1
|
Rahman MA, Sarker A, Ayaz M, Shatabdy AR, Haque N, Jalouli M, Rahman MDH, Mou TJ, Dey SK, Hoque Apu E, Zafar MS, Parvez MAK. An Update on the Study of the Molecular Mechanisms Involved in Autophagy during Bacterial Pathogenesis. Biomedicines 2024; 12:1757. [PMID: 39200221 PMCID: PMC11351677 DOI: 10.3390/biomedicines12081757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/02/2024] Open
Abstract
Autophagy is a unique catabolic process that degrades irrelevant or damaged components in eukaryotic cells to maintain homeostasis and eliminate infections from pathogenesis. Pathogenic bacteria have developed many autophagy manipulation techniques that affect host immune responses and intracellular bacterial pathogens have evolved to avoid xenophagy. However, reducing its effectiveness as an innate immune response has not yet been elucidated. Bacterial pathogens cause autophagy in infected cells as a cell-autonomous defense mechanism to eliminate the pathogen. However, harmful bacteria have learned to control autophagy and defeat host defenses. Intracellular bacteria can stimulate and control autophagy, while others inhibit it to prevent xenophagy and lysosomal breakdown. This review evaluates the putative functions for xenophagy in regulating bacterial infection, emphasizing that successful pathogens have evolved strategies to disrupt or exploit this defense, reducing its efficiency in innate immunity. Instead, animal models show that autophagy-associated proteins influence bacterial pathogenicity outside of xenophagy. We also examine the consequences of the complex interaction between autophagy and bacterial pathogens in light of current efforts to modify autophagy and develop host-directed therapeutics to fight bacterial infections. Therefore, effective pathogens have evolved to subvert or exploit xenophagy, although autophagy-associated proteins can influence bacterial pathogenicity outside of xenophagy. Finally, this review implies how the complex interaction between autophagy and bacterial pathogens affects host-directed therapy for bacterial pathogenesis.
Collapse
Affiliation(s)
- Md Ataur Rahman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Global Biotechnology & Biomedical Research Network (GBBRN), Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh
| | - Amily Sarker
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (A.S.); (M.A.); (A.R.S.); (N.H.); (T.J.M.); (S.K.D.)
| | - Mohammed Ayaz
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (A.S.); (M.A.); (A.R.S.); (N.H.); (T.J.M.); (S.K.D.)
| | - Ananya Rahman Shatabdy
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (A.S.); (M.A.); (A.R.S.); (N.H.); (T.J.M.); (S.K.D.)
| | - Nabila Haque
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (A.S.); (M.A.); (A.R.S.); (N.H.); (T.J.M.); (S.K.D.)
| | - Maroua Jalouli
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia;
| | - MD. Hasanur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Life Sciences, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh;
| | - Taslin Jahan Mou
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (A.S.); (M.A.); (A.R.S.); (N.H.); (T.J.M.); (S.K.D.)
| | - Shuvra Kanti Dey
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (A.S.); (M.A.); (A.R.S.); (N.H.); (T.J.M.); (S.K.D.)
| | - Ehsanul Hoque Apu
- Department of Biomedical Science, College of Dental Medicine, Lincoln Memorial University, Knoxville, TN 37923, USA;
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah 41311, Saudi Arabia;
- School of Dentistry, University of Jordan, Amman 11942, Jordan
- Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan
| | - Md. Anowar Khasru Parvez
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (A.S.); (M.A.); (A.R.S.); (N.H.); (T.J.M.); (S.K.D.)
| |
Collapse
|
2
|
Zhao J, Duan L, Li J, Yao C, Wang G, Mi J, Yu Y, Ding L, Zhao Y, Yan G, Li J, Zhao Z, Wang X, Li M. New insights into the interplay between autophagy, gut microbiota and insulin resistance in metabolic syndrome. Biomed Pharmacother 2024; 176:116807. [PMID: 38795644 DOI: 10.1016/j.biopha.2024.116807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024] Open
Abstract
Metabolic syndrome (MetS) is a widespread and multifactorial disorder, and the study of its pathogenesis and treatment remains challenging. Autophagy, an intracellular degradation system that maintains cellular renewal and homeostasis, is essential for maintaining antimicrobial defense, preserving epithelial barrier integrity, promoting mucosal immune response, maintaining intestinal homeostasis, and regulating gut microbiota and microbial metabolites. Dysfunctional autophagy is implicated in the pathological mechanisms of MetS, involving insulin resistance (IR), chronic inflammation, oxidative stress, and endoplasmic reticulum (ER) stress, with IR being a predominant feature. The study of autophagy represents a valuable field of research with significant clinical implications for identifying autophagy-related signals, pathways, mechanisms, and treatment options for MetS. Given the multifactorial etiology and various potential risk factors, it is imperative to explore the interplay between autophagy and gut microbiota in MetS more thoroughly. This will facilitate the elucidation of new mechanisms underlying the crosstalk among autophagy, gut microbiota, and MetS, thereby providing new insights into the diagnosis and treatment of MetS.
Collapse
Affiliation(s)
- Jinyue Zhao
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Liyun Duan
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Jiarui Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Chensi Yao
- Molecular Biology Laboratory, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Guoqiang Wang
- The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Jia Mi
- The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Yongjiang Yu
- The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Lu Ding
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Yunyun Zhao
- The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Guanchi Yan
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Jing Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Zhixuan Zhao
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Xiuge Wang
- The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China.
| | - Min Li
- Molecular Biology Laboratory, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
3
|
Chen H, Li J, Pan X, Hu Z, Cai J, Xia Z, Qi N, Liao S, Spritzer Z, Bai Y, Sun M. A novel avian intestinal epithelial cell line: its characterization and exploration as an in vitro infection culture model for Eimeria species. Parasit Vectors 2024; 17:25. [PMID: 38243250 PMCID: PMC10799501 DOI: 10.1186/s13071-023-06090-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/10/2023] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND The gastrointestinal epithelium plays an important role in directing recognition by the immune system, and epithelial cells provide the host's front line of defense against microorganisms. However, it is difficult to cultivate avian intestinal epithelial cells in vitro for lengthy periods, and the lack of available cell lines limits the research on avian intestinal diseases and nutritional regulation. Chicken coccidiosis is a serious intestinal disease that causes significant economic losses in the poultry industry. In vitro, some cell line models are beneficial for the development of Eimeria species; however, only partial reproduction can be achieved. Therefore, we sought to develop a new model with both the natural host and epithelial cell phenotypes. METHODS In this study, we use the SV40 large T antigen (SV40T) gene to generate an immortalized cell line. Single-cell screening technology was used to sort positive cell clusters with epithelial characteristics for passage. Polymerase chain reaction (PCR) identification, immunofluorescence detection, and bulk RNA sequencing analysis and validation were used to check the expression of epithelial cell markers and characterize the avian intestinal epithelial cell line (AIEC). AIECs were infected with sporozoites, and their ability to support the in vitro endogenous development of Eimeria tenella was assessed. RESULTS This novel AIEC consistently expressed intestinal epithelial markers. Transcriptome assays revealed the upregulation of genes associated with proliferation and downregulation of genes associated with apoptosis. We sought to compare E. tenella infection between an existing fibroblast cell line (DF-1) and several passages of AIEC and found that the invasion efficiency was significantly increased relative to that of chicken fibroblast cell lines. CONCLUSIONS An AIEC will serve as a better in vitro research model, especially in the study of Eimeria species development and the mechanisms of parasite-host interactions. Using AIEC helps us understand the involvement of intestinal epithelial cells in the digestive tract and the immune defense of the chickens, which will contribute to the epithelial innate defense against microbial infection in the gastrointestinal tract.
Collapse
Affiliation(s)
- Huifang Chen
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Juan Li
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xiaoting Pan
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Zhichao Hu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
| | - Jianfeng Cai
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
| | - Zijie Xia
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nanshan Qi
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Shenquan Liao
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Zachary Spritzer
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yinshan Bai
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China.
| | - Mingfei Sun
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| |
Collapse
|
4
|
Ling C, Versloot CJ, Arvidsson Kvissberg ME, Hu G, Swain N, Horcas-Nieto JM, Miraglia E, Thind MK, Farooqui A, Gerding A, van Eunen K, Koster MH, Kloosterhuis NJ, Chi L, ChenMi Y, Langelaar-Makkinje M, Bourdon C, Swann J, Smit M, de Bruin A, Youssef SA, Feenstra M, van Dijk TH, Thedieck K, Jonker JW, Kim PK, Bakker BM, Bandsma RHJ. Rebalancing of mitochondrial homeostasis through an NAD +-SIRT1 pathway preserves intestinal barrier function in severe malnutrition. EBioMedicine 2023; 96:104809. [PMID: 37738832 PMCID: PMC10520344 DOI: 10.1016/j.ebiom.2023.104809] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND The intestine of children with severe malnutrition (SM) shows structural and functional changes that are linked to increased infection and mortality. SM dysregulates the tryptophan-kynurenine pathway, which may impact processes such as SIRT1- and mTORC1-mediated autophagy and mitochondrial homeostasis. Using a mouse and organoid model of SM, we studied the repercussions of these dysregulations on malnutrition enteropathy and the protective capacity of maintaining autophagy activity and mitochondrial health. METHODS SM was induced through feeding male weanling C57BL/6 mice a low protein diet (LPD) for 14-days. Mice were either treated with the NAD+-precursor, nicotinamide; an mTORC1-inhibitor, rapamycin; a SIRT1-activator, resveratrol; or SIRT1-inhibitor, EX-527. Malnutrition enteropathy was induced in enteric organoids through amino-acid deprivation. Features of and pathways to malnutrition enteropathy were examined, including paracellular permeability, nutrient absorption, and autophagic, mitochondrial, and reactive-oxygen-species (ROS) abnormalities. FINDINGS LPD-feeding and ensuing low-tryptophan availability led to villus atrophy, nutrient malabsorption, and intestinal barrier dysfunction. In LPD-fed mice, nicotinamide-supplementation was linked to SIRT1-mediated activation of mitophagy, which reduced damaged mitochondria, and improved intestinal barrier function. Inhibition of mTORC1 reduced intestinal barrier dysfunction and nutrient malabsorption. Findings were validated and extended using an organoid model, demonstrating that resolution of mitochondrial ROS resolved barrier dysfunction. INTERPRETATION Malnutrition enteropathy arises from a dysregulation of the SIRT1 and mTORC1 pathways, leading to disrupted autophagy, mitochondrial homeostasis, and ROS. Whether nicotinamide-supplementation in children with SM could ameliorate malnutrition enteropathy should be explored in clinical trials. FUNDING This work was supported by the Bill and Melinda Gates Foundation, the Sickkids Research Institute, the Canadian Institutes of Health Research, and the University Medical Center Groningen.
Collapse
Affiliation(s)
- Catriona Ling
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada; Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Christian J Versloot
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada; Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Matilda E Arvidsson Kvissberg
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada; Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Guanlan Hu
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada; Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Nathan Swain
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - José M Horcas-Nieto
- Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Emily Miraglia
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada; Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mehakpreet K Thind
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada; Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Amber Farooqui
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Albert Gerding
- Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands; Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Karen van Eunen
- Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Mirjam H Koster
- Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Niels J Kloosterhuis
- Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Lijun Chi
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - YueYing ChenMi
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Miriam Langelaar-Makkinje
- Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Celine Bourdon
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jonathan Swann
- Faculty of Medicine, School of Human Development and Health, University of Southampton, United Kingdom; Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, United Kingdom
| | - Marieke Smit
- Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Alain de Bruin
- Department of Biomolecular Health Sciences, Dutch Molecular Pathology Centre, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Sameh A Youssef
- Department of Biomolecular Health Sciences, Dutch Molecular Pathology Centre, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; Janssen Pharmaceutica Research and Development, 2340, Beerse, Belgium
| | - Marjon Feenstra
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Theo H van Dijk
- Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Kathrin Thedieck
- Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands; Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria; Freiburg Materials Research Center (FMF), University Freiburg, Freiburg, Germany
| | - Johan W Jonker
- Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Peter K Kim
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada; Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada.
| | - Barbara M Bakker
- Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands.
| | - Robert H J Bandsma
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada; Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands; Division of Gastroenterology, Hepatology, and Nutrition, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
5
|
Roncaioli JL, Babirye JP, Chavez RA, Liu FL, Turcotte EA, Lee AY, Lesser CF, Vance RE. A hierarchy of cell death pathways confers layered resistance to shigellosis in mice. eLife 2023; 12:e83639. [PMID: 36645406 PMCID: PMC9876568 DOI: 10.7554/elife.83639] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/15/2023] [Indexed: 01/17/2023] Open
Abstract
Bacteria of the genus Shigella cause shigellosis, a severe gastrointestinal disease driven by bacterial colonization of colonic intestinal epithelial cells. Vertebrates have evolved programmed cell death pathways that sense invasive enteric pathogens and eliminate their intracellular niche. Previously we reported that genetic removal of one such pathway, the NAIP-NLRC4 inflammasome, is sufficient to convert mice from resistant to susceptible to oral Shigella flexneri challenge (Mitchell et al., 2020). Here, we investigate the protective role of additional cell death pathways during oral mouse Shigella infection. We find that the Caspase-11 inflammasome, which senses Shigella LPS, restricts Shigella colonization of the intestinal epithelium in the absence of NAIP-NLRC4. However, this protection is limited when Shigella expresses OspC3, an effector that antagonizes Caspase-11 activity. TNFα, a cytokine that activates Caspase-8-dependent apoptosis, also provides potent protection from Shigella colonization of the intestinal epithelium when mice lack both NAIP-NLRC4 and Caspase-11. The combined genetic removal of Caspases-1, -11, and -8 renders mice hyper-susceptible to oral Shigella infection. Our findings uncover a layered hierarchy of cell death pathways that limit the ability of an invasive gastrointestinal pathogen to cause disease.
Collapse
Affiliation(s)
- Justin L Roncaioli
- Division of Immunology & Molecular Medicine, Department of Molecular & Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Janet Peace Babirye
- Division of Immunology & Molecular Medicine, Department of Molecular & Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Roberto A Chavez
- Division of Immunology & Molecular Medicine, Department of Molecular & Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Fitty L Liu
- Division of Immunology & Molecular Medicine, Department of Molecular & Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Elizabeth A Turcotte
- Division of Immunology & Molecular Medicine, Department of Molecular & Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Angus Y Lee
- Cancer Research Laboratory, University of California, BerkeleyBerkeleyUnited States
| | - Cammie F Lesser
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
- Broad Institute of Harvard and MITCambridgeUnited States
- Department of Medicine, Division of Infectious Diseases, Massachusetts General HospitalBostonUnited States
| | - Russell E Vance
- Division of Immunology & Molecular Medicine, Department of Molecular & Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Cancer Research Laboratory, University of California, BerkeleyBerkeleyUnited States
- Immunotherapeutics and Vaccine Research Initiative, University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
6
|
Pant A, Yao X, Lavedrine A, Viret C, Dockterman J, Chauhan S, Chong-Shan Shi, Manjithaya R, Cadwell K, Kufer TA, Kehrl JH, Coers J, Sibley LD, Faure M, Taylor GA, Chauhan S. Interactions of Autophagy and the Immune System in Health and Diseases. AUTOPHAGY REPORTS 2022; 1:438-515. [PMID: 37425656 PMCID: PMC10327624 DOI: 10.1080/27694127.2022.2119743] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Autophagy is a highly conserved process that utilizes lysosomes to selectively degrade a variety of intracellular cargo, thus providing quality control over cellular components and maintaining cellular regulatory functions. Autophagy is triggered by multiple stimuli ranging from nutrient starvation to microbial infection. Autophagy extensively shapes and modulates the inflammatory response, the concerted action of immune cells, and secreted mediators aimed to eradicate a microbial infection or to heal sterile tissue damage. Here, we first review how autophagy affects innate immune signaling, cell-autonomous immune defense, and adaptive immunity. Then, we discuss the role of non-canonical autophagy in microbial infections and inflammation. Finally, we review how crosstalk between autophagy and inflammation influences infectious, metabolic, and autoimmune disorders.
Collapse
Affiliation(s)
- Aarti Pant
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Xiaomin Yao
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Aude Lavedrine
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM
| | - Christophe Viret
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM
| | - Jake Dockterman
- Department of Immunology, Duke University, Medical Center, Durham, North Carolina, USA
| | - Swati Chauhan
- Cell biology and Infectious diseases, Institute of Life Sciences, Bhubaneswar, India
| | - Chong-Shan Shi
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Ravi Manjithaya
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
- Division of Gastroenterology and Hepatology, Department of Medicine, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Thomas A. Kufer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - John H. Kehrl
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jörn Coers
- Department of Immunology, Duke University, Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University, Medical Center, Durham, North Carolina, USA
| | - L. David Sibley
- Department of Molecular Microbiology, Washington University Sch. Med., St Louis, MO, 63110, USA
| | - Mathias Faure
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM
| | - Gregory A Taylor
- Department of Immunology, Duke University, Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University, Medical Center, Durham, North Carolina, USA
- Department of Molecular Microbiology, Washington University Sch. Med., St Louis, MO, 63110, USA
- Geriatric Research, Education, and Clinical Center, VA Health Care Center, Durham, North Carolina, USA
- Departments of Medicine, Division of Geriatrics, and Center for the Study of Aging and Human Development, Duke University, Medical Center, Durham, North Carolina, USA
| | - Santosh Chauhan
- Cell biology and Infectious diseases, Institute of Life Sciences, Bhubaneswar, India
- CSIR–Centre For Cellular And Molecular Biology (CCMB), Hyderabad, Telangana
| |
Collapse
|
7
|
Mechanical Forces Govern Interactions of Host Cells with Intracellular Bacterial Pathogens. Microbiol Mol Biol Rev 2022; 86:e0009420. [PMID: 35285720 PMCID: PMC9199418 DOI: 10.1128/mmbr.00094-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To combat infectious diseases, it is important to understand how host cells interact with bacterial pathogens. Signals conveyed from pathogen to host, and vice versa, may be either chemical or mechanical. While the molecular and biochemical basis of host-pathogen interactions has been extensively explored, relatively less is known about mechanical signals and responses in the context of those interactions. Nevertheless, a wide variety of bacterial pathogens appear to have developed mechanisms to alter the cellular biomechanics of their hosts in order to promote their survival and dissemination, and in turn many host responses to infection rely on mechanical alterations in host cells and tissues to limit the spread of infection. In this review, we present recent findings on how mechanical forces generated by host cells can promote or obstruct the dissemination of intracellular bacterial pathogens. In addition, we discuss how in vivo extracellular mechanical signals influence interactions between host cells and intracellular bacterial pathogens. Examples of such signals include shear stresses caused by fluid flow over the surface of cells and variable stiffness of the extracellular matrix on which cells are anchored. We highlight bioengineering-inspired tools and techniques that can be used to measure host cell mechanics during infection. These allow for the interrogation of how mechanical signals can modulate infection alongside biochemical signals. We hope that this review will inspire the microbiology community to embrace those tools in future studies so that host cell biomechanics can be more readily explored in the context of infection studies.
Collapse
|
8
|
Ex Vivo Infection of Human Placental Explants by Trypanosoma cruzi Reveals a microRNA Profile Similar to That Seen in Trophoblast Differentiation. Pathogens 2022; 11:pathogens11030361. [PMID: 35335686 PMCID: PMC8952303 DOI: 10.3390/pathogens11030361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 02/04/2023] Open
Abstract
Congenital Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, is responsible for 22.5% of new cases each year. However, placental transmission occurs in only 5% of infected mothers and it has been proposed that the epithelial turnover of the trophoblast can be considered a local placental defense against the parasite. Thus, Trypanosoma cruzi induces cellular proliferation, differentiation, and apoptotic cell death in the trophoblast, which are regulated, among other mechanisms, by small non-coding RNAs such as microRNAs. On the other hand, ex vivo infection of human placental explants induces a specific microRNA profile that includes microRNAs related to trophoblast differentiation such as miR-512-3p miR-515-5p, codified at the chromosome 19 microRNA cluster. Here we determined the expression validated target genes of miR-512-3p and miR-515-5p, specifically human glial cells missing 1 transcription factor and cellular FLICE-like inhibitory protein, as well as the expression of the main trophoblast differentiation marker human chorionic gonadotrophin during ex vivo infection of human placental explants, and examined how the inhibition or overexpression of both microRNAs affects parasite infection. We conclude that Trypanosoma cruzi-induced trophoblast epithelial turnover, particularly trophoblast differentiation, is at least partially mediated by placenta-specific miR-512-3p and miR-515-5p and that both miRNAs mediate placental susceptibility to ex vivo infection of human placental explants. Knowledge about the role of parasite-modulated microRNAs in the placenta might enable their use as biomarkers, as prognostic and therapeutic tools for congenital Chagas disease in the future.
Collapse
|
9
|
Foerster EG, Mukherjee T, Cabral-Fernandes L, Rocha JD, Girardin SE, Philpott DJ. How autophagy controls the intestinal epithelial barrier. Autophagy 2022; 18:86-103. [PMID: 33906557 PMCID: PMC8865220 DOI: 10.1080/15548627.2021.1909406] [Citation(s) in RCA: 182] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 03/15/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
Macroautophagy/autophagy is a cellular catabolic process that results in lysosome-mediated recycling of organelles and protein aggregates, as well as the destruction of intracellular pathogens. Its role in the maintenance of the intestinal epithelium is of particular interest, as several autophagy-related genes have been associated with intestinal disease. Autophagy and its regulatory mechanisms are involved in both homeostasis and repair of the intestine, supporting intestinal barrier function in response to cellular stress through tight junction regulation and protection from cell death. Furthermore, a clear role has emerged for autophagy not only in secretory cells but also in intestinal stem cells, where it affects their metabolism, as well as their proliferative and regenerative capacity. Here, we review the physiological role of autophagy in the context of intestinal epithelial maintenance and how genetic mutations affecting autophagy contribute to the development of intestinal disease.Abbreviations: AKT1S1: AKT1 substrate 1; AMBRA1: autophagy and beclin 1 regulator 1; AMPK: AMP-activated protein kinase; APC: APC regulator of WNT signaling pathway; ATF6: activating transcription factor 6; ATG: autophagy related; atg16l1[ΔIEC] mice: mice with a specific deletion of Atg16l1 in intestinal epithelial cells; ATP: adenosine triphosphate; BECN1: beclin 1; bsk/Jnk: basket; CADPR: cyclic ADP ribose; CALCOCO2: calcium binding and coiled-coil domain 2; CASP3: caspase 3; CD: Crohn disease; CDH1/E-cadherin: cadherin 1; CF: cystic fibrosis; CFTR: CF transmembrane conductance regulator; CGAS: cyclic GMP-AMP synthase; CLDN2: claudin 2; CoPEC: colibactin-producing E. coli; CRC: colorectal cancer; CYP1A1: cytochrome P450 family 1 subfamily A member 1; DC: dendritic cell; DDIT3: DNA damage inducible transcript 3; DEPTOR: DEP domain containing MTOR interacting protein; DSS: dextran sulfate sodium; EGF: epidermal growth factor; EGFR: epidermal growth factor receptor; EIF2A: eukaryotic translation initiation factor 2A; EIF2AK3: eukaryotic translation initiation factor 2 alpha kinase 3; EIF2AK4/GCN2: eukaryotic translation initiation factor 2 alpha kinase 4; ER: endoplasmic reticulum; ERN1: endoplasmic reticulum to nucleus signaling 1; GABARAP: GABA type A receptor-associated protein; HMGB1: high mobility group box 1; HSPA5/GRP78: heat shock protein family A (Hsp70) member 5; IBD: inflammatory bowel disease; IEC: intestinal epithelial cell; IFN: interferon; IFNG/IFNγ:interferon gamma; IL: interleukin; IRGM: immunity related GTPase M; ISC: intestinal stem cell; LGR5: leucine rich repeat containing G protein-coupled receptor 5; LRRK2: leucine rich repeat kinase 2; MAP1LC3A/LC3: microtubule associated protein 1 light chain 3 alpha; MAPK/JNK: mitogen-activated protein kinase; MAPK14/p38 MAPK: mitogen-activated protein kinase 14; MAPKAP1: MAPK associated protein 1; MAVS: mitochondrial antiviral signaling protein; miRNA: microRNA; MLKL: mixed lineage kinase domain like pseudokinase; MLST8: MTOR associated protein, LST8 homolog; MNV: murine norovirus; MTOR: mechanistic target of rapamycin kinase; NBR1: NBR1 autophagy cargo receptor; NLRP: NLR family pyrin domain containing; NOD: nucleotide binding oligomerization domain containing; NRBF2: nuclear receptor binding factor 2; OPTN: optineurin; OXPHOS: oxidative phosphorylation; P: phosphorylation; Patj: PATJ crumbs cell polarity complex component; PE: phosphatidyl-ethanolamine; PI3K: phosphoinositide 3-kinase; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PIK3R4: phosphoinositide-3-kinase regulatory subunit 4; PPARG: peroxisome proliferator activated receptor gamma; PRR5: proline rich 5; PRR5L: proline rich 5 like; PtdIns3K: phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol 3-phosphate; RB1CC1/FIP200: RB1 inducible coiled-coil 1; RER: rough endoplasmic reticulum; RHEB: Ras homolog, MTORC1 binding; RICTOR: RPTOR independent companion of MTOR complex 2; RIPK1: receptor interacting serine/threonine kinase 1; ROS: reactive oxygen species; RPTOR: regulatory associated protein of MTOR complex 1; RPS6KB1: ribosomal protein S6 kinase B1; SH3GLB1: SH3 domain containing GRB2 like, endophilin B1; SNP: single-nucleotide polymorphism; SQSTM1: sequestosome 1; STAT3: signal transducer and activator of transcription 3; STING1: stimulator of interferon response cGAMP interactor 1; TA: transit-amplifying; TFEB: transcription factor EB; TFE3: transcription factor binding to IGHM enhancer 3; TGM2: transglutaminase 2; TJ: tight junction; TJP1/ZO1: tight junction protein 1; TNBS: 2,4,6-trinitrobenzene sulfonic acid; TNF/TNFα: tumor necrosis factor; Tor: target of rapamycin; TRAF: TNF receptor associated factor; TRIM11: tripartite motif containing 11; TRP53: transformation related protein 53; TSC: TSC complex subunit; Ub: ubiquitin; UC: ulcerative colitis; ULK1: unc-51 like autophagy activating kinase 1; USO1/p115: USO1 vesicle transport factor; UVRAG: UV radiation resistance associated; WIPI: WD repeat domain, phosphoinositide interacting; WNT: WNT family member; XBP1: X-box binding protein 1; ZFYVE1/DFCP1: zinc finger FYVE-type containing 1.
Collapse
Affiliation(s)
| | - Tapas Mukherjee
- Department of Immunology, University of Toronto, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | | | | | - Stephen E. Girardin
- Department of Immunology, University of Toronto, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Dana J. Philpott
- Department of Immunology, University of Toronto, Toronto, Canada
| |
Collapse
|
10
|
Lapaquette P, Bizeau JB, Acar N, Bringer MA. Reciprocal interactions between gut microbiota and autophagy. World J Gastroenterol 2021; 27:8283-8301. [PMID: 35068870 PMCID: PMC8717019 DOI: 10.3748/wjg.v27.i48.8283] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/09/2021] [Accepted: 12/08/2021] [Indexed: 02/06/2023] Open
Abstract
A symbiotic relationship has set up between the gut microbiota and its host in the course of evolution, forming an interkingdom consortium. The gut offers a favorable ecological niche for microbial communities, with the whole body and external factors (e.g., diet or medications) contributing to modulating this microenvironment. Reciprocally, the gut microbiota is important for maintaining health by acting not only on the gut mucosa but also on other organs. However, failure in one or another of these two partners can lead to the breakdown in their symbiotic equilibrium and contribute to disease onset and/or progression. Several microbial and host processes are devoted to facing up the stress that could alter the symbiosis, ensuring the resilience of the ecosystem. Among these processes, autophagy is a host catabolic process integrating a wide range of stress in order to maintain cell survival and homeostasis. This cytoprotective mechanism, which is ubiquitous and operates at basal level in all tissues, can be rapidly down- or up-regulated at the transcriptional, post-transcriptional, or post-translational levels, to respond to various stress conditions. Because of its sensitivity to all, metabolic-, immune-, and microbial-derived stimuli, autophagy is at the crossroad of the dialogue between changes occurring in the gut microbiota and the host responses. In this review, we first delineate the modulation of host autophagy by the gut microbiota locally in the gut and in peripheral organs. Then, we describe the autophagy-related mechanisms affecting the gut microbiota. We conclude this review with the current challenges and an outlook toward the future interventions aiming at modulating host autophagy by targeting the gut microbiota.
Collapse
Affiliation(s)
- Pierre Lapaquette
- UMR PAM A 02.102, University Bourgogne Franche-Comté, Agrosup Dijon, Dijon 21000, France
| | - Jean-Baptiste Bizeau
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon 21000, France
| | - Niyazi Acar
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon 21000, France
| | - Marie-Agnès Bringer
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon 21000, France
| |
Collapse
|
11
|
Kim YI, Yi EJ, Kim YD, Lee AR, Chung J, Ha HC, Cho JM, Kim SR, Ko HJ, Cheon JH, Hong YR, Chang SY. Local Stabilization of Hypoxia-Inducible Factor-1α Controls Intestinal Inflammation via Enhanced Gut Barrier Function and Immune Regulation. Front Immunol 2021; 11:609689. [PMID: 33519819 PMCID: PMC7840603 DOI: 10.3389/fimmu.2020.609689] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
Intestinal epithelial cells are adapted in mucosal hypoxia and hypoxia-inducible factors in these cells can fortify barrier integrity to support mucosal tissue healing. Here we investigated whether hypoxia-related pathways could be proposed as potential therapeutic targets for inflammatory bowel disease. We developed a novel hypoxia-inducible factor (HIF) prolyl hydroxylase inhibitor, CG-598 which stabilized HIF-1α in the gut tissue. Treatment of CG-598 did not affect extra-intestinal organs or cause any significant adverse effects such as erythropoiesis. In the experimental murine colitis model, CG-598 ameliorated intestinal inflammation with reduction of inflammatory lesions and pro-inflammatory cytokines. CG-598 treatment fortified barrier function by increasing the expression of intestinal trefoil factor, CD73, E-cadherin and mucin. Also, IL-10 and IL-22 were induced from lamina propria CD4+ T-cells. The effectiveness of CG-598 was comparable to other immunosuppressive therapeutics such as TNF-blockers or JAK inhibitors. These results suggest that CG-598 could be a promising therapeutic candidate to treat inflammatory bowel disease.
Collapse
Affiliation(s)
- Young-In Kim
- Laboratory of Microbiology, College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, South Korea
| | - Eun-Je Yi
- Laboratory of Microbiology, College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, South Korea
| | - Young-Dae Kim
- Institute for Drug Discovery, CrystalGenomics, Inc., Seongnam-si, South Korea
| | - A Reum Lee
- Institute for Drug Discovery, CrystalGenomics, Inc., Seongnam-si, South Korea
| | - Jiwoung Chung
- Institute for Drug Discovery, CrystalGenomics, Inc., Seongnam-si, South Korea
| | - Hae Chan Ha
- Institute for Drug Discovery, CrystalGenomics, Inc., Seongnam-si, South Korea
| | - Joong Myung Cho
- Institute for Drug Discovery, CrystalGenomics, Inc., Seongnam-si, South Korea
| | - Seong-Ryeol Kim
- Laboratory of Microbiology and Immunology, Department of Pharmacy, Kangwon National University, Chuncheon-si, South Korea
| | - Hyun-Jeong Ko
- Laboratory of Microbiology and Immunology, Department of Pharmacy, Kangwon National University, Chuncheon-si, South Korea
| | - Jae-Hee Cheon
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
| | - Yong Rae Hong
- Institute for Drug Discovery, CrystalGenomics, Inc., Seongnam-si, South Korea
| | - Sun-Young Chang
- Laboratory of Microbiology, College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, South Korea
| |
Collapse
|
12
|
Abd El Maksoud AI, Elebeedy D, Abass NH, Awad AM, Nasr GM, Roshdy T, Khalil H. Methylomic Changes of Autophagy-Related Genes by Legionella Effector Lpg2936 in Infected Macrophages. Front Cell Dev Biol 2020; 7:390. [PMID: 32064256 PMCID: PMC6999459 DOI: 10.3389/fcell.2019.00390] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/23/2019] [Indexed: 12/26/2022] Open
Abstract
Legionella pneumophila (L. pneumophila) is a Gram-negative bacterium that infects the human respiratory tract causing Legionnaires' disease, a severe form of pneumonia. Recently, rising evidence indicated the ability of Legionella to regulate host defense via its type 4 secretion system including hundreds of effectors that promote intracellular bacterial replication. The host defense against such invaders includes autophagic machinery that is responsible for degradation events of invading pathogens and recycling of cell components. The interplay between host autophagy and Legionella infection has been reported, indicating the role of bacterial effectors in the regulation of autophagy during intracellular replication. Here, we investigated the potential impact of Legionella effector Lpg2936 in the regulation of host autophagy and its role in bacterial replication using mice-derived macrophages and human lung epithelial cells (A549 cells). First, monitoring of autophagic flux following infection revealed a marked reduction of Atg7 and LC3B expression profile and low accumulation levels of autophagy-related LC3-I, LC3-II, and the Atg12-Atg5 protein complex. A novel methyladenine alteration was observed due to irreversible changes of GATC motif to G(6 mA) TC in the promoter region of Atg7 and LC3B indicated by cleaved genomic-DNA using the N6 methyladenine-sensitive restriction enzyme DpnI. Interestingly, RNA interference (RNAi) of Lpg2936 in infected macrophages showed dramatic inhibition of bacterial replication by restoring the expression of autophagy-related proteins. This is accompanied by low production levels of bacterial-associated pro-inflammatory cytokines. Furthermore, a constructed Lpg2936 segment in the GFP expression vector was translocated in the host nucleus and successfully induced methyladenine changes in Atg7 and LC3B promoter region and subsequently regulated autophagy in A549 cells independent of infection. Finally, treatment with methylation inhibitors 5-AZA and (2)-Epigallocatechin-3-gallate (EGCG) was able to restore autophagy-related gene expression and to disrupt bacterial replication in infected macrophages. This cumulative evidence indicates the methylation effect of Legionella effector Lpg2936 on the host autophagy-related molecules Atg7 and LC3B and subsequent reduction in the expression levels of autophagy effectors during intracellular replication of L. pneumophila.
Collapse
Affiliation(s)
- Ahmed I. Abd El Maksoud
- Industrial Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Dalia Elebeedy
- College of Biotechnology, Misr University for Science and Technology (MUST), 6th of October City, Egypt
| | - Nasser H. Abass
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Ahmed M. Awad
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Ghada M. Nasr
- Molecular Diagnostics Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Tamer Roshdy
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Hany Khalil
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| |
Collapse
|
13
|
Jiang Y, Zhou Y, Ma H, Cao X, Li Z, Chen F, Wang H. Autophagy Dysfunction and mTOR Hyperactivation Is Involved in Surgery: Induced Behavioral Deficits in Aged C57BL/6J Mice. Neurochem Res 2019; 45:331-344. [PMID: 31865521 DOI: 10.1007/s11064-019-02918-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 10/29/2019] [Accepted: 11/22/2019] [Indexed: 01/10/2023]
Abstract
Autophagy is crucial for cell survival, development, division, and homeostasis. The mammalian target of rapamycin (mTOR), which is the foremost negative controller of autophagy, plays a key role in many endogenous processes. The present study investigated whether rapamycin can ameliorate surgery-induced cognitive deficits by inhibiting mTOR and activating autophagy in the hippocampus. Both adult and aged C57BL/6J mice received an intraperitoneal injection of rapamycin (10 mg/kg/day) for 5 days per week for one and a half months. Mice were then subjected to partial hepatectomy under general anesthesia. Behavioral performance was assessed on postoperative days 3, 7, and 14. Hippocampal autophagy-related (Atg)-5, phosphorylated mTOR, and phosphorylated p70S6K were examined at each time point. Brain derived neurotrophic factor (BDNF), synaptophysin, and tau hyperphosphorylation (T396) in the hippocampus were also examined. Surgical trauma and anesthesia exacerbated spatial learning and memory impairment in aged mice on postoperative days 3 and 7. Following partial hepatectomy, the levels of phosphorylated mTOR, phosphorylated 70S6K, and phosphorylated tau were all increased in the hippocampus. A corresponding decline in BDNF and synaptophysin were observed. Rapamycin treatment restored autophagy function, attenuated phosphorylation of tau protein, and increased BDNF and synaptophysin expression in the hippocampus of surgical mice. Furthermore, surgery and anesthesia induced spatial learning and memory impairments were also reversed by rapamycin treatment. Autophagy impairments and mTOR hyperactivation were detected along with surgery-induced behavioral deficits. Inhibiting the mTOR signaling pathway with rapamycin successfully ameliorated surgery-related cognitive impairments by sustaining autophagic degradation, inhibiting tau hyperphosphorylation, and increasing synaptophysin and BDNF expression.
Collapse
Affiliation(s)
- Yanhua Jiang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yongjian Zhou
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hong Ma
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Xuezhao Cao
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhe Li
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Fengshou Chen
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hongnan Wang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
14
|
Haq S, Grondin J, Banskota S, Khan WI. Autophagy: roles in intestinal mucosal homeostasis and inflammation. J Biomed Sci 2019; 26:19. [PMID: 30764829 PMCID: PMC6375151 DOI: 10.1186/s12929-019-0512-2] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/07/2019] [Indexed: 12/13/2022] Open
Abstract
The intestinal mucosa is a site of multiple stressors and forms the barrier between the internal and external environment. In the intestine, a complex interplay between the microbiota, epithelial barrier and the local immune system maintains homeostasis and promotes a healthy gut. One of the major cellular catabolic processes that regulate this homeostasis is autophagy. Autophagy is required to maintain anti-microbial defense, epithelial barrier integrity and mucosal immune response. Dysregulation of the autophagy process causes disruption of several aspects of the intestinal epithelium and the immune system that can lead to an inappropriate immune response and subsequent inflammation. Genome-wide association studies have found an association between several risk loci in autophagy genes and inflammatory bowel disease. The aim of the current review is to provide an update on the role of autophagy in intestinal mucosal physiology and in the control of inappropriate inflammation.
Collapse
Affiliation(s)
- Sabah Haq
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, L8N 3Z5, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Room 3N7, Hamilton, ON, L8N 3Z5, Canada
| | - Jensine Grondin
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, L8N 3Z5, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Room 3N7, Hamilton, ON, L8N 3Z5, Canada
| | - Suhrid Banskota
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, L8N 3Z5, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Room 3N7, Hamilton, ON, L8N 3Z5, Canada
| | - Waliul I Khan
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, L8N 3Z5, Canada. .,Department of Pathology and Molecular Medicine, McMaster University, Room 3N7, Hamilton, ON, L8N 3Z5, Canada.
| |
Collapse
|
15
|
Microbiota-Derived Lactate Accelerates Intestinal Stem-Cell-Mediated Epithelial Development. Cell Host Microbe 2018; 24:833-846.e6. [DOI: 10.1016/j.chom.2018.11.002] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/14/2018] [Accepted: 09/27/2018] [Indexed: 12/15/2022]
|
16
|
Fujii S, Muraoka S, Miyamoto A, Sakurai K. [Linezolid-induced Apoptosis through Mitochondrial Damage and Role of Superoxide Dismutase-1 in Human Monocytic Cell Line U937]. YAKUGAKU ZASSHI 2018; 138:73-81. [PMID: 29311467 DOI: 10.1248/yakushi.17-00133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytopenia is a major adverse event associated with linezolid therapy. The objective of this study was to examine whether the cytotoxicity of linezolid to eukaryotic cells was associated with mitochondrial dysfunction and apoptosis-like cell death in human leukemic monocyte lymphoma cell line U937. Apoptosis-like cell death was clearly observed when cells were incubated with linezolid, depending on the duration and linezolid concentration. Mitochondrial membrane potential of cells treated with linezolid collapsed in a short period of time, but the number of mitochondria did not decrease. Cytotoxicity of linezolid was relieved by the knockdown of superoxide dismutase-1 in U937 cells. On the other hand, no autophagy was observed in cells treated with linezolid. These results suggest that mitochondrial damages would be linked to the induction of apoptosis in U937 cells treated with linezolid and that its mechanism does not involve autophagy.
Collapse
Affiliation(s)
- Satoshi Fujii
- Department of Hospital Pharmacy, Sapporo Medical University Hospital.,Department of Life Science, Hokkaido Pharmaceutical University School of Pharmacy
| | - Sanae Muraoka
- Department of Life Science, Hokkaido Pharmaceutical University School of Pharmacy
| | - Atsushi Miyamoto
- Department of Hospital Pharmacy, Sapporo Medical University Hospital
| | - Koichi Sakurai
- Department of Life Science, Hokkaido Pharmaceutical University School of Pharmacy
| |
Collapse
|
17
|
Kaiser A, Willer T, Steinberg P, Rautenschlein S. Establishment of an In Vitro Intestinal Epithelial Cell Culture Model of Avian Origin. Avian Dis 2017; 61:229-236. [DOI: 10.1637/11524-110216-reg.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Annette Kaiser
- Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559 Hanover, Germany
| | - Thomas Willer
- Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559 Hanover, Germany
| | - Pablo Steinberg
- Institute for Food Toxicology and Analytical Chemistry, University of Veterinary Medicine Hanover, Foundation, Bischofsholer Damm 15, Building 123, 30173 Hanover, Germany
| | - Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559 Hanover, Germany
| |
Collapse
|
18
|
Trentesaux C, Fraudeau M, Romagnolo B. [Contribution of autophagy to intestinal homeostasis and pathology]. Med Sci (Paris) 2017; 33:290-296. [PMID: 28367816 DOI: 10.1051/medsci/20173303016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The intestinal epithelial cells are crucial mediators of intestinal homeostasis. The intestinal epithelium is the largest of the body's mucosal surfaces exposed to the environment. Intestinal homeostasis is essentially based on the maintenance of intestinal epithelial cell integrity, a complex process involving a balance between the intestinal flora, the immune system and the energy expenses linked to metabolism. Autophagy appears to be central to these functions and allows the epithelium to adapt to its environment and different stress situations by participating in antibacterial defense, by controlling the composition of the intestinal flora and the immune response, and by participating in energy homeostasis. Alterations of this protective mechanism are involved in inflammatory bowel diseases and colorectal cancer.
Collapse
Affiliation(s)
- Coralie Trentesaux
- Inserm, U1016, Institut Cochin, département développement, reproduction et cancer, équipe oncogenèse des épithéliums digestifs, 24, rue du faubourg Saint-Jacques, 75014 Paris, France - Cnrs, UMR8104, Paris, France - Université Paris Descartes, Sorbonne Paris Cité, France
| | - Marie Fraudeau
- Inserm, U1016, Institut Cochin, département développement, reproduction et cancer, équipe oncogenèse des épithéliums digestifs, 24, rue du faubourg Saint-Jacques, 75014 Paris, France - Cnrs, UMR8104, Paris, France - Université Paris Descartes, Sorbonne Paris Cité, France
| | - Béatrice Romagnolo
- Inserm, U1016, Institut Cochin, département développement, reproduction et cancer, équipe oncogenèse des épithéliums digestifs, 24, rue du faubourg Saint-Jacques, 75014 Paris, France - Cnrs, UMR8104, Paris, France - Université Paris Descartes, Sorbonne Paris Cité, France
| |
Collapse
|
19
|
Zhang X, Zhou Y, Xu M, Chen G. Autophagy Is Involved in the Sevoflurane Anesthesia-Induced Cognitive Dysfunction of Aged Rats. PLoS One 2016; 11:e0153505. [PMID: 27111854 PMCID: PMC4844142 DOI: 10.1371/journal.pone.0153505] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/17/2016] [Indexed: 12/20/2022] Open
Abstract
Autophagy is associated with regulation of both the survival and death of neurons, and has been linked to many neurodegenerative diseases. Postoperative cognitive dysfunction is commonly observed in elderly patients following anesthesia, but the pathophysiological mechanisms are largely unexplored. Similar effects have been found in aged rats under sevoflurane anesthesia; however, the role of autophagy in sevoflurane anesthesia-induced hippocampal neuron apoptosis of older rats remains elusive. The present study was designed to investigate the effects of autophagy on the sevoflurane-induced cognitive dysfunction in aged rats, and to identify the role of autophagy in sevoflurane-induced neuron apoptosis. We used 20-month-old rats under sevoflurane anesthesia to study memory performance, neuron apoptosis, and autophagy. The results demonstrated that sevoflurane anesthesia significantly impaired memory performance and induced hippocampal neuron apoptosis. Interestingly, treatment of rapamycin, an autophagy inducer, improved the cognitive deficit observed in the aged rats under sevoflurane anesthesia by improving autophagic flux. Rapamycin treatment led to the rapid accumulation of autophagic bodies and autophagy lysosomes, decreased p62 protein levels, and increased the ratio of microtubule-associated protein light chain 3 II (LC3-II) to LC3-I in hippocampal neurons through the mTOR signaling pathway. However, administration of an autophagy inhibitor (chloroquine) attenuated the autophagic flux and increased the severity of sevoflurane anesthesia-induced neuronal apoptosis and memory impairment. These findings suggest that impaired autophagy in the hippocampal neurons of aged rats after sevoflurane anesthesia may contribute to cognitive impairment. Therefore, our findings represent a potential novel target for pro-autophagy treatments in patients with sevoflurane anesthesia-induced neurodegeneration.
Collapse
Affiliation(s)
- Xiaoming Zhang
- Department of Anatomy and Cell Biology, School of Medicine, Zhejiang University, Hanzhou, China
| | - Youfa Zhou
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Mingmin Xu
- Department of Anatomy and Cell Biology, School of Medicine, Zhejiang University, Hanzhou, China
- Department of Anesthesiology, the First Hospital of Jiaxing City, Jiaxing, China
| | - Gang Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
20
|
Mojibian M, Glavas MM, Kieffer TJ. Engineering the gut for insulin replacement to treat diabetes. J Diabetes Investig 2016; 7 Suppl 1:87-93. [PMID: 27186362 PMCID: PMC4854511 DOI: 10.1111/jdi.12479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 01/06/2016] [Indexed: 12/11/2022] Open
Abstract
The gut epithelium's large surface area, its direct exposure to ingested nutrients, its vast stem cell population and its immunotolerogenic environment make it an excellent candidate for therapeutic cells to treat diabetes. Thus, several attempts have been made to coax immature gut cells to differentiate into insulin-producing cells by altering the expression patterns of specific transcription factors. Furthermore, because of similarities in enteroendocrine and pancreatic endocrine cell differentiation pathways, other approaches have used genetically engineered enteroendocrine cells to produce insulin in addition to their endogenous secreted hormones. Several studies support the utility of both of these approaches for the treatment of diabetes. Converting a patient's own gut cells into meal-regulated insulin factories in a safe and immunotolerogenic environment is an attractive approach to treat and potentially cure diabetes. Here, we review work on these approaches and indicate where we feel further advancements are required.
Collapse
Affiliation(s)
- Majid Mojibian
- Laboratory of Molecular and Cellular Medicine Department of Cellular and Physiological Sciences Life Sciences Institute University of British Columbia Vancouver British Columbia Canada
| | - Maria M Glavas
- Laboratory of Molecular and Cellular Medicine Department of Cellular and Physiological Sciences Life Sciences Institute University of British Columbia Vancouver British Columbia Canada
| | - Timothy J Kieffer
- Laboratory of Molecular and Cellular Medicine Department of Cellular and Physiological Sciences Life Sciences Institute University of British Columbia Vancouver British Columbia Canada
| |
Collapse
|
21
|
Podany AB, Wright J, Lamendella R, Soybel DI, Kelleher SL. ZnT2-Mediated Zinc Import Into Paneth Cell Granules Is Necessary for Coordinated Secretion and Paneth Cell Function in Mice. Cell Mol Gastroenterol Hepatol 2016; 2:369-383. [PMID: 28174721 PMCID: PMC5042355 DOI: 10.1016/j.jcmgh.2015.12.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 12/22/2015] [Indexed: 12/30/2022]
Abstract
BACKGROUND & AIMS Defects in Paneth cell (PC) function are associated with microbial dysbiosis and intestinal inflammation. PC granules contain antimicrobial peptides, cytokines, and substantial stores of zinc (Zn). We hypothesized that Zn, transported into the granule through the Zn transporter (ZnT)2, is critical for signature PC functions. METHODS ZnT2 was localized to PC granules using immunofluorescence and sucrose gradient fractionation in wild-type (wt) mice, and consequences of ZnT2 loss were characterized in ZnT2 knockout (ZnT2ko) mice. Terminal ilea were harvested for immunofluorescence, electron microscopy, and fluorescent imaging with the Zn reporter Zinpyr-1. Alterations in fecal microbiota were characterized using 16s ribosomal RNA sequencing. PC degranulation, bacterial translocation, cytokine response to Escherichia coli endotoxin lipopolysaccharide, crypt viability after exposure to the oxidant monochloramine (NH2Cl), and bactericidal activity of luminal contents of terminal ilea against enteropathogenic E coli were assessed. RESULTS ZnT2 was localized to the membrane of PC granules. In ZnT2ko mice, spontaneous degranulation was observed more frequently than among wt mice. Secretory granules were hypodense with less active lysozyme, and there was evidence of autophagosome accumulation and granule degradation in PCs from ZnT2ko mice. Gut microbiota of ZnT2ko mice were enriched in Bacteroidales S24-7 and relatively depleted of species commonly found in wt mice. Evidence of PC dysfunction in ZnT2ko mice included impaired granule secretion and increased inflammatory response to lipopolysaccharide, less bactericidal activity, and greater susceptibility to cell death from NH2Cl. CONCLUSIONS ZnT2 is critical for Zn import into PC granules, and the inability to import Zn leads to profound defects in PC function and uncoordinated granule secretion.
Collapse
Key Words
- CFU, colony forming unit
- EPEC, enteropathogenic Escherichia coli
- ER, endoplasmic reticulum
- IF, immunofluorescent
- IL, interleukin
- IP, intraperitoneal
- LPS, lipopolysaccharide
- Microbiota
- NEC, necrotizing enterocolitis
- OTU, organizational taxonomic unit
- PBS, phosphate-buffered saline
- PC, Paneth cell
- PCR, polymerase chain reaction
- Small Intestine
- TNF, tumor necrosis factor
- ZIP, ZRT, IRT-like protein
- Zinc Transporter
- Zn, zinc
- ZnT, zinc transporter
- ko, knockout
- wt, wild-type
Collapse
Affiliation(s)
- Abigail B. Podany
- Department of Surgery, Penn State Hershey College of Medicine, Hershey, Pennsylvania,Department of Cellular and Molecular Physiology, Penn State Hershey College of Medicine, Hershey, Pennsylvania
| | - Justin Wright
- Department of Biology, Juniata College, Huntingdon, Pennsylvania
| | | | - David I. Soybel
- Department of Surgery, Penn State Hershey College of Medicine, Hershey, Pennsylvania,Department of Cellular and Molecular Physiology, Penn State Hershey College of Medicine, Hershey, Pennsylvania
| | - Shannon L. Kelleher
- Department of Surgery, Penn State Hershey College of Medicine, Hershey, Pennsylvania,Department of Cellular and Molecular Physiology, Penn State Hershey College of Medicine, Hershey, Pennsylvania,Department of Pharmacology, Penn State Hershey College of Medicine, Hershey, Pennsylvania,Correspondence Address correspondence to: Shannon L. Kelleher, PhD, Penn State Hershey College of Medicine, 500 University Drive, Hershey, Pennsylvania 17033. fax: (717) 531-5393.Penn State Hershey College of Medicine500 University DriveHersheyPennsylvania 17033
| |
Collapse
|
22
|
Zhang K, Hornef MW, Dupont A. The intestinal epithelium as guardian of gut barrier integrity. Cell Microbiol 2015; 17:1561-9. [PMID: 26294173 DOI: 10.1111/cmi.12501] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/18/2015] [Accepted: 08/19/2015] [Indexed: 12/14/2022]
Abstract
A single layer of epithelial cells separates the intestinal lumen from the underlying sterile tissue. It is exposed to a multitude of nutrients and a large number of commensal bacteria. Although the presence of commensal bacteria significantly contributes to nutrient digestion, vitamin synthesis and tissue maturation, their high number represents a permanent challenge to the integrity of the epithelial surface keeping the local immune system constantly on alert. In addition, the intestinal mucosa is challenged by a variety of enteropathogenic microorganisms. In both circumstances, the epithelium actively contributes to maintaining host-microbial homeostasis and antimicrobial host defence. It deploys a variety of mechanisms to restrict the presence of commensal bacteria to the intestinal lumen and to prevent translocation of commensal and pathogenic microorganisms to the underlying tissue. Enteropathogenic microorganisms in turn have learnt to evade the host's immune system and circumvent the antimicrobial host response. In the present article, we review recent advances that illustrate the intense and intimate host-microbial interaction at the epithelial level and improve our understanding of the mechanisms that maintain the integrity of the intestinal epithelial barrier.
Collapse
Affiliation(s)
- Kaiyi Zhang
- Institute for Medical Microbiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Mathias W Hornef
- Institute for Medical Microbiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Aline Dupont
- Institute for Medical Microbiology, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
23
|
Liang K, Zhu L, Tan J, Shi W, He Q, Yu B. Identification of autophagy signaling network that contributes to stroke in the ischemic rodent brain via gene expression. Neurosci Bull 2015; 31:480-90. [PMID: 26254060 DOI: 10.1007/s12264-015-1547-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/09/2015] [Indexed: 11/24/2022] Open
Abstract
Autophagy plays a vital role in cerebral ischemia and may be a potential target for developing novel therapy for stroke. In this study, we constructed an autophagy-related pathway network by analyzing the genes related to autophagy and ischemic stroke, and the risk genes were screened. Two autophagy-related modules were significantly up-regulated and clustered to influence cerebral ischemia. Besides, three key modular genes (NFKB1, RELA, and STAT3) were revealed. With 5-fold cross validation, the ROC curves of NFKB1, RELA, and STAT3 were 0.8256, 0.8462, and 0.8923. They formed a complex module and competitively mediated the activation of autophagy in cerebral ischemia. In conclusion, a module containing NFKB1, RELA, and STAT3 mediates autophagy, serving as a potential biomarker for the diagnosis and therapy of ischemic stroke.
Collapse
Affiliation(s)
- Kun Liang
- Department of Vascular Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW To review recent developments in the field of gastroduodenal mucosal defense. RECENT FINDINGS Research in the field of gastroduodenal mucosal defense has focused on continued elucidation of molecular mechanisms that protect the mucosa and influence healing at the cellular level. Review of literature over the past year reveals that familiar proteins and mediators, such as nitric oxide, toll-like receptors, nucleotide-binding oligomerization domain-containing proteins (NOD2), β-defensins, macrophages, dendritic cells, mucins, autophagy, and the influence of aging and diet, are still subjects of study, but also brings into light new processes and mediators, such as dual oxidases, defense against radiation injuries, and novel proteins such as ZBP-89. SUMMARY These new published findings contribute to our overall understanding of gastroduodenal defense and suggest innovative avenues of future research and possible novel therapeutic targets.
Collapse
Affiliation(s)
- Thomas Kemmerly
- Cedars-Sinai Medical Residency Program, Los Angeles, CA 90048
| | - Jonathan D. Kaunitz
- Greater Los Angeles Veteran Affairs Healthcare System, WLAVA Medical Center, Los Angeles, CA, 90073,Department of Medicine, UCLA School of Medicine, Los Angeles, CA 90024,Department of Surgery, UCLA School of Medicine, Los Angeles, CA 90024,CURE: Digestive Diseases Research Center Department of Medicine, Los Angeles, CA, 90073 USA,Brentwood Biomedical Research Institute, Los Angeles, CA, 90073 USA
| |
Collapse
|
25
|
Kim YI, Yang JY, Ko HJ, Kweon MN, Chang SY. Shigella flexneri Inhibits Intestinal Inflammation by Modulation of Host Sphingosine-1-Phosphate in Mice. Immune Netw 2014; 14:100-6. [PMID: 24851099 PMCID: PMC4022777 DOI: 10.4110/in.2014.14.2.100] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 03/25/2014] [Accepted: 04/01/2014] [Indexed: 12/29/2022] Open
Abstract
Infection with invasive Shigella species results in intestinal inflammation in humans but no symptoms in adult mice. To investigate why adult mice are resistant to invasive shigellae, 6~8-week-old mice were infected orally with S. flexneri 5a. Shigellae successfully colonized the small and large intestines. Mild cell death was seen but no inflammation. The infected bacteria were cleared 24 hours later. Microarray analysis of infected intestinal tissue showed that several genes that are involved with the sphingosine-1-phosphate (S1P) signaling pathway, a lipid mediator which mediates immune responses, were altered significantly. Shigella infection of a human intestinal cell line modulated host S1P-related genes to reduce S1P levels. In addition, co-administration of S1P with shigellae could induce inflammatory responses in the gut. Here we propose that Shigella species have evasion mechanisms that dampen host inflammatory responses by lowering host S1P levels in the gut of adult mice.
Collapse
Affiliation(s)
- Young-In Kim
- Laboratory of Microbiology, College of Pharmacy, Ajou University, Suwon 443-749, Korea
| | - Jin-Young Yang
- Mucosal Immunology Laboratory, Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | - Hyun-Jeong Ko
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon 200-701, Korea
| | - Mi-Na Kweon
- Mucosal Immunology Laboratory, Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | - Sun-Young Chang
- Laboratory of Microbiology, College of Pharmacy, Ajou University, Suwon 443-749, Korea
| |
Collapse
|
26
|
Shuttling of information between the mucosal and luminal environment drives intestinal homeostasis. FEBS Lett 2014; 588:4148-57. [DOI: 10.1016/j.febslet.2014.02.049] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 02/24/2014] [Accepted: 02/25/2014] [Indexed: 12/14/2022]
|
27
|
Ranasinghe C. New advances in mucosal vaccination. Immunol Lett 2014; 161:204-6. [PMID: 24462961 DOI: 10.1016/j.imlet.2014.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 01/12/2014] [Indexed: 01/21/2023]
Abstract
The ICI 2013 Mucosal Vaccine Workshop presentations covered a wide range of topics, these mainly fell into three categories: (i) Understanding the interactions of host and microbes, specifically commensal pathogens and improving the antigen uptake via the (microfold cells) M cells to induce effective IgA antibody immunity at the gut mucosa; (ii) effective plant-based vaccines and (iii) development of prophylactic and therapeutic mucosal-based vaccine strategies for virus infections such as human immunodeficiency virus (HIV), influenza and human papillomavirus (HPV) associated head and neck cancers. How to improve the efficacy of oral vaccines, novel intranasal mucosal adjuvants and a unique intra-cheek delivery method were also discussed. Presenters emphasized the differences associated with systemic and mucosal vaccination, specifically, how mucosal vaccines unlike systemic delivery can induce effective immunity at the first line of defence. Collectively, the workshop provided insights into recent developments in the mucosal vaccine research field, highlighting the complexities associated with designing safe and effective mucosal vaccines.
Collapse
Affiliation(s)
- Charani Ranasinghe
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 0200, Australia.
| |
Collapse
|