may represent important mediators and regulators of anti-pathogen responses. CONCLUSIONS Our meta-analysis generated a comprehensive overview of the host metabolic and other biological processes that mediate interactions between insects and their pathogens. We identified key host genes and pathways that respond to phylogenetically diverse pathogens, representing an important source for future functional studies as well as offering new routes to identify or generate pathogen resilient honey bee stocks. The statistical and bioinformatics approaches that were developed for this study are broadly applicable to synthesize information across transcriptomic datasets. These approaches will likely have utility in addressing a variety of biological questions.
Collapse
Affiliation(s)
- Vincent Doublet
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK.
| | - Yvonne Poeschl
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Andreas Gogol-Döring
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Technische Hochschule Mittelhessen, Gießen, Germany
| | - Cédric Alaux
- INRA, UR 406 Abeilles et Environnement, Avignon, France
| | - Desiderato Annoscia
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, Italy
| | - Christian Aurori
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Seth M Barribeau
- Department of Biology, East Carolina University, Greenville, NC, USA
| | - Oscar C Bedoya-Reina
- Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, State College, PA, USA
- Present address: MRC IGMM, University of Edinburgh, Western General Hospital, Edinburgh, UK
- Present address: MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, UK
| | - Mark J F Brown
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, UK
| | - James C Bull
- Department of Biosciences, Swansea University, Swansea, UK
| | - Michelle L Flenniken
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA
| | - David A Galbraith
- Department of Entomology, Center for Pollinator Research, Pennsylvania State University, State College, PA, USA
| | - Elke Genersch
- Department of Molecular Microbiology and Bee Diseases, Institute for Bee Research, Hohen Neuendorf, Germany
- Department of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | - Sebastian Gisder
- Department of Molecular Microbiology and Bee Diseases, Institute for Bee Research, Hohen Neuendorf, Germany
| | - Ivo Grosse
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Holly L Holt
- Department of Entomology, Center for Pollinator Research, Pennsylvania State University, State College, PA, USA
- Department of Fisheries, Wildlife, and Conservation Biology, The Monarch Joint Venture, University of Minnesota, St. Paul, MN, USA
| | - Dan Hultmark
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - H Michael G Lattorff
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute for Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Present address: International Centre of Insect Physiology and Ecology (icipe), Environmental Health Theme, Nairobi, Kenya
| | - Yves Le Conte
- INRA, UR 406 Abeilles et Environnement, Avignon, France
| | - Fabio Manfredini
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, UK
| | - Dino P McMahon
- Institute for Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- School of Biological Sciences, Queen's University Belfast, Belfast, UK
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Berlin, Germany
| | - Robin F A Moritz
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute for Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Francesco Nazzi
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, Italy
| | - Elina L Niño
- Department of Entomology, Center for Pollinator Research, Pennsylvania State University, State College, PA, USA
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Katja Nowick
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Computer Science, TFome Research Group, Bioinformatics Group, Interdisciplinary Center of Bioinformatics, University of Leipzig, Leipzig, Germany
- Paul-Flechsig-Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Robert J Paxton
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute for Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Christina M Grozinger
- Department of Entomology, Center for Pollinator Research, Pennsylvania State University, State College, PA, USA
| |
Collapse
|
38
|
Rueppell O, Yousefi B, Collazo J, Smith D. Early life stress affects mortality rate more than social behavior, gene expression or oxidative damage in honey bee workers. Exp Gerontol 2017; 90:19-25. [PMID: 28122251 DOI: 10.1016/j.exger.2017.01.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/07/2017] [Accepted: 01/19/2017] [Indexed: 11/17/2022]
Abstract
Early life stressors can affect aging and life expectancy in positive or negative ways. Individuals can adjust their behavior and molecular physiology based on early life experiences but relatively few studies have connected such mechanisms to demographic patterns in social organisms. Sociality buffers individuals from environmental influences and it is unclear how much early life stress affects later life history. Workers of the honey bee (Apis mellifera L.) were exposed to two stressors, Varroa parasitism and Paraquat exposure, early in life. Consequences were measured at the molecular, behavioral, and demographic level. While treatments did not significantly affect levels of oxidative damage, expression of select genes, and titers of the common deformed wing virus, most of these measures were affected by age. Some of the age effects, such as declining levels of deformed wing virus and oxidative damage, were opposite to our predictions but may be explained by demographic selection. Further analyses suggested some influences of worker behavior on mortality and indicated weak treatment effects on behavior. The latter effects were inconsistent among the two experiments. However, mortality rate was consistently reduced by Varroa mite stress during development. Thus, mortality was more responsive to early life stress than our other response variables. The lack of treatment effects on these measures may be due to the social organization of honey bees that buffers the individual from the impact of stressful developmental conditions.
Collapse
Affiliation(s)
- Olav Rueppell
- Department of of Biology, 312 Eberhart Building, The University of North Carolina at Greensboro, 321 McIver Street, Greensboro, NC 27402, USA.
| | - Babak Yousefi
- Department of of Biology, 312 Eberhart Building, The University of North Carolina at Greensboro, 321 McIver Street, Greensboro, NC 27402, USA
| | - Juan Collazo
- Department of of Biology, 312 Eberhart Building, The University of North Carolina at Greensboro, 321 McIver Street, Greensboro, NC 27402, USA
| | - Daniel Smith
- Department of of Biology, 312 Eberhart Building, The University of North Carolina at Greensboro, 321 McIver Street, Greensboro, NC 27402, USA
| |
Collapse
|
39
|
Virion Structure of Israeli Acute Bee Paralysis Virus. J Virol 2016; 90:8150-9. [PMID: 27384649 PMCID: PMC5008081 DOI: 10.1128/jvi.00854-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 06/24/2016] [Indexed: 01/10/2023] Open
Abstract
The pollination services provided by the western honeybee (Apis mellifera) are critical for agricultural production and the diversity of wild flowering plants. However, honeybees suffer from environmental pollution, habitat loss, and pathogens, including viruses that can cause fatal diseases. Israeli acute bee paralysis virus (IAPV), from the family Dicistroviridae, has been shown to cause colony collapse disorder in the United States. Here, we present the IAPV virion structure determined to a resolution of 4.0 Å and the structure of a pentamer of capsid protein protomers at a resolution of 2.7 Å. IAPV has major capsid proteins VP1 and VP3 with noncanonical jellyroll β-barrel folds composed of only seven instead of eight β-strands, as is the rule for proteins of other viruses with the same fold. The maturation of dicistroviruses is connected to the cleavage of precursor capsid protein VP0 into subunits VP3 and VP4. We show that a putative catalytic site formed by the residues Asp-Asp-Phe of VP1 is optimally positioned to perform the cleavage. Furthermore, unlike many picornaviruses, IAPV does not contain a hydrophobic pocket in capsid protein VP1 that could be targeted by capsid-binding antiviral compounds. IMPORTANCE Honeybee pollination is required for agricultural production and to sustain the biodiversity of wild flora. However, honeybee populations in Europe and North America are under pressure from pathogens, including viruses that cause colony losses. Viruses from the family Dicistroviridae can cause honeybee infections that are lethal, not only to individual honeybees, but to whole colonies. Here, we present the virion structure of an Aparavirus, Israeli acute bee paralysis virus (IAPV), a member of a complex of closely related viruses that are distributed worldwide. IAPV exhibits unique structural features not observed in other picorna-like viruses. Capsid protein VP1 of IAPV does not contain a hydrophobic pocket, implying that capsid-binding antiviral compounds that can prevent the replication of vertebrate picornaviruses may be ineffective against honeybee virus infections.
Collapse
|
40
|
Wang H, Meeus I, Smagghe G. Israeli acute paralysis virus associated paralysis symptoms, viral tissue distribution and Dicer-2 induction in bumblebee workers (Bombus terrestris). J Gen Virol 2016; 97:1981-1989. [PMID: 27230225 DOI: 10.1099/jgv.0.000516] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although it is known that Israeli acute paralysis virus (IAPV) can cause bee mortality, the symptoms of paralysis and the distribution of the virus in different body tissues and their potential to respond with an increase of the siRNA antiviral immune system have not been studied. In this project we worked with Bombus terrestris, which is one of the most numerous bumblebee species in Europe and an important pollinator for wild flowers and many crops in agriculture. Besides the classic symptoms of paralysis and trembling prior to death, we report a new IAPV-related symptom, crippled/immobilized forelegs. Reverse-transcriptase quantitative PCR showed that IAPV accumulates in different body tissues (midgut, fat body, brain and ovary). The highest levels of IAPV were observed in the fat body. With fluorescence in situ hybridization (FISH) we detected IAPV in the Kenyon cells of mushroom bodies and neuropils from both antennal and optic lobes of the brain in IAPV-infected workers. Finally, we observed an induction of Dicer-2, a core gene of the RNAi antiviral immune response, in the IAPV-infected tissues of B. terrestris workers. According to our results, tissue tropism and the induction strength of Dicer-2 could not be correlated with virus-related paralysis symptoms.
Collapse
Affiliation(s)
- Haidong Wang
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Ivan Meeus
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Guy Smagghe
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
41
|
Khongphinitbunjong K, Neumann P, Chantawannakul P, Williams GR. The ectoparasitic mite Tropilaelaps mercedesae reduces western honey bee, Apismellifera, longevity and emergence weight, and promotes Deformed wing virus infections. J Invertebr Pathol 2016; 137:38-42. [PMID: 27126517 DOI: 10.1016/j.jip.2016.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 03/15/2016] [Accepted: 04/24/2016] [Indexed: 10/21/2022]
Abstract
Historically an ectoparasite of the native Giant honey bee Apis dorsata, the mite Tropilaelaps mercedesae has switched hosts to the introduced western honey bee Apis mellifera throughout much of Asia. Few data regarding lethal and sub-lethal effects of T. mercedesae on A. mellifera exist, despite its similarity to the devastating mite Varroa destructor. Here we artificially infested worker brood of A. mellifera with T. mercedesae to investigate lethal (longevity) and sub-lethal (emergence weight, Deformed wing virus (DWV) levels and clinical symptoms of DWV) effects of the mite on its new host. The data show that T. mercedesae infestation significantly reduced host longevity and emergence weight, and promoted both DWV levels and associated clinical symptoms. Our results suggest that T. mercedesae is a potentially important parasite to the economically important A. mellifera honey bee.
Collapse
Affiliation(s)
- Kitiphong Khongphinitbunjong
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand; Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Peter Neumann
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Institute of Bee Health, Vetsuisse Faculty, University of Bern, 3003 Bern, Switzerland; Agroscope, Swiss Bee Research Centre, 3003 Bern, Switzerland
| | - Panuwan Chantawannakul
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Geoffrey R Williams
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Institute of Bee Health, Vetsuisse Faculty, University of Bern, 3003 Bern, Switzerland; Agroscope, Swiss Bee Research Centre, 3003 Bern, Switzerland
| |
Collapse
|
42
|
Carrillo-Tripp J, Dolezal AG, Goblirsch MJ, Miller WA, Toth AL, Bonning BC. In vivo and in vitro infection dynamics of honey bee viruses. Sci Rep 2016; 6:22265. [PMID: 26923109 PMCID: PMC4770293 DOI: 10.1038/srep22265] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/10/2016] [Indexed: 12/20/2022] Open
Abstract
The honey bee (Apis mellifera) is commonly infected by multiple viruses. We developed an experimental system for the study of such mixed viral infections in newly emerged honey bees and in the cell line AmE-711, derived from honey bee embryos. When inoculating a mixture of iflavirids [sacbrood bee virus (SBV), deformed wing virus (DWV)] and dicistrovirids [Israeli acute paralysis virus (IAPV), black queen cell virus (BQCV)] in both live bee and cell culture assays, IAPV replicated to higher levels than other viruses despite the fact that SBV was the major component of the inoculum mixture. When a different virus mix composed mainly of the dicistrovirid Kashmir bee virus (KBV) was tested in cell culture, the outcome was a rapid increase in KBV but not IAPV. We also sequenced the complete genome of an isolate of DWV that covertly infects the AmE-711 cell line, and found that this virus does not prevent IAPV and KBV from accumulating to high levels and causing cytopathic effects. These results indicate that different mechanisms of virus-host interaction affect virus dynamics, including complex virus-virus interactions, superinfections, specific virus saturation limits in cells and virus specialization for different cell types.
Collapse
Affiliation(s)
- Jimena Carrillo-Tripp
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Adam G. Dolezal
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | | | - W. Allen Miller
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Amy L. Toth
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
- Department of Entomology, Iowa State University, Ames, IA 50011, USA
| | - Bryony C. Bonning
- Department of Entomology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
43
|
Michaud S, Boncristiani HF, Gouw JW, Strand MK, Pettis J, Rueppell O, Foster LJ. Response of the honey bee (Apis mellifera) proteome to Israeli acute paralysis virus (IAPV) infection. CAN J ZOOL 2015. [DOI: 10.1139/cjz-2014-0181] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent declines in honey bee (Apis mellifera L., 1758) populations worldwide have spurred significant research into the impact of pathogens on colony health. The role of the Israeli acute paralysis virus (IAPV) on hive mortality has become of particular concern since being correlated with colony losses. However, the molecular interactions between IAPV and its host remain largely unknown. To investigate changes in host protein expression during IAPV infection, mass-spectrometry-based quantitative proteomics was used to compare IAPV-infected and healthy pupae. Proteins whose expression levels changed significantly during infection were identified and functional analysis was performed to determine host systems and pathways perturbed by IAPV infection. Among the A. mellifera proteins most affected by IAPV, those involving translation and the ubiquitin–proteasome pathway were most highly enriched and future investigation of these pathways will be useful in identifying host proteins required for infection. This analysis represents an important first step towards understanding the honey bee host response to IAPV infection through the systems-level analysis of protein expression.
Collapse
Affiliation(s)
- Sarah Michaud
- Department of Biochemistry and Molecular Biology, Centre for High-Throughput Biology, The University of British Columbia, 2125 East Mall, Vancouver, BC V6T 1Z4, Canada
| | | | - Joost W. Gouw
- Department of Biochemistry and Molecular Biology, Centre for High-Throughput Biology, The University of British Columbia, 2125 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Micheline K. Strand
- Life Sciences Division, US Army Research Office, Research Triangle Park, NC 27709, USA
| | - Jeffrey Pettis
- US Department of Agriculture – Agricultural Research Service, Bee Research Laboratory, Beltsville, MD 20705, USA
| | - Olav Rueppell
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27403, USA
| | - Leonard J. Foster
- Department of Biochemistry and Molecular Biology, Centre for High-Throughput Biology, The University of British Columbia, 2125 East Mall, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
44
|
Grozinger CM, Robinson GE. The power and promise of applying genomics to honey bee health. CURRENT OPINION IN INSECT SCIENCE 2015; 10:124-132. [PMID: 26273565 PMCID: PMC4528376 DOI: 10.1016/j.cois.2015.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
New genomic tools and resources are now being used to both understand honey bee health and develop tools to better manage it. Here, we describe the use of genomic approaches to identify and characterize bee parasites and pathogens, examine interactions among these parasites and pathogens, between them and their bee hosts, and to identify genetic markers for improved breeding of more resilient bee stocks. We also discuss several new genomic techniques that can be used to more efficiently study, monitor and improve bee health. In the case of using RNAi-based technologies to mitigate diseases in bee populations, we highlight advantages, disadvantages and strategies to reduce risk. The increased use of genomic analytical tools and manipulative technologies has already led to significant advances, and holds great promise for improvements in the health of honey bees and other critical pollinator species.
Collapse
Affiliation(s)
- Christina M. Grozinger
- Department of Entomology, Center for Pollinator Research, Pennsylvania State University, University Park, PA 16803
| | - Gene E. Robinson
- Department of Entomology, Neuroscience Program, Institute for Genomic Biology, University of Illinois, Urbana-Champaign, 61801
| |
Collapse
|
45
|
Niño EL, Cameron Jasper W. Improving the future of honey bee breeding programs by employing recent scientific advances. CURRENT OPINION IN INSECT SCIENCE 2015; 10:163-169. [PMID: 29588004 DOI: 10.1016/j.cois.2015.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 04/20/2015] [Accepted: 05/07/2015] [Indexed: 06/08/2023]
Abstract
A recent abundance of studies investigating causes of honey bee (Apis mellifera) colony losses has led to enhanced recommendations in management practices with particular emphasis on breeding for resistant bee stocks. Here we review the latest advances in research which could improve the future of breeding programs. We discuss diversity in colonies particularly in breeding programs, giving special emphasis to recent improvement in cryopreservation of honey bee germplasm. We also review factors that affect the health and reproductive quality of queens and drones. We briefly discuss how techniques developed by scientists are finding more regular usage with breeders in the assessment of reproductive caste health and quality and in determining best management practices for breeding programs.
Collapse
Affiliation(s)
- Elina L Niño
- Department of Entomology and Nematology, University of California, One Shields Avenue, Davis, CA 95616, United States.
| | - W Cameron Jasper
- Department of Entomology and Nematology, University of California, One Shields Avenue, Davis, CA 95616, United States
| |
Collapse
|
46
|
Brutscher LM, Daughenbaugh KF, Flenniken ML. Antiviral Defense Mechanisms in Honey Bees. CURRENT OPINION IN INSECT SCIENCE 2015; 10:71-82. [PMID: 26273564 PMCID: PMC4530548 DOI: 10.1016/j.cois.2015.04.016] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Honey bees are significant pollinators of agricultural crops and other important plant species. High annual losses of honey bee colonies in North America and in some parts of Europe have profound ecological and economic implications. Colony losses have been attributed to multiple factors including RNA viruses, thus understanding bee antiviral defense mechanisms may result in the development of strategies that mitigate colony losses. Honey bee antiviral defense mechanisms include RNA-interference, pathogen-associated molecular pattern (PAMP) triggered signal transduction cascades, and reactive oxygen species generation. However, the relative importance of these and other pathways is largely uncharacterized. Herein we review the current understanding of honey bee antiviral defense mechanisms and suggest important avenues for future investigation.
Collapse
Affiliation(s)
- Laura M Brutscher
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA ; Institute on Ecosystems, Montana State University, Bozeman, MT, USA ; Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Katie F Daughenbaugh
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA
| | - Michelle L Flenniken
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA ; Institute on Ecosystems, Montana State University, Bozeman, MT, USA ; Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| |
Collapse
|
47
|
McMenamin AJ, Genersch E. Honey bee colony losses and associated viruses. CURRENT OPINION IN INSECT SCIENCE 2015; 8:121-129. [PMID: 32846659 DOI: 10.1016/j.cois.2015.01.015] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/23/2015] [Accepted: 01/26/2015] [Indexed: 05/13/2023]
Abstract
Recent large-scale colony losses among managed Western honey bees (Apis mellifera) have alarmed researchers and apiculturists alike. Here, the existing correlative evidence provided by monitoring studies is reviewed which (i) identified members of the deformed wing virus and acute bee paralysis virus clades as lethal pathogens for entire colonies, and (ii) identified novel viruses whose impact on honey bee health remains elusive. Also discussed in this review is related evidence obtained via controlled experimental infection assays and RNAi approaches underscoring the damage inflicted by some of these viruses on individuals and colonies. The relevance of the ectoparasitic mite Varroa destructor acting as mechanical and biological virus vector for the enhanced virulence of certain viruses or mite selected virus strains is carefully considered.
Collapse
Affiliation(s)
- Alexander J McMenamin
- The Pennsylvania State University, Chemical Ecology Laboratory, University Park, PA 16802, USA
| | - Elke Genersch
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Friedrich-Engels-Str. 32, 16540 Hohen Neuendorf, Germany.
| |
Collapse
|
48
|
Galbraith DA, Yang X, Niño EL, Yi S, Grozinger C. Parallel epigenomic and transcriptomic responses to viral infection in honey bees (Apis mellifera). PLoS Pathog 2015; 11:e1004713. [PMID: 25811620 PMCID: PMC4374888 DOI: 10.1371/journal.ppat.1004713] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/28/2015] [Indexed: 01/07/2023] Open
Abstract
Populations of honey bees are declining throughout the world, with US beekeepers losing 30% of their colonies each winter. Though multiple factors are driving these colony losses, it is increasingly clear that viruses play a major role. However, information about the molecular mechanisms mediating antiviral immunity in honey bees is surprisingly limited. Here, we examined the transcriptional and epigenetic (DNA methylation) responses to viral infection in honey bee workers. One-day old worker honey bees were fed solutions containing Israeli Acute Paralysis Virus (IAPV), a virus which causes muscle paralysis and death and has previously been associated with colony loss. Uninfected control and infected, symptomatic bees were collected within 20-24 hours after infection. Worker fat bodies, the primary tissue involved in metabolism, detoxification and immune responses, were collected for analysis. We performed transcriptome- and bisulfite-sequencing of the worker fat bodies to identify genome-wide gene expression and DNA methylation patterns associated with viral infection. There were 753 differentially expressed genes (FDR<0.05) in infected versus control bees, including several genes involved in epigenetic and antiviral pathways. DNA methylation status of 156 genes (FDR<0.1) changed significantly as a result of the infection, including those involved in antiviral responses in humans. There was no significant overlap between the significantly differentially expressed and significantly differentially methylated genes, and indeed, the genomic characteristics of these sets of genes were quite distinct. Our results indicate that honey bees have two distinct molecular pathways, mediated by transcription and methylation, that modulate protein levels and/or function in response to viral infections.
Collapse
Affiliation(s)
- David A. Galbraith
- Department of Entomology, Center for Pollinator Research, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Xingyu Yang
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Elina Lastro Niño
- Department of Entomology, Center for Pollinator Research, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Soojin Yi
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Christina Grozinger
- Department of Entomology, Center for Pollinator Research, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
49
|
Kuster RD, Boncristiani HF, Rueppell O. Immunogene and viral transcript dynamics during parasitic Varroa destructor mite infection of developing honey bee (Apis mellifera) pupae. ACTA ACUST UNITED AC 2015; 217:1710-8. [PMID: 24829325 DOI: 10.1242/jeb.097766] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ectoparasitic Varroa destructor mite is a major contributor to the ongoing honey bee health crisis. Varroa interacts with honey bee viruses, exacerbating their pathogenicity. In addition to vectoring viruses, immunosuppression of the developing honey bee hosts by Varroa has been proposed to explain the synergy between viruses and mites. However, the evidence for honey bee immune suppression by V. destructor is contentious. We systematically studied the quantitative effects of experimentally introduced V. destructor mites on immune gene expression at five specific time points during the development of the honey bee hosts. Mites reproduced normally and were associated with increased titers of deformed wing virus in the developing bees. Our data on different immune genes show little evidence for immunosuppression of honey bees by V. destructor. Experimental wounding of developing bees increases relative immune gene expression and deformed wing virus titers. Combined, these results suggest that mite feeding activity itself and not immunosuppression may contribute to the synergy between viruses and mites. However, our results also suggest that increased expression of honey bee immune genes decreases mite reproductive success, which may be explored to enhance mite control strategies. Finally, our expression data for multiple immune genes across developmental time and different experimental treatments indicates co-regulation of several of these genes and thus improves our understanding of the understudied honey bee immune system.
Collapse
Affiliation(s)
- Ryan D Kuster
- Department of Biology, University of North Carolina at Greensboro, 1000 Spring Garden Street, 312 Eberhart Building, Greensboro, NC 27403, USA
| | - Humberto F Boncristiani
- Department of Biology, University of North Carolina at Greensboro, 1000 Spring Garden Street, 312 Eberhart Building, Greensboro, NC 27403, USA
| | - Olav Rueppell
- Department of Biology, University of North Carolina at Greensboro, 1000 Spring Garden Street, 312 Eberhart Building, Greensboro, NC 27403, USA
| |
Collapse
|
50
|
Khongphinitbunjong K, de Guzman LI, Tarver MR, Rinderer TE, Chen Y, Chantawannakul P. Differential viral levels and immune gene expression in three stocks of Apis mellifera induced by different numbers of Varroa destructor. JOURNAL OF INSECT PHYSIOLOGY 2015; 72:28-34. [PMID: 25456452 DOI: 10.1016/j.jinsphys.2014.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 11/06/2014] [Accepted: 11/11/2014] [Indexed: 06/04/2023]
Abstract
The viral levels and immune responses of Italian honey bees (IHB), Russian honey bees (RHB) and an outcross of Varroa Sensitive Hygienic bees (POL) deliberately infested with one or two foundress Varroa were compared. We found that the Deformed wing virus (DWV) level in IHB inoculated with one or two foundress Varroa increased to about 10(3) or 10(5) fold the levels of their uninfested brood. In contrast, POL (10(2) or 10(4) fold) and RHB (10(2) or l0(4) fold) supported a lower increase in DWV levels. The feeding of different stages of Varroa nymphs did not increase DWV levels of their pupal hosts. Analyses of their corresponding Varroa mites showed the same trends: two foundress Varroa yielded higher DWV levels than one foundress, and the addition of nymphs did not increase viral levels. Using the same pupae examined for the presence of viruses, 16 out of 24 genes evaluated showed significant differential mRNA expression levels among the three honey bee stocks. However, only four genes (Defensin, Dscam, PPOact and spaetzle), which were expressed at similar levels in uninfested pupae, were altered by the number of feeding foundress Varroa and levels of DWV regardless of stocks. This research provides the first evidence that immune response profiles of different honey bee stocks are induced by Varroa parasitism.
Collapse
Affiliation(s)
- Kitiphong Khongphinitbunjong
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Lilia I de Guzman
- USDA-ARS, Honey Bee Breeding, Genetics and Physiology Laboratory, 1157 Ben Hur Road, Baton Rouge, LA 70820, USA
| | - Matthew R Tarver
- USDA-ARS, Honey Bee Breeding, Genetics and Physiology Laboratory, 1157 Ben Hur Road, Baton Rouge, LA 70820, USA
| | - Thomas E Rinderer
- USDA-ARS, Honey Bee Breeding, Genetics and Physiology Laboratory, 1157 Ben Hur Road, Baton Rouge, LA 70820, USA
| | - Yanping Chen
- USDA-ARS, Bee Research Laboratory, Bldg. 476, BARC-East, Beltsville, MD 20705, USA
| | - Panuwan Chantawannakul
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|