1
|
Bononi G, Lonzi C, Tuccinardi T, Minutolo F, Granchi C. The Benzoylpiperidine Fragment as a Privileged Structure in Medicinal Chemistry: A Comprehensive Review. Molecules 2024; 29:1930. [PMID: 38731421 PMCID: PMC11085656 DOI: 10.3390/molecules29091930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/08/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
The phenyl(piperidin-4-yl)methanone fragment (here referred to as the benzoylpiperidine fragment) is a privileged structure in the development of new drugs considering its presence in many bioactive small molecules with both therapeutic (such as anti-cancer, anti-psychotic, anti-thrombotic, anti-arrhythmic, anti-tubercular, anti-parasitic, anti-diabetic, and neuroprotective agents) and diagnostic properties. The benzoylpiperidine fragment is metabolically stable, and it is also considered a potential bioisostere of the piperazine ring, thus making it a feasible and reliable chemical frame to be exploited in drug design. Herein, we discuss the main therapeutic and diagnostic agents presenting the benzoylpiperidine motif in their structure, covering articles reported in the literature since 2000. A specific section is focused on the synthetic strategies adopted to obtain this versatile chemical portion.
Collapse
Affiliation(s)
| | | | | | | | - Carlotta Granchi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (G.B.); (C.L.); (T.T.); (F.M.)
| |
Collapse
|
2
|
Shaw SJ, Goff DA, Boralsky LA, Singh R, Sweeny DJ, Park G, Sun TQ, Jenkins Y, Markovtsov V, Issakani SD, Payan DG, Hitoshi Y. Optimization of Pharmacokinetic and In Vitro Safety Profile of a Series of Pyridine Diamide Indirect AMPK Activators. J Med Chem 2023; 66:17086-17104. [PMID: 38079537 DOI: 10.1021/acs.jmedchem.3c01983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
A set of focused analogues have been generated around a lead indirect adenosine monophosphate-activated kinase (AMPK) activator to improve the rat clearance of the molecule. Analogues were focused on inhibiting amide hydrolysis by the strategic placement of substituents that increased the steric environment about the secondary amide bond between 4-aminopiperidine and pyridine-5-carboxylic acid. It was found that placing substituents at position 3 of the piperidine ring and position 4 of the pyridine could all improve clearance without significantly impacting on-target potency. Notably, trans-3-fluoropiperidine 32 reduced rat clearance from above liver blood flow to 19 mL/min/kg and improved the hERG profile by attenuating the basicity of the piperidine moiety. Oral dosing of 32 activated AMPK in mouse liver and after 2 weeks of dosing improved glucose handling in a db/db mouse model of Type II diabetes as well as lowering fasted glucose and insulin levels.
Collapse
Affiliation(s)
- Simon J Shaw
- Rigel Pharmaceuticals, Inc., 611 Gateway Boulevard, Suite 900, South San Francisco, California 94080, United States
| | - Dane A Goff
- Rigel Pharmaceuticals, Inc., 611 Gateway Boulevard, Suite 900, South San Francisco, California 94080, United States
| | - Luke A Boralsky
- Rigel Pharmaceuticals, Inc., 611 Gateway Boulevard, Suite 900, South San Francisco, California 94080, United States
| | - Rajinder Singh
- Rigel Pharmaceuticals, Inc., 611 Gateway Boulevard, Suite 900, South San Francisco, California 94080, United States
| | - David J Sweeny
- Rigel Pharmaceuticals, Inc., 611 Gateway Boulevard, Suite 900, South San Francisco, California 94080, United States
| | - Gary Park
- Rigel Pharmaceuticals, Inc., 611 Gateway Boulevard, Suite 900, South San Francisco, California 94080, United States
| | - Tian-Qiang Sun
- Rigel Pharmaceuticals, Inc., 611 Gateway Boulevard, Suite 900, South San Francisco, California 94080, United States
| | - Yonchu Jenkins
- Rigel Pharmaceuticals, Inc., 611 Gateway Boulevard, Suite 900, South San Francisco, California 94080, United States
| | - Vadim Markovtsov
- Rigel Pharmaceuticals, Inc., 611 Gateway Boulevard, Suite 900, South San Francisco, California 94080, United States
| | - Sarkiz D Issakani
- Rigel Pharmaceuticals, Inc., 611 Gateway Boulevard, Suite 900, South San Francisco, California 94080, United States
| | - Donald G Payan
- Rigel Pharmaceuticals, Inc., 611 Gateway Boulevard, Suite 900, South San Francisco, California 94080, United States
| | - Yasumichi Hitoshi
- Rigel Pharmaceuticals, Inc., 611 Gateway Boulevard, Suite 900, South San Francisco, California 94080, United States
| |
Collapse
|
3
|
Kvandova M, Puzserova A, Balis P. Sexual Dimorphism in Cardiometabolic Diseases: The Role of AMPK. Int J Mol Sci 2023; 24:11986. [PMID: 37569362 PMCID: PMC10418890 DOI: 10.3390/ijms241511986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality and disability among both males and females. The risk of cardiovascular diseases is heightened by the presence of a risk factor cluster of metabolic syndrome, covering obesity and obesity-related cardiometabolic risk factors such as hypertension, glucose, and lipid metabolism dysregulation primarily. Sex hormones contribute to metabolic regulation and make women and men susceptible to obesity development in a different manner, which necessitates sex-specific management. Identifying crucial factors that protect the cardiovascular system is essential to enhance primary and secondary prevention of cardiovascular diseases and should be explicitly studied from the perspective of sex differences. It seems that AMP-dependent protein kinase (AMPK) may be such a factor since it has the protective role of AMPK in the cardiovascular system, has anti-diabetic properties, and is regulated by sex hormones. Those findings highlight the potential cardiometabolic benefits of AMPK, making it an essential factor to consider. Here, we review information about the cross-talk between AMPK and sex hormones as a critical point in cardiometabolic disease development and progression and a target for therapeutic intervention in human disease.
Collapse
Affiliation(s)
- Miroslava Kvandova
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (A.P.); (P.B.)
| | | | | |
Collapse
|
4
|
Lee YJ, Kim HM, Jang YN, Han YM, Seo HS, Jung TW, Jeong JH, Lee HJ, Jung KO. Buspirone Induces Weight Loss and Normalization of Blood Pressure via the Stimulation of PPAR δ Dependent Energy Producing Pathway in Spontaneously Hypertensive Rats. PPAR Res 2023; 2023:7550164. [PMID: 37168052 PMCID: PMC10164918 DOI: 10.1155/2023/7550164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 05/13/2023] Open
Abstract
Introduction Buspirone, as a partial agonist for a 5-hydroxytryptamine (serotonin) receptor 1A (5-HT1A), has been prescribed as an anxiolytic drug for patients. In addition, the lowering effect of serotonin on blood pressure was reported in hypertensive animal model. We investigated the therapeutic mechanism of buspirone against lipid metabolism disturbed by hypertension of early stage via hypertensive and obese animal model. Methods The levels of various biomarkers related to lipid metabolism and hypertension were estimated through the measurement of body weight and fat weight, blood analysis, western blotting, immunohistochemistry, and staining methods. Results The lipid accumulation was lowered in differentiated 3T3-L1 cells by buspirone treatments of 50 and 100 μM compared with untreated differentiated control. Body weight and abdominal fat weight were lowered in spontaneously hypertensive rats (SHRs) administered with buspirone of 10 mg/kg/day for 4 weeks than 8-week untreated group. Triglyceride (TG) level was decreased in SHRs administered with buspirone of 5 and 10 mg/kg/day compared to 8-week untreated group. High-density lipoprotein (HDL)-cholesterol concentration was elevated by buspirone 10 mg/kg/day treatment compared to 8-week untreated group. Blood pressures in SHRs were lowered by buspirone treatments of 5 and 10 mg/kg/day compared with 8-week untreated group. Protein levels for peroxisome proliferator-activated receptor δ (PPARδ), 5' adenosine monophosphate-activated protein kinase (AMPK), and PPARγ coactivator-1 alpha (PGC-1α) were increased both in C2C12 cells treated by buspirone of 100 μM and in SHRs administered by buspirone of 1, 5, and 10 mg/kg/day compared to untreated control cells and 8-week untreated group. Fat cell numbers decreased in 8-week untreated group were increased in SHRs administered by buspirone treats of 1, 5, and 10 mg/kg/day. Protein expression levels for angiotensin II type 1 receptor (AT1R) and vascular cell adhesion molecule 1 (VCAM1) were increased in 8-week untreated group compared to 4-week group, however, they were decreased by buspirone treatments of 1, 5, and 10 mg/kg/day. Conclusion Buspirone may induce the losses of body weight and abdominal fat weight through the activation of PPARδ dependent catabolic metabolism producing energy, and eventually, the ameliorated lipid metabolism could normalize high blood pressure.
Collapse
Affiliation(s)
- Yong-Jik Lee
- Cardiovascular Center, Korea University Guro Hospital, 148, Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Hyun-Min Kim
- Cardiovascular Center, Korea University Guro Hospital, 148, Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea
- Department of Medical Science, BK21 Plus KUMS Graduate Program, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yoo-Na Jang
- Cardiovascular Center, Korea University Guro Hospital, 148, Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea
- Department of Medicine, College of Medicine, Graduate School, Chung-Ang University, Seoul, Republic of Korea
| | - Yoon-Mi Han
- Cardiovascular Center, Korea University Guro Hospital, 148, Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea
| | - Hong Seog Seo
- Cardiovascular Center, Korea University Guro Hospital, 148, Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea
| | - Tae Woo Jung
- Department of Pharmacology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Hyun Jung Lee
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Kyung Oh Jung
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Reddy I, Yadav Y, Dey CS. Cellular and Molecular Regulation of Exercise—A Neuronal Perspective. Cell Mol Neurobiol 2022; 43:1551-1571. [PMID: 35986789 DOI: 10.1007/s10571-022-01272-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022]
Abstract
The beneficial effects of exercise on the proper functioning of the body have been firmly established. Multi-systemic metabolic regulation of exercise is the consequence of multitudinous changes that occur at the cellular level. The exercise responsome comprises all molecular entities including exerkines, miRNA species, growth factors, signaling proteins that are elevated and activated by physical exercise. Exerkines are secretory molecules released by organs such as skeletal muscle, adipose tissue, liver, and gut as a function of acute/chronic exercise. Exerkines such as FNDC5/irisin, Cathepsin B, Adiponectin, and IL-6 circulate through the bloodstream, cross the blood-brain barrier, and modulate the expression of important signaling molecules such as AMPK, SIRT1, PGC1α, BDNF, IGF-1, and VEGF which further contribute to improved energy metabolism, glucose homeostasis, insulin sensitivity, neurogenesis, synaptic plasticity, and overall well-being of the body and brain. These molecules are also responsible for neuroprotective adaptations that exercise confers on the brain and potentially ameliorate neurodegeneration. This review aims to detail important cellular and molecular species that directly or indirectly mediate exercise-induced benefits in the body, with an emphasis on the central nervous system.
Collapse
Affiliation(s)
- Ishitha Reddy
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Yamini Yadav
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Chinmoy Sankar Dey
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India.
| |
Collapse
|
6
|
Shaw SJ, Goff DA, Carroll DC, Singh R, Sweeny DJ, Park G, Jenkins Y, Markovtsov V, Sun TQ, Issakani SD, Hitoshi Donald G. Payan Y. Structure Activity Relationships Leading to the Identification of the Indirect Activator of AMPK, R419. Bioorg Med Chem 2022; 71:116951. [DOI: 10.1016/j.bmc.2022.116951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 11/02/2022]
|
7
|
García-Roche M, Talmón D, Cañibe G, Astessiano AL, Mendoza A, Quijano C, Cassina A, Carriquiry M. Differential hepatic mitochondrial function and gluconeogenic gene expression in 2 Holstein strains in a pasture-based system. J Dairy Sci 2022; 105:5723-5737. [PMID: 35599026 DOI: 10.3168/jds.2021-21358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/17/2022] [Indexed: 12/25/2022]
Abstract
The objective of this study was to assess hepatic ATP synthesis in Holstein cows of North American and New Zealand origins and the gluconeogenic pathway, one of the pathways with the highest ATP demands in the ruminant liver. Autumn-calving Holstein cows of New Zealand and North American origins were managed in a pasture-based system with supplementation of concentrate that represented approximately 33% of the predicted dry matter intake during 2017, 2018, and 2019, and hepatic biopsies were taken during mid-lactation at 174 ± 23 days in milk. Cows of both strains produced similar levels of solids-corrected milk, and no differences in body condition score were found. Plasma glucose concentrations were higher for cows of New Zealand versus North American origin. Hepatic mitochondrial function evaluated measuring oxygen consumption rates showed that mitochondrial parameters related to ATP synthesis and maximum respiratory rate were increased for cows of New Zealand compared with North American origin. However, hepatic gene expression of pyruvate carboxylase, phosphoenolpyruvate carboxykinase, and pyruvate dehydrogenase kinase was increased in North American compared with New Zealand cows. These results altogether suggest an increased activity of the tricarboxylic cycle in New Zealand cows, leading to increased ATP synthesis, whereas North American cows pull tricarboxylic cycle intermediates toward gluconeogenesis. The fact that this occurs during mid-lactation could account for the increased persistency of North American cows, especially in a pasture-based system. In addition, we observed an augmented mitochondrial density in New Zealand cows, which could be related to feed efficiency mechanisms. In sum, our results contribute to the elucidation of hepatic molecular mechanisms in dairy cows in production systems with higher inclusion of pastures.
Collapse
Affiliation(s)
- Mercedes García-Roche
- Departamento de Producción Animal y Pasturas, Facultad de Agronomía, Universidad de la República, 12900, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO) and Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, 11900, Montevideo, Uruguay.
| | - Daniel Talmón
- Departamento de Producción Animal y Pasturas, Facultad de Agronomía, Universidad de la República, 12900, Montevideo, Uruguay
| | - Guillermo Cañibe
- Departamento de Producción Animal y Pasturas, Facultad de Agronomía, Universidad de la República, 12900, Montevideo, Uruguay
| | - Ana Laura Astessiano
- Departamento de Producción Animal y Pasturas, Facultad de Agronomía, Universidad de la República, 12900, Montevideo, Uruguay
| | - Alejandro Mendoza
- Centro de Investigaciones Biomédicas (CEINBIO) and Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, 11900, Montevideo, Uruguay; Programa Nacional de Producción de Leche, Instituto Nacional de Investigación Agropecuaria, 39173, Semillero, Uruguay
| | - Celia Quijano
- Centro de Investigaciones Biomédicas (CEINBIO) and Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, 11900, Montevideo, Uruguay
| | - Adriana Cassina
- Centro de Investigaciones Biomédicas (CEINBIO) and Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, 11900, Montevideo, Uruguay
| | - Mariana Carriquiry
- Departamento de Producción Animal y Pasturas, Facultad de Agronomía, Universidad de la República, 12900, Montevideo, Uruguay
| |
Collapse
|
8
|
Sanders MJ, Ratinaud Y, Neopane K, Bonhoure N, Day EA, Ciclet O, Lassueur S, Naranjo Pinta M, Deak M, Brinon B, Christen S, Steinberg GR, Barron D, Sakamoto K. Natural (dihydro)phenanthrene plant compounds are direct activators of AMPK through its allosteric drug and metabolite-binding site. J Biol Chem 2022; 298:101852. [PMID: 35331736 PMCID: PMC9108889 DOI: 10.1016/j.jbc.2022.101852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/26/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is a central energy sensor that coordinates the response to energy challenges to maintain cellular ATP levels. AMPK is a potential therapeutic target for treating metabolic disorders, and several direct synthetic activators of AMPK have been developed that show promise in preclinical models of type 2 diabetes. These compounds have been shown to regulate AMPK through binding to a novel allosteric drug and metabolite (ADaM)–binding site on AMPK, and it is possible that other molecules might similarly bind this site. Here, we performed a high-throughput screen with natural plant compounds to identify such direct allosteric activators of AMPK. We identified a natural plant dihydrophenathrene, Lusianthridin, which allosterically activates and protects AMPK from dephosphorylation by binding to the ADaM site. Similar to other ADaM site activators, Lusianthridin showed preferential activation of AMPKβ1-containing complexes in intact cells and was unable to activate an AMPKβ1 S108A mutant. Lusianthridin dose-dependently increased phosphorylation of acetyl-CoA carboxylase in mouse primary hepatocytes, which led to a corresponding decrease in de novo lipogenesis. This ability of Lusianthridin to inhibit lipogenesis was impaired in hepatocytes from β1 S108A knock-in mice and mice bearing a mutation at the AMPK phosphorylation site of acetyl-CoA carboxylase 1/2. Finally, we show that activation of AMPK by natural compounds extends to several analogs of Lusianthridin and the related chemical series, phenanthrenes. The emergence of natural plant compounds that regulate AMPK through the ADaM site raises the distinct possibility that other natural compounds share a common mechanism of regulation.
Collapse
Affiliation(s)
- Matthew J Sanders
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland.
| | - Yann Ratinaud
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Katyayanee Neopane
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland; School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Nicolas Bonhoure
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Emily A Day
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, Ontario, Canada; Department of Medicine and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Olivier Ciclet
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Steve Lassueur
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Martine Naranjo Pinta
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Maria Deak
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Benjamin Brinon
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Stefan Christen
- Nestle Institute of Food Safety and Analytical Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Gregory R Steinberg
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, Ontario, Canada; Department of Medicine and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Denis Barron
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Kei Sakamoto
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
9
|
Townsend LK, Weber AJ, Day EA, Shamshoum H, Shaw SJ, Perry CGR, Kemp BE, Steinberg GR, Wright DC. AMPK mediates energetic stress-induced liver GDF15. FASEB J 2021; 35:e21218. [PMID: 33337559 DOI: 10.1096/fj.202000954r] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 10/30/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022]
Abstract
Growth differentiating factor-15 (GDF15) is an emerging target for the treatment of obesity and metabolic disease partly due to its ability to suppress food intake. GDF15 expression and secretion are thought to be regulated by a cellular integrated stress response, which involves endoplasmic reticulum (ER) stress. AMPK is another cellular stress sensor, but the relationship between AMPK, ER stress, and GDF15 has not been assessed in vivo. Wildtype (WT), AMPK β1 deficient (AMPKβ1-/- ), and CHOP-/- mice were treated with three distinct AMPK activators; AICAR, which is converted to ZMP mimicking the effects of AMP on the AMPKγ isoform, R419, which indirectly activates AMPK through inhibition of mitochondrial respiration, or A769662, a direct AMPK activator which binds the AMPKβ1 isoform ADaM site causing allosteric activation. Following treatments, liver Gdf15, markers of ER-stress, AMPK activity, adenine nucleotides, circulating GDF15, and food intake were assessed. AICAR and R419 caused ER and energetic stress, increased GDF15 expression and secretion, and suppressed food intake. Direct activation of AMPK β1 containing complexes by A769662 increased hepatic Gdf15 expression, circulating GDF15, and suppressed food intake, independent of ER stress. The effects of AICAR, R419, and A769662 on GDF15 were attenuated in AMPKβ1-/- mice. AICAR and A769662 increased GDF15 to a similar extent in WT and CHOP-/- mice. Herein, we provide evidence that AMPK plays a role in mediating the induction of GDF15 under conditions of energetic stress in mouse liver in vivo.
Collapse
Affiliation(s)
- Logan K Townsend
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada.,Centre for Metabolism, Obesity and Diabetes Research and Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Alyssa J Weber
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Emily A Day
- Centre for Metabolism, Obesity and Diabetes Research and Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Hesham Shamshoum
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Simon J Shaw
- Rigel Pharmaceuticals Inc., South San Francisco, CA, USA
| | - Christopher G R Perry
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - Bruce E Kemp
- Department of Medicine, St. Vincent's Institute, University of Melbourne, Melbourne, Vic, Australia.,Mary MacKillop Institute for Health Research, Australian Catholic University, Fitzroy, Victoria, Australia
| | - Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research and Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - David C Wright
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
10
|
García-Roche M, Cañibe G, Casal A, Mattiauda DA, Ceriani M, Jasinsky A, Cassina A, Quijano C, Carriquiry M. Glucose and Fatty Acid Metabolism of Dairy Cows in a Total Mixed Ration or Pasture-Based System During Lactation. FRONTIERS IN ANIMAL SCIENCE 2021. [DOI: 10.3389/fanim.2021.622500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In this study, we explored mechanisms related to glucose and fatty acid metabolism in Holstein–Friesian multiparous dairy cows during lactation under two feeding strategies. From 0 to 180 days postpartum, cows were fed total mixed ration (TMR) ad libitum (non-grazing group, G0) or grazed Festuca arundinacea or Medicago sativa and were supplemented with 5.4 kg DM/d of an energy-protein concentrate (grazing group, G1). From 180 to 250 days postpartum, all cows grazed F. arundinacea and were supplemented with TMR. Plasma samples and liver biopsies were collected at −14, 35, 60, 110, 180, and 250 days in milk (DIM) for metabolite, hormone, gene expression, and western blot analysis. Our results showed increased levels of negative energy balance markers: plasma non-esterified fatty acids (NEFA), liver triglyceride and plasma β-hydroxybutyrate (BHB) (P < 0.01), triglyceride and β-hydroxybutyrate concentration were especially elevated for G1 cows. Also, hepatic mRNA expression of gluconeogenic enzymes was upregulated during early lactation (P < 0.05). In particular, methymalonyl-CoA mutase expression was increased for G0 cows (P < 0.05) while pyruvate carboxylase (PC) expression was increased for G1 cows (P < 0.05), suggesting differential gluconeogenic precursors for different feeding strategies. Phosphorylation of AMP-activated protein kinase was increased in early lactation vs. late lactation (P < 0.01) and negatively correlated with PC mRNA levels. The positive association of gluconeogenic genes with proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1A) hepatic expression supported the importance of this transcription factor in glucose metabolism. The peroxisome proliferator-activated receptor alpha (PPARA) mRNA was increased during early lactation (P < 0.05), and was positively associated to PPARGC1A, carnitine palmitoyl-transferase 1, and hydroxymethylglutaryl-CoA synthase 2 (HMGCS2) mRNA expression. Alongside, hepatic mRNA expression of FABP was decreased for G1 vs. G0 cows (P < 0.05), possibly linked to impaired fatty acid transport and related to accumulation of liver triglycerides, evidencing G1 cows fail to adapt to the demands of early lactation. In sum, our results showed that metabolic adaptations related to early lactation negative energy balance can be affected by feeding strategy and might be regulated by the metabolic sensors AMPK, SIRT1, and coordinated by transcription factors PPARGC1A and PPARA.
Collapse
|
11
|
Cruz AM, Partridge KM, Malekizadeh Y, Vlachaki Walker JM, Weightman Potter PG, Pye KR, Shaw SJ, Ellacott KLJ, Beall C. Brain Permeable AMP-Activated Protein Kinase Activator R481 Raises Glycaemia by Autonomic Nervous System Activation and Amplifies the Counterregulatory Response to Hypoglycaemia in Rats. Front Endocrinol (Lausanne) 2021; 12:697445. [PMID: 34975743 PMCID: PMC8718766 DOI: 10.3389/fendo.2021.697445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
AIM We evaluated the efficacy of a novel brain permeable "metformin-like" AMP-activated protein kinase activator, R481, in regulating glucose homeostasis. MATERIALS AND METHODS We used glucose sensing hypothalamic GT1-7 neuronal cells and pancreatic αTC1.9 α-cells to examine the effect of R481 on AMPK pathway activation and cellular metabolism. Glucose tolerance tests and hyperinsulinemic-euglycemic and hypoglycemic clamps were used in Sprague-Dawley rats to assess insulin sensitivity and hypoglycemia counterregulation, respectively. RESULTS In vitro, we demonstrate that R481 increased AMPK phosphorylation in GT1-7 and αTC1.9 cells. In Sprague-Dawley rats, R481 increased peak glucose levels during a glucose tolerance test, without altering insulin levels or glucose clearance. The effect of R481 to raise peak glucose levels was attenuated by allosteric brain permeable AMPK inhibitor SBI-0206965. This effect was also completely abolished by blockade of the autonomic nervous system using hexamethonium. During hypoglycemic clamp studies, R481 treated animals had a significantly lower glucose infusion rate compared to vehicle treated controls. Peak plasma glucagon levels were significantly higher in R481 treated rats with no change to plasma adrenaline levels. In vitro, R481 did not alter glucagon release from αTC1.9 cells, but increased glycolysis. Non brain permeable AMPK activator R419 enhanced AMPK activity in vitro in neuronal cells but did not alter glucose excursion in vivo. CONCLUSIONS These data demonstrate that peripheral administration of the brain permeable "metformin-like" AMPK activator R481 increases blood glucose by activation of the autonomic nervous system and amplifies the glucagon response to hypoglycemia in rats. Taken together, our data suggest that R481 amplifies the counterregulatory response to hypoglycemia by a central rather than a direct effect on the pancreatic α-cell. These data provide proof-of-concept that central AMPK could be a target for future drug development for prevention of hypoglycemia in diabetes.
Collapse
Affiliation(s)
- Ana M Cruz
- Institute of Biomedical and Clinical Sciences, College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Katie M Partridge
- Institute of Biomedical and Clinical Sciences, College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Yasaman Malekizadeh
- Institute of Biomedical and Clinical Sciences, College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Julia M Vlachaki Walker
- Institute of Biomedical and Clinical Sciences, College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Paul G Weightman Potter
- Institute of Biomedical and Clinical Sciences, College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Katherine R Pye
- Institute of Biomedical and Clinical Sciences, College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Simon J Shaw
- Rigel Pharmaceuticals Inc., South San Francisco, CA, United States
| | - Kate L J Ellacott
- Institute of Biomedical and Clinical Sciences, College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Craig Beall
- Institute of Biomedical and Clinical Sciences, College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
12
|
Jayakumari NR, Rajendran RS, Sivasailam A, Vimala SS, Nanda S, Manjunatha S, Pillai VV, Karunakaran J, Gopala S. Impaired substrate-mediated cardiac mitochondrial complex I respiration with unaltered regulation of fatty acid metabolism and oxidative stress status in type 2 diabetic Asian Indians. J Diabetes 2020; 12:542-555. [PMID: 32125087 DOI: 10.1111/1753-0407.13031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/22/2020] [Accepted: 02/10/2020] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The cardiovascular complications associated with type 2 diabetes mellitus could be attributed to changes in myocardial mitochondrial metabolism. Though it is a known fact that permeabilized cardiac muscle fibers and isolated mitochondria are metabolically compromised in the Caucasian population, studies of Asian Indian myocardial mitochondrial function are lacking. Thus, the objective of the present study is to analyze if there is altered cardiac mitochondrial substrate utilization in diabetic Asian Indians. METHODS Mitochondrial substrate utilization was measured using high-resolution respirometry in isolated mitochondria prepared from right atrial appendage tissues of diabetic and nondiabetic subjects undergoing coronary artery bypass graft surgery. Western blotting and densitometric analysis were also done to compare the levels of proteins involved in fatty acid metabolism and regulation. RESULTS The mitochondrial oxygen consumption rate for fatty acid substrate was shown to be decreased in diabetic subjects compared to nondiabetic subjects along with an unvaried mitochondrial DNA copy number and uniform levels of electron transport chain complex proteins and proteins involved in fatty acid metabolism and regulation. Decreased glutamate but unchanged pyruvate-mediated state 3 respiration were also observed in diabetic subjects. CONCLUSION The current study reports deranged cardiac mitochondrial fatty acid-mediated complex I respiration in type 2 diabetic Asian Indians with comparable levels of regulators of fatty acid oxidation to that of nondiabetic myocardium. Altered glutamate-mediated mitochondrial respiration also points toward possible alterations in mitochondrial complex I activity. When compared with previous reports on other ethnic populations, the current study suggests that Asian Indian population too have altered cardiac mitochondrial substrate utilization.
Collapse
Affiliation(s)
- Nandini R Jayakumari
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, India
| | - Raji S Rajendran
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, India
| | - Ashok Sivasailam
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, India
| | - Surabhi S Vimala
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, India
| | - Saurabh Nanda
- Department of Cardiovascular and Thoracic Surgery, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, India
| | - Shankarappa Manjunatha
- Division of Endocrinology, Diabetes, Metabolism, Nutrition, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology, All India Institute of Medical Sciences, Bibi Nagar, Telangana, India
| | - Vivek V Pillai
- Department of Cardiovascular and Thoracic Surgery, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, India
| | - Jayakumar Karunakaran
- Department of Cardiovascular and Thoracic Surgery, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, India
| | - Srinivas Gopala
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, India
| |
Collapse
|
13
|
Sun G, You Y, Li H, Cheng Y, Qian M, Zhou X, Yuan H, Xu QL, Dai L, Wang P, Cheng K, Wen X, Chen C. Discovery of AdipoRon analogues as novel AMPK activators without inhibiting mitochondrial complex I. Eur J Med Chem 2020; 200:112466. [PMID: 32512485 DOI: 10.1016/j.ejmech.2020.112466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/20/2022]
Abstract
Activation of AMPK emerges as a potential therapeutic approach to metabolic diseases. AdipoRon is claimed to be an adiponectin receptor agonist that activates AMPK through adiponectin receptor 1 (AdipoR1). However, AdipoRon also exhibits moderate inhibition of mitochondrial complex I, leading to increased risk of lactic acidosis. In order to find novel AdipoRon analogues that activate AMPK without inhibition of complex I, 27 analogues of AdipoRon were designed, synthesized and biologically evaluated. As results, benzyloxy arylamide B10 was identified as a potent AMPK activator without inhibition of complex I. B10 dose-dependently improved glucose tolerance in normal mice, and significantly lowered fasting blood glucose level and ameliorated insulin resistance in db/db diabetic mice. More importantly, unlike the pan-AMPK activator MK-8722, B10 did not cause cardiac hypertrophy, probably owing to its selective activation of AMPK in the muscle tissue but not in the heart tissue. Together, B10 represents a novel class of AMPK activators with promising therapeutic potential against metabolic disease.
Collapse
Affiliation(s)
- Geng Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Yanping You
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Haobin Li
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Yalong Cheng
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Ming Qian
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Xinyu Zhou
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Haoliang Yuan
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Qing-Long Xu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Liang Dai
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Pengfei Wang
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Keguang Cheng
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy of Guangxi Normal University, Guilin, 541004, China
| | - Xiaoan Wen
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| | - Caiping Chen
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
14
|
Nicoll J, Buehrer BM. Biguanides Induce Acute de novo Lipogenesis in Human Primary Sebocytes. Clin Cosmet Investig Dermatol 2020; 13:197-207. [PMID: 32158247 PMCID: PMC7048953 DOI: 10.2147/ccid.s243154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/11/2020] [Indexed: 11/23/2022]
Abstract
Introduction Acne arises during puberty, in part, due to elevated hormones and growth factors which stimulate de novo lipogenesis (DNL) in primary sebocytes to significantly increase sebum production. Oral isotretinoin is an effective acne therapy, reducing sebum production through inducing apoptosis in sebocytes. However, isotretinoin is teratogenic and has additional unwanted side effects, including an initial acne flare-up, which limits its utility. The biguanide, metformin has been found to alleviate severe acne in women with polycystic ovary syndrome (PCOS) through normalization of their insulin and androgen hormone levels. Metformin’s broader effectiveness to improve acne in non-PCOS populations lacks significant clinical support. In an effort to determine whether biguanides directly affect sebogenesis, we investigated their ability to alter DNL in cell-based assays in vitro. Methods De novo lipogenesis was measured in human primary sebocytes using [14C]-acetate labeling. Lipid species analysis was performed by extracting newly synthesized lipids and subjecting them to thin layer chromatography. Gene expression changes in sebocytes were identified through qPCR analysis of isolated RNA. Metabolic parameters including oxygen consumption rate, lactate production and activation of adenosine monophosphate-dependent protein kinase (AMPK) were assessed in human primary sebocytes. Results Using human primary sebocytes, we found that biguanides, isotretinoin and azithromycin induced an acute dose and time-dependent increase in [14C]-acetate labeling of neutral lipids, while AICAR, an AMPK activator, inhibited this DNL response. Biguanides did not activate AMPK in sebocytes, however, they significantly reduced oxygen consumption rate and increased lactate production. Treatment with biguanides, but not isotretinoin, significantly upregulated ACSS2 gene expression in primary sebocytes and showed synergism with lipogenic activators to induce DNL genes. Discussion These changes are consistent with an acute increase in sebocyte lipogenesis and support the potential of biguanides to cause an initial flare-up in patients suffering from severe acne.
Collapse
|
15
|
Steinberg GR, Carling D. AMP-activated protein kinase: the current landscape for drug development. Nat Rev Drug Discov 2020; 18:527-551. [PMID: 30867601 DOI: 10.1038/s41573-019-0019-2] [Citation(s) in RCA: 409] [Impact Index Per Article: 81.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the discovery of AMP-activated protein kinase (AMPK) as a central regulator of energy homeostasis, many exciting insights into its structure, regulation and physiological roles have been revealed. While exercise, caloric restriction, metformin and many natural products increase AMPK activity and exert a multitude of health benefits, developing direct activators of AMPK to elicit beneficial effects has been challenging. However, in recent years, direct AMPK activators have been identified and tested in preclinical models, and a small number have entered clinical trials. Despite these advances, which disease(s) represent the best indications for therapeutic AMPK activation and the long-term safety of such approaches remain to be established.
Collapse
Affiliation(s)
- Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| | - David Carling
- Cellular Stress Group, Medical Research Council London Institute of Medical Sciences, Hammersmith Hospital, Imperial College, London, UK
| |
Collapse
|
16
|
Momtaz S, Salek-Maghsoudi A, Abdolghaffari AH, Jasemi E, Rezazadeh S, Hassani S, Ziaee M, Abdollahi M, Behzad S, Nabavi SM. Polyphenols targeting diabetes via the AMP-activated protein kinase pathway; future approach to drug discovery. Crit Rev Clin Lab Sci 2019; 56:472-492. [PMID: 31418340 DOI: 10.1080/10408363.2019.1648376] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Regarding the widespread progression of diabetes, its related complications and detrimental effects on human health, investigations on this subject seems compulsory. AMP-activated protein kinase (AMPK) is a serine/threonine kinase and a key player in energy metabolism regulation. AMPK is also considered as a prime target for pharmaceutical and therapeutic studies on disorders such as diabetes, metabolic syndrome and obesity, where the body energy homeostasis is imbalanced. Following the activation of AMPK (physiological or pharmacological), a cascade of metabolic events that improve metabolic health is triggered. While there are several publications on this subject, this is the first report that has focused solely on polyphenols targeting diabetes via AMPK pathway. The multiple characteristics of polyphenolic compounds and their favorable influence on diabetes pathogenesis, as well as their intersections with the AMPK signaling pathway, indicate that these compounds have a beneficial effect on the regulation of glucose homeostasis. PPs could potentially occupy a significant position in the future anti-diabetic drug market.
Collapse
Affiliation(s)
- Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR , Karaj , Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences , Tehran , Iran
| | - Armin Salek-Maghsoudi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences , Tehran , Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences , Tehran , Iran
| | - Amir Hossein Abdolghaffari
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR , Karaj , Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences , Tehran , Iran.,Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN) , Tehran , Iran.,Department of Pharmacology, Pharmaceutical Sciences Branch, Islamic Azad University , Tehran , Iran
| | - Eghbal Jasemi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR , Karaj , Iran
| | - Shamsali Rezazadeh
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR , Karaj , Iran
| | - Shokoufeh Hassani
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences , Tehran , Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences , Tehran , Iran
| | - Mojtaba Ziaee
- Cardiovascular Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences , Tehran , Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences , Tehran , Iran
| | - Sahar Behzad
- Evidence-Based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences , Karaj , Iran.,Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences , Tehran , Iran
| |
Collapse
|
17
|
In vitro experimental models for examining the skeletal muscle cell biology of exercise: the possibilities, challenges and future developments. Pflugers Arch 2018; 471:413-429. [PMID: 30291430 DOI: 10.1007/s00424-018-2210-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/18/2018] [Accepted: 09/25/2018] [Indexed: 12/11/2022]
Abstract
Exercise provides a cornerstone in the prevention and treatment of several chronic diseases. The use of in vivo exercise models alone cannot fully establish the skeletal muscle-specific mechanisms involved in such health-promoting effects. As such, models that replicate exercise-like effects in vitro provide useful tools to allow investigations that are not otherwise possible in vivo. In this review, we provide an overview of experimental models currently used to induce exercise-like effects in skeletal muscle in vitro. In particular, the appropriateness of electrical pulse stimulation and several pharmacological compounds to resemble exercise, as well as important technical considerations, are addressed. Each model covered herein provides a useful tool to investigate different aspects of exercise with a level of abstraction not possible in vivo. That said, none of these models are perfect under all circumstances, and the choice of model (and terminology) used should be informed by the specific research question whilst accounting for the several inherent limitations of each model. Further work is required to develop and optimise the current experimental models used, such as combination with complementary techniques during treatment, and thereby improve their overall utility and impact within muscle biology research.
Collapse
|
18
|
Adachi Y, De Sousa-Coelho AL, Harata I, Aoun C, Weimer S, Shi X, Gonzalez Herrera KN, Takahashi H, Doherty C, Noguchi Y, Goodyear LJ, Haigis MC, Gerszten RE, Patti ME. l-Alanine activates hepatic AMP-activated protein kinase and modulates systemic glucose metabolism. Mol Metab 2018; 17:61-70. [PMID: 30190193 PMCID: PMC6197624 DOI: 10.1016/j.molmet.2018.08.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 08/07/2018] [Indexed: 12/11/2022] Open
Abstract
Objective AMP activated protein kinase (AMPK) is recognized as an important nutrient sensor contributing to regulation of cellular, tissue, and systemic metabolism. We aimed to identify specific amino acids which could modulate AMPK and determine effects on cellular and systemic metabolism. Methods We performed an unbiased amino acid screen to identify activators of AMPK. Detailed analysis of cellular signaling and metabolism was performed in cultured hepatoma cells, and in vivo glucose metabolism and metabolomic patterns were assessed in both chow-fed mice and mice made obese by high-fat diet feeding. Results Alanine acutely activates AMP kinase in both cultured hepatic cells and in liver from mice treated in vivo with Ala. Oral alanine administration improves systemic glucose tolerance in both chow and high fat diet fed mice, with reduced efficacy of Ala in mice with reduced AMPK activity. Our data indicate that Ala activation of AMPK is mediated by intracellular Ala metabolism, which reduces TCA cycle metabolites, increases AMP/ATP ratio, and activates NH3 generation. Conclusions Ala may serve as a distinct amino acid energy sensor, providing a positive signal to activate the beneficial AMPK signaling pathway. Unbiased amino acid screen identified alanine as a unique activator of AMP kinase. Alanine acutely activates AMP kinase in both cultured cells and in vivo. Alanine and NH3 metabolism contribute to regulation of AMP kinase activation. Effects of Ala are reduced in absence of AMP kinase. Oral alanine improves glucose tolerance in vivo in both chow and HFD-fed mice.
Collapse
Affiliation(s)
- Yusuke Adachi
- Research Division, Joslin Diabetes Center, and Harvard Medical School, Boston, MA, USA; Institute for Innovation, Ajinomoto Co. Inc., Japan
| | | | - Ikue Harata
- Institute for Innovation, Ajinomoto Co. Inc., Japan
| | - Charlie Aoun
- Research Division, Joslin Diabetes Center, and Harvard Medical School, Boston, MA, USA
| | - Sandra Weimer
- Research Division, Joslin Diabetes Center, and Harvard Medical School, Boston, MA, USA
| | - Xu Shi
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Karina N Gonzalez Herrera
- Department of Cell Biology and Paul F. Glenn Laboratories for the Biological Mechanisms of Aging, Harvard Medical School, Boston, MA, USA
| | - Hirokazu Takahashi
- Research Division, Joslin Diabetes Center, and Harvard Medical School, Boston, MA, USA
| | - Chris Doherty
- Research Division, Joslin Diabetes Center, and Harvard Medical School, Boston, MA, USA
| | | | - Laurie J Goodyear
- Research Division, Joslin Diabetes Center, and Harvard Medical School, Boston, MA, USA
| | - Marcia C Haigis
- Department of Cell Biology and Paul F. Glenn Laboratories for the Biological Mechanisms of Aging, Harvard Medical School, Boston, MA, USA
| | - Robert E Gerszten
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mary-Elizabeth Patti
- Research Division, Joslin Diabetes Center, and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
19
|
Synthesis and biological evaluation of Complex I inhibitor R419 and its derivatives as anticancer agents in HepG2 cells. Bioorg Med Chem Lett 2018; 28:2957-2960. [PMID: 30001917 DOI: 10.1016/j.bmcl.2018.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/22/2018] [Accepted: 07/03/2018] [Indexed: 11/23/2022]
Abstract
In this study, Complex I inhibitor R419 was firstly revealed to have significant anticancer activity against HepG2 cells (IC50 = 5.2 ± 0.9 μM). Based on this finding, a series of R419 derivatives were synthesized and biologically evaluated. As results, 9 derivatives were found to have obvious anticancer activity. Among them, H20 exhibited the most potent activity (IC50 = 2.8 ± 0.4 μM). Mechanism study revealed that H20 caused severe depletion of cellular ATP, dose-dependently activated AMPK, decreased Bcl-2/Bax ratio and induced necrotic cell death. Most importantly, H20 displayed definite inhibitory activity against Complex I.
Collapse
|
20
|
Tang G, Guo J, Zhu Y, Huang Z, Liu T, Cai J, Yu L, Wang Z. Metformin inhibits ovarian cancer via decreasing H3K27 trimethylation. Int J Oncol 2018; 52:1899-1911. [PMID: 29620187 PMCID: PMC5919713 DOI: 10.3892/ijo.2018.4343] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/19/2018] [Indexed: 12/13/2022] Open
Abstract
Metformin has been used for the treatment of type II diabetes mellitus for decades. Recently, used of metformin in the therapy of diverse human cancer types has received widespread attention, while the underlying mechanisms have been not fully elucidated. In the current study, 5-ethynyl-20-de-oxyuridine assay to detect cell proliferation, flow cytometry to detect apoptosis, scratch wound healing and Transwell migration assay to detect cell migration capacity. The current study reported that metformin inhibited cell proliferation and migration, and promoted apoptosis in ovarian cancer cells, particularly under normoglycemic conditions in vitro. Metformin treatment significantly promoted the phosphorylation of AMP-activated protein kinase (AMPK), and reduced histone H3 lysine 27 trimethylation (H3K27me3) and polycomb repressor complex 2 (PRC2) levels. Additionally, overexpression of EZH2 to increase H3K27me3 abrogated the effect of metformin on the cell proliferation, migration and apoptosis in SKOV3 and ES2 cells. Similar to metformin, another AMPK agonist, 2-deoxy-D-glucose, reduced the H3K27me3 level and PRC2 expression. In cells pretreated with Compound C, an AMPK inhibitor, metformin was not able to induce AMPK phosphorylation or reduce H3K27me3. Metformin-mediated AMPK activation and H3K27me3 inhibition were more robust in cells exposed to low glucose (5.5 mM) compared with those exposed to high glucose (25 mM). These findings implicate H3K27me3 repression mediated by AMPK phosphorylation in the antitumor effect of metformin in ovarian cancer, indicating that metformin alters epigenetic modifications by targeting PRC2 and supports the use of metformin in treatment of patients with epithelial ovarian cancer without diabetes.
Collapse
Affiliation(s)
- Guiju Tang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jianfeng Guo
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yapei Zhu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Zaiju Huang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Ting Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jing Cai
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Lili Yu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Zehua Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
21
|
Weihrauch M, Handschin C. Pharmacological targeting of exercise adaptations in skeletal muscle: Benefits and pitfalls. Biochem Pharmacol 2018; 147:211-220. [PMID: 29061342 PMCID: PMC5850978 DOI: 10.1016/j.bcp.2017.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/18/2017] [Indexed: 12/22/2022]
Abstract
Exercise exerts significant effects on the prevention and treatment of many diseases. However, even though some of the key regulators of training adaptation in skeletal muscle have been identified, this biological program is still poorly understood. Accordingly, exercise-based pharmacological interventions for many muscle wasting diseases and also for pathologies that are triggered by a sedentary lifestyle remain scarce. The most efficacious compounds that induce muscle hypertrophy or endurance are hampered by severe side effects and are classified as doping. In contrast, dietary supplements with a higher safety margin exert milder outcomes. In recent years, the design of pharmacological agents that activate the training program, so-called "exercise mimetics", has been proposed, although the feasibility of such an approach is highly debated. In this review, the most recent insights into key regulatory factors and therapeutic approaches aimed at leveraging exercise adaptations are discussed.
Collapse
|
22
|
Dugbartey GJ, Hardenberg MC, Kok WF, Boerema AS, Carey HV, Staples JF, Henning RH, Bouma HR. Renal Mitochondrial Response to Low Temperature in Non-Hibernating and Hibernating Species. Antioxid Redox Signal 2017; 27:599-617. [PMID: 28322600 DOI: 10.1089/ars.2016.6705] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
SIGNIFICANCE Therapeutic hypothermia is commonly applied to limit ischemic injury in organ transplantation, during cardiac and brain surgery and after cardiopulmonary resuscitation. In these procedures, the kidneys are particularly at risk for ischemia/reperfusion injury (IRI), likely due to their high rate of metabolism. Although hypothermia mitigates ischemic kidney injury, it is not a panacea. Residual mitochondrial failure is believed to be a key event triggering loss of cellular homeostasis, and potentially cell death. Subsequent rewarming generates large amounts of reactive oxygen species that aggravate organ injury. Recent Advances: Hibernators are able to withstand periods of profoundly reduced metabolism and body temperature ("torpor"), interspersed by brief periods of rewarming ("arousal") without signs of organ injury. Specific adaptations allow maintenance of mitochondrial homeostasis, limit oxidative stress, and protect against cell death. These adaptations consist of active suppression of mitochondrial function and upregulation of anti-oxidant enzymes and anti-apoptotic pathways. CRITICAL ISSUES Unraveling the precise molecular mechanisms that allow hibernators to cycle through torpor and arousal without precipitating organ injury may translate into novel pharmacological approaches to limit IRI in patients. FUTURE DIRECTIONS Although the precise signaling routes involved in natural hibernation are not yet fully understood, torpor-like hypothermic states with increased resistance to ischemia/reperfusion can be induced pharmacologically by 5'-adenosine monophosphate (5'-AMP), adenosine, and hydrogen sulfide (H2S) in non-hibernators. In this review, we compare the molecular effects of hypothermia in non-hibernators with natural and pharmacologically induced torpor, to delineate how safe and reversible metabolic suppression may provide resistance to renal IRI. Antioxid. Redox Signal. 27, 599-617.
Collapse
Affiliation(s)
- George J Dugbartey
- 1 Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen , Groningen, the Netherlands .,2 Division of Cardiology, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Maarten C Hardenberg
- 1 Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen , Groningen, the Netherlands
| | - Wendelinde F Kok
- 1 Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen , Groningen, the Netherlands
| | - Ate S Boerema
- 3 Groningen Institute for Evolutionary Life Sciences, University of Groningen , Groningen, the Netherlands .,4 Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen , Groningen, the Netherlands
| | - Hannah V Carey
- 5 Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin , Madison, Wisconsin
| | - James F Staples
- 6 Department of Biology, University of Western Ontario , London, Canada
| | - Robert H Henning
- 1 Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen , Groningen, the Netherlands
| | - Hjalmar R Bouma
- 1 Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen , Groningen, the Netherlands .,7 Department of Internal Medicine, University Medical Center Groningen, University of Groningen , Groningen, the Netherlands
| |
Collapse
|
23
|
Vecchione G, Grasselli E, Cioffi F, Baldini F, Oliveira PJ, Sardão VA, Cortese K, Lanni A, Voci A, Portincasa P, Vergani L. The Nutraceutic Silybin Counteracts Excess Lipid Accumulation and Ongoing Oxidative Stress in an In Vitro Model of Non-Alcoholic Fatty Liver Disease Progression. Front Nutr 2017; 4:42. [PMID: 28971098 PMCID: PMC5609553 DOI: 10.3389/fnut.2017.00042] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/30/2017] [Indexed: 01/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major cause of liver-related morbidity and mortality. Oxidative stress and release of pro-inflammatory cytokines, such as tumor necrosis factor α (TNFα), are major consequences of hepatic lipid overload, which can contribute to progression of NAFLD to non-alcoholic steatohepatitis (NASH). Also, mitochondria are involved in the NAFLD pathogenesis for their role in hepatic lipid metabolism. Definitive treatments for NAFLD/NASH are lacking so far. Silybin, the extract of the milk thistle seeds, has previously shown beneficial effects in NAFLD. Sequential exposure of hepatocytes to high concentrations of fatty acids (FAs) and TNFα resulted in fat overload and oxidative stress, which mimic in vitro the progression of NAFLD from simple steatosis (SS) to steatohepatitis (SH). The exposure to 50 µM silybin for 24 h reduced fat accumulation in the model of NAFLD progression. The in vitro progression of NAFLD from SS to SH resulted in reduced hepatocyte viability, increased apoptosis and oxidative stress, reduction in lipid droplet size, and up-regulation of IκB kinase β-interacting protein and adipose triglyceride lipase expressions. The direct action of silybin on SS or SH cells and the underlying mechanisms were assessed. Beneficial action of silybin was sustained by changes in expression/activity of peroxisome proliferator-activated receptors and enzymes for FA oxidation. Moreover, silybin counteracted the FA-induced mitochondrial damage by acting on complementary pathways: (i) increased the mitochondrial size and improved the mitochondrial cristae organization; (ii) stimulated mitochondrial FA oxidation; (iii) reduced basal and maximal respiration and ATP production in SH cells; (iv) stimulated ATP production in SS cells; and (v) rescued the FA-induced apoptotic signals and oxidative stress in SH cells. We provide new insights about the direct protective effects of the nutraceutic silybin on hepatocytes mimicking in vitro NAFLD progression.
Collapse
Affiliation(s)
- Giulia Vecchione
- DISTAV, Department of Earth, Environment and Life Sciences, University of Genova, Genoa, Italy
| | - Elena Grasselli
- DISTAV, Department of Earth, Environment and Life Sciences, University of Genova, Genoa, Italy
| | - Federica Cioffi
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Francesca Baldini
- DISTAV, Department of Earth, Environment and Life Sciences, University of Genova, Genoa, Italy
| | - Paulo J Oliveira
- Center for Neuroscience and Cellular Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Vilma A Sardão
- Center for Neuroscience and Cellular Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Katia Cortese
- Department of Experimental Medicine (DIMES), University of Genova, Genoa, Italy
| | - Antonia Lanni
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Adriana Voci
- DISTAV, Department of Earth, Environment and Life Sciences, University of Genova, Genoa, Italy
| | - Piero Portincasa
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Laura Vergani
- DISTAV, Department of Earth, Environment and Life Sciences, University of Genova, Genoa, Italy
| |
Collapse
|
24
|
Price TJ, Das V, Dussor G. Adenosine Monophosphate-activated Protein Kinase (AMPK) Activators For the Prevention, Treatment and Potential Reversal of Pathological Pain. Curr Drug Targets 2017; 17:908-20. [PMID: 26521775 DOI: 10.2174/1389450116666151102095046] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 10/20/2015] [Accepted: 10/29/2015] [Indexed: 12/23/2022]
Abstract
Pathological pain is an enormous medical problem that places a significant burden on patients and can result from an injury that has long since healed or be due to an unidentifiable cause. Although treatments exist, they often either lack efficacy or have intolerable side effects. More importantly, they do not reverse the changes in the nervous system mediating pathological pain, and thus symptoms often return when therapies are discontinued. Consequently, novel therapies are urgently needed that have both improved efficacy and disease-modifying properties. Here we highlight an emerging target for novel pain therapies, adenosine monophosphate-activated protein kinase (AMPK). AMPK is capable of regulating a variety of cellular processes including protein translation, activity of other kinases, and mitochondrial metabolism, many of which are thought to contribute to pathological pain. Consistent with these properties, preclinical studies show positive, and in some cases disease-modifying effects of either pharmacological activation or genetic regulation of AMPK in models of nerve injury, chemotherapy-induced peripheral neuropathy (CIPN), postsurgical pain, inflammatory pain, and diabetic neuropathy. Given the AMPK-activating ability of metformin, a widely prescribed and well-tolerated drug, these preclinical studies provide a strong rationale for both retrospective and prospective human pain trials with this drug. They also argue for the development of novel AMPK activators, whether orthosteric, allosteric, or modulators of events upstream of the kinase. Together, this review will present the case for AMPK as a novel therapeutic target for pain and will discuss future challenges in the path toward development of AMPK-based pain therapeutics.
Collapse
Affiliation(s)
- Theodore J Price
- School of Behavioral and Brain Sciences, University of Texas at Dallas, JO 4.212 800 W Campbell Rd, Richardson TX 75080, USA.
| | | | | |
Collapse
|
25
|
Forbes-Hernández TY, Giampieri F, Gasparrini M, Afrin S, Mazzoni L, Cordero MD, Mezzetti B, Quiles JL, Battino M. Lipid Accumulation in HepG2 Cells Is Attenuated by Strawberry Extract through AMPK Activation. Nutrients 2017. [PMID: 28621732 PMCID: PMC5490600 DOI: 10.3390/nu9060621] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Regulation of lipid metabolism is essential for treatment and prevention of several chronic diseases such as obesity, diabetes, and cardiovascular diseases, which are responsible for most deaths worldwide. It has been demonstrated that the AMP-activated protein kinase (AMPK) has a direct impact on lipid metabolism by modulating several downstream-signaling components. The main objective of the present work was to evaluate the in vitro effect of a methanolic strawberry extract on AMPK and its possible repercussion on lipid metabolism in human hepatocellular carcinoma cells (HepG2). For such purpose, the lipid profile and the expression of proteins metabolically related to AMPK were determined on cells lysates. The results demonstrated that strawberry methanolic extract decreased total cholesterol, low-density lipoprotein (LDL)-cholesterol, and triglycerides levels (up to 0.50-, 0.30-, and 0.40-fold, respectively) while it stimulated the p-AMPK/AMPK expression (up to 3.06-fold), compared to the control. AMPK stimulation led to the phosphorylation and consequent inactivation of acetyl coenzyme A carboxylase (ACC) and inhibition of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), the major regulators of fatty acids and cholesterol synthesis, respectively. Strawberry treatment also entailed a 4.34-, 2.37-, and 2.47-fold overexpression of LDL receptor, sirtuin 1 (Sirt1), and the peroxisome proliferator activated receptor gamma coactivator 1-alpha (PGC-1α), respectively, compared to control. The observed results were counteracted by treatment with compound C, an AMPK pharmacological inhibitor, confirming that multiple effects of strawberries on lipid metabolism are mediated by the activation of this protein.
Collapse
Affiliation(s)
- Tamara Y Forbes-Hernández
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy.
- Área de Nutrición y Salud, Universidad Internacional Iberoamericana (UNINI), Campeche 24040, Mexico.
| | - Francesca Giampieri
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Massimiliano Gasparrini
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Sadia Afrin
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Luca Mazzoni
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, 60131 Ancona, Italy..
| | - Mario D Cordero
- Research Laboratory, Dental School, University of Sevilla, 41009 Sevilla, Spain.
| | - Bruno Mezzetti
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, 60131 Ancona, Italy..
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Centre, University of Granada, 18000 Granada, Spain.
| | - Maurizio Battino
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy.
- Centre for Nutrition & Health, Universidad Europea del Atlantico (UEA), 39011 Santander, Spain.
| |
Collapse
|
26
|
Guigas B, Viollet B. Targeting AMPK: From Ancient Drugs to New Small-Molecule Activators. ACTA ACUST UNITED AC 2017; 107:327-350. [PMID: 27812986 DOI: 10.1007/978-3-319-43589-3_13] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The AMP-activated protein kinase (AMPK) is an evolutionary conserved and ubiquitously expressed serine/threonine kinase mainly acting as a key regulator of cellular energy homeostasis. AMPK is a heterotrimeric protein complex, consisting of a catalytic α subunit and two regulatory β and γ subunits, whose activity is tightly regulated by changes in adenine nucleotides and several posttranslational modifications. Once activated in response to energy deficit, AMPK concomitantly inhibits ATP-consuming anabolic processes and promotes ATP-generating catabolic pathways via direct phosphorylation of multiple downstream effectors, leading to restoration of cellular energy balance. A growing number of energy/nutrient-independent functions of AMPK are also regularly reported, progressively expanding its role to regulation of non-metabolic cellular processes. Historically, AMPK as a therapeutic target has attracted much of interest due to its potential impact on metabolic disorders, such as obesity and type 2 diabetes, but has also recently received considerable renewed attention in the framework of cancer studies, highlighting the persistent need for selective, reversible, potent, and tissue-specific activators. In this chapter, we review the most recent advances in the understanding of the mechanism(s) of action of the current portfolio of AMPK activators, including plant-derived natural compounds and newly discovered small-molecule agonists directly targeting various AMPK subunits.
Collapse
Affiliation(s)
- Bruno Guigas
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands.
- Department of Parasitology, Leiden University Medical Center, 9600, Postzone L40-Q, 2300 RC, Leiden, The Netherlands.
| | - Benoit Viollet
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, France
| |
Collapse
|
27
|
The signalling mechanisms of a novel mitochondrial complex I inhibitor prevent lipid accumulation and attenuate TNF-α-induced insulin resistance in vitro. Eur J Pharmacol 2017; 800:1-8. [DOI: 10.1016/j.ejphar.2017.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 01/09/2017] [Accepted: 01/11/2017] [Indexed: 01/14/2023]
|
28
|
Xiao H, Tan C, Yang G, Dou D. The effect of red ginseng and ginseng leaves on the substance and energy metabolism in hypothyroidism rats. J Ginseng Res 2017; 41:556-565. [PMID: 29021704 PMCID: PMC5628355 DOI: 10.1016/j.jgr.2016.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 11/18/2016] [Accepted: 11/30/2016] [Indexed: 11/11/2022] Open
Abstract
Background Recent studies have revealed that the properties Traditional Chinese Medicine is mostly associated with are substance and energy metabolism. Our study aimed to compare the effect of red ginseng (RG) (warm property) and ginseng leaves (GL; cold property) on the substance and energy metabolism of rats with hypothyroidism. Materials and methods Rats were administered propylthiouracil intraperitoneally for 20 d to cause hypothyroidism. The reference group was orally administered Aconiti Lateralis Radix Praeparaia [FZ (Fuzi in Chinese)], while both the RG and GL groups were orally administrated crude drugs. The rectal, tail, toe, and axilla temperature of the rats were assayed every 3 d. Oxygen consumption, carbon dioxide production, heat production, and energy expenditure were measured via TSE phenoMaster/LabMaster animal monitoring system. Adenosine monophosphate-activated protein kinase, Na+-K+-ATPase, fumarase, pyruvic acid and cyclic adenosine monophosphate/cyclic guanosine monophosphate were determined. Results The lower levels of triiodothyronine, tetraiodothyronine, and thyrotropin-releasing hormone and the higher level of thyroid stimulating hormone revealed the successful establishment of a hypothyroidism model. Oxygen consumption, carbon dioxide production, heat production, and energy expenditure in the FZ and RG groups were obviously increased. The activity of Na+-K+-ATPase and fumarase in the FZ and RG groups was significantly increased. The cyclic adenosine monophosphate/cyclic guanosine monophosphate level in the FZ and RG groups was increased, while the GL group showed the opposite. Conclusion Our research provides a new way to explore the efficiency of Chinese medicine on the basis of the relationship between drug property and effects on substance and energy metabolism.
Collapse
Affiliation(s)
- Hang Xiao
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Cheng Tan
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Guanlin Yang
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Deqiang Dou
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| |
Collapse
|
29
|
Adiponectin protects the rats liver against chronic intermittent hypoxia induced injury through AMP-activated protein kinase pathway. Sci Rep 2016; 6:34151. [PMID: 27678302 PMCID: PMC5039704 DOI: 10.1038/srep34151] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 09/05/2016] [Indexed: 12/25/2022] Open
Abstract
This study was performed to assess the effect of chronic intermittent hypoxia (CIH) on the liver, the associated mechanisms and the potential therapeutic roles of adiponectin (Ad). Sixty rats were randomly assigned to four groups: the normal control (NC), NC and Ad supplement (NC + Ad), CIH, and CIH and Ad supplement (CIH + Ad) groups. The rats in the CIH and CIH + Ad groups were exposed to a hypoxic environment for 4 months. Rats in the NC + Ad and CIH + Ad groups were also treated with an intravenous injection of Ad (10 ug), twice a week. The plasma levels of hepatic enzymes, serum triglyceride, liver triglyceride, fasting blood glucose and hepatic cell apoptosis in hepatic tissue, were higher in the CIH group than in the NC and NC + Ad groups. However, the Ad supplementation in the CIH + Ad group rescued the hepatic tissue insult by activating the AMP-activated protein kinase (AMPK) pathway. In conclusion, Ad could protect against CIH-induced hepatic injury partly through the AMPK pathway.
Collapse
|
30
|
Cameron RB, Beeson CC, Schnellmann RG. Development of Therapeutics That Induce Mitochondrial Biogenesis for the Treatment of Acute and Chronic Degenerative Diseases. J Med Chem 2016; 59:10411-10434. [PMID: 27560192 DOI: 10.1021/acs.jmedchem.6b00669] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mitochondria have various roles in cellular metabolism and homeostasis. Because mitochondrial dysfunction is associated with many acute and chronic degenerative diseases, mitochondrial biogenesis (MB) is a therapeutic target for treating such diseases. Here, we review the role of mitochondrial dysfunction in acute and chronic degenerative diseases and the cellular signaling pathways by which MB is induced. We then review existing work describing the development and application of drugs that induce MB in vitro and in vivo. In particular, we discuss natural products and modulators of transcription factors, kinases, cyclic nucleotides, and G protein-coupled receptors.
Collapse
Affiliation(s)
- Robert B Cameron
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina , 280 Calhoun Street, Charleston, South Carolina 29425, United States.,College of Pharmacy, University of Arizona , 1295 N. Martin Avenue, Tucson, Arizona 85721, United States
| | - Craig C Beeson
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina , 280 Calhoun Street, Charleston, South Carolina 29425, United States
| | - Rick G Schnellmann
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina , 280 Calhoun Street, Charleston, South Carolina 29425, United States.,College of Pharmacy, University of Arizona , 1295 N. Martin Avenue, Tucson, Arizona 85721, United States
| |
Collapse
|
31
|
Boß M, Newbatt Y, Gupta S, Collins I, Brüne B, Namgaladze D. AMPK-independent inhibition of human macrophage ER stress response by AICAR. Sci Rep 2016; 6:32111. [PMID: 27562249 PMCID: PMC4999824 DOI: 10.1038/srep32111] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/02/2016] [Indexed: 12/26/2022] Open
Abstract
Obesity-associated insulin resistance is driven by inflammatory processes in response to metabolic overload. Obesity-associated inflammation can be recapitulated in cell culture by exposing macrophages to saturated fatty acids (SFA), and endoplasmic reticulum (ER) stress responses essentially contribute to pro-inflammatory signalling. AMP-activated protein kinase (AMPK) is a central metabolic regulator with established anti-inflammatory actions. Whether pharmacological AMPK activation suppresses SFA-induced inflammation in a human system is unclear. In a setting of hypoxia-potentiated inflammation induced by SFA palmitate, we found that the AMP-mimetic AMPK activator 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) potently suppressed upregulation of ER stress marker mRNAs and pro-inflammatory cytokines. Furthermore, AICAR inhibited macrophage ER stress responses triggered by ER-stressors thapsigargin or tunicamycin. Surprisingly, AICAR acted independent of AMPK or AICAR conversion to 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranosyl monophosphate (ZMP) while requiring intracellular uptake via the equilibrative nucleoside transporter (ENT) ENT1 or the concentrative nucleoside transporter (CNT) CNT3. AICAR did not affect the initiation of the ER stress response, but inhibited the expression of major ER stress transcriptional effectors. Furthermore, AICAR inhibited autophosphorylation of the ER stress sensor inositol-requiring enzyme 1α (IRE1α), while activating its endoribonuclease activity in vitro. Our results suggest that AMPK-independent inhibition of ER stress responses contributes to anti-inflammatory and anti-diabetic effects of AICAR.
Collapse
Affiliation(s)
- Marcel Boß
- Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
| | - Yvette Newbatt
- Division of Cancer Therapeutics, Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - Sahil Gupta
- Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
| | - Ian Collins
- Division of Cancer Therapeutics, Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - Bernhard Brüne
- Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany.,Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
| | - Dmitry Namgaladze
- Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
| |
Collapse
|
32
|
The potent, indirect adenosine monophosphate- activated protein kinase activator R419 attenuates mitogen-activated protein kinase signaling, inhibits nociceptor excitability, and reduces pain hypersensitivity in mice. Pain Rep 2016; 1. [PMID: 27672681 PMCID: PMC5034875 DOI: 10.1097/pr9.0000000000000562] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Supplemental Digital Content is Available in the Text. There is a great need for new therapeutics for the treatment of pain. A possible avenue to development of such therapeutics is to interfere with signaling pathways engaged in peripheral nociceptors that cause these neurons to become hyperexcitable. There is strong evidence that mitogen-activated protein kinases and phosphoinositide 3-kinase (PI3K)/mechanistic target of rapamycin signaling pathways are key modulators of nociceptor excitability in vitro and in vivo. Activation of adenosine monophosphate-activated protein kinase (AMPK) can inhibit signaling in both of these pathways, and AMPK activators have been shown to inhibit nociceptor excitability and pain hypersensitivity in rodents. R419 is one of, if not the most potent AMPK activator described to date. We tested whether R419 activates AMPK in dorsal root ganglion (DRG) neurons and if this leads to decreased pain hypersensitivity in mice. We find that R419 activates AMPK in DRG neurons resulting in decreased mitogen-activated protein kinase signaling, decreased nascent protein synthesis, and enhanced P body formation. R419 attenuates nerve growth factor (NGF)-induced changes in excitability in DRG neurons and blocks NGF-induced mechanical pain amplification in vivo. Moreover, locally applied R419 attenuates pain hypersensitivity in a model of postsurgical pain and blocks the development of hyperalgesic priming in response to both NGF and incision. We conclude that R419 is a promising lead candidate compound for the development of potent and specific AMPK activation to inhibit pain hypersensitivity as a result of injury.
Collapse
|
33
|
Small-molecule activators of AMP-activated protein kinase as modulators of energy metabolism. Russ Chem Bull 2016. [DOI: 10.1007/s11172-015-1036-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
34
|
Yung MMH, Ngan HYS, Chan DW. Targeting AMPK signaling in combating ovarian cancers: opportunities and challenges. Acta Biochim Biophys Sin (Shanghai) 2016; 48:301-17. [PMID: 26764240 PMCID: PMC4886241 DOI: 10.1093/abbs/gmv128] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 10/29/2015] [Indexed: 12/25/2022] Open
Abstract
The development and strategic application of effective anticancer therapies have turned out to be one of the most critical approaches of managing human cancers. Nevertheless, drug resistance is the major obstacle for clinical management of these diseases especially ovarian cancer. In the past years, substantial studies have been carried out with the aim of exploring alternative therapeutic approaches to enhance efficacy of current chemotherapeutic regimes and reduce the side effects caused in order to produce significant advantages in overall survival and to improve patients' quality of life. Targeting cancer cell metabolism by the application of AMP-activated protein kinase (AMPK)-activating agents is believed to be one of the most plausible attempts. AMPK activators such as 5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside, A23187, metformin, and bitter melon extract not only prevent cancer progression and metastasis but can also be applied as a supplement to enhance the efficacy of cisplatin-based chemotherapy in human cancers such as ovarian cancer. However, because of the undesirable outcomes along with the frequent toxic side effects of most pharmaceutical AMPK activators that have been utilized in clinical trials, attentions of current studies have been aimed at the identification of replaceable reagents from nutraceuticals or traditional medicines. However, the underlying molecular mechanisms of many nutraceuticals in anticancer still remain obscure. Therefore, better understanding of the functional characterization and regulatory mechanism of natural AMPK activators would help pharmaceutical development in opening an area to intervene ovarian cancer and other human cancers.
Collapse
Affiliation(s)
- Mingo M H Yung
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hextan Y S Ngan
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - David W Chan
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
35
|
Martin DSD, Leonard S, Devine R, Redondo C, Kinsella GK, Breen CJ, McEneaney V, Rooney MF, Munsey TS, Porter RK, Sivaprasadarao A, Stephens JC, Findlay JBC. Novel mitochondrial complex I inhibitors restore glucose-handling abilities of high-fat fed mice. J Mol Endocrinol 2016; 56:261-71. [PMID: 26759391 DOI: 10.1530/jme-15-0225] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 01/12/2016] [Indexed: 12/24/2022]
Abstract
Metformin is the main drug of choice for treating type 2 diabetes, yet the therapeutic regimens and side effects of the compound are all undesirable and can lead to reduced compliance. The aim of this study was to elucidate the mechanism of action of two novel compounds which improved glucose handling and weight gain in mice on a high-fat diet. Wildtype C57Bl/6 male mice were fed on a high-fat diet and treated with novel, anti-diabetic compounds. Both compounds restored the glucose handling ability of these mice. At a cellular level, these compounds achieve this by inhibiting complex I activity in mitochondria, leading to AMP-activated protein kinase activation and subsequent increased glucose uptake by the cells, as measured in the mouse C2C12 muscle cell line. Based on the inhibition of NADH dehydrogenase (IC50 27µmolL(-1)), one of these compounds is close to a thousand fold more potent than metformin. There are no indications of off target effects. The compounds have the potential to have a greater anti-diabetic effect at a lower dose than metformin and may represent a new anti-diabetic compound class. The mechanism of action appears not to be as an insulin sensitizer but rather as an insulin substitute.
Collapse
Affiliation(s)
| | | | - Robert Devine
- Department of ChemistryMaynooth University, Maynooth, Ireland
| | - Clara Redondo
- School of Biochemistry and Molecular BiologyUniversity of Leeds, Leeds, UK
| | - Gemma K Kinsella
- School of Food Science and Environmental HealthCollege of Sciences and Health, Dublin Institute of Technology, Dublin, Ireland
| | - Conor J Breen
- Department of BiologyMaynooth University, Maynooth, Ireland
| | | | - Mary F Rooney
- School of Biochemistry & ImmunologyTrinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Tim S Munsey
- School of Biomedical SciencesUniversity of Leeds, Leeds, UK
| | - Richard K Porter
- School of Biochemistry & ImmunologyTrinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | - John C Stephens
- Department of ChemistryMaynooth University, Maynooth, Ireland
| | - John B C Findlay
- Department of BiologyMaynooth University, Maynooth, Ireland School of Biochemistry and Molecular BiologyUniversity of Leeds, Leeds, UK
| |
Collapse
|
36
|
Luo X, Wu J, Jing S, Yan LJ. Hyperglycemic Stress and Carbon Stress in Diabetic Glucotoxicity. Aging Dis 2016; 7:90-110. [PMID: 26816666 DOI: 10.14336/ad.2015.0702] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 07/02/2015] [Indexed: 12/16/2022] Open
Abstract
Diabetes and its complications are caused by chronic glucotoxicity driven by persistent hyperglycemia. In this article, we review the mechanisms of diabetic glucotoxicity by focusing mainly on hyperglycemic stress and carbon stress. Mechanisms of hyperglycemic stress include reductive stress or pseudohypoxic stress caused by redox imbalance between NADH and NAD(+) driven by activation of both the polyol pathway and poly ADP ribose polymerase; the hexosamine pathway; the advanced glycation end products pathway; the protein kinase C activation pathway; and the enediol formation pathway. Mechanisms of carbon stress include excess production of acetyl-CoA that can over-acetylate a proteome and excess production of fumarate that can over-succinate a proteome; both of which can increase glucotoxicity in diabetes. For hyperglycemia stress, we also discuss the possible role of mitochondrial complex I in diabetes as this complex, in charge of NAD(+) regeneration, can make more reactive oxygen species (ROS) in the presence of excess NADH. For carbon stress, we also discuss the role of sirtuins in diabetes as they are deacetylases that can reverse protein acetylation thereby attenuating diabetic glucotoxicity and improving glucose metabolism. It is our belief that targeting some of the stress pathways discussed in this article may provide new therapeutic strategies for treatment of diabetes and its complications.
Collapse
Affiliation(s)
- Xiaoting Luo
- 1 Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; 2 Department of Biochemistry and Molecular Biology, Gannan Medical University, Ganzhou, Jiangxi province, China, 341000
| | - Jinzi Wu
- 1 Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Siqun Jing
- 1 Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; 3 College of Life Sciences and Technology, Xinjiang University, Urumqi, Xinjiang, China, 830046
| | - Liang-Jun Yan
- 1 Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
37
|
Wu J, Jin Z, Zheng H, Yan LJ. Sources and implications of NADH/NAD(+) redox imbalance in diabetes and its complications. Diabetes Metab Syndr Obes 2016; 9:145-53. [PMID: 27274295 PMCID: PMC4869616 DOI: 10.2147/dmso.s106087] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
NAD(+) is a fundamental molecule in metabolism and redox signaling. In diabetes and its complications, the balance between NADH and NAD(+) can be severely perturbed. On one hand, NADH is overproduced due to influx of hyperglycemia to the glycolytic and Krebs cycle pathways and activation of the polyol pathway. On the other hand, NAD(+) can be diminished or depleted by overactivation of poly ADP ribose polymerase that uses NAD(+) as its substrate. Moreover, sirtuins, another class of enzymes that also use NAD(+) as their substrate for catalyzing protein deacetylation reactions, can also affect cellular content of NAD(+). Impairment of NAD(+) regeneration enzymes such as lactate dehydrogenase in erythrocytes and complex I in mitochondria can also contribute to NADH accumulation and NAD(+) deficiency. The consequence of NADH/NAD(+) redox imbalance is initially reductive stress that eventually leads to oxidative stress and oxidative damage to macromolecules, including DNA, lipids, and proteins. Accordingly, redox imbalance-triggered oxidative damage has been thought to be a major factor contributing to the development of diabetes and its complications. Future studies on restoring NADH/NAD(+) redox balance could provide further insights into design of novel antidiabetic strategies.
Collapse
Affiliation(s)
- Jinzi Wu
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Zhen Jin
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Hong Zheng
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
- Department of Basic Theory of Traditional Chinese Medicine, College of Basic Medicine, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Liang-Jun Yan
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
- Correspondence: Liang-Jun Yan, Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA, Tel +1 817 735 2386, Fax +1 817 735 2603, Email
| |
Collapse
|
38
|
Grahame Hardie D. Regulation of AMP-activated protein kinase by natural and synthetic activators. Acta Pharm Sin B 2016; 6:1-19. [PMID: 26904394 PMCID: PMC4724661 DOI: 10.1016/j.apsb.2015.06.002] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 05/28/2015] [Indexed: 12/11/2022] Open
Abstract
The AMP-activated protein kinase (AMPK) is a sensor of cellular energy status that is almost universally expressed in eukaryotic cells. While it appears to have evolved in single-celled eukaryotes to regulate energy balance in a cell-autonomous manner, during the evolution of multicellular animals its role has become adapted so that it also regulates energy balance at the whole body level, by responding to hormones that act primarily on the hypothalamus. AMPK monitors energy balance at the cellular level by sensing the ratios of AMP/ATP and ADP/ATP, and recent structural analyses of the AMPK heterotrimer that have provided insight into the complex mechanisms for these effects will be discussed. Given the central importance of energy balance in diseases that are major causes of morbidity or death in humans, such as type 2 diabetes, cancer and inflammatory disorders, there has been a major drive to develop pharmacological activators of AMPK. Many such activators have been described, and the various mechanisms by which these activate AMPK will be discussed. A particularly large class of AMPK activators are natural products of plants derived from traditional herbal medicines. While the mechanism by which most of these activate AMPK has not yet been addressed, I will argue that many of them may be defensive compounds produced by plants to deter infection by pathogens or grazing by insects or herbivores, and that many of them will turn out to be inhibitors of mitochondrial function.
Collapse
Affiliation(s)
- David Grahame Hardie
- Division of Cell Signaling & Immunology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| |
Collapse
|
39
|
Namgaladze D, Snodgrass RG, Angioni C, Grossmann N, Dehne N, Geisslinger G, Brüne B. AMP-activated protein kinase suppresses arachidonate 15-lipoxygenase expression in interleukin 4-polarized human macrophages. J Biol Chem 2015; 290:24484-94. [PMID: 26276392 DOI: 10.1074/jbc.m115.678243] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Indexed: 01/20/2023] Open
Abstract
Macrophages respond to the Th2 cytokine IL-4 with elevated expression of arachidonate 15-lipoxygenase (ALOX15). Although IL-4 signaling elicits anti-inflammatory responses, 15-lipoxygenase may either support or inhibit inflammatory processes in a context-dependent manner. AMP-activated protein kinase (AMPK) is a metabolic sensor/regulator that supports an anti-inflammatory macrophage phenotype. How AMPK activation is linked to IL-4-elicited gene signatures remains unexplored. Using primary human macrophages stimulated with IL-4, we observed elevated ALOX15 mRNA and protein expression, which was attenuated by AMPK activation. AMPK activators, e.g. phenformin and aminoimidazole-4-carboxamide 1-β-d-ribofuranoside inhibited IL-4-evoked activation of STAT3 while leaving activation of STAT6 and induction of typical IL-4-responsive genes intact. In addition, phenformin prevented IL-4-induced association of STAT6 and Lys-9 acetylation of histone H3 at the ALOX15 promoter. Activating AMPK abolished cellular production of 15-lipoxygenase arachidonic acid metabolites in IL-4-stimulated macrophages, which was mimicked by ALOX15 knockdown. Finally, pretreatment of macrophages with IL-4 for 48 h increased the mRNA expression of the proinflammatory cytokines IL-6, IL-12, CXCL9, and CXCL10 induced by subsequent stimulation with lipopolysaccharide. This response was attenuated by inhibition of ALOX15 or activation of AMPK during incubation with IL-4. In conclusion, limiting ALOX15 expression by AMPK may promote an anti-inflammatory phenotype of IL-4-stimulated human macrophages.
Collapse
Affiliation(s)
| | | | - Carlo Angioni
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Nina Grossmann
- From the Institute of Biochemistry I, Faculty of Medicine and
| | - Nathalie Dehne
- From the Institute of Biochemistry I, Faculty of Medicine and
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Bernhard Brüne
- From the Institute of Biochemistry I, Faculty of Medicine and
| |
Collapse
|
40
|
Low Wang CC, Galinkin JL, Hiatt WR. Toxicity of a novel therapeutic agent targeting mitochondrial complex I. Clin Pharmacol Ther 2015; 98:551-9. [PMID: 26108785 DOI: 10.1002/cpt.178] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/19/2015] [Indexed: 12/14/2022]
Abstract
R118 is an experimental compound that completed preclinical development as a potential medical therapy for the exercise limitation in peripheral artery disease. Animal studies established that R118 provided partial and reversible mitochondrial complex I inhibition with consequent increases in adenosine monophosphate (AMP) kinase activation in liver and skeletal muscle. After demonstration of improved exercise performance in a mouse model and safety in rodent and primate models, a phase I trial was performed in 24 subjects randomized to R118 vs. placebo (5:1) in escalating doses. Plasma lactic acid levels were transiently elevated in 20% of subjects at the lowest dose and in 100% of subjects using a different formulation at the highest dose, which was associated with hospitalization in all subjects and severe metabolic acidosis requiring prolonged intubation in two subjects. Thus, inhibition of mitochondrial complex I with R118 resulted in severe lactic acidosis, representing unacceptable toxicity from this mechanism of action.
Collapse
Affiliation(s)
- C C Low Wang
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, Colorado, USA.,CPC Clinical Research, Aurora, Colorado, USA
| | - J L Galinkin
- CPC Clinical Research, Aurora, Colorado, USA.,Department of Anesthesia, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - W R Hiatt
- CPC Clinical Research, Aurora, Colorado, USA.,Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
41
|
The AMPK activator R419 improves exercise capacity and skeletal muscle insulin sensitivity in obese mice. Mol Metab 2015; 4:643-51. [PMID: 26413470 PMCID: PMC4563030 DOI: 10.1016/j.molmet.2015.06.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 05/27/2015] [Accepted: 06/05/2015] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE Skeletal muscle AMP-activated protein kinase (AMPK) is important for regulating glucose homeostasis, mitochondrial content and exercise capacity. R419 is a mitochondrial complex-I inhibitor that has recently been shown to acutely activate AMPK in myotubes. Our main objective was to examine whether R419 treatment improves insulin sensitivity and exercise capacity in obese insulin resistant mice and whether skeletal muscle AMPK was important for mediating potential effects. METHODS Glucose homeostasis, insulin sensitivity, exercise capacity, and electron transport chain content/activity were examined in wildtype (WT) and AMPK β1β2 muscle-specific null (AMPK-MKO) mice fed a high-fat diet (HFD) with or without R419 supplementation. RESULTS There was no change in weight gain, adiposity, glucose tolerance or insulin sensitivity between HFD-fed WT and AMPK-MKO mice. In both HFD-fed WT and AMPK-MKO mice, R419 enhanced insulin tolerance, insulin-stimulated glucose disposal, skeletal muscle 2-deoxyglucose uptake, Akt phosphorylation and glucose transporter 4 (GLUT4) content independently of alterations in body mass. In WT, but not AMPK-MKO mice, R419 improved treadmill running capacity. Treatment with R419 increased muscle electron transport chain content and activity in WT mice; effects which were blunted in AMPK-MKO mice. CONCLUSIONS Treatment of obese mice with R419 improved skeletal muscle insulin sensitivity through a mechanism that is independent of skeletal muscle AMPK. R419 also increases exercise capacity and improves mitochondrial function in obese WT mice; effects that are diminished in the absence of skeletal muscle AMPK. These findings suggest that R419 may be a promising therapy for improving whole-body glucose homeostasis and exercise capacity.
Collapse
Key Words
- 2-DG, 2-deoxyglucose
- ACC, acetyl-CoA carboxylase
- AICAR, 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside
- AMPK
- AMPK, AMP-activated protein kinase
- AMPK-MKO, skeletal muscle-specific AMPK β1β2 floxed Cre-
- AUC, area under the curve
- COX, cytochrome c oxidase
- CT, computed tomography
- Complex-I
- Diabetes
- EDL, extensor digitorum longus
- Exercise-mimetic
- GDR, glucose disposal rate
- GIR, glucose infusion rate
- GLUT4, glucose transporter 4
- HFD, high-fat diet (45% kcal fat)
- HGO, hepatic glucose output
- Mitochondrial
- OXPHOS, proteins involved in oxidative phosphorylation (electron transport chain)
- Obesity
- R419
- R419, N-(1-(4-cyanobenzyl) piperidin-4-yl)-6-(4-(4-methoxybenzoyl) piperidine-1-carbonyl
- TA, tibialis anterior
- Tbp, TATA-binding protein
- WT, wildtype
Collapse
|
42
|
Jayanthy G, Subramanian S. RA abrogates hepatic gluconeogenesis and insulin resistance by enhancing IRS-1 and AMPK signalling in experimental type 2 diabetes. RSC Adv 2015. [DOI: 10.1039/c5ra04605j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
RA abrogates hyperglycemia and insulin resistance, the primary features of type 2 diabetes (T2DM).
Collapse
Affiliation(s)
- G. Jayanthy
- Department of Biochemistry
- University of Madras
- Guindy Campus
- Chennai
- India
| | - S. Subramanian
- Department of Biochemistry
- University of Madras
- Guindy Campus
- Chennai
- India
| |
Collapse
|
43
|
Jenkins Y, Sun TQ, Li Y, Markovtsov V, Uy G, Gross L, Goff DA, Shaw SJ, Boralsky L, Singh R, Payan DG, Hitoshi Y. Global metabolite profiling of mice with high-fat diet-induced obesity chronically treated with AMPK activators R118 or metformin reveals tissue-selective alterations in metabolic pathways. BMC Res Notes 2014; 7:674. [PMID: 25252968 PMCID: PMC4182811 DOI: 10.1186/1756-0500-7-674] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 09/17/2014] [Indexed: 12/25/2022] Open
Abstract
Background The novel small molecule R118 and the biguanide metformin, a first-line therapy for type 2 diabetes (T2D), both activate the critical cellular energy sensor 5′-AMP-activated protein kinase (AMPK) via modulation of mitochondrial complex I activity. Activation of AMPK results in both acute responses and chronic adaptations, which serve to restore energy homeostasis. Metformin is thought to elicit its beneficial effects on maintenance of glucose homeostasis primarily though impacting glucose and fat metabolism in the liver. Given the commonalities in their mechanisms of action and that R118 also improves glucose homeostasis in a murine model of T2D, the effects of both R118 and metformin on metabolic pathways in vivo were compared in order to determine whether R118 elicits its beneficial effects through similar mechanisms. Results Global metabolite profiling of tissues and plasma from mice with diet-induced obesity chronically treated with either R118 or metformin revealed tissue-selective effects of each compound. Whereas metformin treatment resulted in stronger reductions in glucose and lipid metabolites in the liver compared to R118, upregulation of skeletal muscle glycolysis and lipolysis was apparent only in skeletal muscle from R118-treated animals. Both compounds increased β-hydroxybutyrate levels, but this effect was lost after compound washout. Metformin, but not R118, increased plasma levels of metabolites involved in purine metabolism. Conclusions R118 treatment but not metformin resulted in increased glycolysis and lipolysis in skeletal muscle. In contrast, metformin had a greater impact than R118 on glucose and fat metabolism in liver tissue. Electronic supplementary material The online version of this article (doi:10.1186/1756-0500-7-674) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yonchu Jenkins
- Rigel Pharmaceuticals, Inc,, South San Francisco, CA, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Rana S, Blowers EC, Natarajan A. Small molecule adenosine 5'-monophosphate activated protein kinase (AMPK) modulators and human diseases. J Med Chem 2014; 58:2-29. [PMID: 25122135 DOI: 10.1021/jm401994c] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Adenosine 5'-monophosphate activated protein kinase (AMPK) is a master sensor of cellular energy status that plays a key role in the regulation of whole-body energy homeostasis. AMPK is a serine/threonine kinase that is activated by upstream kinases LKB1, CaMKKβ, and Tak1, among others. AMPK exists as αβγ trimeric complexes that are allosterically regulated by AMP, ADP, and ATP. Dysregulation of AMPK has been implicated in a number of metabolic diseases including type 2 diabetes mellitus and obesity. Recent studies have associated roles of AMPK with the development of cancer and neurological disorders, making it a potential therapeutic target to treat human diseases. This review focuses on the structure and function of AMPK, its role in human diseases, and its direct substrates and provides a brief synopsis of key AMPK modulators and their relevance in human diseases.
Collapse
Affiliation(s)
- Sandeep Rana
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center , Omaha, Nebraska 68198-6805, United States
| | | | | |
Collapse
|
45
|
Abstract
Recent discoveries of AMPK activators point to the large number of therapeutic candidates that can be transformed to successful designs of novel drugs. AMPK is a universal energy sensor and influences almost all physiological processes in the cells. Thus, regulation of the cellular energy metabolism can be achieved in selective tissues via the artificial activation of AMPK by small molecules. Recently, special attention has been given to direct activators of AMPK that are regulated by several nonspecific upstream factors. The direct activation of AMPK, by definition, should lead to more specific biological activities and as a result minimize possible side effects.
Collapse
|
46
|
White PJ, St-Pierre P, Charbonneau A, Mitchell PL, St-Amand E, Marcotte B, Marette A. Protectin DX alleviates insulin resistance by activating a myokine-liver glucoregulatory axis. Nat Med 2014; 20:664-9. [PMID: 24813250 PMCID: PMC4978533 DOI: 10.1038/nm.3549] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/03/2014] [Indexed: 12/21/2022]
Abstract
We previously demonstrated that low biosynthesis of ω-3 derived pro-resolution mediators termed protectins is associated with an impaired global resolution capacity, inflammation and insulin resistance in obese high fat-fed mice1. These findings prompted a more direct study of the therapeutic potential of protectins for the treatment of metabolic disorders. Herein we found that protectin DX (PDX) exerts an unanticipated glucoregulatory activity that is distinct from its anti-inflammatory actions. PDX was found to selectively stimulate the release of the prototypic myokine interleukin-6 (IL-6) from skeletal muscle and thereby initiate a myokine-liver signaling axis, which blunts hepatic glucose production via Signal transducer and activator of transcription 3 (STAT3) mediated transcriptional suppression of the gluconeogenic program. These effects of PDX were abrogated in IL-6 null mice. PDX also activates AMP-activated protein kinase (AMPK) but in an IL-6 independent manner. Notably, we demonstrate that administration of PDX to obese diabetic db/db mice raises skeletal muscle IL-6 and substantially improves insulin sensitivity in this severe model of diabetes, without any impact on adipose tissue inflammation. Our findings thus support the development of PDX-based selective muscle IL-6 secretagogues as a new class of therapy for the treatment of insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
- Phillip J White
- 1] Department of Medicine, Québec Heart and Lung Institute, Laval University, Québec, Québec, Canada. [2] Institute of Nutrition and Functional Foods, Laval University, Québec, Québec, Canada
| | - Philippe St-Pierre
- 1] Department of Medicine, Québec Heart and Lung Institute, Laval University, Québec, Québec, Canada. [2] Institute of Nutrition and Functional Foods, Laval University, Québec, Québec, Canada
| | - Alexandre Charbonneau
- 1] Department of Medicine, Québec Heart and Lung Institute, Laval University, Québec, Québec, Canada. [2] Institute of Nutrition and Functional Foods, Laval University, Québec, Québec, Canada
| | - Patricia L Mitchell
- 1] Department of Medicine, Québec Heart and Lung Institute, Laval University, Québec, Québec, Canada. [2] Institute of Nutrition and Functional Foods, Laval University, Québec, Québec, Canada
| | - Emmanuelle St-Amand
- 1] Department of Medicine, Québec Heart and Lung Institute, Laval University, Québec, Québec, Canada. [2] Institute of Nutrition and Functional Foods, Laval University, Québec, Québec, Canada
| | - Bruno Marcotte
- 1] Department of Medicine, Québec Heart and Lung Institute, Laval University, Québec, Québec, Canada. [2] Institute of Nutrition and Functional Foods, Laval University, Québec, Québec, Canada
| | - André Marette
- 1] Department of Medicine, Québec Heart and Lung Institute, Laval University, Québec, Québec, Canada. [2] Institute of Nutrition and Functional Foods, Laval University, Québec, Québec, Canada
| |
Collapse
|