1
|
Péros JP, Launay A, Peyrière A, Berger G, Roux C, Lacombe T, Boursiquot JM. Species relationships within the genus Vitis based on molecular and morphological data. PLoS One 2023; 18:e0283324. [PMID: 37523393 PMCID: PMC10389703 DOI: 10.1371/journal.pone.0283324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/07/2023] [Indexed: 08/02/2023] Open
Abstract
The grape genus Vitis L. includes the domesticated V. vinifera, which is one of the most important fruit crop, and also close relatives recognized as valuable germplasm resources for improving cultivars. To resolve some standing problems in the species relationships within the Vitis genus we analyzed diversity in a set of 90 accessions comprising most of Vitis species and some putative hybrids. We discovered single nucleotide polymorphisms (SNPs) in SANGER sequences of twelve loci and genotyped accessions at a larger number of SNPs using a previously developed SNP array. Our phylogenic analyses consistently identified: three clades in North America, one in East Asia, and one in Europe corresponding to V. vinifera. Using heterozygosity measurement, haplotype reconstruction and chloroplast markers, we identified the hybrids existing within and between clades. The species relationships were better assessed after discarding these hybrids from analyses. We also studied the relationships between phylogeny and morphological traits and found that several traits significantly correlated with the phylogeny. The American clade that includes important species such as V. riparia and V. rupestris showed a major divergence with all other clades based on both DNA polymorphisms and morphological traits.
Collapse
Affiliation(s)
- Jean-Pierre Péros
- UMR AGAP Institut, CIRAD, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | - Amandine Launay
- UMR AGAP Institut, CIRAD, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | - André Peyrière
- UMR AGAP Institut, CIRAD, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | - Gilles Berger
- UMR AGAP Institut, CIRAD, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | - Catherine Roux
- UMR AGAP Institut, CIRAD, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | - Thierry Lacombe
- UMR AGAP Institut, CIRAD, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | - Jean-Michel Boursiquot
- UMR AGAP Institut, CIRAD, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| |
Collapse
|
2
|
Nie ZL, Hodel R, Ma ZY, Johnson G, Ren C, Meng Y, Ickert-Bond SM, Liu XQ, Zimmer E, Wen J. Climate-influenced boreotropical survival and rampant introgressions explain the thriving of New World grapes in the north temperate zone. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1183-1203. [PMID: 36772845 DOI: 10.1111/jipb.13466] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 02/08/2023] [Indexed: 05/13/2023]
Abstract
The north temperate region was characterized by a warm climate and a rich thermophilic flora before the Eocene, but early diversifications of the temperate biome under global climate change and biome shift remain uncertain. Moreover, it is becoming clear that hybridization/introgression is an important driving force of speciation in plant diversity. Here, we applied analyses from biogeography and phylogenetic networks to account for both introgression and incomplete lineage sorting based on genomic data from the New World Vitis, a charismatic component of the temperate North American flora with known and suspected gene flow among species. Biogeographic inference and fossil evidence suggest that the grapes were widely distributed from North America to Europe during the Paleocene to the Eocene, followed by widespread extinction and survival of relicts in the tropical New World. During the climate warming in the early Miocene, a Vitis ancestor migrated northward from the refugia with subsequent diversification in the North American region. We found strong evidence for widespread incongruence and reticulate evolution among nuclear genes within both recent and ancient lineages of the New World Vitis. Furthermore, the organellar genomes showed strong conflicts with the inferred species tree from the nuclear genomes. Our phylogenomic analyses provided an important assessment of the wide occurrence of reticulate introgression in the New World Vitis, which potentially represents one of the most important mechanisms for the diversification of Vitis species in temperate North America and even the entire temperate Northern Hemisphere. The scenario we report here may be a common model of temperate diversification of flowering plants adapted to the global climate cooling and fluctuation in the Neogene.
Collapse
Affiliation(s)
- Ze-Long Nie
- College of Biology and Environmental Sciences, Jishou University, Jishou, 416000, China
| | - Richard Hodel
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013-7012, USA
| | - Zhi-Yao Ma
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013-7012, USA
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Gabriel Johnson
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013-7012, USA
| | - Chen Ren
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Ying Meng
- College of Biology and Environmental Sciences, Jishou University, Jishou, 416000, China
| | - Stefanie M Ickert-Bond
- Herbarium (ALA), University of Alaska Museum of the North, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA
| | - Xiu-Qun Liu
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Elizabeth Zimmer
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013-7012, USA
| | - Jun Wen
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013-7012, USA
| |
Collapse
|
3
|
Brillouet JM, Romieu C, Bacilieri R, Nick P, Trias-Blasi A, Maul E, Solymosi K, Teszlák P, Jiang JF, Sun L, Ortolani D, Londo JP, Gutierrez B, Prins B, Reynders M, Van Caekenberghe F, Maghradze D, Marchal C, Sultan A, Thomas JF, Scherberich D, Fulcrand H, Roumeas L, Billerach G, Salimov V, Musayev M, Ejaz Ul Islam Dar M, Peltier JB, Grisoni M. Tannin phenotyping of the Vitaceae reveals a phylogenetic linkage of epigallocatechin in berries and leaves. ANNALS OF BOTANY 2022; 130:159-171. [PMID: 35700109 PMCID: PMC9445598 DOI: 10.1093/aob/mcac077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIMS Condensed tannins, responsible for berry and wine astringency, may have been selected during grapevine domestication. This work examines the phylogenetic distribution of condensed tannins throughout the Vitaceae phylogenetic tree. METHODS Green berries and mature leaves of representative true-to-type members of the Vitaceae were collected before 'véraison', freeze-dried and pulverized, and condensed tannins were measured following depolymerization by nucleophilic addition of 2-mercaptoethanol to the C4 of the flavan-3-ol units in an organic acidic medium. Reaction products were separated and quantified by ultrahigh pressure liquid chromatography/diode array detection/mass spectrometry. KEY RESULTS AND CONCLUSIONS The original ability to incorporate epigallocatechin (EGC) into grapevine condensed tannins was lost independently in both the American and Eurasian/Asian branches of the Vitaceae, with exceptional cases of reversion to the ancestral EGC phenotype. This is particularly true in the genus Vitis, where we now find two radically distinct groups differing with respect to EGC content. While Vitis species from Asia are void of EGC, 50 % of the New World Vitis harbour EGC. Interestingly, the presence of EGC is tightly coupled with the degree of leaf margin serration. Noticeably, the rare Asian EGC-forming species are phylogenetically close to Vitis vinifera, the only remnant representative of Vitis in Eurasia. Both the wild ancestral V. vinifera subsp. sylvestris as well as the domesticated V. vinifera subsp. sativa can accumulate EGC and activate galloylation biosynthesis that compete for photoassimilates and reductive power.
Collapse
Affiliation(s)
| | | | - Roberto Bacilieri
- INRA, Equipe DAAV, UMR AGAP (Univ. Montpellier, CIRAD, INRAE, SupAgro), Montpellier, France
| | - Peter Nick
- Karlsruhe Institute of Technology, Botanical Institute, Molecular Cell Biology, Karlsruhe, Germany
| | | | - Erika Maul
- Julius Kühn-Institut (JKI), Institut für Rebenzüchtung Geilweilerhof, Siebeldingen, Germany
| | - Katalin Solymosi
- Department of Plant Anatomy, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Peter Teszlák
- Department of Viticulture and Technology Development, Research Institute of Viticulture and Oenology, University of Pécs, Pécs, Hungary
| | - Jiang-Fu Jiang
- Zhengzhou Fruit Research Institute, Zhengzhou, Henan, PR China
| | - Lei Sun
- Zhengzhou Fruit Research Institute, Zhengzhou, Henan, PR China
| | | | - Jason P Londo
- USDA, Grape Genetics Research Unit, Agricultural Research Service, Geneva, New York, NY, USA
| | - Ben Gutierrez
- USDA, Plant Genetic Resources Unit, Agricultural Research Service, Geneva, New York, NY, USA
| | - Bernard Prins
- USDA, Nat’l Clonal Germplasm Rep – Tree Fruit & Nut Crops & Grapes, University of California, Davis, California, USA
| | | | | | | | - Cecile Marchal
- INRA, Grapevine Biological Resources Center, Experimental Unit of Domaine de Vassal, Marseillan-plage, France
| | - Amir Sultan
- National Herbarium (Stewart Collection), National Agricultural Research Centre, Islamabad, Pakistan
| | | | | | | | | | | | - Vugar Salimov
- Azerbaijani Scientific Research Institute of Viticulture and Winemaking, Baku, Azerbaijan
| | - Mirza Musayev
- Genetic Resources Institute of the Azerbaijan National Academy of Sciences, Baku, Azerbaijan
| | | | | | | |
Collapse
|
4
|
Breman FC, Chen G, Snijder RC, Schranz ME, Bakker FT. Repeatome-Based Phylogenetics in Pelargonium Section Ciconium (Sweet) Harvey. Genome Biol Evol 2021; 13:6454096. [PMID: 34893846 PMCID: PMC8684485 DOI: 10.1093/gbe/evab269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 12/23/2022] Open
Abstract
The repetitive part of the genome (the repeatome) contains a wealth of often overlooked information that can be used to resolve phylogenetic relationships and test evolutionary hypotheses for clades of related plant species such as Pelargonium. We have generated genome skimming data for 18 accessions of Pelargonium section Ciconium and one outgroup. We analyzed repeat abundancy and repeat similarity in order to construct repeat profiles and then used these for phylogenetic analyses. We found that phylogenetic trees based on read similarity were largely congruent with previous work based on morphological and chloroplast sequence data. For example, results agreed in identifying a “Core Ciconium” group which evolved after the split with P. elongatum. We found that this group was characterized by a unique set of repeats, which confirmed currently accepted phylogenetic hypotheses. We also found four species groups within P. sect. Ciconium that reinforce previous plastome-based reconstructions. A second repeat expansion was identified in a subclade which contained species that are considered to have dispersed from Southern Africa into Eastern Africa and the Arabian Peninsula. We speculate that the Core Ciconium repeat set correlates with a possible WGD event leading to this branch.
Collapse
Affiliation(s)
- Floris C Breman
- Biosystematics Group, Wageningen University & Research, Netherlands
| | - Guangnan Chen
- Biosystematics Group, Wageningen University & Research, Netherlands
| | | | - M Eric Schranz
- Biosystematics Group, Wageningen University & Research, Netherlands
| | - Freek T Bakker
- Biosystematics Group, Wageningen University & Research, Netherlands
| |
Collapse
|
5
|
Morales-Cruz A, Aguirre-Liguori JA, Zhou Y, Minio A, Riaz S, Walker AM, Cantu D, Gaut BS. Introgression among North American wild grapes (Vitis) fuels biotic and abiotic adaptation. Genome Biol 2021; 22:254. [PMID: 34479604 PMCID: PMC8414701 DOI: 10.1186/s13059-021-02467-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 08/12/2021] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Introgressive hybridization can reassort genetic variants into beneficial combinations, permitting adaptation to new ecological niches. To evaluate evolutionary patterns and dynamics that contribute to introgression, we investigate six wild Vitis species that are native to the Southwestern United States and useful for breeding grapevine (V. vinifera) rootstocks. RESULTS By creating a reference genome assembly from one wild species, V. arizonica, and by resequencing 130 accessions, we focus on identifying putatively introgressed regions (pIRs) between species. We find six species pairs with signals of introgression between them, comprising up to ~ 8% of the extant genome for some pairs. The pIRs tend to be gene poor, located in regions of high recombination and enriched for genes implicated in disease resistance functions. To assess potential pIR function, we explore SNP associations to bioclimatic variables and to bacterial levels after infection with the causative agent of Pierce's disease (Xylella fastidiosa). pIRs are enriched for SNPs associated with both climate and bacterial levels, suggesting that introgression is driven by adaptation to biotic and abiotic stressors. CONCLUSIONS Altogether, this study yields insights into the genomic extent of introgression, potential pressures that shape adaptive introgression, and the evolutionary history of economically important wild relatives of a critical crop.
Collapse
Affiliation(s)
- Abraham Morales-Cruz
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA USA
| | | | - Yongfeng Zhou
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA USA
| | - Andrea Minio
- Department of Viticulture and Enology, University of California, Davis, Davis, CA USA
| | - Summaira Riaz
- Department of Viticulture and Enology, University of California, Davis, Davis, CA USA
| | - Andrew M. Walker
- Department of Viticulture and Enology, University of California, Davis, Davis, CA USA
| | - Dario Cantu
- Department of Viticulture and Enology, University of California, Davis, Davis, CA USA
| | - Brandon S. Gaut
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA USA
| |
Collapse
|
6
|
Péros JP, Cousins P, Launay A, Cubry P, Walker A, Prado E, Peressotti E, Wiedemann-Merdinoglu S, Laucou V, Merdinoglu D, This P, Boursiquot JM, Doligez A. Genetic diversity and population structure in Vitis species illustrate phylogeographic patterns in eastern North America. Mol Ecol 2021; 30:2333-2348. [PMID: 33710711 DOI: 10.1111/mec.15881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 12/21/2022]
Abstract
Geographical distribution and diversity of current plant species have been strongly shaped by climatic oscillations during the Quaternary. Analysing the resulting divergence among species and differentiation within species is crucial to understand the evolution of taxa like the Vitis genus, which provides very useful genetic resources for grapevine improvement and might reveal original recolonization patterns due to growth habit and dispersal mode. Here, we studied the genetic structure in natural populations of three species from eastern North America: Vitis aestivalis, V. cinerea and V. riparia using different marker types. Vitis aestivalis and V. cinerea showed higher diversity than V. riparia. The two former species are less differentiated, confirming an earlier divergence of V. riparia. V. aestivalis and V. riparia exhibited different genetic groups on both sides of the Appalachian Mountains that could mirror different recolonization routes from southern refugia. Genetic structure was stronger in V. cinerea, for which two varieties (var. berlandieri and var. cinerea) are morphologically recognized. Our results confirm this distinction and suggest the existence of three other lineages within var. cinerea. These discontinuities appear linked to adaptation of var. berlandieri to dry and limy areas of Texas and partially to the Mississippi River Valley. Rapid range expansions from refugia upon climate warming are also suggested by the low linkage disequilibrium values observed. Furthermore, large variation for downy mildew resistance was observed in the three species. Our findings appeared consistent with the vegetation history of eastern North America.
Collapse
Affiliation(s)
- Jean-Pierre Péros
- UMR AGAP Institut, CIRAD, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | | | - Amandine Launay
- UMR AGAP Institut, CIRAD, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | - Philippe Cubry
- UMR DIADE, University of Montpellier, IRD, Montpellier, France
| | - Andy Walker
- Department of Viticulture and Enology, University of Davis, Davis, CA, USA
| | | | | | | | - Valérie Laucou
- UMR AGAP Institut, CIRAD, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | | | - Patrice This
- UMR AGAP Institut, CIRAD, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | - Jean-Michel Boursiquot
- UMR AGAP Institut, CIRAD, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | - Agnès Doligez
- UMR AGAP Institut, CIRAD, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| |
Collapse
|
7
|
Bryson AE, Wilson Brown M, Mullins J, Dong W, Bahmani K, Bornowski N, Chiu C, Engelgau P, Gettings B, Gomezcano F, Gregory LM, Haber AC, Hoh D, Jennings EE, Ji Z, Kaur P, Kenchanmane Raju SK, Long Y, Lotreck SG, Mathieu DT, Ranaweera T, Ritter EJ, Sadohara R, Shrote RZ, Smith KE, Teresi SJ, Venegas J, Wang H, Wilson ML, Tarrant AR, Frank MH, Migicovsky Z, Kumar J, VanBuren R, Londo JP, Chitwood DH. Composite modeling of leaf shape along shoots discriminates Vitis species better than individual leaves. APPLICATIONS IN PLANT SCIENCES 2020; 8:e11404. [PMID: 33344095 PMCID: PMC7742203 DOI: 10.1002/aps3.11404] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/14/2020] [Indexed: 05/02/2023]
Abstract
PREMISE Leaf morphology is dynamic, continuously deforming during leaf expansion and among leaves within a shoot. Here, we measured the leaf morphology of more than 200 grapevines (Vitis spp.) over four years and modeled changes in leaf shape along the shoot to determine whether a composite leaf shape comprising all the leaves from a single shoot can better capture the variation and predict species identity compared with individual leaves. METHODS Using homologous universal landmarks found in grapevine leaves, we modeled various morphological features as polynomial functions of leaf nodes. The resulting functions were used to reconstruct modeled leaf shapes across the shoots, generating composite leaves that comprehensively capture the spectrum of leaf morphologies present. RESULTS We found that composite leaves are better predictors of species identity than individual leaves from the same plant. We were able to use composite leaves to predict the species identity of previously unassigned grapevines, which were verified with genotyping. DISCUSSION Observations of individual leaf shape fail to capture the true diversity between species. Composite leaf shape-an assemblage of modeled leaf snapshots across the shoot-is a better representation of the dynamic and essential shapes of leaves, in addition to serving as a better predictor of species identity than individual leaves.
Collapse
Affiliation(s)
- Abigail E. Bryson
- Genetics ProgramMichigan State UniversityEast LansingMichigan48824USA
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichigan48824USA
| | - Maya Wilson Brown
- Department of Plant BiologyMichigan State UniversityEast LansingMichigan48824USA
| | - Joey Mullins
- Department of HorticultureMichigan State UniversityEast LansingMichigan48824USA
| | - Wei Dong
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichigan48824USA
| | - Keivan Bahmani
- Department of HorticultureMichigan State UniversityEast LansingMichigan48824USA
| | - Nolan Bornowski
- Department of HorticultureMichigan State UniversityEast LansingMichigan48824USA
| | - Christina Chiu
- Department of Plant, Soil and Microbial SciencesMichigan State UniversityEast LansingMichigan48824USA
| | - Philip Engelgau
- Department of HorticultureMichigan State UniversityEast LansingMichigan48824USA
| | - Bethany Gettings
- Department of Plant BiologyMichigan State UniversityEast LansingMichigan48824USA
| | - Fabio Gomezcano
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichigan48824USA
| | - Luke M. Gregory
- Department of Plant BiologyMichigan State UniversityEast LansingMichigan48824USA
| | - Anna C. Haber
- Department of HorticultureMichigan State UniversityEast LansingMichigan48824USA
| | - Donghee Hoh
- Cell and Molecular Biology ProgramMichigan State UniversityEast LansingMichigan48824USA
- MSU‐DOE Plant Research LaboratoryMichigan State UniversityEast LansingMichigan48824USA
| | - Emily E. Jennings
- Department of Plant BiologyMichigan State UniversityEast LansingMichigan48824USA
- Molecular Plant Sciences ProgramMichigan State UniversityEast LansingMichigan48824USA
| | - Zhongjie Ji
- Department of Plant, Soil and Microbial SciencesMichigan State UniversityEast LansingMichigan48824USA
| | - Prabhjot Kaur
- Department of HorticultureMichigan State UniversityEast LansingMichigan48824USA
- Plant Breeding, Genetics, and BiotechnologyMichigan State UniversityEast LansingMichigan48824USA
| | | | - Yunfei Long
- Department of Electrical and Computer EngineeringMichigan State UniversityEast LansingMichigan48824USA
| | - Serena G. Lotreck
- Department of Plant BiologyMichigan State UniversityEast LansingMichigan48824USA
| | - Davis T. Mathieu
- Genetics ProgramMichigan State UniversityEast LansingMichigan48824USA
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichigan48824USA
| | - Thilanka Ranaweera
- Department of Plant BiologyMichigan State UniversityEast LansingMichigan48824USA
| | - Eleanore J. Ritter
- Department of Plant BiologyMichigan State UniversityEast LansingMichigan48824USA
| | - Rie Sadohara
- Department of Plant, Soil and Microbial SciencesMichigan State UniversityEast LansingMichigan48824USA
| | - Robert Z. Shrote
- Department of Plant, Soil and Microbial SciencesMichigan State UniversityEast LansingMichigan48824USA
| | - Kaila E. Smith
- Department of Plant BiologyMichigan State UniversityEast LansingMichigan48824USA
| | - Scott J. Teresi
- Department of HorticultureMichigan State UniversityEast LansingMichigan48824USA
| | - Julian Venegas
- Department of Computational Mathematics, Science, and EngineeringMichigan State UniversityEast LansingMichigan48824USA
| | - Hao Wang
- Department of Computational Mathematics, Science, and EngineeringMichigan State UniversityEast LansingMichigan48824USA
| | - McKena L. Wilson
- Department of Plant BiologyMichigan State UniversityEast LansingMichigan48824USA
| | - Alyssa R. Tarrant
- Department of HorticultureMichigan State UniversityEast LansingMichigan48824USA
| | - Margaret H. Frank
- School of Integrative Plant SciencePlant Biology SectionCornell UniversityIthacaNew York14850USA
| | - Zoë Migicovsky
- Department of Plant, Food, and Environmental SciencesFaculty of AgricultureDalhousie UniversityTruroNova ScotiaB2N 5E3Canada
| | - Jyothi Kumar
- Department of Plant BiologyMichigan State UniversityEast LansingMichigan48824USA
| | - Robert VanBuren
- Department of HorticultureMichigan State UniversityEast LansingMichigan48824USA
| | - Jason P. Londo
- Grape Genetics Research UnitUSDA ARSGenevaNew York14456USA
| | - Daniel H. Chitwood
- Department of HorticultureMichigan State UniversityEast LansingMichigan48824USA
- Department of Computational Mathematics, Science, and EngineeringMichigan State UniversityEast LansingMichigan48824USA
| |
Collapse
|
8
|
de Oliveira GL, de Souza AP, de Oliveira FA, Zucchi MI, de Souza LM, Moura MF. Genetic structure and molecular diversity of Brazilian grapevine germplasm: Management and use in breeding programs. PLoS One 2020; 15:e0240665. [PMID: 33057449 PMCID: PMC7561202 DOI: 10.1371/journal.pone.0240665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/01/2020] [Indexed: 12/23/2022] Open
Abstract
The management of germplasm banks is complex, especially when many accessions are involved. Microsatellite markers are an efficient tool for assessing the genetic diversity of germplasm collections, optimizing their use in breeding programs. This study genetically characterizes a large collection of 410 grapevine accessions maintained at the Agronomic Institute of Campinas (IAC) (Brazil). The accessions were genotyped with 17 highly polymorphic microsatellite markers. Genetic data were analyzed to determine the genetic structure of the germplasm, quantify its allelic diversity, suggest the composition of a core collection, and discover cases of synonymy, duplication, and misnaming. A total of 304 alleles were obtained, and 334 unique genotypes were identified. The molecular profiles of 145 accessions were confirmed according to the literature and databases, and the molecular profiles of more than 100 genotypes were reported for the first time. The analysis of the genetic structure revealed different levels of stratification. The primary division was between accessions related to Vitis vinifera and V. labrusca, followed by their separation from wild grapevine. A core collection of 120 genotypes captured 100% of all detected alleles. The accessions selected for the core collection may be used in future phenotyping efforts, in genome association studies, and for conservation purposes. Genetic divergence among accessions has practical applications in grape breeding programs, as the choice of relatively divergent parents will maximize the frequency of progeny with superior characteristics. Together, our results can enhance the management of grapevine germplasm and guide the efficient exploitation of genetic diversity to facilitate the development of new grape cultivars for fresh fruits, wine, and rootstock.
Collapse
Affiliation(s)
| | - Anete Pereira de Souza
- Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, SP, Brazil
- Department of Plant Biology, Biology Institute, University of Campinas (UNICAMP) UNICAMP, Campinas, SP, Brazil
| | - Fernanda Ancelmo de Oliveira
- Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Maria Imaculada Zucchi
- Laboratory of Conservation Genetics and Genomics, Agribusiness Technological Development of São Paulo (APTA), Piracicaba, SP, Brazil
| | - Lívia Moura de Souza
- Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Mara Fernandes Moura
- Advanced Fruit Research Center, Agronomic Institute (IAC), Jundiaí, SP, Brazil
- * E-mail:
| |
Collapse
|
9
|
Ma ZY, Nie ZL, Ren C, Liu XQ, Zimmer EA, Wen J. Phylogenomic relationships and character evolution of the grape family (Vitaceae). Mol Phylogenet Evol 2020; 154:106948. [PMID: 32866616 DOI: 10.1016/j.ympev.2020.106948] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/02/2020] [Accepted: 08/24/2020] [Indexed: 11/30/2022]
Abstract
The grape family consists of 16 genera and ca. 950 species. It is best known for the economically important fruit crop - the grape Vitis vinifera. The deep phylogenetic relationships and character evolution of the grape family have attracted the attention of researchers in recent years. We herein reconstruct the phylogenomic relationships within Vitaceae using nuclear and plastid genes based on the Hyb-Seq approach and test the newly proposed classification system of the family. The five tribes of the grape family, including Ampelopsideae, Cayratieae, Cisseae, Parthenocisseae, and Viteae, are each robustly supported by both nuclear and chloroplast genomic data and the backbone relationships are congruent with previous reports. The cupular floral disc (raised above and free from ovary at the upper part) is an ancestral state of Vitaceae, with the inconspicuous floral disc as derived in the tribe Parthenocisseae, and the state of adnate to the ovary as derived in the tribe Viteae. The 5-merous floral pattern was inferred to be the ancestral in Vitaceae, with the 4-merous flowers evolved at least two times in the family. The compound dichasial cyme (cymose with two secondary axes) is ancestral in Vitaceae and the thyrse inflorescence (a combination of racemose and cymose branching) in tribe Viteae is derived. The ribbon-like trichome only evolved once in Vitaceae, as a synapomorphy for the tribe Viteae.
Collapse
Affiliation(s)
- Zhi-Yao Ma
- Department of Botany, National Museum of Natural History, MRC166, Smithsonian Institution, Washington, D.C. 20013-7012, USA
| | - Ze-Long Nie
- Key Laboratory of Plant Resources Conservation and Utilization, College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, China
| | - Chen Ren
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China
| | - Xiu-Qun Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Elizabeth A Zimmer
- Department of Botany, National Museum of Natural History, MRC166, Smithsonian Institution, Washington, D.C. 20013-7012, USA
| | - Jun Wen
- Department of Botany, National Museum of Natural History, MRC166, Smithsonian Institution, Washington, D.C. 20013-7012, USA.
| |
Collapse
|
10
|
Ma ZY, Wen J, Tian JP, Gui LL, Liu XQ. Testing morphological trait evolution and assessing species delimitations in the grape genus using a phylogenomic framework. Mol Phylogenet Evol 2020; 148:106809. [DOI: 10.1016/j.ympev.2020.106809] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 03/05/2020] [Accepted: 03/23/2020] [Indexed: 12/15/2022]
|
11
|
Wen J, Herron SA, Yang X, Liu BB, Zuo YJ, Harris AJ, Kalburgi Y, Johnson G, Zimmer EA. Nuclear and Chloroplast Sequences Resolve the Enigmatic Origin of the Concord Grape. FRONTIERS IN PLANT SCIENCE 2020; 11:263. [PMID: 32256506 PMCID: PMC7092692 DOI: 10.3389/fpls.2020.00263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/19/2020] [Indexed: 05/31/2023]
Abstract
Despite the commercial importance of the Concord grape, its origin has remained unresolved for over 150 years without a comprehensive phylogenetic analysis. In this study we aimed to reconstruct the evolutionary history of the Concord grape using sequence data from four nuclear markers (AT103, GAI1, PHYA, and SQD1), six plastid markers (matK, psbA-trnH, petN-trnC, ycf1, trnL-F, and trnS-G), and the plastid genome. We sampled extensively the Vitis species native to northeastern North America as well as representative species from Europe and Asia, including the commercially important Vitis vinifera (wine grape), a native European species with hermaphroditic flowers, and its wild progenitor, V. vinifera subsp. sylvestris. We also sequenced the plastid genome of one accession of the Concord grape and compared the plastid genome data to the recently published data set of Vitis plastomes. Phylogenetic analyses of the plastid and nuclear data using maximum likelihood and Bayesian inference support the hybrid origin of the Concord grape. The results clearly pinpoint the wine grape, V. vinifera, as the maternal donor and the fox grape, Vitis labrusca, which is common in northeastern North America, as the paternal donor. Moreover, we infer that the breeding history of the Concord grape must have involved the backcrossing of the F1 hybrid with the paternal parent V. labrusca. This backcrossing also explains the higher morphological similarity of the Concord grape to V. labrusca than to V. vinifera. This study provides concrete genetic evidence for the hybrid origin of a widespread Vitis cultivar and is, therefore, promising for similar future studies focused on resolving ambiguous origins of major crops or to create successful hybrid fruit crops.
Collapse
Affiliation(s)
- Jun Wen
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| | | | - Xue Yang
- Agriculture School, Kunming University, Kunming, China
| | - Bin-Bin Liu
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yun-Juan Zuo
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - AJ Harris
- Department of Biology, Oberlin College and Conservatory, Oberlin, OH, United States
- Key Laboratory for Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yash Kalburgi
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| | - Gabriel Johnson
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| | - Elizabeth A. Zimmer
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| |
Collapse
|
12
|
Zecca G, Labra M, Grassi F. Untangling the Evolution of American Wild Grapes: Admixed Species and How to Find Them. FRONTIERS IN PLANT SCIENCE 2020; 10:1814. [PMID: 32117355 PMCID: PMC7025467 DOI: 10.3389/fpls.2019.01814] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/30/2019] [Indexed: 05/26/2023]
Abstract
Natural hybridization and introgression are central evolutionary processes in grape genus (Vitis). On the other hand, the interspecific relationships among grapes, the directionality of the inferred admixture events and the parents of hybrids are not yet completely clarified. The grapes are economically important crops characterized by tendrils used to climb on the trees and the fruits harvested by humans especially for the consumption or to produce wines and liquors. The American grapes (ca. 30 species) are recognized as an important resource because they show biotic and abiotic resistances. We analyzed 3,885 genome-wide SNPs from 31 American Vitis species using the TreeMix software combined with the f3 and f4 tests. This approach allowed us to infer phylogenetic relationships and to explore the natural admixture among taxa. Our results confirmed the existence of all hybrid species recognized in literature (V. x champinii, V. x doaniana, V. x novae-angliae, and V. x slavinii), identifying their most likely parent species and provided evidence of additional gene flows between distantly related species. We discuss our results to elucidate the origin of American wild grapes, demonstrating that admixture events have ancient origins. We observe that gene flows have involved taxa currently spread through the southern regions of North America. Consequently, we propose that glacial cycles could have triggered the contact between interfertile taxa promoting local hybridization events. We conclude by discussing the phylogenetic implications of our findings and showing that TreeMix can provide novel insights into the evolutionary history of grapes.
Collapse
Affiliation(s)
- Giovanni Zecca
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Massimo Labra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | | |
Collapse
|
13
|
Li M, Klein LL, Duncan KE, Jiang N, Chitwood DH, Londo JP, Miller AJ, Topp CN. Characterizing 3D inflorescence architecture in grapevine using X-ray imaging and advanced morphometrics: implications for understanding cluster density. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6261-6276. [PMID: 31504758 PMCID: PMC6859732 DOI: 10.1093/jxb/erz394] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 08/21/2019] [Indexed: 05/18/2023]
Abstract
Inflorescence architecture provides the scaffold on which flowers and fruits develop, and consequently is a primary trait under investigation in many crop systems. Yet the challenge remains to analyse these complex 3D branching structures with appropriate tools. High information content datasets are required to represent the actual structure and facilitate full analysis of both the geometric and the topological features relevant to phenotypic variation in order to clarify evolutionary and developmental inflorescence patterns. We combined advanced imaging (X-ray tomography) and computational approaches (topological and geometric data analysis and structural simulations) to comprehensively characterize grapevine inflorescence architecture (the rachis and all branches without berries) among 10 wild Vitis species. Clustering and correlation analyses revealed unexpected relationships, for example pedicel branch angles were largely independent of other traits. We identified multivariate traits that typified species, which allowed us to classify species with 78.3% accuracy, versus 10% by chance. Twelve traits had strong signals across phylogenetic clades, providing insight into the evolution of inflorescence architecture. We provide an advanced framework to quantify 3D inflorescence and other branched plant structures that can be used to tease apart subtle, heritable features for a better understanding of genetic and environmental effects on plant phenotypes.
Collapse
Affiliation(s)
- Mao Li
- Donald Danforth Plant Science Center, St Louis, MO, USA
| | - Laura L Klein
- Donald Danforth Plant Science Center, St Louis, MO, USA
- Department of Biology, Saint Louis University, St Louis, MO, USA
| | | | - Ni Jiang
- Donald Danforth Plant Science Center, St Louis, MO, USA
| | - Daniel H Chitwood
- Department of Horticulture, Michigan State University, East Lansing, MI, USA
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Jason P Londo
- United States Department of Agriculture, Agricultural Research Service: Grape Genetics Research Unit, Geneva, NY, USA
| | - Allison J Miller
- Donald Danforth Plant Science Center, St Louis, MO, USA
- Department of Biology, Saint Louis University, St Louis, MO, USA
| | | |
Collapse
|
14
|
Fresnedo-Ramírez J, Yang S, Sun Q, Karn A, Reisch BI, Cadle-Davidson L. Computational Analysis of AmpSeq Data for Targeted, High-Throughput Genotyping of Amplicons. FRONTIERS IN PLANT SCIENCE 2019; 10:599. [PMID: 31156670 PMCID: PMC6528068 DOI: 10.3389/fpls.2019.00599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 04/24/2019] [Indexed: 05/11/2023]
Abstract
Amplicon sequencing (AmpSeq) is a practical, intuitive strategy with a semi-automated computational pipeline for analysis of highly multiplexed PCR-derived sequences. This genotyping platform is particularly cost-effective when multiplexing 96 or more samples with a few amplicons up to thousands of amplicons. Amplicons can target from a single nucleotide to the upper limit of the sequencing platform. The flexibility of AmpSeq's wet lab methods make it a tool of broad interest for diverse species, and AmpSeq excels in flexibility, high-throughput, low-cost, accuracy, and semi-automated analysis. Here we provide an open science framework procedure to output data out of an AmpSeq project, with an emphasis on the bioinformatics pipeline to generate SNPs, haplotypes and presence/absence variants in a set of diverse genotypes. Open-access tutorial datasets with actual data and a containerization open source software instance are provided to enable training in each of these genotyping applications. The pipelines presented here should be applicable to the analysis of various target-enriched (e.g., amplicon or sequence capture) Illumina sequence data.
Collapse
Affiliation(s)
| | - Shanshan Yang
- School of Integrative Plant Science, Cornell AgriTech, Geneva, NY, United States
| | - Qi Sun
- Biotechnology Resource Center, Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, United States
| | - Avinash Karn
- School of Integrative Plant Science, Cornell AgriTech, Geneva, NY, United States
| | - Bruce I. Reisch
- School of Integrative Plant Science, Cornell AgriTech, Geneva, NY, United States
| | - Lance Cadle-Davidson
- School of Integrative Plant Science, Cornell AgriTech, Geneva, NY, United States
- United States Department of Agriculture – Agricultural Research Service, Grape Genetics Research Unit, Geneva, NY, United States
- *Correspondence: Lance Cadle-Davidson,
| |
Collapse
|
15
|
Klein LL, Miller AJ, Ciotir C, Hyma K, Uribe-Convers S, Londo J. High-throughput sequencing data clarify evolutionary relationships among North American Vitis species and improve identification in USDA Vitis germplasm collections. AMERICAN JOURNAL OF BOTANY 2018; 105:215-226. [PMID: 29578297 DOI: 10.1002/ajb2.1033] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 01/04/2018] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY Grapes are one of the most economically important berry crops worldwide, with the vast majority of production derived from the domesticated Eurasian species Vitis vinifera. Expansion of production into new areas, development of new cultivars, and concerns about adapting grapevines for changing climates necessitate the use of wild grapevine species in breeding programs. Diversity within Vitis has long been a topic of study; however, questions remain regarding relationships between species. Furthermore, the identity of some living accessions is unclear. METHODS This study generated 11,020 single nucleotide polymorphism (SNP) markers for more than 300 accessions in the USDA-ARS grape germplasm repository using genotyping-by-sequencing. Resulting data sets were used to reconstruct evolutionary relationships among several North American and Eurasian Vitis species, and to suggest taxonomic labels for previously unidentified and misidentified germplasm accessions based on genetic distance. KEY RESULTS Maximum likelihood analyses of SNP data support the monophyly of Vitis, subg. Vitis, a Eurasian subg. Vitis clade, and a North American subg. Vitis clade. Data delineate species groups within North America. In addition, analysis of genetic distance suggested taxonomic identities for 20 previously unidentified Vitis accessions and for 28 putatively misidentified accessions. CONCLUSIONS This work advances understanding of Vitis evolutionary relationships and provides the foundation for ongoing germplasm enhancement. It supports conservation and breeding efforts by contributing to a growing genetic framework for identifying novel genetic variation and for incorporating new, unsampled populations into the germplasm repository system.
Collapse
Affiliation(s)
- Laura L Klein
- Department of Biology, Saint Louis University, St. Louis, MO, 63110, USA
| | - Allison J Miller
- Department of Biology, Saint Louis University, St. Louis, MO, 63110, USA
| | - Claudia Ciotir
- Department of Biology, Saint Louis University, St. Louis, MO, 63110, USA
| | - Katie Hyma
- Cornell University, Institute for Biotechnology, Cornell University, Ithaca, NY, 14853, USA
| | - Simon Uribe-Convers
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jason Londo
- United States Department of Agriculture, Agricultural Research Service, Grape Genetics Research Unit, Geneva, NY, 14425, USA
| |
Collapse
|
16
|
Klein LL, Caito M, Chapnick C, Kitchen C, O’Hanlon R, Chitwood DH, Miller AJ. Digital Morphometrics of Two North American Grapevines ( Vitis: Vitaceae) Quantifies Leaf Variation between Species, within Species, and among Individuals. FRONTIERS IN PLANT SCIENCE 2017; 8:373. [PMID: 28367159 PMCID: PMC5355467 DOI: 10.3389/fpls.2017.00373] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 03/03/2017] [Indexed: 05/18/2023]
Abstract
Recent studies have demonstrated that grapevine (Vitis spp.) leaf shape can be quantified using digital approaches which indicate phylogenetic signal in leaf shape, discernible patterns of developmental context within single leaves, and signatures of local environmental conditions. Here, we extend this work by quantifying intra-individual, intraspecific, and interspecific variation in leaf morphology in accessions of North American Vitis riparia and V. rupestris in a common environment. For each species at least four clonal replicates of multiple genotypes were grown in the Missouri Botanical Garden Kemper Center for Home Gardening. All leaves from a single shoot were harvested and scanned leaf images were used to conduct generalized Procrustes analysis, linear discriminant analysis, and elliptical Fourier analysis. Leaf shapes displayed genotype-specific signatures and species distinctions consistent with taxonomic classifications. Leaf shape variation within genotypes and among clones was the result of pest and pathogen-induced leaf damage that alters leaf morphology. Significant trends in leaf damage caused by disease and infestation were non-random with respect to leaf position on the shoot. Digital morphometrics is a powerful tool for assessing leaf shape variation among species, genotypes, and clones under common conditions and suggests biotic factors such as pests and pathogens as important drivers influencing leaf shape.
Collapse
Affiliation(s)
- Laura L. Klein
- Department of Biology, Saint Louis University, St. LouisMO, USA
- Science and Conservation Department, Missouri Botanical Garden, St. LouisMO, USA
| | - Madeleine Caito
- Department of Biology, Saint Louis University, St. LouisMO, USA
| | - Chad Chapnick
- Department of Biology, Saint Louis University, St. LouisMO, USA
| | | | - Regan O’Hanlon
- Department of Biology, Saint Louis University, St. LouisMO, USA
| | | | - Allison J. Miller
- Department of Biology, Saint Louis University, St. LouisMO, USA
- Science and Conservation Department, Missouri Botanical Garden, St. LouisMO, USA
| |
Collapse
|
17
|
Tumino G, Voorrips RE, Rizza F, Badeck FW, Morcia C, Ghizzoni R, Germeier CU, Paulo MJ, Terzi V, Smulders MJM. Population structure and genome-wide association analysis for frost tolerance in oat using continuous SNP array signal intensity ratios. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:1711-24. [PMID: 27318699 PMCID: PMC4983288 DOI: 10.1007/s00122-016-2734-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 05/21/2016] [Indexed: 05/19/2023]
Abstract
Infinium SNP data analysed as continuous intensity ratios enabled associating genotypic and phenotypic data from heterogeneous oat samples, showing that association mapping for frost tolerance is a feasible option. Oat is sensitive to freezing temperatures, which restricts the cultivation of fall-sown or winter oats to regions with milder winters. Fall-sown oats have a longer growth cycle, mature earlier, and have a higher productivity than spring-sown oats, therefore improving frost tolerance is an important goal in oat breeding. Our aim was to test the effectiveness of a Genome-Wide Association Study (GWAS) for mapping QTLs related to frost tolerance, using an approach that tolerates continuously distributed signals from SNPs in bulked samples from heterogeneous accessions. A collection of 138 European oat accessions, including landraces, old and modern varieties from 27 countries was genotyped using the Infinium 6K SNP array. The SNP data were analyzed as continuous intensity ratios, rather than converting them into discrete values by genotype calling. PCA and Ward's clustering of genetic similarities revealed the presence of two main groups of accessions, which roughly corresponded to Continental Europe and Mediterranean/Atlantic Europe, although a total of eight subgroups can be distinguished. The accessions were phenotyped for frost tolerance under controlled conditions by measuring fluorescence quantum yield of photosystem II after a freezing stress. GWAS were performed by a linear mixed model approach, comparing different corrections for population structure. All models detected three robust QTLs, two of which co-mapped with QTLs identified earlier in bi-parental mapping populations. The approach used in the present work shows that SNP array data of heterogeneous hexaploid oat samples can be successfully used to determine genetic similarities and to map associations to quantitative phenotypic traits.
Collapse
Affiliation(s)
- Giorgio Tumino
- Council for Agricultural Research and Economics, Genomics Research Centre, Via San Protaso 302, 29017, Fiorenzuola d'Arda, PC, Italy.
- Wageningen UR Plant Breeding, Droevendaalsesteeg 1, NL-6708 PB, Wageningen, The Netherlands.
| | - Roeland E Voorrips
- Wageningen UR Plant Breeding, Droevendaalsesteeg 1, NL-6708 PB, Wageningen, The Netherlands
| | - Fulvia Rizza
- Council for Agricultural Research and Economics, Genomics Research Centre, Via San Protaso 302, 29017, Fiorenzuola d'Arda, PC, Italy
| | - Franz W Badeck
- Council for Agricultural Research and Economics, Genomics Research Centre, Via San Protaso 302, 29017, Fiorenzuola d'Arda, PC, Italy
| | - Caterina Morcia
- Council for Agricultural Research and Economics, Genomics Research Centre, Via San Protaso 302, 29017, Fiorenzuola d'Arda, PC, Italy
| | - Roberta Ghizzoni
- Council for Agricultural Research and Economics, Genomics Research Centre, Via San Protaso 302, 29017, Fiorenzuola d'Arda, PC, Italy
| | - Christoph U Germeier
- Julius Kühn Institut, Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Agricultural Crops, 06484, Quedlinburg, Germany
| | - Maria-João Paulo
- Biometris, Wageningen UR, Droevendaalsesteeg 1, NL-6708 PB, Wageningen, The Netherlands
| | - Valeria Terzi
- Council for Agricultural Research and Economics, Genomics Research Centre, Via San Protaso 302, 29017, Fiorenzuola d'Arda, PC, Italy
| | - Marinus J M Smulders
- Wageningen UR Plant Breeding, Droevendaalsesteeg 1, NL-6708 PB, Wageningen, The Netherlands
| |
Collapse
|
18
|
Ma ZY, Wen J, Ickert-Bond SM, Chen LQ, Liu XQ. Morphology, Structure, and Ontogeny of Trichomes of the Grape Genus (Vitis, Vitaceae). FRONTIERS IN PLANT SCIENCE 2016; 7:704. [PMID: 27252720 PMCID: PMC4879774 DOI: 10.3389/fpls.2016.00704] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/06/2016] [Indexed: 05/18/2023]
Abstract
Trichomes are widely distributed on surfaces of different organs in the grape genus Vitis and are of taxonomic utility. To explore the morphology, structure and ontogeny of Vitis trichomes, we investigated the diversity and distribution of trichomes in 34 species of Vitis. Two main types of trichomes in Vitis are documented: non-glandular and glandular. Within non-glandular trichomes, ribbon and simple trichomes are found on different vegetative plant organs. The morphology and ontogeny of these types of trichomes are further examined with light microscopy and scanning electron microscopy. The ultrastructure of the glandular trichomes is explored with transmission electron microscopy. The ribbon trichomes are twisted, greatly elongated and unicellular, and this trichome type may be a morphological synapomorphy of Vitis and its closest tropical relative Ampelocissus and Pterisanthes in Vitaceae. The simple trichomes are documented in most species sampled in the genus. The glandular trichomes are multicellular, non-vascularized and composed of both epidermis and subjacent layers. We show that prickles occurring along the stems and petioles of Vitis davidii are modified glandular trichomes. We observed that glandular trichomes of V. romanetii secrete mucilage and volatile substances which trap insectes on the glands. Transmission electron microscopy indicates that metabolic products accumulate in vacuoles, the cytoplasm and intercellular spaces. We infer that glandular trichomes and young prickles are involved in the secretion of these metabolic products and the intercellular spaces may be the places of temporary storage of these secretions.
Collapse
Affiliation(s)
- Zhi-Yao Ma
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Science, Huazhong Agricultural University, Ministry of EducationWuhan, China
| | - Jun Wen
- Department of Botany, National Museum of Natural History, MRC166, Smithsonian InstitutionWashington, DC, USA
| | - Stefanie M. Ickert-Bond
- UA Museum of the North Herbarium and Department of Biology and Wildlife, University of Alaska FairbanksFairbanks, AK, USA
| | - Long-Qing Chen
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Science, Huazhong Agricultural University, Ministry of EducationWuhan, China
| | - Xiu-Qun Liu
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Science, Huazhong Agricultural University, Ministry of EducationWuhan, China
| |
Collapse
|
19
|
Chitwood DH, Klein LL, O'Hanlon R, Chacko S, Greg M, Kitchen C, Miller AJ, Londo JP. Latent developmental and evolutionary shapes embedded within the grapevine leaf. THE NEW PHYTOLOGIST 2016; 210:343-55. [PMID: 26580864 PMCID: PMC5063178 DOI: 10.1111/nph.13754] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/13/2015] [Indexed: 05/02/2023]
Abstract
Across plants, leaves exhibit profound diversity in shape. As a single leaf expands, its shape is in constant flux. Plants may also produce leaves with different shapes at successive nodes. In addition, leaf shape varies among individuals, populations and species as a result of evolutionary processes and environmental influences. Because leaf shape can vary in many different ways, theoretically, the effects of distinct developmental and evolutionary processes are separable, even within the shape of a single leaf. Here, we measured the shapes of > 3200 leaves representing > 270 vines from wild relatives of domesticated grape (Vitis spp.) to determine whether leaf shapes attributable to genetics and development are separable from each other. We isolated latent shapes (multivariate signatures that vary independently from each other) embedded within the overall shape of leaves. These latent shapes can predict developmental stages independent from species identity and vice versa. Shapes predictive of development were then used to stage leaves from 1200 varieties of domesticated grape (Vitis vinifera), revealing that changes in timing underlie leaf shape diversity. Our results indicate that distinct latent shapes combine to produce a composite morphology in leaves, and that developmental and evolutionary contributions to shape vary independently from each other.
Collapse
Affiliation(s)
| | - Laura L. Klein
- Department of BiologySaint Louis UniversitySt LouisMO63103USA
| | - Regan O'Hanlon
- Department of BiologySaint Louis UniversitySt LouisMO63103USA
| | - Steven Chacko
- Department of BiologySaint Louis UniversitySt LouisMO63103USA
| | - Matthew Greg
- Department of BiologySaint Louis UniversitySt LouisMO63103USA
| | | | | | - Jason P. Londo
- United States Department of AgricultureAgriculture Research ServiceGrape Genetics Research UnitGenevaNY14456USA
| |
Collapse
|
20
|
Chitwood DH, Klein LL, O'Hanlon R, Chacko S, Greg M, Kitchen C, Miller AJ, Londo JP. Latent developmental and evolutionary shapes embedded within the grapevine leaf. THE NEW PHYTOLOGIST 2016. [PMID: 26580864 DOI: 10.5061/dryad.zkh189377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Across plants, leaves exhibit profound diversity in shape. As a single leaf expands, its shape is in constant flux. Plants may also produce leaves with different shapes at successive nodes. In addition, leaf shape varies among individuals, populations and species as a result of evolutionary processes and environmental influences. Because leaf shape can vary in many different ways, theoretically, the effects of distinct developmental and evolutionary processes are separable, even within the shape of a single leaf. Here, we measured the shapes of > 3200 leaves representing > 270 vines from wild relatives of domesticated grape (Vitis spp.) to determine whether leaf shapes attributable to genetics and development are separable from each other. We isolated latent shapes (multivariate signatures that vary independently from each other) embedded within the overall shape of leaves. These latent shapes can predict developmental stages independent from species identity and vice versa. Shapes predictive of development were then used to stage leaves from 1200 varieties of domesticated grape (Vitis vinifera), revealing that changes in timing underlie leaf shape diversity. Our results indicate that distinct latent shapes combine to produce a composite morphology in leaves, and that developmental and evolutionary contributions to shape vary independently from each other.
Collapse
Affiliation(s)
| | - Laura L Klein
- Department of Biology, Saint Louis University, St Louis, MO, 63103, USA
| | - Regan O'Hanlon
- Department of Biology, Saint Louis University, St Louis, MO, 63103, USA
| | - Steven Chacko
- Department of Biology, Saint Louis University, St Louis, MO, 63103, USA
| | - Matthew Greg
- Department of Biology, Saint Louis University, St Louis, MO, 63103, USA
| | - Cassandra Kitchen
- Department of Biology, Saint Louis University, St Louis, MO, 63103, USA
| | - Allison J Miller
- Department of Biology, Saint Louis University, St Louis, MO, 63103, USA
| | - Jason P Londo
- United States Department of Agriculture, Agriculture Research Service, Grape Genetics Research Unit, Geneva, NY, 14456, USA
| |
Collapse
|
21
|
Yang S, Fresnedo-Ramírez J, Wang M, Cote L, Schweitzer P, Barba P, Takacs EM, Clark M, Luby J, Manns DC, Sacks G, Mansfield AK, Londo J, Fennell A, Gadoury D, Reisch B, Cadle-Davidson L, Sun Q. A next-generation marker genotyping platform (AmpSeq) in heterozygous crops: a case study for marker-assisted selection in grapevine. HORTICULTURE RESEARCH 2016; 3:16002. [PMID: 27257505 PMCID: PMC4879517 DOI: 10.1038/hortres.2016.2] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/06/2016] [Accepted: 01/08/2016] [Indexed: 05/07/2023]
Abstract
Marker-assisted selection (MAS) is often employed in crop breeding programs to accelerate and enhance cultivar development, via selection during the juvenile phase and parental selection prior to crossing. Next-generation sequencing and its derivative technologies have been used for genome-wide molecular marker discovery. To bridge the gap between marker development and MAS implementation, this study developed a novel practical strategy with a semi-automated pipeline that incorporates trait-associated single nucleotide polymorphism marker discovery, low-cost genotyping through amplicon sequencing (AmpSeq) and decision making. The results document the development of a MAS package derived from genotyping-by-sequencing using three traits (flower sex, disease resistance and acylated anthocyanins) in grapevine breeding. The vast majority of sequence reads (⩾99%) were from the targeted regions. Across 380 individuals and up to 31 amplicons sequenced in each lane of MiSeq data, most amplicons (83 to 87%) had <10% missing data, and read depth had a median of 220-244×. Several strengths of the AmpSeq platform that make this approach of broad interest in diverse crop species include accuracy, flexibility, speed, high-throughput, low-cost and easily automated analysis.
Collapse
Affiliation(s)
- Shanshan Yang
- Horticulture Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456, USA
| | | | - Minghui Wang
- Bioinformatics Facility, Cornell University, Ithaca, NY 14853, USA
| | - Linda Cote
- Institute of Biotechnology, Cornell University, Ithaca, NY 14853, USA
| | - Peter Schweitzer
- Institute of Biotechnology, Cornell University, Ithaca, NY 14853, USA
| | - Paola Barba
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Elizabeth M Takacs
- Horticulture Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456, USA
| | - Matthew Clark
- Department of Horticultural Science, University of Minnesota, St Paul, MN 55108, USA
| | - James Luby
- Department of Horticultural Science, University of Minnesota, St Paul, MN 55108, USA
| | - David C Manns
- Department of Food Science, Cornell University, Geneva, NY 14456, USA
| | - Gavin Sacks
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | | | - Jason Londo
- USDA-ARS Grape Genetics Research Unit, Geneva, NY 14456, USA
| | - Anne Fennell
- Plant Science Department, South Dakota State University, Brookings, SD 57007, USA
| | - David Gadoury
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456, USA
| | - Bruce Reisch
- Horticulture Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456, USA
| | | | - Qi Sun
- Bioinformatics Facility, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
22
|
Liu XQ, Ickert-Bond SM, Nie ZL, Zhou Z, Chen LQ, Wen J. Phylogeny of the Ampelocissus–Vitis clade in Vitaceae supports the New World origin of the grape genus. Mol Phylogenet Evol 2016; 95:217-28. [DOI: 10.1016/j.ympev.2015.10.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 07/31/2015] [Accepted: 10/13/2015] [Indexed: 01/29/2023]
|
23
|
Schneider K, Koblmüller S, Sefc KM. HEXT, a software supporting tree-based screens for hybrid taxa in multilocus data sets, and an evaluation of the homoplasy excess test. Methods Ecol Evol 2015; 7:358-368. [PMID: 27066216 PMCID: PMC4824276 DOI: 10.1111/2041-210x.12490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 08/27/2015] [Indexed: 12/01/2022]
Abstract
The homoplasy excess test (HET) is a tree-based screen for hybrid taxa in multilocus nuclear phylogenies. Homoplasy between a hybrid taxon and the clades containing the parental taxa reduces bootstrap support in the tree. The HET is based on the expectation that excluding the hybrid taxon from the data set increases the bootstrap support for the parental clades, whereas excluding non-hybrid taxa has little effect on statistical node support. To carry out a HET, bootstrap trees are calculated with taxon-jackknife data sets, that is excluding one taxon (species, population) at a time. Excess increase in bootstrap support for certain nodes upon exclusion of a particular taxon indicates the hybrid (the excluded taxon) and its parents (the clades with increased support).We introduce a new software program, hext, which generates the taxon-jackknife data sets, runs the bootstrap tree calculations, and identifies excess bootstrap increases as outlier values in boxplot graphs. hext is written in r language and accepts binary data (0/1; e.g. AFLP) as well as co-dominant SNP and genotype data.We demonstrate the usefulness of hext in large SNP data sets containing putative hybrids and their parents. For instance, using published data of the genus Vitis (~6,000 SNP loci), hext output supports V. × champinii as a hybrid between V. rupestris and V. mustangensis.With simulated SNP and AFLP data sets, excess increases in bootstrap support were not always connected with the hybrid taxon (false positives), whereas the expected bootstrap signal failed to appear on several occasions (false negatives). Potential causes for both types of spurious results are discussed.With both empirical and simulated data sets, the taxon-jackknife output generated by hext provided additional signatures of hybrid taxa, including changes in tree topology across trees, consistent effects of exclusions of the hybrid and the parent taxa, and moderate (rather than excessive) increases in bootstrap support. hext significantly facilitates the taxon-jackknife approach to hybrid taxon detection, even though the simple test for excess bootstrap increase may not reliably identify hybrid taxa in all applications.
Collapse
Affiliation(s)
- Kevin Schneider
- Institute of Zoology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria ; Department of Systematic Botany and Geobotany, Institute of Plant Sciences, University of Graz, Holteigasse 6, 8010 Graz, Austria
| | - Stephan Koblmüller
- Institute of Zoology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | - Kristina M Sefc
- Institute of Zoology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| |
Collapse
|
24
|
Goto-Yamamoto N, Sawler J, Myles S. Genetic Analysis of East Asian Grape Cultivars Suggests Hybridization with Wild Vitis. PLoS One 2015; 10:e0140841. [PMID: 26488600 PMCID: PMC4619069 DOI: 10.1371/journal.pone.0140841] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/29/2015] [Indexed: 11/18/2022] Open
Abstract
Koshu is a grape cultivar native to Japan and is one of the country’s most important cultivars for wine making. Koshu and other oriental grape cultivars are widely believed to belong to the European domesticated grape species Vitis vinifera. To verify the domesticated origin of Koshu and four other cultivars widely grown in China and Japan, we genotyped 48 ancestry informative single nucleotide polymorphisms (SNPs) and estimated wild and domesticated ancestry proportions. Our principal components analysis (PCA) based ancestry estimation revealed that Koshu is 70% V. vinifera, and that the remaining 30% of its ancestry is most likely derived from wild East Asian Vitis species. Partial sequencing of chloroplast DNA suggests that Koshu’s maternal line is derived from the Chinese wild species V. davidii or a closely related species. Our results suggest that many traditional East Asian grape cultivars such as Koshu were generated from hybridization events with wild grape species.
Collapse
Affiliation(s)
- Nami Goto-Yamamoto
- National Research Institute of Brewing, Higashi-Hiroshima, Japan
- * E-mail: (NG); (SM)
| | - Jason Sawler
- Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
- Anandia Labs, 2259 Lower Mall, Vancouver, British Columbia, Canada
| | - Sean Myles
- Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
- * E-mail: (NG); (SM)
| |
Collapse
|
25
|
Ultrahigh-density linkage map for cultivated cucumber (Cucumis sativus L.) using a single-nucleotide polymorphism genotyping array. PLoS One 2015; 10:e0124101. [PMID: 25874931 PMCID: PMC4395401 DOI: 10.1371/journal.pone.0124101] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/26/2015] [Indexed: 01/30/2023] Open
Abstract
Genotyping arrays are tools for high-throughput genotyping, which is beneficial in constructing saturated genetic maps and therefore high-resolution mapping of complex traits. Since the report of the first cucumber genome draft, genetic maps have been constructed mainly based on simple-sequence repeats (SSRs) or on combinations of SSRs and sequence-related amplified polymorphism (SRAP). In this study, we developed the first cucumber genotyping array consisting of 32,864 single-nucleotide polymorphisms (SNPs). These markers cover the cucumber genome with a median interval of ~2 Kb and have expected genotype calls in parents/F1 hybridizations as a training set. The training set was validated with Fluidigm technology and showed 96% concordance with the genotype calls in the parents/F1 hybridizations. Application of the genotyping array was illustrated by constructing a 598.7 cM genetic map based on a ‘9930’ × ‘Gy14’ recombinant inbred line (RIL) population comprised of 11,156 SNPs. Marker collinearity between the genetic map and reference genomes of the two parents was estimated at R2 = 0.97. We also used the array-derived genetic map to investigate chromosomal rearrangements, regional recombination rate, and specific regions with segregation distortions. Finally, 82% of the linkage-map bins were polymorphic in other cucumber variants, suggesting that the array can be applied for genotyping in other lines. The genotyping array presented here, together with the genotype calls of the parents/F1 hybridizations as a training set, should be a powerful tool in future studies with high-throughput cucumber genotyping. An ultrahigh-density linkage map constructed by this genotyping array on RIL population may be invaluable for assembly improvement, and for mapping important cucumber QTLs.
Collapse
|
26
|
Fast and cost-effective genetic mapping in apple using next-generation sequencing. G3-GENES GENOMES GENETICS 2014; 4:1681-7. [PMID: 25031181 PMCID: PMC4169160 DOI: 10.1534/g3.114.011023] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Next-generation DNA sequencing (NGS) produces vast amounts of DNA sequence data, but it is not specifically designed to generate data suitable for genetic mapping. Recently developed DNA library preparation methods for NGS have helped solve this problem, however, by combining the use of reduced representation libraries with DNA sample barcoding to generate genome-wide genotype data from a common set of genetic markers across a large number of samples. Here we use such a method, called genotyping-by-sequencing (GBS), to produce a data set for genetic mapping in an F1 population of apples (Malus × domestica) segregating for skin color. We show that GBS produces a relatively large, but extremely sparse, genotype matrix: over 270,000 SNPs were discovered but most SNPs have too much missing data across samples to be useful for genetic mapping. After filtering for genotype quality and missing data, only 6% of the 85 million DNA sequence reads contributed to useful genotype calls. Despite this limitation, using existing software and a set of simple heuristics, we generated a final genotype matrix containing 3967 SNPs from 89 DNA samples from a single lane of Illumina HiSeq and used it to create a saturated genetic linkage map and to identify a known QTL underlying apple skin color. We therefore demonstrate that GBS is a cost-effective method for generating genome-wide SNP data suitable for genetic mapping in a highly diverse and heterozygous agricultural species. We anticipate future improvements to the GBS analysis pipeline presented here that will enhance the utility of next-generation DNA sequence data for the purposes of genetic mapping across diverse species.
Collapse
|