1
|
Midtbø HMD, Borchel A, Morton HC, Paley R, Monaghan S, Haugland GT, Øvergård AC. Cell death induced by Lepeophtheirus salmonis labial gland protein 3 in salmonid fish leukocytes: A mechanism for disabling host immune responses. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109992. [PMID: 39481500 DOI: 10.1016/j.fsi.2024.109992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
The salmon louse (Lepeophtheirus salmonis) is an ectoparasite feeding on mucus, skin, and blood of salmonids. On parasitised fish erosions and, at later lice stages, ulcerations appear at the louse feeding site. In susceptible species like Atlantic salmon (Salmo salar) with a limited rejection of lice, only a mild inflammatory response with minor influx of immune cells is seen at these lesions, as the salmon louse secrete proteins that can dampen immune responses. In a previous study, Lepeophtheirus salmonis labial gland protein 3 (LsLGP3) was suggested to dampen cellular responses, and the present study aimed at increasing our understanding of its mode of action. LsLGP3 was found to be secreted on to the host skin, and both in vivo and in vitro experiments were performed to elucidate its function. Histological analysis of the louse attachment site revealed an epidermal and dermal influx of mainly macrophages and granulocytes after 5 days post infestation. The immune cell influx was deeper in the dermis throughout the louse infestation, and LsLGP3 may be involved in dampening this response. Enriched populations of Atlantic salmon B-cells, T-cells, granulocytes, and monocytes were exposed to recombinant LsLGP3 (recLGP3) in vitro, resulting in a significant decrease in cell viability compared to non-exposed controls. An apoptotic cell morphology with "beads-on-a-string" like protrusions was seen in all leukocyte cell fractions after recLGP3 exposure, but not in erythrocytes or keratocytes. A decreased viability was also detected in pink salmon leucocytes, which was not in leucocytes from non-salmonid species. These functional insights suggest that LsLGP3 specifically induces apoptosis of salmonid leukocytes and is likely a key protein secreted by the lice that disables the Atlantic salmon ability to mount an adequate immune response towards the salmon louse. In vivo LsLGP3 knock down studies indicated that the effect is localised primarily at the lice feeding site, without affecting immune cells that are not situated adjacent to the lice-inflicted lesion. The findings from this study could significantly aid in the development of new immune based anti-salmon louse prophylactic measures and treatments.
Collapse
Affiliation(s)
| | - Andreas Borchel
- Department of Biological Sciences, University of Bergen, P.O. Box 7803, NO-5020, Bergen, Norway
| | - H Craig Morton
- Institute of Marine Research, P.O. Box 1870 Nordnes, NO-5817, Bergen, Norway
| | - Richard Paley
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, DT4 8UB, United Kingdom
| | - Sean Monaghan
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Gyri Teien Haugland
- Department of Biological Sciences, University of Bergen, P.O. Box 7803, NO-5020, Bergen, Norway
| | - Aina-Cathrine Øvergård
- Department of Biological Sciences, University of Bergen, P.O. Box 7803, NO-5020, Bergen, Norway
| |
Collapse
|
2
|
Vollset KW, Lennox RJ, Lehmann GB, Skår B, Ulgenes I, Skoglund H. Parasite scars: the impact of salmon lice injury on sea trout populations. Proc Biol Sci 2024; 291:20241480. [PMID: 39532137 PMCID: PMC11557225 DOI: 10.1098/rspb.2024.1480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/23/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Spillback effects of the parasitic salmon louse from fish farms to wild fish are a critical environmental concern for countries with wild salmon. The ectoparasitic louse causes significant physical and physiological damage to wild salmonids that probably have long-term impacts on individuals and population dynamics. However, empirical links between injuries and abundance of lice have not been established in the wild. This study establishes a strong association between dorsal fin injuries in wild sea trout (Salmo trutta) and infestation with salmon lice at a marine site in Norway. We further assessed the prevalence of such injuries on sea trout returning to spawning grounds from snorkelling observations in 16 rivers in Hardangerfjord, western Norway, from 2007 to 2021. The prevalence of injuries decreased with distance from the fjord outlet, from approximately 70% in middle and outer parts to approximately 10% in the inner parts. Additionally, a negative correlation was found between sea trout population size and the proportion of the population with dorsal fin damage. The results demonstrate that salmon lice inflict high levels of injury on significant portions of sea trout populations in areas with intensive fish farming, leading to poorer population status in affected populations.
Collapse
Affiliation(s)
- Knut Wiik Vollset
- NORCE Norwegian Research Centre, Laboratory for Freshwater Ecology and Inland Fisheries, Nygardsgaten 112, Bergen5008, Norway
| | - Robert J. Lennox
- Ocean Tracking Network, Dalhousie University, 1355 Oxford Street, Halifax NS, Canada
| | - Gunnar Bekke Lehmann
- NORCE Norwegian Research Centre, Laboratory for Freshwater Ecology and Inland Fisheries, Nygardsgaten 112, Bergen5008, Norway
| | - Bjørnar Skår
- NORCE Norwegian Research Centre, Laboratory for Freshwater Ecology and Inland Fisheries, Nygardsgaten 112, Bergen5008, Norway
| | - Ivar Ulgenes
- NORCE Norwegian Research Centre, Laboratory for Freshwater Ecology and Inland Fisheries, Nygardsgaten 112, Bergen5008, Norway
| | - Helge Skoglund
- NORCE Norwegian Research Centre, Laboratory for Freshwater Ecology and Inland Fisheries, Nygardsgaten 112, Bergen5008, Norway
| |
Collapse
|
3
|
Chew XZ, Cobcroft J, Hutson KS. Fish ectoparasite detection, collection and curation. ADVANCES IN PARASITOLOGY 2024; 125:105-157. [PMID: 39095111 DOI: 10.1016/bs.apar.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Fish parasitology is a dynamic and internationally important discipline with numerous biological, ecological and practical applications. We reviewed optimal fish and parasite sampling methods for key ectoparasite phyla (i.e. Ciliophora, Platyhelminthes, Annelida and Arthropoda) as well as recent advances in molecular detection of ectoparasites in aquatic environments. Ideally, fish capture and anaesthesia as well as parasite recovery methods should be validated to eliminate potential sampling bias and inaccuracy in determining ectoparasite population parameters. There are considerable advantages to working with fresh samples and live parasites, when combined with appropriate fixation methods, as sampling using dead or decaying materials can lead to rapid decomposition of soft-bodied parasites and subsequent challenges for identification. Sampling methods differ between target phyla, and sometimes genera, with optimum techniques largely associated with identification of parasite microhabitat and the method of attachment. International advances in fish parasitology can be achieved through the accession of whole specimens and/or molecular voucher specimens (i.e. hologenophores) in curated collections for further study. This approach is now critical for data quality because of the increased application of environmental DNA (eDNA) for the detection and surveillance of parasites in aquatic environments where the whole organism may be unavailable. Optimal fish parasite sampling methods are emphasised to aid repeatability and reliability of parasitological studies that require accurate biodiversity and impact assessments, as well as precise surveillance and diagnostics.
Collapse
Affiliation(s)
- Xian Zhe Chew
- James Cook University Singapore, Singapore City, Singapore
| | - Jennifer Cobcroft
- James Cook University Singapore, Singapore City, Singapore; College of Science and Engineering, Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| | - Kate S Hutson
- College of Science and Engineering, Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia; Cawthron Institute, Nelson, New Zealand.
| |
Collapse
|
4
|
Slinning MS, Nthiga TM, Eichner C, Khadija S, Rome LH, Nilsen F, Dondrup M. Major vault protein is part of an extracellular cement material in the Atlantic salmon louse (Lepeophtheirus salmonis). Sci Rep 2024; 14:15240. [PMID: 38956386 PMCID: PMC11219742 DOI: 10.1038/s41598-024-65683-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024] Open
Abstract
Major vault protein (MVP) is the main component of the vault complex, which is a highly conserved ribonucleoprotein complex found in most eukaryotic organisms. MVP or vaults have previously been found to be overexpressed in multidrug-resistant cancer cells and implicated in various cellular processes such as cell signaling and innate immunity. The precise function of MVP is, however, poorly understood and its expression and probable function in lower eukaryotes are not well characterized. In this study, we report that the Atlantic salmon louse expresses three full-length MVP paralogues (LsMVP1-3). Furthermore, we extended our search and identified MVP orthologues in several other ecdysozoan species. LsMVPs were shown to be expressed in various tissues at both transcript and protein levels. In addition, evidence for LsMVP to assemble into vaults was demonstrated by performing differential centrifugation. LsMVP was found to be highly expressed in cement, an extracellular material produced by a pair of cement glands in the adult female salmon louse. Cement is important for the formation of egg strings that serve as protective coats for developing embryos. Our results imply a possible novel function of LsMVP as a secretory cement protein. LsMVP may play a role in structural or reproductive functions, although this has to be further investigated.
Collapse
Affiliation(s)
- Malene Skuseth Slinning
- Sea Lice Research Centre (SLRC), Department of Biological Sciences, University of Bergen, Pb. 7803, 5020, Bergen, Norway
| | - Thaddaeus Mutugi Nthiga
- Sea Lice Research Centre (SLRC), Department of Biological Sciences, University of Bergen, Pb. 7803, 5020, Bergen, Norway
| | - Christiane Eichner
- Sea Lice Research Centre (SLRC), Department of Biological Sciences, University of Bergen, Pb. 7803, 5020, Bergen, Norway
| | - Syeda Khadija
- Department of Biological Chemistry, David Geffen School of Medicine and the California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Leonard H Rome
- Department of Biological Chemistry, David Geffen School of Medicine and the California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Frank Nilsen
- Sea Lice Research Centre (SLRC), Department of Biological Sciences, University of Bergen, Pb. 7803, 5020, Bergen, Norway
| | - Michael Dondrup
- SLRC, Computational Biology Unit (CBU), Department of Informatics, University of Bergen, Pb. 7803, 5020, Bergen, Norway.
| |
Collapse
|
5
|
Stige LC, Jansen PA, Helgesen KO. Effects of regional coordination of salmon louse control in reducing negative impacts of salmonid aquaculture on wild salmonids. Int J Parasitol 2024; 54:463-474. [PMID: 38609075 DOI: 10.1016/j.ijpara.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/11/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Parasitic salmon lice (Lepeophtheirus salmonis) are a constraint to the sustainable growth of salmonids in open net pens, and this issue has caused production to level off in recent years in the most aquaculture-intensive areas of Norway. The maximum allowed biomass at a regional level is regulated by using the so-called "traffic light" system, where salmon louse-induced mortality of migrating wild salmon post-smolts is evaluated against set targets. As a case study, we have investigated how a specific aquaculture-intensive area can reduce its louse levels sufficiently to achieve a low impact on wild salmon. Analyses of the output from a virtual post-smolt model that uses data on the reported number of salmon lice in fish farms as key input data and estimates the salmon louse-induced mortality of wild out-migrating Atlantic salmon post-smolts, suggested that female louse abundance on the local farms must be halved in spring to reach the goal implied by the traffic light system. The outcome of a modelling scenario simulating a proposed new plan for coordinated production and fallowing proved beneficial, with an overall reduction in louse infestations and treatment efforts. The interannual variability in louse abundance in spring, however, increased for this scenario, implying unacceptably high louse abundance when many farms were in their second production year. We then combined the scenario with coordinated production with other louse control measures. Only measures that reduced the density of farmed salmonids in open cages in the study area resulted in reductions in salmon louse infestations to acceptable levels. This could be achieved either by stocking with larger fish to reduce exposure time or by reducing fish numbers, e.g. by producing in closed units.
Collapse
Affiliation(s)
| | - Peder A Jansen
- Aqualife R&D, Havnegata 9, 7010 Trondheim, Norway; Norwegian Computing Centre, P.O.Box 114 Blindern, N-0314 Oslo, Norway.
| | - Kari O Helgesen
- Norwegian Veterinary Institute, Elizabeth Stephansens vei 1, N-1433 Ås, Norway.
| |
Collapse
|
6
|
Johny A, Ilardi P, Olsen RE, Egelandsdal B, Slinde E. A Proof-of-Concept Study to Develop a Peptide-Based Vaccine against Salmon Lice Infestation in Atlantic Salmon ( Salmo salar L.). Vaccines (Basel) 2024; 12:456. [PMID: 38793707 PMCID: PMC11125789 DOI: 10.3390/vaccines12050456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Proteins present in blood samples from Atlantic salmon (Salmo salar) infected with salmon lice (Lepeophtheirus salmonis) were analyzed using liquid chromatography-high-resolution mass spectrometry. Bioinformatic analyses revealed 1820 proteins, of which 58 were assigned to lice. Among these, peroxiredoxin-2, an antioxidant protein, was found relevant with respect to blood feeding of the parasite. The three-dimensional structure analysis of the protein revealed a surface amino acid sequence of interest. A 13-amino-acid peptide was selected as a potential antigen due to its predicted solubility, antigenicity, probable non-allergenic, and non-toxic nature. This peroxiredoxin-2-derived peptide was synthesized, combined with a commercially available adjuvant, and used for vaccination. The test vaccine demonstrated a 60-70% protection rate against early-stage Lepeophtheirus salmonis infection in a challenge trial in Norway. Additionally, the vaccine was tested against salmon lice (Caligus rogercresseyi) in Chile, where a remarkable 92% reduction in the number of adult lice was observed. Thus, in combination with the selected adjuvant, the peptide showed antigenic potential, making it a suitable candidate for future vaccine development. The approach described holds promise for the development of peptide vaccines against various ectoparasites feeding on blood or skin secretions of their hosts.
Collapse
Affiliation(s)
- Amritha Johny
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1433 Aas, Norway; (B.E.); (E.S.)
| | - Pedro Ilardi
- Farmacologia en Aquacultura Veterinaria FAV S.A., 295, Pedro de Valdivia Avenue, Santiago 7500524, Chile
| | - Rolf Erik Olsen
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology Sealab, 7010 Trondheim, Norway;
| | - Bjørg Egelandsdal
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1433 Aas, Norway; (B.E.); (E.S.)
| | - Erik Slinde
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1433 Aas, Norway; (B.E.); (E.S.)
| |
Collapse
|
7
|
Trombetta E, Jakubiak S, Kutkova S, Lipschutz D, O’Hare A, Enright JA. A modeling study of the impact of treatment policies on the evolution of resistance in sea lice on salmon farms. PLoS One 2023; 18:e0294708. [PMID: 38019751 PMCID: PMC10686416 DOI: 10.1371/journal.pone.0294708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/08/2023] [Indexed: 12/01/2023] Open
Abstract
Salmonid aquaculture is an important source of nutritious food with more than 2 million tonnes of fish produced each year (Food and Agriculture Organisation of the United Nations, 2019). In most salmon producing countries, sea lice represent a major barrier to the sustainability of salmonid aquaculture. This issue is exacerbated by widespread resistance to chemical treatments on both sides of the Atlantic. Regulation for sea lice management mostly involves reporting lice counts and treatment thresholds, which depending on interpretation may encourage preemptive treatments. We have developed a stochastic simulation model of sea lice infestation including the lice life-cycle, genetic resistance to treatment, a wildlife reservoir, salmon growth and stocking practices in the context of infestation, and coordination of treatment between farms. Farms report infestation levels to a central organisation, and may then cooperate or not when coordinated treatment is triggered. Treatment practice then impacts the level of resistance in the surrounding sea lice population. Our simulation finds that treatment drives selection for resistance and coordination between managers is key. We also find that position in the hydrologically-derived network of farms can impact individual farm infestation levels and the topology of this network can impact overall infestation and resistance. We show how coordination and triggering of treatment alongside varying hydrological topology of farm connections affects the evolution of lice resistance, and thus optimise salmon quality within socio-economic and environmental constraints. Network topology drives infestation levels in cages, treatments, and hence treatment-driven resistance. Thus farmer behaviour may be highly dependent on hydrologically position and local level of infestation.
Collapse
Affiliation(s)
- Enrico Trombetta
- School of Computing Science, University of Glasgow, Glasgow, United Kingdom
| | - Sara Jakubiak
- School of Computing Science, University of Glasgow, Glasgow, United Kingdom
| | - Sara Kutkova
- School of Computing Science, University of Glasgow, Glasgow, United Kingdom
| | - Debby Lipschutz
- Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Anthony O’Hare
- Computing Science and Mathematics, University of Stirling, Stirling, United Kingdom
| | - Jessica A. Enright
- School of Computing Science, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
8
|
Gislefoss E, Abdelrahim Gamil AA, Øvergård AC, Evensen Ø. Identification and characterization of two salmon louse heme peroxidases and their potential as vaccine antigens. iScience 2023; 26:107991. [PMID: 37854698 PMCID: PMC10579435 DOI: 10.1016/j.isci.2023.107991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/09/2023] [Accepted: 09/16/2023] [Indexed: 10/20/2023] Open
Abstract
Salmon louse, Lepeophtheirus salmonis, represents major challenge for salmon farming. Current treatments impose welfare issues and are costly, whereas prophylactic measures are unavailable. Two salmon louse heme peroxidases (LsPxtl-1 and LsPxtl-2) were tested for their importance for parasite development and as potential vaccine candidates. LsPxtl-1 possesses two heme peroxidase domains and is expressed in ovaries and gut, whereas LsPxtl-2 encodes one domain and contains N-terminal signal peptide and an Eph receptor ligand-binding domain. LsPxtl-1, but not LsPxtl-2, knockdown in nauplius II stage caused poor swimming and death, indicating its importance for parasite development. Immunizations using single DNA plasmid injection encoding the peroxidases or heterologous prime (DNA) and boost (recombinant LsPxtl-2 protein) gave non-significant reduction in lice numbers. Single injection gave low specific antibody levels compared with the prime-boost. The findings suggest LsPxtl-1 is important for parasite development but formulations and vaccination modalities used did not significantly reduce lice infestation.
Collapse
Affiliation(s)
- Elisabeth Gislefoss
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
- Sea Lice Research Center, University of Bergen, Bergen, Norway
| | - Amr Ahmed Abdelrahim Gamil
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
- Sea Lice Research Center, University of Bergen, Bergen, Norway
| | - Aina-Cathrine Øvergård
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Sea Lice Research Center, University of Bergen, Bergen, Norway
| | - Øystein Evensen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
- Sea Lice Research Center, University of Bergen, Bergen, Norway
| |
Collapse
|
9
|
Maduna SN, Jónsdóttir ÓDB, Imsland AKD, Gíslason D, Reynolds P, Kapari L, Hangstad TA, Meier K, Hagen SB. Genomic Signatures of Local Adaptation under High Gene Flow in Lumpfish-Implications for Broodstock Provenance Sourcing and Larval Production. Genes (Basel) 2023; 14:1870. [PMID: 37895225 PMCID: PMC10606024 DOI: 10.3390/genes14101870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
Aquaculture of the lumpfish (Cyclopterus lumpus L.) has become a large, lucrative industry owing to the escalating demand for "cleaner fish" to minimise sea lice infestations in Atlantic salmon mariculture farms. We used over 10K genome-wide single nucleotide polymorphisms (SNPs) to investigate the spatial patterns of genomic variation in the lumpfish along the coast of Norway and across the North Atlantic. Moreover, we applied three genome scans for outliers and two genotype-environment association tests to assess the signatures and patterns of local adaptation under extensive gene flow. With our 'global' sampling regime, we found two major genetic groups of lumpfish, i.e., the western and eastern Atlantic. Regionally in Norway, we found marginal evidence of population structure, where the population genomic analysis revealed a small portion of individuals with a different genetic ancestry. Nevertheless, we found strong support for local adaption under high gene flow in the Norwegian lumpfish and identified over 380 high-confidence environment-associated loci linked to gene sets with a key role in biological processes associated with environmental pressures and embryonic development. Our results bridge population genetic/genomics studies with seascape genomics studies and will facilitate genome-enabled monitoring of the genetic impacts of escapees and allow for genetic-informed broodstock selection and management in Norway.
Collapse
Affiliation(s)
- Simo Njabulo Maduna
- Department of Ecosystems in the Barents Region, Svanhovd Research Station, Norwegian Institute of Bioeconomy Research, 9925 Svanvik, Norway;
| | | | - Albert Kjartan Dagbjartarson Imsland
- Akvaplan-Niva Iceland Office, Akralind 6, 201 Kópavogur, Iceland; (Ó.D.B.J.); (A.K.D.I.)
- Department of Biological Sciences, High Technology Centre, University of Bergen, 5020 Bergen, Norway
| | | | | | - Lauri Kapari
- Akvaplan-Niva, Framsenteret, 9296 Tromsø, Norway;
| | | | | | - Snorre B. Hagen
- Department of Ecosystems in the Barents Region, Svanhovd Research Station, Norwegian Institute of Bioeconomy Research, 9925 Svanvik, Norway;
| |
Collapse
|
10
|
Pert CC, Wallace IS, MacDonald P, Ives SC, Murray AG, Rabe B. Infestation rates of lice Lepeophtheirus salmonis and Caligus elongatus on Atlantic salmon in fixed and towed sentinel cages. DISEASES OF AQUATIC ORGANISMS 2023; 155:165-174. [PMID: 37706647 DOI: 10.3354/dao03748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Sea lice are a key limitation to sustainable salmon aquaculture, and effective monitoring strategies are critical for the management of these parasites. Sentinel cages are an established means of assessing infestation pressure at fixed locations, but as smolts move through systems they will be exposed to varying lice densities. As a means of assessing infestation pressure along trajectories, we describe the development and application of towed sentinel cages (TSCs) in a Scottish sea loch containing salmonid aquaculture. Trial deployments took place over 3 yr (2016-2018), and levels of sea lice infestation were compared between methodologies. Oceanographic data was collected alongside TSCs to put the results into the environmental context that smolts and sea lice experienced during the tows. The sea lice infestation rates found from TSCs were comparable to those on contemporaneously deployed fixed sentinel cages. Thus, due to their practicability and consistency with other surveillance methods, TSCs could be used to improve the assessment of exposure risk along wild salmonid smolt migration trajectories, where these are known.
Collapse
Affiliation(s)
- C C Pert
- Marine Scotland Marine Laboratory, 375 Victoria Road, Aberdeen, AB11 9DB, UK
| | | | | | | | | | | |
Collapse
|
11
|
Stølen Ugelvik M, Mennerat A, Mæhle S, Dalvin S. Repeated exposure affects susceptibility and responses of Atlantic salmon ( Salmo salar) towards the ectoparasitic salmon lice ( Lepeophtheirus salmonis). Parasitology 2023; 150:990-1005. [PMID: 37705306 PMCID: PMC10941223 DOI: 10.1017/s0031182023000847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
Atlantic salmon (Salmo salar) is repeatedly exposed to and infected with ectoparasitic salmon lice (Lepeophtheirus salmonis) both in farms and in nature. However, this is not reflected in laboratory experiments where fish typically are infected only once. To investigate if a previous lice infection affects host response to subsequent infections, fish received 4 different experimental treatments; including 2 groups of fish that had previously been infected either with adult or infective salmon lice larvae (copepodids). Thereafter, fish in all treatment groups were infected with either a double or a single dose of copepodids originating from the same cohort. Fish were sampled when lice had developed into the chalimus, the pre-adult and the adult stage, respectively. Both the specific growth rate and cortisol levels (i.e. a proxy for stress) of the fish differed between treatments. Lice success (i.e. ability to infect and survive on the host) was higher in naïve than in previously infected fish (pre-adult stage). The expression of immune and wound healing transcripts in the skin also differed between treatments, and most noticeable was a higher upregulation early in the infection in the group previously infected with copepodids. However, later in the infection, the least upregulation was observed in this group, suggesting that previous exposure to salmon lice affects the response of Atlantic salmon towards subsequent lice infections.
Collapse
Affiliation(s)
- Mathias Stølen Ugelvik
- Institute of Marine Research, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Adele Mennerat
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Stig Mæhle
- Institute of Marine Research, Bergen, Norway
| | | |
Collapse
|
12
|
Rutle KH, Skern‐Mauritzen R, Nilsen F, Mateos‐Rivera A, Eide AGS, Jansson E, Quintela M, Besnier F, Allyon F, Fjørtoft HB, Glover KA. Aquaculture-driven evolution of the salmon louse mtDNA genome. Evol Appl 2023; 16:1328-1344. [PMID: 37492153 PMCID: PMC10363823 DOI: 10.1111/eva.13572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/17/2023] [Accepted: 06/06/2023] [Indexed: 07/27/2023] Open
Abstract
Resistance toward the antiparasitic pyrethroid, deltamethrin, is reported in the Atlantic salmon louse (Lepeophtheirus salmonis salmonis), a persistent ectoparasite of farmed and wild salmonids. The resistance mechanism is linked to mitochondrial DNA (mtDNA), where genetic markers for resistance have been identified. Here, we investigated how widespread pyrethroid use in aquaculture may have influenced mtDNA variation in lice, and the dispersion of resistant haplotypes across the North Atlantic, using historical (2000-2002 "pre-resistance") and contemporary (2014-2017 "post-resistance") samples. To study this, we sequenced ATPase 6 and cytochrome b, genotyped two genetic markers for deltamethrin resistance, and genotyped microsatellites as "neutral" controls of potential population bottlenecks. Overall, we observed a modest reduction in mtDNA diversity in the period 2000-2017, but no reduction in microsatellite variation was observed. The reduction in mtDNA variation was especially distinct in two of the contemporary samples, fixed for one and two haplotypes, respectively. By contrast, all historical samples consisted of close to one mtDNA haplotype per individual. No population genetic structure was detected among the historical samples for mtDNA nor microsatellites. By contrast, significant population genetic differentiation was observed for mtDNA among some of the contemporary samples. However, the observed population genetic structure was tightly linked with the pattern of deltamethrin resistance, and we therefore conclude that it primarily reflects the transient mosaic of pyrethroid usage in time and space. Two historically undetected mtDNA haplotypes dominated in the contemporary samples, both of which were linked to deltamethrin resistance, demonstrating primarily two origins of deltamethrin resistance in the North Atlantic. Collectively, these data demonstrate that the widespread use of pyrethroids in commercial aquaculture has substantially altered the patterns of mtDNA diversity in lice across the North Atlantic, and that long-distance dispersion of resistance is rapid due to high level of genetic connectivity that is observed in this species.
Collapse
Affiliation(s)
| | | | - Frank Nilsen
- Department of Biological SciencesUniversity of BergenBergenNorway
| | | | | | | | | | | | | | - Helene Børretzen Fjørtoft
- Department of Biological SciencesUniversity of BergenBergenNorway
- Department of Biological Sciences in AalesundNorwegian University of Science and TechnologyAalesundNorway
| | | |
Collapse
|
13
|
Piasecki W, Venmathi Maran BA, Ohtsuka S. Are We Ready to Get Rid of the Terms “Chalimus” and ”Preadult” in the Caligid (Crustacea: Copepoda: Caligidae) Life Cycle Nomenclature? Pathogens 2023; 12:pathogens12030460. [PMID: 36986382 PMCID: PMC10053709 DOI: 10.3390/pathogens12030460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023] Open
Abstract
In view of recent studies, we suggest that the term “preadult” should not be used in scientific reports on Copepoda parasitic on fishes as having no explicit meaning or further justification. Consequently, the term “chalimus” with its use currently restricted in the Caligidae to at most two instars in the life cycles of species of Lepeophtheirus, also becomes redundant. In our new understanding, both the chalimus and preadult stages should be referred to as the respective copepodid stages (II through V, in integrative terminology). The terminology for the caligid copepod life cycle thereby becomes consistent with that for the homologous stages of other podoplean copepods. We see no justification for keeping “chalimus” and “preadult” even as purely practical terms. To justify this reinterpretation, we comprehensively summarize and reinterpret the patterns of instar succession reported in previous studies on the ontogeny of caligid copepods, with special attention to the frontal filament. Key concepts are illustrated in diagrams. We conclude that, using the new integrative terminology, copepods of the family Caligidae have the following stages in their life cycles: nauplius I, nauplius II (both free-living), copepodid I (infective), copepodid II (chalimus 1), copepodid III (chalimus 2), copepodid IV (chalimus 3/preadult 1), copepodid V (chalimus 4/preadult 2), and adult (parasitic). With this admittedly polemical paper, we hope to spark a discussion about this terminological problem.
Collapse
Affiliation(s)
- Wojciech Piasecki
- Institute of Marine and Environmental Sciences, University of Szczecin, ul. Adama Mickiewicza 16, 70-383 Szczecin, Poland
- Correspondence:
| | | | - Susumu Ohtsuka
- Takehara Station, Setouchi Field Science Center, Graduate School of Integrated Sciences for Life, Hiroshima University, Takehara 725-0024, Japan;
| |
Collapse
|
14
|
Borchel A, Eichner C, Øvergård AC. Mining Lepeophtheirus salmonis RNA-Seq data for qPCR reference genes and their application in Caligus elongatus. Exp Parasitol 2023; 248:108511. [PMID: 36921884 DOI: 10.1016/j.exppara.2023.108511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/14/2023]
Abstract
Lepeophtheirus salmonis and Caligus elongatus are two parasitic copepod species posing a significant threat to salmonid aquaculture. Consequently, several gene expression studies are executed each year to gain new knowledge and treatment strategies. Though, to enable accurate gene expression measurements by quantitative real time PCR, stable reference genes are needed. Previous studies have mainly focused on a few genes selected based on their function as housekeeping genes, as these are often stably expressed in various cells and tissues. In the present study, however, RNA-sequencing data from 127 L. salmonis samples from different life stages and diverse environmental conditions were used to identify new candidate reference genes displaying low variation. From this, six genes were selected, and the stability validated by qPCR on samples from different life stages. Since neither a genome nor comprehensive RNA sequencing data are available for C. elongatus, homologous genes to those identified for L. salmonis were identified within a C. elongatus transcriptome assembly and validated by qPCR in different life stages. Overall, the genes eukaryotic translation initiation factor 1A (EIF1A) and serine/threonine-protein phosphatase 1 (PP1) displayed the highest stability in L. salmonis, while the combination of PP1 and ribosomal protein S13 (RPS13) was found to have the highest stability in C. elongatus. These genes are well-suited reference genes for qPCR applications which allow for accurate normalization of target genes.
Collapse
Affiliation(s)
- Andreas Borchel
- University of Bergen, SLRC-Sea Lice Research Centre, Department of Biological Sciences, Pb. 7803, 5020, Bergen, Norway.
| | - Christiane Eichner
- University of Bergen, SLRC-Sea Lice Research Centre, Department of Biological Sciences, Pb. 7803, 5020, Bergen, Norway
| | - Aina-Cathrine Øvergård
- University of Bergen, SLRC-Sea Lice Research Centre, Department of Biological Sciences, Pb. 7803, 5020, Bergen, Norway
| |
Collapse
|
15
|
Cheng YR, Lin CY, Yu JK. Embryonic and post-embryonic development in the parasitic copepod Ive ptychoderae (Copepoda: Iviidae): Insights into its phylogenetic position. PLoS One 2023; 18:e0281013. [PMID: 36881593 PMCID: PMC9990918 DOI: 10.1371/journal.pone.0281013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/12/2023] [Indexed: 03/08/2023] Open
Abstract
Parasitic copepods are frequently discovered in many marine animals, and they exhibit great species diversity with remarkable morphological adaptations to their parasitic lifestyle. Similar to their free-living relatives, parasitic copepods usually develop through complex life cycle, but they eventually transform into a modified adult form with reduced appendages. Although the life cycle and distinct larval stages have been described in a few species of parasitic copepods, particularly those infecting commercially valuable marine animals (such as fishes, oysters, and lobsters), very little is known about the developmental process of the species that transformed into extremely simplified adult body plan. This paucity also causes some difficulties when investigating the taxonomy and phylogeny of this kind of parasitic copepods. Here we describe the embryonic development and a series of sequential larval stages of a parasitic copepod, Ive ptychoderae, which is a vermiform endoparasite living inside the hemichordate acorn worms. We devised laboratory regimes that enable us raising large quantity of embryos and free living larvae, and obtaining post-infested I. ptychoderae samples from the host tissues. Using defined morphological features, the embryonic development of I. ptychoderae can be categorized into eight stages (1-, 2-, 4-, 8-, 16- cell stages, blastula, gastrula, and limb bud stages) and the post-embryonic development comprises six larval stages (2 naupliar and 4 copepodid stages). Based on the comparisons of morphological characters in the nauplius stage, our results provide evidence to support that the Ive-group is more closely related to the Cyclopoida, which represents one of the two major clades that contain many highly transformed parasitic copepods. Thus, our results help to resolve the problematic phylogenetic position of the Ive-group in previous study based on analysis using 18S rDNA sequences. Combining with more molecular data, future comparative analyses on the morphological features of copepodid stages will further refine our understanding of the phylogenetic relationships of parasitic copepods.
Collapse
Affiliation(s)
- Yu-Rong Cheng
- Department of Fisheries Production and Management, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Ching-Yi Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Institute of Cellular and Organismic Biology, Marine Research Station, Academia Sinica, Yilan, Taiwan
| |
Collapse
|
16
|
Moriarty M, Ives SC, Murphy JM, Murray AG. Modelling parasite impacts of aquaculture on wild fish: The case of the salmon louse (Lepeophtheirus salmonis) on out-migrating wild Atlantic salmon (Salmo salar) smolt. Prev Vet Med 2023; 214:105888. [PMID: 36906938 DOI: 10.1016/j.prevetmed.2023.105888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/13/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
For effective wild salmon (Salmo salar) conservation in areas where aquaculture of salmon is practiced it is necessary to identify where the key parasite, the salmon louse (Lepeophtheirus salmonis), will have an impact on these wild salmon. A simple modelling structure is implemented in a sample system in Scotland for assessing interaction between wild salmon and salmon lice from salmon farms. The model is demonstrated for case studies of smolt sizes and migration routes through salmon lice concentration fields derived for average farm loads from 2018 to 2020. Lice modelling describes production and distribution of lice, infection rates on hosts and biological development of lice. The modelling framework allows explicit assessment of the relationships between lice production, lice concentration and impact on hosts as they grow and migrate. Lice distribution in the environment is determined using a kernel model, which summarises mixing in a complex hydrodynamic system. Smolt modelling describes their initial size, growth and migration pathways. This is illustrated for a set of parameter values applied to 10 cm, 12.5 cm and 15 cm salmon smolts. We found that salmon lice impact depends on initial size of host, smaller smolts will be more susceptible, while larger smolts are less impacted by a given number of lice encounters and migrate more rapidly. This modelling framework can be adapted to allow evaluation of threshold concentrations of lice in the water that should not be exceeded to avoid impacts on smolt populations.
Collapse
Affiliation(s)
- Meadhbh Moriarty
- Marine Scotland Science, Marine Laboratory, 375 Victoria Road, Aberdeen AB11 9DB, Scotland.
| | - Stephen C Ives
- Marine Scotland Science, Marine Laboratory, 375 Victoria Road, Aberdeen AB11 9DB, Scotland
| | - Joanne M Murphy
- Marine Scotland Science, Marine Laboratory, 375 Victoria Road, Aberdeen AB11 9DB, Scotland
| | - Alexander G Murray
- Marine Scotland Science, Marine Laboratory, 375 Victoria Road, Aberdeen AB11 9DB, Scotland
| |
Collapse
|
17
|
Robinson NA, Robledo D, Sveen L, Daniels RR, Krasnov A, Coates A, Jin YH, Barrett LT, Lillehammer M, Kettunen AH, Phillips BL, Dempster T, Doeschl‐Wilson A, Samsing F, Difford G, Salisbury S, Gjerde B, Haugen J, Burgerhout E, Dagnachew BS, Kurian D, Fast MD, Rye M, Salazar M, Bron JE, Monaghan SJ, Jacq C, Birkett M, Browman HI, Skiftesvik AB, Fields DM, Selander E, Bui S, Sonesson A, Skugor S, Østbye TK, Houston RD. Applying genetic technologies to combat infectious diseases in aquaculture. REVIEWS IN AQUACULTURE 2023; 15:491-535. [PMID: 38504717 PMCID: PMC10946606 DOI: 10.1111/raq.12733] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/24/2022] [Accepted: 08/16/2022] [Indexed: 03/21/2024]
Abstract
Disease and parasitism cause major welfare, environmental and economic concerns for global aquaculture. In this review, we examine the status and potential of technologies that exploit genetic variation in host resistance to tackle this problem. We argue that there is an urgent need to improve understanding of the genetic mechanisms involved, leading to the development of tools that can be applied to boost host resistance and reduce the disease burden. We draw on two pressing global disease problems as case studies-sea lice infestations in salmonids and white spot syndrome in shrimp. We review how the latest genetic technologies can be capitalised upon to determine the mechanisms underlying inter- and intra-species variation in pathogen/parasite resistance, and how the derived knowledge could be applied to boost disease resistance using selective breeding, gene editing and/or with targeted feed treatments and vaccines. Gene editing brings novel opportunities, but also implementation and dissemination challenges, and necessitates new protocols to integrate the technology into aquaculture breeding programmes. There is also an ongoing need to minimise risks of disease agents evolving to overcome genetic improvements to host resistance, and insights from epidemiological and evolutionary models of pathogen infestation in wild and cultured host populations are explored. Ethical issues around the different approaches for achieving genetic resistance are discussed. Application of genetic technologies and approaches has potential to improve fundamental knowledge of mechanisms affecting genetic resistance and provide effective pathways for implementation that could lead to more resistant aquaculture stocks, transforming global aquaculture.
Collapse
Affiliation(s)
- Nicholas A. Robinson
- Nofima ASTromsøNorway
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | | | - Rose Ruiz Daniels
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | | | - Andrew Coates
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Ye Hwa Jin
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | - Luke T. Barrett
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
- Institute of Marine Research, Matre Research StationMatredalNorway
| | | | | | - Ben L. Phillips
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Tim Dempster
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Andrea Doeschl‐Wilson
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | - Francisca Samsing
- Sydney School of Veterinary ScienceThe University of SydneyCamdenAustralia
| | | | - Sarah Salisbury
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | | | | | | | | | - Dominic Kurian
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | - Mark D. Fast
- Atlantic Veterinary CollegeThe University of Prince Edward IslandCharlottetownPrince Edward IslandCanada
| | | | | | - James E. Bron
- Institute of AquacultureUniversity of StirlingStirlingScotlandUK
| | - Sean J. Monaghan
- Institute of AquacultureUniversity of StirlingStirlingScotlandUK
| | - Celeste Jacq
- Blue Analytics, Kong Christian Frederiks Plass 3BergenNorway
| | | | - Howard I. Browman
- Institute of Marine Research, Austevoll Research Station, Ecosystem Acoustics GroupTromsøNorway
| | - Anne Berit Skiftesvik
- Institute of Marine Research, Austevoll Research Station, Ecosystem Acoustics GroupTromsøNorway
| | | | - Erik Selander
- Department of Marine SciencesUniversity of GothenburgGothenburgSweden
| | - Samantha Bui
- Institute of Marine Research, Matre Research StationMatredalNorway
| | | | | | | | | |
Collapse
|
18
|
Fjelldal PG, Dalvin S, Ugelvik MS, Pedersen AØ, Hansen TJ, Skjold B, Dyrhovden L, Kroken AK, Karlsen Ø. In sea trout, the physiological response to salmon louse is stronger in female than in males. CONSERVATION PHYSIOLOGY 2023; 11:coac078. [PMID: 36655169 PMCID: PMC9835072 DOI: 10.1093/conphys/coac078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/25/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The aims of this study were to compare male and female sea trout (Salmo trutta) with respect to their hypo-osmoregulatory ability over a simulated migration to seawater and their clinical and physiological response to salmon louse (Lepeophtheirus salmonis) infection in seawater and over a simulated pre-mature return to freshwater. For this purpose, 2-year-old hatchery-reared male and female brown trout (F1 offspring of wild caught anadromous fish) were infected with salmon lice and measured for changes in plasma ions, glucose, lactate and osmolality and relative heart, liver and gonad sizes during a simulated seawater migration and thereafter a premature return to freshwater after 4 weeks in seawater (pre-adult louse). Un-infected trout served as control. Male trout used longer time to develop full hypo-osmoregulatory ability in seawater and showed a stronger response in plasma glucose and lactate following simulated premature return to freshwater, compared to female trout. Response to salmon louse was stronger in female trout, shown by stronger osmotic stress by chalimus (plasma Cl-) and pre-adult louse (plasma osmolality) and elevated relative liver size (hepatosomatic index) by pre-adult louse in female compared to male trout. Moreover, high plasma cortisol in infected female and low plasma cortisol in infected male trout produced a significant treatment-sex interaction on plasma cortisol. Lice infection intensity was initially higher in male (0.18 lice g-1) compared to female trout (0.11 lice g-1) at the chalimus stage, but equal between sexes at the pre-adult stage (male 0.15 and female 0.17 lice g-1). This study showed that female trout were better adapted for changes in water salinity, while male trout were more robust against salmon louse infection. These results suggests that the elevated salmon louse infection pressure generated by salmon farming have strong and unexplored negative effects on wild sea trout populations. Further research on this topic is vital for the conservation of wild sea trout populations.
Collapse
Affiliation(s)
- Per Gunnar Fjelldal
- Corresponding author: Institute of Marine Research (IMR), Matre Research Station, Matre 5, 5984 Matredal, Norway. Tel: +47 95 40 24 79.
| | - Sussie Dalvin
- Pathogens and disease transfer, Institute of Marine Research (IMR), PO Box 1870, Nordnes, 5817 Bergen, Norway
| | - Mathias Stølen Ugelvik
- Pathogens and disease transfer, Institute of Marine Research (IMR), PO Box 1870, Nordnes, 5817 Bergen, Norway
| | - Audun Østby Pedersen
- Reproduction and Developmental Biology, Institute of Marine Research (IMR), Matre Research Station, 5984 Matredal, Norway
| | - Tom J Hansen
- Reproduction and Developmental Biology, Institute of Marine Research (IMR), Matre Research Station, 5984 Matredal, Norway
| | - Bjørnar Skjold
- Pathogens and disease transfer, Institute of Marine Research (IMR), PO Box 1870, Nordnes, 5817 Bergen, Norway
| | - Lise Dyrhovden
- Reproduction and Developmental Biology, Institute of Marine Research (IMR), Matre Research Station, 5984 Matredal, Norway
| | - Ann Kathrin Kroken
- Reproduction and Developmental Biology, Institute of Marine Research (IMR), Matre Research Station, 5984 Matredal, Norway
| | - Ørjan Karlsen
- Reproduction and Developmental Biology, Institute of Marine Research (IMR), PO Box 1870, Nordnes, 5817 Bergen, Norway
| |
Collapse
|
19
|
Krolicka A, Mæland Nilsen M, Klitgaard Hansen B, Wulf Jacobsen M, Provan F, Baussant T. Sea lice (Lepeophtherius salmonis) detection and quantification around aquaculture installations using environmental DNA. PLoS One 2022; 17:e0274736. [PMID: 36129924 PMCID: PMC9491551 DOI: 10.1371/journal.pone.0274736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/06/2022] [Indexed: 11/29/2022] Open
Abstract
The naturally occurring ectoparasite salmon lice (Lepeophtherirus salmonis) poses a great challenge for the salmon farming industry, as well as for wild salmonids in the Northern hemisphere. To better control the infestation pressure and protect the production, there is a need to provide fish farmers with sensitive and efficient tools for rapid early detection and monitoring of the parasitic load. This can be achieved by targeting L. salmonis DNA in environmental samples. Here, we developed and tested a new L. salmonis specific DNA-based assay (qPCR assay) for detection and quantification from seawater samples using an analytical pipeline compatible with the Environmental Sample Processor (ESP) for autonomous water sample analysis of gene targets. Specificity of the L. salmonis qPCR assay was demonstrated through in-silico DNA analyses covering sequences of different L. salmonis isolates. Seawater was spiked with known numbers of nauplii and copepodite free-swimming (planktonic) stages of L. salmonis to investigate the relationship with the number of marker gene copies (MGC). Finally, field samples collected at different times of the year in the vicinity of a salmon production farm in Western Norway were analyzed for L. salmonis detection and quantification. The assay specificity was high and a high correlation between MGC and planktonic stages of L. salmonis was established in the laboratory conditions. In the field, L. salmonis DNA was consequently detected, but with MGC number below that expected for one copepodite or nauplii. We concluded that only L. salmonis tissue or eDNA residues were detected. This novel study opens for a fully automatized L. salmonis DNA quantification using ESP robotic to monitor the parasitic load, but challenges remain to exactly transfer information about eDNA quantities to decisions by the farmers and possible interventions.
Collapse
Affiliation(s)
| | | | | | - Magnus Wulf Jacobsen
- Danish Technical University, Section for Marine Living Resources, Silkeborg, Denmark
| | - Fiona Provan
- Norwegian Research Centre AS (NORCE), Stavanger, Norway
| | - Thierry Baussant
- Norwegian Research Centre AS (NORCE), Stavanger, Norway
- * E-mail:
| |
Collapse
|
20
|
Ugelvik MS, Dalvin S. The effect of different intensities of the ectoparasitic salmon lice (Lepeophtheirus salmonis) on Atlantic salmon (Salmo salar). JOURNAL OF FISH DISEASES 2022; 45:1133-1147. [PMID: 35612902 PMCID: PMC9544591 DOI: 10.1111/jfd.13649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 06/01/2023]
Abstract
The effect of different intensities of the ectoparasitic salmon lice (Lepeophtheirus salmonis) on stress, growth and the expression of immune and wound healing transcripts in the skin of Atlantic salmon (Salmo salar) was investigated. Lice infection success and survival were similar at the chalimus and preadult stage in the low and high dose group, but infection success and survival were significantly lower in the high than in the low dose group at the adult stage. The expression of investigated transcripts was not correlated to lice intensities, but several of them were significantly differently expressed locally in the skin at the site of lice attachment in infected fish compared to controls. This included an up-regulation of pro-inflammatory markers at the site of lice attachment (e.g., interleukin 1-beta, interleukin 8 and the acute phase protein serum amyloid A), a reduction of markers of adaptive immunity (cluster of differentiation 8-alpha and immunoglobulin M) and decreased expression of the anti-inflammatory cytokine interleukin 10.
Collapse
|
21
|
Ugelvik MS, Mæhle S, Dalvin S. Temperature affects settlement success of ectoparasitic salmon lice (Lepeophtheirus salmonis) and impacts the immune and stress response of Atlantic salmon (Salmo salar). JOURNAL OF FISH DISEASES 2022; 45:975-990. [PMID: 35397139 PMCID: PMC9320951 DOI: 10.1111/jfd.13619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 06/01/2023]
Abstract
In this study, the effect of temperature on Atlantic salmon (Salmo salar) stress and immune response to the ectoparasitic salmon lice (Lepeophtheirus salmonis) was investigated. We found that infestation affected the expression of several immune and wound healing transcripts in the skin especially at the site of lice attachment compared to un-infested control fish. Moreover, expression patterns in the skin of infested fish suggest that host immune responses towards salmon lice are impaired at low temperatures. However, reduced lice infestation success and survival at the lowest investigated temperatures suggest that cold water temperatures are more detrimental to the lice than their fish hosts. Finally, temperature affected the stress response of the fish and infected fish had a higher increase in cortisol levels in response to handling (a stressor) than un-infested controls.
Collapse
Affiliation(s)
| | - Stig Mæhle
- Institute of Marine ResearchBergenNorway
| | | |
Collapse
|
22
|
Small, charged proteins in salmon louse (Lepeophtheirus salmonis) secretions modulate Atlantic salmon (Salmo salar) immune responses and coagulation. Sci Rep 2022; 12:7995. [PMID: 35568726 PMCID: PMC9107468 DOI: 10.1038/s41598-022-11773-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/28/2022] [Indexed: 11/08/2022] Open
Abstract
Little is known about glandular proteins secreted from the skin- and blood-feeding ectoparasite salmon louse (Lepeophtheirus salmonis). The labial gland has ducts extending into the oral cavity of the lice, and the present study aimed to identify novel genes expressed by this gland type and to investigate their role in modulation of host parameters at the lice feeding site. Five genes associated with labial gland function were identified and named Lepeophteirus salmonis labial gland protein (LsLGP) 1-4 and 1 like (LsLGP1L). All LsLGPs were predicted to be small charged secreted proteins not encoding any known protein domains. Functional studies revealed that LsLGP1 and/or LsLGP1L regulated the expression of other labial gland genes. Immune dampening functions were indicated for LsLGP2 and 3. Whereas LsLGP2 was expressed throughout the parasitic life cycle and found to dampen inflammatory cytokines, LsLGP3 displayed an increased expression in mobile stages and appeared to dampen adaptive immune responses. Expression of LsLGP4 coincided with moulting to the mobile pre-adult I stage where hematophagous feeding is initiated, and synthetic LsLGP4 decreased the clotting time of Atlantic salmon plasma. Results from the present study confirm that the salmon louse secretes immune modulating and anti-coagulative proteins with a potential application in new immune based anti-salmon louse treatments.
Collapse
|
23
|
Borchel A, Komisarczuk AZ, Nilsen F. Sex differences in the early life stages of the salmon louse Lepeophtheirus salmonis (Copepoda: Caligidae). PLoS One 2022; 17:e0266022. [PMID: 35358250 PMCID: PMC8970357 DOI: 10.1371/journal.pone.0266022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 03/11/2022] [Indexed: 11/18/2022] Open
Abstract
Salmon lice are ectoparasites on salmonids and feed on blood, mucus, and skin from their hosts. This causes high annual costs for treatment and control for the aquaculture industry. Salmon lice have a life cycle consisting of eight life stages. Sex determination by eye is only possible from the sixth stage onwards. A molecular sex determination has not been carried out so far, even though few individual sex-linked SNPs have been reported. In the present study, we used known sex-specific SNPs as a basis to sequence the complete sex-specific gene variants and used the sequence information to develop a sex determination assay. This assay could be used to determine the developmental speed of the two sexes already in the earliest life stages. Additionally, we sampled salmon lice in the nauplius II stage, determined the sex of each individual, pooled their RNA according to their sex, and used RNA sequencing to search for differences in gene expression and further sex-specific SNPs. We succeeded in developing a sex-determination assay that works on DNA or RNA from even the earliest larval stages of the salmon louse after hatching. At these early developmental stages, male salmon lice develop slightly quicker than females. We detected several previously unknown, sex-specific SNPs in our RNA-data seq, but only very few genes showed a differential expression between the sexes. Potential connections between SNPs, gene expression, and development are discussed.
Collapse
Affiliation(s)
- Andreas Borchel
- Department of Biological Sciences, SLRC—Sea Lice Research Centre, University of Bergen, Bergen, Norway
- * E-mail:
| | - Anna Zofia Komisarczuk
- Department of Biological Sciences, SLRC—Sea Lice Research Centre, University of Bergen, Bergen, Norway
| | - Frank Nilsen
- Department of Biological Sciences, SLRC—Sea Lice Research Centre, University of Bergen, Bergen, Norway
| |
Collapse
|
24
|
Palma PA, Beluso LAA, de Jesus-Ayson EGT, Cruz-Lacierda ER. Seasonal population dynamics of Lepeophtheirus spinifer and Neobenedenia sp. coinfecting snubnose pompano (Trachinotus blochii) breeders in marine cages in the Philippines. Vet Parasitol 2022; 302:109656. [PMID: 35032830 DOI: 10.1016/j.vetpar.2022.109656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 10/19/2022]
Abstract
Studies on the biology and ecology of sea lice are lacking in tropical regions such as in Southeast Asia where finfish cage farming has grown dramatically in the past decades. This study investigated the seasonal population dynamics of ectoparasites infecting captive snubnose pompano (Trachinotus blochii) breeders in marine cages in the Philippines. The pompano breeders were found to be naturally coinfected with caligid copepod Lepeophtheirus spinifer and capsalid monogenean Neobenedenia sp. These breeders were monitored and examined bimonthly (n = 10 per sampling) from September 2017 to May 2018, covering the warm season and cold season in the Philippines. Our results clearly show that L. spinifer population maintain a 100 % prevalence throughout warm and cold seasons however, mean abundance and intensity increased only during the cold months (early November to early March) and displayed an oscillating trend during this period. Highest mean intensity was recorded in early January (221.4 ± 24.6; temperature = 27.5 ± 0.3 °C; salinity = 34.8 ± 0.3 ppt) while the lowest mean intensity was recorded during the warm months dipping to 12.5 ± 1.9 in early May (temperature = 30.5 ± 0.3 °C; salinity = 30.3 ± 0.3 ppt). The prevalence of adult and pre-adult was high throughout the monitoring period at 70-100 % except at the start of summer (late March to early May) for pre-adult (30-90 %). In comparison, the chalimus stages were only observed during the cold months specifically from early November to late January with prevalence of 40-80 %. The highest mean abundance (3.4 ± 0.7) and mean intensity (4.3 ± 0.6) was in early November which coincided with the first peak of the total L. spinifer population. Neobenedenia sp. occurred year-round with no significant changes in the population mean abundance and mean intensity between warm and cold seasons. This study presents comprehensive information on the seasonal population dynamics of L. spinifer and Neobenedenia sp. in the Philippines, providing valuable insights on the ecology of caligid sea louse which is fundamental in the formulation of control and management strategies of these economically significant ectoparasites.
Collapse
Affiliation(s)
- Peter A Palma
- Aquaculture Department, Southeast Asian Fisheries Development Center (SEAFDEC/AQD), 5021 Tigbauan, Iloilo, Philippines
| | - Lyra Angelica A Beluso
- Institute of Aquaculture, College of Fisheries and Ocean Sciences, University of the Philippines Visayas (CFOS-UPV), 5023 Miagao, Iloilo, Philippines
| | - Evelyn Grace T de Jesus-Ayson
- Aquaculture Department, Southeast Asian Fisheries Development Center (SEAFDEC/AQD), 5021 Tigbauan, Iloilo, Philippines
| | - Erlinda R Cruz-Lacierda
- Institute of Aquaculture, College of Fisheries and Ocean Sciences, University of the Philippines Visayas (CFOS-UPV), 5023 Miagao, Iloilo, Philippines.
| |
Collapse
|
25
|
Parent MI, Stryhn H, Hammell KL, Fast MD, Grant J, Vanderstichel R. Estimating the dispersal of Lepeophtheirus salmonis sea lice within and among Atlantic salmon sites of the Bay of Fundy, New Brunswick. JOURNAL OF FISH DISEASES 2021; 44:1971-1984. [PMID: 34411315 PMCID: PMC9291781 DOI: 10.1111/jfd.13511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
The objective of this study was to estimate the impact of infestation pressures on the abundance of the parasitic sea louse, Lepeophtheirus salmonis, in the Bay of Fundy, New Brunswick (NB), Canada, using the Fish-iTrends database for the years 2009-2018. Infestation pressures were calculated as time-lagged weighted averages of the abundance of adult female (AF) sea lice within a site (internal infestation pressure: IIP) and among sites (external infestation pressure: EIP). The EIP weights were calculated from seaway distances among sites and a Gaussian kernel density for bandwidths of 5 to 60 km. The EIP with a bandwidth of 10 km had the best fit, as determined with Akaike's information criterion, and historical AF sea lice abundance. This estimated dispersal distance of 10 km was similar to previous studies in Norway, Scotland and in New Brunswick. The infestation pressures estimated from empirical AF sea lice abundance within and among sites significantly increased the abundance of AF sea lice (p < .001). This study concludes that sea lice burdens within Atlantic salmon farms in the Bay of Fundy, NB, are affected by within site management and could be improved by synchronizing treatments between sites.
Collapse
Affiliation(s)
- Marianne I. Parent
- Department of Health ManagementAtlantic Veterinary CollegeUniversity of Prince Edward IslandCharlottetownPEICanada
| | - Henrik Stryhn
- Department of Health ManagementAtlantic Veterinary CollegeUniversity of Prince Edward IslandCharlottetownPEICanada
| | - K. Larry Hammell
- Department of Health ManagementAtlantic Veterinary CollegeUniversity of Prince Edward IslandCharlottetownPEICanada
| | - Mark D. Fast
- Department of Pathology and MicrobiologyAVCUPEICharlottetownPEICanada
| | - Jon Grant
- Department of OceanographyLife Sciences CentreDalhousie UniversityHalifaxNSCanada
| | - Raphaël Vanderstichel
- Department of Health ManagementAtlantic Veterinary CollegeUniversity of Prince Edward IslandCharlottetownPEICanada
- Department of Veterinary Clinical SciencesCollege of Veterinary MedicineLong Island UniversityBrookvilleNYUSA
| |
Collapse
|
26
|
Zhou Z, Eichner C, Nilsen F, Jonassen I, Dondrup M. A novel approach to co-expression network analysis identifies modules and genes relevant for moulting and development in the Atlantic salmon louse (Lepeophtheirus salmonis). BMC Genomics 2021; 22:832. [PMID: 34789144 PMCID: PMC8600823 DOI: 10.1186/s12864-021-08054-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/04/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The salmon louse (Lepeophtheirus salmonis) is an obligate ectoparasitic copepod living on Atlantic salmon and other salmonids in the marine environment. Salmon lice cause a number of environmental problems and lead to large economical losses in aquaculture every year. In order to develop novel parasite control strategies, a better understanding of the mechanisms of moulting and development of the salmon louse at the transcriptional level is required. METHODS Three weighted gene co-expression networks were constructed based on the pairwise correlations of salmon louse gene expression profiles at different life stages. Network-based approaches and gene annotation information were applied to identify genes that might be important for the moulting and development of the salmon louse. RNA interference was performed for validation. Regulatory impact factors were calculated for all the transcription factor genes by examining the changes in co-expression patterns between transcription factor genes and deferentially expressed genes in middle stages and moulting stages. RESULTS Eight gene modules were predicted as important, and 10 genes from six of the eight modules have been found to show observable phenotypes in RNA interference experiments. We knocked down five hub genes from three modules and observed phenotypic consequences in all experiments. In the infection trial, no copepodids with a RAB1A-like gene knocked down were found on fish, while control samples developed to chalimus-1 larvae. Also, a FOXO-like transcription factor obtained highest scores in the regulatory impact factor calculation. CONCLUSIONS We propose a gene co-expression network-based approach to identify genes playing an important role in the moulting and development of salmon louse. The RNA interference experiments confirm the effectiveness of our approach and demonstrated the indispensable role of a RAB1A-like gene in the development of the salmon louse. We propose that our approach could be generalized to identify important genes associated with a phenotype of interest in other organisms.
Collapse
Affiliation(s)
- Zhaoran Zhou
- Department of Informatics & Sea Lice Research Centre, University of Bergen, Thormøhlensgate 55, Bergen, 5008 Norway
| | - Christiane Eichner
- Department of Biological Sciences & Sea Lice Research Centre, University of Bergen, Thormøhlensgate 55, Bergen, 5008 Norway
| | - Frank Nilsen
- Department of Biological Sciences & Sea Lice Research Centre, University of Bergen, Thormøhlensgate 55, Bergen, 5008 Norway
| | - Inge Jonassen
- Department of Informatics & Sea Lice Research Centre, University of Bergen, Thormøhlensgate 55, Bergen, 5008 Norway
| | - Michael Dondrup
- Department of Informatics & Sea Lice Research Centre, University of Bergen, Thormøhlensgate 55, Bergen, 5008 Norway
| |
Collapse
|
27
|
Khan MT, Dalvin S, Nilsen F, Male R. Two apolipoproteins in salmon louse ( Lepeophtheirus salmonis), apolipoprotein 1 knock down reduces reproductive capacity. Biochem Biophys Rep 2021; 28:101156. [PMID: 34729423 PMCID: PMC8545670 DOI: 10.1016/j.bbrep.2021.101156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/07/2021] [Accepted: 10/17/2021] [Indexed: 11/19/2022] Open
Abstract
The salmon louse, Lepeophtheirus salmonis is an ectoparasite of salmonid fish in the Northern Hemisphere, causing large economical losses in the aquaculture industry and represent a threat to wild populations of salmonids. Like other oviparous animals, it is likely that female lice use lipoproteins for lipid transport to maturing oocytes and other organs of the body. As an important component of lipoproteins, apolipoproteins play a vital role in the transport of lipids through biosynthesis of lipoproteins. Apolipoproteins have been studied in detail in different organisms, but no studies have been done in salmon lice. Two apolipoprotein encoding genes (LsLp1 and LsLp2) were identified in the salmon lice genome. Transcriptional analysis revealed both genes to be expressed at all stages from larvae to adult with some variation, LsLp1 generally higher than LsLp2 and both at their highest levels in adult stages of the louse. In adult female louse, the LsLp1 and LsLp2 transcripts were found in the sub-epidermal tissue and the intestine. RNA interference-mediated knockdown of LsLp1 and LsLp2 in female lice resulted in reduced expression of both transcripts. LsLp1 knockdown female lice produced significantly less offspring than control lice, while knockdown of LsLp2 in female lice caused no reduction in the number of offspring. These results suggest that LsLp1 has an important role in reproduction in female salmon lice. Salmon lice are ectoparasites and a major threat to aquaculture industry and wild salmon. Two apolipoproteins in salmon louse (Lepeophtheirus salmonis). Expressed at all stages from larvae to adult, sub-epidermal tissue and the intestine . RNA interference-mediated knockdown of LsLp1 and LsLp2. LsLp1 knockdown female lice produced significantly less offspring than control lice.
Collapse
Key Words
- Apolipoproteins
- CP, clotting protein
- Crustacea
- DIG, Digoxigenin
- Ectoparasite
- Gene expression
- LDL, low density lipoprotein
- LLTP, large lipid transfer protein
- Lp, lipophorin
- Ls, Lepeophtheirus salmonis
- MTP, microsomal triglyceride transfer protein
- RNAi
- RNAi, RNA interference
- Reproduction
- Vit, vitellogenins
- apo B-100, apolipoprotein B-100
- apoCr, apolipocrustaceins
- apoLp-II/I, apolipophorin-II/I
- dLPs, large discoidal lipoproteins
- ef1α, elongation factor 1 alpha
Collapse
Affiliation(s)
- Muhammad Tanveer Khan
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Sussie Dalvin
- Sea Lice Research Centre, Institute of Marine Research, Bergen, Norway
| | - Frank Nilsen
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Rune Male
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Bergen, Norway
- Corresponding author. Department of Biological Sciences, University of Bergen, P.O. Box 7803, N-5020, Bergen, Norway.
| |
Collapse
|
28
|
Skern-Mauritzen R, Malde K, Eichner C, Dondrup M, Furmanek T, Besnier F, Komisarczuk AZ, Nuhn M, Dalvin S, Edvardsen RB, Klages S, Huettel B, Stueber K, Grotmol S, Karlsbakk E, Kersey P, Leong JS, Glover KA, Reinhardt R, Lien S, Jonassen I, Koop BF, Nilsen F. The salmon louse genome: Copepod features and parasitic adaptations. Genomics 2021; 113:3666-3680. [PMID: 34403763 DOI: 10.1016/j.ygeno.2021.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/06/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022]
Abstract
Copepods encompass numerous ecological roles including parasites, detrivores and phytoplankton grazers. Nonetheless, copepod genome assemblies remain scarce. Lepeophtheirus salmonis is an economically and ecologically important ectoparasitic copepod found on salmonid fish. We present the 695.4 Mbp L. salmonis genome assembly containing ≈60% repetitive regions and 13,081 annotated protein-coding genes. The genome comprises 14 autosomes and a ZZ-ZW sex chromosome system. Assembly assessment identified 92.4% of the expected arthropod genes. Transcriptomics supported annotation and indicated a marked shift in gene expression after host attachment, including apparent downregulation of genes related to circadian rhythm coinciding with abandoning diurnal migration. The genome shows evolutionary signatures including loss of genes needed for peroxisome biogenesis, presence of numerous FNII domains, and an incomplete heme homeostasis pathway suggesting heme proteins to be obtained from the host. Despite repeated development of resistance against chemical treatments L. salmonis exhibits low numbers of many genes involved in detoxification.
Collapse
Affiliation(s)
| | - Ketil Malde
- Institute of Marine Research, Postboks 1870 Nordnes, 5817 Bergen, Norway; Sea Lice Research Centre. Department of Biological Sciences, University of Bergen, Thormøhlens Gate 53, 5006 Bergen, Norway
| | - Christiane Eichner
- Sea Lice Research Centre. Department of Biological Sciences, University of Bergen, Thormøhlens Gate 53, 5006 Bergen, Norway
| | - Michael Dondrup
- Computational Biology Unit, Department of Informatics, University of Bergen, Thormøhlens Gate 55, 5008 Bergen, Norway
| | - Tomasz Furmanek
- Institute of Marine Research, Postboks 1870 Nordnes, 5817 Bergen, Norway
| | - Francois Besnier
- Institute of Marine Research, Postboks 1870 Nordnes, 5817 Bergen, Norway
| | - Anna Zofia Komisarczuk
- Sea Lice Research Centre. Department of Biological Sciences, University of Bergen, Thormøhlens Gate 53, 5006 Bergen, Norway
| | - Michael Nuhn
- EMBL-The European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Sussie Dalvin
- Institute of Marine Research, Postboks 1870 Nordnes, 5817 Bergen, Norway
| | - Rolf B Edvardsen
- Institute of Marine Research, Postboks 1870 Nordnes, 5817 Bergen, Norway
| | - Sven Klages
- Sequencing Core Facility, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Bruno Huettel
- Max Planck Genome Centre Cologne, Carl von Linné Weg 10, D-50829 Köln, Germany
| | - Kurt Stueber
- Max Planck Genome Centre Cologne, Carl von Linné Weg 10, D-50829 Köln, Germany
| | - Sindre Grotmol
- Sea Lice Research Centre. Department of Biological Sciences, University of Bergen, Thormøhlens Gate 53, 5006 Bergen, Norway
| | - Egil Karlsbakk
- Sea Lice Research Centre. Department of Biological Sciences, University of Bergen, Thormøhlens Gate 53, 5006 Bergen, Norway
| | - Paul Kersey
- EMBL-The European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD, UK; Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
| | - Jong S Leong
- Department of Biology, University of Victoria, Victoria, British Columbia V8W 3N5, Canada
| | - Kevin A Glover
- Institute of Marine Research, Postboks 1870 Nordnes, 5817 Bergen, Norway; Sea Lice Research Centre. Department of Biological Sciences, University of Bergen, Thormøhlens Gate 53, 5006 Bergen, Norway
| | - Richard Reinhardt
- Max Planck Genome Centre Cologne, Carl von Linné Weg 10, D-50829 Köln, Germany
| | - Sigbjørn Lien
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Oluf Thesens vei 6, 1433 Ås, Norway
| | - Inge Jonassen
- Computational Biology Unit, Department of Informatics, University of Bergen, Thormøhlens Gate 55, 5008 Bergen, Norway
| | - Ben F Koop
- Department of Biology, University of Victoria, Victoria, British Columbia V8W 3N5, Canada
| | - Frank Nilsen
- Institute of Marine Research, Postboks 1870 Nordnes, 5817 Bergen, Norway; Sea Lice Research Centre. Department of Biological Sciences, University of Bergen, Thormøhlens Gate 53, 5006 Bergen, Norway.
| |
Collapse
|
29
|
Hayes PM, Christison KW, Vaughan DB, Smit NJ, Boxshall GA. Sea lice (Copepoda: Caligidae) from South Africa, with descriptions of two new species of Caligus. Syst Parasitol 2021; 98:369-397. [PMID: 34176068 PMCID: PMC8292320 DOI: 10.1007/s11230-021-09984-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 05/05/2021] [Indexed: 11/26/2022]
Abstract
Thirteen species of sea lice (family Caligidae) are reported from a range of elasmobranch and actinopterygian fishes caught off South Africa or obtained from public aquaria in South Africa. Two new species of Caligus Müller, 1785 are described: C. linearis n. sp. from Pomatomus saltatrix (Linnaeus) and C. tumulus n. sp. from Chrysoblephus cristiceps (Valenciennes). A supplementary description is provided for both sexes of Caligus tetrodontis Barnard, 1948 taken from Amblyrhynchotes honckenii (Bloch) and previous records of this parasite from South African fishes are critically reviewed. It is concluded that Caligus material from Arothron hispidus Linnaeus was previously misidentified as C. tetrodontis and is in urgent need of re-examination. Morphological and molecular observations on Caligus furcisetifer Redkar, Rangnekar & Murti, 1949 indicate that this copepod is phenotypically and genetically identical to Lepeophtheirus natalensis Kensley & Grindley, 1973, and the latter becomes a junior subjective synonym of C. furcisetifer. We include new geographical distribution records for Caligus longipedis Bassett-Smith, 1898, C. rufimaculatus Wilson, 1905 and Lepeophtheirus spinifer Kirtisinghe, 1937, extending into South African waters, as well as both new distribution and host records for Alebion gracilis Wilson, 1905, Caligus dakari van Beneden, 1892 and Lepeophtheirus acutus Heegaard, 1943. The molecular analysis confirmed the monophyly of the genus Caligus. The South African species of Caligus did not cluster together, but the two included South African species of Lepeophtheirus were recovered as sister taxa.
Collapse
Affiliation(s)
- Polly M. Hayes
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD UK
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, W1W 6UW UK
| | - Kevin W. Christison
- Department of Forestry, Fisheries and the Environment, Private Bag X2, Vlaeberg, 8012 South Africa
- Department of Biodiversity and Conservation Biology, University of the Western Cape, Private Bag X17, Bellville, 7535 South Africa
| | - David B. Vaughan
- Central Queensland University, School of Access Education and Coastal Marine Ecosystems Research Centre, Rockhampton, QLD 4701 Australia
| | - Nico J. Smit
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520 South Africa
| | - Geoffrey A. Boxshall
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD UK
| |
Collapse
|
30
|
Thompson CRS, Bron JE, Bui S, Dalvin S, Fordyce MJ, Furmanek T, Á Norði G, Skern-Mauritzen R. Illuminating the planktonic stages of salmon lice: A unique fluorescence signal for rapid identification of a rare copepod in zooplankton assemblages. JOURNAL OF FISH DISEASES 2021; 44:863-879. [PMID: 33586246 DOI: 10.1111/jfd.13345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Monitoring of planktonic salmon louse (Lepeophtheirus salmonis salmonis) abundance and parameterization of key life-history traits has been hindered by labour-intensive and error-prone quantification using traditional light microscopy. Fluorescence illumination has been proposed as a means of improving visualization, but prior to this study adequate investigation of the relevant fluorescence profiles and measurement conditions has not been undertaken. We investigated the fluorescence profiles of L. salmonis and non-target copepod spp. with excitation and emission matrices (200-600 nm) and identified unique fluorescence signals. Fluorescence microscopy using excitation wavelengths of 470 ± 40 nm, and emission wavelengths of 525 ± 50 nm, showed that after 90 days of formalin storage salmon lice have a mean fluorescence intensity that is 2.4 times greater than non-target copepods (copepodid and adult stages). A 7-day heat treatment of 42°C in formalin increased the difference between salmon louse copepodids and non-target copepods to a factor of 3.6, eliminating the need for prolonged storage. Differences in the fluorescence signal and endogenous fluorophores were investigated with respect to variation in sea lice species, age, stage and host fish origin. Under the conditions outlined in this paper, the fluorescence signal was found to be a reliable means of visualizing and differentiating salmon lice from non-target zooplankters. Adaptation of the fluorescence signal would greatly expedite traditional methods of enumerating salmon louse larvae in plankton samples and could provide a means of automated detection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gunnvør Á Norði
- Fiskaaling - Aquaculture Research Station of the Faroes, Hvalvík, Faroe Islands
| | | |
Collapse
|
31
|
Hamre LA, Oldham T, Oppedal F, Nilsen F, Glover KA. The potential for cleaner fish-driven evolution in the salmon louse Lepeophtheirus salmonis: Genetic or environmental control of pigmentation? Ecol Evol 2021; 11:7865-7878. [PMID: 34188857 PMCID: PMC8216962 DOI: 10.1002/ece3.7618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/08/2021] [Indexed: 11/25/2022] Open
Abstract
The parasitic salmon louse represents one of the biggest challenges to environmentally sustainable salmonid aquaculture across the globe. This species also displays a high evolutionary potential, as demonstrated by its rapid development of resistance to delousing chemicals. In response, farms now use a range of non-chemical delousing methods, including cleaner fish that eat lice from salmon. Anecdotal reports suggest that in regions where cleaner fish are extensively used on farms, lice have begun to appear less pigmented and therefore putatively less visible to cleaner fish. However, it remains an open question whether these observations reflect a plastic (environmental) or adaptive (genetic) response. To investigate this, we developed a pigment scoring system and conducted complimentary experiments which collectively demonstrate that, a) louse pigmentation is strongly influenced by environmental conditions, most likely light, and b) the presence of modest but significant differences in pigmentation between two strains of lice reared under identical conditions. Based on these data, we conclude that pigmentation in the salmon louse is strongly influenced by environmental conditions, yet there are also indications of underlying genetic control. Therefore, lice could display both plastic and adaptive responses to extensive cleaner fish usage where visual appearance is likely to influence survival of lice.
Collapse
Affiliation(s)
- Lars Are Hamre
- Department of Biological SciencesSea Lice Research CentreUniversity of BergenBergenNorway
| | | | | | - Frank Nilsen
- Department of Biological SciencesSea Lice Research CentreUniversity of BergenBergenNorway
- Institute of Marine ResearchBergenNorway
| | - Kevin Alan Glover
- Department of Biological SciencesSea Lice Research CentreUniversity of BergenBergenNorway
- Institute of Marine ResearchBergenNorway
| |
Collapse
|
32
|
Fjørtoft HB, Nilsen F, Besnier F, Stene A, Tveten AK, Bjørn PA, Aspehaug VT, Glover KA. Losing the 'arms race': multiresistant salmon lice are dispersed throughout the North Atlantic Ocean. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210265. [PMID: 34084551 PMCID: PMC8150044 DOI: 10.1098/rsos.210265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Nothing lasts forever, including the effect of chemicals aimed to control pests in food production. As old pesticides have been compromised by emerging resistance, new ones have been introduced and turned the odds back in our favour. With time, however, some pests have developed multi-pesticide resistance, challenging our ability to control them. In salmonid aquaculture, the ectoparasitic salmon louse has developed resistance to most of the available delousing compounds. The discovery of genetic markers associated with resistance to organophosphates and pyrethroids made it possible for us to investigate simultaneous resistance to both compounds in approximately 2000 samples of salmon lice from throughout the North Atlantic in the years 2000-2016. We observed widespread and increasing multiresistance on the European side of the Atlantic, particularly in areas with intensive aquaculture. Multiresistant lice were also found on wild Atlantic salmon and sea trout, and also on farmed salmonid hosts in areas where delousing chemicals have not been used. In areas with intensive aquaculture, there are almost no lice left that are sensitive to both compounds. These results demonstrate the speed to which this parasite can develop widespread multiresistance, illustrating why the aquaculture industry has repeatedly lost the arms race with this highly problematic parasite.
Collapse
Affiliation(s)
- Helene Børretzen Fjørtoft
- Department of Biological Sciences in Aalesund, Norwegian University of Science and Technology, PO Box 1517, 6025 Aalesund, Norway
- Department of Biology, Sea Lice Research Center, University of Bergen, PO Box 7803, 5020 Bergen, Norway
| | - Frank Nilsen
- Department of Biology, Sea Lice Research Center, University of Bergen, PO Box 7803, 5020 Bergen, Norway
| | | | - Anne Stene
- Department of Biological Sciences in Aalesund, Norwegian University of Science and Technology, PO Box 1517, 6025 Aalesund, Norway
| | - Ann-Kristin Tveten
- Department of Biological Sciences in Aalesund, Norwegian University of Science and Technology, PO Box 1517, 6025 Aalesund, Norway
| | - Pål Arne Bjørn
- Institute of Marine Research, PO Box 1870, 5817 Bergen, Norway
| | | | - Kevin Alan Glover
- Department of Biology, Sea Lice Research Center, University of Bergen, PO Box 7803, 5020 Bergen, Norway
- Institute of Marine Research, PO Box 1870, 5817 Bergen, Norway
| |
Collapse
|
33
|
The FTZ-F1 gene encodes two functionally distinct nuclear receptor isoforms in the ectoparasitic copepod salmon louse (Lepeophtheirus salmonis). PLoS One 2021; 16:e0251575. [PMID: 34014986 PMCID: PMC8136749 DOI: 10.1371/journal.pone.0251575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/29/2021] [Indexed: 01/21/2023] Open
Abstract
The salmon louse, Lepeophtheirus salmonis, is an ectoparasitic crustacean that annually inflicts substantial losses to the aquaculture industry in the northern hemisphere and poses a threat to the wild populations of salmonids. The salmon louse life cycle consists of eight developmental stages each separated by a molt. Fushi Tarazu Factor-1 (FTZ-F1) is an ecdysteroid-regulated gene that encodes a member of the NR5A family of nuclear receptors that is shown to play a crucial regulatory role in molting in insects and nematodes. Characterization of an FTZ-F1 orthologue in the salmon louse gave two isoforms named αFTZ-F1 and βFTZ-F1, which are identical except for the presence of a unique N-terminal domain (A/B domain). A comparison suggest conservation of the FTZ-F1 gene structure among ecdysozoans, with the exception of nematodes, to produce isoforms with unique N-terminal domains through alternative transcription start and splicing. The two isoforms of the salmon louse FTZ-F1 were expressed in different amounts in the same tissues and showed a distinct cyclical expression pattern through the molting cycle with βFTZ-F1 being the highest expressed isoform. While RNA interference knockdown of βFTZ-F1 in nauplius larvae and in pre-adult males lead to molting arrest, knockdown of βFTZ-F1 in pre-adult II female lice caused disruption of oocyte maturation at the vitellogenic stage. No apparent phenotype could be observed in αFTZ-F1 knockdown larvae, or in their development to adults, and no genes were found to be differentially expressed in the nauplii larvae following αFTZ-F1 knockdown. βFTZ-F1 knockdown in nauplii larvae caused both down and upregulation of genes associated with proteolysis and chitin binding and affected a large number of genes which are in normal salmon louse development expressed in a cyclical pattern. This is the first description of FTZ-F1 gene function in copepod crustaceans and provides a foundation to expand the understanding of the molecular mechanisms of molting in the salmon louse and other copepods.
Collapse
|
34
|
Sveen L, Krasnov A, Timmerhaus G, Bogevik AS. Responses to Mineral Supplementation and Salmon Lice ( Lepeophtheirus salmonis) Infestation in Skin Layers of Atlantic Salmon ( Salmo salar L.). Genes (Basel) 2021; 12:genes12040602. [PMID: 33921813 PMCID: PMC8073069 DOI: 10.3390/genes12040602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 01/29/2023] Open
Abstract
The crustacean ectoparasite salmon louse (Lepeophtheirus salmonis), which severely affects Atlantic salmon health and welfare is one of the main problems of commercial aquaculture. In the present study, fish were fed a diet supplemented with extra minerals through the inclusion of a commercial additive (Biofeed Forte Salmon), substituting wheat in the control diet, before experimental infestation with salmon lice. Lice counts reduced with time but with no apparent effect of the diets. Further, fish fed the mineral diet had an overall higher number of blue (acidic) mucous cells, while the ratio of purple mucous cells was higher in the mineral diet. The transcriptional response in skin was enhanced at 7 dpc (copepodite life stage) in fish fed the mineral diet including immune and stress responses, while at 21 dpc (pre-adult life stage), the difference disappeared, or reversed with stronger induction in the control diet. Overall, 9.3% of the genes affected with lice also responded to the feed, with marked differences in outer (scale + epidermis) and inner (dermis) skin layers. A comparison of transcriptome data with five datasets from previous trials revealed common features and gene markers of responses to lice, stress, and mechanically induced wounds. Results suggested a prevalence of generic responses in wounded skin and lice-infected salmon.
Collapse
|
35
|
Dalvin S, Eichner C, Dondrup M, Øvergård AC. Roles of three putative salmon louse (Lepeophtheirus salmonis) prostaglandin E 2 synthases in physiology and host-parasite interactions. Parasit Vectors 2021; 14:206. [PMID: 33874988 PMCID: PMC8056522 DOI: 10.1186/s13071-021-04690-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/16/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The salmon louse (Lepeophtheirus salmonis) is a parasite of salmonid fish. Atlantic salmon (Salmo salar) exhibit only a limited and ineffective immune response when infested with this parasite. Prostaglandins (PGs) have many biological functions in both invertebrates and vertebrates, one of which is the regulation of immune responses. This has led to the suggestion that prostaglandin E2 (PGE2) is important in the salmon louse host-parasite interaction, although studies of a salmon louse prostaglandin E2 synthase (PGES) 2 gene have not enabled conformation of this hypothesis. The aim of the present study was, therefore, to characterize two additional PGES-like genes. METHODS Lepeophtheirus salmonis microsomal glutathione S-transferase 1 like (LsMGST1L) and LsPGES3L were investigated by sequencing, phylogenetics, transcript localization and expression studies. Moreover, the function of these putative PGES genes in addition to the previously identified LsPGES2 gene was analyzed in double stranded (ds) RNA-mediated knockdown (KD) salmon louse. RESULTS Analysis of the three putative LsPGES genes showed a rather constitutive transcript level throughout development from nauplius to the adult stages, and in a range of tissues, with the highest levels in the ovaries or gut. DsRNA-mediated KD of these transcripts did not produce any characteristic changes in phenotype, and KD animals displayed a normal reproductive output. The ability of the parasite to infect or modulate the immune response of the host fish was also not affected by KD. CONCLUSIONS Salmon louse prostaglandins may play endogenous roles in the management of reproduction and oxidative stress and may be a product of salmon louse blood digestions.
Collapse
Affiliation(s)
- Sussie Dalvin
- Institute of Marine Research, SLCR-Sea Lice Research Centre, Nordnes, P. box 1870, 5817, Bergen, Norway
| | - Christiane Eichner
- Department of Biological Sciences, SLCR-Sea Lice Research Centre, University of Bergen, P. box 7803, 5020, Bergen, Norway
| | - Michael Dondrup
- Department of Informatics, SLRC-Sea Lice Research Centre, University of Bergen, P. box 7803, 5020, Bergen, Norway
| | - Aina-Cathrine Øvergård
- Department of Biological Sciences, SLCR-Sea Lice Research Centre, University of Bergen, P. box 7803, 5020, Bergen, Norway.
| |
Collapse
|
36
|
Whittaker BA, Maeda S, Boulding EG. Strike a pose: Does communication by a facultative cleaner fish, the cunner wrasse (Tautogolabrus adspersus), facilitate interaction with Atlantic salmon (Salmo salar)? Appl Anim Behav Sci 2021. [DOI: 10.1016/j.applanim.2021.105275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
37
|
Delfosse C, Pageat P, Lafont‐Lecuelle C, Asproni P, Chabaud C, Cozzi A, Bienboire‐Frosini C. Effect of handling and crowding on the susceptibility of Atlantic salmon (Salmo salar L.) to Lepeophtheirus salmonis (Krøyer) copepodids. JOURNAL OF FISH DISEASES 2021; 44:327-336. [PMID: 33112458 PMCID: PMC7894147 DOI: 10.1111/jfd.13286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 05/08/2023]
Abstract
Lepeophtheirus salmonis is an ectoparasite causing economic concerns in Atlantic salmon farming. Salmon lice infestation management methods can be stressful and impact fish welfare. This work investigated the stress effect on the attachment of L. salmonis copepodids to Atlantic salmon through two approaches: (a) handling by netting and air exposure (acute stress), and (b) crowding with restricted surface access in a tank (chronic stress). In the first experiment, we compared the number of attached L. salmonis and cortisol levels between a group of handled salmon and a control group. In the second experiment, a group of densely packed salmon was compared to a control group based on the number of attached copepodids, cortisol levels and neutrophil:lymphocyte ratios. Handled salmon showed significantly higher plasma cortisol levels (p < .001) and more attached copepodids (p = .01) than control salmon. Conversely, the cortisol level and number of attached copepodids were not significantly different between the densely packed and control salmon (p > .05). The neutrophil:lymphocyte ratio was significantly higher (p = .0014) in the densely packed salmon than in the control salmon. Handling salmon increased their risk of infestation by L. salmonis. This has implications for reinfestation rates following delousing treatments in commercial salmon aquaculture, which often involve crowding and handling salmon.
Collapse
Affiliation(s)
- Cyril Delfosse
- Research Institute in Semiochemistry and Applied Ethology (IRSEA)AptFrance
- IRSEA‐ARCDaugstadNorway
| | - Patrick Pageat
- Research Institute in Semiochemistry and Applied Ethology (IRSEA)AptFrance
- IRSEA‐ARCDaugstadNorway
| | | | - Pietro Asproni
- Research Institute in Semiochemistry and Applied Ethology (IRSEA)AptFrance
| | - Camille Chabaud
- Research Institute in Semiochemistry and Applied Ethology (IRSEA)AptFrance
- IRSEA‐ARCDaugstadNorway
| | - Alessandro Cozzi
- Research Institute in Semiochemistry and Applied Ethology (IRSEA)AptFrance
- IRSEA‐ARCDaugstadNorway
| | | |
Collapse
|
38
|
Murray AG, Moriarty M. A simple modelling tool for assessing interaction with host and local infestation of sea lice from salmonid farms on wild salmonids based on processes operating at multiple scales in space and time. Ecol Modell 2021. [DOI: 10.1016/j.ecolmodel.2021.109459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
39
|
Harðardóttir HM, Male R, Nilsen F, Dalvin S. Chitin Synthases Are Critical for Reproduction, Molting, and Digestion in the Salmon Louse ( Lepeophtheirus salmonis). Life (Basel) 2021; 11:life11010047. [PMID: 33450932 PMCID: PMC7828418 DOI: 10.3390/life11010047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 11/30/2022] Open
Abstract
Chitin synthase (CHS) is a large transmembrane enzyme that polymerizes Uridine diphosphate N-acetylglucosamine into chitin. The genomes of insects often encode two chitin synthases, CHS1 and CHS2. Their functional roles have been investigated in several insects: CHS1 is mainly responsible for synthesizing chitin in the cuticle and CHS2 in the midgut. Lepeophtheirus salmonis is an ectoparasitic copepod on salmonid fish, which causes significant economic losses in aquaculture. In the present study, the tissue-specific localization, expression, and functional role of L. salmonis chitin synthases, LsCHS1 and LsCHS2, were investigated. The expressions of LsCHS1 and LsCHS2 were found in oocytes, ovaries, intestine, and integument. Wheat germ agglutinin (WGA) chitin staining signals were detected in ovaries, oocytes, intestine, cuticle, and intestine in adult female L. salmonis. The functional roles of the LsCHSs were investigated using RNA interference (RNAi) to silence the expression of LsCHS1 and LsCHS2. Knockdown of LsCHS1 in pre-adult I lice resulted in lethal phenotypes with cuticle deformation and deformation of ovaries and oocytes in adult lice. RNAi knockdown of LsCHS2 in adult female L. salmonis affected digestion, damaged the gut microvilli, reduced muscular tissues around the gut, and affected offspring. The results demonstrate that both LsCHS1 and LsCHS2 are important for the survival and reproduction in L. salmonis.
Collapse
Affiliation(s)
- Hulda María Harðardóttir
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, P.O. Box 7803, N-5020 Bergen, Norway; (R.M.); (F.N.)
- Correspondence:
| | - Rune Male
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, P.O. Box 7803, N-5020 Bergen, Norway; (R.M.); (F.N.)
| | - Frank Nilsen
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, P.O. Box 7803, N-5020 Bergen, Norway; (R.M.); (F.N.)
| | - Sussie Dalvin
- Sea Lice Research Centre, Institute of Marine Research, P.O. Box 1870, Nordnes, N-5817 Bergen, Norway;
| |
Collapse
|
40
|
Gamil AAA, Gadan K, Gislefoss E, Evensen Ø. Sea Lice ( Lepeophtheirus salmonis) Infestation Reduces the Ability of Peripheral Blood Monocytic Cells (PBMCs) to Respond to and Control Replication of Salmonid Alphavirus in Atlantic Salmon ( Salmo salar L.). Viruses 2020; 12:v12121450. [PMID: 33339349 PMCID: PMC7766357 DOI: 10.3390/v12121450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022] Open
Abstract
Here we have studied the impact of lice (Lepeophtheirus salmonis) infestation of donor fish on the ability of isolated peripheral blood monocytes (PBMCs) to control the replication of salmonid alphavirus (SAV) ex vivo. PBMCs were collected by Percoll gradients at eight and nine weeks post copepodid infestation of Atlantic salmon post smolt. Uninfested fish were controls. PBMCs were then infected ex vivo with SAV (subtype 3), and samples were collected for analysis at two, four, and six days post virus infection. Virus titer in the supernatant was assayed in CHH-1 cells, and in addition, the relative expression of the virus structural protein E2 and selected host antiviral genes, IRF9, ISG15, Mx, and IFIT5, were assayed using real-time PCR. Significantly higher virus replication was detected in cells collected from lice-infested fish compared to controls. Higher virus titer coincided with an inability to upregulate the expression of different immune genes, IFIT5, IRF9, and Mx. These findings point towards compromised ability of PBMCs from lice-infested fish to control virus replication, and, to our knowledge, is the first report showing the direct effect of lice infestation on the interplay between viruses and immune cells. There is a possible impact on the dynamic spread of viral diseases in the aquatic environment.
Collapse
|
41
|
Dalvin S, Are Hamre L, Skern-Mauritzen R, Vågseth T, Stien L, Oppedal F, Bui S. The effect of temperature on ability of Lepeophtheirus salmonis to infect and persist on Atlantic salmon. JOURNAL OF FISH DISEASES 2020; 43:1519-1529. [PMID: 32882750 DOI: 10.1111/jfd.13253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
The salmon louse (Lepeophtheirus salmonis) is an ecologically and economically important parasite of salmonid fish. Temperature is a strong influencer of biological processes in salmon lice, with development rate increased at higher temperatures. The successful attachment of lice onto a host is also predicted to be influenced by temperature; however, the correlation of temperature with parasite survival is unknown. This study describes the effects of temperature on infection success, and survival on the host during development to the adult stage. To accurately describe infection dynamics with varying temperatures, infection success was recorded on Atlantic salmon (Salmo salar) between 2 and 10°C. Infection success ranged from 20% to 50% and was strongly correlated with temperature, with the highest success at 10°C. Parasite loss was monitored during development at eight temperatures with high loss of lice at 3 and 24°C, whilst no loss was recorded in the temperature range from 6 to 21°C. Sea temperatures thus have large effects on the outcome of salmon louse infections and should be taken into account in the management and risk assessment of this parasite. Improving understanding of the infection dynamics of salmon lice will facilitate epidemiological modelling efforts and efficiency of pest management strategies.
Collapse
Affiliation(s)
- Sussie Dalvin
- SLRC - Sea Lice Research Centre, Institute of Marine Research, Bergen, Norway
- Department of Biological Sciences, SLRC - Sea Lice Research Centre, University of Bergen, Bergen, Norway
| | - Lars Are Hamre
- Department of Biological Sciences, SLRC - Sea Lice Research Centre, University of Bergen, Bergen, Norway
| | | | | | - Lars Stien
- Institute of Marine Research, Matredal, Norway
| | | | | |
Collapse
|
42
|
Bateman AW, Peacock SJ, Krkošek M, Lewis MA. Migratory hosts can maintain the high-dose/refuge effect in a structured host-parasite system: The case of sea lice and salmon. Evol Appl 2020; 13:2521-2535. [PMID: 33294006 PMCID: PMC7691465 DOI: 10.1111/eva.12984] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 01/13/2023] Open
Abstract
Migration can reduce parasite burdens in migratory hosts, but it connects populations and can drive disease dynamics in domestic species. Farmed salmon are infested by sea louse parasites, often carried by migratory wild salmonids, resulting in a costly problem for industry and risk to wild populations when farms amplify louse numbers. Chemical treatment can control lice, but resistance has evolved in many salmon-farming regions. Resistance has, however, been slow to evolve in the north-east Pacific Ocean, where large wild-salmon populations harbour large sea louse populations. Using a mathematical model of host-macroparasite dynamics, we explored the roles of domestic, wild oceanic and connective migratory host populations in maintaining treatment susceptibility in associated sea lice. Our results show that a large wild salmon population, unexposed to direct infestation by lice from farms; high levels of on-farm treatment; and a healthy migratory host population are all critical to slowing or stopping the evolution of treatment resistance. Our results reproduce the "high-dose/refuge effect," from the agricultural literature, with the added requirement of a migratory host population to maintain treatment susceptibility. This work highlights the role that migratory hosts may play in shared wildlife/livestock disease, where evolution can occur in ecological time.
Collapse
Affiliation(s)
- Andrew W. Bateman
- Pacific Salmon FoundationVancouverBCCanada
- Salmon Coast Field StationSimoom SoundBCCanada
| | - Stephanie J. Peacock
- Salmon Coast Field StationSimoom SoundBCCanada
- Department of Biological SciencesUniversity of CalgaryCalgaryABCanada
| | - Martin Krkošek
- Salmon Coast Field StationSimoom SoundBCCanada
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoONCanada
| | - Mark A. Lewis
- Department of Biological SciencesUniversity of AlbertaEdmontonABCanada
- Department of Mathematical and Statistical SciencesUniversity of AlbertaEdmontonABCanada
| |
Collapse
|
43
|
Gendron RL, Paradis H, Ahmad R, Kao K, Boyce D, Good WV, Kumar S, Vasquez I, Cao T, Hossain A, Chakraborty S, Valderrama K, Santander J. CD10 + Cells and IgM in Pathogen Response in Lumpfish ( Cyclopterus lumpus) Eye Tissues. Front Immunol 2020; 11:576897. [PMID: 33329544 PMCID: PMC7714965 DOI: 10.3389/fimmu.2020.576897] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/22/2020] [Indexed: 11/30/2022] Open
Abstract
Lumpfish (Cyclopterus lumpus), a North Atlantic "cleaner" fish, is utilized to biocontrol salmon louse (Lepeophtheirus salmonis) in Atlantic salmon (Salmo salar) farms. Lumpfish require excellent vision to scan for and eat louse on salmon skin. The lumpfish eye immune response to infectious diseases has not been explored. We examined the ocular response to a natural parasite infection in wild lumpfish and to an experimental bacterial infection in cultured lumpfish. Cysts associated with natural myxozoan infection in the ocular scleral cartilage of wild adult lumpfish harbored cells expressing cluster of differentiation 10 (CD10) and immunoglobulin M (IgM). Experimental Vibrio anguillarum infection, which led to exophthalmos and disorganization of the retinal tissues was associated with disruption of normal CD10 expression, CD10+ cellular infiltration and IgM expression. We further describe the lumpfish CD10 orthologue and characterize the lumpfish scleral skeleton in the context of myxozoan scleral cysts. We propose that lumpfish develop an intraocular response to pathogens, exemplified herein by myxozoan and V. anguillarum infection involving novel CD10+ cells and IgM+ cells to contain and mitigate damage to eye structures. This work is the first demonstration of CD10 and IgM expressing cells in a novel ocular immune system component in response to disease in a teleost.
Collapse
Affiliation(s)
- Robert L. Gendron
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
| | - Hélène Paradis
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
| | - Raahyma Ahmad
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
| | - Kenneth Kao
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
| | - Danny Boyce
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University, St. John’s, NL, Canada
| | - William V. Good
- Smith Kettlewell Eye Research Institute, San Francisco, CA, United States
| | - Surendra Kumar
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University, St. John’s, NL, Canada
| | - Ignacio Vasquez
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University, St. John’s, NL, Canada
| | - Trung Cao
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University, St. John’s, NL, Canada
| | - Ahmed Hossain
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University, St. John’s, NL, Canada
| | - Setu Chakraborty
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University, St. John’s, NL, Canada
| | - Katherinne Valderrama
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University, St. John’s, NL, Canada
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University, St. John’s, NL, Canada
| |
Collapse
|
44
|
Dalvin S, Jørgensen LVG, Kania PW, Grotmol S, Buchmann K, Øvergård AC. Rainbow trout Oncorhynchus mykiss skin responses to salmon louse Lepeophtheirus salmonis: From copepodid to adult stage. FISH & SHELLFISH IMMUNOLOGY 2020; 103:200-210. [PMID: 32422189 DOI: 10.1016/j.fsi.2020.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/01/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
The marine crustacean Lepeophtheirus salmonis (salmon louse) is a common ectoparasite of wild and farmed salmonids. The parasite has a complex ontogeny comprising eight instars. The planktonic copepodid stage settles on host skin and pass through five instars to reach the adult stage. The present study comprises an experimental infestation of Oncorhynchus mykiss (rainbow trout) with salmon lice and describes histopathology and host immune responses in skin beneath the louse at multiple time points encompassing all louse developmental stages. Each fish was exposed to 80 infective copepodids, a mean no. of 32 parasites reached the preadult I stage whereas a mean no. of 11 parasites reached the adult stage. A progression in the severity of cutaneous lesions was observed, and levels of immune gene transcripts at the attachment site revealed a dynamic response, initially related to innate immunity. Later, immune cells accumulated in the dermis concomitant with a moderate decrease in levels of transcripts characteristic of both innate and adaptive immune responses. The present study also demonstrates that the cutaneous immune response was mainly induced at lice affected sites, while non-affected skin resembled the skin of untreated control. This indicates that the skin cannot be regarded as a uniform organ and requires careful sampling at all salmon louse stages.
Collapse
Affiliation(s)
- Sussie Dalvin
- SLRC - Sea Lice Research Centre, Institute of Marine Research, 5817, Bergen, Norway; SLRC - Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Thormøhlensgt. 55, Pb. 7803, 5020, Bergen, Norway
| | - Louise V G Jørgensen
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 7, 1870 Frb. C, Denmark
| | - Per W Kania
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 7, 1870 Frb. C, Denmark
| | - Sindre Grotmol
- SLRC - Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Thormøhlensgt. 55, Pb. 7803, 5020, Bergen, Norway
| | - Kurt Buchmann
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 7, 1870 Frb. C, Denmark
| | - Aina-Cathrine Øvergård
- SLRC - Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Thormøhlensgt. 55, Pb. 7803, 5020, Bergen, Norway.
| |
Collapse
|
45
|
Identification of critical enzymes in the salmon louse chitin synthesis pathway as revealed by RNA interference-mediated abrogation of infectivity. Int J Parasitol 2020; 50:873-889. [PMID: 32745476 DOI: 10.1016/j.ijpara.2020.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/10/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022]
Abstract
Treatment of infestation by the ectoparasite Lepeophtheirus salmonis relies on a small number of chemotherapeutant treatments that currently meet with limited success. Drugs targeting chitin synthesis have been largely successful against terrestrial parasites where the pathway is well characterised. However, a comparable approach against salmon lice has been, until recently, less successful, likely due to a poor understanding of the chitin synthesis pathway. Post-transcriptional silencing of genes by RNA interference (RNAi) is a powerful method for evaluation of protein function in non-model organisms and has been successfully applied to the salmon louse. In the present study, putative genes coding for enzymes involved in L. salmonis chitin synthesis were characterised after knockdown by RNAi. Nauplii I stage L. salmonis were exposed to double-stranded (ds) RNA specific for several putative non-redundant points in the pathway: glutamine: fructose-6-phosphate aminotransferase (LsGFAT), UDP-N-acetylglucosamine pyrophosphorylase (LsUAP), N-acetylglucosamine phosphate mutase (LsAGM), chitin synthase 1 (LsCHS1), and chitin synthase 2 (LsCHS2). Additionally, we targeted three putative chitin deacetylases (LsCDA4557, 5169 and 5956) by knockdown. Successful knockdown was determined after moulting to the copepodite stage by real-time quantitative PCR (RT-qPCR), while infectivity potential (the number of attached chalimus II compared with the initial number of larvae in the system) was measured after exposure to Atlantic salmon and subsequent development on their host. Compared with controls, infectivity potential was not compromised in dsAGM, dsCHS2, dsCDA4557, or dsCDA5169 groups. In contrast, there was a significant effect in the dsUAP-treated group. However, of most interest was the treatment with dsGFAT, dsCHS1, dsCHS1+2, and dsCDA5956, which resulted in complete abrogation of infectivity, despite apparent compensatory mechanisms in the chitin synthesis pathway as detected by qPCR. There appeared to be a common phenotypic effect in these groups, characterised by significant aberrations in appendage morphology and an inability to swim. Ultrastructurally, dsGFAT showed a significantly distorted procuticle without distinct exo/endocuticle and intermittent electron dense (i.e. chitin) inclusions, and together with dsUAP and dsCHS1, indicated delayed entry to the pre-moult phase.
Collapse
|
46
|
Lennox RJ, Salvanes AGV, Barlaup BT, Stöger E, Madhun A, Helle TM, Vollset KW. Negative impacts of the sea lice prophylactic emamectin benzoate on the survival of hatchery released salmon smolts in rivers. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 224:105519. [PMID: 32502848 DOI: 10.1016/j.aquatox.2020.105519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/07/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
Emamectin benzoate (EB) is a prophylactic pharmaceutical used to protect Atlantic salmon (Salmo salar) smolts migrating out of rivers and into the ocean against sea lice parasites. Randomized control trials comparing the marine survival of smolts treated with EB to a control group is used to calculate the fraction of marine mortality attributable to sea lice parasitism. However, it is assumed that there is no baseline difference in survival induced by the application of EB treatment. We used a combined laboratory and field study approach to investigate the potential impacts of EB treatment on behaviour and survival of hatchery-reared Atlantic salmon in western Norway. In aquaria experiments, EB-treated salmon smolts did not differ significantly in exploratory behaviour. Fish from treated groups responded similarly to simulated predator attack with spontaneous escape and elevated gill beat rate. Three rivers in the Osterfjord system of western Norway were selected for field experiments, Dale, Vosso, and Modalen. Dale River smolts were treated with intraperitoneal EB injections and had lower probability of detection in a wolf trap downstream of the release site than control smolts. Salmon smolts raised in the Vosso River hatchery were treated with EB delivered in their food and were detected on PIT antennas at the rivermouth of Vosso and Modalen at lower rates than control fish, but only when released at downstream sites. Calculation of risk ratios suggested that the bias in mortality caused by treatment with EB decreased the estimated survival of treated fish from an expected 18%to 46%, reducing the observable negative impact of sea lice on Atlantic salmon smolts in randomized control trials. The results suggest that estimates of the fraction of mortality attributable to sea lice may be underestimated due to lower baseline survival of treated fish caused by treatment and bring urgent attention towards a potential systematic underestimation of the impacts of sea lice on wild salmon.
Collapse
Affiliation(s)
- Robert J Lennox
- NORCE Norwegian Research Centre, Laboratory for Freshwater Ecology and Inland Fisheries (LFI), Nygårdsporten 112, 5008 Bergen, Norway.
| | | | - Bjørn T Barlaup
- NORCE Norwegian Research Centre, Laboratory for Freshwater Ecology and Inland Fisheries (LFI), Nygårdsporten 112, 5008 Bergen, Norway
| | - Elisabeth Stöger
- NORCE Norwegian Research Centre, Laboratory for Freshwater Ecology and Inland Fisheries (LFI), Nygårdsporten 112, 5008 Bergen, Norway
| | | | - Turid M Helle
- NORCE Norwegian Research Centre, Laboratory for Freshwater Ecology and Inland Fisheries (LFI), Nygårdsporten 112, 5008 Bergen, Norway
| | - Knut Wiik Vollset
- NORCE Norwegian Research Centre, Laboratory for Freshwater Ecology and Inland Fisheries (LFI), Nygårdsporten 112, 5008 Bergen, Norway
| |
Collapse
|
47
|
Braden LM, Monaghan SJ, Fast MD. Salmon immunological defence and interplay with the modulatory capabilities of its ectoparasite Lepeophtheirus salmonis. Parasite Immunol 2020; 42:e12731. [PMID: 32403169 DOI: 10.1111/pim.12731] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 03/13/2020] [Accepted: 05/06/2020] [Indexed: 12/16/2022]
Abstract
The salmon louse Lepeophtheirus salmonis (Lsal) is an ectoparasitic copepod that exerts immunomodulatory and physiological effects on its host Atlantic salmon. Over 30 years of research on louse biology, control, host responses and the host-parasite relationship has provided a plethora of information on the intricacies of host resistance and parasite adaptation. Atlantic salmon exhibit temporal and spatial impairment of the immune system and wound healing ability during infection. This immunosuppression may render Atlantic salmon less tolerant to stress and other confounders associated with current management strategies. Contrasting susceptibility of salmonid hosts exists, and early pro-inflammatory Th1 type responses are associated with resistance. Rapid cellular responses to larvae appear to tip the balance of the host-parasite relationship in favour of the host, preventing severe immune-physiological impacts of the more invasive adults. Immunological, transcriptomic, genomic and proteomic evidence suggests pathological impacts occur in susceptible hosts through modulation of host immunity and physiology via pharmacologically active molecules. Co-evolutionary and farming selection pressures may have incurred preference of Atlantic salmon as a host for Lsal reflected in their interactome. Here, we review host-parasite interactions at the primary attachment/feeding site, and the complex life stage-dependent molecular mechanisms employed to subvert host physiology and immune responses.
Collapse
Affiliation(s)
- Laura M Braden
- AquaBounty Canada, Bay Fortune, PEI, Canada.,Department of Pathology and Microbiology, Atlantic Veterinary College-UPEI, Charlottetown, PEI, Canada
| | - Sean J Monaghan
- Institute of Aquaculture, University of Stirling, Stirling, UK
| | - Mark D Fast
- Department of Pathology and Microbiology, Atlantic Veterinary College-UPEI, Charlottetown, PEI, Canada
| |
Collapse
|
48
|
Ohtsuka S, Nawata M, Nishida Y, Nitta M, Hirano K, Adachi K, Kondo Y, Venmathi Maran BA, Suárez-Morales E. Discovery of the fish host of the 'planktonic' caligid Caligus undulatus Shen & Li, 1959 (Crustacea: Copepoda: Siphonostomatoida). Biodivers Data J 2020; 8:e52271. [PMID: 32565681 PMCID: PMC7295818 DOI: 10.3897/bdj.8.e52271] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/27/2020] [Indexed: 11/12/2022] Open
Abstract
The siphonostomatoid copepod Caligusundulatus Shen & Li, 1959 has been widely reported from plankton samples obtained from neritic and oceanic waters off coasts of the Indo-West Pacific and Atlantic Oceans. Until now, its fish host has remained unknown. This copepod belongs to an intriguing group of congeners that, despite being part of a chiefly parasitic group, are consistently found as zooplankters. Quite unexpectedly, in October 2019, a fish host of C.undulatus was discovered in the Seto Inland Sea, Japan—namely, the Japanese sardinella Sardinellazunasi (Bleeker, 1854). Both juvenile (chalimus) and adult individuals of this caligid were observed as parasites of the fish host. The discovery suggests that the species has an alternative life cycle as previously proposed for other purportedly ‘planktonic’ congeners and might frequently switch hosts during the adult stage. Thus, the C.undulatus group is newly proposed as a species group in the genus, in which five species are known as planktonic. Some hypotheses on the modified life cycle of caligids also briefly discussed.
Collapse
Affiliation(s)
- Susumu Ohtsuka
- Fisheries Science Laboratory, Setouchi Field Science Center, Graduate School of Integrated Sciences for Life, Hiroshima University, Takehara, Japan Fisheries Science Laboratory, Setouchi Field Science Center, Graduate School of Integrated Sciences for Life, Hiroshima University Takehara Japan
| | - Masaki Nawata
- Fisheries Science Laboratory, Setouchi Field Science Center, Graduate School of Integrated Sciences for Life, Hiroshima University, Takehara, Japan Fisheries Science Laboratory, Setouchi Field Science Center, Graduate School of Integrated Sciences for Life, Hiroshima University Takehara Japan
| | - Yusuke Nishida
- Fisheries Science Laboratory, Setouchi Field Science Center, School of Applied Biological Science, Hiroshima University, Takehara, Japan Fisheries Science Laboratory, Setouchi Field Science Center, School of Applied Biological Science, Hiroshima University Takehara Japan
| | - Masato Nitta
- Graduate School of Science, Kobe University, Kobe, Japan Graduate School of Science, Kobe University Kobe Japan
| | - Katsushi Hirano
- Fisheries Science Laboratory, Setouchi Field Science Center, Graduate School of Integrated Sciences for Life, Hiroshima University, Takehara, Japan Fisheries Science Laboratory, Setouchi Field Science Center, Graduate School of Integrated Sciences for Life, Hiroshima University Takehara Japan
| | - Kenta Adachi
- Fisheries Science Laboratory, Setouchi Field Science Center, Graduate School of Integrated Sciences for Life, Hiroshima University, Takehara, Japan Fisheries Science Laboratory, Setouchi Field Science Center, Graduate School of Integrated Sciences for Life, Hiroshima University Takehara Japan
| | - Yusuke Kondo
- Fisheries Science Laboratory, Setouchi Field Science Center, Graduate School of Integrated Sciences for Life, Hiroshima University, Takehara, Japan Fisheries Science Laboratory, Setouchi Field Science Center, Graduate School of Integrated Sciences for Life, Hiroshima University Takehara Japan
| | - Balu Alagar Venmathi Maran
- Endangered Marine Species Research Unit, Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia Endangered Marine Species Research Unit, Borneo Marine Research Institute, Universiti Malaysia Sabah Kota Kinabalu Malaysia
| | - Eduardo Suárez-Morales
- El Colegio de la Frontera Sur (ECOSUR), Unidad Chetumal, Chetumal, Mexico El Colegio de la Frontera Sur (ECOSUR), Unidad Chetumal Chetumal Mexico
| |
Collapse
|
49
|
Heggland EI, Dondrup M, Nilsen F, Eichner C. Host gill attachment causes blood-feeding by the salmon louse (Lepeophtheirus salmonis) chalimus larvae and alters parasite development and transcriptome. Parasit Vectors 2020; 13:225. [PMID: 32375890 PMCID: PMC7201535 DOI: 10.1186/s13071-020-04096-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/24/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Blood-feeding is a common strategy among parasitizing arthropods, including the ectoparasitic salmon louse (Lepeophtheirus salmonis), feeding off its salmon host's skin and blood. Blood is rich in nutrients, among these iron and heme. These are essential molecules for the louse, yet their oxidative properties render them toxic to cells if not handled appropriately. Blood-feeding might therefore alter parasite gene expression. METHODS We infected Atlantic salmon with salmon louse copepodids and sampled the lice in two different experiments at day 10 and 18 post-infestation. Parasite development and presence of host blood in their intestines were determined. Lice of similar instar age sampled from body parts with differential access to blood, namely from gills versus lice from skin epidermis, were analysed for gene expression by RNA-sequencing in samples taken at day 10 for both experiments and at day 18 for one of the experiments. RESULTS We found that lice started feeding on blood when becoming mobile preadults if sitting on the fish body; however, they may initiate blood-feeding at the chalimus I stage if attached to gills. Lice attached to gills develop at a slower rate. By differential expression analysis, we found 355 transcripts elevated in lice sampled from gills and 202 transcripts elevated in lice sampled from skin consistent in all samplings. Genes annotated with "peptidase activity" were among the ones elevated in lice sampled from gills, while in the other group genes annotated with "phosphorylation" and "phosphatase" were pervasive. Transcripts elevated in lice sampled from gills were often genes relatively highly expressed in the louse intestine compared with other tissues, while this was not the case for transcripts elevated in lice sampled from skin. In both groups, more than half of the transcripts were from genes more highly expressed after attachment. CONCLUSIONS Gill settlement results in an alteration in gene expression and a premature onset of blood-feeding likely causes the parasite to develop at a slower pace.
Collapse
Affiliation(s)
- Erna Irene Heggland
- Department of Biological Sciences and Sea Lice Research Centre (SLRC), University of Bergen, Bergen, Norway
| | - Michael Dondrup
- Department of Informatics and Sea Lice Research Centre (SLRC), University of Bergen, Bergen, Norway
| | - Frank Nilsen
- Department of Biological Sciences and Sea Lice Research Centre (SLRC), University of Bergen, Bergen, Norway
| | - Christiane Eichner
- Department of Biological Sciences and Sea Lice Research Centre (SLRC), University of Bergen, Bergen, Norway.
| |
Collapse
|
50
|
Umasuthan N, Xue X, Caballero-Solares A, Kumar S, Westcott JD, Chen Z, Fast MD, Skugor S, Nowak BF, Taylor RG, Rise ML. Transcriptomic Profiling in Fins of Atlantic Salmon Parasitized with Sea Lice: Evidence for an Early Imbalance Between Chalimus-Induced Immunomodulation and the Host's Defense Response. Int J Mol Sci 2020; 21:E2417. [PMID: 32244468 PMCID: PMC7177938 DOI: 10.3390/ijms21072417] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/27/2020] [Indexed: 01/08/2023] Open
Abstract
Parasitic sea lice (e.g., Lepeophtheirus salmonis) cause costly outbreaks in salmon farming. Molecular insights into parasite-induced host responses will provide the basis for improved management strategies. We investigated the early transcriptomic responses in pelvic fins of Atlantic salmon parasitized with chalimus I stage sea lice. Fin samples collected from non-infected (i.e. pre-infected) control (PRE) and at chalimus-attachment sites (ATT) and adjacent to chalimus-attachment sites (ADJ) from infected fish were used in profiling global gene expression using 44 K microarrays. We identified 6568 differentially expressed probes (DEPs, FDR < 5%) that included 1928 shared DEPs between ATT and ADJ compared to PRE. The ATT versus ADJ comparison revealed 90 DEPs, all of which were upregulated in ATT samples. Gene ontology/pathway term network analyses revealed profound changes in physiological processes, including extracellular matrix (ECM) degradation, tissue repair/remodeling and wound healing, immunity and defense, chemotaxis and signaling, antiviral response, and redox homeostasis in infected fins. The QPCR analysis of 37 microarray-identified transcripts representing these functional themes served to confirm the microarray results with a significant positive correlation (p < 0.0001). Most immune/defense-relevant transcripts were downregulated in both ATT and ADJ sites compared to PRE, suggesting that chalimus exerts immunosuppressive effects in the salmon's fins. The comparison between ATT and ADJ sites demonstrated the upregulation of a suite of immune-relevant transcripts, evidencing the salmon's attempt to mount an anti-lice response. We hypothesize that an imbalance between immunomodulation caused by chalimus during the early phase of infection and weak defense response manifested by Atlantic salmon makes it a susceptible host for L. salmonis.
Collapse
Affiliation(s)
- Navaneethaiyer Umasuthan
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (X.X.); (A.C.-S.); (S.K.)
| | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (X.X.); (A.C.-S.); (S.K.)
| | - Albert Caballero-Solares
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (X.X.); (A.C.-S.); (S.K.)
| | - Surendra Kumar
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (X.X.); (A.C.-S.); (S.K.)
| | - Jillian D. Westcott
- Fisheries and Marine Institute, Memorial University of Newfoundland, P.O. Box 4920, St. John’s, NL A1C 5R3, Canada; (J.D.W.); (Z.C.)
| | - Zhiyu Chen
- Fisheries and Marine Institute, Memorial University of Newfoundland, P.O. Box 4920, St. John’s, NL A1C 5R3, Canada; (J.D.W.); (Z.C.)
| | - Mark D. Fast
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada;
| | - Stanko Skugor
- Cargill Aqua Nutrition, Cargill, Sea Lice Research Center (SLRC), Hanaveien 17, 4327 Sandnes, Norway;
| | - Barbara F. Nowak
- Institute of Marine and Antarctic Studies, University of Tasmania, Locked Bag 1370, Launceston 7250, TAS, Australia;
| | - Richard G. Taylor
- Cargill Animal Nutrition, 10383 165th Avenue NW, Elk River, MN 55330, USA;
| | - Matthew L. Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (X.X.); (A.C.-S.); (S.K.)
| |
Collapse
|