1
|
Wang Y, Tian J, Liu D, Li T, Mao Y, Zhu C. Microglia in radiation-induced brain injury: Cellular and molecular mechanisms and therapeutic potential. CNS Neurosci Ther 2024; 30:e14794. [PMID: 38867379 PMCID: PMC11168970 DOI: 10.1111/cns.14794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Radiation-induced brain injury is a neurological condition resulting from radiotherapy for malignant tumors, with its underlying pathogenesis still not fully understood. Current hypotheses suggest that immune cells, particularly the excessive activation of microglia in the central nervous system and the migration of peripheral immune cells into the brain, play a critical role in initiating and progressing the injury. This review aimed to summarize the latest advances in the cellular and molecular mechanisms and the therapeutic potential of microglia in radiation-induced brain injury. METHODS This article critically examines recent developments in understanding the role of microglia activation in radiation-induced brain injury. It elucidates associated mechanisms and explores novel research pathways and therapeutic options for managing this condition. RESULTS Post-irradiation, activated microglia release numerous inflammatory factors, exacerbating neuroinflammation and facilitating the onset and progression of radiation-induced damage. Therefore, controlling microglial activation and suppressing the secretion of related inflammatory factors is crucial for preventing radiation-induced brain injury. While microglial activation is a primary factor in neuroinflammation, the precise mechanisms by which radiation prompts this activation remain elusive. Multiple signaling pathways likely contribute to microglial activation and the progression of radiation-induced brain injury. CONCLUSIONS The intricate microenvironment and molecular mechanisms associated with radiation-induced brain injury underscore the crucial roles of immune cells in its onset and progression. By investigating the interplay among microglia, neurons, astrocytes, and peripheral immune cells, potential strategies emerge to mitigate microglial activation, reduce the release of inflammatory agents, and impede the entry of peripheral immune cells into the brain.
Collapse
Affiliation(s)
- Yafeng Wang
- Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, Department of PediatricsHenan Children's Hospital Zhengzhou Children's HospitalZhengzhouChina
- Department of Hematology and Oncology, Children's Hospital Affiliated to Zhengzhou UniversityHenan Children's Hospital Zhengzhou Children's HospitalZhengzhouChina
| | - Jiayu Tian
- Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, Department of PediatricsHenan Children's Hospital Zhengzhou Children's HospitalZhengzhouChina
| | - Dandan Liu
- Department of Electrocardiogram, Children's Hospital Affiliated to Zhengzhou UniversityHenan Children's Hospital Zhengzhou Children's HospitalZhengzhouChina
| | - Tao Li
- Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, Department of PediatricsHenan Children's Hospital Zhengzhou Children's HospitalZhengzhouChina
| | - Yanna Mao
- Department of Hematology and Oncology, Children's Hospital Affiliated to Zhengzhou UniversityHenan Children's Hospital Zhengzhou Children's HospitalZhengzhouChina
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Department of PediatricsInstitute of Neuroscience and Third Affiliated Hospital of Zhengzhou UniversityKangfuqian Street 7Zhengzhou450052None SelectedChina
- Center for Brain Repair and Rehabilitation, Department of Clinical NeuroscienceInstitute of Neuroscience and Physiology, Sahlgrenska Academy, University of GothenburgMedicinaregtan 11Göteborg40530Sweden
| |
Collapse
|
2
|
Zhu J, Park S, Kim SH, Kim CH, Jeong KH, Kim WJ. Sirtuin 3 regulates astrocyte activation by reducing Notch1 signaling after status epilepticus. Glia 2024; 72:1136-1149. [PMID: 38406970 DOI: 10.1002/glia.24520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/31/2024] [Accepted: 02/15/2024] [Indexed: 02/27/2024]
Abstract
Sirtuin3 (Sirt3) is a nicotinamide adenine dinucleotide enzyme that contributes to aging, cancer, and neurodegenerative diseases. Recent studies have reported that Sirt3 exerts anti-inflammatory effects in several neuropathophysiological disorders. As epilepsy is a common neurological disease, in the present study, we investigated the role of Sirt3 in astrocyte activation and inflammatory processes after epileptic seizures. We found the elevated expression of Sirt3 within reactive astrocytes as well as in the surrounding cells in the hippocampus of patients with temporal lobe epilepsy and a mouse model of pilocarpine-induced status epilepticus (SE). The upregulation of Sirt3 by treatment with adjudin, a potential Sirt3 activator, alleviated SE-induced astrocyte activation; whereas, Sirt3 deficiency exacerbated astrocyte activation in the hippocampus after SE. In addition, our results showed that Sirt3 upregulation attenuated the activation of Notch1 signaling, nuclear factor kappa B (NF-κB) activity, and the production of interleukin-1β (IL1β) in the hippocampus after SE. By contrast, Sirt3 deficiency enhanced the activity of Notch1/NF-κB signaling and the production of IL1β. These findings suggest that Sirt3 regulates astrocyte activation by affecting the Notch1/NF-κB signaling pathway, which contributes to the inflammatory response after SE. Therefore, therapies targeting Sirt3 may be a worthy direction for limiting inflammatory responses following epileptic brain injury.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Neurology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Soojin Park
- Department of Neurology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Severance Hospital, Seoul, Republic of Korea
| | - Chul Hoon Kim
- Department of Pharmacology, Brain Korea 21 Project, Brain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyoung Hoon Jeong
- Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Won-Joo Kim
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
3
|
Anilkumar S, Wright-Jin E. NF-κB as an Inducible Regulator of Inflammation in the Central Nervous System. Cells 2024; 13:485. [PMID: 38534329 DOI: 10.3390/cells13060485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/01/2024] [Accepted: 03/09/2024] [Indexed: 03/28/2024] Open
Abstract
The NF-κB (nuclear factor K-light-chain-enhancer of activated B cells) transcription factor family is critical for modulating the immune proinflammatory response throughout the body. During the resting state, inactive NF-κB is sequestered by IκB in the cytoplasm. The proteasomal degradation of IκB activates NF-κB, mediating its translocation into the nucleus to act as a nuclear transcription factor in the upregulation of proinflammatory genes. Stimuli that initiate NF-κB activation are diverse but are canonically attributed to proinflammatory cytokines and chemokines. Downstream effects of NF-κB are cell type-specific and, in the majority of cases, result in the activation of pro-inflammatory cascades. Acting as the primary immune responders of the central nervous system, microglia exhibit upregulation of NF-κB upon activation in response to pathological conditions. Under such circumstances, microglial crosstalk with other cell types in the central nervous system can induce cell death, further exacerbating the disease pathology. In this review, we will emphasize the role of NF-κB in triggering neuroinflammation mediated by microglia.
Collapse
Affiliation(s)
- Sudha Anilkumar
- Neonatal Brain Injury Laboratory, Division of Biomedical Research, Nemours Children's Health, Wilmington, DE 19803, USA
| | - Elizabeth Wright-Jin
- Neonatal Brain Injury Laboratory, Division of Biomedical Research, Nemours Children's Health, Wilmington, DE 19803, USA
- Division of Neurology, Department of Pediatrics, Nemours Children's Health, Wilmington, DE 19803, USA
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
4
|
Gong Z, Guo J, Liu B, Guo Y, Cheng C, Jiang Y, Liang N, Hu M, Song T, Yang L, Li H, Zhang H, Zong X, Che Q, Shi N. Mechanisms of immune response and cell death in ischemic stroke and their regulation by natural compounds. Front Immunol 2024; 14:1287857. [PMID: 38274789 PMCID: PMC10808662 DOI: 10.3389/fimmu.2023.1287857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Ischemic stroke (IS), which is the third foremost cause of disability and death worldwide, has inflammation and cell death as its main pathological features. IS can lead to neuronal cell death and release factors such as damage-related molecular patterns, stimulating the immune system to release inflammatory mediators, thereby resulting in inflammation and exacerbating brain damage. Currently, there are a limited number of treatment methods for IS, which is a fact necessitating the discovery of new treatment targets. For this review, current research on inflammation and cell death in ischemic stroke was summarized. The complex roles and pathways of the principal immune cells (microglia, astrocyte, neutrophils, T lymphocytes, and monocytes/macrophage) in the immune system after IS in inflammation are discussed. The mechanisms of immune cell interactions and the cytokines involved in these interactions are summarized. Moreover, the cell death mechanisms (pyroptosis, apoptosis, necroptosis, PANoptosis, and ferroptosis) and pathways after IS are explored. Finally, a summary is provided of the mechanism of action of natural pharmacological active ingredients in the treatment of IS. Despite significant recent progress in research on IS, there remain many challenges that need to be overcome.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Qianzi Che
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Nannan Shi
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Augusto-Oliveira M, Tremblay MÈ, Verkhratsky A. Receptors on Microglia. ADVANCES IN NEUROBIOLOGY 2024; 37:83-121. [PMID: 39207688 DOI: 10.1007/978-3-031-55529-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microglial cells are the most receptive cells in the central nervous system (CNS), expressing several classes of receptors reflecting their immune heritage and newly acquired neural specialisation. Microglia possess, depending on the particular context, receptors to neurotransmitters and neuromodulators as well as immunocompetent receptors. This rich complement allows microglial cells to monitor the functional status of the nervous system, contribute actively to the regulation of neural activity and plasticity and homeostasis, and guard against pathogens as well as other challenges to the CNS's integrity and function.
Collapse
Affiliation(s)
- Marcus Augusto-Oliveira
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
- Programa de Pós-Graduação em Farmacologia e Bioquímica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Marie-Ève Tremblay
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada
- Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada
- Department of Molecular Medicine, Université Laval, Pavillon Ferdinand-Vandry, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Life Sciences Center, Vancouver, BC, Canada
| | - Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, UK.
- Department of Neurosciences, University of the Basque Country, Leioa, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
6
|
Fleiss B, Gressens P. Role of Microglial Modulation in Therapies for Perinatal Brain Injuries Leading to Neurodevelopmental Disorders. ADVANCES IN NEUROBIOLOGY 2024; 37:591-606. [PMID: 39207715 DOI: 10.1007/978-3-031-55529-9_33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Neurodevelopmental disorders (NDDs) encompass various conditions stemming from changes during brain development, typically diagnosed early in life. Examples include autism spectrum disorder, intellectual disability, cerebral palsy, seizures, dyslexia, and attention deficit hyperactivity disorder. Many NDDs are linked to perinatal events like infections, oxygen disturbances, or insults in combination. This chapter outlines the causes and effects of perinatal brain injury as they relate to microglia, along with efforts to prevent or treat such damage. We primarily discuss therapies targeting microglia modulation, focusing on those either clinically used or in advanced development, often tested in large animal models such as sheep, non-human primates, and piglets-standard translational models in perinatal medicine. Additionally, it touches on experimental studies showcasing advancements in the field.
Collapse
Affiliation(s)
- Bobbi Fleiss
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
- Université de Paris, NeuroDiderot, Inserm, Paris, France
| | - Pierre Gressens
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia.
- Université de Paris, NeuroDiderot, Inserm, Paris, France.
| |
Collapse
|
7
|
Abu-Elfotuh K, Darwish A, Elsanhory HMA, Alharthi HH, Hamdan AME, Hamdan AM, Masoud RAE, Abd El-Rhman RH, Reda E. In silico and in vivo analysis of the relationship between ADHD and social isolation in pups rat model: Implication of redox mechanisms, and the neuroprotective impact of Punicalagin. Life Sci 2023; 335:122252. [PMID: 37935275 DOI: 10.1016/j.lfs.2023.122252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023]
Abstract
Attention deficit hyperactivity disorder (ADHD) has high incidence rate among children which may be due to excessive monosodium glutamate (MSG) consumption and social isolation (SI). AIM We aimed to explore the relationships between MSG, SI, and ADHD development and to evaluate the neuroprotective potential of Punicalagin (PUN). METHODS Eighty male rat pups randomly distributed into eight groups. Group I is the control, and Group II is socially engaged rats treated with PUN. Groups III to VII were exposed to ADHD-inducing factors: Group III to SI, Group IV to MSG, and Group V to both SI and MSG. Furthermore, Groups VI to VIII were the same Groups III to V but additionally received PUN treatment. KEY FINDINGS Exposure to MSG and/or SI led to pronounced behavioral anomalies, histological changes and indicative of ADHD-like symptoms in rat pups which is accompanied by inhibition of the nuclear factor erythroid 2-related factor 2 (Nrf2)/Heme-oxygenase 1 (HO-1)/Glutathione (GSH) pathway, decline of the brain-derived neurotrophic factor (BDNF) expression and activation of the Toll-like receptor 4 (TLR4)/Nuclear factor kappa B (NF-kB)/NLR Family Pyrin Domain Containing 3 (NLRP3) pathway. This resulted in elevated inflammatory biomarker levels, neuronal apoptosis, and disrupted neurotransmitter equilibrium. Meanwhile, pretreatment with PUN protected against all the previous alterations. SIGNIFICANCE We established compelling associations between MSG consumption, SI, and ADHD progression. Moreover, we proved that PUN is a promising neuroprotective agent against all risk factors of ADHD.
Collapse
Affiliation(s)
- Karema Abu-Elfotuh
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt; Al-Ayen University, Thi-Qar, 64001, Iraq.
| | - Alshaymaa Darwish
- Biochemistry Department, Faculty of Pharmacy, Sohag university, Sohag, Egypt.
| | - Heba M A Elsanhory
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Sinai University - Kantara Branch, Ismailia 41636, Egypt.
| | | | - Ahmed M E Hamdan
- Pharmacy Practice Department, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia.
| | - Amira M Hamdan
- Oceanography Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| | - Rehab Ali Elsayed Masoud
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine for girls, Al-Azhar University, Cairo, Egypt.
| | - Rana H Abd El-Rhman
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Sinai University - Kantara Branch, Ismailia 41636, Egypt.
| | - Enji Reda
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Sinai University - Kantara Branch, Ismailia 41636, Egypt.
| |
Collapse
|
8
|
Shehata AH, Anter AF, Ahmed ASF. Role of SIRT1 in sepsis-induced encephalopathy: Molecular targets for future therapies. Eur J Neurosci 2023; 58:4211-4235. [PMID: 37840012 DOI: 10.1111/ejn.16167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023]
Abstract
Sepsis induces neuroinflammation, BBB disruption, cerebral hypoxia, neuronal mitochondrial dysfunction, and cell death causing sepsis-associated encephalopathy (SAE). These pathological consequences lead to short- and long-term neurobehavioural deficits. Till now there is no specific treatment that directly improves SAE and its associated behavioural impairments. In this review, we discuss the underlying mechanisms of sepsis-induced brain injury with a focus on the latest progress regarding neuroprotective effects of SIRT1 (silent mating type information regulation-2 homologue-1). SIRT1 is an NAD+ -dependent class III protein deacetylase. It is able to modulate multiple downstream signals (including NF-κB, HMGB, AMPK, PGC1α and FoxO), which are involved in the development of SAE by its deacetylation activity. There are multiple recent studies showing the neuroprotective effects of SIRT1 in neuroinflammation related diseases. The proposed neuroprotective action of SIRT1 is meant to bring a promising therapeutic strategy for managing SAE and ameliorating its related behavioural deficits.
Collapse
Affiliation(s)
- Alaa H Shehata
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Aliaa F Anter
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Al-Shaimaa F Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
9
|
Yu C, Deng XJ, Xu D. Microglia in epilepsy. Neurobiol Dis 2023; 185:106249. [PMID: 37536386 DOI: 10.1016/j.nbd.2023.106249] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/07/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023] Open
Abstract
Epilepsy is one of most common chronic neurological disorders, and the antiseizure medications developed by targeting neurocentric mechanisms have not effectively reduced the proportion of patients with drug-resistant epilepsy. Further exploration of the cellular or molecular mechanism of epilepsy is expected to provide new options for treatment. Recently, more and more researches focus on brain network components other than neurons, among which microglia have attracted much attention for their diverse biological functions. As the resident immune cells of the central nervous system, microglia have highly plastic transcription, morphology and functional characteristics, which can change dynamically in a context-dependent manner during the progression of epilepsy. In the pathogenesis of epilepsy, highly reactive microglia interact with other components in the epileptogenic network by performing crucial functions such as secretion of soluble factors and phagocytosis, thus continuously reshaping the landscape of the epileptic brain microenvironment. Indeed, microglia appear to be both pro-epileptic and anti-epileptic under the different spatiotemporal contexts of disease, rendering interventions targeting microglia biologically complex and challenging. This comprehensive review critically summarizes the pathophysiological role of microglia in epileptic brain homeostasis alterations and explores potential therapeutic or modulatory targets for epilepsy targeting microglia.
Collapse
Affiliation(s)
- Cheng Yu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China
| | - Xue-Jun Deng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China
| | - Da Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China.
| |
Collapse
|
10
|
Razee A, Banerjee S, Hong J, Magaki S, Fishbein G, Ajijola OA, Umar S. Thoracic Spinal Cord Neuroinflammation as a Novel Therapeutic Target in Pulmonary Hypertension. Hypertension 2023; 80:1297-1310. [PMID: 37092338 PMCID: PMC10192067 DOI: 10.1161/hypertensionaha.122.20782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/03/2023] [Indexed: 04/25/2023]
Abstract
BACKGROUND Pulmonary hypertension (PH) is associated with aberrant sympathoexcitation leading to right ventricular failure (RVF), arrhythmias, and death. Microglial activation and neuroinflammation have been implicated in sympathoexcitation in experimental PH. We recently reported the first evidence of thoracic spinal cord (TSC) neuroinflammation in PH rats. Here, we hypothesize that PH is associated with increased cardiopulmonary afferent signaling leading to TSC-specific neuroinflammation and sympathoexcitation. Furthermore, inhibition of TSC neuroinflammation rescues experimental PH and RVF. METHODS We performed transcriptomic analysis and its validation on the TSC of monocrotaline (n=8) and Sugen hypoxia (n=8) rat models of severe PH-RVF. A group of monocrotaline rats received either daily intrathecal microglial activation inhibitor minocycline (200 μg/kg per day, n=5) or PBS (n=5) from day 14 through 28. Echocardiography and right ventricle-catheterization were performed terminally. Real-time quantitative reverse transcription PCR, immunolocalization, microglia+astrocyte quantification, and terminal deoxynucleotidyl transferase dUTP nick end labeling were assessed. Plasma catecholamines were measured by ELISA. Human spinal cord autopsy samples (Control n=3; pulmonary arterial hypertension n=3) were assessed to validate preclinical findings. RESULTS Increased cardiopulmonary afferent signaling was demonstrated in preclinical and clinical PH. Our findings delineated common dysregulated genes and pathways highlighting neuroinflammation and apoptosis in the remodeled TSC and highlighted increased sympathoexcitation in both rat models. Moreover, we validated significantly increased microglial and astrocytic activation and CX3CL1 expression in TSC of human pulmonary arterial hypertension. Finally, amelioration of TSC neuroinflammation by minocycline in monocrotaline rats inhibited microglial activation, decreased proinflammatory cytokines, sympathetic nervous system activation and significantly attenuated PH and RVF. CONCLUSIONS Targeting neuroinflammation and associated molecular pathways and genes in the TSC may yield novel therapeutic strategies for PH and RVF.
Collapse
Affiliation(s)
- Asif Razee
- Department of Anesthesiology and Perioperative Medicine Division of Molecular Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Somanshu Banerjee
- Department of Anesthesiology and Perioperative Medicine Division of Molecular Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jason Hong
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Los Angeles, CA, USA
| | - Shino Magaki
- Department of Pathology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Greg Fishbein
- Department of Pathology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Olujimi A. Ajijola
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, Los Angeles, CA, USA
| | - Soban Umar
- Department of Anesthesiology and Perioperative Medicine Division of Molecular Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
11
|
Wu F, Zuo HJ, Ren XQ, Wang PX, Li F, Li JJ. Gastrodin Regulates the Notch-1 Signal Pathway via Renin-Angiotensin System in Activated Microglia. Neuromolecular Med 2023; 25:40-52. [PMID: 35749056 DOI: 10.1007/s12017-022-08714-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 05/17/2022] [Indexed: 10/17/2022]
Abstract
Notch-1 and renin angiotensin system (RAS) are involved in microglia activation. It has been reported that gastrodin inhibited inflammatory responses mediated by activated microglia. This study explored the possible interaction between this two pathways, and to determine whether gastrodin would exert its effects on both of them. Expression of RAS, Notch-1 signaling and proinflammatory mediators in lipopolysaccharide (LPS) activated BV-2 microglia subjected to various treatments was determined by Western blot and immunofluorescence. The protein expression of RAS, Notch-1 pathway and TNF-α and IL-1β was significantly increased in activated microglia. Exogenous Ang II markedly enhanced the expression of these biomarkers. Meanwhile, Azilsartan [a specific inhibitor of AT1 (AT1I)] inhibited the expression of Notch-1 pathway and proinflammatory cytokines. When Notch-1 signaling was inhibited with DAPT, ACE and AT1 expression remained unaffected, indicating that RAS can regulate the Notch-1 pathway in activated microglia but not reciprocally. Additionally, we showed here that gastrodin inhibited the RAS, Notch-1 pathway and inflammatory response. Remarkably, gastrodin did not exert any effect on expression of Notch-1 signaling when RAS was blocked by AT1I, suggesting that gastrodin acts on the RAS directly, not through the Notch-1 pathway. Furthermore, TNF-α and IL-1β expression was significantly increased in activated microglia treated with exogenous Ang II; the expression, however, was suppressed by gastrodin. Of note, expression of proinflammatory cytokines was further decreased in gastrodin and AT1I combination treatment. The results suggest that gastrodin acts via the RAS which regulates the Notch-1 signaling and inflammation in LPS-induced microglia.
Collapse
Affiliation(s)
- Fang Wu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China
| | - Han-Jun Zuo
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China
| | - Xue-Qi Ren
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China
| | - Peng-Xiang Wang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China
| | - Fan Li
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China
| | - Juan-Juan Li
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China.
| |
Collapse
|
12
|
Sudershan A, Younis M, Sudershan S, Kumar P. Migraine as an inflammatory disorder with microglial activation as a prime candidate. Neurol Res 2023; 45:200-215. [PMID: 36197286 DOI: 10.1080/01616412.2022.2129774] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
BACKGROUND The lower threshold of neuronal hyperexcitability has been correlated with migraines for decades but as technology has progressed, it has now become conceivable to learn more about the migraine disease. Apart from the "cortical spreading depression" and "activation of the trigeminovascular system", inflammation has been increasingly recognized as a possible pathogenic process that may have the possibility to regulate the disease severity. Microglial cells, the prime candidate of the innate immune cells of central nervous tissue, has been associated with numerous diseases; including cancer, neurodegenerative disorders, and inflammatory disorders. AIM In this review, we have attempted to link the dot of various microglial activation signaling pathways to enlighten the correlation between microglial involvement and the progression of migraine conditions. METHOD A structured survey of research articles and review of the literature was done in the electronic databases of Google Scholar, PubMed, Springer, and Elsevier until 31 December 2021. RESULT & CONCLUSION Of 1136 articles found initially and screening of 1047 records, 47 studies were included for the final review. This review concluded that inflammation and microglial overexpression as the prime candidate, plays an important role in the modulation of migraine and are responsible for the progression toward chronification. Therefore, this increases the possibility of preventing migraine development and chronification by blocking microglia overexpression.
Collapse
Affiliation(s)
- Amrit Sudershan
- Institute of Human Genetics, University of Jammu, Jammu and Kashmir 180006, India
| | - Mohd Younis
- Department of Human Genetics and Molecular Biology, Bharathair University, Coimbatore, 641046, India
| | - Srishty Sudershan
- Department of Zoology, University of Jammu, Jammu and Kashmir, 180006, India
| | - Parvinder Kumar
- Institute of Human Genetics, University of Jammu, Jammu and Kashmir 180006, India.,Department of Zoology, University of Jammu, Jammu and Kashmir, 180006, India
| |
Collapse
|
13
|
Tao Q, Yang D, Qin K, Liu L, Jin M, Zhang F, Zhu J, Wang J, Luo Q, Du J, Yu L, Shen J, Chu D. Studies on the mechanism of Toxoplasma gondii Chinese 1 genotype Wh6 strain causing mice abnormal cognitive behavior. Parasit Vectors 2023; 16:30. [PMID: 36698166 PMCID: PMC9875435 DOI: 10.1186/s13071-022-05618-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/14/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Alzheimer's disease presents an abnormal cognitive behavior. TgCtwh6 is one of the predominant T. gondii strains prevalent in China. Although T. gondii type II strain infection can cause host cognitive behavioral abnormalities, we do not know whether TgCtwh6 could also cause host cognitive behavioral changes. So, in this study, we will focus on the effect of TgCtwh6 on mouse cognitive behavior and try in vivo and in vitro to explore the underlying mechanism by which TgCtwh6 give rise to mice cognitive behavior changes at the cellular and molecular level. METHODS C57BL/6 mice were infected orally with TgCtwh6 cysts. From day 90 post-infection on, all mice were conducted through the open field test and then Morris water maze test to evaluate cognitive behavior. The morphology and number of cells in hippocampus were examined with hematoxylin-eosin (H&E) and Nissl staining; moreover, Aβ protein in hippocampus was determined with immunohistochemistry and thioflavin S plaque staining. Synaptotagmin 1, apoptosis-related proteins, BACE1 and APP proteins and genes from hippocampus were assessed by western blotting or qRT-PCR. Hippocampal neuronal cell line or mouse microglial cell line was challenged with TgCtwh6 tachyzoites and then separately cultured in a well or co-cultured in a transwell device. The target proteins and genes were analyzed by immunofluorescence staining, western blotting and qRT-PCR. In addition, mouse microglial cell line polarization state and hippocampal neuronal cell line apoptosis were estimated using flow cytometry assay. RESULTS The OFT and MWMT indicated that infected mice had cognitive behavioral impairments. The hippocampal tissue assay showed abnormal neuron morphology and a decreased number in infected mice. Moreover, pro-apoptotic proteins, as well as BACE1, APP and Aβ proteins, increased in the infected mouse hippocampus. The experiments in vitro showed that pro-apoptotic proteins and p-NF-κBp65, NF-κBp65, BACE1, APP and Aβ proteins or genes were significantly increased in the infected HT22. In addition, CD80, pro-inflammatory factors, notch, hes1 proteins and genes were enhanced in the infected BV2. Interestingly, not only the APP and pro-apoptotic proteins in HT22, but also the apoptosis rate of HT22 increased after the infected BV2 were co-cultured with the HT22 in a transwell device. CONCLUSIONS Neuron apoptosis, Aβ deposition and neuroinflammatory response involved with microglia polarization are the molecular and cellular mechanisms by which TgCtwh6 causes mouse cognitive behavioral abnormalities.
Collapse
Affiliation(s)
- Qing Tao
- grid.186775.a0000 0000 9490 772XDepartment of Pathogen Biology, Anhui Province Key Laboratory of Microbiology & Parasitology, Anhui Provincial Laboratory of Zoonoses of High Institutions, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Di Yang
- grid.186775.a0000 0000 9490 772XDepartment of Pathogen Biology, Anhui Province Key Laboratory of Microbiology & Parasitology, Anhui Provincial Laboratory of Zoonoses of High Institutions, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Kunpeng Qin
- grid.412679.f0000 0004 1771 3402Department of Orthopaedics, the First Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Lei Liu
- grid.59053.3a0000000121679639Department of Blood Transfusion, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Mengmeng Jin
- grid.186775.a0000 0000 9490 772XMaternity and Child Health Hospital of Anhui Province, The Affiliated Maternity and Child Health Hospital of Anhui Medical University, Hefei, China
| | - Famin Zhang
- grid.186775.a0000 0000 9490 772XDepartment of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jinjin Zhu
- grid.186775.a0000 0000 9490 772XDepartment of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jie Wang
- grid.186775.a0000 0000 9490 772XDepartment of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Provincial Laboratory of Zoonoses of High Institutions, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Qingli Luo
- grid.186775.a0000 0000 9490 772XDepartment of Pathogen Biology, Anhui Province Key Laboratory of Microbiology & Parasitology, Anhui Provincial Laboratory of Zoonoses of High Institutions, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Jian Du
- grid.186775.a0000 0000 9490 772XDepartment of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Provincial Laboratory of Zoonoses of High Institutions, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Li Yu
- grid.186775.a0000 0000 9490 772XDepartment of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jilong Shen
- grid.186775.a0000 0000 9490 772XDepartment of Pathogen Biology, Anhui Province Key Laboratory of Microbiology & Parasitology, Anhui Provincial Laboratory of Zoonoses of High Institutions, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Deyong Chu
- grid.186775.a0000 0000 9490 772XDepartment of Pathogen Biology, Anhui Province Key Laboratory of Microbiology & Parasitology, Anhui Provincial Laboratory of Zoonoses of High Institutions, School of Basic Medicine, Anhui Medical University, Hefei, China
| |
Collapse
|
14
|
Zhang J, Zhang N, Lei J, Jing B, Li M, Tian H, Xue B, Li X. Fluoxetine shows neuroprotective effects against LPS-induced neuroinflammation via the Notch signaling pathway. Int Immunopharmacol 2022; 113:109417. [DOI: 10.1016/j.intimp.2022.109417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/24/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022]
|
15
|
Li DY, Gao SJ, Sun J, Zhang LQ, Wu JY, Song FH, Liu DQ, Zhou YQ, Mei W. Notch signaling activation contributes to paclitaxel-induced neuropathic pain via activation of A1 astrocytes. Eur J Pharmacol 2022; 928:175130. [PMID: 35777441 DOI: 10.1016/j.ejphar.2022.175130] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/18/2022] [Accepted: 06/24/2022] [Indexed: 12/29/2022]
Abstract
Paclitaxel-induced neuropathic pain (PINP) is a progressive and refractory side effect of chemotherapy with few effective treatments at present. It is well-established that astrocytes activation contributes to the development of PINP. Recent reports showed astrocytes can be divided into A1 and A2 phenotypes. However, whether the transformation of astrocytes participates in PINP and the underlying mechanisms remain unknown. As Notch signaling pathway have shown to be involved in neuropathic pain, we aimed to investigate the relationship between Notch signaling pathway and A1 astrocytes in PINP. Herein we found that both A1 astrocytes and Notch signaling were markedly activated in the spinal cord of PINP rats and the downstream molecules of Notch signaling were colocalized with A1 astrocytes. DAPT (an inhibitor of Notch signaling) not only suppressed the mechanical allodynia of PINP rats, but also inhibited the activation of Notch signaling pathway and A1 astrocytes. Furthermore, Jagged1 (a ligand of Notch1 receptors) dose-dependently induced mechanical hyperalgesia in naïve rats and simultaneously led to Notch signaling activation and A1 astrocytes transformation, all of which were inhibited by DAPT. Taken together, these results demonstrate Notch signaling activation contributes to PINP via A1 astrocytes activation, which provides a promising therapeutic target for PINP.
Collapse
Affiliation(s)
- Dan-Yang Li
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shao-Jie Gao
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jia Sun
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Long-Qing Zhang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jia-Yi Wu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fan-He Song
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dai-Qiang Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ya-Qun Zhou
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Wei Mei
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
16
|
Lv M, He W, Liang T, Yang J, Huang X, Liu S, Liang X, Long J, Su L. Exploring biomarkers for ischemic stroke through integrated microarray data analysis. Brain Res 2022; 1790:147982. [PMID: 35691413 DOI: 10.1016/j.brainres.2022.147982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/20/2022] [Accepted: 06/07/2022] [Indexed: 11/02/2022]
Abstract
Stroke is the third leading cause of disability-adjusted life years worldwide, and drugs available for its treatment are limited. This study aimed to explore high-confidence candidate genes associated with ischemic stroke (IS) through bioinformatics analysis and identify potential diagnostic biomarkers and gene-drug interactions. Weighted gene coexpression network analysis (WGCNA) and differentially expressed genes (DEGs) were integrated to identify overlapping genes. Then, high-confidence candidate genes were screened by least absolute shrinkage and selection operator (LASSO) regression. Receiver operating characteristic (ROC) curves were used to evaluate the diagnostic value of high-confidence candidate genes as biomarkers for IS. The NetworkAnalyst database was used to construct the TF-gene network and miRNA-TF regulatory network of the high-confidence candidate genes. The DGIdb database was used to identified gene-drug interactions. Through the comprehensive analysis of GSE58294 and GSE16561, 10 high-confidence candidate genes were identified by LASSO regression: ARG1, LY96, ABCA1, SLC22A4, CD163, TPM2, SLC25A42, ID3, FAM102A and CD79B. FAM102A had the highest diagnostic value, and the area under curve (AUC), sensitivity and specificity values were 0.974, 0.919 and 0.936, respectively. The HPA database demonstrated that 10 high-confidence candidate genes were expressed in the brain and blood in normal humans. Finally, DGIdb database analysis identified 8 gene-drug interactions. We identified IS-related diagnostic biomarkers and gene-drug interactions that potentially provide new insights into the diagnosis and treatment of IS.
Collapse
Affiliation(s)
- Miao Lv
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Wanting He
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Tian Liang
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Jialei Yang
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Xiaolan Huang
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Shengying Liu
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Xueying Liang
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Jianxiong Long
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China.
| | - Li Su
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China.
| |
Collapse
|
17
|
Edaravone Attenuated Particulate Matter-Induced Lung Inflammation by Inhibiting ROS-NF-κB Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6908884. [PMID: 35502210 PMCID: PMC9056219 DOI: 10.1155/2022/6908884] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 03/05/2022] [Accepted: 03/30/2022] [Indexed: 01/31/2023]
Abstract
Background Particulate matter (PM) exposure is related to mitochondria dysfunction and airway inflammation. Antioxidant drug edaravone (EDA) is reported to improve the occurrence and development of oxidative stress-related diseases. At present, there is no data on whether EDA can alleviate lung inflammation caused by PM. Methods The anti-inflammatory effects of EDA were investigated in urban PM-induced human bronchial epithelial cells (HBECs) and C57/BL6J mouse models. In vitro, its effects on the production of intracellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and inflammatory cytokines were assessed by DCFH-DA staining, JC-1 assay, and real-time PCR, respectively. In vivo, the oxidant stress in lung tissues was assessed by dihydroethidium (DHE) staining and malondialdehyde (MDA) activity, and inflammatory cytokines in bronchoalveolar lavage fluid (BALF) were assessed by ELISA, respectively. Furthermore, the potential signaling pathways were studied by siRNA transfection and western blot. Results PM increased the expression of inflammatory cytokines and protein, including IL-6, IL-1α, IL-1β, and COX-2, while these alternations were significantly alleviated following EDA treatment in a dose-dependent manner. EDA treatment also alleviated the inflammatory responses in lung tissues of PM-exposed mice. We further showed mitochondrial dysfunction in PM-exposed HBECs and mice, which were reversed by EDA treatment. Moreover, the phosphorylation of NF-κB p65 in PM-exposed HBECs and mice was weakened by EDA. Transfection with NF-κB p65 siRNA further inhibited PM-induced inflammation in HBECs. Conclusion We demonstrated that EDA treatment had a protective role in PM-induced lung inflammation through maintaining mitochondrial balance and regulating the ROS-NF-κB p65 signaling pathway. This provided a new therapeutic method for PM-induced lung inflammation in the future.
Collapse
|
18
|
Wan T, Huang Y, Gao X, Wu W, Guo W. Microglia Polarization: A Novel Target of Exosome for Stroke Treatment. Front Cell Dev Biol 2022; 10:842320. [PMID: 35356292 PMCID: PMC8959940 DOI: 10.3389/fcell.2022.842320] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/14/2022] [Indexed: 12/14/2022] Open
Abstract
The vast majority of cells in the human body are capable of secreting exosomes. Exosomes have become an important vehicle for signaling between cells. Exosomes secreted by different cells have some of the structural and functional properties of that cell and thus have different regulatory functions. A large number of recent experimental studies have shown that exosomes from different sources have different regulatory effects on stroke, and the mechanisms still need to be elucidated. Microglia are core members of central intrinsic immune regulatory cells, which play an important regulatory role in the pathogenesis and progression of stroke. M1 microglia cause neuroinflammation and induce neurotoxic effects, while M2 microglia inhibit neuroinflammation and promote neurogenesis, thus exerting a series of neuroprotective effects. It was found that there is a close link between exosomes and microglia polarization, and that exosome inclusions such as microRNAs play a regulatory role in the M1/M2 polarization of microglia. This research reviews the role of exosomes in the regulation of microglia polarization and reveals their potential value in stroke treatment.
Collapse
Affiliation(s)
- Teng Wan
- Hengyang Medical College, University of South China, Hengyang, China.,Sports Medicine Department, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Yunling Huang
- Hengyang Medical College, University of South China, Hengyang, China
| | - Xiaoyu Gao
- Hengyang Medical College, University of South China, Hengyang, China
| | - Wanpeng Wu
- Shenzhen Futian District Maternity & Child Healthcare Hospital, Shenzhen, China
| | - Weiming Guo
- Sports Medicine Department, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
19
|
Abu-Elfotuh K, Al-Najjar AH, Mohammed AA, Aboutaleb AS, Badawi GA. Fluoxetine ameliorates Alzheimer's disease progression and prevents the exacerbation of cardiovascular dysfunction of socially isolated depressed rats through activation of Nrf2/HO-1 and hindering TLR4/NLRP3 inflammasome signaling pathway. Int Immunopharmacol 2022; 104:108488. [PMID: 35042170 DOI: 10.1016/j.intimp.2021.108488] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/29/2021] [Accepted: 12/16/2021] [Indexed: 12/11/2022]
Abstract
Depression is a risk factor for Alzheimer's (AD) and cardiovascular diseases (CVD). Therefore, depression treatment restricts its deteriorating effects on mood, memory and CV system. Fluoxetine is the most widely used antidepressant drug, it has neuroprotective effect through its antioxidant/anti-inflammatory properties. The current study investigated for the first-time the cross link between depression, AD and CVD besides, role of fluoxetine in mitigating such disorders. Depression was induced in rats by social isolation (SI) for 12 weeks, AlCL3 (70 mg/kg/day, i.p.) was used to induce AD which was administered either in SI or normal control (NC) grouped rats starting at 8th week till the end of the experiment, fluoxetine (10 mg/kg/day, p.o) treatment also was started at 8th week. SI and AD showed a statistically significant deteriorated effect on behavioral, neurochemical and histopathological analysis which was exaggerated when two disorder combined than each alone. Fluoxetine treatment showed protective effect against SI, AD and prevents exacerbation of CVD. Fluoxetine improved animals' behavior, increased brain monoamines, BDNF besides increased antioxidant defense mechanism of SOD, TAC contents and increased protein expression of Nrf2/HO-1 with significant decrease of AChE activity, β-amyloid, Tau protein, MDA, TNF-α, IL1β contents as well as decreased protein expression of NF-kB, TLR4, NLRP3 and caspase1. It also showed cardioprotective effects as it improved lipid profile with pronounced decrease of cardiac enzymes of CK-MB, troponin and MEF2. In conclusion, fluoxetine represents as a promising drug against central and peripheral disorders through its anti-inflammatory/antioxidant effects via targeting antioxidant Nrf2/HO-1 and hindering TLR4/NLRP3 inflammasome signaling pathways.
Collapse
Affiliation(s)
- Karema Abu-Elfotuh
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Aya H Al-Najjar
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Asmaa A Mohammed
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Amany S Aboutaleb
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Ghada A Badawi
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Sinai University, El Arish, Egypt.
| |
Collapse
|
20
|
Jha NK, Chen WC, Kumar S, Dubey R, Tsai LW, Kar R, Jha SK, Gupta PK, Sharma A, Gundamaraju R, Pant K, Mani S, Singh SK, Maccioni RB, Datta T, Singh SK, Gupta G, Prasher P, Dua K, Dey A, Sharma C, Mughal YH, Ruokolainen J, Kesari KK, Ojha S. Molecular mechanisms of developmental pathways in neurological disorders: a pharmacological and therapeutic review. Open Biol 2022; 12:210289. [PMID: 35291879 PMCID: PMC8924757 DOI: 10.1098/rsob.210289] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 02/01/2022] [Indexed: 01/07/2023] Open
Abstract
Developmental signalling pathways such as Wnt/β-catenin, Notch and Sonic hedgehog play a central role in nearly all the stages of neuronal development. The term 'embryonic' might appear to be a misnomer to several people because these pathways are functional during the early stages of embryonic development and adulthood, albeit to a certain degree. Therefore, any aberration in these pathways or their associated components may contribute towards a detrimental outcome in the form of neurological disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and stroke. In the last decade, researchers have extensively studied these pathways to decipher disease-related interactions, which can be used as therapeutic targets to improve outcomes in patients with neurological abnormalities. However, a lot remains to be understood in this domain. Nevertheless, there is strong evidence supporting the fact that embryonic signalling is indeed a crucial mechanism as is manifested by its role in driving memory loss, motor impairments and many other processes after brain trauma. In this review, we explore the key roles of three embryonic pathways in modulating a range of homeostatic processes such as maintaining blood-brain barrier integrity, mitochondrial dynamics and neuroinflammation. In addition, we extensively investigated the effect of these pathways in driving the pathophysiology of a range of disorders such as Alzheimer's, Parkinson's and diabetic neuropathy. The concluding section of the review is dedicated to neurotherapeutics, wherein we identify and list a range of biological molecules and compounds that have shown enormous potential in improving prognosis in patients with these disorders.
Collapse
Affiliation(s)
- Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Wei-Chih Chen
- Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Sanjay Kumar
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Rajni Dubey
- Department of Medicine Research, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Lung-Wen Tsai
- Department of Medicine Research, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Department of Information Technology Office, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei 110, Taiwan
| | - Rohan Kar
- Indian Institute of Management Ahmedabad (IIMA), Gujarat 380015, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Piyush Kumar Gupta
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Ankur Sharma
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Laboratory, School of Health Sciences, University of Tasmania, Launceston, Tasmania 7248, Australia
| | - Kumud Pant
- Department of Biotechnology, Graphic Era deemed to be University Dehradun Uttarakhand, 248002 Dehradun, India
| | - Shalini Mani
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector 62, Noida, Uttar Pradesh 201301, India
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology Foundation, Lucknow 226002, India
| | - Ricardo B. Maccioni
- Laboratory of Neurosciences and Functional Medicine, International Center for Biomedicine (ICC) and Faculty of Sciences, University of Chile, Santiago de Chile, Chile
| | - Tirtharaj Datta
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Gaurav Gupta
- Department of Pharmacology, School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, 302017 Jagatpura, Jaipur, India
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, India
- Department of Applied Physics, School of Science, and
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Yasir Hayat Mughal
- Department of Health Administration, College of Public Health and Health Informatics, Qassim University, Buraidah, Saudi Arabia
| | | | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, and
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo 00076, Finland
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| |
Collapse
|
21
|
Singh S, Sahu K, Kapil L, Singh C, Singh A. Quercetin ameliorates lipopolysaccharide-induced neuroinflammation and oxidative stress in adult zebrafish. Mol Biol Rep 2022; 49:3247-3258. [DOI: 10.1007/s11033-022-07161-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 01/18/2022] [Indexed: 12/13/2022]
|
22
|
The Influence of Gut Microbiota on Neurogenesis: Evidence and Hopes. Cells 2022; 11:cells11030382. [PMID: 35159192 PMCID: PMC8834402 DOI: 10.3390/cells11030382] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
Adult neurogenesis (i.e., the life-long generation of new neurons from undifferentiated neuronal precursors in the adult brain) may contribute to brain repair after damage, and participates in plasticity-related processes including memory, cognition, mood and sensory functions. Among the many intrinsic (oxidative stress, inflammation, and ageing), and extrinsic (environmental pollution, lifestyle, and diet) factors deemed to impact neurogenesis, significant attention has been recently attracted by the myriad of saprophytic microorganismal communities inhabiting the intestinal ecosystem and collectively referred to as the gut microbiota. A growing body of evidence, mainly from animal studies, reveal the influence of microbiota and its disease-associated imbalances on neural stem cell proliferative and differentiative activities in brain neurogenic niches. On the other hand, the long-claimed pro-neurogenic activity of natural dietary compounds endowed with antioxidants and anti-inflammatory properties (such as polyphenols, polyunsaturated fatty acids, or pro/prebiotics) may be mediated, at least in part, by their action on the intestinal microflora. The purpose of this review is to summarise the available information regarding the influence of the gut microbiota on neurogenesis, analyse the possible underlying mechanisms, and discuss the potential implications of this emerging knowledge for the fight against neurodegeneration and brain ageing.
Collapse
|
23
|
Ren TT, Yang JY, Wang J, Fan SR, Lan R, Qin XY. Gisenoside Rg1 attenuates cadmium-induced neurotoxicity in vitro and in vivo by attenuating oxidative stress and inflammation. Inflamm Res 2021; 70:1151-1164. [PMID: 34661679 DOI: 10.1007/s00011-021-01513-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVE Gisenoside Rg1 is a potent neuroprotectant in ginseng. The aim of this study was to investigate the elimination effect of Rg1 on cadmium (Cd)-induced neurotoxicity. MATERIALS AND METHODS A cumulative Cd exposure mouse model was established. Also, the toxicity of Cd and the protective effect of Rg1 were examined in vitro using cultured neurons and microglia. RESULTS We found that Cd-intoxicated mice exhibited significant injury in the liver, kidney, small intestine, and testis, along with cognitive impairment. Antioxidant enzymes such as SOD, GSH-Px and CAT were reduced in the blood and brain, and correspondingly, the lipid peroxidation product MDA was elevated. In the brain, astrocytes and microglia were activated, characterized by an increase in inflammatory factors such as TNF-α, IL-1β and IL-6, as well as their protein markers GFAP and IBA1. However, Rg1 eliminated Cd-induced toxicity and restored oxidative stress and inflammatory responses, correspondingly restoring the behavioral performance of the animals. Meanwhile, the BDNF-TrkB/Akt and Notch/HES-1 signaling axes were involved in the Rg1-mediated elimination of Cd-induced toxicity. CONCLUSION Rg1 is a promising agent for the elimination of Cd-induced toxicity.
Collapse
Affiliation(s)
- Teng-Teng Ren
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center On Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Jia-Ying Yang
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center On Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Jun Wang
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center On Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Sheng-Rui Fan
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center On Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Rongfeng Lan
- Department of Cell Biology and Medical Genetics, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, 518060, China.
| | - Xiao-Yan Qin
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center On Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
24
|
Zhang K, Huang Q, Deng S, Yang Y, Li J, Wang S. Mechanisms of TLR4-Mediated Autophagy and Nitroxidative Stress. Front Cell Infect Microbiol 2021; 11:766590. [PMID: 34746034 PMCID: PMC8570305 DOI: 10.3389/fcimb.2021.766590] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/04/2021] [Indexed: 01/23/2023] Open
Abstract
Pathogenic infections have badly affected public health and the development of the breeding industry. Billions of dollars are spent every year fighting against these pathogens. The immune cells of a host produce reactive oxygen species and reactive nitrogen species which promote the clearance of these microbes. In addition, autophagy, which is considered an effective method to promote the destruction of pathogens, is involved in pathological processes. As research continues, the interplay between autophagy and nitroxidative stress has become apparent. Autophagy is always intertwined with nitroxidative stress. Autophagy regulates nitroxidative stress to maintain homeostasis within an appropriate range. Intracellular oxidation, in turn, is a strong inducer of autophagy. Toll-like receptor 4 (TLR4) is a pattern recognition receptor mainly involved in the regulation of inflammation during infectious diseases. Several studies have suggested that TLR4 is also a key regulator of autophagy and nitroxidative stress. In this review, we describe the role of TLR4 in autophagy and oxidation, and focus on its function in influencing autophagy-nitroxidative stress interactions.
Collapse
Affiliation(s)
- Kunli Zhang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qiuyan Huang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shoulong Deng
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Yecheng Yang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding/Guangdong Provincial Research Center of Gene Editing Engineering Technology, Foshan University, Foshan, China
| | - Jianhao Li
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Sutian Wang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
25
|
Notch1 Signaling Contributes to Mechanical Allodynia Associated with Cyclophosphamide-Induced Cystitis by Promoting Microglia Activation and Neuroinflammation. Mediators Inflamm 2021; 2021:1791222. [PMID: 34646085 PMCID: PMC8505104 DOI: 10.1155/2021/1791222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/03/2021] [Accepted: 08/12/2021] [Indexed: 12/05/2022] Open
Abstract
Aims Notch1 signaling regulates microglia activation, which promotes neuroinflammation. Neuroinflammation plays an essential role in various kinds of pain sensation, including bladder-related pain in bladder pain syndrome/interstitial cystitis (BPS/IC). However, the impact of Notch1 signaling on mechanical allodynia in cyclophosphamide- (CYP-) induced cystitis is unclear. This study is aimed at determining whether and how Notch1 signaling modulates mechanical allodynia of CYP-induced cystitis. Methods CYP was peritoneally injected to establish a bladder pain syndrome/interstitial cystitis (BPS/IC) rat model. A γ-secretase inhibitor, DAPT, was intrathecally injected to modulate Notch1 signaling indirectly. Mechanical withdrawal threshold in the lower abdomen was measured with von Frey filaments using the up-down method. The expression of Notch1 signaling, Iba-1, OX-42, TNF-α, and IL-1β in the L6-S1 spinal dorsal horn (SDH) was measured with Western blotting analysis and immunofluorescence staining. Results Notch1 and Notch intracellular domain (NICD) were both upregulated in the SDH of the cystitis group. Moreover, the expression of Notch1 and NICD was negatively correlated with the mechanical withdrawal threshold of the cystitis rats. Furthermore, treatment with DAPT attenuated mechanical allodynia in CYP-induced cystitis and inhibited microglia activation, leading to decreased production of TNF-α and IL-1β. Conclusion Notch1 signaling contributes to mechanical allodynia associated with CYP-induced cystitis by promoting microglia activation and neuroinflammation. Our study showed that inhibition of Notch1 signaling might have therapeutic value for treating pain symptoms in BPS/IC.
Collapse
|
26
|
Brain Immune Interactions-Novel Emerging Options to Treat Acute Ischemic Brain Injury. Cells 2021; 10:cells10092429. [PMID: 34572077 PMCID: PMC8472028 DOI: 10.3390/cells10092429] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 12/25/2022] Open
Abstract
Ischemic stroke is still among the leading causes of mortality and morbidity worldwide. Despite intensive advancements in medical sciences, the clinical options to treat ischemic stroke are limited to thrombectomy and thrombolysis using tissue plasminogen activator within a narrow time window after stroke. Current state of the art knowledge reveals the critical role of local and systemic inflammation after stroke that can be triggered by interactions taking place at the brain and immune system interface. Here, we discuss different cellular and molecular mechanisms through which brain–immune interactions can take place. Moreover, we discuss the evidence how the brain influence immune system through the release of brain derived antigens, damage-associated molecular patterns (DAMPs), cytokines, chemokines, upregulated adhesion molecules, through infiltration, activation and polarization of immune cells in the CNS. Furthermore, the emerging concept of stemness-induced cellular immunity in the context of neurodevelopment and brain disease, focusing on ischemic implications, is discussed. Finally, we discuss current evidence on brain–immune system interaction through the autonomic nervous system after ischemic stroke. All of these mechanisms represent potential pharmacological targets and promising future research directions for clinically relevant discoveries.
Collapse
|
27
|
Rodriguez D, Watts D, Gaete D, Sormendi S, Wielockx B. Hypoxia Pathway Proteins and Their Impact on the Blood Vasculature. Int J Mol Sci 2021; 22:ijms22179191. [PMID: 34502102 PMCID: PMC8431527 DOI: 10.3390/ijms22179191] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 12/12/2022] Open
Abstract
Every cell in the body requires oxygen for its functioning, in virtually every animal, and a tightly regulated system that balances oxygen supply and demand is therefore fundamental. The vascular network is one of the first systems to sense oxygen, and deprived oxygen (hypoxia) conditions automatically lead to a cascade of cellular signals that serve to circumvent the negative effects of hypoxia, such as angiogenesis associated with inflammation, tumor development, or vascular disorders. This vascular signaling is driven by central transcription factors, namely the hypoxia inducible factors (HIFs), which determine the expression of a growing number of genes in endothelial cells and pericytes. HIF functions are tightly regulated by oxygen sensors known as the HIF-prolyl hydroxylase domain proteins (PHDs), which are enzymes that hydroxylate HIFs for eventual proteasomal degradation. HIFs, as well as PHDs, represent attractive therapeutic targets under various pathological settings, including those involving vascular (dys)function. We focus on the characteristics and mechanisms by which vascular cells respond to hypoxia under a variety of conditions.
Collapse
|
28
|
Fan SR, Ren TT, Yun MY, Lan R, Qin XY. Edaravone attenuates cadmium-induced toxicity by inhibiting oxidative stress and inflammation in ICR mice. Neurotoxicology 2021; 86:1-9. [PMID: 34174317 DOI: 10.1016/j.neuro.2021.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 06/21/2021] [Indexed: 01/28/2023]
Abstract
The neurotoxicity caused by cadmium (Cd) is well known in humans and experimental animals. However, there is no effective treatment for its toxicity. In this study, we established Cd toxicity models in cultured cells or mice to investigate the detoxification effect of edaravone (Eda). We found that Eda protected GL261 cells from Cd toxicity and prevented the loss of cell viability. In Cd-exposed mice, liver, kidney and testicular damage, as well as cognitive dysfunction were observed. Oxidative stress and inflammatory responses, such as decreased SOD and CAT, increased LDH and MDA, and abnormal changes in the inflammatory factors TNF-α, IL-1β, IL-6 and IL-10 were detected in serum and brain tissue. Eda protected mice from Cd-induced toxicity and abrogated oxidative stress and inflammatory responses. Also, Eda prevented inflammatory activation of microglia and astrocytes and was accompanied by restoration of the neuronal marker protein MAP2, indicating restoration of neuronal function. In addition, the BDNF-TrkB/Akt and Notch/HES-1 signaling axes were involved in the response of Eda to the elimination of Cd toxicity. In conclusion, Eda does contribute to the clearance of Cd-induced toxicity.
Collapse
Affiliation(s)
- Sheng-Rui Fan
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Teng-Teng Ren
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Miao-Ying Yun
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Rongfeng Lan
- Department of Cell Biology & Medical Genetics, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, China.
| | - Xiao-Yan Qin
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| |
Collapse
|
29
|
Rodríguez-Barrera R, Rivas-González M, García-Sánchez J, Mojica-Torres D, Ibarra A. Neurogenesis after Spinal Cord Injury: State of the Art. Cells 2021; 10:cells10061499. [PMID: 34203611 PMCID: PMC8232196 DOI: 10.3390/cells10061499] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/24/2021] [Accepted: 06/08/2021] [Indexed: 01/06/2023] Open
Abstract
Neurogenesis in the adult state is the process of new neuron formation. This relatively infrequent phenomenon comprises four stages: cell proliferation, cell migration, differentiation, and the integration of these cells into an existing circuit. Recent reports suggest that neurogenesis can be found in different regions of the Central Nervous System (CNS), including the spinal cord (SC). This process can be observed in physiological settings; however, it is more evident in pathological conditions. After spinal cord injury (SCI), the activation of microglial cells and certain cytokines have shown to exert different modulatory effects depending on the presence of inflammation and on the specific region of the injury site. In these conditions, microglial cells and cytokines are considered to play an important role in the regulation of neurogenesis after SCI. The purpose of this article is to present an overview on neural progenitor cells and neurogenic and non-neurogenic zones as well as the cellular and molecular regulation of neurogenesis. Additionally, we will briefly describe the recent advances in the knowledge of neurogenesis after SCI.
Collapse
|
30
|
Gastrodin Attenuates Lipopolysaccharide-Induced Inflammatory Response and Migration via the Notch-1 Signaling Pathway in Activated Microglia. Neuromolecular Med 2021; 24:139-154. [PMID: 34109563 DOI: 10.1007/s12017-021-08671-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/31/2021] [Indexed: 10/21/2022]
Abstract
Microglia-mediated neuroinflammation is known to play a pivotal role in the pathogenesis of different neurological diseases. Gastrodin, a phenolic glucoside, has been reported to exert anti-inflammatory effects in activated microglia challenged with lipopolysaccharide (LPS); however, the underlying mechanism has remained obscure. The present study aimed to ascertain if Gastrodin would regulate the Notch signaling pathway involved in microglia activation. We show here that LPS increased the expression of various members of the Notch-1 pathway, including intracellular Notch receptor domain (NICD), recombining binding protein suppressor of hairless (RBP-Jκ) and transcription factor hairy and enhancer of split-1 (Hes-1) in microglia in postnatal rat brain and in BV-2 microglia. Remarkably, Gastrodin was found to markedly attenuate the expression of the above various biomarkers both in vivo and in vitro. Moreover, increased phosphorylation level of ERK, JNK and P38 induced by LPS was attenuated with pretreatment of Notch-1 signaling inhibitor, N-[N-(3,5-difluorophenacetyl)-1-alany1-Sphenyglycinet-butylester (DAPT) as well as Gastrodin. Gastrodin mimicked the effects of DAPT by inhibiting the LPS-induced expression of IL-1β, IL-6, IL-23, TNF-α and NO. Moreover, lentivirus transfection mediated NICD overexpression inhibited the anti-inflammatory effects of Gastrodin. Furthermore, the activation of Notch-1 signaling promoted microglia migration and Gastrodin could inhibit the migration of activated BV-2 microglia by regulating the Notch-1 signaling pathway. In light of the above, our results indicate that Notch-1 signaling pathway is involved in the anti-inflammatory effects of Gastrodin against LPS-induced microglia activation. These findings provide a new biological target of Gastrodin for the treatment of neuroinflammatory disorders.
Collapse
|
31
|
Oxymatrine Extends Survival by Attenuating Neuroinflammation in a Mouse Model of Amyotrophic Lateral Sclerosis. Neuroscience 2021; 465:11-22. [PMID: 33945797 DOI: 10.1016/j.neuroscience.2021.04.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 11/21/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is one of the leading causes of death associated with neurodegenerative diseases worldwide, and the progression of the disease is characteristically accompanied by severe neuroinflammation. Neuroprotective effects of oxymatrine (OMT) were shown to be due to reduced neuroinflammation in the mouse models of Alzheimer's disease and Parkinson's disease. The present study investigated whether OMT has a therapeutic potential in transgenic SOD1-G93A (TgSOD1-G93A) mice. Daily OMT treatment started at the age of 55 days until the end stage of the disease. Body weight and rotarod motor performance were assessed every 3 days starting from 70 days of age. Footprints were recorded to measure the stride length 40 days and 60 days after the initiation of the treatment. Some animals were sacrificed at the age of 115 days, and the lumbar spinal cord was harvested for immunofluorescence and quantitative real-time polymerase chain reaction (qRT-PCR) to evaluate the neuroinflammatory responses. The results indicated that treatment with OMT delayed body weight loss, improved motor performance, and prolonged the survival of SOD1-G93A mice. Mechanistically, OMT treatment enhanced motor neuronal survival and alleviated the activation of microglia and astrocytes compared with those in the vehicle-treated group. Furthermore, the expression of the proinflammatory mediators was downregulated, and the expression of the anti-inflammatory factors was upregulated in the OMT-treated group compared with those in the vehicle-treated group (P < 0.05). Thus, the treatment with OMT had neuroprotective effects, promoting neuronal survival and extending the lifetime of SOD1-G93A mice by suppressing neuroinflammation.
Collapse
|
32
|
Fumagalli G, Monza L, Cavaletti G, Rigolio R, Meregalli C. Neuroinflammatory Process Involved in Different Preclinical Models of Chemotherapy-Induced Peripheral Neuropathy. Front Immunol 2021; 11:626687. [PMID: 33613570 PMCID: PMC7890072 DOI: 10.3389/fimmu.2020.626687] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Peripheral neuropathies are characterized by nerves damage and axonal loss, and they could be classified in hereditary or acquired forms. Acquired peripheral neuropathies are associated with several causes, including toxic agent exposure, among which the antineoplastic compounds are responsible for the so called Chemotherapy-Induced Peripheral Neuropathy (CIPN). Several clinical features are related to the use of anticancer drugs which exert their action by affecting different mechanisms and structures of the peripheral nervous system: the axons (axonopathy) or the dorsal root ganglia (DRG) neurons cell body (neuronopathy/ganglionopathy). In addition, antineoplastic treatments may affect the blood brain barrier integrity, leading to cognitive impairment that may be severe and long-lasting. CIPN may affect patient quality of life leading to modification or discontinuation of the anticancer therapy. Although the mechanisms of the damage are not completely understood, several hypotheses have been proposed, among which neuroinflammation is now emerging to be relevant in CIPN pathophysiology. In this review, we consider different aspects of neuro-immune interactions in several CIPN preclinical studies which suggest a critical connection between chemotherapeutic agents and neurotoxicity. The features of the neuroinflammatory processes may be different depending on the type of drug (platinum derivatives, taxanes, vinca alkaloids and proteasome inhibitors). In particular, recent studies have demonstrated an involvement of the immune response (both innate and adaptive) and the stimulation and secretion of mediators (cytokines and chemokines) that may be responsible for the painful symptoms, whereas glial cells such as satellite and Schwann cells might contribute to the maintenance of the neuroinflammatory process in DRG and axons respectively. Moreover, neuroinflammatory components have also been shown in the spinal cord with microglia and astrocytes playing an important role in CIPN development. Taking together, better understanding of these aspects would permit the development of possible strategies in order to improve the management of CIPN.
Collapse
Affiliation(s)
- Giulia Fumagalli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, Monza, Italy
| | - Laura Monza
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, Monza, Italy
| | - Guido Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, Monza, Italy
| | - Roberta Rigolio
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, Monza, Italy
| | - Cristina Meregalli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
33
|
Signaling cross-talk during development: Context-specific networking of Notch, NF-κB and JNK signaling pathways in Drosophila. Cell Signal 2021; 82:109937. [PMID: 33529757 DOI: 10.1016/j.cellsig.2021.109937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 01/08/2023]
Abstract
Multicellular organisms depend on a handful of core signaling pathways that regulate a variety of cell fate choices. Often these relatively simple signals integrate to form a large and complex signaling network to achieve a distinct developmental fate in a context-specific manner. Various pathway-dependent and independent events control the assembly of signaling complexes. Notch pathway is one such conserved signaling mechanism that integrates with other signaling pathways to exhibit a context-dependent pleiotropic output. To understand how Notch signaling provides a spectrum of distinct outputs, it is important to understand various regulatory switches involved in mediating signaling cross-talk of Notch with other pathways. Here, we review our current understanding as to how Notch signal integrates with JNK and NF-κB signaling pathways in Drosophila to regulate various developmental events such as sensory organ precursor formation, innate immunity, dorsal closure, establishment of planar cell polarity as well as during proliferation and tumor progression. We highlight the importance of conserved signaling molecules during these cross-talks and debate further possibilities of novel switches that may be involved in mediating these cross-talk events.
Collapse
|
34
|
The Spinal Extracellular Matrix Modulates a Multi-level Protein Net and Epigenetic Inducers Following Peripheral Nerve Injury. Neuroscience 2020; 451:216-225. [DOI: 10.1016/j.neuroscience.2020.09.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/12/2020] [Accepted: 09/23/2020] [Indexed: 12/30/2022]
|
35
|
Ball G, Seidlitz J, O’Muircheartaigh J, Dimitrova R, Fenchel D, Makropoulos A, Christiaens D, Schuh A, Passerat-Palmbach J, Hutter J, Cordero-Grande L, Hughes E, Price A, Hajnal JV, Rueckert D, Robinson EC, Edwards AD. Cortical morphology at birth reflects spatiotemporal patterns of gene expression in the fetal human brain. PLoS Biol 2020; 18:e3000976. [PMID: 33226978 PMCID: PMC7721147 DOI: 10.1371/journal.pbio.3000976] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 12/07/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
Interruption to gestation through preterm birth can significantly impact cortical development and have long-lasting adverse effects on neurodevelopmental outcome. We compared cortical morphology captured by high-resolution, multimodal magnetic resonance imaging (MRI) in n = 292 healthy newborn infants (mean age at birth = 39.9 weeks) with regional patterns of gene expression in the fetal cortex across gestation (n = 156 samples from 16 brains, aged 12 to 37 postconceptional weeks [pcw]). We tested the hypothesis that noninvasive measures of cortical structure at birth mirror areal differences in cortical gene expression across gestation, and in a cohort of n = 64 preterm infants (mean age at birth = 32.0 weeks), we tested whether cortical alterations observed after preterm birth were associated with altered gene expression in specific developmental cell populations. Neonatal cortical structure was aligned to differential patterns of cell-specific gene expression in the fetal cortex. Principal component analysis (PCA) of 6 measures of cortical morphology and microstructure showed that cortical regions were ordered along a principal axis, with primary cortex clearly separated from heteromodal cortex. This axis was correlated with estimated tissue maturity, indexed by differential expression of genes expressed by progenitor cells and neurons, and engaged in stem cell differentiation, neuron migration, and forebrain development. Preterm birth was associated with altered regional MRI metrics and patterns of differential gene expression in glial cell populations. The spatial patterning of gene expression in the developing cortex was thus mirrored by regional variation in cortical morphology and microstructure at term, and this was disrupted by preterm birth. This work provides a framework to link molecular mechanisms to noninvasive measures of cortical development in early life and highlights novel pathways to injury in neonatal populations at increased risk of neurodevelopmental disorder. Interruption to gestation through preterm birth can significantly impact cortical development and have long-lasting adverse effects on neurodevelopmental outcome. A large neuroimaging study of newborn infants reveals how their cortical structure at birth is associated with patterns of gene expression in the fetal cortex and how this relationship is affected by preterm birth.
Collapse
Affiliation(s)
- Gareth Ball
- Developmental Imaging, Murdoch Children’s Research Institute, Melbourne, Australia
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- * E-mail:
| | - Jakob Seidlitz
- Developmental Neurogenomics Unit, National Institute of Mental Health, Bethesda, United States of America
- Department of Psychiatry, University of Cambridge, United Kingdom
| | - Jonathan O’Muircheartaigh
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| | - Ralica Dimitrova
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| | - Daphna Fenchel
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| | - Antonios Makropoulos
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| | - Daan Christiaens
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Belgium
| | - Andreas Schuh
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, United Kingdom
| | | | - Jana Hutter
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| | - Lucilio Cordero-Grande
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| | - Emer Hughes
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| | - Anthony Price
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| | - Jo V. Hajnal
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| | - Daniel Rueckert
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, United Kingdom
| | - Emma C. Robinson
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| | - A David Edwards
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| |
Collapse
|
36
|
Guo J, Zhang XLN, Bao ZR, Yang XK, Li LS, Zi Y, Li F, Wu CY, Li JJ, Yuan Y. Gastrodin Regulates the Notch Signaling Pathway and Sirt3 in Activated Microglia in Cerebral Hypoxic-Ischemia Neonatal Rats and in Activated BV-2 Microglia. Neuromolecular Med 2020; 23:348-362. [PMID: 33095377 DOI: 10.1007/s12017-020-08627-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022]
Abstract
In response to hypoxic-ischemic brain damage (HIBD), microglia activation and its mediated inflammation contribute to neuronal damage. Inhibition of over-activated microglia is deemed to be a potential therapeutic strategy. Our previous studies showed that gastrodin efficiently depressed the neuroinflammation mediated by activated microglia in HIBD neonatal rats. The underlying mechanisms through which gastrodin acts on activated microglia have not been fully elucidated. This study is designed to determine whether gastrodin would regulate the Notch signaling pathway and Sirtuin3 (Sirt3), which are implicated in regulating microglia activation. The present results showed that gastrodin markedly suppressed the expression of members of Notch signaling pathway (Notch-1, NICD, RBP-JK and Hes-1) in activated microglia both in vivo and in vitro. Conversely, Sirt3 expression was enhanced. In BV-2 microglia treated with a γ-secretase inhibitor of Notch pathway- DAPT, the expression of RBP-JK, Hes-1, and NICD was suppressed in activated microglia. Treatment with DAPT and gastrodin further decreased NICD and Hes-1 expression. Sirt3 expression was also decreased after DAPT treatment. However, Sirt3 expression in activated BV-2 microglia given a combined DAPT and gastrodin treatment was not further increased. In addition, combination of DAPT and Gastrodin cumulatively decreased tumor necrosis factor-α (TNF-α) expression. The results suggest that gastrodin regulates microglia activation via the Notch signaling pathway and Sirt3. More importantly, interference of the Notch signaling pathway inhibited Sirt3 expression, indicating that Sirt3 is a downstream gene of the Notch signaling pathway. It is suggested that Notch and Sirt3 synergistically regulate microglia activation such as in TNF-α production.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Benzyl Alcohols/pharmacokinetics
- Benzyl Alcohols/pharmacology
- Carotid Artery, Common
- Cells, Cultured
- Cerebral Cortex/pathology
- Corpus Callosum/pathology
- Diamines/pharmacology
- Disease Models, Animal
- Drug Synergism
- Gene Expression Regulation/drug effects
- Glucosides/pharmacokinetics
- Glucosides/pharmacology
- Hypoxia-Ischemia, Brain/drug therapy
- Hypoxia-Ischemia, Brain/metabolism
- Hypoxia-Ischemia, Brain/pathology
- Ligation
- Lipopolysaccharides/pharmacology
- Microglia/drug effects
- Microglia/metabolism
- Neuroinflammatory Diseases/drug therapy
- Random Allocation
- Rats
- Rats, Sprague-Dawley
- Receptor, Notch1/biosynthesis
- Receptor, Notch1/genetics
- Receptor, Notch1/physiology
- Signal Transduction/drug effects
- Sirtuins/biosynthesis
- Sirtuins/genetics
- Sirtuins/physiology
- Thiazoles/pharmacology
- Tumor Necrosis Factor-alpha/biosynthesis
- Tumor Necrosis Factor-alpha/genetics
Collapse
Affiliation(s)
- Jing Guo
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China
| | - Xiao-Li-Na Zhang
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China
- First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650500, China
| | - Zhang-Rui Bao
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China
| | - Xue-Ke Yang
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China
| | - Ling-Shuang Li
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China
| | - Yu Zi
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China
| | - Fan Li
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China
| | - Chun-Yun Wu
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China
| | - Juan-Juan Li
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China.
| | - Yun Yuan
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China.
| |
Collapse
|
37
|
Yao YY, Ling EA, Lu D. Microglia mediated neuroinflammation - signaling regulation and therapeutic considerations with special reference to some natural compounds. Histol Histopathol 2020; 35:1229-1250. [PMID: 32662061 DOI: 10.14670/hh-18-239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neuroinflammation plays a central role in multiple neurodegenerative diseases and neurological disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), cerebral ischemic injury etc. In this connection, microglia, the key players in the central nervous system, mediate the inflammatory response process. In brain injuries, activated microglia can clear the cellular debris and invading pathogens and release neurotrophic factors; however, prolonged microglia activation may cause neuronal death through excessive release of inflammatory mediators. Therefore, it is of paramount importance to understand the underlying molecular mechanisms of microglia activation to design an effective therapeutic strategy to alleviate neuronal injury. Recent studies have shown that some natural compounds and herbal extracts possess anti-inflammatory properties that may suppress microglial activation and ameliorate neuroinflammation and hence are neuroprotective. In this review, we will update some of the common signaling pathways that regulate microglia activation. Among the various signaling pathways, the Notch-1, mitogen-activated protein kinases (MAPKs), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) have been reported to exacerbate microglia mediated neuroinflammation that is implicated in different neuropathological diseases. The search for natural compounds or agents, specifically those derived from natural herbal extracts such as Gastrodin, scutellarin, RG1 etc. has been the focus of many of our recent studies because they have been found to regulate microglia activation. The pharmacological effects of these agents and their potential mechanisms for regulating microglia activation are systematically reviewed here for a fuller understanding of their biochemical action and therapeutic potential for treatment of microglia mediated neuropathological diseases.
Collapse
Affiliation(s)
- Yue-Yi Yao
- Technology Transfer Center, Kunming Medical University, Kunming, China
| | - Eng-Ang Ling
- Department of Anatomy, Young Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Di Lu
- Technology Transfer Center, Kunming Medical University, Kunming, China.
| |
Collapse
|
38
|
Lin J, Hu J, Schlotterer A, Wang J, Kolibabka M, Awwad K, Dietrich N, Breitschopf K, Wohlfart P, Kannt A, Lorenz K, Feng Y, Popp R, Hoffmann S, Fleming I, Hammes HP. Protective effect of Soluble Epoxide Hydrolase Inhibition in Retinal Vasculopathy associated with Polycystic Kidney Disease. Am J Cancer Res 2020; 10:7857-7871. [PMID: 32685025 PMCID: PMC7359083 DOI: 10.7150/thno.43154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/20/2020] [Indexed: 12/14/2022] Open
Abstract
Rationale: Vasoregression secondary to glial activation develops in various retinal diseases, including retinal degeneration and diabetic retinopathy. Photoreceptor degeneration and subsequent retinal vasoregression, characterized by pericyte loss and acellular capillary formation in the absence diabetes, are also seen in transgenic rats expressing the polycystic kidney disease (PKD) gene. Activated Müller glia contributes to retinal vasodegeneration, at least in part via the expression of the soluble epoxide hydrolase (sEH). Given that an increase in sEH expression triggered vascular destabilization in diabetes, and that vasoregression is similar in diabetic mice and PKD rats, the aim of the present study was to determine whether sEH inhibition could prevent retinal vasoregression in the PKD rat. Methods: One-month old male homozygous transgenic PKD rats were randomly allocated to receive vehicle or a sEH inhibitor (sEH-I; Sar5399, 30 mg/kg) for four weeks. Wild-type Sprague-Dawley (SD) littermates received vehicle as controls. Retinal sEH expression and activity were measured by Western blotting and LC-MS, and vasoregression was quantified in retinal digestion preparations. Microglial activation and immune response cytokines were assessed by immunofluorescence and quantitative PCR, respectively. 19,20-dihydroxydocosapentaenoic acid (19,20-DHDP) mediated Notch signaling, microglial activation and migration were assessed in vivo and in vitro. Results: This study demonstrates that sEH expression and activity were increased in PKD retinae, which led to elevated production of 19,20-DHDP and the depression of Notch signaling. The latter changes elicited pericyte loss and the recruitment of CD11b+/CD74+ microglia to the perivascular region. Microglial activation increased the expression of immune-response cytokines, and reduced levels of Notch3 and delta-like ligand 4 (Dll4). Treatment with Sar5399 decreased 19,20-DHDP generation and increased Notch3 expression. Sar5399 also prevented vasoregression by reducing pericyte loss and suppressed microglial activation as well as the expression of immune-response cytokines. Mechanistically, the activation of Notch signaling by Dll4 maintained a quiescent microglial cell phenotype, i.e. reduced both the surface presentation of CD74 and microglial migration. In contrast, in retinal explants, 19,20-DHDP and Notch inhibition both promoted CD74 expression and reversed the Dll4-induced decrease in migration. Conclusions: Our data indicate that 19,20-DHDP-induced alterations in Notch-signaling result in microglia activation and pericyte loss and contribute to retinal vasoregression in polycystic kidney disease. Moreover, sEH inhibition can ameliorate vasoregression through reduced activity of inflammatory microglia. sEH inhibition is thus an attractive new therapeutic approach to prevent retinal vasoregression.
Collapse
|
39
|
Zhou Z, Tian X, Mo B, Xu H, Zhang L, Huang L, Yao S, Huang Z, Wang Y, Xie H, Xu L, Zhang H. Adipose mesenchymal stem cell transplantation alleviates spinal cord injury-induced neuroinflammation partly by suppressing the Jagged1/Notch pathway. Stem Cell Res Ther 2020; 11:212. [PMID: 32493480 PMCID: PMC7268310 DOI: 10.1186/s13287-020-01724-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/29/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The therapeutic effects of adipose-derived mesenchymal stem cell (ADSC) transplantation have been demonstrated in several models of central nervous system (CNS) injury and are thought to involve the modulation of the inflammatory response. However, the exact underlying molecular mechanism is poorly understood. Activation of the Jagged1/Notch signaling pathway is thought to involve inflammatory and gliotic events in the CNS. Here, we elucidated the effect of ADSC transplantation on the inflammatory reaction after spinal cord injury (SCI) and the potential mechanism mediated by Jagged1/Notch signaling pathway suppression. METHODS To evaluate the therapeutic effects of ADSC treatment and the potential inhibitory effects of ADSCs on Notch signaling, mice were subjected to contusion SCI, and GFP-labeled ADSCs were injected into the lesion site immediately after the injury. Locomotor function, spinal cord tissue morphology, and the levels of Notch-related proteins and proinflammatory transcripts were compared between groups. To validate the hypothesis that the therapeutic effects of ADSCs are partly due to Notch1 signaling inhibition, a Jagged1 small interfering RNA (siRNA) was injected into the spinal cord to knock down Jagged1/Notch signaling. Neuronal staining and analyses of microglia/macrophage activation and signaling pathways were performed. RESULTS We demonstrated that ADSCs survived in the injured spinal cord for at least 28 days without differentiating into glial or neuronal elements. ADSC treatment resulted in significant downregulation of proinflammatory mediator expression and reduced ionized calcium-binding adapter molecule 1 (IBA1) and ED-1 staining in the injured spinal cord, eventually improving functional recovery. The augmentation of the Jagged1/Notch signaling pathway after SCI was suppressed by ADSC transplantation. The inhibition of the Jagged1/Notch signaling pathway by Jagged1 siRNA resulted in decreases in SCI-induced proinflammatory cytokines and the activation of microglia and an increase in the survival of neurons. Furthermore, Jagged1 knockdown suppressed the phosphorylation of JAK/STAT3 in astrocytes following SCI. CONCLUSION The results of this study demonstrated that the therapeutic effects of ADSCs in SCI mice were partly due to Jagged1/Notch signaling pathway inhibition and a subsequent reduction in JAK/STAT3 phosphorylation in astrocytes.
Collapse
Affiliation(s)
- Zhilai Zhou
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xiaobo Tian
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Biling Mo
- Department of Cardiology, Liwan Central Hospital of Gaungzhou, Guangzhou, China
| | - Huali Xu
- Department of Anesthesiology, Zhu Jiang Hospital, Southern Medical University, Guangzhou, China
| | - Li Zhang
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Lishan Huang
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Shun Yao
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Zixiang Huang
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yeyang Wang
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Huan Xie
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Liwei Xu
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Hui Zhang
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, Guangzhou, China. .,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
40
|
Wan Y, Yang ZQ. LncRNA NEAT1 affects inflammatory response by targeting miR-129-5p and regulating Notch signaling pathway in epilepsy. Cell Cycle 2020; 19:419-431. [PMID: 31948324 DOI: 10.1080/15384101.2020.1711578] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
It is crucial to understand the molecular mechanisms involved in epileptogenesis. This study aims to investigate the role of lncRNA NEAT1, miR-129-5p and Notch signaling pathway in epilepsy. In this research, temporal lobe tissues were collected from patients with epilepsy and healthy controls. The CTX-TNA cells were treated with IL-1β to establish as epilepsy cell model, which were then manipulated the expression level of NEAT1, miR-129-5p and Notch1 to investigate their roles in the epilepsy progression. The expression levels of RNA and protein in temporal lobe tissues and epilepsy cell model were determined by RT-qPCR, western blotting or ELISA, respectively. MTT assay was utilized to analyze the cell viability. Dual-luciferase reporter assay was used to explore the interaction relationship between lncRNA NEAT1, miR-129-5p and Notch1. Silencing NEAT1 significantly reduced the expression levels of IL-6, COX-2 and TNF-α in epilepsy cell model. The overexpression of NEAT1 suppressed the expression level of miR-129-5p. Inhibiting miR-129-5p significantly increased the expression of IL-6, COX-2, TNF-α and Notch1. Furthermore, the expression levels of IL-6, COX-2 and TNF-α were increased after overexpressing Notch1 in miR-129-5p mimics-treated cells. The expression levels of Notch1, JAG1, and HES1 were decreased after transfecting with sh-NEAT1. However, compared with sh-NEAT1 group, the expression levels of Notch1, JAG1, HES1, IL-6 and TNF-α were reversed by miR-129-5p inhibition or Notch1 overexpression. The present study verified that lncRNA NEAT1 affected inflammatory response of epilepsy by suppressing miR-129-5p and further regulating Notch signaling pathway in IL-1β-induced epilepsy cell model.Abbreviations: CNS: Central nervous system; lncRNAs: Long noncoding RNAs; NEAT1: Nuclear-enriched abundant transcript 1; miRNAs: MicroRNAs; ATCC: American Type Culture Collection; DMEM: Dulbecco's Modified Eagle Medium; FBS: Fetal bovine serum; ELISA: Enzyme-linked immunosorbent assay; RT-qPCR: Reverse transcription-quantitative polymerase chain reaction; SD: Standard deviation; ANOVA: Analysis of variance; LPS: Ligand lipopolysaccharide; GLO1: Glyoxalase I.
Collapse
Affiliation(s)
- Yi Wan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Zhi-Quan Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
41
|
Plastira I, Joshi L, Bernhart E, Schoene J, Specker E, Nazare M, Sattler W. Small-Molecule Lysophosphatidic Acid Receptor 5 (LPAR5) Antagonists: Versatile Pharmacological Tools to Regulate Inflammatory Signaling in BV-2 Microglia Cells. Front Cell Neurosci 2019; 13:531. [PMID: 31849616 PMCID: PMC6897279 DOI: 10.3389/fncel.2019.00531] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/15/2019] [Indexed: 12/30/2022] Open
Abstract
Lysophosphatidic acid (LPA) species in the extracellular environment induce downstream signaling via six different G protein-coupled receptors (LPAR1–6). These signaling cascades are essential for normal brain development and function of the nervous system. However, in response to acute or chronic central nervous system (CNS) damage, LPA levels increase and aberrant signaling events can counteract brain function. Under neuro-inflammatory conditions signaling along the LPA/LPAR5 axis induces a potentially neurotoxic microglia phenotype indicating the need for new pharmacological intervention strategies. Therefore, we compared the effects of two novel small-molecule LPAR5 antagonists on LPA-induced polarization parameters of the BV-2 microglia cell line. AS2717638 is a selective piperidine-based LPAR5 antagonist (IC50 0.038 μM) while compound 3 is a diphenylpyrazole derivative with an IC50 concentration of 0.7 μM in BV-2 cells. Both antagonists compromised cell viability, however, at concentrations above their IC50 concentrations. Both inhibitors blunted LPA-induced phosphorylation of STAT1 and STAT3, p65, and c-Jun and consequently reduced the secretion of pro-inflammatory cyto-/chemokines (IL-6, TNFα, IL-1β, CXCL10, CXCL2, and CCL5) at non-toxic concentrations. Both compounds modulated the expression of intracellular (COX-2 and Arg1) and plasma membrane-located (CD40, CD86, and CD206) polarization markers yet only AS2717638 attenuated the neurotoxic potential of LPA-activated BV-2 cell-conditioned medium towards CATH.a neurons. Our findings from the present in vitro study suggest that the two LPAR5 antagonists represent valuable pharmacological tools to interfere with LPA-induced pro-inflammatory signaling cascades in microglia.
Collapse
Affiliation(s)
- Ioanna Plastira
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Lisha Joshi
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Eva Bernhart
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Jens Schoene
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Edgar Specker
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Marc Nazare
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.,Berlin Institute of Health (BIH), Charite & MDC, Berlin, Germany
| | - Wolfgang Sattler
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria.,Center for Explorative Lipidomics, BioTechMed-Graz, Graz, Austria
| |
Collapse
|
42
|
Qin B, Li Y, Liu X, Gong D, Zheng W. Notch activation enhances microglial CX3CR1/P38 MAPK pathway in rats model of vincristine-induced peripheral neuropathy. Neurosci Lett 2019; 715:134624. [PMID: 31726181 DOI: 10.1016/j.neulet.2019.134624] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/07/2019] [Accepted: 11/09/2019] [Indexed: 12/28/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) has a adverse impact to the living quality of cancer patients. This side effect of CIPN limit the dose of drug used in many chemotherapies, such as vincristine (VCR). The activation of microglia in the spinal dorsal horn is involved in the occurrence and development of neuropathic pain induced by VCR. Recent study has demonstrated that hypoxia induced microglia activation depends on Notch signaling, and it is involved in the release of many inflammatory related factors in microglia. In this work, we aimed to study that the role of Notch signaling pathway in microglia activation on a VCR-induced neuropathy rat model. Our results showed that the mechanical, thermal and cold pain threshold of rats was decreased by treatment of VCR, but N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT), a γ-secretase inhibitor, relieved the hyperalgesia. Molecular analysis showed that activation of Notch signaling pathway increased after nerve injury and that DAPT could significantly inhibit the upregulation of Notch signaling pathway, the activation of microglia, and the release of pro-inflammatory cytokines in the spinal. Taking together, Notch signaling pathway could be a potential therapeutic target to alleviate neuropathic pain.
Collapse
Affiliation(s)
- Bingjie Qin
- Third-grade Pharmacology Laboratory on Traditional Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical Science College of China Three Gorges University, Yichang 443002, PR China
| | - Yuxing Li
- Third-grade Pharmacology Laboratory on Traditional Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical Science College of China Three Gorges University, Yichang 443002, PR China; The First People's Hospital Of Yidu, Pharmaceutical Preparation Section, Yichang 443300, PR China
| | - Xiaohu Liu
- Third-grade Pharmacology Laboratory on Traditional Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical Science College of China Three Gorges University, Yichang 443002, PR China
| | - Denghui Gong
- Third-grade Pharmacology Laboratory on Traditional Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical Science College of China Three Gorges University, Yichang 443002, PR China
| | - Weihong Zheng
- Third-grade Pharmacology Laboratory on Traditional Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical Science College of China Three Gorges University, Yichang 443002, PR China.
| |
Collapse
|
43
|
Chew G, Petretto E. Transcriptional Networks of Microglia in Alzheimer's Disease and Insights into Pathogenesis. Genes (Basel) 2019; 10:E798. [PMID: 31614849 PMCID: PMC6826883 DOI: 10.3390/genes10100798] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/30/2019] [Accepted: 10/11/2019] [Indexed: 02/07/2023] Open
Abstract
Microglia, the main immune cells of the central nervous system, are increasingly implicated in Alzheimer's disease (AD). Manifold transcriptomic studies in the brain have not only highlighted microglia's role in AD pathogenesis, but also mapped crucial pathological processes and identified new therapeutic targets. An important component of many of these transcriptomic studies is the investigation of gene expression networks in AD brain, which has provided important new insights into how coordinated gene regulatory programs in microglia (and other cell types) underlie AD pathogenesis. Given the rapid technological advancements in transcriptional profiling, spanning from microarrays to single-cell RNA sequencing (scRNA-seq), tools used for mapping gene expression networks have evolved to keep pace with the unique features of each transcriptomic platform. In this article, we review the trajectory of transcriptomic network analyses in AD from brain to microglia, highlighting the corresponding methodological developments. Lastly, we discuss examples of how transcriptional network analysis provides new insights into AD mechanisms and pathogenesis.
Collapse
Affiliation(s)
- Gabriel Chew
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 69857 Singapore, Singapore.
| | - Enrico Petretto
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 69857 Singapore, Singapore.
| |
Collapse
|
44
|
Qian D, Li L, Rong Y, Liu W, Wang Q, Zhou Z, Gu C, Huang Y, Zhao X, Chen J, Fan J, Yin G. Blocking Notch signal pathway suppresses the activation of neurotoxic A1 astrocytes after spinal cord injury. Cell Cycle 2019; 18:3010-3029. [PMID: 31530090 DOI: 10.1080/15384101.2019.1667189] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Spinal cord injury (SCI) is a catastrophic disease which has complicated pathogenesis including inflammation, oxidative stress and glial scar formation. Astrocytes are the most abundant cells in central nervous system and fulfill homeostatic functions. Recent studies have described a new reactive phenotype of astrocytes, A1, induced by inflammation, which may have negative effects in SCI. As the Notch signaling pathway has been linked to cell differentiation and inflammation, we aimed to investigate its potential role in the differentiation of astrocytes in SCI. Contusive SCI rat model showed elevated A1 astrocyte numbers at the damage site 28 days after SCI and the expression levels of Notch signaling and its downstream genes were upregulated parallelly. Western blotting, RT-qPCR and immunofluorescence revealed that blocking of Notch pathway using γ-secretase blocker (DAPT) suppressed the differentiation of A1 astrocytes. Flow cytometry, and TUNEL staining indicated that DAPT alleviated neuronal apoptosis and axonal damage caused by A1 astrocytes likely through the Notch-dependent release of pro-inflammatory factors. CO-IP and western blotting revealed an interaction between Notch pathway and signal transducer and activator of transcription 3 (Stat3), which played a vital role in differentiation of A1 astrocytes. We conclude that phenotypic transition of A1 astrocytes and their neurotoxity were controlled by the Notch-Stat3 axis and that Notch pathway in astrocytes may serve as a promising therapeutic target for SCI.
Collapse
Affiliation(s)
- Dingfei Qian
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University , Nanjing , P.R. China
| | - Linwei Li
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University , Nanjing , P.R. China
| | - Yuluo Rong
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University , Nanjing , P.R. China
| | - Wei Liu
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University , Nanjing , P.R. China
| | - Qian Wang
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University , Nanjing , P.R. China
| | - Zheng Zhou
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University , Nanjing , P.R. China
| | - Changjiang Gu
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University , Nanjing , P.R. China
| | - Yifan Huang
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University , Nanjing , P.R. China
| | - Xuan Zhao
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University , Nanjing , P.R. China
| | - Jian Chen
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University , Nanjing , P.R. China
| | - Jin Fan
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University , Nanjing , P.R. China
| | - Guoyong Yin
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University , Nanjing , P.R. China
| |
Collapse
|
45
|
Liang W, Lin C, Yuan L, Chen L, Guo P, Li P, Wang W, Zhang X. Preactivation of Notch1 in remote ischemic preconditioning reduces cerebral ischemia-reperfusion injury through crosstalk with the NF-κB pathway. J Neuroinflammation 2019; 16:181. [PMID: 31526384 PMCID: PMC6747758 DOI: 10.1186/s12974-019-1570-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 08/29/2019] [Indexed: 12/21/2022] Open
Abstract
Background Remote ischemic preconditioning (RIPC) initiates endogenous protective pathways in the brain from a distance and represents a new, promising paradigm in neuroprotection against cerebral ischemia-reperfusion (I/R) injury. However, the underlying mechanism of RIPC-mediated cerebral ischemia tolerance is complicated and not well understood. We reported previously that preactivation of Notch1 mediated the neuroprotective effects of cerebral ischemic preconditioning in rats subjected to cerebral I/R injury. The present study seeks to further explore the role of crosstalk between the Notch1 and NF-κB signaling pathways in the process of RIPC-induced neuroprotection. Methods Middle cerebral artery occlusion and reperfusion (MCAO/R) in adult male rats and oxygen-glucose deprivation and reoxygenation (OGD/R) in primary hippocampal neurons were used as models of I/R injury in vivo and in vitro, respectively. RIPC was induced by a 3-day procedure with 4 cycles of 5 min of left hind limb ischemia followed by 5 min of reperfusion each day before MCAO/R. Intracerebroventricular DAPT injection and sh-Notch1 lentivirus interference were used to inhibit the Notch1 signaling pathway in vivo and in vitro, respectively. After 24 h of reperfusion, neurological deficit scores, infarct volume, neuronal apoptosis, and cell viability were assessed. The protein expression levels of NICD, Hes1, Phospho-IKKα/β (p-IKK α/β), Phospho-NF-κB p65 (p-NF-κB p65), Bcl-2, and Bax were assessed by Western blotting. Results RIPC significantly improved neurological scores and reduced infarct volume and neuronal apoptosis in rats subjected to I/R injury. OGD preconditioning significantly reduced neuronal apoptosis and improved cell viability after I/R injury on days 3 and 7 after OGD/R. However, the neuroprotective effect was reversed by DAPT in vivo and attenuated by Notch1-RNAi in vitro. RIPC significantly upregulated the expression of proteins related to the Notch1 and NF-κB pathways. NF-κB signaling pathway activity was suppressed by a Notch1 signaling pathway inhibitor and Notch1-RNAi. Conclusions The neuroprotective effect of RIPC against cerebral I/R injury was associated with preactivation of the Notch1 and NF-κB pathways in neurons. The NF-κB pathway is a downstream target of the Notch1 pathway in RIPC and helps protect focal cerebral I/R injury.
Collapse
Affiliation(s)
- Weidong Liang
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Chunshui Lin
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Liuqing Yuan
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Li Chen
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Peipei Guo
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ping Li
- Department of Anesthesia, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Wei Wang
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xin Zhang
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
46
|
Ho DM, Artavanis-Tsakonas S, Louvi A. The Notch pathway in CNS homeostasis and neurodegeneration. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 9:e358. [PMID: 31502763 DOI: 10.1002/wdev.358] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/19/2019] [Accepted: 06/23/2019] [Indexed: 12/19/2022]
Abstract
The role of the Notch signaling pathway in neural development has been well established over many years. More recent studies, however, have demonstrated that Notch continues to be expressed and active throughout adulthood in many areas of the central nervous system. Notch signals have been implicated in adult neurogenesis, memory formation, and synaptic plasticity in the adult organism, as well as linked to acute brain trauma and chronic neurodegenerative conditions. NOTCH3 mutations are responsible for the most common form of hereditary stroke, the progressive disorder cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Notch has also been associated with several progressive neurodegenerative diseases, including Alzheimer's disease, multiple sclerosis, and amyotrophic lateral sclerosis. Although numerous studies link Notch activity with CNS homeostasis and neurodegenerative diseases, the data thus far are primarily correlative, rather than functional. Nevertheless, the evidence for Notch pathway activity in specific neural cellular contexts is strong, and certainly intriguing, and points to the possibility that the pathway carries therapeutic promise. This article is categorized under: Nervous System Development > Flies Signaling Pathways > Cell Fate Signaling Nervous System Development > Vertebrates: General Principles.
Collapse
Affiliation(s)
- Diana M Ho
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | | | - Angeliki Louvi
- Departments of Neurosurgery and Neuroscience and Program on Neurogenetics, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
47
|
Li L, Tang P, Zhou Z, Wang Q, Xu T, Zhao S, Huang Y, Kong F, Liu W, Cheng L, Zhou Z, Zhao X, Gu C, Luo Y, Tao G, Qian D, Chen J, Fan J, Yin G. GIT1 regulates angiogenic factor secretion in bone marrow mesenchymal stem cells via NF-κB/Notch signalling to promote angiogenesis. Cell Prolif 2019; 52:e12689. [PMID: 31502302 PMCID: PMC6869488 DOI: 10.1111/cpr.12689] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/23/2019] [Accepted: 08/11/2019] [Indexed: 12/24/2022] Open
Abstract
Objectives Osteogenesis is coupled with angiogenesis during bone remodelling. G‐protein‐coupled receptor (GPCR) kinase 2‐interacting protein‐1 (GIT1) is an important protein that participates in fracture healing by regulating angiogenesis. This study investigated whether GIT1 could affect bone mesenchymal stem cells (BMSCs) to secrete angiogenic factors to enhance fracture healing by promoting angiogenesis and its possible mechanism. Materials and methods The angiogenesis of mice post‐fracture was detected by micro‐CT and immunofluorescence. Subsequently, vascular endothelial growth factor (VEGF) level in mouse and human BMSCs (hBMSCs) under TNF‐α stimulation was detected. The hBMSCs were transfected with GIT1 shRNAs to further explore the relationship between GIT1 and VEGF and angiogenesis in vitro. Furthermore, based on previous research on GIT1, possible signal pathways were investigated. Results GIT1 knockout mice exhibited impaired angiogenesis and delayed fracture healing. And GIT1 deficiency remarkably reduced the expression of VEGF mRNA in BMSCs, which affected the proliferation and migration of human umbilical vein endothelial cells. GIT1 knockdown inhibited the activation of Notch and NF‐κB signals by decreasing nuclear transportation of NICD and P65/P50, respectively. Overexpression of the canonical NF‐κB subunits P65 and P50 markedly increased NICD‐dependent activation of recombination signal‐binding protein‐jκ reporter. Finally, GIT1 enhanced the affinity of NF‐κB essential modulator (NEMO) for K63‐linked ubiquitin chains via interaction with NEMO coiled‐coil 2 domains. Conclusion These data revealed a positive role for GIT1 by modulating the Notch/NF‐κB signals which promoting paracrine of BMSCs to enhance angiogenesis and fracture healing.
Collapse
Affiliation(s)
- Linwei Li
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pengyu Tang
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zheng Zhou
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qian Wang
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Xu
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shujie Zhao
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yifan Huang
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fanqi Kong
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Liu
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lin Cheng
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhimin Zhou
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xuan Zhao
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Changjiang Gu
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongjun Luo
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Gaojian Tao
- Department of Pain, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Dingfei Qian
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jian Chen
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jin Fan
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guoyong Yin
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
48
|
Bai H, Wen J, Gong JP, Wu H, Yuan FC, Cao D, Wu YK, Lai X, Wang MH. Blockade of the Notch1/Jagged1 pathway in Kupffer cells aggravates ischemia-reperfusion injury of orthotopic liver transplantation in mice. Autoimmunity 2019; 52:176-184. [PMID: 31322442 DOI: 10.1080/08916934.2019.1637424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Liver ischemia-reperfusion injury (IRI) represents a risk factor for early graft dysfunction and an obstacle to expanding donor pool in orthotopic liver transplantation (OLT). Kupffer cells (KCs) are the largest antigen-presenting cell (APC) group and the primary modulators of inflammation in liver tissues. The vital role of Notch1/Jagged1 pathway in mouse OLT model has been reported, however, its potential therapeutic mechanism is unknown. Here, we made use of short hairpin RNA-Jagged1 and AAV-Jagged1 to explore the effects of Notch1/Jagged1 pathway in OLT. In vitro, blockade of Notch1/Jagged1 pathway downregulated the expression of Hairy and enhancer of split-1 (Hes1) gene, which in turn increased the proinflammatory effects of KCs. Moreover, the anti-inflammatory effects of Notch1/Jagged1 pathway were induced by inhibiting Hes1/gene of phosphate and tension/protein kinase B/Toll-like receptor 4/nuclear factor kappa B (Hes1/PTEN/AKT/TLR4/NF-κB) axis in KCs. In vivo, we used a well-established mouse model of OLT to mimic clinical transplantation. Mice were stochastically divided into 6 groups: Sham group (n = 15); Normal saline (NS) group (n = 15); Adeno-associated virus-green fluorescent protein (AAV-GFP) group (n = 15); AAV-Jagged1 group (n = 15); Clodronate liposome (CL) group (n = 15); CL+AAV-Jagged1 group (n = 15) . After OLT the liver damage in AAV-Jagged1 group were significantly accentuated compared to the AAV-GFP group. While blockade of Jagged1 aftet clearence of KCs by CL would not lead to further liver injuries. Taken together, our study demonstrated that blockade of Notch1/Jagged1 pathway aggravates inflammation induced by lipopolysaccharide (LPS) via Hes1/PTEN/AKT/TLR4/NF-κB in KCs, and the blockade of Notch1/Jagged1 pathway in donor liver increased neutrophil/macrophage infiltration and hepatocellular apoptosis, which suggested the function of Notch1/Jagged1 pathway in mouse OLT and highlighted the protective function of Notch1/Jagged1 pathway in liver transplantation.
Collapse
Affiliation(s)
- He Bai
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University , Chongqing , People's Republic of China
| | - Jian Wen
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University , Chongqing , People's Republic of China
| | - Jian-Ping Gong
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University , Chongqing , People's Republic of China
| | - Hao Wu
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University , Chongqing , People's Republic of China
| | - Fang-Chao Yuan
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University , Chongqing , People's Republic of China
| | - Ding Cao
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University , Chongqing , People's Republic of China
| | - Ya-Kun Wu
- Department of Hepatobiliary Surgery, Suining Central Hospital , Sichuan , People's Republic of China
| | - Xing Lai
- Department of Hepatobiliary and Thyroid Breast Surgery, Tongnan District People's Hospital , Chongqing , People's Republic of China
| | - Meng-Hao Wang
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University , Chongqing , People's Republic of China
| |
Collapse
|
49
|
Cheng M, Yang L, Dong Z, Wang M, Sun Y, Liu H, Wang X, Sai N, Huang G, Zhang X. Folic acid deficiency enhanced microglial immune response via the Notch1/nuclear factor kappa B p65 pathway in hippocampus following rat brain I/R injury and BV2 cells. J Cell Mol Med 2019; 23:4795-4807. [PMID: 31087489 PMCID: PMC6584545 DOI: 10.1111/jcmm.14368] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 03/13/2019] [Accepted: 04/14/2019] [Indexed: 12/22/2022] Open
Abstract
Recent studies revealed that folic acid deficiency (FD) increased the likelihood of stroke and aggravated brain injury after focal cerebral ischaemia. The microglia-mediated inflammatory response plays a crucial role in the complicated pathologies that lead to ischaemic brain injury. However, whether FD is involved in the activation of microglia and the neuroinflammation after experimental stroke and the underlying mechanism is still unclear. The aim of the present study was to assess whether FD modulates the Notch1/nuclear factor kappa B (NF-κB) pathway and enhances microglial immune response in a rat middle cerebral artery occlusion-reperfusion (MCAO) model and oxygen-glucose deprivation (OGD)-treated BV-2 cells. Our results exhibited that FD worsened neuronal cell death and exaggerated microglia activation in the hippocampal CA1, CA3 and Dentate gyrus (DG) subregions after cerebral ischaemia/reperfusion. The hippocampal CA1 region was more sensitive to ischaemic injury and FD treatment. The protein expressions of proinflammatory cytokines such as tumour necrosis factor-α, interleukin-1β and interleukin-6 were also augmented by FD treatment in microglial cells of the post-ischaemic hippocampus and in vitro OGD-stressed microglia model. Moreover, FD not only dramatically enhanced the protein expression levels of Notch1 and NF-κB p65 but also promoted the phosphorylation of pIkBα and the nuclear translocation of NF-κB p65. Blocking of Notch1 with N-[N-(3, 5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester partly attenuated the nuclear translocation of NF-κB p65 and the protein expression of neuroinflammatory cytokines in FD-treated hypoxic BV-2 microglia. These results suggested that Notch1/NF-κB p65 pathway-mediated microglial immune response may be a molecular mechanism underlying cerebral ischaemia-reperfusion injury worsened by FD treatment.
Collapse
Affiliation(s)
- Man Cheng
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
| | - Liu Yang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
| | - Zhiping Dong
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
| | - Mengying Wang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
| | - Yan Sun
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Huan Liu
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
| | - Xuan Wang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
| | - Na Sai
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
| | - Guowei Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
| | - Xumei Zhang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
| |
Collapse
|
50
|
Dual Functions of Microglia in Ischemic Stroke. Neurosci Bull 2019; 35:921-933. [PMID: 31062335 DOI: 10.1007/s12264-019-00388-3] [Citation(s) in RCA: 314] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/30/2018] [Indexed: 12/16/2022] Open
Abstract
Ischemic stroke is a leading cause of morbidity and mortality worldwide. Resident microglia are the principal immune cells of the brain, and the first to respond to the pathophysiological changes induced by ischemic stroke. Traditionally, it has been thought that microglial activation is deleterious in ischemic stroke, and therapies to suppress it have been intensively explored. However, increasing evidence suggests that microglial activation is also critical for neurogenesis, angiogenesis, and synaptic remodeling, thereby promoting functional recovery after cerebral ischemia. Here, we comprehensively review the dual role of microglia during the different phases of ischemic stroke, and the possible mechanisms controlling the post-ischemic activity of microglia. In addition, we discuss the dynamic interactions between microglia and other cells, such as neurons, astrocytes, oligodendrocytes, and endothelial cells within the brain parenchyma and the neurovascular unit.
Collapse
|