1
|
Otte EA, Smith TN, Glass N, Wolvetang EJ, Cooper-White JJ. Exploring the cell interactome: deciphering relative impacts of cell-cell communication in cell co-culture using a novel microfluidic device. LAB ON A CHIP 2024; 24:537-548. [PMID: 38168806 DOI: 10.1039/d3lc00670k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The human body is made up of approximately 40 trillion cells in close contact, with the cellular density of individual tissues varying from 1 million to 1 billion cells per cubic centimetre. Interactions between different cell types (termed heterotypic) are thus common in vivo. Communication between cells can take the form of direct cell-cell contact mediated by plasma membrane proteins or through paracrine signalling mediated through the release, diffusion, and receipt of soluble factors. There is currently no systematic method to investigate the relative contributions of these mechanisms to cell behaviour. In this paper, we detail the conception, development and validation of a microfluidic device that allows cell-cell contact and paracrine signalling in defined areas and over a variety of biologically relevant length scales, referred to as the interactome-device or 'I-device'. Importantly, by intrinsic device design features, cells in different regions in the device are exposed to four different interaction types, including a) no heterotypic cell interaction, b) only paracrine signalling, c) only cell-cell direct contact, or d) both forms of interaction (paracrine and cell-cell direct contact) together. The device design was validated by both mathematical modelling and experiments. Perfused stem cell culture over the medium term and the formation of direct contact between cells in the culture chambers was confirmed. The I-device offers significant flexibility, being able to be applied to any combination of adherent cells to determine the relative contributions of different communication mechanisms to cellular outcomes.
Collapse
Affiliation(s)
- Ellen A Otte
- Tissue Engineering and Microfluidics Laboratory (TE&M), Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, St Lucia, QLD, Australia.
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Manufacturing, Clayton, VIC, Australia
| | - Taryn N Smith
- School of Chemical Engineering, University of Queensland, St Lucia, QLD, Australia
| | - Nick Glass
- Tissue Engineering and Microfluidics Laboratory (TE&M), Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, St Lucia, QLD, Australia.
- The UQ Centre in Stem Cell Ageing and Regenerative Engineering (StemCARE), Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, Australia
| | - Ernst J Wolvetang
- Tissue Engineering and Microfluidics Laboratory (TE&M), Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, St Lucia, QLD, Australia.
- The UQ Centre in Stem Cell Ageing and Regenerative Engineering (StemCARE), Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, Australia
| | - Justin J Cooper-White
- Tissue Engineering and Microfluidics Laboratory (TE&M), Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, St Lucia, QLD, Australia.
- The UQ Centre in Stem Cell Ageing and Regenerative Engineering (StemCARE), Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, Australia
- School of Chemical Engineering, University of Queensland, St Lucia, QLD, Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Manufacturing, Clayton, VIC, Australia
| |
Collapse
|
2
|
Wang T, Wang YY, Shi MY, Liu L. Mechanisms of action of natural products on type 2 diabetes. World J Diabetes 2023; 14:1603-1620. [DOI: 10.4239/wjd.v14.i11.1603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/14/2023] [Accepted: 10/23/2023] [Indexed: 11/14/2023] Open
Abstract
Over the past several decades, type 2 diabetes mellitus (T2DM) has been considered a global public health concern. Currently, various therapeutic modalities are available for T2DM management, including dietary modifications, moderate exercise, and use of hypoglycemic agents and lipid-lowering medications. Although the curative effect of most drugs on T2DM is significant, they also exert some adverse side effects. Biologically active substances found in natural medicines are important for T2DM treatment. Several recent studies have reported that active ingredients derived from traditional medicines or foods exert a therapeutic effect on T2DM. This review compiled important articles regarding the therapeutic effects of natural products and their active ingredients on islet β cell function, adipose tissue inflammation, and insulin resistance. Additionally, this review provided an in-depth understanding of the multiple regulatory effects on different targets and signaling pathways of natural medicines in the treatment of T2DM as well as a theoretical basis for clinical effective application.
Collapse
Affiliation(s)
- Tao Wang
- Clinical Molecular Immunology Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Yang-Yang Wang
- Clinical Molecular Immunology Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Meng-Yue Shi
- Clinical Molecular Immunology Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Lian Liu
- Department of Pharmacology, Yangtze University, Jingzhou 434023, Hubei Province, China
| |
Collapse
|
3
|
Qi L, Matsuo K, Pereira A, Lee YT, Zhong F, He Y, Zushin PJH, Gröger M, Sharma A, Willenbring H, Hsiao EC, Stahl A. Human iPSC-Derived Proinflammatory Macrophages cause Insulin Resistance in an Isogenic White Adipose Tissue Microphysiological System. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2203725. [PMID: 37104853 PMCID: PMC10502939 DOI: 10.1002/smll.202203725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 02/01/2023] [Indexed: 06/08/2023]
Abstract
Chronic white adipose tissue (WAT) inflammation has been recognized as a critical early event in the pathogenesis of obesity-related disorders. This process is characterized by the increased residency of proinflammatory M1 macrophages in WAT. However, the lack of an isogenic human macrophage-adipocyte model has limited biological studies and drug discovery efforts, highlighting the need for human stem cell-based approaches. Here, human induced pluripotent stem cell (iPSC) derived macrophages (iMACs) and adipocytes (iADIPOs) are cocultured in a microphysiological system (MPS). iMACs migrate toward and infiltrate into the 3D iADIPOs cluster to form crown-like structures (CLSs)-like morphology around damaged iADIPOs, recreating classic histological features of WAT inflammation seen in obesity. Significantly more CLS-like morphologies formed in aged and palmitic acid-treated iMAC-iADIPO-MPS, showing the ability to mimic inflammatory severity. Importantly, M1 (proinflammatory) but not M2 (tissue repair) iMACs induced insulin resistance and dysregulated lipolysis in iADIPOs. Both RNAseq and cytokines analyses revealed a reciprocal proinflammatory loop in the interactions of M1 iMACs and iADIPOs. This iMAC-iADIPO-MPS thus successfully recreates pathological conditions of chronically inflamed human WAT, opening a door to study the dynamic inflammatory progression and identify clinically relevant therapies.
Collapse
Affiliation(s)
- Lin Qi
- Department of Nutritional Science and Toxicology, College of Natural Resources, University of California Berkeley, Berkeley, California, 94720, USA
| | - Koji Matsuo
- Division of Endocrinology and Metabolism, Institute for Human Genetics, the Eli and Edythe Broad Institute for Regeneration Medicine, and the Program in Craniofacial Biology, Department of Medicine, University of California, San Francisco
| | - Ashley Pereira
- Division of Endocrinology and Metabolism, Institute for Human Genetics, the Eli and Edythe Broad Institute for Regeneration Medicine, and the Program in Craniofacial Biology, Department of Medicine, University of California, San Francisco
| | - Yue Tung Lee
- Department of Nutritional Science and Toxicology, College of Natural Resources, University of California Berkeley, Berkeley, California, 94720, USA
| | - Fenmiao Zhong
- Department of Nutritional Science and Toxicology, College of Natural Resources, University of California Berkeley, Berkeley, California, 94720, USA
| | - Yuchen He
- Department of Nutritional Science and Toxicology, College of Natural Resources, University of California Berkeley, Berkeley, California, 94720, USA
| | - Peter-James H. Zushin
- Department of Nutritional Science and Toxicology, College of Natural Resources, University of California Berkeley, Berkeley, California, 94720, USA
| | - Marko Gröger
- Division of Transplant Surgery, Department of Surgery; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research; Liver Center, University of California, San Francisco
| | - Aditi Sharma
- Division of Endocrinology and Metabolism, Institute for Human Genetics, the Eli and Edythe Broad Institute for Regeneration Medicine, and the Program in Craniofacial Biology, Department of Medicine, University of California, San Francisco
| | - Holger Willenbring
- Division of Transplant Surgery, Department of Surgery; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research; Liver Center, University of California, San Francisco
| | - Edward C. Hsiao
- Division of Endocrinology and Metabolism, Institute for Human Genetics, the Eli and Edythe Broad Institute for Regeneration Medicine, and the Program in Craniofacial Biology, Department of Medicine, University of California, San Francisco
| | - Andreas Stahl
- Department of Nutritional Science and Toxicology, College of Natural Resources, University of California Berkeley, Berkeley, California, 94720, USA
| |
Collapse
|
4
|
Wu Y, Clark KC, Niranjan B, Chüeh AC, Horvath LG, Taylor RA, Daly RJ. Integrative characterisation of secreted factors involved in intercellular communication between prostate epithelial or cancer cells and fibroblasts. Mol Oncol 2023; 17:469-486. [PMID: 36608258 PMCID: PMC9980303 DOI: 10.1002/1878-0261.13376] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/05/2022] [Accepted: 01/05/2023] [Indexed: 01/07/2023] Open
Abstract
Reciprocal interactions between prostate cancer cells and carcinoma-associated fibroblasts (CAFs) mediate cancer development and progression; however, our understanding of the signalling pathways mediating these cellular interactions remains incomplete. To address this, we defined secretome changes upon co-culture of prostate epithelial or cancer cells with fibroblasts that mimic bi-directional communication in tumours. Using antibody arrays, we profiled conditioned media from mono- and co-cultures of prostate fibroblasts, epithelial and cancer cells, identifying secreted proteins that are upregulated in co-culture compared to mono-culture. Six of these (CXCL10, CXCL16, CXCL6, FST, PDGFAA, IL-17B) were functionally screened by siRNA knockdown in prostate cancer cell/fibroblast co-cultures, revealing a key role for follistatin (FST), a secreted glycoprotein that binds and bioneutralises specific members of the TGF-β superfamily, including activin A. Expression of FST by both cell types was required for the fibroblasts to enhance prostate cancer cell proliferation and migration, whereas FST knockdown in co-culture grafts decreased tumour growth in mouse xenografts. This study highlights the complexity of prostate cancer cell-fibroblast communication, demonstrates that co-culture secretomes cannot be predicted from individual cultures, and identifies FST as a tumour-microenvironment-derived secreted factor that represents a candidate therapeutic target.
Collapse
Affiliation(s)
- Yunjian Wu
- Cancer Program, Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVictoriaAustralia
| | - Kimberley C. Clark
- Cancer Program, Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVictoriaAustralia
| | - Birunthi Niranjan
- Cancer Program, Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
- Department of Anatomy and Developmental BiologyMonash UniversityClaytonVictoriaAustralia
| | - Anderly C. Chüeh
- Cancer Program, Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVictoriaAustralia
| | - Lisa G. Horvath
- Garvan Institute of Medical ResearchDarlinghurstNew South WalesAustralia
- University of SydneyNew South WalesAustralia
- Chris O'Brien LifehouseSydneyNew South WalesAustralia
| | - Renea A. Taylor
- Cancer Program, Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
- Department of PhysiologyMonash UniversityClaytonVictoriaAustralia
- Cancer Research Division, Peter MacCallum Cancer CentreThe University of MelbourneVictoriaAustralia
| | - Roger J. Daly
- Cancer Program, Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
5
|
Acosta-Martinez M, Cabail MZ. The PI3K/Akt Pathway in Meta-Inflammation. Int J Mol Sci 2022; 23:ijms232315330. [PMID: 36499659 PMCID: PMC9740745 DOI: 10.3390/ijms232315330] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022] Open
Abstract
Obesity is a global epidemic representing a serious public health burden as it is a major risk factor for the development of cardiovascular disease, stroke and all-cause mortality. Chronic low-grade systemic inflammation, also known as meta-inflammation, is thought to underly obesity's negative health consequences, which include insulin resistance and the development of type 2 diabetes. Meta-inflammation is characterized by the accumulation of immune cells in adipose tissue, a deregulation in the synthesis and release of adipokines and a pronounced increase in the production of proinflammatory factors. In this state, the infiltration of macrophages and their metabolic activation contributes to complex paracrine and autocrine signaling, which sustains a proinflammatory microenvironment. A key signaling pathway mediating the response of macrophages and adipocytes to a microenvironment of excessive nutrients is the phosphoinositide 3-kinase (PI3K)/Akt pathway. This multifaceted network not only transduces metabolic information but also regulates macrophages' intracellular changes, which are responsible for their phenotypic switch towards a more proinflammatory state. In the present review, we discuss how the crosstalk between macrophages and adipocytes contributes to meta-inflammation and provide an overview on the involvement of the PI3K/Akt signaling pathway, and how its impairment contributes to the development of insulin resistance.
Collapse
Affiliation(s)
- Maricedes Acosta-Martinez
- Department of Physiology and Biophysics, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Maria Zulema Cabail
- Biological Science Department, State University of New York-College at Old Westbury, Old Westbury, NY 11568, USA
- Correspondence:
| |
Collapse
|
6
|
Kahn D, Macias E, Zarini S, Garfield A, Zemski Berry K, MacLean P, Gerszten RE, Libby A, Solt C, Schoen J, Bergman BC. Exploring Visceral and Subcutaneous Adipose Tissue Secretomes in Human Obesity: Implications for Metabolic Disease. Endocrinology 2022; 163:6678177. [PMID: 36036084 PMCID: PMC9761573 DOI: 10.1210/endocr/bqac140] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Indexed: 11/19/2022]
Abstract
Adipose tissue secretions are depot-specific and vary based on anatomical location. Considerable attention has been focused on visceral (VAT) and subcutaneous (SAT) adipose tissue with regard to metabolic disease, yet our knowledge of the secretome from these depots is incomplete. We conducted a comprehensive analysis of VAT and SAT secretomes in the context of metabolic function. Conditioned media generated using SAT and VAT explants from individuals with obesity were analyzed using proteomics, mass spectrometry, and multiplex assays. Conditioned media were administered in vitro to rat hepatocytes and myotubes to assess the functional impact of adipose tissue signaling on insulin responsiveness. VAT secreted more cytokines (IL-12p70, IL-13, TNF-α, IL-6, and IL-8), adipokines (matrix metalloproteinase-1, PAI-1), and prostanoids (TBX2, PGE2) compared with SAT. Secretome proteomics revealed differences in immune/inflammatory response and extracellular matrix components. In vitro, VAT-conditioned media decreased hepatocyte and myotube insulin sensitivity, hepatocyte glucose handling, and increased basal activation of inflammatory signaling in myotubes compared with SAT. Depot-specific differences in adipose tissue secretome composition alter paracrine and endocrine signaling. The unique secretome of VAT has distinct and negative impact on hepatocyte and muscle insulin action.
Collapse
Affiliation(s)
- Darcy Kahn
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Emily Macias
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Simona Zarini
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Amanda Garfield
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Karin Zemski Berry
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Paul MacLean
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Robert E Gerszten
- The Cardiovascular Research Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Andrew Libby
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Claudia Solt
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jonathan Schoen
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Bryan C Bergman
- Correspondence: Bryan Bergman, PhD, Division of Endocrinology, Diabetes, and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
7
|
Gemperle C, Tran S, Schmid M, Rimann N, Marti-Jaun J, Hartling I, Wawrzyniak P, Hersberger M. Resolvin D1 reduces inflammation in co-cultures of primary human macrophages and adipocytes by triggering macrophages. Prostaglandins Leukot Essent Fatty Acids 2021; 174:102363. [PMID: 34740032 DOI: 10.1016/j.plefa.2021.102363] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/04/2021] [Accepted: 10/27/2021] [Indexed: 12/21/2022]
Abstract
Obesity leads to chronic inflammation of the adipose tissue which is tightly associated with the metabolic syndrome, type 2 diabetes and cardiovascular disease. Inflammation of the adipose tissue is mainly characterized by the presence of crown-like structures composed of inflammatory macrophages in the neighborhood of adipocytes. Resolvin D1 (RvD1), a potent anti-inflammatory and pro-resolving lipid mediator derived from the omega-3 fatty acid docosahexaenoic acid, has been shown to reduce the inflammatory tone of adipose tissue in animal models but the underlying mechanism is not clear. We investigated the effect of RvD1 on the inflammatory state of a human co-culture system of adipocytes and macrophages. For this, human mesenchymal stem cells were differentiated into mature adipocytes and overlaid with human primary macrophages. In this co-culture, 10-500 nM RvD1 dose-dependently reduced the secretion of the pro-inflammatory cytokine IL-6 (-21%) and its soluble receptor IL-6Rα (-22%), of the chemokine MCP-1 (-13%), and of the adipokine leptin (-22%). Similarly, we observed a reduction in secretion of the soluble receptor IL-6Rα (-20%), and TNF-α (-11%) when macrophages alone were treated with RvD1, while no change of cytokine secretion was observed when adipocytes were treated with RvD1. We conclude that RvD1 polarizes macrophages to an anti-inflammatory phenotype, which in turn modulates inflammation in adipocytes.
Collapse
Affiliation(s)
- Claudio Gemperle
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Syndi Tran
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Mattia Schmid
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Nicole Rimann
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Jacqueline Marti-Jaun
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Ivan Hartling
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland; Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Paulina Wawrzyniak
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Martin Hersberger
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland; Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
8
|
Kapoore RV, Padmaperuma G, Maneein S, Vaidyanathan S. Co-culturing microbial consortia: approaches for applications in biomanufacturing and bioprocessing. Crit Rev Biotechnol 2021; 42:46-72. [PMID: 33980092 DOI: 10.1080/07388551.2021.1921691] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The application of microbial co-cultures is now recognized in the fields of biotechnology, ecology, and medicine. Understanding the biological interactions that govern the association of microorganisms would shape the way in which artificial/synthetic co-cultures or consortia are developed. The ability to accurately predict and control cell-to-cell interactions fully would be a significant enabler in synthetic biology. Co-culturing method development holds the key to strategically engineer environments in which the co-cultured microorganism can be monitored. Various approaches have been employed which aim to emulate the natural environment and gain access to the untapped natural resources emerging from cross-talk between partners. Amongst these methods are the use of a communal liquid medium for growth, use of a solid-liquid interface, membrane separation, spatial separation, and use of microfluidics systems. Maximizing the information content of interactions monitored is one of the major challenges that needs to be addressed by these designs. This review critically evaluates the significance and drawbacks of the co-culturing approaches used to this day in biotechnological applications, relevant to biomanufacturing. It is recommended that experimental results for a co-cultured species should be validated with different co-culture approaches due to variations in interactions that could exist as a result of the culturing method selected.
Collapse
Affiliation(s)
- Rahul Vijay Kapoore
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, UK.,Department of Biosciences, College of Science, Swansea University, Swansea, UK
| | - Gloria Padmaperuma
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, UK
| | - Supattra Maneein
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, UK.,Department of Pharmaceutical, Chemical & Environmental Sciences, The University of Greenwich, Kent, UK
| | | |
Collapse
|
9
|
Ghadimi D, Nielsen A, Hassan MFY, Fölster-Holst R, Ebsen M, Frahm SO, Röcken C, de Vrese M, Heller KJ. Modulation of Proinflammatory Bacteria- and Lipid-Coupled Intracellular Signaling Pathways in a Transwell Triple Co-Culture Model by Commensal Bifidobacterium Animalis R101-8. Antiinflamm Antiallergy Agents Med Chem 2021; 20:161-181. [PMID: 33135616 DOI: 10.2174/1871523019999201029115618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/22/2020] [Accepted: 09/30/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND AIMS Following a fat-rich diet, alterations in gut microbiota contribute to enhanced gut permeability, metabolic endotoxemia, and low grade inflammation-associated metabolic disorders. To better understand whether commensal bifidobacteria influence the expression of key metaflammation-related biomarkers (chemerin, MCP-1, PEDF) and modulate the pro-inflammatory bacteria- and lipid-coupled intracellular signaling pathways, we aimed at i) investigating the influence of the establishment of microbial signaling molecules-based cell-cell contacts on the involved intercellular communication between enterocytes, immune cells, and adipocytes, and ii) assessing their inflammatory mediators' expression profiles within an inflamed adipose tissue model. MATERIAL AND METHODS Bifidobacterium animalis R101-8 and Escherichia coli TG1, respectively, were added to the apical side of a triple co-culture model consisting of intestinal epithelial HT-29/B6 cell line, human monocyte-derived macrophage cells, and adipose-derived stem cell line in the absence or presence of LPS or palmitic acid. mRNA expression levels of key lipid metabolism genes HILPDA, MCP-1/CCL2, RARRES2, SCD, SFRP2 and TLR4 were determined using TaqMan qRT-PCR. Protein expression levels of cytokines (IL-1β, IL-6, and TNF-α), key metaflammation-related biomarkers including adipokines (chemerin and PEDF), chemokine (MCP- 1) as well as cellular triglycerides were assessed by cell-based ELISA, while those of p-ERK, p-JNK, p-p38, NF-κB, p-IκBα, pc-Fos, pc-Jun, and TLR4 were assessed by Western blotting. RESULTS B. animalis R101-8 inhibited LPS- and palmitic acid-induced protein expression of inflammatory cytokines IL-1β, IL-6, TNF-α concomitant with decreases in chemerin, MCP-1, PEDF, and cellular triglycerides, and blocked NF-kB and AP-1 activation pathway through inhibition of p- IκBα, pc-Jun, and pc-Fos phosphorylation. B. animalis R101-8 downregulated mRNA and protein levels of HILPDA, MCP-1/CCL2, RARRES2, SCD and SFRP2 and TLR4 following exposure to LPS and palmitic acid. CONCLUSION B. animalis R101-8 improves biomarkers of metaflammation through at least two molecular/signaling mechanisms triggered by pro-inflammatory bacteria/lipids. First, B. animalis R101-8 modulates the coupled intracellular signaling pathways via metabolizing saturated fatty acids and reducing available bioactive palmitic acid. Second, it inhibits NF-kB's and AP-1's transcriptional activities, resulting in the reduction of pro-inflammatory markers. Thus, the molecular basis may be formed by which commensal bifidobacteria improve intrinsic cellular tolerance against excess pro-inflammatory lipids and participate in homeostatic regulation of metabolic processes in vivo.
Collapse
Affiliation(s)
- Darab Ghadimi
- Department of Microbiology and Biotechnology, Max Rubner-Institute, Hermann-Weigmann-Str 1, D-24103 Kiel, Germany
| | - Annegret Nielsen
- Department of Microbiology and Biotechnology, Max Rubner-Institute, Hermann-Weigmann-Str 1, D-24103 Kiel, Germany
| | | | - Regina Fölster-Holst
- Clinic of Dermatology, University Hospital Schleswig-Holstein, Schittenhelmstr. 7, D-24105 Kiel, Germany
| | - Michael Ebsen
- Department of Pathology, Städtisches MVZ Kiel GmbH (Kiel City Hospital), Chemnitzstr.33, 24116 Kiel, Germany
| | - Sven Olaf Frahm
- Medizinisches Versorgungszentrum (MVZ), Pathology and Laboratory Medicine Dr. Rabenhorst, Prüner Gang 7, 24103 Kiel, Germany
| | - Christoph Röcken
- Institute of Pathology, Kiel University, University Hospital, Schleswig-Holstein, Arnold-Heller-Straße 3/14, D-24105 Kiel, Germany
| | - Michael de Vrese
- Department of Microbiology and Biotechnology, Max Rubner-Institute, Hermann-Weigmann-Str 1, D-24103 Kiel, Germany
| | - Knut J Heller
- Department of Microbiology and Biotechnology, Max Rubner-Institute, Hermann-Weigmann-Str 1, D-24103 Kiel, Germany
| |
Collapse
|
10
|
Adipose and Muscle Cell Co-Culture System: A Novel In Vitro Tool to Mimic the In Vivo Cellular Environment. BIOLOGY 2020; 10:biology10010006. [PMID: 33374127 PMCID: PMC7823969 DOI: 10.3390/biology10010006] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/14/2020] [Accepted: 12/23/2020] [Indexed: 12/18/2022]
Abstract
A co-culture system allows researchers to investigate the complex interactions between two cell types under various environments, such as those that promote differentiation and growth as well as those that mimic healthy and diseased states, in vitro. In this paper, we review the most common co-culture systems for myocytes and adipocytes. The in vitro techniques mimic the in vivo environment and are used to investigate the causal relationships between different cell lines. Here, we briefly discuss mono-culture and co-culture cell systems and their applicability to the study of communication between two or more cell types, including adipocytes and myocytes. Also, we provide details about the different types of co-culture systems and their applicability to the study of metabolic disease, drug development, and the role of secretory factors in cell signaling cascades. Therefore, this review provides details about the co-culture systems used to study the complex interactions between adipose and muscle cells in various environments, such as those that promote cell differentiation and growth and those used for drug development.
Collapse
|
11
|
Bahmad HF, Daouk R, Azar J, Sapudom J, Teo JCM, Abou-Kheir W, Al-Sayegh M. Modeling Adipogenesis: Current and Future Perspective. Cells 2020; 9:cells9102326. [PMID: 33092038 PMCID: PMC7590203 DOI: 10.3390/cells9102326] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/07/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
Adipose tissue is contemplated as a dynamic organ that plays key roles in the human body. Adipogenesis is the process by which adipocytes develop from adipose-derived stem cells to form the adipose tissue. Adipose-derived stem cells’ differentiation serves well beyond the simple goal of producing new adipocytes. Indeed, with the current immense biotechnological advances, the most critical role of adipose-derived stem cells remains their tremendous potential in the field of regenerative medicine. This review focuses on examining the physiological importance of adipogenesis, the current approaches that are employed to model this tightly controlled phenomenon, and the crucial role of adipogenesis in elucidating the pathophysiology and potential treatment modalities of human diseases. The future of adipogenesis is centered around its crucial role in regenerative and personalized medicine.
Collapse
Affiliation(s)
- Hisham F. Bahmad
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, 1107 2260 Beirut, Lebanon; (H.F.B.); (R.D.); (J.A.)
| | - Reem Daouk
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, 1107 2260 Beirut, Lebanon; (H.F.B.); (R.D.); (J.A.)
| | - Joseph Azar
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, 1107 2260 Beirut, Lebanon; (H.F.B.); (R.D.); (J.A.)
| | - Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, 2460 Abu Dhabi, UAE;
| | - Jeremy C. M. Teo
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, 2460 Abu Dhabi, UAE;
- Correspondence: (J.C.M.T.); (W.A.-K.); (M.A.-S.); Tel.: +97126286689 (J.C.M.T.); +9611350000 (ext. 4778) (W.A.-K.); +97126284560 (M.A.-S.)
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, 1107 2260 Beirut, Lebanon; (H.F.B.); (R.D.); (J.A.)
- Correspondence: (J.C.M.T.); (W.A.-K.); (M.A.-S.); Tel.: +97126286689 (J.C.M.T.); +9611350000 (ext. 4778) (W.A.-K.); +97126284560 (M.A.-S.)
| | - Mohamed Al-Sayegh
- Biology Division, New York University Abu Dhabi, 2460 Abu Dhabi, UAE
- Correspondence: (J.C.M.T.); (W.A.-K.); (M.A.-S.); Tel.: +97126286689 (J.C.M.T.); +9611350000 (ext. 4778) (W.A.-K.); +97126284560 (M.A.-S.)
| |
Collapse
|
12
|
Gourronc FA, Perdew GH, Robertson LW, Klingelhutz AJ. PCB126 blocks the thermogenic beiging response of adipocytes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:8897-8904. [PMID: 31721030 PMCID: PMC7098842 DOI: 10.1007/s11356-019-06663-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 10/01/2019] [Indexed: 05/16/2023]
Abstract
Subcutaneous white adipose tissue is capable of becoming thermogenic in a process that is referred to as "beiging." Beiging is associated with activation of the uncoupling protein, UCP1, and is known to be important for preventing adipose hypertrophy and development of insulin resistance. Polychlorinated biphenyls (PCBs) accumulate in fat, and it is hypothesized that disruption of adipogenesis and adipocyte function by PCBs may be causative in the development of obesity and diabetes. We developed immortal human subcutaneous preadipocytes that, when differentiated, are capable of beiging. Preadipocytes that were treated with polychlorinated biphenyl congener 126 (PCB126), followed by differentiation, were suppressed for their ability to activate UCP1 upon β-adrenergic stimulation with norepinephrine (NE), demonstrating a block in the beiging response. Treatment of preadipocytes with another known endogenous AhR agonist, indoxyl sulfate (IS), followed by differentiation also blocked the NE-stimulated upregulation of UCP1. Knockdown of the aryl hydrocarbon receptor (AhR) caused the preadipocytes to be refractory to PCB126 and IS effects. The chemical AhR antagonist, CH223191, was effective at preventing the effects of PCB126 but not IS, indicating AhR ligand specificity of CH223191. Repression of NE-induced UCP1 upregulation was also observed when already-differentiated mature adipocytes were treated with PCB126 but not IS. These results indicate that exposure of preadipocytes to endogenous (IS) or exogenous (PCB126) AhR agonists is effective at blocking them from becoming functional adipocytes that are capable of the beiging response. Mature adipocytes may have differential responses. This finding suggests a mechanism by which dioxin-like PCBs such as PCB126 could lead to disruption in energy homeostasis, potentially leading to obesity and diabetes.
Collapse
Affiliation(s)
- Francoise A Gourronc
- Department of Microbiology and Immunology, University of Iowa, 3-612 BSB, 51 Newton Road, Iowa City, IA, 52242, USA
| | - Gary H Perdew
- Center for Molecular Toxicology and Carcinogenesis and the Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, 16802, PA, USA
| | - Larry W Robertson
- Department of Occupational & Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, 52242, USA
| | - Aloysius J Klingelhutz
- Department of Microbiology and Immunology, University of Iowa, 3-612 BSB, 51 Newton Road, Iowa City, IA, 52242, USA.
| |
Collapse
|
13
|
Bhattacharya I, Ghayor C, Pérez Dominguez A, Weber FE. From Influenza Virus to Novel Corona Virus (SARS-CoV-2)-The Contribution of Obesity. Front Endocrinol (Lausanne) 2020; 11:556962. [PMID: 33123087 PMCID: PMC7573145 DOI: 10.3389/fendo.2020.556962] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/01/2020] [Indexed: 12/15/2022] Open
Abstract
From the beginning of 2020, the governments and the health systems around the world are tackling infections and fatalities caused by the novel severe acute respiratory syndrome coronavirus (SARS-CoV-2) resulting in the coronavirus disease 2019 (COVID-19). This virus pandemic has turned more complicated as individuals with co-morbidities like diabetes, cardiovascular conditions and obesity are at a high risk of acquiring infection and suffering from a more severe course of disease. Prolonged viral infection and obesity are independently known to lower the immune response and a combination can thus result in a "cytokine storm" and a substantial weakening of the immune system. With the rise in obesity cases globally, the chances that obese individuals will acquire infection and need hospitalization are heightened. In this review, we discuss why obesity, a low-grade chronic inflammation, contributes toward the increased severity in COVID-19 patients. We suggest that increased inflammation, activation of renin-angiotensin-aldosterone system, elevated adipokines and higher ectopic fat may be the factors contributing to the disease severity, in particular deteriorating the cardiovascular and lung function, in obese individuals. We look at the many lessons learnt from the 2009 H1N1 influenza A pandemic and relate it to the very little but fast incoming information that is available from the SARS-CoV-2 infected individuals with overweight and obesity.
Collapse
Affiliation(s)
- Indranil Bhattacharya
- Oral Biotechnology and Bioengineering, Department of Cranio-Maxillofacial and Oral Surgery, Center for Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Chafik Ghayor
- Oral Biotechnology and Bioengineering, Department of Cranio-Maxillofacial and Oral Surgery, Center for Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Ana Pérez Dominguez
- Oral Biotechnology and Bioengineering, Department of Cranio-Maxillofacial and Oral Surgery, Center for Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Franz E. Weber
- Oral Biotechnology and Bioengineering, Department of Cranio-Maxillofacial and Oral Surgery, Center for Dental Medicine, University of Zurich, Zurich, Switzerland
- Centre for Applied Biotechnology and Molecular Medicine, University of Zurich, Zurich, Switzerland
- Zurich Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
- *Correspondence: Franz E. Weber
| |
Collapse
|
14
|
Nonalcoholic Fatty Liver Disease: A Challenge from Mechanisms to Therapy. J Clin Med 2019; 9:jcm9010015. [PMID: 31861591 PMCID: PMC7019297 DOI: 10.3390/jcm9010015] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/05/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
Focusing on previously published mechanisms of non-alcoholic fatty liver disease (NAFLD), their uncertainty does not always permit a clear elucidation of the grassroot alterations that are at the basis of the wide-spread illness, and thus curing it is still a challenge. There is somehow exceptional progress, but many controversies persist in NAFLD research and clinical investigation. It is likely that hidden mechanisms will be brought to light in the near future. Hereby, the authors present, with some criticism, classical mechanisms that stand at the basis of NAFLD, and consider contextually different emerging processes. Without ascertaining these complex interactions, investigators have a long way left ahead before finding an effective therapy for NAFLD beyond diet and exercise.
Collapse
|
15
|
Liddle DM, Monk JM, Hutchinson AL, Ma DWL, Robinson LE. CD8 + T cell/adipocyte inflammatory cross talk and ensuing M1 macrophage polarization are reduced by fish-oil-derived n-3 polyunsaturated fatty acids, in part by a TNF-α-dependent mechanism. J Nutr Biochem 2019; 76:108243. [PMID: 31760229 DOI: 10.1016/j.jnutbio.2019.108243] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/15/2019] [Accepted: 09/10/2019] [Indexed: 12/25/2022]
Abstract
Obese visceral adipose tissue (AT) inflammation is driven by adipokine-mediated cross talk between CD8+ T cells and adipocytes, a process mitigated by long-chain (LC) n-3 polyunsaturated fatty acids (PUFA) but underlying mechanisms and ensuing effects on macrophage polarization status are unknown. Using an in vitro co-culture model that recapitulates the degree of CD8+ T cell infiltration reported in obese AT, 3T3-L1 adipocytes were co-cultured for 24 h with purified splenic CD8+ T cells from C57Bl/6 mice consuming either a 10% w/w safflower oil (control, CON) or 7% w/w safflower oil + 3% w/w fish oil (FO) diet for 4 weeks (n=8-10/diet). Co-cultured cells were in direct contact or in a contact-independent condition separated by a Transwell permeable membrane and stimulated with lipopolysaccharide (10 ng/ml) to mimic in vivo obese endotoxin levels. In contact-dependent co-cultures, FO reduced inflammatory (IL-6, TNFα, IFN-γ) and macrophage chemotactic (CCL2, CCL7, CCL3) mRNA expression and/or secreted protein, NF-κB p65 activation, ROS accumulation, NLRP3 inflammasome priming (Nlrp3, Il1β mRNA) and activation (caspase-1 activity) compared to CON (P<.05). The anti-inflammatory action of FO was reproduced by the addition of a TNF-α neutralizing antibody (1 μg/ml) to CON co-cultures (CON/anti-TNF-α), albeit to a lesser degree. Conditioned media from FO and CON/anti-TNF-α co-cultures, in turn, reduced RAW 264.7 macrophage mRNA expression of M1 polarization markers (iNos, Cd11c, Ccr2) and associated inflammatory cytokines (Il6, Tnfα, Il1β) compared to CON. These data suggest that inflammatory CD8+ T cell/adipocyte cross talk is partially attributable to TNF-α signaling, which can be mitigated by LC n-3 PUFA.
Collapse
Affiliation(s)
- Danyelle M Liddle
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Jennifer M Monk
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Amber L Hutchinson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - David W L Ma
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Lindsay E Robinson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada, N1G 2W1.
| |
Collapse
|
16
|
Scoditti E, Carpi S, Massaro M, Pellegrino M, Polini B, Carluccio MA, Wabitsch M, Verri T, Nieri P, De Caterina R. Hydroxytyrosol Modulates Adipocyte Gene and miRNA Expression Under Inflammatory Condition. Nutrients 2019; 11:nu11102493. [PMID: 31627295 PMCID: PMC6836288 DOI: 10.3390/nu11102493] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/10/2019] [Accepted: 10/15/2019] [Indexed: 12/13/2022] Open
Abstract
Chronic inflammation of the adipose tissue (AT) is a major contributor to obesity-associated cardiometabolic complications. The olive oil polyphenol hydroxytyrosol (HT) contributes to Mediterranean diet cardiometabolic benefits through mechanisms still partially unknown. We investigated HT (1 and 10 μmol/L) effects on gene expression (mRNA and microRNA) related to inflammation induced by 10 ng/mL tumor necrosis factor (TNF)-α in human Simpson–Golabi–Behmel Syndrome (SGBS) adipocytes. At real-time PCR, HT significantly inhibited TNF-α-induced mRNA levels, of monocyte chemoattractant protein-1, C-X-C Motif Ligand-10, interleukin (IL)-1β, IL-6, vascular endothelial growth factor, plasminogen activator inhibitor-1, cyclooxygenase-2, macrophage colony-stimulating factor, matrix metalloproteinase-2, Cu/Zn superoxide dismutase-1, and glutathione peroxidase, as well as surface expression of intercellular adhesion molecule-1, and reverted the TNF-α-mediated inhibition of endothelial nitric oxide synthase, peroxisome proliferator-activated receptor coactivator-1α, and glucose transporter-4. We found similar effects in adipocytes stimulated by macrophage-conditioned media. Accordingly, HT significantly counteracted miR-155-5p, miR-34a-5p, and let-7c-5p expression in both cells and exosomes, and prevented NF-κB activation and production of reactive oxygen species. HT can therefore modulate adipocyte gene expression profile through mechanisms involving a reduction of oxidative stress and NF-κB inhibition. By such mechanisms, HT may blunt macrophage recruitment and improve AT inflammation, preventing the deregulation of pathways involved in obesity-related diseases.
Collapse
Affiliation(s)
- Egeria Scoditti
- National Research Council (CNR) Institute of Clinical Physiology (IFC), 73100 Lecce, Italy.
| | - Sara Carpi
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Pisa, 56126 Pisa, Italy.
| | - Marika Massaro
- National Research Council (CNR) Institute of Clinical Physiology (IFC), 73100 Lecce, Italy.
| | - Mariangela Pellegrino
- Laboratory of Applied Physiology, Department of Biological and Environmental Science and Technology (DISTEBA), University of Salento, 73100 Lecce, Italy.
| | - Beatrice Polini
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Pisa, 56126 Pisa, Italy.
| | | | - Martin Wabitsch
- Division of Pediatric Endocrinology, Diabetes and Obesity, Department of Pediatrics and Adolescent Medicine, University of Ulm, 89075 Ulm, Germany.
| | - Tiziano Verri
- Laboratory of Applied Physiology, Department of Biological and Environmental Science and Technology (DISTEBA), University of Salento, 73100 Lecce, Italy.
| | - Paola Nieri
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Pisa, 56126 Pisa, Italy.
| | | |
Collapse
|
17
|
Rebollo-Hernanz M, Zhang Q, Aguilera Y, Martín-Cabrejas MA, de Mejia EG. Cocoa Shell Aqueous Phenolic Extract Preserves Mitochondrial Function and Insulin Sensitivity by Attenuating Inflammation between Macrophages and Adipocytes In Vitro. Mol Nutr Food Res 2019; 63:e1801413. [PMID: 31018035 DOI: 10.1002/mnfr.201801413] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/10/2019] [Indexed: 12/12/2022]
Abstract
SCOPE The aim is to assess the action of an aqueous extract from cocoa shell (CAE) and its main phenolic compounds to prevent the loss of obesity-induced mitochondrial function and insulin sensitivity, targeting inflammation between macrophages-adipocytes in vitro. METHODS AND RESULTS CAE (31-500 µg mL-1 ) inhibits 3T3-L1 adipocytes lipid accumulation and induces browning during differentiation. LPS-stimulated RAW264.7 macrophages show reduced inducible nitric oxide synthase and cyclooxygenase-2 expression and lowered pro-inflammatory cytokine production when treated with CAE and pure phenolics. Inflammatory crosstalk created by stimulating adipocytes with macrophage-conditioned media (CM) is arrested; CAE diminishes tumor necrosis factor-α (67%) and promotes adiponectin secretion (12.3-fold). Mitochondrial function, measured by reactive oxygen species production, mitochondrial content, and activity, is preserved in CM-treated adipocytes through up-regulating peroxisome proliferator-activated receptor gamma coactivator 1-α expression. Increases in insulin receptor (9-fold), phosphoinositide 3-kinase (3-fold), protein kinase B (4-fold) phosphorylation, and a decrease in insulin receptor substrate 1 serine phosphorylation induce increased glucose uptake (34%) and glucose transporter 4 translocation (14-fold) in CM-induced adipocytes. CONCLUSION CAE phenolics promote a beige phenotype in adipocytes. Macrophages-adipocytes inflammatory interaction is reduced preventing mitochondrial dysfunction and insulin resistance. For the first time, CAE shows a positive effect on adipogenesis and inflammation-related disorders.
Collapse
Affiliation(s)
- Miguel Rebollo-Hernanz
- Institute of Food Science Research, CIAL (UAM-CSIC), 28049, Madrid, Spain.,Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049, Madrid, Spain.,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, IL, 61801, USA
| | - Qiaozhi Zhang
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, IL, 61801, USA.,College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yolanda Aguilera
- Institute of Food Science Research, CIAL (UAM-CSIC), 28049, Madrid, Spain.,Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Maria A Martín-Cabrejas
- Institute of Food Science Research, CIAL (UAM-CSIC), 28049, Madrid, Spain.,Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Elvira Gonzalez de Mejia
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, IL, 61801, USA
| |
Collapse
|
18
|
Kongsuphol P, Gupta S, Liu Y, Bhuvanendran Nair Gourikutty S, Biswas SK, Ramadan Q. In vitro micro-physiological model of the inflamed human adipose tissue for immune-metabolic analysis in type II diabetes. Sci Rep 2019; 9:4887. [PMID: 30894623 PMCID: PMC6426956 DOI: 10.1038/s41598-019-41338-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/28/2019] [Indexed: 12/14/2022] Open
Abstract
Chronic inflammation mediated by the interaction of immune cells and adipocytes is a key underlying factor in obesity-associated type 2 diabetes mellitus (T2DM). Therefore, methods to investigate adipocyte-immune cells interaction and their immuno-metabolic status in obese/T2DM subjects not only serve as an early indicator of disease development but also provide an insight into disease mechanism. A microfluidic-based in vitro model of the human adipose that is interfaced with a co-culture of immune cell has been developed for in vitro immune-metabolic analysis. This miniaturized system integrates a biologically active in vitro cellular system within a perfusion-based microfluidic device for mimicking the major processes that characterize the interaction of adipose tissue with immune cells. A viable immune competent model of the adipocytes/PBMCs co-culture has been demonstrated and characterized. Our testing results showed that the inflammatory cytokine profile obtained from the on-chip culture agrees with those from static transwell based co-culture with more intense responses observed in the chip-based system. The microfluidic chip also allows time-resolved measurement of cytokines that provide reliable data and detailed mechanisms of inflammation. In addition, glucose uptake by the adipocytes from the chip-based cultures showed correlated insulin responsivity/resistivity to the expression of the cytokine profile in different dynamic culture conditions. Testing of the known diabetic drug, metformin, and neutraceutical compound, omega-3, on-chip show agreeable results as compared to the previously reported data. This organotypic culture system offers a physiologically relevant model that exhibits a key characteristic of type 2 diabetic adipose tissues and can be used to study the T2DM mechanisms and diabetic drug screening.
Collapse
Affiliation(s)
- Patthara Kongsuphol
- Institute of Microelectronics, Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, #08-02, Innovis, Singapore, 138634, Singapore
| | - Shilpi Gupta
- Singapore Immunology Network, A*STAR, 8a Biomedical Grove, Immunos, Singapore, 138648, Singapore
| | - Yunxiao Liu
- Institute of Microelectronics, Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, #08-02, Innovis, Singapore, 138634, Singapore
| | - Sajay Bhuvanendran Nair Gourikutty
- Institute of Microelectronics, Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, #08-02, Innovis, Singapore, 138634, Singapore
| | - Subhra K Biswas
- Singapore Immunology Network, A*STAR, 8a Biomedical Grove, Immunos, Singapore, 138648, Singapore
| | - Qasem Ramadan
- Institute of Microelectronics, Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, #08-02, Innovis, Singapore, 138634, Singapore.
| |
Collapse
|
19
|
Liu Y, Kongsuphol P, Chiam SY, Zhang QX, Gourikutty SBN, Saha S, Biswas SK, Ramadan Q. Adipose-on-a-chip: a dynamic microphysiological in vitro model of the human adipose for immune-metabolic analysis in type II diabetes. LAB ON A CHIP 2019; 19:241-253. [PMID: 30566152 DOI: 10.1039/c8lc00481a] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Infiltration of immune cells into adipose tissue is associated with chronic low-grade inflammation in obese individuals. To better understand the crosstalk between immune cells and adipocytes, in vivo-like in vitro models are required. Conventionally transwell culture plates are used for studying the adipocyte-immune cell interaction; however, the static culture nature of this approach falls short of closely recapitulating the physiological environment. Here we present a compartmentalized microfluidic co-culture system which provides a constant-rate of nutrient supply as well as waste removal, resembling the microvascular networks of the in vivo environment. Human adipocytes and U937 cells were co-cultured in close proximity in an enclosed system. The porous barrier between the adjacent compartments comprises an array of microchannels, which enables paracrine interaction between cells in adjacent compartments and improved perfusion-based long term cell feeding. Human pre-adipocytes were fully differentiated into adipocytes on the chip and remained viable for several weeks. Upon co-culturing with immune cells, adipocytes showed a tendency to develop insulin resistance. The immune-metabolic correlation has been studied by monitoring adiponectin and IL-6 expression, as well as glucose uptake upon treatment with insulin. Our microfluidic system can be potentially used to develop physiologically relevant adipose tissue models to study obesity-associated diseases such as insulin resistance and type 2 diabetes and therefore, facilitate drug development to treat these diseases.
Collapse
Affiliation(s)
- Yunxiao Liu
- Institute of Microelectronic, A* STAR (Agency for Science, Technology and Research), 2, Fusionopolis Way, #08-02, Innovis Tower, 138635 Singapore.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Saleh LS, Bryant SJ. The Host Response in Tissue Engineering: Crosstalk Between Immune cells and Cell-laden Scaffolds. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2018; 6:58-65. [PMID: 30374467 DOI: 10.1016/j.cobme.2018.03.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Implantation of cell-laden scaffolds is a promising strategy for regenerating tissue that has been damaged due to injury or disease. However, the act of implantation initiates an acute inflammatory response. If the scaffold is non-biologic (i.e., a modified biologic scaffold or synthetic-based scaffold), inflammation will be prolonged through the foreign body response (FBR), which eventually forms a fibrous capsule and walls off the implant from the surrounding host tissue. This host response, from a cellular perspective, can create a harsh environment leading to long-lasting effects on the tissue engineering outcome. At the same time, cells embedded within the scaffold can respond to this environment and influence the interrogating immune cells (e.g., macrophages). This crosstalk, depending on the type of cell, can dramatically influence the host response. This review provides an overview of the FBR and highlights important and recent advancements in the host response to cell-laden scaffolds with a focus on the impact of the communication between immune cells and cells embedded within a scaffold. Understanding this complex interplay between the immune cells, notably macrophages, and the tissue engineering cells is a critically important component to a successful in vivo tissue engineering therapy.
Collapse
Affiliation(s)
- Leila S Saleh
- Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Avenue, Boulder, CO 80303, USA
| | - Stephanie J Bryant
- Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Avenue, Boulder, CO 80303, USA.,BioFrontiers Institute, University of Colorado, 3415 Colorado Avenue, Boulder, CO 80303, USA.,Material Science and Engineering Program, University of Colorado, 3415 Colorado Avenue, Boulder, CO 80303, USA
| |
Collapse
|
21
|
Barrea L, Di Somma C, Muscogiuri G, Tarantino G, Tenore GC, Orio F, Colao A, Savastano S. Nutrition, inflammation and liver-spleen axis. Crit Rev Food Sci Nutr 2017; 58:3141-3158. [DOI: 10.1080/10408398.2017.1353479] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Luigi Barrea
- I.O.S. & COLEMAN Srl, Medicina Futura Medical Center, Acerra, Naples, Italy
| | | | | | - Giovanni Tarantino
- Dipartimento di Medicina Clinica e Chirurgia, Federico II University Medical School of Naples, Via Sergio Pansini 5, Naples, Italy
| | - Gian Carlo Tenore
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, Naples, Italy
| | - Francesco Orio
- Department of Sports Science and Wellness, Unit of Endocrinology, “Parthenope” University of Naples, Via Ammiraglio Ferdinando Acton 38, Naples, Italy
- Via Ammiraglio Ferdinando Acton 38, Naples, Italy
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, Naples, Italy
| | - Silvia Savastano
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, Naples, Italy
| |
Collapse
|
22
|
Integrated Immunomodulatory Mechanisms through which Long-Chain n-3 Polyunsaturated Fatty Acids Attenuate Obese Adipose Tissue Dysfunction. Nutrients 2017; 9:nu9121289. [PMID: 29186929 PMCID: PMC5748740 DOI: 10.3390/nu9121289] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 12/13/2022] Open
Abstract
Obesity is a global health concern with rising prevalence that increases the risk of developing other chronic diseases. A causal link connecting overnutrition, the development of obesity and obesity-associated co-morbidities is visceral adipose tissue (AT) dysfunction, characterized by changes in the cellularity of various immune cell populations, altered production of inflammatory adipokines that sustain a chronic state of low-grade inflammation and, ultimately, dysregulated AT metabolic function. Therefore, dietary intervention strategies aimed to halt the progression of obese AT dysfunction through any of the aforementioned processes represent an important active area of research. In this connection, fish oil-derived dietary long-chain n-3 polyunsaturated fatty acids (PUFA) in the form of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been demonstrated to attenuate obese AT dysfunction through multiple mechanisms, ultimately affecting AT immune cellularity and function, adipokine production, and metabolic signaling pathways, all of which will be discussed herein.
Collapse
|
23
|
Comparative transcriptome analysis reveals potentially novel roles of Homeobox genes in adipose deposition in fat-tailed sheep. Sci Rep 2017; 7:14491. [PMID: 29101335 PMCID: PMC5670210 DOI: 10.1038/s41598-017-14967-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 10/18/2017] [Indexed: 12/12/2022] Open
Abstract
Adipose tissues are phenotypically, metabolically and functionally heterogeneous based on the sites of their deposition. Undesirable fat deposits in the body are often detrimental to animal and human health. To unravel the potential underlying mechanisms governing accumulation of adipose tissues in various regions of the body, i.e., subcutaneous (SAT), visceral (VAT) and tail (TAT), we profiled transcriptomes from Tan sheep, a Chinese indigenous breed with notable fat tail using RNA-seq. Upon comparison, we identified a total of 1,058 differentially expressed genes (DEGs) between the three adipose types (218, 324, and 795 in SAT/VAT, SAT/TAT, and VAT/TAT, respectively), from which several known key players were identified that are involved in lipid metabolic process, Wnt signals, Vitamin A metabolism, and transcriptional regulation of adipocyte differentiation. We also found that many elevated genes in VAT were notably enriched for key biological processes such as cytokine secretion, signaling molecule interaction and immune systems. Several developmental genes including HOXC11, HOXC12 and HOXC13, and adipose-expressed genes in the tail region, such as HOTAIR_2, HOTAIR_3 and SP9 were specially highlighted, indicating their strong associations with tail fat development in fat-tailed sheep. Our results provide new insight into exploring the specific fat deposition in tail, also contribute to the understanding of differences between adipose depots.
Collapse
|
24
|
Kook YM, Jeong Y, Lee K, Koh WG. Design of biomimetic cellular scaffolds for co-culture system and their application. J Tissue Eng 2017; 8:2041731417724640. [PMID: 29081966 PMCID: PMC5564857 DOI: 10.1177/2041731417724640] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/16/2017] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix of most natural tissues comprises various types of cells, including fibroblasts, stem cells, and endothelial cells, which communicate with each other directly or indirectly to regulate matrix production and cell functionality. To engineer multicellular interactions in vitro, co-culture systems have achieved tremendous success achieving a more realistic microenvironment of in vivo metabolism than monoculture system in the past several decades. Recently, the fields of tissue engineering and regenerative medicine have primarily focused on three-dimensional co-culture systems using cellular scaffolds, because of their physical and biological relevance to the extracellular matrix of actual tissues. This review discusses several materials and methods to create co-culture systems, including hydrogels, electrospun fibers, microfluidic devices, and patterning for biomimetic co-culture system and their applications for specific tissue regeneration. Consequently, we believe that culture systems with appropriate physical and biochemical properties should be developed, and direct or indirect cell-cell interactions in the remodeled tissue must be considered to obtain an optimal tissue-specific microenvironment.
Collapse
Affiliation(s)
- Yun-Min Kook
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | - Yoon Jeong
- Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Kangwon Lee
- Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
- Advanced Institutes of Convergence Technology, Suwon, Korea
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
25
|
Robert O, Boujedidi H, Bigorgne A, Ferrere G, Voican CS, Vettorazzi S, Tuckermann JP, Bouchet-Delbos L, Tran T, Hemon P, Puchois V, Dagher I, Douard R, Gaudin F, Gary-Gouy H, Capel F, Durand-Gasselin I, Prévot S, Rousset S, Naveau S, Godot V, Emilie D, Lombès M, Perlemuter G, Cassard AM. Decreased expression of the glucocorticoid receptor-GILZ pathway in Kupffer cells promotes liver inflammation in obese mice. J Hepatol 2016; 64:916-24. [PMID: 26639395 DOI: 10.1016/j.jhep.2015.11.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 11/12/2015] [Accepted: 11/13/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Kupffer cells (KC) play a key role in the onset of inflammation in non-alcoholic steatohepatitis (NASH). The glucocorticoid receptor (GR) induces glucocorticoid-induced leucine zipper (GILZ) expression in monocytes/macrophages and is involved in several inflammatory processes. We hypothesized that the GR-GILZ axis in KC may contribute to the pathophysiology of obesity-induced liver inflammation. METHODS By using a combination of primary cell culture, pharmacological experiments, mice deficient for the Gr specifically in macrophages and transgenic mice overexpressing Gilz in macrophages, we explored the involvement of the Gr-Gilz axis in KC in the pathophysiology of obesity-induced liver inflammation. RESULTS Obesity was associated with a downregulation of the Gr and Gilz, and an impairment of Gilz induction by lipopolysaccharide (LPS) and dexamethasone (DEX) in KC. Inhibition of Gilz expression in isolated KC transfected with Gilz siRNA demonstrated that Gilz downregulation was sufficient to sensitize KC to LPS. Conversely, liver inflammation was decreased in obese transgenic mice specifically overexpressing Gilz in macrophages. Pharmacological inhibition of the Gr showed that impairment of Gilz induction in KC by LPS and DEX in obesity was driven by a downregulation of the Gr. In mice specifically deficient for Gr in macrophages, Gilz expression was low, leading to an exacerbation of obesity-induced liver inflammation. CONCLUSIONS Obesity is associated with a downregulation of the Gr-Gilz axis in KC, which promotes liver inflammation. The Gr-Gilz axis in KC is an important target for the regulation of liver inflammation in obesity.
Collapse
Affiliation(s)
- Olivier Robert
- INSERM UMR996 - Inflammation, Chemokines and Immunopathology, Clamart, France; Univ Paris-Sud, Univ Paris-Saclay, DHU Hepatinov, Labex Lermit, Kremlin-Bicêtre, France
| | - Hédia Boujedidi
- INSERM UMR996 - Inflammation, Chemokines and Immunopathology, Clamart, France; Univ Paris-Sud, Univ Paris-Saclay, DHU Hepatinov, Labex Lermit, Kremlin-Bicêtre, France
| | - Amélie Bigorgne
- INSERM UMR996 - Inflammation, Chemokines and Immunopathology, Clamart, France; Univ Paris-Sud, Univ Paris-Saclay, DHU Hepatinov, Labex Lermit, Kremlin-Bicêtre, France
| | - Gladys Ferrere
- INSERM UMR996 - Inflammation, Chemokines and Immunopathology, Clamart, France; Univ Paris-Sud, Univ Paris-Saclay, DHU Hepatinov, Labex Lermit, Kremlin-Bicêtre, France
| | | | - Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, 89081 Ulm, Germany
| | - Jan Peter Tuckermann
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, 89081 Ulm, Germany
| | | | - Thi Tran
- INSERM UMR996 - Inflammation, Chemokines and Immunopathology, Clamart, France
| | - Patrice Hemon
- INSERM UMR996 - Inflammation, Chemokines and Immunopathology, Clamart, France
| | - Virginie Puchois
- INSERM UMR996 - Inflammation, Chemokines and Immunopathology, Clamart, France; Univ Paris-Sud, Univ Paris-Saclay, DHU Hepatinov, Labex Lermit, Kremlin-Bicêtre, France
| | - Ibrahim Dagher
- Univ Paris-Sud, Univ Paris-Saclay, DHU Hepatinov, Labex Lermit, Kremlin-Bicêtre, France; AP-HP, Hôpital Antoine-Béclère, Service de chirurgie minimale invasive, DHU Hépatinov, Clamart, France
| | - Richard Douard
- AP-HP, Hôpital Européen Georges Pompidou, Service de chirurgie, Paris, France; AP-HP, Hôpital Avicenne, Service de chirurgie, Bobigny, France
| | - Francoise Gaudin
- INSERM UMR996 - Inflammation, Chemokines and Immunopathology, Clamart, France; IFR 141 Institut Paris-Sud d'Innovation Thérapeutique, Châtenay-Malabry, France
| | - Hélène Gary-Gouy
- IFR 141 Institut Paris-Sud d'Innovation Thérapeutique, Châtenay-Malabry, France
| | - Francis Capel
- INSERM UMR996 - Inflammation, Chemokines and Immunopathology, Clamart, France
| | | | - Sophie Prévot
- AP-HP, Hôpital Antoine-Béclère, Service d'anatomie pathologique, Clamart, France
| | - Sophie Rousset
- INSERM UMR996 - Inflammation, Chemokines and Immunopathology, Clamart, France
| | - Sylvie Naveau
- AP-HP, Hôpital Antoine-Béclère, Service d'hépato-gastroentérologie, Clamart, France
| | - Véronique Godot
- INSERM UMR996 - Inflammation, Chemokines and Immunopathology, Clamart, France; Univ Paris-Sud, Univ Paris-Saclay, DHU Hepatinov, Labex Lermit, Kremlin-Bicêtre, France
| | - Dominique Emilie
- INSERM UMR996 - Inflammation, Chemokines and Immunopathology, Clamart, France; Univ Paris-Sud, Univ Paris-Saclay, DHU Hepatinov, Labex Lermit, Kremlin-Bicêtre, France
| | - Marc Lombès
- Univ Paris-Sud, Univ Paris-Saclay, DHU Hepatinov, Labex Lermit, Kremlin-Bicêtre, France; INSERM, U693, Le Kremlin-Bicêtre, France; AP-HP, Hôpital Antoine-Béclère, Service d'anatomie pathologique, Clamart, France; AP-HP, Hôpital Bicêtre, Service d'Endocrinologie et Maladies de la Reproduction, Le Kremlin-Bicêtre, France
| | - Gabriel Perlemuter
- INSERM UMR996 - Inflammation, Chemokines and Immunopathology, Clamart, France; Univ Paris-Sud, Univ Paris-Saclay, DHU Hepatinov, Labex Lermit, Kremlin-Bicêtre, France; AP-HP, Hôpital Antoine-Béclère, Service d'hépato-gastroentérologie, Clamart, France.
| | - Anne-Marie Cassard
- INSERM UMR996 - Inflammation, Chemokines and Immunopathology, Clamart, France; Univ Paris-Sud, Univ Paris-Saclay, DHU Hepatinov, Labex Lermit, Kremlin-Bicêtre, France.
| |
Collapse
|
26
|
Massaro M, Scoditti E, Pellegrino M, Carluccio MA, Calabriso N, Wabitsch M, Storelli C, Wright M, De Caterina R. Therapeutic potential of the dual peroxisome proliferator activated receptor (PPAR)α/γ agonist aleglitazar in attenuating TNF-α-mediated inflammation and insulin resistance in human adipocytes. Pharmacol Res 2016; 107:125-136. [PMID: 26976796 DOI: 10.1016/j.phrs.2016.02.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 02/25/2016] [Accepted: 02/25/2016] [Indexed: 12/13/2022]
Abstract
Adipose tissue inflammation is a mechanistic link between obesity and its related sequelae, including insulin resistance and type 2 diabetes. Dual ligands of peroxisome proliferator activated receptor (PPAR)α and γ, combining in a single molecule the metabolic and inflammatory-regulatory properties of α and γ agonists, have been proposed as a promising therapeutic strategy to antagonize adipose tissue inflammation. Here we investigated the effects of the dual PPARα/γ agonist aleglitazar on human adipocytes challenged with inflammatory stimuli. Human Simpson-Golabi-Behmel syndrome (SGBS) adipocytes were treated with aleglitazar or - for comparison - the selective agonists for PPARα or γ fenofibrate or rosiglitazone, respectively, for 24h before stimulation with TNF-α. Aleglitazar, at concentrations as low as 10nmol/L, providing the half-maximal transcriptional activation of both PPARα and PPARγ, reduced the stimulated expression of several pro-inflammatory mediators including interleukin (IL)-6, the chemokine CXC-L10, and monocyte chemoattractant protein (MCP)-1. Correspondingly, media from adipocytes treated with aleglitazar reduced monocyte migration, consistent with suppression of MCP-1 secretion. Under the same conditions, aleglitazar also reversed the TNF-α-mediated suppression of insulin-stimulated ser473 Akt phosphorylation and decreased the TNF-α-induced ser312 IRS1 phosphorylation, two major switches in insulin-mediated metabolic activities, restoring glucose uptake in insulin-resistant adipocytes. Such effects were similar to those obtainable with a combination of single PPARα and γ agonists. In conclusion, aleglitazar reduces inflammatory activation and dysfunction in insulin signaling in activated adipocytes, properties that may benefit diabetic and obese patients. The effect of aleglitazar was consistent with dual PPARα and γ agonism, but with no evidence of synergism.
Collapse
Affiliation(s)
- Marika Massaro
- National Research Council (CNR) Institute of Clinical Physiology, Lecce, Italy
| | - Egeria Scoditti
- National Research Council (CNR) Institute of Clinical Physiology, Lecce, Italy
| | - Mariangela Pellegrino
- National Research Council (CNR) Institute of Clinical Physiology, Lecce, Italy; Department of Biological and Environmental Science and Technology (DISTEBA), University of Salento, Lecce, Italy
| | | | - Nadia Calabriso
- National Research Council (CNR) Institute of Clinical Physiology, Lecce, Italy
| | - Martin Wabitsch
- Division of Pediatric Endocrinology, Diabetes and Obesity, Department of Pediatrics and Adolescent Medicine, University of Ulm, Germany
| | - Carlo Storelli
- Department of Biological and Environmental Science and Technology (DISTEBA), University of Salento, Lecce, Italy
| | | | - Raffaele De Caterina
- G. dAnnunzio University and Center of Excellence on Aging, Chieti, Italy; G. Monasterio Foundation for Clinical Research, Pisa, Italy.
| |
Collapse
|
27
|
Fernández-Trasancos Á, Guerola-Segura R, Paradela-Dobarro B, Álvarez E, García-Acuña JM, Fernández ÁL, González-Juanatey JR, Eiras S. Glucose and Inflammatory Cells Decrease Adiponectin in Epicardial Adipose Tissue Cells: Paracrine Consequences on Vascular Endothelium. J Cell Physiol 2015; 231:1015-23. [DOI: 10.1002/jcp.25189] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 09/08/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Ángel Fernández-Trasancos
- Cardiology Group, Health Research Institute; University Clinical Hospital of Santiago de Compostela; Santiago de Compostela Spain
| | - Raquel Guerola-Segura
- Department of Cardiology, Coronary Care Unit; University Clinical Hospital of Santiago de Compostela; Santiago de Compostela Spain
| | - Beatriz Paradela-Dobarro
- Cardiology Group, Health Research Institute; University Clinical Hospital of Santiago de Compostela; Santiago de Compostela Spain
| | - Ezequiel Álvarez
- Cardiology Group, Health Research Institute; University Clinical Hospital of Santiago de Compostela; Santiago de Compostela Spain
| | - José María García-Acuña
- Cardiology Group, Health Research Institute; University Clinical Hospital of Santiago de Compostela; Santiago de Compostela Spain
- Department of Cardiology, Coronary Care Unit; University Clinical Hospital of Santiago de Compostela; Santiago de Compostela Spain
| | - Ángel Luis Fernández
- Department of Heart Surgery; University Clinical Hospital of Santiago de Compostela; Santiago de Compostela Spain
| | - José Ramón González-Juanatey
- Cardiology Group, Health Research Institute; University Clinical Hospital of Santiago de Compostela; Santiago de Compostela Spain
- Department of Cardiology, Coronary Care Unit; University Clinical Hospital of Santiago de Compostela; Santiago de Compostela Spain
| | - Sonia Eiras
- Cardiology Group, Health Research Institute; University Clinical Hospital of Santiago de Compostela; Santiago de Compostela Spain
| |
Collapse
|
28
|
Mancilla-Herrera I, Alvarado-Moreno JA, Cérbulo-Vázquez A, Prieto-Chávez JL, Ferat-Osorio E, López-Macías C, Estrada-Parra S, Isibasi A, Arriaga-Pizano L. Activated endothelial cells limit inflammatory response, but increase chemoattractant potential and bacterial clearance by human monocytes. Cell Biol Int 2015; 39:721-32. [PMID: 25598193 DOI: 10.1002/cbin.10440] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 01/10/2015] [Indexed: 12/13/2022]
Abstract
Inflammation is the normal immune response of vascularized tissues to damage and bacterial products, for which leukocyte transendothelial migration (TEM) is critical. The effects of cell-to-cell contact seen in both leukocyte and endothelial cells include cytoskeleton rearrangement, and dynamic expression of adhesion molecules and metalloproteinases. TEM induces expression of anti-apoptotic molecules, costimulatory molecules associated with antigen presentation, and pattern recognition receptors (PRR), such as TLR-4, in monocytes. However, little is known about how TLR-4 increment operates in monocytes during an inflammatory response. To understand it better, we used an in vitro model in which monocytes crossed a layer of IL-1β stimulated Human Umbilical Vein Endothelial Cells (HUVEC). After TEM, monocytes were tested for the secretion of inflammatory cytokines and chemokines, their phenotype (CD14, CD16, TLR-4 expression), and TLR-4 canonical [Nuclear Factor kappa B, (NF-κB) pathway] and non-canonical [p38, extracellular signal-regulated kinases (ERK) 1/2 pathway] signal transduction induced by lipopolysaccharide (LPS). Phagocytosis and bacterial clearance were also measured. There was diminished secretion of LPS-induced inflammatory cytokines (IL-1β, IL-6, and TNF-α) and higher secretion of chemokines (CXCL8/IL-8 and CCL2/MCP-1) in supernatant of TEM monocytes. These changes were accompanied by increases in TLR-4, CD14 (surfaces expression), p38, and ERK1/2 phosphorylated cytoplasmic forms, without affecting NF-κB activation. It also increased bacterial clearance after TEM by an O2 -independent mechanism. The data suggest that interaction between endothelial cells and monocytes fine-tunes the inflammatory response and promotes bacterial elimination.
Collapse
Affiliation(s)
- Ismael Mancilla-Herrera
- Graduate Program on Immunology, ENCB-IPN, Mexico City, Mexico.,Medical Research Unit on Immunochemistry, Specialties Hospital of the National Medical Centre "Siglo XXI" Mexican Social Security Institute (IMSS), Mexico City, Mexico
| | - José Antonio Alvarado-Moreno
- Medical Research Unit in Thrombosis, Hemostasis and Atherogenesis, Regional General Hospital Dr. Carlos MacGregor Sánchez Navarro, IMSS, Mexico City, Mexico
| | | | - Jessica L Prieto-Chávez
- Medical Research Unit on Immunochemistry, Specialties Hospital of the National Medical Centre "Siglo XXI" Mexican Social Security Institute (IMSS), Mexico City, Mexico.,Graduate Program on Chemical and Biological Sciences, ENCB-IPN, Mexico City, Mexico
| | - Eduardo Ferat-Osorio
- Gastrointestinal Surgery Service, Specialties Hospital of the National Medical Centre "Siglo XXI", IMSS, Mexico City, Mexico
| | - Constantino López-Macías
- Medical Research Unit on Immunochemistry, Specialties Hospital of the National Medical Centre "Siglo XXI" Mexican Social Security Institute (IMSS), Mexico City, Mexico
| | - Sergio Estrada-Parra
- Molecular Immunology Laboratory, Immunology Department, ENCB-IPN, Mexico City, Mexico
| | - Armando Isibasi
- Medical Research Unit on Immunochemistry, Specialties Hospital of the National Medical Centre "Siglo XXI" Mexican Social Security Institute (IMSS), Mexico City, Mexico
| | - Lourdes Arriaga-Pizano
- Medical Research Unit on Immunochemistry, Specialties Hospital of the National Medical Centre "Siglo XXI" Mexican Social Security Institute (IMSS), Mexico City, Mexico
| |
Collapse
|