1
|
Deng D, Yang Z, Yang Y, Wan W, Liu W, Xiong X. Metagenomic insights into nitrogen-cycling microbial communities and their relationships with nitrogen removal potential in the Yangtze River. WATER RESEARCH 2024; 265:122229. [PMID: 39154395 DOI: 10.1016/j.watres.2024.122229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
Nitrogen (N) pollution is a major threat to river ecosystems worldwide. Elucidating the community structure of N-cycling microorganisms in rivers is essential to understanding how ecosystem processes and functions will respond to increasing N inputs. However, previous studies generally focus on limited functional genes through amplicon sequencing or quantitative PCR techniques and cannot cover all N-cycling microorganisms. Here, metagenomic sequencing and genome binning were used to determine N-cycling genes in water, channel sediments, and riparian soils of the Yangtze River, which has been heavily polluted by N. Additionally, the denitrification and anaerobic ammonium oxidation (anammox) rates that reflect N removal potential were measured using 15N isotope pairing technique. Results showed that functional genes involved in organic N metabolism (i.e., organic degradation and synthesis) and nitrate reduction pathways (i.e., dissimilatory and assimilatory nitrate reduction to ammonium and denitrification) were more abundant and diverse than other N-cycling genes. A total of 121 metagenome-assembled genomes (MAGs) were identified to be involved in N-cycling processes, and the key MAGs were mainly taxonomically classified as Alphaproteobacteria and Gammaproteobacteria. The abundance and diversity of most N-cycling genes were higher in soils and sediments than in water, as well as higher in downstream and midstream than in upstream sites. These spatial variations were explained not only by local environment and vegetation but also by geographical and climatic factors. N removal process (i.e., denitrification and anammox) rates were significantly related to the abundance or diversity of several N-cycling genes, and climate and edaphic factors could regulate denitrification and anammox rates directly and indirectly through their effects on functional genes. Overall, these results provide a new avenue for further understanding the biogeographic patterns and environmental drivers of N-cycling microorganisms in rivers from the metagenomic perspective.
Collapse
Affiliation(s)
- Danli Deng
- Post Doctoral Research Station of Hydraulic Engineering of Three Gorges University, Hubei Field Observation and Scientific Research Stations for Water Ecosystem in Three Gorges Reservoir, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Zhengjian Yang
- Post Doctoral Research Station of Hydraulic Engineering of Three Gorges University, Hubei Field Observation and Scientific Research Stations for Water Ecosystem in Three Gorges Reservoir, China Three Gorges University, Yichang 443002, China
| | - Yuyi Yang
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, The Chinese Academy of Sciences & Hubei Province, Wuhan 430074, China
| | - Wenjie Wan
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, The Chinese Academy of Sciences & Hubei Province, Wuhan 430074, China
| | - Wenzhi Liu
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, The Chinese Academy of Sciences & Hubei Province, Wuhan 430074, China.
| | - Xiang Xiong
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, The Chinese Academy of Sciences & Hubei Province, Wuhan 430074, China.
| |
Collapse
|
2
|
Du J, Ma W, Li G, Chang W, Chun L. Soil nitrogen-related functional genes undergo abundance changes during vegetation degradation in a Qinghai-Tibet Plateau wet meadow. Appl Environ Microbiol 2024; 90:e0081324. [PMID: 39302130 PMCID: PMC11497797 DOI: 10.1128/aem.00813-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024] Open
Abstract
Climate change and anthropogenic activities have significantly contributed to the degradation of wet meadows on the Qinghai-Tibet Plateau (QTP). Soil nitrogen (N) availability is a crucial determinant of the productivity of wet meadow vegetation. Furthermore, soil microbial nitrogen functional genes (NFGs) are critical in the transformation of soil N. Nevertheless, the dynamics of NFGs in response to vegetation degradation, as well as the underlying drivers, remain poorly understood. In this study, wet meadows at varying levels of vegetation degradation on the QTP, categorized as non-degraded (ND), slightly degraded (SD), moderately degraded (MD), and heavily degraded (HD), were examined. Soil samples from depths of 0 to 10 cm and 10 to 20 cm were collected during different growth cycles (June 2020, August 2020, and May 2021). The analysis focused on NFGs involved in organic nitrogen fixation (nifH), archaeal and bacterial ammonia oxidation (amoA-AOA and amoA-AOB, respectively), and nitrite reduction (nirK), utilizing real-time fluorescence quantitative PCR. Our findings indicate a significant decline in the abundance of NFGs with intensified vegetation degradation, exhibiting notable spatial and temporal fluctuations. Specifically, the relative NFGs followed the pattern: nirK > amoA-AOA > amoA-AOB > nifH. Redundancy analysis revealed that vegetation cover was the primary regulator of NFGs abundance, accounting for 56.1%-57% of the variation. Additionally, soil total nitrogen, pH, and total phosphorus content were responsible for 38.5%, 28.2%, and 7% of the variability in NFGs, respectively. The (amoA-AOA + amoA-AOB + nirK) ratios associated with effective N transformation indicated that the vegetation degradation process moderately increased the nitrification potential. IMPORTANCE Our research investigates how the degradation of meadows affects the tiny organisms in soil that help plants use nitrogen, which is essential for their growth. In the Qinghai-Tibet Plateau, a region known for its unique ecosystems, we found that as meadows deteriorate-due to climate change and human activities-the number of these beneficial organisms significantly decreases. This decline could reduce soil fertility, impacting plant life and the overall health of the ecosystem. Understanding these changes helps us grasp how environmental pressures influence soil and plant health. Such knowledge is crucial for developing strategies to preserve these vulnerable ecosystems and ensure they continue to sustain biodiversity and provide resources for local communities.
Collapse
Affiliation(s)
- Jianan Du
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Weiwei Ma
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Guang Li
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Wenhua Chang
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Longyong Chun
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
3
|
Wang Y, Zhong W, Zhang X, Cao M, Ni Z, Zhang M, Li J, Duan Y, Wu L. Copper pyrazole addition regulates soil mineral nitrogen turnover by mediating microbial traits. Front Microbiol 2024; 15:1433816. [PMID: 39411444 PMCID: PMC11473427 DOI: 10.3389/fmicb.2024.1433816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
The huge amount of urea applied has necessitated best-developed practices to slow down the release of nitrogen (N) fertilizer while minimizing nitrate loss. However, the impact of nitrification inhibitors on mineral-N turnover and the associated microbial mechanisms at different stages remains unknown. A 60-day incubation experiment was conducted with four treatments: no fertilizer (CK), urea (U), urea with copper pyrazole (UC), and urea coated with copper pyrazole (SUC), to evaluate the changes about soil ammonia N (N H 4 + -N) and nitrate N ( NO 3 - -N) levels as well as in soil microbial community throughout the whole incubation period. The results showed that copper pyrazole exhibited significantly higher inhibition rates on urease compared to other metal-pyrazole coordination compounds. The soilN H 4 + -N content peaked on the 10th day and was significantly greater in UC compared to U, while the NO 3 - -N content was significantly greater in U compared to UC on the 60th day. Copper pyrazole mainly decreased the expression of nitrifying (AOB-amoA) and denitrifying (nirK) genes, impacting the soil microbial community. Co-occurrence network suggested that Mycobacterium and Cronobacter sakazakii-driven Cluster 4 community potentially affected the nitrification process in the initial phase, convertingN H 4 + -N to NO 3 - -N. Fusarium-driven Cluster 3 community likely facilitated the denitrification of NO 3 - -N and caused N loss to the atmosphere in the late stage. The application of copper pyrazole may influence the process of nitrification and denitrification by regulating soil microbial traits (module community and functional genes). Our research indicates that the addition of copper pyrazole alters the community function driven by keystone taxa, altering mineral-N turnover and supporting the use of nitrification inhibitors in sustainable agriculture.
Collapse
Affiliation(s)
- Yuming Wang
- The Centre for Ion Beam Bioengineering Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Science Island Branch, Graduate School of USTC, Hefei, China
- Zhongke Taihe Experimental Station, Taihe, China
| | - Wenling Zhong
- The Centre for Ion Beam Bioengineering Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Science Island Branch, Graduate School of USTC, Hefei, China
- Zhongke Taihe Experimental Station, Taihe, China
| | - Xiwen Zhang
- The Centre for Ion Beam Bioengineering Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Science Island Branch, Graduate School of USTC, Hefei, China
- Zhongke Taihe Experimental Station, Taihe, China
| | - Minghui Cao
- The Centre for Ion Beam Bioengineering Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Zhongke Taihe Experimental Station, Taihe, China
| | - Zheng Ni
- The Centre for Ion Beam Bioengineering Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Science Island Branch, Graduate School of USTC, Hefei, China
- Zhongke Taihe Experimental Station, Taihe, China
| | - Mengxia Zhang
- The Centre for Ion Beam Bioengineering Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Zhongke Taihe Experimental Station, Taihe, China
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Jiangye Li
- Institute of Agricultural Resources and Environment, Academy of Agricultural Sciences, Nanjing, China
| | - Yan Duan
- The Centre for Ion Beam Bioengineering Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Zhongke Taihe Experimental Station, Taihe, China
| | - Lifang Wu
- The Centre for Ion Beam Bioengineering Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Zhongke Taihe Experimental Station, Taihe, China
| |
Collapse
|
4
|
Bekchanova M, Campion L, Bruns S, Kuppens T, Lehmann J, Jozefczak M, Cuypers A, Malina R. Biochar improves the nutrient cycle in sandy-textured soils and increases crop yield: a systematic review. ENVIRONMENTAL EVIDENCE 2024; 13:3. [PMID: 39294832 PMCID: PMC11376106 DOI: 10.1186/s13750-024-00326-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/13/2024] [Indexed: 09/21/2024]
Abstract
BACKGROUND Biochar is a relatively new development in sustainable agricultural management that can be applied to ameliorate degraded and less fertile soils, especially sandy-textured ones, to improve their productivity with respect to crop production through improved nutrient availability. However, as the literature has shown, the response of sandy-textured soils to biochar varies in terms of effect size and direction. Therefore, the present study systematically reviewed the available evidence to synthesize the impact of biochar amendments on aspects of the nutrient cycle of sandy-textured soils. METHODS Both peer-reviewed and gray literature were searched in English in bibliographic databases, organizational web pages, and Internet search engines. Articles underwent a two-stage screening (title and abstract, and full-text) based on predefined criteria, with consistency checks. Validity assessments were conducted, utilizing specifically designed tools for study validity. Data extraction involved categorizing the various properties of the nutrient cycle into nine main Soil and Plant Properties (SPPs), each of which was studied independently. Nine meta-analyses were performed using a total of 1609 observations derived from 92 articles. Comparing meta-averages with and without correction for publication bias suggests that publication bias plays a minor role in the literature, while some indication for publication bias is found when accounting for heterogeneity by means of meta-regressions. REVIEW FINDINGS According to the results, soil total and available nitrogen [N], phosphorous [P] and potassium [K], plant nutrient level, and potential cation exchange capacity (CEC) increased by 36% (CI [23%, 50%]), 34% (CI [15%, 57%]), 15% (CI [1%, 31%]), and 18% (CI [3%, 36%), respectively, and N2O emission and mineral nutrient leaching decreased by 29% (CI [- 48%, - 3%]) and 38% (CI [- 56%, - 13%). On average, however, biochar had no effect on soil mineral nitrogen and nutrient use efficiency. Publication bias was identified in the response of effective CEC. After corrections for publication bias, the response shifted from 36% to a negative value of - 34% (CI [- 50%, - 14%]). Meta-regression found that the effect modifiers experimental continent, biochar application rate, and soil pH, explain result heterogeneity. Stronger responses came from the continent of South America, higher application rates, and higher pH soils. Overall, biochar is found useful for many SPPs of nutrient cycling of sandy-textured soils, thereby contributing to increased crop yields in such soils.
Collapse
Affiliation(s)
- Madina Bekchanova
- Centre for Environmental Sciences, Research Group Environmental Economics, UHasselt-Hasselt University, Agoralaan Gebouw D, 3590, Diepenbeek, Belgium.
- Centre for Environmental Sciences, Research Group Environmental Biology, UHasselt-Hasselt University, Agoralaan Gebouw D, 3590, Diepenbeek, Belgium.
| | - Luca Campion
- Centre for Environmental Sciences, Research Group Environmental Economics, UHasselt-Hasselt University, Agoralaan Gebouw D, 3590, Diepenbeek, Belgium
| | - Stephan Bruns
- Centre for Environmental Sciences, Research Group Environmental Economics, UHasselt-Hasselt University, Agoralaan Gebouw D, 3590, Diepenbeek, Belgium
| | - Tom Kuppens
- Centre for Environmental Sciences, Research Group Environmental Economics, UHasselt-Hasselt University, Agoralaan Gebouw D, 3590, Diepenbeek, Belgium
- Vrije Universiteit Brussel, Multidisciplinary Institute for Teacher Education (MILO), Pleinlaan 9, 1050, Brussels, Belgium
| | - Johannes Lehmann
- School of Integrative Plant Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Marijke Jozefczak
- Centre for Environmental Sciences, Research Group Environmental Biology, UHasselt-Hasselt University, Agoralaan Gebouw D, 3590, Diepenbeek, Belgium
| | - Ann Cuypers
- Centre for Environmental Sciences, Research Group Environmental Biology, UHasselt-Hasselt University, Agoralaan Gebouw D, 3590, Diepenbeek, Belgium
| | - Robert Malina
- Centre for Environmental Sciences, Research Group Environmental Economics, UHasselt-Hasselt University, Agoralaan Gebouw D, 3590, Diepenbeek, Belgium
| |
Collapse
|
5
|
Zhang Y, Cheng X, van Groenigen KJ, García-Palacios P, Cao J, Zheng X, Luo Y, Hungate BA, Terrer C, Butterbach-Bahl K, Olesen JE, Chen J. Shifts in soil ammonia-oxidizing community maintain the nitrogen stimulation of nitrification across climatic conditions. GLOBAL CHANGE BIOLOGY 2024; 30:e16989. [PMID: 37888833 DOI: 10.1111/gcb.16989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023]
Abstract
Anthropogenic nitrogen (N) loading alters soil ammonia-oxidizing archaea (AOA) and bacteria (AOB) abundances, likely leading to substantial changes in soil nitrification. However, the factors and mechanisms determining the responses of soil AOA:AOB and nitrification to N loading are still unclear, making it difficult to predict future changes in soil nitrification. Herein, we synthesize 68 field studies around the world to evaluate the impacts of N loading on soil ammonia oxidizers and nitrification. Across a wide range of biotic and abiotic factors, climate is the most important driver of the responses of AOA:AOB to N loading. Climate does not directly affect the N-stimulation of nitrification, but does so via climate-related shifts in AOA:AOB. Specifically, climate modulates the responses of AOA:AOB to N loading by affecting soil pH, N-availability and moisture. AOB play a dominant role in affecting nitrification in dry climates, while the impacts from AOA can exceed AOB in humid climates. Together, these results suggest that climate-related shifts in soil ammonia-oxidizing community maintain the N-stimulation of nitrification, highlighting the importance of microbial community composition in mediating the responses of the soil N cycle to N loading.
Collapse
Affiliation(s)
- Yong Zhang
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Science, Yunnan University, Kunming, China
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Xiaoli Cheng
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Kees Jan van Groenigen
- Department of Geography, Faculty of Environment, Science and Economy, University of Exeter, Exeter, UK
| | - Pablo García-Palacios
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Junji Cao
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
| | - Xunhua Zheng
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
| | - Yiqi Luo
- School of Integrative Plant Science, Cornell University, New York, Ithaca, USA
| | - Bruce A Hungate
- Department of Biological Sciences, Northern Arizona University, Arizona, Flagstaff, USA
| | - Cesar Terrer
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Massachusetts, Cambridge, USA
| | - Klaus Butterbach-Bahl
- Institute for Meteorology and Climate Research, Atmospheric Environmental Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany
- Center for Landscape Research in Sustainable Agricultural Futures, Land-CRAFT, Department of Agroecology, Aarhus University, Aarhus, Denmark
| | - Jørgen Eivind Olesen
- Department of Agroecology, Aarhus University, Tjele, Denmark
- Aarhus University Centre for Circular Bioeconomy, Aarhus University, Tjele, Denmark
- iCLIMATE Interdisciplinary Centre for Climate Change, Aarhus University, Roskilde, Denmark
| | - Ji Chen
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
- Department of Agroecology, Aarhus University, Tjele, Denmark
| |
Collapse
|
6
|
Dou Y, Wen M, Yang C, Zhao F, Ren C, Zhang N, Liang Y, Wang J. Effects of straw and plastic film mulching on microbial functional genes involved in soil nitrogen cycling. Front Microbiol 2023; 14:1205088. [PMID: 37497548 PMCID: PMC10367349 DOI: 10.3389/fmicb.2023.1205088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/20/2023] [Indexed: 07/28/2023] Open
Abstract
Introduction Microorganisms regulate soil nitrogen (N) cycling in cropping systems. However, how soil microbial functional genes involved in soil N cycling respond to mulching practices is not well known. Methods We collected soil samples from a spring maize field mulched with crop straw (SM) and plastic film (FM) for 10-year and with no mulching (CK) in the Loess Plateau. Microbial functional genes involved in soil N cycling were quantified using metagenomic sequencing. We collected soil samples from a spring maize field mulched with crop straw (SM) and plastic film (FM) for 10-year and with no mulching (CK) in the Loess Plateau. Microbial functional genes involved in soil N cycling were quantified using metagenomic sequencing. Results Compared to that in CK, the total abundance of genes involved in soil N cycling increased in SM but had no significant changes in FM. Specifically, SM increased the abundances of functional genes that involved in dissimilatory nitrate reduction to ammonium (nirB, napA, and nrfA), while FM decreased the abundances of functional genes that involved in ammonification (ureC and ureA) in comparison with CK. Other genes involved in assimilatory nitrate reduction, denitrification, and ammonia assimilation, however, were not significantly changed with mulching practices. The nirB and napA were derived from Proteobacteria (mainly Sorangium), and the ureC was derived from Actinobacteria (mainly Streptomyces). Mental test showed that the abundance of functional genes that involved in dissimilatory nitrate reduction was positively correlated with the contents of soil microbial biomass N, potential N mineralization, particulate organic N, and C fractions, while ammonification related gene abundance was positively correlated with soil pH, microbial biomass C and N, and mineral N contents. Discussion Overall, this study showed that SM could improve soil N availability and promote the soil N cycling by increasing the abundance of functional genes that involved in DNRA, while FM reduced the abundance of functional genes that involved in ammonification and inhibited soil N cycling.
Collapse
Affiliation(s)
- Ying Dou
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi’an, China
| | - Mengmeng Wen
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi’an, China
| | - Caidi Yang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi’an, China
| | - Fazhu Zhao
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi’an, China
| | - Chengjie Ren
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Nannan Zhang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi’an, China
| | - Yinyan Liang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi’an, China
| | - Jun Wang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi’an, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
| |
Collapse
|
7
|
Zhou G, Fan K, Li G, Gao S, Chang D, Liang T, Li S, Liang H, Zhang J, Che Z, Cao W. Synergistic effects of diazotrophs and arbuscular mycorrhizal fungi on soil biological nitrogen fixation after three decades of fertilization. IMETA 2023; 2:e81. [PMID: 38868350 PMCID: PMC10989903 DOI: 10.1002/imt2.81] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/19/2022] [Accepted: 01/02/2023] [Indexed: 06/14/2024]
Abstract
Biological nitrogen (N) fixation (BNF) via diazotrophs is an important ecological process for the conversion of atmospheric N to biologically available N. Although soil diazotrophs play a dominant role in BNF and arbuscular mycorrhizal fungi (AMF) serve as helpers to favor BNF, the response of soil BNF and diazotrophic communities to different long-term fertilizations and the role of AMF in diazotrophs-driven BNF are poorly understood. Herein, a 33-year fertilization experiment in a wheat-maize intercropping system was conducted to investigate the changes in soil BNF rates, diazotrophic and AMF communities, and their interactions after long-term representative fertilization (chemical fertilizer, cow manure, wheat straw, and green manure). We found a remarkable increase in soil BNF rates after more than three decades of fertilization compared with nonfertilized soil, and the green manure treatment rendered the highest enhancement. The functionality strengthening was mainly associated with the increase in the absolute abundance of diazotrophs and AMF and the relative abundance of the key ecological cluster of Module #0 (gained from the co-occurrence network of diazotrophic and AMF species) with dominant diazotrophs such as Skermanella and Azospirillum. Furthermore, although the positive correlations between diazotrophs and AMF were reduced under long-term organic fertilization regimes, green manuring could reverse the decline within Module #0, and this had a positive relationship with the BNF rate. This study suggests that long-term fertilization could promote N fixation and select specific groups of N fixers and their helpers in certain areas. Our work provides solid evidence that N fixation and certain groups of diazotrophic and AMF taxa and their interspecies relationship will be largely favored after the fertilized strategy of green manure.
Collapse
Affiliation(s)
- Guopeng Zhou
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesBeijingChina
| | - Kunkun Fan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
| | - Guilong Li
- Institute of Soil & Fertilizer and Resource & EnvironmentJiangxi Academy of Agricultural SciencesNanchangChina
| | - Songjuan Gao
- College of Resources and Environmental SciencesNanjing Agricultural UniversityNanjingChina
| | - Danna Chang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesBeijingChina
| | - Ting Liang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesBeijingChina
| | - Shun Li
- College of Resources and Environmental SciencesNanjing Agricultural UniversityNanjingChina
| | - Hai Liang
- College of Resources and Environmental SciencesNanjing Agricultural UniversityNanjingChina
| | - Jiudong Zhang
- Institute of Soil and Fertilizer and Water‐saving AgricultureGansu Academy of Agriculture ScienceLanzhouChina
| | - Zongxian Che
- Institute of Soil and Fertilizer and Water‐saving AgricultureGansu Academy of Agriculture ScienceLanzhouChina
| | - Weidong Cao
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
8
|
Zhao H, Brearley FQ, Huang L, Tang J, Xu Q, Li X, Huang Y, Zou S, Chen X, Hou W, Pan L, Dong K, Jiang G, Li N. Abundant and Rare Taxa of Planktonic Fungal Community Exhibit Distinct Assembly Patterns Along Coastal Eutrophication Gradient. MICROBIAL ECOLOGY 2023; 85:495-507. [PMID: 35195737 DOI: 10.1007/s00248-022-01976-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Revealing planktonic fungal ecology under coastal eutrophication is crucial to our understanding of microbial community shift in marine pollution background. We investigated the diversity, putative interspecies interactions, assembly processes and environmental responses of abundant and rare planktonic fungal communities along a eutrophication gradient present in the Beibu Gulf. The results showed that Dothideomycetes and Agaricomycetes were the predominant classes of abundant and rare fungi, respectively. We found that eutrophication significantly altered the planktonic fungal communities and affected the abundant taxa more than the rare taxa. The abundant and rare taxa were keystone members in the co-occurrence networks, and their interaction was enhanced with increasing nutrient concentrations. Stochastic processes dominated the community assembly of both abundant and rare planktonic fungi across the eutrophication gradient. Heterogeneous selection affected abundant taxa more than rare taxa, whereas homogenizing dispersal had a greater influence on rare taxa. Influences of environmental factors involving selection processes were detected, we found that abundant fungi were mainly influenced by carbon compounds, whereas rare taxa were simultaneously affected by carbon, nitrogen and phosphorus compounds in the Beibu Gulf. Overall, these findings highlight the distinct ecological adaptations of abundant and rare fungal communities to marine eutrophication.
Collapse
Affiliation(s)
- Huaxian Zhao
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (Nanning Normal University), Nanning, 530001, Guangxi, China
| | - Francis Q Brearley
- Department of Natural Sciences, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - Liangliang Huang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Jinli Tang
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (Nanning Normal University), Nanning, 530001, Guangxi, China
| | - Qiangsheng Xu
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (Nanning Normal University), Nanning, 530001, Guangxi, China
| | - Xiaoli Li
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (Nanning Normal University), Nanning, 530001, Guangxi, China
| | - Yuqing Huang
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (Nanning Normal University), Nanning, 530001, Guangxi, China
| | - Shuqi Zou
- Department of Biological Sciences, Kyonggi University, 154-42, Gwanggyosan-ro, Yeongtong-guGyeonggi-do, Suwon-si, 16227, South Korea
| | - Xing Chen
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (Nanning Normal University), Nanning, 530001, Guangxi, China
| | - Weiguo Hou
- State Key Laboratory of Biogeosciences and Environmental Geology, Institute of Earth Sciences, China University of Geosciences, Beijing, 100083, China
| | - Lianghao Pan
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Mangrove Research Centre, Guangxi Academy of Sciences, Beihai, 536000, Guangxi, China
| | - Ke Dong
- Department of Biological Sciences, Kyonggi University, 154-42, Gwanggyosan-ro, Yeongtong-guGyeonggi-do, Suwon-si, 16227, South Korea
| | - Gonglingxia Jiang
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (Nanning Normal University), Nanning, 530001, Guangxi, China.
| | - Nan Li
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (Nanning Normal University), Nanning, 530001, Guangxi, China.
| |
Collapse
|
9
|
Cui X, Zhang Q, Zhang Q, Chen H, Liu G, Zhu L. The putative maintaining mechanism of gut bacterial ecosystem in giant pandas and its potential application in conservation. Evol Appl 2023; 16:36-47. [PMID: 36699119 PMCID: PMC9850007 DOI: 10.1111/eva.13494] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/02/2022] [Accepted: 10/06/2022] [Indexed: 01/01/2023] Open
Abstract
Animals living in captivity and the wild show differences in the internal structure of their gut microbiomes. Here, we performed a meta-analysis of the microbial data of about 494 fecal samples obtained from giant pandas (captive and wild giant pandas). Our results show that the modular structures and topological features of the captive giant panda gut microbiome differ from those of the wild populations. The co-occurrence network of wild giant pandas also contained more nodes and edges, indicating a higher complexity and stability compared to that of captive giant pandas. Keystone species analysis revealed the differences between geographically different wild populations, indicating the potential effect of geography on the internal modular structure. When combining all the giant panda samples for module analysis, we found that the abundant taxa (e.g., belonged to Flavobacterium, Herbaspirillum, and Escherichia-Shigella) usually acted as module hubs to stabilize the modular structure, while the rare taxa usually acted as connectors of different modules. We conclude that abundant and rare taxa play different roles in the gut bacterial ecosystem. The conservation of some key bacterial species is essential for promoting the development of the gut microbiome in pandas. The living environment of the giant pandas can influence the internal structure, topological features, and strength of interrelationships in the gut microbiome. This study provides new insights into the conservation and management of giant panda populations.
Collapse
Affiliation(s)
- Xinyuan Cui
- College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Qinrong Zhang
- College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Qunde Zhang
- College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Hua Chen
- Mingke Biotechnology (Hangzhou) Co., Ltd.HangzhouChina
| | - Guoqi Liu
- Mingke Biotechnology (Hangzhou) Co., Ltd.HangzhouChina
| | - Lifeng Zhu
- College of Life SciencesNanjing Normal UniversityNanjingChina
| |
Collapse
|
10
|
Li T, Cui L, Liu L, Wang H, Dong J, Wang F, Song X, Che R, Li C, Tang L, Xu Z, Wang Y, Du J, Hao Y, Cui X. Characteristics of nitrogen deposition research within grassland ecosystems globally and its insight from grassland microbial community changes in China. FRONTIERS IN PLANT SCIENCE 2022; 13:947279. [PMID: 35991446 PMCID: PMC9386444 DOI: 10.3389/fpls.2022.947279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
As global change continues to intensify, the mode and rate of nitrogen input from the atmosphere to grassland ecosystems had changed dramatically. Firstly, we conducted a systematic analysis of the literature on the topic of nitrogen deposition impacts over the past 30 years using a bibliometric analysis. A systematic review of the global research status, publication patterns, research hotspots and important literature. We found a large number of publications in the Chinese region, and mainly focuses on the field of microorganisms. Secondly, we used a meta-analysis to focus on microbial changes using the Chinese grassland ecosystem as an example. The results show that the research on nitrogen deposition in grassland ecosystems shows an exponential development trend, and the authors and research institutions of the publications are mainly concentrated in China, North America, and Western Europe. The keyword clustering results showed 11 important themes labeled climate change, elevated CO2, species richness and diversity, etc. in these studies. The burst keyword analysis indicated that temperature sensitivity, microbial communities, etc. are the key research directions. The results of the meta-analysis found that nitrogen addition decreased soil microbial diversity, and different ecosystems may respond differently. Treatment time, nitrogen addition rate, external environmental conditions, and pH had major effects on microbial alpha diversity and biomass. The loss of microbial diversity and the reduction of biomass with nitrogen fertilizer addition will alter ecosystem functioning, with dramatic impacts on global climate change. The results of the study will help researchers to further understand the subject and have a deep understanding of research hotspots, which are of great value to future scientific research.
Collapse
Affiliation(s)
- Tong Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- School of Environment and Science, Centre for Planetary Health and Food Security, Griffith University, Brisbane, QLD, Australia
| | - Lizhen Cui
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lilan Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Hui Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
| | - Junfu Dong
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Fang Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- School of Environment and Science, Centre for Planetary Health and Food Security, Griffith University, Brisbane, QLD, Australia
| | - Xiufang Song
- National Science Library, Chinese Academy of Sciences, Beijing, China
- Department of Library, Information and Archives Management, School of Economics and Management, University of Chinese Academy of Sciences, Beijing, China
| | - Rongxiao Che
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming, China
| | - Congjia Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Li Tang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- School of Environment and Science, Centre for Planetary Health and Food Security, Griffith University, Brisbane, QLD, Australia
| | - Zhihong Xu
- School of Environment and Science, Centre for Planetary Health and Food Security, Griffith University, Brisbane, QLD, Australia
| | - Yanfen Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Tibetan Plateau Earth System Science (LATPES), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Jianqing Du
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Beijing Yanshan Earth Critical Zone National Research Station, University of Chinese Academy of Sciences, Beijing, China
| | - Yanbin Hao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Beijing Yanshan Earth Critical Zone National Research Station, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyong Cui
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Beijing Yanshan Earth Critical Zone National Research Station, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Xu M, Zhu X, Chen S, Pang S, Liu W, Gao L, Yang W, Li T, Zhang Y, Luo C, He D, Wang Z, Fan Y, Han X, Zhang X. Distinctive pattern and mechanism of precipitation changes affecting soil microbial assemblages in the Eurasian steppe. iScience 2022; 25:103893. [PMID: 35243251 PMCID: PMC8866155 DOI: 10.1016/j.isci.2022.103893] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/09/2022] [Accepted: 02/04/2022] [Indexed: 11/19/2022] Open
Abstract
Precipitation may increase or decrease by different intensities, but the pattern and mechanism of soil microbial community assembly under various precipitation changes remain relatively underexplored. Here, although ±30% precipitation caused a small decrease (∼19%) in the within-treatment taxonomic compositional dissimilarity through the deterministic competitive exclusion process in a steppe ecosystem, ±60% precipitation caused a large increase (∼35%) in the dissimilarity through the stochastic ecological drift process (random birth/death), which was in contrast with the traditional thought that increasing the magnitude of environmental changes (e.g., from +30% to +60%) would elevate the importance of deterministic relative to stochastic processes. The increased taxonomic dissimilarity/stochasticity under ±60% precipitation translated into functional dissimilarity/stochasticity at the gene, protein, and enzyme levels. Overall, our results revealed the distinctive pattern and mechanism of precipitation changes affecting soil microbial community assembly and demonstrated the need to integrate microbial taxonomic information to better predict their functional responses to precipitation changes.
Collapse
Affiliation(s)
- Minjie Xu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xunzhi Zhu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Shiping Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shuang Pang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wei Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lili Gao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wei Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tingting Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuhan Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chun Luo
- Shanghai Majorbio Bio-pharm Biotechnology Co., Ltd, Shanghai 201318, China
| | - Dandan He
- Shanghai Majorbio Bio-pharm Biotechnology Co., Ltd, Shanghai 201318, China
| | - Zhiping Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yi Fan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xingguo Han
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ximei Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
12
|
Zhang Y, Zhang F, Abalos D, Luo Y, Hui D, Hungate BA, García-Palacios P, Kuzyakov Y, Olesen JE, Jørgensen U, Chen J. Stimulation of ammonia oxidizer and denitrifier abundances by nitrogen loading: Poor predictability for increased soil N 2 O emission. GLOBAL CHANGE BIOLOGY 2022. [PMID: 34923712 DOI: 10.6084/m9.figshare.14370896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Unprecedented nitrogen (N) inputs into terrestrial ecosystems have profoundly altered soil N cycling. Ammonia oxidizers and denitrifiers are the main producers of nitrous oxide (N2 O), but it remains unclear how ammonia oxidizer and denitrifier abundances will respond to N loading and whether their responses can predict N-induced changes in soil N2 O emission. By synthesizing 101 field studies worldwide, we showed that N loading significantly increased ammonia oxidizer abundance by 107% and denitrifier abundance by 45%. The increases in both ammonia oxidizer and denitrifier abundances were primarily explained by N loading form, and more specifically, organic N loading had stronger effects on their abundances than mineral N loading. Nitrogen loading increased soil N2 O emission by 261%, whereas there was no clear relationship between changes in soil N2 O emission and shifts in ammonia oxidizer and denitrifier abundances. Our field-based results challenge the laboratory-based hypothesis that increased ammonia oxidizer and denitrifier abundances by N loading would directly cause higher soil N2 O emission. Instead, key abiotic factors (mean annual precipitation, soil pH, soil C:N ratio, and ecosystem type) explained N-induced changes in soil N2 O emission. Altogether, these findings highlight the need for considering the roles of key abiotic factors in regulating soil N transformations under N loading to better understand the microbially mediated soil N2 O emission.
Collapse
Affiliation(s)
- Yong Zhang
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
| | - Feng Zhang
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
| | - Diego Abalos
- Department of Agroecology, Aarhus University, Tjele, Denmark
| | - Yiqi Luo
- Center for Ecosystem Science and Society and Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Dafeng Hui
- Department of Biological Sciences, Tennessee State University, Nashville, Tennessee, USA
| | - Bruce A Hungate
- Center for Ecosystem Science and Society and Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Pablo García-Palacios
- Departamento de Biología y Geología, Física y Química Inorgánica y Analítica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Móstoles, Spain
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, University of Göttingen, Göttingen, Germany
- Agro-Technological Institute, RUDN University, Moscow, Russia
- Institute of Environmental Sciences, Kazan Federal University, Kazan, Russia
| | - Jørgen Eivind Olesen
- Department of Agroecology, Aarhus University, Tjele, Denmark
- iCLIMATE Interdisciplinary Centre for Climate Change, Aarhus University, Roskilde, Denmark
- Aarhus University Centre for Circular Bioeconomy, Aarhus University, Tjele, Denmark
| | - Uffe Jørgensen
- Department of Agroecology, Aarhus University, Tjele, Denmark
- Aarhus University Centre for Circular Bioeconomy, Aarhus University, Tjele, Denmark
| | - Ji Chen
- Department of Agroecology, Aarhus University, Tjele, Denmark
- iCLIMATE Interdisciplinary Centre for Climate Change, Aarhus University, Roskilde, Denmark
- Aarhus University Centre for Circular Bioeconomy, Aarhus University, Tjele, Denmark
| |
Collapse
|
13
|
Frey B, Varliero G, Qi W, Stierli B, Walthert L, Brunner I. Shotgun Metagenomics of Deep Forest Soil Layers Show Evidence of Altered Microbial Genetic Potential for Biogeochemical Cycling. Front Microbiol 2022; 13:828977. [PMID: 35300488 PMCID: PMC8921678 DOI: 10.3389/fmicb.2022.828977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 02/11/2022] [Indexed: 11/29/2022] Open
Abstract
Soil microorganisms such as Bacteria and Archaea play important roles in the biogeochemical cycling of soil nutrients, because they act as decomposers or are mutualistic or antagonistic symbionts, thereby influencing plant growth and health. In the present study, we investigated the vertical distribution of soil metagenomes to a depth of 1.5 m in Swiss forests of European beech and oak species on calcareous bedrock. We explored the functional genetic potential of soil microorganisms with the aim to disentangle the effects of tree genus and soil depth on the genetic repertoire, and to gain insight into the microbial C and N cycling. The relative abundance of reads assigned to taxa at the domain level indicated a 5-10 times greater abundance of Archaea in the deep soil, while Bacteria showed no change with soil depth. In the deep soil there was an overrepresentation of genes for carbohydrate-active enzymes, which are involved in the catalyzation of the transfer of oligosaccharides, as well as in the binding of carbohydrates such as chitin or cellulose. In addition, N-cycling genes (NCyc) involved in the degradation and synthesis of N compounds, in nitrification and denitrification, and in nitrate reduction were overrepresented in the deep soil. Consequently, our results indicate that N-transformation in the deep soil is affected by soil depth and that N is used not only for assimilation but also for energy conservation, thus indicating conditions of low oxygen in the deep soil. Using shotgun metagenomics, our study provides initial findings on soil microorganisms and their functional genetic potential, and how this may change depending on soil properties, which shift with increasing soil depth. Thus, our data provide novel, deeper insight into the "dark matter" of the soil.
Collapse
Affiliation(s)
- Beat Frey
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Gilda Varliero
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
- Centre for Microbial Ecology and Genomics, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Weihong Qi
- Functional Genomics Center Zurich (FGCZ), ETH Zürich/University of Zurich, Zurich, Switzerland
| | - Beat Stierli
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Lorenz Walthert
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Ivano Brunner
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| |
Collapse
|
14
|
Zhang Y, Zhang F, Abalos D, Luo Y, Hui D, Hungate BA, García‐Palacios P, Kuzyakov Y, Olesen JE, Jørgensen U, Chen J. Stimulation of ammonia oxidizer and denitrifier abundances by nitrogen loading: Poor predictability for increased soil N 2 O emission. GLOBAL CHANGE BIOLOGY 2022; 28:2158-2168. [PMID: 34923712 PMCID: PMC9303726 DOI: 10.1111/gcb.16042] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/10/2021] [Indexed: 05/15/2023]
Abstract
Unprecedented nitrogen (N) inputs into terrestrial ecosystems have profoundly altered soil N cycling. Ammonia oxidizers and denitrifiers are the main producers of nitrous oxide (N2 O), but it remains unclear how ammonia oxidizer and denitrifier abundances will respond to N loading and whether their responses can predict N-induced changes in soil N2 O emission. By synthesizing 101 field studies worldwide, we showed that N loading significantly increased ammonia oxidizer abundance by 107% and denitrifier abundance by 45%. The increases in both ammonia oxidizer and denitrifier abundances were primarily explained by N loading form, and more specifically, organic N loading had stronger effects on their abundances than mineral N loading. Nitrogen loading increased soil N2 O emission by 261%, whereas there was no clear relationship between changes in soil N2 O emission and shifts in ammonia oxidizer and denitrifier abundances. Our field-based results challenge the laboratory-based hypothesis that increased ammonia oxidizer and denitrifier abundances by N loading would directly cause higher soil N2 O emission. Instead, key abiotic factors (mean annual precipitation, soil pH, soil C:N ratio, and ecosystem type) explained N-induced changes in soil N2 O emission. Altogether, these findings highlight the need for considering the roles of key abiotic factors in regulating soil N transformations under N loading to better understand the microbially mediated soil N2 O emission.
Collapse
Affiliation(s)
- Yong Zhang
- School of Resources and Environmental EngineeringAnhui UniversityHefeiChina
| | - Feng Zhang
- School of Resources and Environmental EngineeringAnhui UniversityHefeiChina
| | - Diego Abalos
- Department of AgroecologyAarhus UniversityTjeleDenmark
| | - Yiqi Luo
- Center for Ecosystem Science and Society and Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Dafeng Hui
- Department of Biological SciencesTennessee State UniversityNashvilleTennesseeUSA
| | - Bruce A. Hungate
- Center for Ecosystem Science and Society and Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Pablo García‐Palacios
- Departamento de Biología y GeologíaFísica y Química Inorgánica y AnalíticaEscuela Superior de Ciencias Experimentales y TecnologíaUniversidad Rey Juan CarlosMóstolesSpain
- Instituto de Ciencias AgrariasConsejo Superior de Investigaciones CientíficasMadridSpain
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate EcosystemsUniversity of GöttingenGöttingenGermany
- Agro‐Technological InstituteRUDN UniversityMoscowRussia
- Institute of Environmental SciencesKazan Federal UniversityKazanRussia
| | - Jørgen Eivind Olesen
- Department of AgroecologyAarhus UniversityTjeleDenmark
- iCLIMATE Interdisciplinary Centre for Climate ChangeAarhus UniversityRoskildeDenmark
- Aarhus University Centre for Circular BioeconomyAarhus UniversityTjeleDenmark
| | - Uffe Jørgensen
- Department of AgroecologyAarhus UniversityTjeleDenmark
- Aarhus University Centre for Circular BioeconomyAarhus UniversityTjeleDenmark
| | - Ji Chen
- Department of AgroecologyAarhus UniversityTjeleDenmark
- iCLIMATE Interdisciplinary Centre for Climate ChangeAarhus UniversityRoskildeDenmark
- Aarhus University Centre for Circular BioeconomyAarhus UniversityTjeleDenmark
| |
Collapse
|
15
|
Kondal R, Kalia A, Krejcar O, Kuca K, Sharma SP, Luthra K, Dheri GS, Vikal Y, Taggar MS, Abd-Elsalam KA, Gomes CL. Chitosan-Urea Nanocomposite for Improved Fertilizer Applications: The Effect on the Soil Enzymatic Activities and Microflora Dynamics in N Cycle of Potatoes ( Solanum tuberosum L.). Polymers (Basel) 2021; 13:polym13172887. [PMID: 34502927 PMCID: PMC8433729 DOI: 10.3390/polym13172887] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 11/18/2022] Open
Abstract
The impact of polymer-based slow-release urea formulations on soil microbial N dynamics in potatoes has been sparingly deciphered. The present study investigated the effect of a biodegradable nano-polymer urea formulation on soil enzymatic activities and microflora involved in the N cycling of potato (Solanum tuberosum L.). The nano-chitosan-urea composite (NCUC) treatment significantly increased the soil dehydrogenase activity, organic carbon content and available potassium compared to the conventional urea (CU) treatment. The soil ammonical nitrogen (NH4+-N) and nitrate nitrogen (NO3−-N) contents and urease activity were significantly decreased in the NCUC-amended soil. The slow urea hydrolysis rate led to low concentrations of NH4+-N and NO3−-N in the tested potato soil. Furthermore, these results corroborate the low count of ammonia oxidizer and nitrate reducer populations. Quantitative PCR (q-PCR) studies revealed that the relative abundance of eubacterial (AOB) and archaeal ammonia-oxidizing (AOA) populations was reduced in the NCUC-treated soil compared to CU. The abundance of AOA was particularly lower than AOB, probably due to the more neutral and alkaline conditions of the tested soil. Our results suggest that the biodegradable polymer urea composite had a significant effect on the microbiota associated with soil N dynamics. Therefore, the developed NCUC could be used as a slow N-release fertilizer for enhanced growth and crop yields of potato.
Collapse
Affiliation(s)
- Rohini Kondal
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141004, Punjab, India; (R.K.); (K.L.)
| | - Anu Kalia
- Electron Microscopy and Nanoscience Laboratory, Department of Soil Science, Punjab Agricultural University, Ludhiana 141004, Punjab, India
- Correspondence: (A.K.); (K.K.); Tel.: +91-161-2401960 (A.K.); +420-603-289-166 (K.K.)
| | - Ondrej Krejcar
- Center for Basic and Applied Science, Faculty of Informatics and Management, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
- Malaysia Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic
- Correspondence: (A.K.); (K.K.); Tel.: +91-161-2401960 (A.K.); +420-603-289-166 (K.K.)
| | - Sat Pal Sharma
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana 141004, Punjab, India;
| | - Karanvir Luthra
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141004, Punjab, India; (R.K.); (K.L.)
| | - Gurmeet Singh Dheri
- Green House Gas Laboratory, Department of Soil Science, Punjab Agricultural University, Ludhiana 141004, Punjab, India;
| | - Yogesh Vikal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141004, Punjab, India;
| | - Monica Sachdeva Taggar
- Department of Renewable Energy Engineering, Punjab Agricultural University, Ludhiana 141004, Punjab, India;
| | - Kamel A. Abd-Elsalam
- Agricultural Research Center, Plant Pathology Research Institute, Giza 12619, Egypt;
| | - Carmen L. Gomes
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA;
| |
Collapse
|
16
|
Wang J, Wang J, He JZ, Zhu YG, Qiao NH, Ge Y. Arbuscular mycorrhizal fungi and plant diversity drive restoration of nitrogen-cycling microbial communities. Mol Ecol 2021; 30:4133-4146. [PMID: 34146429 DOI: 10.1111/mec.16030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 06/06/2021] [Accepted: 06/16/2021] [Indexed: 11/30/2022]
Abstract
Soil microbial communities, key players of many crucial ecosystem functions, are susceptible to environmental disturbances, which might cause the loss of microbial diversity and functions. However, few ecological concepts and practices have been developed for rescuing stressed soil microbial communities. Here, we manipulated an experiment with or without arbuscular mycorrhizal fungi (AMF) inoculation and at three levels (one, three and six species) of plant diversity to disentangle how the AMF and vegetation rescue soil nitrogen (N) -cycling microbial loop from simulated degraded soil ecosystem. Our results showed that AMF inoculation improved the restoration of soil N-cycling microbial communities. This improved restoration was related to the role of AMF in enhancing interactions within the N-cycling microbial loop. Furthermore, increased plant diversity strengthened the role of AMF in rescuing N-cycling microbial communities. Our findings provide novel insights into the roles of AMF and plant diversity in facilitating the rescue of microbial communities in degraded terrestrial ecosystems.
Collapse
Affiliation(s)
- Jichen Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiang Wang
- School of Life Sciences, Taizhou University, Taizhou, China
| | - Ji-Zheng He
- School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Neng-Hu Qiao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Ge
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
17
|
Nitrogen has a greater influence than phosphorus on the diazotrophic community in two successive crop seasons in Northeast China. Sci Rep 2021; 11:6303. [PMID: 33737649 PMCID: PMC7973567 DOI: 10.1038/s41598-021-85829-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 03/08/2021] [Indexed: 12/01/2022] Open
Abstract
Fertilizer-induced changes in soil nutrients regulate nitrogen (N) fixation in the terrestrial biosphere, but the influences of N and phosphorus (P) fertilization on the diazotroph communities in successive crop seasons were unclear. In this study, we assessed the effects of N and P (high vs. low doses) on the abundance and structure of N2-fixation communities after wheat and soybean harvest in a long-term (34 and 35 years) fertilization experiment. In both seasons, long-term N addition significantly decreased the abundance of nifH genes and 16S rDNA; in addition, high doses of N and P fertilizer decreased the richness of diazotrophs, whereas low doses did not. The proportion of the dominant genus, Bradyrhizobium, in the soybean season (86.0%) was higher than that in the wheat season (47.9%). Fertilization decreased diazotroph diversity and the relative abundance of Bradyrhizobium in the wheat season, but had insignificant effects in the soybean season. The addition of N, but not P, significantly changed the communities of both diazotrophs (at the genus level) and rhizobia (at the species level) in the two seasons. Soil pH was positively associated with nifH abundance and diazotrophic richness; soil NO3− content was negatively correlated with diazotrophic richness and positively correlated with diversity. Soil pH and NO3− content were the two main drivers shaping the soil diazotrophic community. Overall, long-term inorganic N had a greater influence than P on both diazotrophic abundance and community composition, and diazotrophic diversity was more clearly affected by fertilization in the wheat season than in the soybean season.
Collapse
|
18
|
Soil Bacterial Community Response and Nitrogen Cycling Variations Associated with Subalpine Meadow Degradation on the Loess Plateau, China. Appl Environ Microbiol 2020; 86:AEM.00180-20. [PMID: 32144107 DOI: 10.1128/aem.00180-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 02/26/2020] [Indexed: 11/20/2022] Open
Abstract
Grassland degradation is an ecological problem worldwide. This study aimed to reveal the patterns of the variations in bacterial diversity and community structure and in nitrogen cycling functional genes along a subalpine meadow degradation gradient on the Loess Plateau, China. Meadow degradation had a significant effect on the beta diversity of soil bacterial communities (P < 0.05) but not on the alpha diversity (P > 0.05). Nonmetric multidimensional scaling (NMDS) and analysis of similarity (ANOSIM) indicated that the compositions of bacterial and plant communities changed remarkably with increasing meadow degradation (all P < 0.05). The beta diversities of the plant and soil bacterial communities were significantly correlated (P < 0.05), while their alpha diversities were weakly correlated (P > 0.05) along the meadow degradation gradient. Redundancy analysis (RDA) showed that the structure of the bacterial community was strongly correlated with total nitrogen (TN), nitrate nitrogen (NO3 --N), plant Shannon diversity, plant coverage, and soil bulk density (all P < 0.05). Moreover, the abundances of N fixation and denitrification genes of the bacterial community decreased along the degradation gradient, but the abundance of nitrification genes increased along the gradient. The structure of the set of N cycling genes present at each site was more sensitive to subalpine meadow degradation than the structure of the total bacterial community. Our findings revealed compositional shifts in the plant and bacterial communities and in the abundances of key N cycling genes as well as the potential drivers of these shifts under different degrees of subalpine meadow degradation.IMPORTANCE Soil microbes play a crucial role in the biogeochemical cycles of grassland ecosystems, yet information on how their community structure and functional characteristics change with subalpine meadow degradation is scarce. In this study, we evaluated the changes in bacterial community structure and nitrogen functional genes in degraded meadow soils. Meadow degradation had a significant effect on bacterial community composition. Soil total nitrogen was the best predictor of bacterial community structure. The beta diversities of the plant and soil bacterial communities were significantly correlated, while their alpha diversities were only weakly correlated. Meadow degradation decreased the potential for nitrogen fixation and denitrification but increased the potential for nitrification. These results have implications for the restoration and reconstruction of subalpine meadow ecosystem on the Loess Plateau.
Collapse
|
19
|
Xiao D, Liu X, Yang R, Tan Y, Zhang W, He X, Xu Z, Wang K. Nitrogen fertilizer and Amorpha fruticosa leguminous shrub diversely affect the diazotroph communities in an artificial forage grassland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:134967. [PMID: 32000331 DOI: 10.1016/j.scitotenv.2019.134967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/24/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
Soil diazotrophs have been known to be essential in biological nitrogen (N) fixation, which contributes to the sustainability of agricultural ecosystems. However, there remains an inadequacy of research on the effects of different N inputs from N fertilization and from symbiotic N fixation associated with legumes on the diazotroph communities in agricultural ecosystems. Hence, we investigated the variations in diazotroph abundance and community composition as well as the soil properties with different N inputs in the Guimu-1 hybrid elephant grass cultivation on karst soils in China. We conducted six different N treatments: control, Amorpha fruticosa planting at a spacing of 1.5 × 2 m (AFD1), A. fruticosa planting at a spacing of 1 × 2 m (AFD2), N fertilization (N), A. fruticosa planting at a spacing of 1.5 × 2 m with N fertilization (AFD1N), and A. fruticosa planting at a spacing of 1 × 2 m with N fertilization (AFD2N). Our results showed that the interaction between sampling time and N fertilization significantly affected the diazotroph abundance. In July, the diazotroph abundance significantly decreased in the N fertilization treatments: N, AFD1N, and AFD2N, compared to that in the control. The richness and Chao1 estimator of diazotrophs significantly increased in AFD2N and AFD1 correspondingly in December and July, relative to those in the control. Co-occurrence networks showed species-species interactions with high negative correlations that occurred more in the control than in the N input plots. The N input from N fertilization and legume planting directly increased the ammonium N and nitrate N and consequently affected the dissolved organic N and pH of the soil, thereby altering the diazotroph abundance and richness. Our findings demonstrated that both N fertilization and legumes could reduce the interspecific competition among diazotroph species by providing greater N availability in the forage grass.
Collapse
Affiliation(s)
- Dan Xiao
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Yang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongjun Tan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China.
| | - Xunyang He
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China
| | - Zhihong Xu
- Environmental Futures Research Institute, School of Environment and Science, Griffith University, Brisbane 4111, Australia
| | - Kelin Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China.
| |
Collapse
|
20
|
Li L, Zheng Z, Wang W, Biederman JA, Xu X, Ran Q, Qian R, Xu C, Zhang B, Wang F, Zhou S, Cui L, Che R, Hao Y, Cui X, Xu Z, Wang Y. Terrestrial N 2 O emissions and related functional genes under climate change: A global meta-analysis. GLOBAL CHANGE BIOLOGY 2020; 26:931-943. [PMID: 31554024 DOI: 10.1111/gcb.14847] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/06/2019] [Accepted: 09/16/2019] [Indexed: 05/18/2023]
Abstract
Nitrous oxide (N2 O) emissions from soil contribute to global warming and are in turn substantially affected by climate change. However, climate change impacts on N2 O production across terrestrial ecosystems remain poorly understood. Here, we synthesized 46 published studies of N2 O fluxes and relevant soil functional genes (SFGs, that is, archaeal amoA, bacterial amoA, nosZ, narG, nirK and nirS) to assess their responses to increased temperature, increased or decreased precipitation amounts, and prolonged drought (no change in total precipitation but increase in precipitation intervals) in terrestrial ecosystem (i.e. grasslands, forests, shrublands, tundra and croplands). Across the data set, temperature increased N2 O emissions by 33%. However, the effects were highly variable across biomes, with strongest temperature responses in shrublands, variable responses in forests and negative responses in tundra. The warming methods employed also influenced the effects of temperature on N2 O emissions (most effectively induced by open-top chambers). Whole-day or whole-year warming treatment significantly enhanced N2 O emissions, but daytime, nighttime or short-season warming did not have significant effects. Regardless of biome, treatment method and season, increased precipitation promoted N2 O emission by an average of 55%, while decreased precipitation suppressed N2 O emission by 31%, predominantly driven by changes in soil moisture. The effect size of precipitation changes on nirS and nosZ showed a U-shape relationship with soil moisture; further insight into biotic mechanisms underlying N2 O emission response to climate change remain limited by data availability, underlying a need for studies that report SFG. Our findings indicate that climate change substantially affects N2 O emission and highlights the urgent need to incorporate this strong feedback into most climate models for convincing projection of future climate change.
Collapse
Affiliation(s)
- Linfeng Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Environmental Futures Research Institute, School of Environment and Science, Griffith University, Brisbane, Qld, Australia
| | - Zhenzhen Zheng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Weijin Wang
- Environmental Futures Research Institute, School of Environment and Science, Griffith University, Brisbane, Qld, Australia
- Department of Environment and Science, Brisbane, Qld, Australia
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Qld, Australia
| | - Joel A Biederman
- Southwest Watershed Research Center, Agricultural Research Service, Tucson, AZ, USA
| | - Xingliang Xu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing, China
| | - Qinwei Ran
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ruyan Qian
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Cong Xu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Biao Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fang Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Environmental Futures Research Institute, School of Environment and Science, Griffith University, Brisbane, Qld, Australia
| | - Shutong Zhou
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lizhen Cui
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Rongxiao Che
- Institute of International Rivers and Eco-security, Yunnan University, Kunming, China
| | - Yanbin Hao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences (CAS), Beijing, China
| | - Xiaoyong Cui
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences (CAS), Beijing, China
| | - Zhihong Xu
- Environmental Futures Research Institute, School of Environment and Science, Griffith University, Brisbane, Qld, Australia
| | - Yanfen Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences (CAS), Beijing, China
| |
Collapse
|
21
|
Zhang X, Johnston ER, Wang Y, Yu Q, Tian D, Wang Z, Zhang Y, Gong D, Luo C, Liu W, Yang J, Han X. Distinct Drivers of Core and Accessory Components of Soil Microbial Community Functional Diversity under Environmental Changes. mSystems 2019; 4:e00374-19. [PMID: 31575666 PMCID: PMC6774018 DOI: 10.1128/msystems.00374-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/13/2019] [Indexed: 11/20/2022] Open
Abstract
It is a central ecological goal to explore the effects of global change factors on soil microbial communities. The vast functional gene repertoire of soil microbial communities is composed of both core and accessory genes, which may be governed by distinct drivers. This intuitive hypothesis, however, remains largely unexplored. We conducted a 5-year nitrogen and water addition experiment in the Eurasian steppe and quantified microbial gene diversity via shotgun metagenomics. Nitrogen addition led to an 11-fold increase in the abundance (based on quantitative PCR [qPCR]) of ammonia-oxidizing bacteria, which have mainly core community genes and few accessory community genes. Thus, nitrogen addition substantially increased the relative abundance of many core genes at the whole-community level. Water addition stimulated both plant diversity and microbial respiration; however, increased carbon/energy resources from plants did not counteract increased respiration, so soil carbon/energy resources became more limited. Thus, water addition selected for microorganisms with genes responsible for degrading recalcitrant soil organic matter. Accordingly, many other microorganisms without these genes (but likely with other accessory community genes due to relatively stable average microbial genome size) were selected against, leading to the decrease in the diversity of accessory community genes. In summary, nitrogen addition primarily affected core community genes through nitrogen-cycling processes, and water addition primarily regulated accessory community genes through carbon-cycling processes. Although both gene components may significantly respond as the intensity of nitrogen/water addition increases, our results demonstrated how these common global change factors distinctly impact each component.IMPORTANCE Our results demonstrated increased ecosystem nitrogen and water content as the primary drivers of the core and accessory components of soil microbial community functional diversity, respectively. Our findings suggested that more attention should be paid to certain components of community functional diversity under specific global change conditions. Our findings also indicated that microbial communities have adapted to nitrogen addition by strengthening the function of ammonia oxidization to deplete the excess nitrogen, thus maintaining ecosystem homeostasis. Because community gene richness is primarily determined by the presence/absence of accessory community genes, our findings further implied that strategies such as maintaining the amount of soil organic matter could be adopted to effectively improve the functional gene diversity of soil microbial communities subject to global change factors.
Collapse
Affiliation(s)
- Ximei Zhang
- Key Laboratory of Dryland Agriculture, MOA, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Eric R Johnston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Yaosheng Wang
- Key Laboratory of Dryland Agriculture, MOA, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiang Yu
- National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dashuan Tian
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Zhiping Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yanqing Zhang
- Key Laboratory of Dryland Agriculture, MOA, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Daozhi Gong
- Key Laboratory of Dryland Agriculture, MOA, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chun Luo
- Shanghai Majorbio Bio-pharm Biotechnology Co., Ltd., Shanghai, China
| | - Wei Liu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Junjie Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xingguo Han
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Cucu MA, Gilardi G, Pugliese M, Matić S, Gisi U, Gullino ML, Garibaldi A. Influence of different biological control agents and compost on total and nitrification-driven microbial communities at rhizosphere and soil level in a lettuce - Fusarium oxysporum f. sp. lactucae pathosystem. J Appl Microbiol 2019; 126:905-918. [PMID: 30417496 DOI: 10.1111/jam.14153] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/20/2018] [Accepted: 10/22/2018] [Indexed: 11/26/2022]
Abstract
AIMS The response of rhizosphere and bulk soil indigenous microbial communities focusing on nitrifiers was evaluated after the application of different biological control agents (BCAs; Bacillus, Trichoderma, Pseudomonas) and compost in controlling lettuce Fusarium wilt. METHODS AND RESULTS Experiments were conducted 'in situ' over two lettuce cropping seasons. Total fungal, bacterial and archaeal populations and the nitrifiers were analysed using quantitative polymerase chain reaction method. The pathogen, Fusarium oxysporum forma specialis lactucae (FOL), Bacillus, Trichoderma and Pseudomonas and three antifungal genes (chiA, 2,4-diacetylphloroglucinol - phlD and HCN synthase - hcnAB genes) were also assessed. Quantitative data were corroborated with disease severity (DS), potential nitrification activity and soil chemical parameters. The application of BCAs and compost resulted in the disease reduction by as much as 69%, confirmed by significant negative correlations between Bacillus subtilis, Trichoderma and Pseudomonas sp. abundances and DS. The FOL presence in the untreated control resulted in the nitrifiers niche differentiation. CONCLUSIONS The used treatments were efficient against Fusarium wilt and did not influence negatively the nontarget microbial communities. SIGNIFICANCE AND IMPACT OF THE STUDY The use of BCAs and compost appears as an effective and safe strategy to implement sustainable agricultural practices.
Collapse
Affiliation(s)
- M A Cucu
- AGROINNOVA - Centre of Competence for the Innovation in the Agro-Environmental Sector, Turin University, Grugliasco, Turin, Italy
| | - G Gilardi
- AGROINNOVA - Centre of Competence for the Innovation in the Agro-Environmental Sector, Turin University, Grugliasco, Turin, Italy
| | - M Pugliese
- AGROINNOVA - Centre of Competence for the Innovation in the Agro-Environmental Sector, Turin University, Grugliasco, Turin, Italy
- Agricultural, Forestry and Food Sciences Department (DISAFA), Turin University, Grugliasco, Turin, Italy
- AgriNewTech srl, Environment Park, Turin, Italy
| | - S Matić
- AGROINNOVA - Centre of Competence for the Innovation in the Agro-Environmental Sector, Turin University, Grugliasco, Turin, Italy
| | - U Gisi
- AGROINNOVA - Centre of Competence for the Innovation in the Agro-Environmental Sector, Turin University, Grugliasco, Turin, Italy
| | - M L Gullino
- AGROINNOVA - Centre of Competence for the Innovation in the Agro-Environmental Sector, Turin University, Grugliasco, Turin, Italy
- Agricultural, Forestry and Food Sciences Department (DISAFA), Turin University, Grugliasco, Turin, Italy
| | - A Garibaldi
- AGROINNOVA - Centre of Competence for the Innovation in the Agro-Environmental Sector, Turin University, Grugliasco, Turin, Italy
| |
Collapse
|
23
|
Short-Term Response of the Soil Microbial Abundances and Enzyme Activities to Experimental Warming in a Boreal Peatland in Northeast China. SUSTAINABILITY 2019. [DOI: 10.3390/su11030590] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Global warming is likely to influence the soil microorganisms and enzyme activity and alter the carbon and nitrogen balance of peatland ecosystems. To investigate the difference in sensitivities of carbon and nitrogen cycling microorganisms and enzyme activity to warming, we conducted three-year warming experiments in a boreal peatland. Our findings demonstrated that both mcrA and nirS gene abundance in shallow soil and deep soil exhibited insensitivity to warming, while shallow soil archaea 16S rRNA gene and amoA gene abundance in both shallow soil and deep soil increased under warming. Soil pmoA gene abundance of both layers, bacterial 16S rRNA gene abundance in shallow soil, and nirK gene abundance in deep soil decreased due to warming. The decreases of these gene abundances would be a result of losing labile substrates because of the competitive interactions between aboveground plants and underground soil microorganisms. Experimental warming inhibited β-glucosidase activity in two soil layers and invertase activity in deep soil, while it stimulated acid phosphatase activity in shallow soil. Both temperature and labile substrates regulate the responses of soil microbial abundances and enzyme activities to warming and affect the coupling relationships of carbon and nitrogen. This study provides a potential microbial mechanism controlling carbon and nitrogen cycling in peatland under climate warming.
Collapse
|
24
|
Zhang X, Johnston ER, Barberán A, Ren Y, Wang Z, Han X. Effect of intermediate disturbance on soil microbial functional diversity depends on the amount of effective resources. Environ Microbiol 2018; 20:3862-3875. [PMID: 30209865 DOI: 10.1111/1462-2920.14407] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/28/2018] [Accepted: 09/06/2018] [Indexed: 11/30/2022]
Abstract
Many anthropogenic environmental changes are leading to a rapid decline in soil microbial functional diversity. However, ecological mechanisms that can serve to counteract/resist the diversity loss remain largely underexplored. In particular, although intermediate disturbance and increased amount of effective resources can promote the diversity of higher organisms, the potential role of these factors, and their combination, in maintaining microbial functional diversity is poorly studied. We conducted a 5-year experiment in a Eurasian steppe, manipulating mowing, nitrogen addition, phosphorus addition and their combinations. Nitrogen addition decreased soil pH by ~0.6 and bacterial abundance by ~19.5%, causing a disturbance effect. Phosphorus addition significantly decreased the effective amount of soil carbon-, nitrogen-, phosphorus- and water-relevant resources. Across all nitrogen-addition treatments subject to intermediate disturbance, there was a significant positive correlation between soil effective resource amount and microbial gene richness (r > 0.6, p < 0.01), which was elevated, in part, due to the increased fungal abundance. In contrast, significant correlations between gene richness and resource amount were not found under low-disturbance conditions. Overall, gene richness was greatest under conditions of both intermediate disturbance and ample effective resources, suggesting that the two factors could be manipulated in combination for the maintenance of microbial functional diversity.
Collapse
Affiliation(s)
- Ximei Zhang
- Key Laboratory of Dryland Agriculture, MOA, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Eric R Johnston
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN 37831, USA.,School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Albert Barberán
- Department of Soil, Water, and Environmental Science, University of Arizona, Tucson, Arizona, 85721, USA
| | - Yi Ren
- Shanghai Majorbio Bio-pharm Biotechnology Co., Ltd, Shanghai, 201318, China
| | - Zhiping Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xingguo Han
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN 37831, USA.,State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
25
|
Zheng B, Zhu Y, Sardans J, Peñuelas J, Su J. QMEC: a tool for high-throughput quantitative assessment of microbial functional potential in C, N, P, and S biogeochemical cycling. SCIENCE CHINA-LIFE SCIENCES 2018; 61:1451-1462. [DOI: 10.1007/s11427-018-9364-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 07/26/2018] [Indexed: 02/07/2023]
|
26
|
Reichel R, Wei J, Islam MS, Schmid C, Wissel H, Schröder P, Schloter M, Brüggemann N. Potential of Wheat Straw, Spruce Sawdust, and Lignin as High Organic Carbon Soil Amendments to Improve Agricultural Nitrogen Retention Capacity: An Incubation Study. FRONTIERS IN PLANT SCIENCE 2018; 9:900. [PMID: 30002668 PMCID: PMC6031754 DOI: 10.3389/fpls.2018.00900] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/07/2018] [Indexed: 05/24/2023]
Abstract
Plants like winter wheat are known for their insufficient N uptake between sowing and the following growing season. Especially after N-rich crops like oilseed rape or field bean, nitrogen retention of the available soil N can be poor, and the risk of contamination of the hydrosphere with nitrate (NO3-) and the atmosphere with nitrous oxide (N2O) is high. Therefore, novel strategies are needed to preserve these unused N resources for subsequent agricultural production. High organic carbon soil amendments (HCA) like wheat straw promote microbial N immobilization by stimulating microbes to take up N from soil. In order to test the suitability of different HCA for immobilization of excess N, we conducted a laboratory incubation experiment with soil columns, each containing 8 kg of sandy loam of an agricultural Ap horizon. We created a scenario with high soil mineral N content by adding 150 kg NH4+-N ha-1 to soil that received either wheat straw, spruce sawdust or lignin at a rate of 4.5 t C ha-1, or no HCA as control. Wheat straw turned out to be suitable for fast immobilization of excess N in the form of microbial biomass N (up to 42 kg N ha-1), followed by sawdust. However, under the experimental conditions this effect weakened over a few weeks, finally ranging between 8 and 15 kg N ha-1 immobilized in microbial biomass in the spruce sawdust and wheat straw treatment, respectively. Pure lignin did not stimulate microbial N immobilization. We also revealed that N immobilization by the remaining straw and sawdust HCA material in the soil had a greater importance for storage of excess N (on average 24 kg N ha-1) than microbial N immobilization over the 4 months. N fertilization and HCA influenced the abundance of ammonia oxidizing bacteria and archaea as the key players for nitrification, as well as the abundance of denitrifiers. Soil with spruce sawdust emitted more N2O compared to soil with wheat straw, which in relation released more CO2, resulting in a comparable overall global warming potential. However, this was counterbalanced by advantages like N immobilization and mitigation of potential NO3- losses.
Collapse
Affiliation(s)
- Rüdiger Reichel
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Agrosphere (IBG-3), Jülich, Germany
| | - Jing Wei
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Agrosphere (IBG-3), Jülich, Germany
| | - Muhammad S. Islam
- General and Theoretical Ecology, Institute of Ecology, University of Bremen, Bremen, Germany
| | - Christoph Schmid
- Research Unit Comparative Microbiome Analysis (COMI), Deutsches Forschungszentrum für Gesundheit und Umwelt GmbH, Helmholtz Zentrum München, Munich, Germany
| | - Holger Wissel
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Agrosphere (IBG-3), Jülich, Germany
| | - Peter Schröder
- Research Unit Comparative Microbiome Analysis (COMI), Deutsches Forschungszentrum für Gesundheit und Umwelt GmbH, Helmholtz Zentrum München, Munich, Germany
| | - Michael Schloter
- Research Unit Comparative Microbiome Analysis (COMI), Deutsches Forschungszentrum für Gesundheit und Umwelt GmbH, Helmholtz Zentrum München, Munich, Germany
| | - Nicolas Brüggemann
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Agrosphere (IBG-3), Jülich, Germany
| |
Collapse
|
27
|
Zhang X, Johnston ER, Barberán A, Ren Y, Lü X, Han X. Decreased plant productivity resulting from plant group removal experiment constrains soil microbial functional diversity. GLOBAL CHANGE BIOLOGY 2017; 23:4318-4332. [PMID: 28585356 DOI: 10.1111/gcb.13783] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 05/30/2017] [Indexed: 06/07/2023]
Abstract
Anthropogenic environmental changes are accelerating the rate of biodiversity loss on Earth. Plant diversity loss is predicted to reduce soil microbial diversity primarily due to the decreased variety of carbon/energy resources. However, this intuitive hypothesis is supported by sparse empirical evidence, and most underlying mechanisms remain underexplored or obscure altogether. We constructed four diversity gradients (0-3) in a five-year plant functional group removal experiment in a steppe ecosystem in Inner Mongolia, China, and quantified microbial taxonomic and functional diversity with shotgun metagenome sequencing. The treatments had little effect on microbial taxonomic diversity, but were found to decrease functional gene diversity. However, the observed decrease in functional gene diversity was more attributable to a loss in plant productivity, rather than to the loss of any individual plant functional group per se. Reduced productivity limited fresh plant resources supplied to microorganisms, and thus, intensified the pressure of ecological filtering, favoring genes responsible for energy production/conversion, material transport/metabolism and amino acid recycling, and accordingly disfavored many genes with other functions. Furthermore, microbial respiration was correlated with the variation in functional composition but not taxonomic composition. Overall, the amount of carbon/energy resources driving microbial gene diversity was identified to be the critical linkage between above- and belowground communities, contrary to the traditional framework of linking plant clade/taxonomic diversity to microbial taxonomic diversity.
Collapse
Affiliation(s)
- Ximei Zhang
- Key Laboratory of Dryland Agriculture, MOA, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Eric R Johnston
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Albert Barberán
- Department of Soil, Water, and Environmental Science, University of Arizona, Tucson, AZ, USA
| | - Yi Ren
- Shanghai Majorbio Bio-pharm Biotechnology Co., Ltd, Shanghai, China
| | - Xiaotao Lü
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Xingguo Han
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
28
|
Adaptation of soil nitrifiers to very low nitrogen level jeopardizes the efficiency of chemical fertilization in west african moist savannas. Sci Rep 2017; 7:10275. [PMID: 28860500 PMCID: PMC5578973 DOI: 10.1038/s41598-017-10185-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/07/2017] [Indexed: 12/05/2022] Open
Abstract
The moist savanna zone covers 0.5 × 106 km2 in West Africa and is characterized by very low soil N levels limiting primary production, but the ecology of nitrifiers in these (agro)ecosystems is largely unknown. We compared the effects of six agricultural practices on nitrifier activity, abundance and diversity at nine sites in central Ivory Coast. Treatments, including repeated fertilization with ammonium and urea, had no effect on nitrification and crop N status after 3 to 5 crop cycles. Nitrification was actually higher at low than medium ammonium level. The nitrifying community was always dominated by ammonia oxidizing archaea and Nitrospira. However, the abundances of ammonia oxidizing bacteria, AOB, and Nitrobacter increased with fertilization after 5 crop cycles. Several AOB populations, some affiliated to Nitrosospira strains with urease activity or adapted to fluctuating ammonium levels, emerged in fertilized plots, which was correlated to nitrifying community ability to benefit from fertilization. In these soils, dominant nitrifiers adapted to very low ammonium levels have to be replaced by high-N nitrifiers before fertilization can stimulate nitrification. Our results show that the delay required for this replacement is much longer than ever observed for other terrestrial ecosystems, i.e. > 5 crop cycles, and demonstrate for the first time that nitrifier characteristics jeopardize the efficiency of fertilization in moist savanna soils.
Collapse
|
29
|
Palviainen M, Pumpanen J, Berninger F, Ritala K, Duan B, Heinonsalo J, Sun H, Köster E, Köster K. Nitrogen balance along a northern boreal forest fire chronosequence. PLoS One 2017; 12:e0174720. [PMID: 28358884 PMCID: PMC5373610 DOI: 10.1371/journal.pone.0174720] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 03/14/2017] [Indexed: 12/02/2022] Open
Abstract
Fire is a major natural disturbance factor in boreal forests, and the frequency of forest fires is predicted to increase due to climate change. Nitrogen (N) is a key determinant of carbon sequestration in boreal forests because the shortage of N limits tree growth. We studied changes in N pools and fluxes, and the overall N balance across a 155-year non stand-replacing fire chronosequence in sub-arctic Pinus sylvestris forests in Finland. Two years after the fire, total ecosystem N pool was 622 kg ha-1 of which 16% was in the vegetation, 8% in the dead biomass and 76% in the soil. 155 years after the fire, total N pool was 960 kg ha-1, with 27% in the vegetation, 3% in the dead biomass and 69% in the soil. This implies an annual accumulation rate of 2.28 kg ha-1 which was distributed equally between soil and biomass. The observed changes in N pools were consistent with the computed N balance +2.11 kg ha-1 yr-1 over the 155-year post-fire period. Nitrogen deposition was an important component of the N balance. The biological N fixation increased with succession and constituted 9% of the total N input during the 155 post-fire years. N2O fluxes were negligible (≤ 0.01 kg ha-1 yr-1) and did not differ among post-fire age classes. The number and intensity of microbial genes involved in N cycling were lower at the site 60 years after fire compared to the youngest and the oldest sites indicating potential differences in soil N cycling processes. The results suggest that in sub-arctic pine forests, the non-stand-replacing, intermediate-severity fires decrease considerably N pools in biomass but changes in soil and total ecosystem N pools are slight. Current fire-return interval does not seem to pose a great threat to ecosystem productivity and N status in these sub-arctic forests.
Collapse
Affiliation(s)
- Marjo Palviainen
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Jukka Pumpanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Frank Berninger
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Kaisa Ritala
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Baoli Duan
- Institute of Mountain Hazards and Environment, Chengdu, China
| | - Jussi Heinonsalo
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Hui Sun
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Egle Köster
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Kajar Köster
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
30
|
Zhang CJ, Shen JP, Sun YF, Wang JT, Zhang LM, Yang ZL, Han HY, Wan SQ, He JZ. Interactive effects of multiple climate change factors on ammonia oxidizers and denitrifiers in a temperate steppe. FEMS Microbiol Ecol 2017; 93:3071446. [DOI: 10.1093/femsec/fix037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/11/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Cui-Jing Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ju-Pei Shen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Fei Sun
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun-Tao Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Li-Mei Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong-Ling Yang
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, College of Life Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Hong-Yan Han
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, College of Life Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Shi-Qiang Wan
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, College of Life Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Ji-Zheng He
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
31
|
Li L, Xing M, Lv J, Wang X, Chen X. Response of rhizosphere soil microbial to Deyeuxia angustifolia encroaching in two different vegetation communities in alpine tundra. Sci Rep 2017; 7:43150. [PMID: 28220873 PMCID: PMC5318906 DOI: 10.1038/srep43150] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/20/2017] [Indexed: 11/13/2022] Open
Abstract
Deyeuxia angustifolia (Komarov) Y. L Chang is an herb species originating from the birch forests in the Changbai Mountain. Recently, this species has been found encroaching into large areas in the western slopes of the alpine tundra in the Changbai Mountain, threatening the tundra ecosystem. In this study, we systematically assessed the response of the rhizosphere soil microbial to D. angustifolia encroaching in alpine tundra by conducting experiments for two vegetation types (shrubs and herbs) by real-time PCR and Illumina Miseq sequencing methods. The treatments consisted of D. angustifolia sites (DA), native sites (NS, NH) and encroaching sites (ES, EH). Our results show that (1) Rhizosphere soil properties of the alpine tundra were significantly impacted by D. angustifolia encroaching; microbial nutrient cycling and soil bacterial communities were shaped to be suitable for D. angustifolia growth; (2) The two vegetation community rhizosphere soils responded differently to D. angustifolia encroaching; (3) By encroaching into both vegetation communities, D. angustifolia could effectively replace the native species by establishing positive plant-soil feedback. The strong adaptation and assimilative capacity contributed to D. angustifolia encroaching in the alpine tundra. Our research indicates that D. angustifolia significantly impacts the rhizosphere soil microbial of the alpine tundra.
Collapse
Affiliation(s)
- Lin Li
- National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, Jilin University, Changchun 130112, China
- School of Life Science, Jilin University, Changchun 130012, China
| | - Ming Xing
- National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, Jilin University, Changchun 130112, China
- School of Life Science, Jilin University, Changchun 130012, China
| | - Jiangwei Lv
- Huhhot Vocational college, Huhht, Inner Mongolia 010051, China
| | - Xiaolong Wang
- National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, Jilin University, Changchun 130112, China
- School of Life Science, Jilin University, Changchun 130012, China
| | - Xia Chen
- National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, Jilin University, Changchun 130112, China
- School of Life Science, Jilin University, Changchun 130012, China
| |
Collapse
|
32
|
Zhang X, Johnston ER, Li L, Konstantinidis KT, Han X. Experimental warming reveals positive feedbacks to climate change in the Eurasian Steppe. ISME JOURNAL 2016; 11:885-895. [PMID: 27996978 DOI: 10.1038/ismej.2016.180] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 10/20/2016] [Accepted: 10/28/2016] [Indexed: 02/01/2023]
Abstract
Identifying soil microbial feedbacks to increasing temperatures and moisture alterations is critical for predicting how terrestrial ecosystems will respond to climate change. We performed a 5-year field experiment manipulating warming, watering and their combination in a semiarid temperate steppe in northern China. Warming stimulated the abundance of genes responsible for degrading recalcitrant soil organic matter (SOM) and reduced SOM content by 13%. Watering, and warming plus watering also increased the abundance of recalcitrant SOM catabolism pathways, but concurrently promoted plant growth and increased labile SOM content, which somewhat offset SOM loss. The treatments also increased microbial biomass, community complexity and metabolic potential for nitrogen and sulfur assimilation. Both microbial and plant community composition shifted with the treatment conditions, and the sample-to-sample compositional variations of the two communities (pairwise β-diversity distances) were significantly correlated. In particular, microbial community composition was substantially correlated with the dominant plant species (~0.54 Spearman correlation coefficient), much more than with measured soil indices, affirming a tight coupling between both biological communities. Collectively, our study revealed the direction and underlying mechanisms of microbial feedbacks to warming and suggested that semiarid regions of northern steppes could act as a net carbon source under increased temperatures, unless precipitation increases concurrently.
Collapse
Affiliation(s)
- Ximei Zhang
- Key Laboratory of Dryland Agriculture, MOA, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China.,School of Biology, Georgia Institute of Technology, Atlanta, GA, USA
| | - Eric R Johnston
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Linghao Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Konstantinos T Konstantinidis
- School of Biology, Georgia Institute of Technology, Atlanta, GA, USA.,School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Xingguo Han
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| |
Collapse
|
33
|
Zhou X, Smith H, Giraldo Silva A, Belnap J, Garcia-Pichel F. Differential Responses of Dinitrogen Fixation, Diazotrophic Cyanobacteria and Ammonia Oxidation Reveal a Potential Warming-Induced Imbalance of the N-Cycle in Biological Soil Crusts. PLoS One 2016; 11:e0164932. [PMID: 27776160 PMCID: PMC5077114 DOI: 10.1371/journal.pone.0164932] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/04/2016] [Indexed: 01/01/2023] Open
Abstract
N2 fixation and ammonia oxidation (AO) are the two most important processes in the nitrogen (N) cycle of biological soil crusts (BSCs). We studied the short-term response of acetylene reduction assay (ARA) rates, an indicator of potential N2 fixation, and AO rates to temperature (T, -5°C to 35°C) in BSC of different successional stages along the BSC ecological succession and geographic origin (hot Chihuahuan and cooler Great Basin deserts). ARA in all BSCs increased with T until saturation occurred between 15 and 20°C, and declined at 30-35°C. Culture studies using cyanobacteria isolated from these crusts indicated that the saturating effect was traceable to their inability to grow well diazotrophically within the high temperature range. Below saturation, temperature response was exponential, with Q10 significantly different in the two areas (~ 5 for Great Basin BSCs; 2-3 for Chihuahuan BSCs), but similar between the two successional stages. However, in contrast to ARA, AO showed a steady increase to 30-35°C in Great Basin, and Chihuhuan BSCs showed no inhibition at any tested temperature. The T response of AO also differed significantly between Great Basin (Q10 of 4.5-4.8) and Chihuahuan (Q10 of 2.4-2.6) BSCs, but not between successional stages. Response of ARA rates to T did not differ from that of AO in either desert. Thus, while both processes scaled to T in unison until 20°C, they separated to an increasing degree at higher temperature. As future warming is likely to occur in the regions where BSCs are often the dominant living cover, this predicted decoupling is expected to result in higher proportion of nitrates in soil relative to ammonium. As nitrate is more easily lost as leachate or to be reduced to gaseous forms, this could mean a depletion of soil N over large landscapes globally.
Collapse
Affiliation(s)
- Xiaobing Zhou
- Arizona State University, School of Life Sciences,Tempe, AZ 85287, United States of America
- Xinjiang Institute of Ecology and Geography, Key Laboratory of Biogeography and Bioresource in Arid Land, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, China
| | - Hilda Smith
- U. S. Geological Survey, Southwest Biological Science Center, Moab, UT 84532, United States of America
| | - Ana Giraldo Silva
- Arizona State University, School of Life Sciences,Tempe, AZ 85287, United States of America
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, United States of America
| | - Jayne Belnap
- U. S. Geological Survey, Southwest Biological Science Center, Moab, UT 84532, United States of America
| | - Ferran Garcia-Pichel
- Arizona State University, School of Life Sciences,Tempe, AZ 85287, United States of America
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, United States of America
- * E-mail:
| |
Collapse
|
34
|
Pajares S, Bohannan BJM. Ecology of Nitrogen Fixing, Nitrifying, and Denitrifying Microorganisms in Tropical Forest Soils. Front Microbiol 2016; 7:1045. [PMID: 27468277 PMCID: PMC4932190 DOI: 10.3389/fmicb.2016.01045] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/22/2016] [Indexed: 01/08/2023] Open
Abstract
Soil microorganisms play important roles in nitrogen cycling within forest ecosystems. Current research has revealed that a wider variety of microorganisms, with unexpected diversity in their functions and phylogenies, are involved in the nitrogen cycle than previously thought, including nitrogen-fixing bacteria, ammonia-oxidizing bacteria and archaea, heterotrophic nitrifying microorganisms, and anammox bacteria, as well as denitrifying bacteria, archaea, and fungi. However, the vast majority of this research has been focused in temperate regions, and relatively little is known regarding the ecology of nitrogen-cycling microorganisms within tropical and subtropical ecosystems. Tropical forests are characterized by relatively high precipitation, low annual temperature fluctuation, high heterogeneity in plant diversity, large amounts of plant litter, and unique soil chemistry. For these reasons, regulation of the nitrogen cycle in tropical forests may be very different from that of temperate ecosystems. This is of great importance because of growing concerns regarding the effect of land use change and chronic-elevated nitrogen deposition on nitrogen-cycling processes in tropical forests. In the context of global change, it is crucial to understand how environmental factors and land use changes in tropical ecosystems influence the composition, abundance and activity of key players in the nitrogen cycle. In this review, we synthesize the limited currently available information regarding the microbial communities involved in nitrogen fixation, nitrification and denitrification, to provide deeper insight into the mechanisms regulating nitrogen cycling in tropical forest ecosystems. We also highlight the large gaps in our understanding of microbially mediated nitrogen processes in tropical forest soils and identify important areas for future research.
Collapse
Affiliation(s)
- Silvia Pajares
- Unidad Académica de Ecología y Biodiversidad Acuática, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de MéxicoCoyoacán, Mexico
| | | |
Collapse
|
35
|
Winkler DE, Chapin KJ, Kueppers LM. Soil moisture mediates alpine life form and community productivity responses to warming. Ecology 2016; 97:1553-1563. [DOI: 10.1890/15-1197.1] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 01/04/2016] [Accepted: 01/11/2016] [Indexed: 11/18/2022]
Affiliation(s)
- Daniel E. Winkler
- School of Engineering University of California, Merced 5200 North Lake Road Merced CA 95343 USA
| | - Kenneth J. Chapin
- Department of Ecology and Evolutionary Biology University of California, Los Angeles 612 Charles E. Young Drive East Los Angeles CA 90095‐7246 USA
| | - Lara M. Kueppers
- Sierra Nevada Research Institute University of California, Merced 5200 North Lake Road Merced CA 95343 USA
- Climate and Ecosystem Sciences Division Lawrence Berkeley National Laboratory One Cyclotron Road Berkeley CA 94720 USA
| |
Collapse
|
36
|
Huang J, Xu X, Wang M, Nie M, Qiu S, Wang Q, Quan Z, Xiao M, Li B. Responses of soil nitrogen fixation to Spartina alterniflora invasion and nitrogen addition in a Chinese salt marsh. Sci Rep 2016; 6:20384. [PMID: 26869197 PMCID: PMC4751540 DOI: 10.1038/srep20384] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/31/2015] [Indexed: 11/26/2022] Open
Abstract
Biological nitrogen fixation (BNF) is the major natural process of nitrogen (N) input to ecosystems. To understand how plant invasion and N enrichment affect BNF, we compared soil N-fixation rates and N-fixing microbes (NFM) of an invasive Spartina alterniflora community and a native Phragmites australis community in the Yangtze River estuary, with and without N addition. Our results indicated that plant invasion relative to N enrichment had a greater influence on BNF. At each N level, the S. alterniflora community had a higher soil N-fixation rate but a lower diversity of the nifH gene in comparison with the native community. The S. alterniflora community with N addition had the highest soil N-fixation rate and the nifH gene abundance across all treatments. Our results suggest that S. alterniflora invasion can increase soil N fixation in the high N-loading estuarine ecosystem, and thus may further mediate soil N availability.
Collapse
Affiliation(s)
- Jingxin Huang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Fudan University, 2005 Songhu Rd, Shanghai 200438, Peoples R China
| | - Xiao Xu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Fudan University, 2005 Songhu Rd, Shanghai 200438, Peoples R China
| | - Min Wang
- Shanghai Academy of Environmental Sciences, 508 Qinzhou Rd, Shanghai 200233, Peoples R China
| | - Ming Nie
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Fudan University, 2005 Songhu Rd, Shanghai 200438, Peoples R China
| | - Shiyun Qiu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Fudan University, 2005 Songhu Rd, Shanghai 200438, Peoples R China
| | - Qing Wang
- Shanghai Academy of Environmental Sciences, 508 Qinzhou Rd, Shanghai 200233, Peoples R China
| | - Zhexue Quan
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, 2005 Songhu Rd, Shanghai 200438, Peoples R China
| | - Ming Xiao
- Department of Biology, Shanghai Normal University, 100 Guilin Rd, Shanghai 200234, Peoples R China
| | - Bo Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Fudan University, 2005 Songhu Rd, Shanghai 200438, Peoples R China
| |
Collapse
|
37
|
Lima-Perim JE, Romagnoli EM, Dini-Andreote F, Durrer A, Dias ACF, Andreote FD. Linking the Composition of Bacterial and Archaeal Communities to Characteristics of Soil and Flora Composition in the Atlantic Rainforest. PLoS One 2016; 11:e0146566. [PMID: 26752633 PMCID: PMC4713446 DOI: 10.1371/journal.pone.0146566] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/18/2015] [Indexed: 12/21/2022] Open
Abstract
The description of microbiomes as intrinsic fractions of any given ecosystem is an important issue, for instance, by linking their compositions and functions with other biotic and abiotic components of natural systems and hosts. Here we describe the archaeal and bacterial communities from soils of the Atlantic Rainforest in Brazil. Based on the comparison of three areas located along an altitudinal gradient-namely, Santa Virginia, Picinguaba and Restinga-we detected the most abundant groups of Bacteria (Acidobacteria and Proteobacteria) and Archaea (Thaumarchaeota, Crenarchaeota and Euryarchaeota). The particular composition of such communities in each of these areas was first evidenced by PCR-DGGE patterns [determined for Bacteria, Archaea and ammonia-oxidizing organisms-ammonia-oxidizing archaea (AOA) and bacteria (AOB)]. Moreover, sequence-based analysis provided a better resolution of communities, which indicated distinct frequencies of archaeal phyla and bacterial OTUs across areas. We found, as indicated by the Mantel test and multivariate analyses, a potential effect of the flora composition that outpaces the effect of soil characteristics (either physical and chemical) influencing the assembly of these microbial communities in soils. Our results indicate a collective role of the ecosystem underlying observed differences in microbial communities in these soils. Particularly, we posit that rainforest preservation also needs to take into account the maintenance of the soil biodiversity, as this is prompted to influence major processes that affect ecosystem functioning.
Collapse
Affiliation(s)
| | | | - Francisco Dini-Andreote
- Microbial Ecology Group, Genomic Research in Ecology and Evolution in Nature (GREEN), Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Ademir Durrer
- Department of Soil Science, ESALQ/USP, University of São Paulo, Piracicaba, Brazil
| | | | | |
Collapse
|
38
|
Zhang X, Johnston ER, Liu W, Li L, Han X. Environmental changes affect the assembly of soil bacterial community primarily by mediating stochastic processes. GLOBAL CHANGE BIOLOGY 2016; 22:198-207. [PMID: 26340501 DOI: 10.1111/gcb.13080] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 08/27/2015] [Indexed: 06/05/2023]
Abstract
Both 'species fitness difference'-based deterministic processes, such as competitive exclusion and environmental filtering, and 'species fitness difference'-independent stochastic processes, such as birth/death and dispersal/colonization, can influence the assembly of soil microbial communities. However, how both types of processes are mediated by anthropogenic environmental changes has rarely been explored. Here we report a novel and general pattern that almost all anthropogenic environmental changes that took place in a grassland ecosystem affected soil bacterial community assembly primarily through promoting or restraining stochastic processes. We performed four experiments mimicking 16 types of environmental changes and separated the compositional variation of soil bacterial communities caused by each environmental change into deterministic and stochastic components, with a recently developed method. Briefly, because the difference between control and treatment communities is primarily caused by deterministic processes, the deterministic change was quantified as (mean compositional variation between treatment and control) - (mean compositional variation within control). The difference among replicate treatment communities is primarily caused by stochastic processes, so the stochastic change was estimated as (mean compositional variation within treatment) - (mean compositional variation within control). The absolute of the stochastic change was greater than that of the deterministic change across almost all environmental changes, which was robust for both taxonomic and functional-based criterion. Although the deterministic change may become more important as environmental changes last longer, our findings showed that changes usually occurred through mediating stochastic processes over 5 years, challenging the traditional determinism-dominated view.
Collapse
Affiliation(s)
- Ximei Zhang
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164, China
- School of Biology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Eric R Johnston
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Wei Liu
- Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Linghao Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xingguo Han
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164, China
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
39
|
Riquelme C, Rigal F, Hathaway JJM, Northup DE, Spilde MN, Borges PAV, Gabriel R, Amorim IR, Dapkevicius MDLNE. Cave microbial community composition in oceanic islands: disentangling the effect of different colored mats in diversity patterns of Azorean lava caves. FEMS Microbiol Ecol 2015; 91:fiv141. [PMID: 26564959 DOI: 10.1093/femsec/fiv141] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2015] [Indexed: 11/14/2022] Open
Abstract
Processes determining diversity and composition of bacterial communities in island volcanic caves are still poorly understood. Here, we characterized colored microbial mats in 14 volcanic caves from two oceanic islands of the Azores using 16S rRNA gene sequences. Factors determining community diversity (α) and composition (β) were explored, namely colored mats, caves and islands, as well as environmental and chemical characteristics of caves. Additive partitioning of diversity using OTU occurrence showed a greater influence of β-diversity between islands and caves that may relate to differences in rare OTUs (singletons and doubletons) across scales. In contrast, Shannon diversity partitioning revealed the importance of the lowest hierarchical level (α diversity, colored mat), suggesting a dominance of cosmopolitan OTUs (>1%) in most samples. Cosmopolitan OTUs included members involved in nitrogen cycling, supporting the importance of this process in Azorean caves. Environmental and chemical conditions in caves did not show any significant relationship to OTU diversity and composition. The absence of clear differences between mat colors and across scales may be explained by (1) the geological youth of the cave system (cave communities have not had enough time to diverge) or/and (2) community convergence, as the result of selection pressure in extreme environments.
Collapse
Affiliation(s)
- Cristina Riquelme
- Food Science and Health Group (CITA-A), Universidade dos Açores, Departamento de Ciências Agrárias, Rua Capitão João d'Ávila, São Pedro, 9700-042 Angra do Heroísmo, Terceira, Azores, Portugal
| | - François Rigal
- cE3c - Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group and Universidade dos Açores - Departamento de Ciências Agrárias, Rua Capitão João d'Ávila, São Pedro, 9700-042 Angra do Heroísmo, Terceira, Azores, Portugal Environment and Microbiology Team, MELODY group, Université of Pau et des Pays de l'Adour, IPREM UMR CNRS 5254, BP 1155, 64013 Pau Cedex, France
| | - Jennifer J M Hathaway
- Department of Biology, MSC03 2020, 1 University of New Mexico, Albuquerque, NM 87131, USA
| | - Diana E Northup
- Department of Biology, MSC03 2020, 1 University of New Mexico, Albuquerque, NM 87131, USA
| | - Michael N Spilde
- Institute of Meteoritics, MSC03 2050, University of New Mexico, Albuquerque, NM 87131, USA
| | - Paulo A V Borges
- cE3c - Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group and Universidade dos Açores - Departamento de Ciências Agrárias, Rua Capitão João d'Ávila, São Pedro, 9700-042 Angra do Heroísmo, Terceira, Azores, Portugal
| | - Rosalina Gabriel
- cE3c - Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group and Universidade dos Açores - Departamento de Ciências Agrárias, Rua Capitão João d'Ávila, São Pedro, 9700-042 Angra do Heroísmo, Terceira, Azores, Portugal
| | - Isabel R Amorim
- cE3c - Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group and Universidade dos Açores - Departamento de Ciências Agrárias, Rua Capitão João d'Ávila, São Pedro, 9700-042 Angra do Heroísmo, Terceira, Azores, Portugal
| | - Maria de Lurdes N E Dapkevicius
- Food Science and Health Group (CITA-A), Universidade dos Açores, Departamento de Ciências Agrárias, Rua Capitão João d'Ávila, São Pedro, 9700-042 Angra do Heroísmo, Terceira, Azores, Portugal
| |
Collapse
|
40
|
Simonin M, Le Roux X, Poly F, Lerondelle C, Hungate BA, Nunan N, Niboyet A. Coupling Between and Among Ammonia Oxidizers and Nitrite Oxidizers in Grassland Mesocosms Submitted to Elevated CO2 and Nitrogen Supply. MICROBIAL ECOLOGY 2015; 70:809-18. [PMID: 25877793 DOI: 10.1007/s00248-015-0604-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 03/23/2015] [Indexed: 05/25/2023]
Abstract
Many studies have assessed the responses of soil microbial functional groups to increases in atmospheric CO2 or N deposition alone and more rarely in combination. However, the effects of elevated CO2 and N on the (de)coupling between different microbial functional groups (e.g., different groups of nitrifiers) have been barely studied, despite potential consequences for ecosystem functioning. Here, we investigated the short-term combined effects of elevated CO2 and N supply on the abundances of the four main microbial groups involved in soil nitrification: ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), and nitrite-oxidizing bacteria (belonging to the genera Nitrobacter and Nitrospira) in grassland mesocosms. AOB and AOA abundances responded differently to the treatments: N addition increased AOB abundance, but did not alter AOA abundance. Nitrobacter and Nitrospira abundances also showed contrasted responses to the treatments: N addition increased Nitrobacter abundance, but decreased Nitrospira abundance. Our results support the idea of a niche differentiation between AOB and AOA, and between Nitrobacter and Nitrospira. AOB and Nitrobacter were both promoted at high N and C conditions (and low soil water content for Nitrobacter), while AOA and Nitrospira were favored at low N and C conditions (and high soil water content for Nitrospira). In addition, Nitrobacter abundance was positively correlated to AOB abundance and Nitrospira abundance to AOA abundance. Our results suggest that the couplings between ammonia and nitrite oxidizers are influenced by soil N availability. Multiple environmental changes may thus elicit rapid and contrasted responses between and among the soil ammonia and nitrite oxidizers due to their different ecological requirements.
Collapse
Affiliation(s)
- Marie Simonin
- Institute of Ecology and Environmental Sciences - Paris, UMR 7618 Université Pierre et Marie Curie/CNRS/AgroParisTech, 78850, Thiverval Grignon, France
- Microbial Ecology Center, Université de Lyon/Université Lyon 1/CNRS/INRA, UMR CNRS 5557, USC INRA 1364, 69622, Villeurbanne, France
| | - Xavier Le Roux
- Microbial Ecology Center, Université de Lyon/Université Lyon 1/CNRS/INRA, UMR CNRS 5557, USC INRA 1364, 69622, Villeurbanne, France
| | - Franck Poly
- Microbial Ecology Center, Université de Lyon/Université Lyon 1/CNRS/INRA, UMR CNRS 5557, USC INRA 1364, 69622, Villeurbanne, France
| | - Catherine Lerondelle
- Microbial Ecology Center, Université de Lyon/Université Lyon 1/CNRS/INRA, UMR CNRS 5557, USC INRA 1364, 69622, Villeurbanne, France
| | - Bruce A Hungate
- Center for Ecosystem Science and Society and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Naoise Nunan
- Institute of Ecology and Environmental Sciences - Paris, UMR 7618 Université Pierre et Marie Curie/CNRS/AgroParisTech, 78850, Thiverval Grignon, France
| | - Audrey Niboyet
- Institute of Ecology and Environmental Sciences - Paris, UMR 7618 Université Pierre et Marie Curie/CNRS/AgroParisTech, 78850, Thiverval Grignon, France.
| |
Collapse
|
41
|
Wang C, Xiao H, Liu J, Wang L, Du D. Insights into Ecological Effects of Invasive Plants on Soil Nitrogen Cycles. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ajps.2015.61005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
42
|
Zhang X, Barberán A, Zhu X, Zhang G, Han X. Water content differences have stronger effects than plant functional groups on soil bacteria in a steppe ecosystem. PLoS One 2014; 9:e115798. [PMID: 25546333 PMCID: PMC4278768 DOI: 10.1371/journal.pone.0115798] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 11/26/2014] [Indexed: 12/14/2022] Open
Abstract
Many investigations across natural and artificial plant diversity gradients have reported that both soil physicochemical factors and plant community composition affect soil microbial communities. To test the effect of plant diversity loss on soil bacterial communities, we conducted a five-year plant functional group removal experiment in a steppe ecosystem in Inner Mongolia (China). We found that the number and composition type of plant functional groups had no effect on bacterial diversity and community composition, or on the relative abundance of major taxa. In contrast, bacterial community patterns were significantly structured by soil water content differences among plots. Our results support researches that suggest that water availability is the key factor structuring soil bacterial communities in this semi-arid ecosystem.
Collapse
Affiliation(s)
- Ximei Zhang
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Albert Barberán
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, United States of America
| | - Xunzhi Zhu
- School of Biology and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China
| | - Guangming Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- * E-mail: (GZ); (XH)
| | - Xingguo Han
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- * E-mail: (GZ); (XH)
| |
Collapse
|
43
|
Gómez-Silván C, Vílchez-Vargas R, Arévalo J, Gómez MA, González-López J, Pieper DH, Rodelas B. Quantitative response of nitrifying and denitrifying communities to environmental variables in a full-scale membrane bioreactor. BIORESOURCE TECHNOLOGY 2014; 169:126-133. [PMID: 25043345 DOI: 10.1016/j.biortech.2014.06.089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 06/24/2014] [Accepted: 06/25/2014] [Indexed: 05/15/2023]
Abstract
The abundance and transcription levels of specific gene markers of total bacteria, ammonia-oxidizing Betaproteobacteria, nitrite-oxidizing bacteria (Nitrospira-like) and denitrifiers (N2O-reducers) were analyzed using quantitative PCR (qPCR) and reverse-transcription qPCR during 9 months in a full-scale membrane bioreactor treating urban wastewater. A stable community of N-removal key players was developed; however, the abundance of active populations experienced sharper shifts, demonstrating their fast adaptation to changing conditions. Despite constituting a small percentage of the total bacterial community, the larger abundances of active populations of nitrifiers explained the high N-removal accomplished by the MBR. Multivariate analyses revealed that temperature, accumulation of volatile suspended solids in the sludge, BOD5, NH4(+) concentration and C/N ratio of the wastewater contributed significantly (23-38%) to explain changes in the abundance of nitrifiers and denitrifiers. However, each targeted group showed different responses to shifts in these parameters, evidencing the complexity of the balance among them for successful biological N-removal.
Collapse
Affiliation(s)
- C Gómez-Silván
- Departamento de Microbiología, Facultad de Farmacia, University of Granada, Granada, Spain.
| | - R Vílchez-Vargas
- Microbial Interactions and Processes Research Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - J Arévalo
- Departamento de Ingeniería Civil, University of Granada, Granada, Spain
| | - M A Gómez
- Departamento de Ingeniería Civil, University of Granada, Granada, Spain
| | - J González-López
- Departamento de Microbiología, Facultad de Farmacia, University of Granada, Granada, Spain
| | - D H Pieper
- Microbial Interactions and Processes Research Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - B Rodelas
- Departamento de Microbiología, Facultad de Farmacia, University of Granada, Granada, Spain
| |
Collapse
|
44
|
Morrissey EM, Franklin RB. Resource effects on denitrification are mediated by community composition in tidal freshwater wetlands soils. Environ Microbiol 2014; 17:1520-32. [DOI: 10.1111/1462-2920.12575] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 07/16/2014] [Indexed: 12/01/2022]
Affiliation(s)
- Ember M. Morrissey
- Department of Biology; Virginia Commonwealth University; 1000 W Cary Street Richmond VA 23284 USA
| | - Rima B. Franklin
- Department of Biology; Virginia Commonwealth University; 1000 W Cary Street Richmond VA 23284 USA
| |
Collapse
|
45
|
Ma J, Lin H, Sun W, Wang Q, Yu Q, Zhao Y, Fu J. Soil microbial systems respond differentially to tetracycline, sulfamonomethoxine, and ciprofloxacin entering soil under pot experimental conditions alone and in combination. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:7436-7448. [PMID: 24590603 DOI: 10.1007/s11356-014-2685-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 02/19/2014] [Indexed: 06/03/2023]
Abstract
This study investigated soil microbial responses to the application of tetracycline (TC), sulfamonomethoxine (SMM), and ciprofloxacin (CIP) alone and in combination in a soil culture pot experiment conducted at Hangzhou, China. Multiple approaches were applied for a better and complete depiction. Among the three antibiotics, SMM has a lowest dissipation and shows a most dramatic inhibition on microbial community and metabolism diversity. The combined application (AM) of SMM, CIP, and TC improved the dissipation of each antibiotic; similarly, SMM- and CIP-resistant bacteria showed larger populations in the AM than all single applications. Soils accumulated a large content of NO3-N at day 20 after multi-antibiotics perturbation. All antibiotics stimulated soil basal respirations and inhibited soil metabolism diversity, whereas the interruption exerted by SMM and AM lasted for a longer time. Six nitrogen-cycling genes including chiA, amoA, nifH, nirK, nirS, and narG were quantified and found to decrease owing to both single- and multi-antibiotics perturbation. Overall, AM was most interruptive for soils, followed by SMM perturbation, while other antibiotics could be less interruptive. These results provide systematic insights into how soil microbial systems would shift under each single- or multi-antibiotics perturbation.
Collapse
Affiliation(s)
- Junwei Ma
- Institute of Environment Resource and Soil Fertilizer, Zhejiang Academy of Agriculture Science, Hangzhou, 310021, China
| | | | | | | | | | | | | |
Collapse
|
46
|
Bacterial targets as potential indicators of diesel fuel toxicity in subantarctic soils. Appl Environ Microbiol 2014; 80:4021-33. [PMID: 24771028 DOI: 10.1128/aem.03939-13] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Appropriate remediation targets or universal guidelines for polar regions do not currently exist, and a comprehensive understanding of the effects of diesel fuel on the natural microbial populations in polar and subpolar soils is lacking. Our aim was to investigate the response of the bacterial community to diesel fuel and to evaluate if these responses have the potential to be used as indicators of soil toxicity thresholds. We set up short- and long-exposure tests across a soil organic carbon gradient. Utilizing broad and targeted community indices, as well as functional genes involved in the nitrogen cycle, we investigated the bacterial community structure and its potential functioning in response to special Antarctic blend (SAB) diesel fuel. We found the primary effect of diesel fuel toxicity was a reduction in species richness, evenness, and phylogenetic diversity, with the resulting community heavily dominated by a few species, principally Pseudomonas. The decline in richness and phylogenetic diversity was linked to disruption of the nitrogen cycle, with species and functional genes involved in nitrification significantly reduced. Of the 11 targets we evaluated, we found the bacterial amoA gene indicative of potential ammonium oxidation, the most suitable indicator of toxicity. Dose-response modeling for this target generated an average effective concentration responsible for 20% change (EC20) of 155 mg kg(-1), which is consistent with previous Macquarie Island ecotoxicology assays. Unlike traditional single-species tolerance testing, bacterial targets allowed us to simultaneously evaluate more than 1,700 species from 39 phyla, inclusive of rare, sensitive, and functionally relevant portions of the community.
Collapse
|