1
|
Esandi J, Renault P, Capilla-López MD, Blanch R, Edo Á, Ramirez-Gómez D, Bosch A, Almolda B, Saura CA, Giraldo J, Chillón M. HEBE: A novel chimeric chronokine for ameliorating memory deficits in Alzheimer's disease. Biomed Pharmacother 2025; 183:117815. [PMID: 39818099 DOI: 10.1016/j.biopha.2025.117815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 01/05/2025] [Accepted: 01/09/2025] [Indexed: 01/18/2025] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by amyloid-β and Tau protein depositions, with treatments focusing on single proteins have shown limited success due to the complexity of pathways involved. This study explored the potential of chronokines -proteins that modulate aging-related processes- as an alternative therapeutic approach. Specifically, we focused on a novel pleiotropic chimeric protein named HEBE, combining s-KL, sTREM2 and TIMP2, guided by bioinformatic analyses to ensure the preservation of each protein's conformation, crucial for their functions. In vitro studies confirmed HEBE's stability and enzymatic activities, even suggesting it has different activities compared to the individual chronokines. In vivo experiments on APP/Tau mice revealed improved learning and memory functions with HEBE treatment, along with decreased levels of phosphorylated Tau and minor effects on amyloid-β levels. These findings suggest that HEBE is as a promising therapeutic candidate for ameliorating memory deficits and reducing pTau in an AD mouse model.
Collapse
Affiliation(s)
- Jon Esandi
- Institut de Neurociències (INc), Universitat Autònoma Barcelona, Bellaterra 08193, Spain; Vall d'Hebron Institut de Recerca (VHIR), Barcelona 08035, Spain.
| | - Pedro Renault
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain; Unitat de Neurociència Translacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Bellaterra 08193, Spain.
| | - Maria Dolores Capilla-López
- Institut de Neurociències (INc), Universitat Autònoma Barcelona, Bellaterra 08193, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid 28029, Spain.
| | - Rebeca Blanch
- Institut de Neurociències (INc), Universitat Autònoma Barcelona, Bellaterra 08193, Spain; Vall d'Hebron Institut de Recerca (VHIR), Barcelona 08035, Spain.
| | - Ángel Edo
- Institut de Neurociències (INc), Universitat Autònoma Barcelona, Bellaterra 08193, Spain; Vall d'Hebron Institut de Recerca (VHIR), Barcelona 08035, Spain.
| | - David Ramirez-Gómez
- Institut de Neurociències (INc), Universitat Autònoma Barcelona, Bellaterra 08193, Spain; Vall d'Hebron Institut de Recerca (VHIR), Barcelona 08035, Spain.
| | - Assumpció Bosch
- Institut de Neurociències (INc), Universitat Autònoma Barcelona, Bellaterra 08193, Spain; Vall d'Hebron Institut de Recerca (VHIR), Barcelona 08035, Spain.
| | - Beatriz Almolda
- Institut de Neurociències (INc), Universitat Autònoma Barcelona, Bellaterra 08193, Spain.
| | - Carlos Alberto Saura
- Institut de Neurociències (INc), Universitat Autònoma Barcelona, Bellaterra 08193, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid 28029, Spain.
| | - Jesús Giraldo
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain; Unitat de Neurociència Translacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Bellaterra 08193, Spain.
| | - Miguel Chillón
- Institut de Neurociències (INc), Universitat Autònoma Barcelona, Bellaterra 08193, Spain; Vall d'Hebron Institut de Recerca (VHIR), Barcelona 08035, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain.
| |
Collapse
|
2
|
Rotenberg N, Feldman M, Shirian J, Hockla A, Radisky ES, Shifman JM. Engineered TIMP2 with narrow MMP-9 specificity is an effective inhibitor of invasion and proliferation of triple-negative breast cancer cells. J Biol Chem 2024; 300:107867. [PMID: 39419285 PMCID: PMC11609464 DOI: 10.1016/j.jbc.2024.107867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/19/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of endopeptidases that degrade extracellular matrix proteins, functioning in various physiological processes such as tissue remodeling, embryogenesis, and morphogenesis. Dysregulation of these enzymes is linked to multiple diseases. Specific inhibition of particular MMPs is crucial for anti-MMP drug development as some MMPs have shown antidisease properties. In this study, we aimed to design a highly specific inhibitor of MMP-9, that plays a crucial role in cell invasion and metastasis, using tissue inhibitor of metalloproteinases 2 (TIMP2s), an endogenous broad-family MMP inhibitor, as a prototype. In our earlier work, we were able to narrow down the specificity of the N-terminal domain of TIMP2 (N-TIMP2) toward MMP-9, yet at the expense of lowering its affinity to MMP-9. In this study, a library of N-TIMP2 mutants based on previous design with randomized additional positions was sorted for binding to MMP-9 using yeast surface display. Two selected N-TIMP2 mutants were expressed, purified, and their inhibitory activity against a panel of MMPs was measured. The best engineered N-TIMP2 mutant (REY) exhibited a 2-fold higher affinity to MMP-9 than that of the WT N-TIMP2, and 6- to 1.1 x 104-fold increase in binding specificity toward MMP-9 compared to five alternative MMPs. Moreover, REY demonstrated a significant increase in inhibition of cell invasion and proliferation compared to the WT N-TIMP2 in MDA-MB-231 breast cancer cells. Therefore, our engineered N-TIMP2 mutant emerges as a promising candidate for future therapeutic development, offering precise targeting of MMP-9 in MMP-9-driven diseases.
Collapse
Affiliation(s)
- Naama Rotenberg
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mark Feldman
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jason Shirian
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alexandra Hockla
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida, USA
| | - Evette S Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida, USA
| | - Julia M Shifman
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
3
|
Pang G, Ye L, Jiang Y, Wu Y, Zhang R, Yang H, Yang Y. Unveiling the bidirectional role of MMP9: A key player in kidney injury. Cell Signal 2024; 122:111312. [PMID: 39074714 DOI: 10.1016/j.cellsig.2024.111312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/04/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024]
Abstract
Matrix metalloproteinases (MMPs) are a group of zinc-dependent proteolytic metalloenzymes that are involved in numerous pathological conditions, including nephropathy. MMP9, a member of the MMPs family, is categorized as a constituent of the gelatinase B subgroup, and its involvement in extracellular matrix (ECM) remodeling and renal fibrosis highlights its importance in the development and progression of renal diseases. The exact role of MMP9 in the development of kidney diseases is still controversial. This study investigated the dual role of MMP9 in kidney injury, discussing its implications in the pathogenesis of kidney diseases and investigating the design and mechanism of MMP9 inhibitors based on previous studies. This study provides an effective basis for the development of novel and selective MMP9 inhibitors for treating renal diseases.
Collapse
Affiliation(s)
- Guiying Pang
- Anhui University of Traditional Chinese Medicine, Hefei 230000, People's Republic of China; Institute of Innovative Medicine, Biocytogen Pharmaceuticals (Beijing) Co, Ltd., Beijing 102609, People's Republic of China; Joint Graduate School, Yangtze Delta Drug Advanced Research Institute, Nantong 226133, People's Republic of China
| | - Ling Ye
- Anhui University of Traditional Chinese Medicine, Hefei 230000, People's Republic of China; Department of Pharmacology, Biocytogen Pharmaceuticals (Beijing) Co, Ltd, Beijing 102609, People's Republic of China; Joint Graduate School, Yangtze Delta Drug Advanced Research Institute, Nantong 226133, People's Republic of China
| | - Yinxiao Jiang
- Anhui University of Traditional Chinese Medicine, Hefei 230000, People's Republic of China; Joint Graduate School, Yangtze Delta Drug Advanced Research Institute, Nantong 226133, People's Republic of China
| | - Yilin Wu
- Anhui University of Traditional Chinese Medicine, Hefei 230000, People's Republic of China; Institute of Innovative Medicine, Biocytogen Pharmaceuticals (Beijing) Co, Ltd., Beijing 102609, People's Republic of China; Joint Graduate School, Yangtze Delta Drug Advanced Research Institute, Nantong 226133, People's Republic of China
| | - Rufeng Zhang
- Institute of Innovative Medicine, Biocytogen Pharmaceuticals (Beijing) Co, Ltd., Beijing 102609, People's Republic of China; Department of Pharmacology, Biocytogen Pharmaceuticals (Beijing) Co, Ltd, Beijing 102609, People's Republic of China
| | - Hongxu Yang
- Institute of Innovative Medicine, Biocytogen Pharmaceuticals (Beijing) Co, Ltd., Beijing 102609, People's Republic of China.
| | - Yi Yang
- Institute of Innovative Medicine, Biocytogen Pharmaceuticals (Beijing) Co, Ltd., Beijing 102609, People's Republic of China; Joint Graduate School, Yangtze Delta Drug Advanced Research Institute, Nantong 226133, People's Republic of China.
| |
Collapse
|
4
|
Radisky ES. Extracellular proteolysis in cancer: Proteases, substrates, and mechanisms in tumor progression and metastasis. J Biol Chem 2024; 300:107347. [PMID: 38718867 PMCID: PMC11170211 DOI: 10.1016/j.jbc.2024.107347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 06/02/2024] Open
Abstract
A vast ensemble of extracellular proteins influences the development and progression of cancer, shaped and reshaped by a complex network of extracellular proteases. These proteases, belonging to the distinct classes of metalloproteases, serine proteases, cysteine proteases, and aspartic proteases, play a critical role in cancer. They often become dysregulated in cancer, with increases in pathological protease activity frequently driven by the loss of normal latency controls, diminished regulation by endogenous protease inhibitors, and changes in localization. Dysregulated proteases accelerate tumor progression and metastasis by degrading protein barriers within the extracellular matrix (ECM), stimulating tumor growth, reactivating dormant tumor cells, facilitating tumor cell escape from immune surveillance, and shifting stromal cells toward cancer-promoting behaviors through the precise proteolysis of specific substrates to alter their functions. These crucial substrates include ECM proteins and proteoglycans, soluble proteins secreted by tumor and stromal cells, and extracellular domains of cell surface proteins, including membrane receptors and adhesion proteins. The complexity of the extracellular protease web presents a significant challenge to untangle. Nevertheless, technological strides in proteomics, chemical biology, and the development of new probes and reagents are enabling progress and advancing our understanding of the pivotal importance of extracellular proteolysis in cancer.
Collapse
Affiliation(s)
- Evette S Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida, USA.
| |
Collapse
|
5
|
Negrin LL, Carlin GL, Ristl R, Hajdu S. Time trajectories and within-subject correlations of matrix metalloproteinases 3, 8, 9, 10, 12, and 13 serum levels and their ability to predict mortality in polytraumatized patients: a pilot study. Eur J Med Res 2024; 29:225. [PMID: 38594750 PMCID: PMC11005259 DOI: 10.1186/s40001-024-01775-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 03/08/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Managing polytrauma victims poses a significant challenge to clinicians since applying the same therapy to patients with similar injury patterns may result in different outcomes. Using serum biomarkers hopefully allows for treating each multiple injured in the best possible individual way. Since matrix metalloproteinases (MMPs) play pivotal roles in various physiological processes, they might be a reliable tool in polytrauma care. METHODS We evaluated 24 blunt polytrauma survivors and 12 fatalities (mean age, 44.2 years, mean ISS, 45) who were directly admitted to our Level I trauma center and stayed at the intensive care unit for at least one night. We determined their MMP3, MMP8, MMP9, MMP10, MMP12, and MMP13 serum levels at admission (day 0) and on days 1, 3, 5, 7, and 10. RESULTS Median MMP8, MMP9, and MMP12 levels immediately rose after the polytrauma occurred; however, they significantly decreased from admission to day 1 and significantly increased from day 1 to day 10, showing similar time trajectories and (very) strong correlations between each two of the three enzyme levels assessed at the same measurement point. For a two-day lag, autocorrelations were significant for MMP8 (- 0.512) and MMP9 (- 0.302) and for cross-correlations between MMP8 and MMP9 (- 0.439), MMP8 and MMP12 (- 0.416), and MMP9 and MMP12 (- 0.307). Moreover, median MMP3, MMP10, and MMP13 levels significantly increased from admission to day 3 and significantly decreased from day 3 to day 10, showing similar time trajectories and an (almost) strong association between every 2 levels until day 7. Significant cross-correlations were detected between MMP3 and MMP10 (0.414) and MMP13 and MMP10 (0.362). Finally, the MMP10 day 0 level was identified as a predictor for in-hospital mortality. Any increase of the MMP10 level by 200 pg/mL decreased the odds of dying by 28.5%. CONCLUSIONS The time trajectories of the highly varying individual MMP levels elucidate the involvement of these enzymes in the endogenous defense response following polytrauma. Similar time courses of MMP levels might indicate similar injury causes, whereas lead-lag effects reveal causative relations between several enzyme pairs. Finally, MMP10 abundantly released into circulation after polytrauma might have a protective effect against dying.
Collapse
Affiliation(s)
- Lukas L Negrin
- University Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| | - Greta L Carlin
- University Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- University Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Robin Ristl
- Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Stefan Hajdu
- University Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| |
Collapse
|
6
|
Negrin LL, Carlin GL, Ristl R, Hajdu S. Serum levels of matrix metalloproteinases 1, 2, and 7, and their tissue inhibitors 1, 2, 3, and 4 in polytraumatized patients: Time trajectories, correlations, and their ability to predict mortality. PLoS One 2024; 19:e0300258. [PMID: 38457458 PMCID: PMC10923431 DOI: 10.1371/journal.pone.0300258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/23/2024] [Indexed: 03/10/2024] Open
Abstract
There has been limited research on assessing metalloproteinases (MMPs) 1, 2, and 7, as well as their tissue inhibitors (TIMPs) 1, 2, 3, and 4 in the context of polytrauma. These proteins play crucial roles in various physiological and pathological processes and could be a reliable tool in polytrauma care. We aimed to determine their clinical relevance. We assessed 24 blunt polytrauma survivors and 12 fatalities (mean age, 44.2 years, mean ISS, 45) who were directly admitted to our Level I trauma center and spent at least one night in the intensive care unit. We measured serum levels of the selected proteins on admission (day 0) and days 1, 3, 5, 7, and 10. The serum levels of the seven proteins varied considerably among individuals, resulting in similar median trend curves for TIMP1 and TIMP4 and for MMP1, MMP2, TIMP2, and TIMP3. We also found a significant interrelationship between the MMP2, TIMP2, and TIMP3 levels at the same measurement points. Furthermore, we calculated significant cross-correlations between MMP7 and MMP1, TIMP1 and MMP7, TIMP3 and MMP1, TIMP3 and MMP2, and TIMP4 and TIMP3 and an almost significant correlation between MMP7 and TIMP1 for a two-day-lag. The autocorrelation coefficient reached statistical significance for MMP1 and TIMP3. Finally, lower TIMP1 serum levels were associated with in-hospital mortality upon admission. The causal effects and interrelationships between selected proteins might provide new insights into the interactions of MMPs and TIMPs. Identifying the underlying causes might help develop personalized therapies for patients with multiple injuries. Administering recombinant TIMP1 or increasing endogenous production could improve outcomes for those with multiple injuries. However, before justifying further investigations into basic research and clinical relevance, our findings must be validated in a multicenter study using independent cohorts to account for clinical and biological variability.
Collapse
Affiliation(s)
- Lukas L. Negrin
- University Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Greta L. Carlin
- University Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
- University Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Robin Ristl
- Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Stefan Hajdu
- University Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Kollet O, Das A, Karamanos N, Auf dem Keller U, Sagi I. Redefining metalloproteases specificity through network proteolysis. Trends Mol Med 2024; 30:147-163. [PMID: 38036391 PMCID: PMC11004056 DOI: 10.1016/j.molmed.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/18/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023]
Abstract
Proteolytic processes on cell surfaces and extracellular matrix (ECM) sustain cell behavior and tissue integrity in health and disease. Matrix metalloproteases (MMPs) and a disintegrin and metalloproteases (ADAMs) remodel cell microenvironments through irreversible proteolysis of ECM proteins and cell surface bioactive molecules. Pan-MMP inhibitors in inflammation and cancer clinical trials have encountered challenges due to promiscuous activities of MMPs. Systems biology advances revealed that MMPs initiate multifactorial proteolytic cascades, creating new substrates, activating or suppressing other MMPs, and generating signaling molecules. This review highlights the intricate network that underscores the role of MMPs beyond individual substrate-enzyme activities. Gaining insight into MMP function and tissue specificity is crucial for developing effective drug discovery strategies and novel therapeutics. This requires considering the dynamic cellular processes and consequences of network proteolysis.
Collapse
Affiliation(s)
- Orit Kollet
- The Weizmann Institute of Science, Department of Immunology and Regenerative Biology, Rehovot, Israel
| | - Alakesh Das
- The Weizmann Institute of Science, Department of Immunology and Regenerative Biology, Rehovot, Israel
| | - Nikos Karamanos
- University of Patras, Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, Patras, Greece
| | - Ulrich Auf dem Keller
- Technical University of Denmark, Department of Biotechnology and Biomedicine, Lyngby, Denmark
| | - Irit Sagi
- The Weizmann Institute of Science, Department of Immunology and Regenerative Biology, Rehovot, Israel.
| |
Collapse
|
8
|
Shoari A, Khalili-Tanha G, Coban MA, Radisky ES. Structure and computation-guided yeast surface display for the evolution of TIMP-based matrix metalloproteinase inhibitors. Front Mol Biosci 2023; 10:1321956. [PMID: 38074088 PMCID: PMC10702220 DOI: 10.3389/fmolb.2023.1321956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 11/13/2023] [Indexed: 01/03/2024] Open
Abstract
The study of protein-protein interactions (PPIs) and the engineering of protein-based inhibitors often employ two distinct strategies. One approach leverages the power of combinatorial libraries, displaying large ensembles of mutant proteins, for example, on the yeast cell surface, to select binders. Another approach harnesses computational modeling, sifting through an astronomically large number of protein sequences and attempting to predict the impact of mutations on PPI binding energy. Individually, each approach has inherent limitations, but when combined, they generate superior outcomes across diverse protein engineering endeavors. This synergistic integration of approaches aids in identifying novel binders and inhibitors, fine-tuning specificity and affinity for known binding partners, and detailed mapping of binding epitopes. It can also provide insight into the specificity profiles of varied PPIs. Here, we outline strategies for directing the evolution of tissue inhibitors of metalloproteinases (TIMPs), which act as natural inhibitors of matrix metalloproteinases (MMPs). We highlight examples wherein design of combinatorial TIMP libraries using structural and computational insights and screening these libraries of variants using yeast surface display (YSD), has successfully optimized for MMP binding and selectivity, and conferred insight into the PPIs involved.
Collapse
Affiliation(s)
| | | | | | - Evette S. Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
9
|
Coates-Park S, Lazaroff C, Gurung S, Rich J, Colladay A, O’Neill M, Butler GS, Overall CM, Stetler-Stevenson WG, Peeney D. Tissue inhibitors of metalloproteinases are proteolytic targets of matrix metalloproteinase 9. Matrix Biol 2023; 123:59-70. [PMID: 37804930 PMCID: PMC10843048 DOI: 10.1016/j.matbio.2023.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/09/2023]
Abstract
Extracellular proteolysis and turnover are core processes of tissue homeostasis. The predominant matrix-degrading enzymes are members of the Matrix Metalloproteinase (MMP) family. MMPs extensively degrade core matrix components in addition to processing a range of other factors in the extracellular, plasma membrane, and intracellular compartments. The proteolytic activity of MMPs is modulated by the Tissue Inhibitors of Metalloproteinases (TIMPs), a family of four multi-functional matrisome proteins with extensively characterized MMP inhibitory functions. Thus, a well-regulated balance between MMP activity and TIMP levels has been described as critical for healthy tissue homeostasis, and this balance can be chronically disturbed in pathological processes. The relationship between MMPs and TIMPs is complex and lacks the constraints of a typical enzyme-inhibitor relationship due to secondary interactions between various MMPs (specifically gelatinases) and TIMP family members. We illustrate a new complexity in this system by describing how MMP9 can cleave members of the TIMP family when in molar excess. Proteolytic processing of TIMPs can generate functionally altered peptides with potentially novel attributes. We demonstrate here that all TIMPs are cleaved at their C-terminal tails by a molar excess of MMP9. This processing removes the N-glycosylation site for TIMP3 and prevents the TIMP2 interaction with latent proMMP2, a prerequisite for cell surface MMP14-mediated activation of proMMP2. TIMP2/4 are further cleaved producing ∼14 kDa N-terminal proteins linked to a smaller C-terminal domain through residual disulfide bridges. These cleaved TIMP2/4 complexes show perturbed MMP inhibitory activity, illustrating that MMP9 may bear a particularly prominent influence upon the TIMP:MMP balance in tissues.
Collapse
Affiliation(s)
- Sasha Coates-Park
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, Maryland
| | - Carolyn Lazaroff
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, Maryland
- Washington University in St. Louis School of Medicine, Department of Orthopedics
| | - Sadeechya Gurung
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, Maryland
| | - Josh Rich
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, Maryland
| | - Alexandra Colladay
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, Maryland
| | - Maura O’Neill
- Protein Characterization Laboratory, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland
| | - Georgina S. Butler
- Centre for Blood Research, Life Sciences Centre, University of British Columbia; Vancouver, British Columbia, V6T 1Z3, Canada
- Department of Oral Biological and Medical Science, Faculty of Dentistry, University of British Columbia; Vancouver, British Columbia, V6T 1Z3, Canada
| | - Christopher M. Overall
- Centre for Blood Research, Life Sciences Centre, University of British Columbia; Vancouver, British Columbia, V6T 1Z3, Canada
- Department of Oral Biological and Medical Science, Faculty of Dentistry, University of British Columbia; Vancouver, British Columbia, V6T 1Z3, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia; Vancouver, British Columbia, V6T 1Z3, Canada
| | - William G. Stetler-Stevenson
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, Maryland
| | - David Peeney
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, Maryland
| |
Collapse
|
10
|
Stetler-Stevenson WG. The Continuing Saga of Tissue Inhibitor of Metalloproteinase 2: Emerging Roles in Tissue Homeostasis and Cancer Progression. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1336-1352. [PMID: 37572947 PMCID: PMC10548276 DOI: 10.1016/j.ajpath.2023.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/14/2023]
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) are a conserved family of proteins that were originally identified as cytokine-like erythroid growth factors. Subsequently, TIMPs were characterized as endogenous inhibitors of matrixin proteinases. These proteinases are the primary mediators of extracellular matrix turnover in pathologic conditions, such as cancer invasion and metastasis. Thus, TIMPs were immediately recognized as important regulators of tissue homeostasis. However, TIMPs also demonstrate unique biological activities that are independent of metalloproteinase regulation. Although often overlooked, these non-protease-mediated TIMP functions demonstrate a variety of direct cellular effects of potential therapeutic value. TIMP2 is the most abundantly expressed TIMP family member, and ongoing studies show that its tumor suppressor activity extends beyond protease inhibition to include direct modulation of tumor, endothelial, and fibroblast cellular responses in the tumor microenvironment. Recent data suggest that TIMP2 can suppress both primary tumor growth and metastatic niche formation. TIMP2 directly interacts with cellular receptors and matrisome elements to modulate cell signaling pathways that result in reduced proliferation and migration of neoplastic, endothelial, and fibroblast cell populations. These effects result in enhanced cell adhesion and focal contact formation while reducing tumor and endothelial proliferation, migration, and epithelial-to-mesenchymal transitions. These findings are consistent with TIMP2 homeostatic functions beyond simple inhibition of metalloprotease activity. This review examines the ongoing evolution of TIMP2 function, future perspectives in TIMP research, and the therapeutic potential of TIMP2.
Collapse
Affiliation(s)
- William G Stetler-Stevenson
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
11
|
Bonadio A, Wenig BL, Hockla A, Radisky ES, Shifman JM. Designed Loop Extension Followed by Combinatorial Screening Confers High Specificity to a Broad Matrix MetalloproteinaseInhibitor. J Mol Biol 2023; 435:168095. [PMID: 37068580 PMCID: PMC10312305 DOI: 10.1016/j.jmb.2023.168095] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 04/19/2023]
Abstract
Matrix metalloproteinases (MMPs) are key drivers of various diseases, including cancer. Development of probes and drugs capable of selectively inhibiting the individual members of the large MMP family remains a persistent challenge. The inhibitory N-terminal domain of tissue inhibitor of metalloproteinases-2 (N-TIMP2), a natural broad MMP inhibitor, can provide a scaffold for protein engineering to create more selective MMP inhibitors. Here, we pursued a unique approach harnessing both computational design and combinatorial screening to confer high binding specificity toward a target MMP in preference to an anti-target MMP. We designed a loop extension of N-TIMP2 to allow new interactions with the non-conserved MMP surface and generated an efficient focused library for yeast surface display, which was then screened for high binding to the target MMP-14 and low binding to anti-target MMP-3. Deep sequencing analysis identified the most promising variants, which were expressed, purified, and tested for selectivity of inhibition. Our best N-TIMP2 variant exhibited 29 pM binding affinity to MMP-14 and 2.4 µM affinity to MMP-3, revealing 7500-fold greater specificity than WT N-TIMP2. High-confidence structural models were obtained by including NGS data in the AlphaFold multiple sequence alignment. The modeling together with experimental mutagenesis validated our design predictions, demonstrating that the loop extension packs tightly against non-conserved residues on MMP-14 and clashes with MMP-3. This study demonstrates how introduction of loop extensions in a manner guided by target protein conservation data and loop design can offer an attractive strategy to achieve specificity in design of protein ligands.
Collapse
Affiliation(s)
- Alessandro Bonadio
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | - Bernhard L Wenig
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida, USA; Paracelsus Medical University, Salzburg, Austria
| | - Alexandra Hockla
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida, USA
| | - Evette S Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida, USA.
| | - Julia M Shifman
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
12
|
Hayun H, Coban M, Bhagat AK, Ozer E, Alfonta L, Caulfield TR, Radisky ES, Papo N. Utilizing genetic code expansion to modify N-TIMP2 specificity towards MMP-2, MMP-9, and MMP-14. Sci Rep 2023; 13:5186. [PMID: 36997589 PMCID: PMC10063552 DOI: 10.1038/s41598-023-32019-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/21/2023] [Indexed: 04/01/2023] Open
Abstract
Matrix metalloproteinases (MMPs) regulate the degradation of extracellular matrix (ECM) components in biological processes. MMP activity is controlled by natural tissue inhibitors of metalloproteinases (TIMPs) that non-selectively inhibit the function of multiple MMPs via interaction with the MMPs' Zn2+-containing catalytic pocket. Recent studies suggest that TIMPs engineered to confer MMP specificity could be exploited for therapeutic purposes, but obtaining specific TIMP-2 inhibitors has proved to be challenging. Here, in an effort to improve MMP specificity, we incorporated the metal-binding non-canonical amino acids (NCAAs), 3,4-dihydroxyphenylalanine (L-DOPA) and (8-hydroxyquinolin-3-yl)alanine (HqAla), into the MMP-inhibitory N-terminal domain of TIMP2 (N-TIMP2) at selected positions that interact with the catalytic Zn2+ ion (S2, S69, A70, L100) or with a structural Ca2+ ion (Y36). Evaluation of the inhibitory potency of the NCAA-containing variants towards MMP-2, MMP-9 and MMP-14 in vitro revealed that most showed a significant loss of inhibitory activity towards MMP-14, but not towards MMP-2 and MMP-9, resulting in increased specificity towards the latter proteases. Substitutions at S69 conferred the best improvement in selectivity for both L-DOPA and HqAla variants. Molecular modeling provided an indication of how MMP-2 and MMP-9 are better able to accommodate the bulky NCAA substituents at the intermolecular interface with N-TIMP2. The models also showed that, rather than coordinating to Zn2+, the NCAA side chains formed stabilizing polar interactions at the intermolecular interface with MMP-2 and MMP-9. Our findings illustrate how incorporation of NCAAs can be used to probe-and possibly exploit-differential tolerance for substitution within closely related protein-protein complexes as a means to improve specificity.
Collapse
Affiliation(s)
- Hezi Hayun
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer-Sheva, Israel
| | - Matt Coban
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, 310 Griffin Building, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Ashok Kumar Bhagat
- Department of Life Sciences and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel
| | - Eden Ozer
- Department of Life Sciences and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel
| | - Lital Alfonta
- Department of Life Sciences and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel
| | - Thomas R Caulfield
- Departments of Neuroscience, Artificial Intelligence and Informatics, Computational Biology and Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Jacksonville, FL, 32224, USA.
| | - Evette S Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, 310 Griffin Building, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| | - Niv Papo
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer-Sheva, Israel.
| |
Collapse
|
13
|
Cayetano-Salazar L, Nava-Tapia DA, Astudillo-Justo KD, Arizmendi-Izazaga A, Sotelo-Leyva C, Herrera-Martinez M, Villegas-Comonfort S, Navarro-Tito N. Flavonoids as regulators of TIMPs expression in cancer: Consequences, opportunities, and challenges. Life Sci 2022; 308:120932. [PMID: 36067841 DOI: 10.1016/j.lfs.2022.120932] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 12/14/2022]
Abstract
Cancer is one of the leading causes of death in patients worldwide, where invasion and metastasis are directly responsible for this statement. Although cancer therapy has progressed in recent years, current therapeutic approaches are ineffective due to toxicity and chemoresistance. Therefore, it is essential to evaluate other treatment options, and natural products are a promising alternative as they show antitumor properties in different study models. This review describes the regulation of tissue inhibitors of metalloproteinases (TIMPs) expression and the role of flavonoids as molecules with the antitumor activity that targets TIMPs therapeutically. These inhibitors regulate tissue extracellular matrix (ECM) turnover; they inhibit matrix metalloproteinases (MMPs), cell migration, invasion, and angiogenesis and induce apoptosis in tumor cells. Data obtained in cell lines and in vivo models suggest that flavonoids are chemopreventive and cytotoxic against various types of cancer through several mechanisms. Flavonoids also regulate crucial signaling pathways such as focal adhesion kinase (FAK), phosphatidylinositol-3-kinase (PI3K)-Akt, signal transducer and activator of transcription 3 (STAT3), nuclear factor κB (NFκB), and mitogen-activated protein kinase (MAPK) involved in cancer cell migration, invasion, and metastasis. All these data reposition flavonoids as excellent candidates for use in cancer therapy.
Collapse
Affiliation(s)
- Lorena Cayetano-Salazar
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, Mexico
| | - Dania A Nava-Tapia
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, Mexico
| | - Kevin D Astudillo-Justo
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, Mexico
| | - Adán Arizmendi-Izazaga
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, Mexico
| | - César Sotelo-Leyva
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, Mexico
| | - Mayra Herrera-Martinez
- Instituto de Farmacobiología, Universidad de la Cañada, Teotitlán de Flores Magón, OAX 68540, Mexico
| | - Sócrates Villegas-Comonfort
- División de Ciencias Naturales e Ingeniería, Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, CDMX 05348, Mexico
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, Mexico.
| |
Collapse
|
14
|
González-Zamora J, Hernandez M, Recalde S, Bezunartea J, Montoliu A, Bilbao-Malavé V, Orbe J, Rodríguez JA, Llorente-González S, Fernández-Robredo P, García-Layana A. Matrix Metalloproteinase 10 Contributes to Choroidal Neovascularisation. Biomedicines 2022; 10:biomedicines10071557. [PMID: 35884862 PMCID: PMC9313238 DOI: 10.3390/biomedicines10071557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
Age-related macular degeneration (AMD) is currently the main cause of severe visual loss among older adults in developed countries. The pathophysiology has not been clarified, but oxidative stress is believed to play a major role. Matrix metalloproteinases (MMP) may play a prominent role in several steps of the pathophysiology of AMD, especially in its neovascular form; therefore, there is of great interest in understanding their role in choroidal neovascularisation. This study aimed to elucidate the role of MMP10 in the development of choroidal neovascularisation (CNV). We have demonstrated that MMP10 was expressed by retinal pigment epithelium cells and endothelial cells of the neovascular membrane, in cell culture, mouse and human retina. MMP10 expression and activity increased under oxidative stress conditions in ARPE-19 cells. MMP10-/- mice developed smaller laser-induced areas of CNV. Furthermore, to exclude a systemic MMP10 imbalance in these patients, plasma MMP10 concentrations were assessed in an age- and sex-matched sample of 52 control patients and 52 patients with neovascular AMD and no significant differences were found between the groups, demonstrating that MMP10 induction is a local phenomenon. Our findings suggest that MMP10 participates in the development of choroidal neovascularisation and promotes MMP10 as a possible new therapeutic target.
Collapse
Affiliation(s)
- Jorge González-Zamora
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (J.G.-Z.); (S.R.); (J.B.); (A.M.); (V.B.-M.); (S.L.-G.); (A.G.-L.)
| | - María Hernandez
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (J.G.-Z.); (S.R.); (J.B.); (A.M.); (V.B.-M.); (S.L.-G.); (A.G.-L.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain; (J.O.); (J.A.R.)
- Correspondence: (M.H.); (P.F.-R.)
| | - Sergio Recalde
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (J.G.-Z.); (S.R.); (J.B.); (A.M.); (V.B.-M.); (S.L.-G.); (A.G.-L.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain; (J.O.); (J.A.R.)
| | - Jaione Bezunartea
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (J.G.-Z.); (S.R.); (J.B.); (A.M.); (V.B.-M.); (S.L.-G.); (A.G.-L.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain; (J.O.); (J.A.R.)
| | - Ana Montoliu
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (J.G.-Z.); (S.R.); (J.B.); (A.M.); (V.B.-M.); (S.L.-G.); (A.G.-L.)
| | - Valentina Bilbao-Malavé
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (J.G.-Z.); (S.R.); (J.B.); (A.M.); (V.B.-M.); (S.L.-G.); (A.G.-L.)
| | - Josune Orbe
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain; (J.O.); (J.A.R.)
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, CIMA-Universidad de Navarra, CIBERCV, 31008 Pamplona, Spain
| | - José A. Rodríguez
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain; (J.O.); (J.A.R.)
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, CIMA-Universidad de Navarra, CIBERCV, 31008 Pamplona, Spain
| | - Sara Llorente-González
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (J.G.-Z.); (S.R.); (J.B.); (A.M.); (V.B.-M.); (S.L.-G.); (A.G.-L.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain; (J.O.); (J.A.R.)
| | - Patricia Fernández-Robredo
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (J.G.-Z.); (S.R.); (J.B.); (A.M.); (V.B.-M.); (S.L.-G.); (A.G.-L.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain; (J.O.); (J.A.R.)
- Correspondence: (M.H.); (P.F.-R.)
| | - Alfredo García-Layana
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (J.G.-Z.); (S.R.); (J.B.); (A.M.); (V.B.-M.); (S.L.-G.); (A.G.-L.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain; (J.O.); (J.A.R.)
| |
Collapse
|
15
|
Matrix Metalloproteinase-10 in Kidney Injury Repair and Disease. Int J Mol Sci 2022; 23:ijms23042131. [PMID: 35216251 PMCID: PMC8877639 DOI: 10.3390/ijms23042131] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/13/2022] Open
Abstract
Matrix metalloproteinase-10 (MMP-10) is a zinc-dependent endopeptidase with the ability to degrade a broad spectrum of extracellular matrices and other protein substrates. The expression of MMP-10 is induced in acute kidney injury (AKI) and chronic kidney disease (CKD), as well as in renal cell carcinoma (RCC). During the different stages of kidney injury, MMP-10 may exert distinct functions by cleaving various bioactive substrates including heparin-binding epidermal growth factor (HB-EGF), zonula occludens-1 (ZO-1), and pro-MMP-1, -7, -8, -9, -10, -13. Functionally, MMP-10 is reno-protective in AKI by promoting HB-EGF-mediated tubular repair and regeneration, whereas it aggravates podocyte dysfunction and proteinuria by disrupting glomerular filtration integrity via degrading ZO-1. MMP-10 is also involved in cancerous invasion and emerges as a promising therapeutic target in patients with RCC. As a secreted protein, MMP-10 could be detected in the circulation and presents an inverse correlation with renal function. Due to the structural similarities between MMP-10 and the other MMPs, development of specific inhibitors targeting MMP-10 is challenging. In this review, we summarize our current understanding of the role of MMP-10 in kidney diseases and discuss the potential mechanisms of its actions.
Collapse
|
16
|
Raeeszadeh-Sarmazdeh M, Coban M, Mahajan S, Hockla A, Sankaran B, Downey GP, Radisky DC, Radisky ES. Engineering of tissue inhibitor of metalloproteinases TIMP-1 for fine discrimination between closely-related stromelysins MMP-3 and MMP-10. J Biol Chem 2022; 298:101654. [PMID: 35101440 PMCID: PMC8902619 DOI: 10.1016/j.jbc.2022.101654] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 12/03/2022] Open
Abstract
Matrix metalloproteinases (MMPs) have long been known as key drivers in the development and progression of diseases, including cancer and neurodegenerative, cardiovascular, and many other inflammatory and degenerative diseases, making them attractive potential drug targets. Engineering selective inhibitors based upon tissue inhibitors of metalloproteinases (TIMPs), endogenous human proteins that tightly yet nonspecifically bind to the family of MMPs, represents a promising new avenue for therapeutic development. Here, we used a counter-selective screening strategy for directed evolution of yeast-displayed human TIMP-1 to obtain TIMP-1 variants highly selective for the inhibition of MMP-3 in preference over MMP-10. As MMP-3 and MMP-10 are the most similar MMPs in sequence, structure, and function, our results thus clearly demonstrate the capability for engineering full-length TIMP proteins to be highly selective MMP inhibitors. We show using protein crystal structures and models of MMP-3-selective TIMP-1 variants bound to MMP-3 and counter-target MMP-10 how structural alterations within the N-terminal and C-terminal TIMP-1 domains create new favorable and selective interactions with MMP-3 and disrupt unique interactions with MMP-10. While our MMP-3-selective inhibitors may be of interest for future investigation in diseases where this enzyme drives pathology, our platform and screening strategy can be employed for developing selective inhibitors of additional MMPs implicated as therapeutic targets in disease.
Collapse
Affiliation(s)
| | - Mathew Coban
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224
| | - Shivansh Mahajan
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224
| | - Alexandra Hockla
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224
| | - Banumathi Sankaran
- Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Gregory P Downey
- Departments of Medicine, Pediatrics, and Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado 80206; Departments of Medicine, and Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224
| | - Evette S Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224.
| |
Collapse
|
17
|
Peeney D, Liu Y, Lazaroff C, Gurung S, Stetler-Stevenson WG. OUP accepted manuscript. Carcinogenesis 2022; 43:405-418. [PMID: 35436325 PMCID: PMC9167030 DOI: 10.1093/carcin/bgac037] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/23/2022] [Accepted: 04/15/2022] [Indexed: 11/12/2022] Open
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) are a conserved family of proteins that were originally identified as endogenous inhibitors of matrixin and adamalysin endopeptidase activity. The matrixins and adamalysins are the major mediators of extracellular matrix (ECM) turnover, thus making TIMPs important regulators of ECM structure and composition. Despite their high sequence identity and relative redundancy in inhibitory profiles, each TIMP possesses unique biological characteristics that are independent of their regulation of metalloproteinase activity. As our understanding of TIMP biology has evolved, distinct roles have been assigned to individual TIMPs in cancer progression. In this respect, data regarding TIMP2's role in cancer have borne conflicting reports of both tumor suppressor and, to a lesser extent, tumor promoter functions. TIMP2 is the most abundant TIMP family member, prevalent in normal and diseased mammalian tissues as a constitutively expressed protein. Despite its apparent stable expression, recent work highlights how TIMP2 is a cell stress-induced gene product and that its biological activity can be dictated by extracellular posttranslational modifications. Hence an understanding of TIMP2 molecular targets, and how its biological functions evolve in the progressing tumor microenvironment may reveal new therapeutic opportunities. In this review, we discuss the continually evolving functions of TIMP proteins, future perspectives in TIMP research, and the therapeutic utility of this family, with a particular focus on TIMP2.
Collapse
Affiliation(s)
- David Peeney
- To whom correspondence should be addressed. Tel: 240-858-3233;
| | - Yueqin Liu
- Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Carolyn Lazaroff
- Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Sadeechya Gurung
- Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | | |
Collapse
|
18
|
Wątroba S, Wiśniowski T, Bryda J, Kurzepa J. Characteristics of matrix metalloproteinases and their role in embryogenesis of the mammalian respiratory system. POSTEP HIG MED DOSW 2021. [DOI: 10.5604/01.3001.0014.6933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Summary
The human respiratory system appears as an outgrowth from the ventral wall of the primary foregut and its development includes a series of subsequent processes, dependent on the interactions between endothelial cells, respiratory epithelium and extracellular matrix (ECM). These interactions determine the acquisition of normal structural and functional features of the newly created tissues. The essential role in the morphogenesis of the respiratory system is performed by matrix metalloproteinases (MMPs). MMPs are endopeptidases containing zinc ion in their active center, necessary for the processes of hydrolysis of peptide bonds of substrates. The production of MMPs takes place in most connective tissue cells, leukocytes, macrophages, vascular endothelial cells as well as in neurons, glial cells and in tumor cells. Like other proteolytic enzymes, MMPs are produced and secreted in the form of inactive pro-enzymes, and their activation occurs in the extracellular space. MMPs perform both physiological and pathological functions during tissue modeling and their role in embryogenesis is based on the regulation of angiogenesis processes, stroma formation and cells migration. This article aims to characterize, discuss and demonstrate the activity and the role of MMPs in the subsequent stages of respiratory development.
Collapse
Affiliation(s)
- Sławomir Wątroba
- Department of Neonatology and Neonatal Intensive Care Unit , Independent Public Healthcare , Puławy , Poland
| | - Tomasz Wiśniowski
- Department of Urology and Urological Oncology , St. John of God Independent Public Provincial Hospital , Lublin , Poland
| | - Jarosław Bryda
- Department of Veterinary Hygiene , Voivodship Veterinary Inspectorate , Lublin , Poland
| | - Jacek Kurzepa
- Department of Medical Chemistry , Medical University , Lublin , Poland
| |
Collapse
|
19
|
Frolova AS, Petushkova AI, Makarov VA, Soond SM, Zamyatnin AA. Unravelling the Network of Nuclear Matrix Metalloproteinases for Targeted Drug Design. BIOLOGY 2020; 9:E480. [PMID: 33352765 PMCID: PMC7765953 DOI: 10.3390/biology9120480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023]
Abstract
Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that are responsible for the degradation of a wide range of extracellular matrix proteins, which are involved in many cellular processes to ensure the normal development of tissues and organs. Overexpression of MMPs has been observed to facilitate cellular growth, migration, and metastasis of tumor cells during cancer progression. A growing number of these proteins are being found to exist in the nuclei of both healthy and tumor cells, thus highlighting their localization as having a genuine purpose in cellular homeostasis. The mechanism underlying nuclear transport and the effects of MMP nuclear translocation have not yet been fully elucidated. To date, nuclear MMPs appear to have a unique impact on cellular apoptosis and gene regulation, which can have effects on immune response and tumor progression, and thus present themselves as potential therapeutic targets in certain types of cancer or disease. Herein, we highlight and evaluate what progress has been made in this area of research, which clearly has some value as a specific and unique way of targeting the activity of nuclear matrix metalloproteinases within various cell types.
Collapse
Affiliation(s)
- Anastasia S. Frolova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.S.F.); (A.I.P.); (V.A.M.); (S.M.S.)
| | - Anastasiia I. Petushkova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.S.F.); (A.I.P.); (V.A.M.); (S.M.S.)
| | - Vladimir A. Makarov
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.S.F.); (A.I.P.); (V.A.M.); (S.M.S.)
| | - Surinder M. Soond
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.S.F.); (A.I.P.); (V.A.M.); (S.M.S.)
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.S.F.); (A.I.P.); (V.A.M.); (S.M.S.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia
| |
Collapse
|
20
|
Kiani A, Kamankesh M, Vaisi-Raygani A, Moradi MR, Tanhapour M, Rahimi Z, Elahi-Rad S, Bahrehmand F, Aliyari M, Aghaz F, Mozafari H, Rezvani N, Haghnazari L, Pourmotabbed T. Activities and polymorphisms of MMP-2 and MMP-9, smoking, diabetes and risk of prostate cancer. Mol Biol Rep 2020; 47:9373-9383. [PMID: 33165815 DOI: 10.1007/s11033-020-05968-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 10/31/2020] [Indexed: 11/29/2022]
Abstract
Matrix metalloproteinases (MMPs) are a group of zinc dependent enzymes that are involved in tumor cell invasion and metastasis. The role of MMP-2 and -9 genetic polymorphism in different malignancies has been the subject of numerous studies. The present research has attempted to discover any positive correlation between MMP-2 and MMP-9 SNPs and prostate cancer (PCa) in patients with a history of either diabetes or smoking habits. 112 PCa-patients and 150 unrelated healthy-controls that matched for age and sex were selected for present case-control study. MMP-2 -1575G/A and MMP-9 -1562 C/T polymorphisms detected by PCR-RFLP, serum tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2), testosterone, prostate-specific antigen (PSA), free-prostate-specific-antigen (fPSA), and fPSA/PSA levels were detected by ELISA and enzyme assay, respectively. MMP-2 and MMP-9 activities were measured by gelatin-zymography. Covariates were considered as age, status of cigarette smoking, and a possible history of diabetes mellitus (DM). The frequency of -1575 MMP-2 A/A + A/G and -1562 MMP-9 C/T + T/T genotypes were higher in PCa-patients with DM (74.3%,p = 0.003) and with smoking habits (72.5%,p = 0.005). These genotypes were associated with the increased risk of prostate cancer in smokers (3.52-folds) and in individuals with history of DM (4.34-folds). A significant positive association was found between level of TIMPs (TIMP -1 and TIMP-2) and BMI in PCa-patients and also between testosterone levels and MMP-9 activity in healthy control subjects. For the first time, this study demonstrated that activities of MMP-2 -1575G/A and MMP-9 -1562C/T variants in association with smoking and diabetes are considered significant risk factors for PCa.
Collapse
Affiliation(s)
- Amir Kiani
- Regenerative Medicine Research Center (RMRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Marjan Kamankesh
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Asad Vaisi-Raygani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Mahmoud-Reza Moradi
- Regenerative Medicine Research Center (RMRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Tanhapour
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zohreh Rahimi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saeed Elahi-Rad
- Regenerative Medicine Research Center (RMRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fariborz Bahrehmand
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahdieh Aliyari
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Faranak Aghaz
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hadi Mozafari
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nayebali Rezvani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Lida Haghnazari
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Tayebeh Pourmotabbed
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, 858 Madison Ave, Memphis, TN, 48163, USA.
| |
Collapse
|
21
|
Aharon L, Aharoni SL, Radisky ES, Papo N. Quantitative mapping of binding specificity landscapes for homologous targets by using a high-throughput method. Biochem J 2020; 477:1701-1719. [PMID: 32296833 PMCID: PMC7376575 DOI: 10.1042/bcj20200188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 01/08/2023]
Abstract
To facilitate investigations of protein-protein interactions (PPIs), we developed a novel platform for quantitative mapping of protein binding specificity landscapes, which combines the multi-target screening of a mutagenesis library into high- and low-affinity populations with sophisticated next-generation sequencing analysis. Importantly, this method generates accurate models to predict affinity and specificity values for any mutation within a protein complex, and requires only a few experimental binding affinity measurements using purified proteins for calibration. We demonstrated the utility of the approach by mapping quantitative landscapes for interactions between the N-terminal domain of the tissue inhibitor of metalloproteinase 2 (N-TIMP2) and three matrix metalloproteinases (MMPs) having homologous structures but different affinities (MMP-1, MMP-3, and MMP-14). The binding landscapes for N-TIMP2/MMP-1 and N-TIMP2/MMP-3 showed the PPIs to be almost fully optimized, with most single mutations giving a loss of affinity. In contrast, the non-optimized PPI for N-TIMP2/MMP-14 was reflected in a wide range of binding affinities, where single mutations exhibited a far more attenuated effect on the PPI. Our new platform reliably and comprehensively identified not only hot- and cold-spot residues, but also specificity-switch mutations that shape target affinity and specificity. Thus, our approach provides a methodology giving an unprecedentedly rich quantitative analysis of the binding specificity landscape, which will broaden the understanding of the mechanisms and evolutionary origins of specific PPIs and facilitate the rational design of specific inhibitors for structurally similar target proteins.
Collapse
Affiliation(s)
- Lidan Aharon
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Shay-Lee Aharoni
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Evette S. Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville 32224, Florida, USA
| | - Niv Papo
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
22
|
Eckfeld C, Häußler D, Schoeps B, Hermann CD, Krüger A. Functional disparities within the TIMP family in cancer: hints from molecular divergence. Cancer Metastasis Rev 2020; 38:469-481. [PMID: 31529339 DOI: 10.1007/s10555-019-09812-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The members of the tissue inhibitor of metalloproteinase (TIMP) family (TIMP-1, 2, 3, 4) are prominently appreciated as natural inhibitors of cancer-promoting metalloproteinases. However, clinical and recent functional studies indicate that some of them correlate with bad prognosis and contribute to the progression of cancer and metastasis, pointing towards mechanisms beyond inhibition of cancer-promoting proteases. Indeed, it is increasingly recognized that TIMPs are multi-functional proteins mediating a variety of cellular effects including direct cell signaling. Our aim was to provide comprehensive information towards a better appreciation and understanding of the biological heterogeneity and complexity of the TIMPs in cancer. Comparison of all four members revealed distinct cancer-associated expression patterns and distinct prognostic impact including a clear correlation of TIMP-1 with bad prognosis for almost all cancer types. For the first time, we present the interactomes of all TIMPs regarding overlapping and non-overlapping interaction partners. Interestingly, the overlap was maximal for metalloproteinases (e.g., matrix metalloproteinase 1, 2, 3, 9) and decreased for non-protease molecules, especially cell surface receptors (e.g., CD63, overlapping only for TIMP-1 and 4; IGF-1R unique for TIMP-2; VEGFR2 unique for TIMP-3). Finally, we attempted to identify and summarize experimental evidence for common and unique structural traits of the four TIMPs on the basis of amino acid sequence and protein folding, which account for functional disparities. Altogether, the four TIMPs have to be appreciated as molecules with commonalities, but, more importantly, functional disparities, which need to be investigated further in the future, since those determine their distinct roles in cancer and metastasis.
Collapse
Affiliation(s)
- Celina Eckfeld
- School of Medicine, Institutes of Molecular Immunology and Experimental Oncology, Technical University of Munich, Ismaninger Str. 22, Munich, 81675, Germany
| | - Daniel Häußler
- School of Medicine, Institutes of Molecular Immunology and Experimental Oncology, Technical University of Munich, Ismaninger Str. 22, Munich, 81675, Germany
| | - Benjamin Schoeps
- School of Medicine, Institutes of Molecular Immunology and Experimental Oncology, Technical University of Munich, Ismaninger Str. 22, Munich, 81675, Germany
| | - Chris D Hermann
- School of Medicine, Institutes of Molecular Immunology and Experimental Oncology, Technical University of Munich, Ismaninger Str. 22, Munich, 81675, Germany
| | - Achim Krüger
- School of Medicine, Institutes of Molecular Immunology and Experimental Oncology, Technical University of Munich, Ismaninger Str. 22, Munich, 81675, Germany.
| |
Collapse
|
23
|
Raeeszadeh-Sarmazdeh M, Greene KA, Sankaran B, Downey GP, Radisky DC, Radisky ES. Directed evolution of the metalloproteinase inhibitor TIMP-1 reveals that its N- and C-terminal domains cooperate in matrix metalloproteinase recognition. J Biol Chem 2019; 294:9476-9488. [PMID: 31040180 DOI: 10.1074/jbc.ra119.008321] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/23/2019] [Indexed: 01/04/2023] Open
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) are natural inhibitors of matrix metalloproteinases (MMPs), enzymes that contribute to cancer and many inflammatory and degenerative diseases. The TIMP N-terminal domain binds and inhibits an MMP catalytic domain, but the role of the TIMP C-terminal domain in MMP inhibition is poorly understood. Here, we employed yeast surface display for directed evolution of full-length human TIMP-1 to develop MMP-3-targeting ultrabinders. By simultaneously incorporating diversity into both domains, we identified TIMP-1 variants that were up to 10-fold improved in binding MMP-3 compared with WT TIMP-1, with inhibition constants (Ki ) in the low picomolar range. Analysis of individual and paired mutations from the selected TIMP-1 variants revealed cooperative effects between distant residues located on the N- and C-terminal TIMP domains, positioned on opposite sides of the interaction interface with MMP-3. Crystal structures of MMP-3 complexes with TIMP-1 variants revealed conformational changes in TIMP-1 near the cooperative mutation sites. Affinity was strengthened by cinching of a reciprocal "tyrosine clasp" formed between the N-terminal domain of TIMP-1 and proximal MMP-3 interface and by changes in secondary structure within the TIMP-1 C-terminal domain that stabilize interdomain interactions and improve complementarity to MMP-3. Our protein engineering and structural studies provide critical insight into the cooperative function of TIMP domains and the significance of peripheral TIMP epitopes in MMP recognition. Our findings suggest new strategies to engineer TIMP proteins for therapeutic applications, and our directed evolution approach may also enable exploration of functional domain interactions in other protein systems.
Collapse
Affiliation(s)
| | - Kerrie A Greene
- From the Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida 32224
| | - Banumathi Sankaran
- Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Gregory P Downey
- Departments of Medicine, Pediatrics, and Biomedical Research, National Jewish Health, Denver, Colorado 80206, and.,Departments of Medicine, Immunology, and Microbiology, University of Colorado, Aurora, Colorado 80045
| | - Derek C Radisky
- From the Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida 32224
| | - Evette S Radisky
- From the Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida 32224,
| |
Collapse
|
24
|
John J, Sharma A, Kukshal P, Bhatia T, Nimgaonkar VL, Deshpande SN, Thelma BK. Rare Variants in Tissue Inhibitor of Metalloproteinase 2 as a Risk Factor for Schizophrenia: Evidence From Familial and Cohort Analysis. Schizophr Bull 2019; 45:256-263. [PMID: 29385606 PMCID: PMC6293225 DOI: 10.1093/schbul/sbx196] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Candidate gene and genome-wide association study based common risk variant identification is being complemented by whole exome sequencing (WES)/whole genome sequencing based rare variant discovery in elucidation of genetic landscape of schizophrenia (SZ), a common neuropsychiatric disorder. WES findings of de novo mutations in case-parent trios have further implied genetic etiology, but do not explain the high genetic risk in general populations. Conversely, WES in multiplex families may be an insightful strategy for the identification of highly penetrant rare variants in SZ and possibly enhance our understanding of disease biology. In this study, we analyzed a 5-generation Indian family with multiple members affected with SZ by WES. We identified a rare heterozygous missense variant (NM_003255: c.506C>T; p.Pro169Leu; MAF = 0.0001) in Tissue Inhibitor of Metalloproteinase 2 (TIMP2, 17q25.3) segregating with all 6 affected individuals but not with unaffected members. Linkage analysis indicated a maximum logarithm of the odds score of 1.8, θ = 0 at this locus. The variant was predicted to be damaging by various in silico tools and also disrupt the structural integrity by molecular dynamics simulations. WES based screening of an independent SZ cohort (n = 370) identified 4 additional rare missense variants (p.Leu20Met, p.Ala26Ser, p.Lys48Arg and p. Ile217Leu) and a splice variant rs540397728 (NM_003255:c.232-5T>C), also predicted to be damaging, increasing the likelihood of contribution of this gene to SZ risk. Extensive biochemical and knockout mouse studies suggesting involvement of TIMP2 in neurodevelopmental and behavioral deficits, together with genetic evidence for TIMP2 conferring SZ risk from this study may have possible implications for new therapeutics.
Collapse
Affiliation(s)
- Jibin John
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - Aditya Sharma
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - Prachi Kukshal
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - Triptish Bhatia
- Department of Psychiatry, PGIMER-Dr. RML Hospital, New Delhi, India
| | - Vishwajit L Nimgaonkar
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh PA
| | | | - B K Thelma
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
25
|
Arkadash V, Radisky ES, Papo N. Combinatorial engineering of N-TIMP2 variants that selectively inhibit MMP9 and MMP14 function in the cell. Oncotarget 2018; 9:32036-32053. [PMID: 30174795 PMCID: PMC6112833 DOI: 10.18632/oncotarget.25885] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/21/2018] [Indexed: 12/21/2022] Open
Abstract
Developing selective inhibitors for proteolytic enzymes that share high sequence homology and structural similarity is important for achieving high target affinity and functional specificity. Here, we used a combination of yeast surface display and dual-color selective library screening to obtain selective inhibitors for each of the matrix metalloproteinases (MMPs) MMP14 and MMP9 by modifying the non-specific N-terminal domain of the tissue inhibitor of metalloproteinase-2 (N-TIMP2). We generated inhibitor variants with 30- to 1175-fold improved specificity to each of the proteases, respectively, relative to wild type N-TIMP2. These biochemical results accurately predicted the selectivity and specificity obtained in cell-based assays. In U87MG cells, the activation of MMP2 by MMP14 was inhibited by MMP14-selective blockers but not MMP9-specific inhibitors. Target specificity was also demonstrated in MCF-7 cells stably expressing either MMP14 or MMP9, with only the MMP14-specific inhibitors preventing the mobility of MMP14-expressing cells. Similarly, the mobility of MMP9-expressing cells was inhibited by the MMP9-specific inhibitors, yet was not altered by the MMP14-specific inhibitors. The strategy developed in this study for improving the specificity of an otherwise broad-spectrum inhibitor will likely enhance our understanding of the basis for target specificity of inhibitors to proteolytic enzymes, in general, and to MMPs, in particular. We, moreover, envision that this study could serve as a platform for the development of next-generation, target-specific therapeutic agents. Finally, our methodology can be extended to other classes of proteolytic enzymes and other important target proteins.
Collapse
Affiliation(s)
- Valeria Arkadash
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Evette S Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida, USA
| | - Niv Papo
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
26
|
Sánchez-Pozo J, Baker-Williams AJ, Woodford MR, Bullard R, Wei B, Mollapour M, Stetler-Stevenson WG, Bratslavsky G, Bourboulia D. Extracellular Phosphorylation of TIMP-2 by Secreted c-Src Tyrosine Kinase Controls MMP-2 Activity. iScience 2018; 1:87-96. [PMID: 30227959 PMCID: PMC6135941 DOI: 10.1016/j.isci.2018.02.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/29/2018] [Accepted: 02/08/2018] [Indexed: 12/31/2022] Open
Abstract
The tissue inhibitor of metalloproteinases 2 (TIMP-2) is a specific endogenous inhibitor of matrix metalloproteinase 2 (MMP-2), which is a key enzyme that degrades the extracellular matrix and promotes tumor cell invasion. Although the TIMP-2:MMP-2 complex controls proteolysis, the signaling mechanism by which the two proteins associate in the extracellular space remains unidentified. Here we report that TIMP-2 is phosphorylated outside the cell by secreted c-Src tyrosine kinase. As a consequence, phosphorylation at Y90 significantly enhances TIMP-2 potency as an MMP-2 inhibitor and weakens the catalytic action of the active enzyme. TIMP-2 phosphorylation also appears to be essential for its interaction with the latent enzyme proMMP-2 in vivo. Absence of the kinase or non-phosphorylatable Y90 abolishes TIMP-2 binding to the latent enzyme, ultimately hampering proMMP-2 activation. Together, TIMP-2 phosphorylation by secreted c-Src represents a critical extracellular regulatory mechanism that controls the proteolytic function of MMP-2. c-Src tyrosine kinase phosphorylates TIMP-2 Secreted c-Src phosphorylates TIMP-2 extracellularly TIMP-2 Y90 phosphorylation promotes extracellular interaction with proMMP-2 Tyrosine phosphorylation of TIMP-2 regulates proMMP-2 processing and MMP-2 activity
Collapse
Affiliation(s)
- Javier Sánchez-Pozo
- Department of Urology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Alexander J Baker-Williams
- Department of Urology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Renee Bullard
- Department of Urology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Beiyang Wei
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - William G Stetler-Stevenson
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Gennady Bratslavsky
- Department of Urology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA.
| |
Collapse
|
27
|
Shirian J, Arkadash V, Cohen I, Sapir T, Radisky ES, Papo N, Shifman JM. Converting a broad matrix metalloproteinase family inhibitor into a specific inhibitor of MMP-9 and MMP-14. FEBS Lett 2018; 592:1122-1134. [PMID: 29473954 DOI: 10.1002/1873-3468.13016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 02/11/2018] [Accepted: 02/19/2018] [Indexed: 12/22/2022]
Abstract
MMP-14 and MMP-9 are two well-established cancer targets for which no specific clinically relevant inhibitor is available. Using a powerful combination of computational design and yeast surface display technology, we engineered such an inhibitor starting from a nonspecific MMP inhibitor, N-TIMP2. The engineered purified N-TIMP2 variants showed enhanced specificity toward MMP-14 and MMP-9 relative to a panel of off-target MMPs. MMP-specific N-TIMP2 sequence signatures were obtained that could be understood from the structural perspective of MMP/N-TIMP2 interactions. Our MMP-9 inhibitor exhibited 1000-fold preference for MMP-9 vs. MMP-14, which is likely to translate into significant differences under physiological conditions. Our results provide new insights regarding evolution of promiscuous proteins and optimization strategies for design of inhibitors with single-target specificities.
Collapse
Affiliation(s)
- Jason Shirian
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | - Valeria Arkadash
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Itay Cohen
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tamila Sapir
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | - Evette S Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, FL, USA
| | - Niv Papo
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Julia M Shifman
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| |
Collapse
|
28
|
Zhang W, Zhong B, Zhang C, Wang Y, Guo S, Luo C, Zhan Y. Structural modeling of osteoarthritis ADAMTS4 complex with its cognate inhibitory protein TIMP3 and rational derivation of cyclic peptide inhibitors from the complex interface to target ADAMTS4. Bioorg Chem 2017; 76:13-22. [PMID: 29102725 DOI: 10.1016/j.bioorg.2017.10.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 10/19/2017] [Accepted: 10/20/2017] [Indexed: 10/18/2022]
Abstract
The ADAMTS4 (a disintegrin and metalloproteinase with thrombospondin motifs 4) enzyme is a matrix-associated zinc metalloendopeptidase that plays an essential role in the degradation of cartilage aggrecan in arthritic diseases and has been recognized as one of the most primary targets for therapeutic intervention in osteoarthritis (OA). Here, we reported computational modeling of the atomic-level complex structure of ADAMTS4 with its cognate inhibitory protein TIMP3 based on high-resolution crystal template. By systematically examining the modeled complex structure we successfully identified a short inhibitory loop (62EASESLC68) in TIMP3 N-terminal inhibitory domain (NID) that directly participates in blocking the enzyme's active site, which, and its extended versions, were then broken from the full-length protein to serve as the peptide inhibitor candidates of ADAMTS4. Atomistic molecular dynamics simulation, binding energetic analysis, and fluorescence-based assay revealed that the TIMP3-derived linear peptides can only bind weakly to the enzyme (Kd = 74 ± 8 μM), which would incur a considerable entropy penalty due to the high conformational flexibility and intrinsic disorder of these linear peptides. In this respect, we proposed a cyclization strategy to improve enzyme-peptide binding affinity by, instead of traditionally maximizing enthalpy contribution, minimizing entropy cost of the binding, where a disulfide bond was added across the two terminal residues of linear peptides, resulting in a number of TIMP3-derived cyclic peptides. Our studies confirmed that the cyclization, as might be expected, can promote peptide binding capability against ADAMTS4 substantially, with affinity increase by 3-fold, 9-fold and 7-fold for cyclic peptides , and , respectively.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Biao Zhong
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Chi Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yukai Wang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Shang Guo
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Congfeng Luo
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yulin Zhan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| |
Collapse
|
29
|
Radisky ES, Raeeszadeh-Sarmazdeh M, Radisky DC. Therapeutic Potential of Matrix Metalloproteinase Inhibition in Breast Cancer. J Cell Biochem 2017; 118:3531-3548. [PMID: 28585723 PMCID: PMC5621753 DOI: 10.1002/jcb.26185] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 12/14/2022]
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc endopeptidases that cleave nearly all components of the extracellular matrix as well as many other soluble and cell-associated proteins. MMPs have been implicated in normal physiological processes, including development, and in the acquisition and progression of the malignant phenotype. Disappointing results from a series of clinical trials testing small molecule, broad spectrum MMP inhibitors as cancer therapeutics led to a re-evaluation of how MMPs function in the tumor microenvironment, and ongoing research continues to reveal that these proteins play complex roles in cancer development and progression. It is now clear that effective targeting of MMPs for therapeutic benefit will require selective inhibition of specific MMPs. Here, we provide an overview of the MMP family and its biological regulators, the tissue inhibitors of metalloproteinases (TIMPs). We then summarize recent research from model systems that elucidate how specific MMPs drive the malignant phenotype of breast cancer cells, including acquisition of cancer stem cell features and induction of the epithelial-mesenchymal transition, and we also outline clinical studies that implicate specific MMPs in breast cancer outcomes. We conclude by discussing ongoing strategies for development of inhibitors with therapeutic potential that are capable of selectively targeting the MMPs most responsible for tumor promotion, with special consideration of the potential of biologics including antibodies and engineered proteins based on the TIMP scaffold. J. Cell. Biochem. 118: 3531-3548, 2017. © 2017 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Evette S Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville 32224, Florida
| | | | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville 32224, Florida
| |
Collapse
|
30
|
Liao TT, Deng QY, Li SS, Li X, Ji L, Wang Q, Leng YX, Huang N. Evaluation of the Size-Dependent Cytotoxicity of DLC (Diamondlike Carbon) Wear Debris in Arthroplasty Applications. ACS Biomater Sci Eng 2017; 3:530-539. [PMID: 33429620 DOI: 10.1021/acsbiomaterials.6b00618] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Patients with DLC (diamond like carbon)-coated artificial joints may be exposed to a wide size range of DLC wear debris (DW). In this study, the cytotoxicity of DW of different size ranges (0-0.22, 0.22-0.65, 0.65-1.0, and 1.0-5.0 μm) was evaluated. The microstructure and physical characteristics of DW were investigated by Raman spectroscopy, transmission electron microscopy (TEM), scanning electron microscope (SEM), and dynamic light scattering (DLS). Macrophages, osteoblasts, and fibroblasts were incubated with DW of different size ranges respectively followed by cytotoxicity evaluations of inflammatory cytokines, alkaline phosphatase (ALP) assays, and related signal protein expression analysis. The results showed that, except for the size range of 0-0.22 μm, DW cytotoxicity showed a size-dependent (0.22-5.0 μm) decrease with increasing size. Within the range of 0.22-5.0 μm, DW of larger size resulted in lessened inflammatory response and enhanced osteoblastogenesis and fibrogenesis, with increased viability of cells (macrophages, osteoblasts, and fibroblasts), better morphology, less release of pro-inflammatory factors and more release of anti-inflammatory factors. The results demonstrated that DW sizes below 0.22 μm had less negative effects on cell adhesion and growth because of the BSA (bovine serum albumin) encapsulation effect. These findings provide valuable knowledge about the comprehensive mechanism of promotion of inflammatory response and inhibition of osteoblastogenesis and fibrogenesis induced by DW. In conclusion, an effective system of biocompatibility evaluation for different sizes of DW was derived.
Collapse
Affiliation(s)
- T T Liao
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Q Y Deng
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - S S Li
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - X Li
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - L Ji
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Q Wang
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Y X Leng
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - N Huang
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| |
Collapse
|
31
|
Arkadash V, Yosef G, Shirian J, Cohen I, Horev Y, Grossman M, Sagi I, Radisky ES, Shifman JM, Papo N. Development of High Affinity and High Specificity Inhibitors of Matrix Metalloproteinase 14 through Computational Design and Directed Evolution. J Biol Chem 2017; 292:3481-3495. [PMID: 28087697 DOI: 10.1074/jbc.m116.756718] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/12/2017] [Indexed: 12/13/2022] Open
Abstract
Degradation of the extracellular matrices in the human body is controlled by matrix metalloproteinases (MMPs), a family of more than 20 homologous enzymes. Imbalance in MMP activity can result in many diseases, such as arthritis, cardiovascular diseases, neurological disorders, fibrosis, and cancers. Thus, MMPs present attractive targets for drug design and have been a focus for inhibitor design for as long as 3 decades. Yet, to date, all MMP inhibitors have failed in clinical trials because of their broad activity against numerous MMP family members and the serious side effects of the proposed treatment. In this study, we integrated a computational method and a yeast surface display technique to obtain highly specific inhibitors of MMP-14 by modifying the natural non-specific broad MMP inhibitor protein N-TIMP2 to interact optimally with MMP-14. We identified an N-TIMP2 mutant, with five mutations in its interface, that has an MMP-14 inhibition constant (Ki ) of 0.9 pm, the strongest MMP-14 inhibitor reported so far. Compared with wild-type N-TIMP2, this variant displays ∼900-fold improved affinity toward MMP-14 and up to 16,000-fold greater specificity toward MMP-14 relative to other MMPs. In an in vitro and cell-based model of MMP-dependent breast cancer cellular invasiveness, this N-TIMP2 mutant acted as a functional inhibitor. Thus, our study demonstrates the enormous potential of a combined computational/directed evolution approach to protein engineering. Furthermore, it offers fundamental clues into the molecular basis of MMP regulation by N-TIMP2 and identifies a promising MMP-14 inhibitor as a starting point for the development of protein-based anticancer therapeutics.
Collapse
Affiliation(s)
- Valeria Arkadash
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Gal Yosef
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Jason Shirian
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Itay Cohen
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Yuval Horev
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Moran Grossman
- Department of Biological Regulation, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Evette S Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224
| | - Julia M Shifman
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel.
| | - Niv Papo
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel.
| |
Collapse
|
32
|
Zou H, Wu Y, Brew K. Thermodynamic Basis of Selectivity in the Interactions of Tissue Inhibitors of Metalloproteinases N-domains with Matrix Metalloproteinases-1, -3, and -14. J Biol Chem 2016; 291:11348-58. [PMID: 27033700 DOI: 10.1074/jbc.m116.720250] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Indexed: 01/18/2023] Open
Abstract
The four tissue inhibitors of metalloproteinases (TIMPs) are potent inhibitors of the many matrixins (MMPs), except that TIMP1 weakly inhibits some MMPs, including MMP14. The broad-spectrum inhibition of MMPs by TIMPs and their N-domains (NTIMPs) is consistent with the previous isothermal titration calorimetric finding that their interactions are entropy-driven but differ in contributions from solvent and conformational entropy (ΔSsolv, ΔSconf), estimated using heat capacity changes (ΔCp). Selective engineered NTIMPs have potential applications for treating MMP-related diseases, including cancer and cardiomyopathy. Here we report isothermal titration calorimetric studies of the effects of selectivity-modifying mutations in NTIMP1 and NTIMP2 on the thermodynamics of their interactions with MMP1, MMP3, and MMP14. The weak inhibition of MMP14 by NTIMP1 reflects a large conformational entropy penalty for binding. The T98L mutation, peripheral to the NTIMP1 reactive site, enhances binding by increasing ΔSsolv but also reduces ΔSconf However, the same mutation increases NTIMP1 binding to MMP3 in an interaction that has an unusual positive ΔCp This indicates a decrease in solvent entropy compensated by increased conformational entropy, possibly reflecting interactions involving alternative conformers. The NTIMP2 mutant, S2D/S4A is a selective MMP1 inhibitor through electrostatic effects of a unique MMP-1 arginine. Asp-2 increases reactive site polarity, reducing ΔCp, but increases conformational entropy to maintain strong binding to MMP1. There is a strong negative correlation between ΔSsolv and ΔSconf for all characterized interactions, but the data for each MMP have characteristic ranges, reflecting intrinsic differences in the structures and dynamics of their free and inhibitor-bound forms.
Collapse
Affiliation(s)
- Haiyin Zou
- From the Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida 33431
| | - Ying Wu
- From the Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida 33431
| | - Keith Brew
- From the Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida 33431
| |
Collapse
|
33
|
Tumor cell expression of MMP3 as a prognostic factor for poor survival in pancreatic, pulmonary, and mammary carcinoma. Genes Cancer 2016; 6:480-9. [PMID: 26807201 PMCID: PMC4701227 DOI: 10.18632/genesandcancer.90] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Breast, lung, and pancreatic cancers collectively represent one third of all diagnosed tumors and are responsible for almost 40% of overall cancer mortality. Despite improvements in current treatments, efforts to develop more specific therapeutic options are warranted. Here we identify matrix metalloproteinase 3 (MMP3) as a potential target within all three of these tumor types. MMP3 has previously been shown to induce expression of Rac1b, a tumorigenic splice isoform of Rac1. In this study we find that MMP3 and Rac1b proteins are both strongly expressed by the tumor cells of all three tumor types and that expression of MMP3 protein is prognostic of poor survival in pancreatic cancer patients. We also find that MMP3 gene expression can serve as a prognostic marker for patient survival in breast and lung cancer. These results suggest an oncogenic MMP3-Rac1b signaling axis as a driver of tumor progression in three common poor prognosis tumor types, further suggesting that new therapies to target these pathways could have substantial therapeutic benefit.
Collapse
|
34
|
Duan JX, Rapti M, Tsigkou A, Lee MH. Expanding the Activity of Tissue Inhibitors of Metalloproteinase (TIMP)-1 against Surface-Anchored Metalloproteinases by the Replacement of Its C-Terminal Domain: Implications for Anti-Cancer Effects. PLoS One 2015; 10:e0136384. [PMID: 26308720 PMCID: PMC4550347 DOI: 10.1371/journal.pone.0136384] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 08/04/2015] [Indexed: 01/02/2023] Open
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) are the endogenous inhibitors of the matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinases (ADAMs). TIMP molecules are made up of two domains: an N-terminal domain that associates with the catalytic cleft of the metalloproteinases (MP) and a smaller C-terminal domain whose role in MP association is still poorly understood. This work is aimed at investigating the role of the C-terminal domain in MP selectivity. In this study, we replaced the C-terminal domain of TIMP-1 with those of TIMP-2, -3 and -4 to create a series of "T1:TX" chimeras. The affinity of the chimeras against ADAM10, ADAM17, MMP14 and MMP19 was investigated. We can show that replacement of the C-terminal domain by those of other TIMPs dramatically increased the affinity of TIMP-1 for some MPs. Furthermore, the chimeras were able to suppress TNF-α and HB-EGF shedding in cell-based setting. Unlike TIMP-1, T1:TX chimeras had no growth-promoting activity. Instead, the chimeras were able to inhibit cell migration and development in several cancer cell lines. Our findings have broadened the prospect of TIMPs as cancer therapeutics. The approach could form the basis of a new strategy for future TIMP engineering.
Collapse
Affiliation(s)
- Jing Xian Duan
- From the Department of Biological Sciences, Xian Jiaotong Liverpool University, 111 Ren Ai Road, Suzhou, China
| | - Magdalini Rapti
- Department of Oncology, Cambridge University, Cancer Research Institute, Cambridge, United Kingdom
| | - Anastasia Tsigkou
- From the Department of Biological Sciences, Xian Jiaotong Liverpool University, 111 Ren Ai Road, Suzhou, China
| | - Meng Huee Lee
- From the Department of Biological Sciences, Xian Jiaotong Liverpool University, 111 Ren Ai Road, Suzhou, China
- * E-mail:
| |
Collapse
|
35
|
Radisky ES, Radisky DC. Matrix metalloproteinases as breast cancer drivers and therapeutic targets. Front Biosci (Landmark Ed) 2015; 20:1144-63. [PMID: 25961550 DOI: 10.2741/4364] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Members of the matrix metalloproteinase (MMP) family have been identified as poor prognosis markers for breast cancer patients and as drivers of many facets of the tumor phenotype in experimental models. Early enthusiasm for MMPs as therapeutic targets was tempered following disappointing clinical trials that utilized broad spectrum, small molecule catalytic site inhibitors. However, subsequent research has continued to define key roles for MMPs as breast cancer promoters, to elucidate the complex roles that that these proteins play in breast cancer development and progression, and to identify how these roles are linked to specific and unique biochemical features of individual members of the MMP family. Here, we provide an overview of the structural features of the MMPs, then discuss clinical studies identifying which MMP family members are linked with breast cancer development and new experimental studies that reveal how these specific MMPs may play unique roles in the breast cancer microenvironment. We conclude with a discussion of the most promising avenues for development of therapeutic agents capable of targeting the tumor-promoting properties of MMPs.
Collapse
Affiliation(s)
- Evette S Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224,
| | | |
Collapse
|
36
|
Mehner C, Hockla A, Miller E, Ran S, Radisky DC, Radisky ES. Tumor cell-produced matrix metalloproteinase 9 (MMP-9) drives malignant progression and metastasis of basal-like triple negative breast cancer. Oncotarget 2015; 5:2736-49. [PMID: 24811362 PMCID: PMC4058041 DOI: 10.18632/oncotarget.1932] [Citation(s) in RCA: 263] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Matrix metalloproteinases (MMPs) have been implicated in diverse roles in breast cancer development and progression. While many of the different MMPs expressed in breast cancer are produced by stromal cells MMP-9 is produced mainly by the tumor cells themselves. To date, the functional role of tumor cell-produced MMP-9 has remained unclear. Here, we show that human breast cancer cell-produced MMP-9 is specifically required for invasion in cell culture and for pulmonary metastasis in a mouse orthotopic model of basal-like breast cancer. We also find that tumor cell-produced MMP-9 promotes tumor vascularization with only modest impact on primary tumor growth, and that silencing of MMP-9 expression in tumor cells leads to an altered transcriptional program consistent with reversion to a less malignant phenotype. MMP-9 is most highly expressed in human basal-like and triple negative tumors, where our data suggest that it contributes to metastatic progression. Our results suggest that MMP9 may offer a target for anti-metastatic therapies for basal-like triple negative breast cancers, a poor prognosis subtype with few available molecularly targeted therapeutic options.
Collapse
|
37
|
López-Pelegrín M, Ksiazek M, Karim AY, Guevara T, Arolas JL, Potempa J, Gomis-Rüth FX. A novel mechanism of latency in matrix metalloproteinases. J Biol Chem 2015; 290:4728-4740. [PMID: 25555916 DOI: 10.1074/jbc.m114.605956] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The matrix metalloproteinases (MMPs) are a family of secreted soluble or membrane-anchored multimodular peptidases regularly found in several paralogous copies in animals and plants, where they have multiple functions. The minimal consensus domain architecture comprises a signal peptide, a 60-90-residue globular prodomain with a conserved sequence motif including a cysteine engaged in "cysteine-switch" or "Velcro" mediated latency, and a catalytic domain. Karilysin, from the human periodontopathogen Tannerella forsythia, is the only bacterial MMP to have been characterized biochemically to date. It shares with eukaryotic forms the catalytic domain but none of the flanking domains. Instead of the consensus MMP prodomain, it features a 14-residue propeptide, the shortest reported for a metallopeptidase, which lacks cysteines. Here we determined the structure of a prokarilysin fragment encompassing the propeptide and the catalytic domain, and found that the former runs across the cleft in the opposite direction to a bound substrate and inhibits the latter through an "aspartate-switch" mechanism. This finding is reminiscent of latency maintenance in the otherwise unrelated astacin and fragilysin metallopeptidase families. In addition, in vivo and biochemical assays showed that the propeptide contributes to protein folding and stability. Our analysis of prokarilysin reveals a novel mechanism of latency and activation in MMPs. Finally, our findings support the view that the karilysin catalytic domain was co-opted by competent bacteria through horizontal gene transfer from a eukaryotic source, and later evolved in a specific bacterial environment.
Collapse
Affiliation(s)
- Mar López-Pelegrín
- From the Proteolysis Lab, Department of Structural Biology, Molecular Biology Institute of Barcelona, CSIC, Barcelona Science Park, c/Baldiri Reixac, 15-21, 08028 Barcelona, Catalonia, Spain
| | - Miroslaw Ksiazek
- the Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Ul. Gronostajowa 7, 30-387 Kraków, Poland, and
| | - Abdulkarim Y Karim
- the Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Ul. Gronostajowa 7, 30-387 Kraków, Poland, and
| | - Tibisay Guevara
- From the Proteolysis Lab, Department of Structural Biology, Molecular Biology Institute of Barcelona, CSIC, Barcelona Science Park, c/Baldiri Reixac, 15-21, 08028 Barcelona, Catalonia, Spain
| | - Joan L Arolas
- From the Proteolysis Lab, Department of Structural Biology, Molecular Biology Institute of Barcelona, CSIC, Barcelona Science Park, c/Baldiri Reixac, 15-21, 08028 Barcelona, Catalonia, Spain,.
| | - Jan Potempa
- the Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Ul. Gronostajowa 7, 30-387 Kraków, Poland, and; the Oral Immunology and Infectious Disease, University of Louisville School of Dentistry, Louisville, Kentucky 40202.
| | - F Xavier Gomis-Rüth
- From the Proteolysis Lab, Department of Structural Biology, Molecular Biology Institute of Barcelona, CSIC, Barcelona Science Park, c/Baldiri Reixac, 15-21, 08028 Barcelona, Catalonia, Spain,.
| |
Collapse
|
38
|
Sharabi O, Shirian J, Grossman M, Lebendiker M, Sagi I, Shifman J. Affinity- and specificity-enhancing mutations are frequent in multispecific interactions between TIMP2 and MMPs. PLoS One 2014; 9:e93712. [PMID: 24710006 PMCID: PMC3977929 DOI: 10.1371/journal.pone.0093712] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 03/05/2014] [Indexed: 12/04/2022] Open
Abstract
Multispecific proteins play a major role in controlling various functions such as signaling, regulation of transcription/translation, and immune response. Hence, a thorough understanding of the atomic-level principles governing multispecific interactions is important not only for the advancement of basic science but also for applied research such as drug design. Here, we study evolution of an exemplary multispecific protein, a Tissue Inhibitor of Matrix Metalloproteinases 2 (TIMP2) that binds with comparable affinities to more than twenty-six members of the Matrix Metalloproteinase (MMP) and the related ADAMs families. We postulate that due to its multispecific nature, TIMP2 is not optimized to bind to any individual MMP type, but rather embodies a compromise required for interactions with all MMPs. To explore this hypothesis, we perform computational saturation mutagenesis of the TIMP2 binding interface and predict changes in free energy of binding to eight MMP targets. Computational results reveal the non-optimality of the TIMP2 binding interface for all studied proteins, identifying many affinity-enhancing mutations at multiple positions. Several TIMP2 point mutants predicted to enhance binding affinity and/or binding specificity towards MMP14 were selected for experimental verification. Experimental results show high abundance of affinity-enhancing mutations in TIMP2, with some point mutations producing more than ten-fold improvement in affinity to MMP14. Our computational and experimental results collaboratively demonstrate that the TIMP2 sequence lies far from the fitness maximum when interacting with its target enzymes. This non-optimality of the binding interface and high potential for improvement might characterize all proteins evolved for binding to multiple targets.
Collapse
Affiliation(s)
- Oz Sharabi
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jason Shirian
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Moran Grossman
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Mario Lebendiker
- Wolfson Center for Structural Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Julia Shifman
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- * E-mail:
| |
Collapse
|