1
|
Son DS, Done KA, Son J, Izban MG, Virgous C, Lee ES, Adunyah SE. Intermittent Fasting Attenuates Obesity-Induced Triple-Negative Breast Cancer Progression by Disrupting Cell Cycle, Epithelial-Mesenchymal Transition, Immune Contexture, and Proinflammatory Signature. Nutrients 2024; 16:2101. [PMID: 38999849 PMCID: PMC11243652 DOI: 10.3390/nu16132101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
Obesity is associated with one-fifth of cancer deaths, and breast cancer is one of the obesity-related cancers. Triple-negative breast cancer (TNBC) lacks estrogen and progesterone receptors and human epidermal growth factor receptor 2, leading to the absence of these therapeutic targets, followed by poor overall survival. We investigated if obesity could hasten TNBC progression and intermittent fasting (IF) could attenuate the progression of obesity-related TNBC. Our meta-analysis of the TNBC outcomes literature showed that obesity led to poorer overall survival in TNBC patients. Fasting-mimicking media reduced cell proliferation disrupted the cell cycle, and decreased cell migration and invasion. IF decreased body weight in obese mice but no change in normal mice. Obese mice exhibited elevated plasma glucose and cholesterol levels, increased tumor volume and weight, and enhanced macrophage accumulation in tumors. The obesity-exacerbated TNBC progression was attenuated after IF, which decreased cyclin B1 and vimentin levels and reduced the proinflammatory signature in the obesity-associated tumor microenvironment. IF attenuated obesity-induced TNBC progression through reduced obesity and tumor burdens in cell and animal experiments, supporting the potential of a cost-effective adjuvant IF therapy for TNBC through lifestyle change. Further evidence is needed of these IF benefits in TNBC, including from human clinical trials.
Collapse
Affiliation(s)
- Deok-Soo Son
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA;
| | - Kaitlyn A. Done
- Biochemistry Program, College of Arts and Sciences, Spelman College, Atlanta, GA 30314, USA
| | - Jubin Son
- Neuroscience Program, College of Arts and Sciences, The University of Tennessee, Knoxville, TN 37996, USA
| | - Michael G. Izban
- Pathology, Anatomy and Cell Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - Carlos Virgous
- Animal Core Facility, Meharry Medical College, Nashville, TN 37208, USA
| | - Eun-Sook Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL 32301, USA;
| | - Samuel E. Adunyah
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA;
| |
Collapse
|
2
|
Rademeyer KM, R Nass S, Jones AM, Ohene-Nyako M, Hauser KF, McRae M. Fentanyl dysregulates neuroinflammation and disrupts blood-brain barrier integrity in HIV-1 Tat transgenic mice. J Neurovirol 2024; 30:1-21. [PMID: 38280928 PMCID: PMC11232468 DOI: 10.1007/s13365-023-01186-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 10/29/2023] [Accepted: 11/16/2023] [Indexed: 01/29/2024]
Abstract
Opioid overdose deaths have dramatically increased by 781% from 1999 to 2021. In the setting of HIV, opioid drug abuse exacerbates neurotoxic effects of HIV in the brain, as opioids enhance viral replication, promote neuronal dysfunction and injury, and dysregulate an already compromised inflammatory response. Despite the rise in fentanyl abuse and the close association between opioid abuse and HIV infection, the interactive comorbidity between fentanyl abuse and HIV has yet to be examined in vivo. The HIV-1 Tat-transgenic mouse model was used to understand the interactive effects between fentanyl and HIV. Tat is an essential protein produced during HIV that drives the transcription of new virions and exerts neurotoxic effects within the brain. The Tat-transgenic mouse model uses a glial fibrillary acidic protein (GFAP)-driven tetracycline promoter which limits Tat production to the brain and this model is well used for examining mechanisms related to neuroHIV. After 7 days of fentanyl exposure, brains were harvested. Tight junction proteins, the vascular cell adhesion molecule, and platelet-derived growth factor receptor-β were measured to examine the integrity of the blood brain barrier. The immune response was assessed using a mouse-specific multiplex chemokine assay. For the first time in vivo, we demonstrate that fentanyl by itself can severely disrupt the blood-brain barrier and dysregulate the immune response. In addition, we reveal associations between inflammatory markers and tight junction proteins at the blood-brain barrier.
Collapse
Affiliation(s)
- Kara M Rademeyer
- Department of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University, Richmond, VA, 23298, U.S.A
| | - Sara R Nass
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, U.S.A
| | - Austin M Jones
- Department of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University, Richmond, VA, 23298, U.S.A
| | - Michael Ohene-Nyako
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, U.S.A
| | - Kurt F Hauser
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, U.S.A
| | - MaryPeace McRae
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA, 22908, U.S.A..
| |
Collapse
|
3
|
Dai Y, Xu J, Gong X, Wei J, Gao Y, Chai R, Lu C, Zhao B, Kang Y. Human Fallopian Tube-Derived Organoids with TP53 and RAD51D Mutations Recapitulate an Early Stage High-Grade Serous Ovarian Cancer Phenotype In Vitro. Int J Mol Sci 2024; 25:886. [PMID: 38255960 PMCID: PMC10815309 DOI: 10.3390/ijms25020886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
RAD51D mutations have been implicated in the transformation of normal fallopian tube epithelial (FTE) cells into high-grade serous ovarian cancer (HGSOC), one of the most prevalent and aggressive gynecologic malignancies. Currently, no suitable model exists to elucidate the role of RAD51D in disease initiation and progression. Here, we established organoids from primary human FTE and introduced TP53 as well as RAD51D knockdown to enable the exploration of their mutational impact on FTE lesion generation. We observed that TP53 deletion rescued the adverse effects of RAD51D deletion on the proliferation, stemness, senescence, and apoptosis of FTE organoids. RAD51D deletion impaired the homologous recombination (HR) function and induced G2/M phase arrest, whereas concurrent TP53 deletion mitigated G0/G1 phase arrest and boosted DNA replication when combined with RAD51D mutation. The co-deletion of TP53 and RAD51D downregulated cilia assembly, development, and motility, but upregulated multiple HGSOC-associated pathways, including the IL-17 signaling pathway. IL-17A treatment significantly improved cell viability. TP53 and RAD51D co-deleted organoids exhibited heightened sensitivity to platinum, poly-ADP ribose polymerase inhibitors (PARPi), and cell cycle-related medication. In summary, our research highlighted the use of FTE organoids with RAD51D mutations as an invaluable in vitro platform for the early detection of carcinogenesis, mechanistic exploration, and drug screening.
Collapse
Affiliation(s)
- Yilin Dai
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Jing Xu
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Xiaofeng Gong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200438, China
| | - Jinsong Wei
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200438, China
| | - Yi Gao
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Ranran Chai
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Chong Lu
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Bing Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200438, China
| | - Yu Kang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| |
Collapse
|
4
|
Sitaru S, Budke A, Bertini R, Sperandio M. Therapeutic inhibition of CXCR1/2: where do we stand? Intern Emerg Med 2023; 18:1647-1664. [PMID: 37249756 PMCID: PMC10227827 DOI: 10.1007/s11739-023-03309-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023]
Abstract
Mounting experimental evidence from in vitro and in vivo animal studies points to an essential role of the CXCL8-CXCR1/2 axis in neutrophils in the pathophysiology of inflammatory and autoimmune diseases. In addition, the pathogenetic involvement of neutrophils and the CXCL8-CXCR1/2 axis in cancer progression and metastasis is increasingly recognized. Consequently, therapeutic targeting of CXCR1/2 or CXCL8 has been intensively investigated in recent years using a wide array of in vitro and animal disease models. While a significant benefit for patients with unwanted neutrophil-mediated inflammatory conditions may be expected from a potential clinical use of inhibitors, their use in severe infections or sepsis might be problematic and should be carefully and thoroughly evaluated in animal models and clinical trials. Translating the approaches using inhibitors of the CXCL8-CXCR1/2 axis to cancer therapy is definitively a new and promising research avenue, which parallels the ongoing efforts to clearly define the involvement of neutrophils and the CXCL8-CXCR1/2 axis in neoplastic diseases. Our narrative review summarizes the current literature on the activation and inhibition of these receptors in neutrophils, key inhibitor classes for CXCR2 and the therapeutic relevance of CXCR2 inhibition focusing here on gastrointestinal diseases.
Collapse
Affiliation(s)
- Sebastian Sitaru
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilian University, Großhaderner Str. 9, Planegg-Martinsried, 82152, Munich, Germany
- Department of Dermatology and Allergy, School of Medicine, Technical University of Munich, Munich, Germany
| | - Agnes Budke
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilian University, Großhaderner Str. 9, Planegg-Martinsried, 82152, Munich, Germany
| | | | - Markus Sperandio
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilian University, Großhaderner Str. 9, Planegg-Martinsried, 82152, Munich, Germany.
| |
Collapse
|
5
|
Ji HZ, Chen L, Ren M, Li S, Liu TY, Chen HJ, Yu HH, Sun Y. CXCL8 Promotes Endothelial-to-Mesenchymal Transition of Endothelial Cells and Protects Cells from Erastin-Induced Ferroptosis via CXCR2-Mediated Activation of the NF-κB Signaling Pathway. Pharmaceuticals (Basel) 2023; 16:1210. [PMID: 37765018 PMCID: PMC10536478 DOI: 10.3390/ph16091210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
CXCL8-CXCR1/CXCR2 signaling pathways might form complex crosstalk among different cell types within the ovarian tumor microenvironment, thereby modulating the behaviors of different cells. This study aimed to investigate the expression pattern of CXCL8 in the ovarian tumor microenvironment and its impact on both endothelial-to-mesenchymal transition (EndMT) and ferroptosis of endothelial cells. The human monocytic cell line THP-1 and the human umbilical vein endothelial cell line PUMC-HUVEC-T1 were used to conduct in vitro studies. Erastin was used to induce ferroptosis. Results showed that tumor-associated macrophages are the major source of CXCL8 in the tumor microenvironment. CXCL8 treatment promoted the nucleus entrance of NF-κB p65 and p65 phosphorylation via CXCR2 in endothelial cells, suggesting activated NF-κB signaling. Via the NF-κB signaling pathway, CXCL8 enhanced TGF-β1-induced EndMT of PUMC-HUVEC-T1 cells and elevated their expression of SLC7A11 and GPX4. These trends were drastically weakened in groups with CXCR2 knockdown or SB225002 treatment. TPCA-1 reversed CXCL8-induced upregulation of SLC7A11 and GPX4. CXCL8 protected endothelial cells from erastin-induced ferroptosis. However, these protective effects were largely canceled when CXCR2 was knocked down. In summary, CXCL8 can activate the NF-κB signaling pathway in endothelial cells in a CXCR2-dependent manner. The CXCL8-CXCR2/NF-κB axis can enhance EndMT and activate SLC7A11 and GPX4 expression, protecting endothelial cells from ferroptosis.
Collapse
Affiliation(s)
- Hai-zhou Ji
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China; (H.-z.J.); (L.C.); (S.L.); (T.-y.L.); (H.-j.C.); (H.-h.Y.)
| | - Li Chen
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China; (H.-z.J.); (L.C.); (S.L.); (T.-y.L.); (H.-j.C.); (H.-h.Y.)
| | - Mi Ren
- Department of Oncological Nursing, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China;
| | - Sang Li
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China; (H.-z.J.); (L.C.); (S.L.); (T.-y.L.); (H.-j.C.); (H.-h.Y.)
| | - Tong-yu Liu
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China; (H.-z.J.); (L.C.); (S.L.); (T.-y.L.); (H.-j.C.); (H.-h.Y.)
| | - Hong-ju Chen
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China; (H.-z.J.); (L.C.); (S.L.); (T.-y.L.); (H.-j.C.); (H.-h.Y.)
| | - Hui-hui Yu
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China; (H.-z.J.); (L.C.); (S.L.); (T.-y.L.); (H.-j.C.); (H.-h.Y.)
| | - Yang Sun
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China; (H.-z.J.); (L.C.); (S.L.); (T.-y.L.); (H.-j.C.); (H.-h.Y.)
| |
Collapse
|
6
|
Ghosh Roy G, Geard N, Verspoor K, He S. MPVNN: Mutated Pathway Visible Neural Network architecture for interpretable prediction of cancer-specific survival risk. Bioinformatics 2022; 38:5026-5032. [PMID: 36124954 DOI: 10.1093/bioinformatics/btac636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 08/04/2022] [Accepted: 09/16/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION Survival risk prediction using gene expression data is important in making treatment decisions in cancer. Standard neural network (NN) survival analysis models are black boxes with a lack of interpretability. More interpretable visible neural network architectures are designed using biological pathway knowledge. But they do not model how pathway structures can change for particular cancer types. RESULTS We propose a novel Mutated Pathway Visible Neural Network (MPVNN) architecture, designed using prior signaling pathway knowledge and random replacement of known pathway edges using gene mutation data simulating signal flow disruption. As a case study, we use the PI3K-Akt pathway and demonstrate overall improved cancer-specific survival risk prediction of MPVNN over other similar-sized NN and standard survival analysis methods. We show that trained MPVNN architecture interpretation, which points to smaller sets of genes connected by signal flow within the PI3K-Akt pathway that is important in risk prediction for particular cancer types, is reliable. AVAILABILITY AND IMPLEMENTATION The data and code are available at https://github.com/gourabghoshroy/MPVNN. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Gourab Ghosh Roy
- School of Computer Science, University of Birmingham, Birmingham B15 2TT, UK.,School of Computing and Information Systems, University of Melbourne, Melbourne 3052, Australia
| | - Nicholas Geard
- School of Computing and Information Systems, University of Melbourne, Melbourne 3052, Australia
| | - Karin Verspoor
- School of Computing and Information Systems, University of Melbourne, Melbourne 3052, Australia.,School of Computing Technologies, RMIT University, Melbourne 3000, Australia
| | - Shan He
- School of Computer Science, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
7
|
Gnosa S, Puig-Blasco L, Piotrowski KB, Freiberg ML, Savickas S, Madsen DH, Auf dem Keller U, Kronqvist P, Kveiborg M. ADAM17-mediated EGFR ligand shedding directs macrophage promoted cancer cell invasion. JCI Insight 2022; 7:155296. [PMID: 35998057 DOI: 10.1172/jci.insight.155296] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Macrophages in the tumor microenvironment have a significant impact on tumor progression. Depending on the signaling environment in the tumor, macrophages can either support or constrain tumor progression. It is therefore of therapeutic interest to identify the tumor-derived factors that control macrophage education. With this aim, we correlated the expression of ADAM proteases, which are key mediators of cell-cell signaling, to the expression of pro-tumorigenic macrophage markers in human cancer cohorts. We identified ADAM17, a sheddase upregulated in many cancer types, as a protein of interest. Depletion of ADAM17 in cancer cell lines reduced the expression of several pro-tumorigenic markers in neighboring macrophages in vitro as well as in mouse models. Moreover, ADAM17-/- educated macrophages demonstrated a reduced ability to induce cancer cell invasion. Using mass spectrometry-based proteomics and ELISA, we identified HB-EGF and AREG, shed by ADAM17 in the cancer cells, as the implicated molecular mediators of macrophage education. Additionally, RNA-seq and ELISA experiments revealed that ADAM17-dependent HB-EGF-ligand release induces the expression and secretion of CXCL chemokines in macrophages, which in turn stimulates cancer cell invasion.In conclusion, we provide evidence that ADAM17 mediates a paracrine EGFR-ligand-chemokine feedback loop, whereby cancer cells hijack macrophages to promote tumor progression.
Collapse
Affiliation(s)
| | - Laia Puig-Blasco
- Biotech Research and Innovation Centre, Copenhagen University, Copenhagen, Denmark
| | | | - Marie L Freiberg
- Biotech Research and Innovation Centre, Copenhagen University, Copenhagen, Denmark
| | - Simonas Savickas
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Copenhagen, Denmark
| | - Daniel H Madsen
- Center for Cancer Immune Therapy (CCIT), Department of Haematology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ulrich Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Copenhagen, Denmark
| | | | | |
Collapse
|
8
|
Bose S, Saha P, Chatterjee B, Srivastava AK. Chemokines driven ovarian cancer progression, metastasis and chemoresistance: potential pharmacological targets for cancer therapy. Semin Cancer Biol 2022; 86:568-579. [DOI: 10.1016/j.semcancer.2022.03.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 12/18/2022]
|
9
|
CXC Chemokine Signaling in Progression of Epithelial Ovarian Cancer: Theranostic Perspectives. Int J Mol Sci 2022; 23:ijms23052642. [PMID: 35269786 PMCID: PMC8910147 DOI: 10.3390/ijms23052642] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
Patients with epithelial ovarian cancer (EOC) are often diagnosed at an advanced stage due to nonspecific symptoms and ineffective screening approaches. Although chemotherapy has been available and widely used for the treatment of advanced EOC, the overall prognosis remains dismal. As part of the intrinsic defense mechanisms against cancer development and progression, immune cells are recruited into the tumor microenvironment (TME), and this process is directed by the interactions between different chemokines and their receptors. In this review, the functional significance of CXC chemokine ligands/chemokine receptors (CXCL/CXCR) and their roles in modulating EOC progression are summarized. The status and prospects of CXCR/CXCL-based theranostic strategies in EOC management are also discussed.
Collapse
|
10
|
CXCR2 Receptor: Regulation of Expression, Signal Transduction, and Involvement in Cancer. Int J Mol Sci 2022; 23:ijms23042168. [PMID: 35216283 PMCID: PMC8878198 DOI: 10.3390/ijms23042168] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 01/25/2023] Open
Abstract
Chemokines are a group of about 50 chemotactic cytokines crucial for the migration of immune system cells and tumor cells, as well as for metastasis. One of the 20 chemokine receptors identified to date is CXCR2, a G-protein-coupled receptor (GPCR) whose most known ligands are CXCL8 (IL-8) and CXCL1 (GRO-α). In this article we present a comprehensive review of literature concerning the role of CXCR2 in cancer. We start with regulation of its expression at the transcriptional level and how this regulation involves microRNAs. We show the mechanism of CXCR2 signal transduction, in particular the action of heterotrimeric G proteins, phosphorylation, internalization, intracellular trafficking, sequestration, recycling, and degradation of CXCR2. We discuss in detail the mechanism of the effects of activated CXCR2 on the actin cytoskeleton. Finally, we describe the involvement of CXCR2 in cancer. We focused on the importance of CXCR2 in tumor processes such as proliferation, migration, and invasion of tumor cells as well as the effects of CXCR2 activation on angiogenesis, lymphangiogenesis, and cellular senescence. We also discuss the importance of CXCR2 in cell recruitment to the tumor niche including tumor-associated neutrophils (TAN), tumor-associated macrophages (TAM), myeloid-derived suppressor cells (MDSC), and regulatory T (Treg) cells.
Collapse
|
11
|
Prognostic and Immunological Significance of CXCR2 in Ovarian Cancer: A Promising Target for Survival Outcome and Immunotherapeutic Response Assessment. DISEASE MARKERS 2021; 2021:5350232. [PMID: 34840630 PMCID: PMC8626184 DOI: 10.1155/2021/5350232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 01/14/2023]
Abstract
Objective Uncovering genetic and immunologic tumor features is critical to gain insights into the mechanisms of immunotherapeutic response. Herein, this study observed the functions of CXCR2 in prognosis and immunology of ovarian cancer. Methods Expression, prognostic significance, and genetic mutations of CXCR2 were analyzed in diverse cancer types based on TCGA and GTEx datasets. Associations of CXCR2 expression with immune checkpoints, neoantigens, tumor mutational burden (TMB), and microsatellite instability (MSI) were evaluated across pancancer. CXCR2-relevant genes were identified, and their biological functions were investigated in ovarian cancer. Through three algorithms (TIMER, quanTIseq, and xCell), we assessed the relationships of CXCR2 with immune cell infiltration in ovarian cancer. GSEA was adopted for inferring KEGG and hallmark pathways involved in CXCR2. Results CXCR2 presented abnormal expression in tumors than paired normal tissues across pancancer. Higher expression of CXCR2 was found in ovarian cancer. Moreover, its expression was in relation to overall survival and progression including ovarian cancer. Prominent associations of CXCR2 with immune checkpoints, neoantigens, TMB, and MSI were observed in human cancers. Somatic mutations of CXCR2 frequently occurred across pancancer. Amplification was the main mutational type of CXCR2 in ovarian cancer. CXCR2-relevant genes were markedly enriched in immunity activation and carcinogenic pathways in ovarian cancer. Moreover, it participated in modulating immune cell infiltration in the tumor microenvironment of ovarian cancer such as macrophage and immune response was prominently modulated by CXCR2. Conclusion Collectively, CXCR2 acts as a promising prognostic and immunological biomarker as well as a novel immunotherapeutic target of ovarian cancer.
Collapse
|
12
|
Choe D, Lee ES, Beeghly-Fadiel A, Wilson AJ, Whalen MM, Adunyah SE, Son DS. High-Fat Diet-Induced Obese Effects of Adipocyte-Specific CXCR2 Conditional Knockout in the Peritoneal Tumor Microenvironment of Ovarian Cancer. Cancers (Basel) 2021; 13:cancers13195033. [PMID: 34638514 PMCID: PMC8508092 DOI: 10.3390/cancers13195033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 01/11/2023] Open
Abstract
Obesity contributes to ovarian cancer (OC) progression via tumorigenic chemokines. Adipocytes and OC cells highly express CXCR2, and its ligands CXCL1/8, respectively, indicating that the CXCL1/8-CXCR2 axis is a molecular link between obesity and OC. Here, we investigated how the adipocyte-specific CXCR2 conditional knockout (cKO) affected the peritoneal tumor microenvironment of OC in a high-fat diet (HFD)-induced obese mouse model. We first generated adipocyte-specific CXCR2 cKO in mice: adipose tissues were not different in crown-like structures and adipocyte size between the wild-type (WT) and cKO mice but expressed lower levels of CCL2/6 compared to the obese WT mice. HFD-induced obese mice had a shorter survival time than lean mice. Particularly, obese WT and cKO mice developed higher tumors and ascites burdens, respectively. The ascites from the obese cKO mice showed increased vacuole clumps but decreased the floating tumor burden, tumor-attached macrophages, triglyceride, free fatty acid, CCL2, and TNF levels compared to obese WT mice. A tumor analysis revealed that obese cKO mice attenuated inflammatory areas, PCNA, and F4/80 compared to obese WT mice, indicating a reduced tumor burden, and there were positive relationships between the ascites and tumor parameters. Taken together, the adipocyte-specific CXCR2 cKO was associated with obesity-induced ascites despite a reduced tumor burden, likely altering the peritoneal tumor microenvironment of OC.
Collapse
Affiliation(s)
- Deokyeong Choe
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea;
| | - Eun-Sook Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL 32301, USA;
| | - Alicia Beeghly-Fadiel
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37203, USA;
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37203, USA;
| | - Andrew J. Wilson
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37203, USA;
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Margaret M. Whalen
- Department of Chemistry, Tennessee State University, Nashville, TN 37209, USA;
| | - Samuel E. Adunyah
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA;
| | - Deok-Soo Son
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA;
- Correspondence:
| |
Collapse
|
13
|
Wang W, Deng Z, Liu G, Yang J, Zhou W, Zhang C, Shen W, Zhang Y. Platelet-derived extracellular vesicles promote the migration and invasion of rheumatoid arthritis fibroblast-like synoviocytes via CXCR2 signaling. Exp Ther Med 2021; 22:1120. [PMID: 34504574 PMCID: PMC8383774 DOI: 10.3892/etm.2021.10554] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 07/09/2021] [Indexed: 12/15/2022] Open
Abstract
Platelet-derived extracellular vesicles (PEVs), which are generated from the plasma membrane during platelet activation, may be involved in the inflammatory processes of rheumatoid arthritis (RA). The motility of RA fibroblast-like synoviocytes (RA-FLS) plays a key role in the development of synovial inflammation and joint erosion. However, the effects of PEVs on the motility of RA-FLS remain unclear. Thus, the present study aimed to investigate the active contents and potential molecular mechanisms underlying the role of PEVs in regulating the migration and invasion of RA-FLS. The results demonstrated that PEVs contain certain chemokines associated with cell migration and invasion, including C-C motif chemokine ligand 5, C-X-C motif chemokine ligand (CXCL)4 and CXCL7. Furthermore, SB225002, an antagonist of C-X-C motif chemokine receptor 2 (CXCR2; a CXCL7 receptor), partially prevented the migration and invasion of RA-FLS induced by PEVs, suggesting that PEVs may activate a CXCR2-mediated signaling pathway in RA-FLS. In addition, SB225002 antagonized the phosphorylation of IκB and NF-κB in RA-FLS induced by PEVs. Taken together, the results of the present study suggested that PEVs may promote the migration and invasion of RA-FLS by activating the NF-κB pathway mediated by the CXCR2 signaling pathway.
Collapse
Affiliation(s)
- Wenwen Wang
- Department of Cell Biology, School of Medicine of Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China.,Department of Rheumatology, Nantong City No. 1 People's Hospital and Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Zijing Deng
- Department of Cell Biology, School of Medicine of Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| | - Guiping Liu
- Department of Rheumatology, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Jie Yang
- Department of Cell Biology, School of Medicine of Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| | - Wei Zhou
- Department of Internal Medicine, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| | - Chen Zhang
- Department of Cell Biology, School of Medicine of Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| | - Weigan Shen
- Department of Cell Biology, School of Medicine of Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| | - Yu Zhang
- Department of Cell Biology, School of Medicine of Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| |
Collapse
|
14
|
Zhang F, Jiang J, Xu B, Xu Y, Wu C. Over-expression of CXCL2 is associated with poor prognosis in patients with ovarian cancer. Medicine (Baltimore) 2021; 100:e24125. [PMID: 33530204 PMCID: PMC7850676 DOI: 10.1097/md.0000000000024125] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 12/08/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND In the present study, we aimed to detect the expression of CXCL2 in epithelial ovarian cancer (OC) and explore its clinical significance. METHODS TCGA (The Cancer Genome Atlas) database was adopted to assess the significance of CXCL2. Tissue microarray and immunohistochemical staining were used to detect the expression of CXCL2 in epithelial OC, and its correlation with clinicopathological features and prognosis was statistically analyzed. RESULTS CXCL2 was highly expressed in epithelial OC tissues compared with the adjacent tissues. Such up-regulation of CXCL2 was significantly correlated with tumor differentiation (P = .001), tumor stage (P = .01), tumor location (unilateral or bilateral) (P = .003), and metastasis (P = .003). Kaplan-Meier and Cox proportional hazards regression analyses showed that high expression of CXCL2 was not an independent predictor of poor prognosis in epithelial OC. CONCLUSIONS Collectively, the high expression of CXCL2 might be related to the invasion and metastasis of epithelial OC.
Collapse
Affiliation(s)
- Fenghua Zhang
- Department of Tumor Biological Treatment
- Jiangsu Engineering Research Center for Tumor Immunotherapy
- Department of Gynaecology, the Third Affiliated Hospital of Soochow University
- Institute of Cell Therapy, Soochow University, Changzhou, China
| | - Jingting Jiang
- Department of Tumor Biological Treatment
- Jiangsu Engineering Research Center for Tumor Immunotherapy
- Institute of Cell Therapy, Soochow University, Changzhou, China
| | - Bin Xu
- Department of Tumor Biological Treatment
- Jiangsu Engineering Research Center for Tumor Immunotherapy
- Institute of Cell Therapy, Soochow University, Changzhou, China
| | - Yun Xu
- Department of Tumor Biological Treatment
- Jiangsu Engineering Research Center for Tumor Immunotherapy
- Department of Gynaecology, the Third Affiliated Hospital of Soochow University
- Institute of Cell Therapy, Soochow University, Changzhou, China
| | - Changping Wu
- Department of Tumor Biological Treatment
- Jiangsu Engineering Research Center for Tumor Immunotherapy
- Institute of Cell Therapy, Soochow University, Changzhou, China
| |
Collapse
|
15
|
Wang N, Wang S, Wang X, Zheng Y, Yang B, Zhang J, Pan B, Gao J, Wang Z. Research trends in pharmacological modulation of tumor-associated macrophages. Clin Transl Med 2021; 11:e288. [PMID: 33463063 PMCID: PMC7805405 DOI: 10.1002/ctm2.288] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/27/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
As one of the most abundant immune cell populations in the tumor microenvironment (TME), tumor-associated macrophages (TAMs) play important roles in multiple solid malignancies, including breast cancer, prostate cancer, liver cancer, lung cancer, ovarian cancer, gastric cancer, pancreatic cancer, and colorectal cancer. TAMs could contribute to carcinogenesis, neoangiogenesis, immune-suppressive TME remodeling, cancer chemoresistance, recurrence, and metastasis. Therefore, reprogramming of the immune-suppressive TAMs by pharmacological approaches has attracted considerable research attention in recent years. In this review, the promising pharmaceutical targets, as well as the existing modulatory strategies of TAMs were summarized. The chemokine-chemokine receptor signaling, tyrosine kinase receptor signaling, metabolic signaling, and exosomal signaling have been highlighted in determining the biological functions of TAMs. Besides, both preclinical research and clinical trials have suggested the chemokine-chemokine receptor blockers, tyrosine kinase inhibitors, bisphosphonates, as well as the exosomal or nanoparticle-based targeting delivery systems as the promising pharmacological approaches for TAMs deletion or reprogramming. Lastly, the combined therapies of TAMs-targeting strategies with traditional treatments or immunotherapies as well as the exosome-like nanovesicles for cancer therapy are prospected.
Collapse
Affiliation(s)
- Neng Wang
- The Research Center for Integrative MedicineSchool of Basic Medical SciencesGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Shengqi Wang
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| | - Xuan Wang
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| | - Yifeng Zheng
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| | - Bowen Yang
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| | - Juping Zhang
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| | - Bo Pan
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| | - Jianli Gao
- Academy of Traditional Chinese MedicineZhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Zhiyu Wang
- The Research Center for Integrative MedicineSchool of Basic Medical SciencesGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| |
Collapse
|
16
|
Sun X, Wang X, Zhao Z, Chen J, Li C, Zhao G. Paeoniflorin inhibited nod-like receptor protein-3 inflammasome and NF-κB-mediated inflammatory reactions in diabetic foot ulcer by inhibiting the chemokine receptor CXCR2. Drug Dev Res 2020; 82:404-411. [PMID: 33236457 DOI: 10.1002/ddr.21763] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/15/2020] [Accepted: 11/10/2020] [Indexed: 01/10/2023]
Abstract
Diabetic foot ulcer (DFU) is an invariably common complication of diabetes, characterized by delayed wound healing process and increased inflammation. Evidence has indicated that paeoniflorin exerts an anti-inflammatory effect in diabetic retinopathy. The current work was aimed to investigate the effect of paeoniflorin on inflammation and wound healing in DFU. DFU rat models by streptozotocin and skin biopsy punch, as well as high glucose-treated human immortalized keratinocytes (HaCaT) were established. Levels of blood glucose, wound contraction and proinflammatory cytokine were detected after paeoniflorin administration. Several essential targets associated with the NF-κB and Nod-like receptor protein-3 (NLRP3) signaling pathways were examined. Results showed markedly down-regulation of interleukin (IL)-1β, IL-18 and tumor necrosis factor-alpha in paeoniflorin-treated DFU rats. Paeoniflorin decreased the expression levels of chemokine receptor CXCR2, nuclear NF-κB and p-IκB (Ser36), as well as increased IκB level. Histological analysis and immunostaining showed lower inflammatory cells with decreased NLRP3 and cleaved caspase-1 levels following paeoniflorin treatment. Further in vitro evidence confirmed that paeoniflorin efficiently inhibited NLRP3 and NF-κB-mediated inflammation in DFU by inhibiting CXCR2. These findings are suggestive of greatly attenuated wound inflammation and better wound healing in paeoniflorin-treated DFU rats. Our study demonstrates that paeoniflorin is a potential therapeutic agent for DFU.
Collapse
Affiliation(s)
- Xiaolong Sun
- The Second Department of Surgery, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xu Wang
- The Second Department of Surgery, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Zhenyu Zhao
- The Second Department of Surgery, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Jing Chen
- The Second Department of Surgery, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Cheng Li
- The Second Department of Surgery, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Gang Zhao
- Department of Peripheral Vascular Disease, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
17
|
Micheli DC, Jammal MP, Martins-Filho A, Côrtes JRXDM, Souza CND, Nomelini RS, Murta EFC, Tavares-Murta BM. Serum cytokines and CXCR2: potential tumour markers in ovarian neoplasms. Biomarkers 2020; 25:474-482. [PMID: 32544350 DOI: 10.1080/1354750x.2020.1783574] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE The aim was to investigate the systemic levels of cytokines and the expression of the chemokine receptor CXCR2 in circulating neutrophils in patients with non-neoplastic ovarian lesions, benign neoplasia or malignant neoplasia. MATERIALS AND METHODS Controls and patients with ovarian tumours were pre-operatively compared for the production of cytokines (IL-2, IL-5, IL-6, IL-8, IL-10 and TNF-α) by ELISA, and for the expression of the chemokine receptor, CXCR2, in neutrophils, by flow cytometry. Randomly selected patients within the malignant group were re-evaluated for the inflammatory parameters at 30 days after surgery. RESULTS The serum concentrations of IL-6, IL-8 and IL-10 were significantly higher in the benign and malignant neoplasia than in the control group, and their levels were significantly higher in ovarian cancer patients than in patients with non-neoplastic tumours or benign neoplasia. Treatment reduced IL-8 serum levels but did not affect CXCR2 expression in neutrophils. Cut-off values for IL-6, IL-8, and IL-10 comparing malignant vs. benign neoplasia were 11.3, 71.7, 14.8, and comparing malignant neoplasm vs. non-neoplastic lesions were 7.2, 43.5, 12.3, respectively. CONCLUSIONS Serum IL-6, IL-8, and IL-10 levels, and expression of CXCR2 in circulating neutrophils seem promising for distinguishing ovarian cancer patients from patients with benign tumours.
Collapse
Affiliation(s)
- Douglas Côbo Micheli
- Institute of Natural and Biological Sciences, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Millena Prata Jammal
- Research Institute of Oncology/Department of Gynecology and Obstetrics, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Agrimaldo Martins-Filho
- Research Institute of Oncology/Department of Gynecology and Obstetrics, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | | | - Cristiane Naffah de Souza
- Institute of Natural and Biological Sciences, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Rosekeila Simões Nomelini
- Research Institute of Oncology/Department of Gynecology and Obstetrics, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Eddie Fernando Candido Murta
- Research Institute of Oncology/Department of Gynecology and Obstetrics, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | | |
Collapse
|
18
|
Hermert D, Martin IV, Reiss LK, Liu X, Breitkopf DM, Reimer KC, Alidousty C, Rauen T, Floege J, Ostendorf T, Weiskirchen R, Raffetseder U. The nucleic acid binding protein YB-1-controlled expression of CXCL-1 modulates kidney damage in liver fibrosis. Kidney Int 2019; 97:741-752. [PMID: 32061437 DOI: 10.1016/j.kint.2019.10.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 09/29/2019] [Accepted: 10/17/2019] [Indexed: 12/28/2022]
Abstract
Acute kidney injury is a common complication of advanced liver disease and increased mortality of these patients. Here, we analyzed the role of Y-box protein-1 (YB-1), a nucleic acid binding protein, in the bile duct ligation model of liver fibrosis and monitored liver and subsequent kidney damage. Following bile duct ligation, both serum levels of liver enzymes and expression of hepatic extracellular matrix components such as type I collagen were significantly reduced in mice with half-maximal YB-1 expression (Yb1+/-) as compared to their wild-type littermates. By contrast, expression of the chemokine CXCL1 was significantly augmented in these Yb1+/- mice. YB-1 was identified as a potent transcriptional repressor of the Cxcl1 gene. Precision-cut kidney slices from Yb1+/- mice revealed higher expression of the CXCL1 receptor CXCR2 as well as enhanced responsivity to CXCL1 compared to those from wild-type mice. Increased CXCL1 content in Yb1+/- mice led to pronounced bile duct ligation-induced damage of the kidneys monitored as parameters of tubular epithelial injury and immune cell infiltration. Pharmacological blockade of CXCR2 as well as application of an inhibitory anti-CXCL1 antibody significantly mitigated early systemic effects on the kidneys following bile duct ligation whereas it had only a modest impact on hepatic inflammation and function. Thus, our analyses provide direct evidence that YB-1 crucially contributes to hepatic fibrosis and modulates liver-kidney crosstalk by maintaining tight control over chemokine CXCL1 expression.
Collapse
Affiliation(s)
- Daniela Hermert
- Department of Nephrology and Clinical Immunology, University Hospital RWTH-Aachen, Aachen, Germany
| | - Ina V Martin
- Department of Nephrology and Clinical Immunology, University Hospital RWTH-Aachen, Aachen, Germany
| | - Lucy K Reiss
- Institute of Pharmacology and Toxicology, Medical Faculty, RWTH-Aachen University, Aachen, Germany
| | - Xiyang Liu
- Department of Nephrology and Clinical Immunology, University Hospital RWTH-Aachen, Aachen, Germany
| | - Daniel M Breitkopf
- Department of Nephrology and Clinical Immunology, University Hospital RWTH-Aachen, Aachen, Germany
| | - Katharina C Reimer
- Department of Nephrology and Clinical Immunology, University Hospital RWTH-Aachen, Aachen, Germany
| | | | - Thomas Rauen
- Department of Nephrology and Clinical Immunology, University Hospital RWTH-Aachen, Aachen, Germany
| | - Jürgen Floege
- Department of Nephrology and Clinical Immunology, University Hospital RWTH-Aachen, Aachen, Germany
| | - Tammo Ostendorf
- Department of Nephrology and Clinical Immunology, University Hospital RWTH-Aachen, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), University Hospital RWTH-Aachen, Aachen, Germany
| | - Ute Raffetseder
- Department of Nephrology and Clinical Immunology, University Hospital RWTH-Aachen, Aachen, Germany.
| |
Collapse
|
19
|
Ignacio RMC, Lee ES, Son DS. Potential Roles of Innate Immune Chemokine and Cytokine Network on Lipopolysaccharide-Based Therapeutic Approach in Ovarian Cancer. Immune Netw 2019; 19:e22. [PMID: 31281719 PMCID: PMC6597445 DOI: 10.4110/in.2019.19.e22] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/07/2019] [Accepted: 05/22/2019] [Indexed: 12/14/2022] Open
Abstract
Ovarian cancer (OC), the deadliest gynecological cancer, results in poor overall survival, urgently requiring a novel therapeutic approach. As cumulative exposures to endotoxins decreased OC risk epidemiologically, we evaluated if LPS, a Toll-like receptor 4 agonist known as active component of endotoxins, could increase survival in the murine peritoneal dissemination model of SKOV-3 OC cells. LPS significantly increased the mean survival time of more than 116 days compared with 63 days in the control. Furthermore, no tumor burden was present in three mice among eight LPS-treated mice. SKOV-3 cells were not responsive to LPS and showed unaltered chemokine signature. Rather than direct effects to OC cells, LPS was found to increase proinflammatory chemokines and cytokines, such as CXCL1, CXCL8, TNF, and IL-1B, in innate immune system. Taken together, LPS is likely to potentiate the cytotoxic-related innate immunogenicity via proinflammatory chemokines and cytokines, which attenuates the peritoneal dissemination of OC.
Collapse
Affiliation(s)
- Rosa Mistica C Ignacio
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - Eun-Sook Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL 32301, USA
| | - Deok-Soo Son
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| |
Collapse
|
20
|
Ouh YT, Cho HW, Lee JK, Choi SH, Choi HJ, Hong JH. CXC chemokine ligand 1 mediates adiponectin-induced angiogenesis in ovarian cancer. Tumour Biol 2019; 42:1010428319842699. [PMID: 30967059 DOI: 10.1177/1010428319842699] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES Adiponectin is a cytokine secreted from adipose tissue that regulates energy homeostasis, inflammation, and cell proliferation. Obesity is associated with increased risk of various cancers, including ovarian cancer. Adipokines, including adiponectin, have been implicated as a factor linking obesity and carcinogenesis. The oncogenic role of adiponectin is not known with regard to various cancer types. We sought to determine the role of adiponectin in angiogenesis in ovarian cancer in vitro. METHODS We transfected SKOV3 cells with vascular endothelial growth factor small interfering RNA in order to identify the independent angiogenic role of adiponectin in ovarian cancer. The vascular endothelial growth factor knockdown SKOV3 cell lines were treated with adiponectin for 48 h. The cytokines involved in adiponectin-mediated angiogenesis were explored using the human angiogenesis cytokine array and were verified with the enzyme-linked immunosorbent assay. The angiogenic effect of adiponectin was evaluated using the human umbilical vein endothelial cell tube formation assay. We also investigated the effects of adiponectin treatment on the migration and invasion of SKOV3 cells. RESULTS The number of tubes formed by human umbilical vein endothelial cell decreased significantly after knockdown of vascular endothelial growth factor (via transfection of vascular endothelial growth factor small interfering RNA into SKOV3 cells). When these vascular endothelial growth factor knockdown SKOV3 cells were treated with adiponectin, there was an increase in the number of tubes in a tube formation assay. Following adiponectin treatment, the CXC chemokine ligand 1 secretion increased in a cytokine array. This was confirmed by both enzyme-linked immunosorbent assay and Western blot. The increased secretion of CXC chemokine ligand 1 by adiponectin occurred regardless of vascular endothelial growth factor knockdown. In addition, the induction of migration and invasion of SKOV3 cells were significantly stronger with adiponectin treatment than they were without. CONCLUSION Adiponectin treatment of ovarian cancer cells induces angiogenesis via CXC chemokine ligand 1 independently of vascular endothelial growth factor. These findings suggest that adiponectin may serve as a novel therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Yung-Taek Ouh
- 1 Department of Obstetrics and Gynecology, Guro Hospital, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Hyun Woong Cho
- 1 Department of Obstetrics and Gynecology, Guro Hospital, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Jae Kwan Lee
- 1 Department of Obstetrics and Gynecology, Guro Hospital, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Song Hee Choi
- 1 Department of Obstetrics and Gynecology, Guro Hospital, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Hyun Jin Choi
- 2 Department of Obstetrics and Gynecology, Chung-Ang University Hospital, Seoul, Republic of Korea
| | - Jin Hwa Hong
- 1 Department of Obstetrics and Gynecology, Guro Hospital, College of Medicine, Korea University, Seoul, Republic of Korea
| |
Collapse
|
21
|
Chen MC, Baskaran R, Lee NH, Hsu HH, Ho TJ, Tu CC, Lin YM, Viswanadha VP, Kuo WW, Huang CY. CXCL2/CXCR2 axis induces cancer stem cell characteristics in CPT-11-resistant LoVo colon cancer cells via Gαi-2 and Gαq/11. J Cell Physiol 2018; 234:11822-11834. [PMID: 30552676 DOI: 10.1002/jcp.27891] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 11/08/2018] [Indexed: 12/30/2022]
Abstract
Cancer stem cells (CSCs) exist in colon cancer and exhibit characteristics of stem cells which are due to lineages of tissues where they arise. Epithelial to mesenchymal transition (EMT)-undergoing cancer cells display CSC properties and therapeutic resistance. Cancer and stromal cells comprise of a tumor microenvironment. One way the two populations communicate with each other is to secret CXC ligands (CXCLs). CXCLs are capable of causing chemotaxis of specific types of stromal cells and control angiogenesis. Double immunofluorescence, western blot analysis, and colony-formation assay were carried out to compare parental and CPT-11-resistant LoVo cells. CPT-11-R LoVo colon cancer cells showed increased expression of CXCL1, CXCL2, CXCL3, and CXCL8. They displayed significantly increased intracellular protein levels of CXCL2 and CXCR2. CPT-11-R LoVo cells showed significantly elevated expression in aldehyde dehydrogenase 1 (ALDH1), cluster of differentiation 24 (CD24), cluster of differentiation 44 (CD44), and epithelial cell adhesion molecule (EpCAM). CXCL2 knockdown by short hairpin RNA resulted in reduced expression of CSC proteins, cyclins, EMT markers, G proteins, and matrix metalloproteinases (MMPs). Finally, Gαi-2 was found to promote expression of CSC genes and tumorigenesis which were more apparent in the resistant cells. In addition, Gαq/11 showed a similar pattern with exceptions of EpCAM and MMP9. Therefore, CXCL2-CXCR2 axis mediates through Gαi-2 and Gαq/11 to promote tumorigenesis and contributes to CSC properties of CPT-11-R LoVo cells.
Collapse
Affiliation(s)
- Ming-Cheng Chen
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Department of Surgery, Division of Colorectal Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Rathinasamy Baskaran
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Nien-Hung Lee
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Hsi-Hsien Hsu
- Division of Colorectal Surgery, Mackay Memorial Hospital, Taipei, Taiwan
- MacKay Medicine, Nursing and Management College, Taipei, Taiwan
| | - Tsung-Jung Ho
- Chinese Medicine Department, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Chuan-Chou Tu
- Department of Internal Medicine, Division of Chest Medicine, Armed Force Taichung General Hospital, Taichung, Taiwan
| | - Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | | | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Chinese Medicine Department, China Medical University Beigang Hospital, Yunlin, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
22
|
Ignacio RMC, Lee ES, Wilson AJ, Beeghly-Fadiel A, Whalen MM, Son DS. Obesity-Induced Peritoneal Dissemination of Ovarian Cancer and Dominant Recruitment of Macrophages in Ascites. Immune Netw 2018; 18:e47. [PMID: 30619633 PMCID: PMC6312889 DOI: 10.4110/in.2018.18.e47] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/03/2018] [Accepted: 12/09/2018] [Indexed: 02/07/2023] Open
Abstract
One-fifth of cancer deaths are associated with obesity. Because the molecular mechanisms by which obesity affects the progression of ovarian cancer (OC) are poorly understood, we investigated if obesity could promote the progression of OC cells using the postmenopausal ob/ob mouse model and peritoneal dissemination of mouse ID8 OC cells. Compared to lean mice, obese mice had earlier OC occurrence, greater metastasis throughout the peritoneal cavity, a trend toward shorter survival, and higher circulating glucose and proinflammatory chemokine CXCL1 levels. Ascites in obese mice had higher levels of macrophages (Mφ) and chemokines including CCL2, CXCL12, CXCL13, G-CSF and M-CSF. Omental tumor tissues in obese mice had more adipocytes than lean mice. Our data suggest that obesity may accelerate the peritoneal dissemination of OC through higher production of pro-inflammatory chemokines and Mφ recruitment.
Collapse
Affiliation(s)
- Rosa Mistica C Ignacio
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - Eun-Sook Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL 32301, USA
| | - Andrew J Wilson
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| | - Alicia Beeghly-Fadiel
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37203, USA.,Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| | - Margaret M Whalen
- Department of Chemistry, Tennessee State University, Nashville, TN 37209, USA
| | - Deok-Soo Son
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| |
Collapse
|
23
|
Bernard S, Myers M, Fang WB, Zinda B, Smart C, Lambert D, Zou A, Fan F, Cheng N. CXCL1 Derived from Mammary Fibroblasts Promotes Progression of Mammary Lesions to Invasive Carcinoma through CXCR2 Dependent Mechanisms. J Mammary Gland Biol Neoplasia 2018; 23:249-267. [PMID: 30094610 PMCID: PMC6582941 DOI: 10.1007/s10911-018-9407-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 07/24/2018] [Indexed: 12/21/2022] Open
Abstract
With improved screening methods, the numbers of abnormal breast lesions diagnosed in women have been increasing over time. However, it remains unclear whether these breast lesions will develop into invasive cancers. To more effectively predict the outcome of breast lesions and determine a more appropriate course of treatment, it is important to understand the underlying mechanisms that regulate progression of non-invasive lesions to invasive breast cancers. A hallmark of invasive breast cancers is the accumulation of fibroblasts. Fibroblast proliferation and activation in the mammary gland is in part regulated by the Transforming Growth Factor beta1 pathway (TGF-β). In animal models, TGF-β suppression of CCL2 and CXCL1 chemokine expression is associated with metastatic progression of mammary carcinomas. Here, we show that transgenic overexpression of the Polyoma middle T viral antigen in the mouse mammary gland of C57BL/6 mice results in slow growing non-invasive lesions that progress to invasive carcinomas in a stage dependent manner. Invasive carcinomas are associated with accumulation of fibroblasts that show decreased TGF-β expression and high levels of CXCL1, but not CCL2. Using co-transplant models, we show that decreased TGF-β signaling in fibroblasts contribute to mammary carcinoma progression through enhancement of CXCL1/CXCR2 dependent mechanisms. Using cell culture models, we show that CXCL1 mediated mammary carcinoma cell invasion through NF-κB, AKT, Stat3 and p42/44MAPK dependent mechanisms. These studies provide novel mechanistic insight into the progression of pre-invasive lesions and identify new stromal biomarkers, with important prognostic implications.
Collapse
Affiliation(s)
- Shira Bernard
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Megan Myers
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Wei Bin Fang
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Brandon Zinda
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Curtis Smart
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Diana Lambert
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - An Zou
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Fang Fan
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Nikki Cheng
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
24
|
Guo W, Imai S, Yang JL, Zou S, Li H, Xu H, Moudgil KD, Dubner R, Wei F, Ren K. NF-KappaB Pathway Is Involved in Bone Marrow Stromal Cell-Produced Pain Relief. Front Integr Neurosci 2018; 12:49. [PMID: 30459569 PMCID: PMC6232783 DOI: 10.3389/fnint.2018.00049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/26/2018] [Indexed: 12/11/2022] Open
Abstract
Bone marrow stromal cells (BMSCs) produce long-lasting attenuation of pain hypersensitivity. This effect involves BMSC's ability to interact with the immune system and activation of the endogenous opioid receptors in the pain modulatory circuitry. The nuclear factor kappa B (NF-κB) protein complex is a key transcription factor that regulates gene expression involved in immunity. We tested the hypothesis that the NF-κB signaling plays a role in BMSC-induced pain relief. We focused on the rostral ventromedial medulla (RVM), a key structure in the descending pain modulatory pathway, that has been shown to play an important role in BMSC-produced antihyperalgesia. In Sprague-Dawley rats with a ligation injury of the masseter muscle tendon (TL), BMSCs (1.5 M/rat) from donor rats were infused i.v. at 1 week post-TL. P65 exhibited predominant neuronal localization in the RVM with scattered distribution in glial cells. At 1 week, but not 8 weeks after BMSC infusion, western blot and immunostaining showed that p65 of NF-κB was significantly increased in the RVM. Given that chemokine signaling is critical to BMSCs' pain-relieving effect, we further evaluated a role of chemokine signaling in p65 upregulation. Prior to infusion of BMSCs, we transduced BMSCs with Ccl4 shRNA, incubated BMSCs with RS 102895, a CCR2b antagonist, or maraviroc, a CCR5 antagonist. The antagonism of chemokines significantly reduced BMSC-induced upregulation of p65, suggesting that upregulation of p65 was related to BMSCs' pain-relieving effect. We then tested the effect of a selective NF-κB activation inhibitor, BAY 11-7082. The mechanical hyperalgesia of the rat was assessed with the von Frey method. In the pre-treatment experiment, BAY 11-7082 (2.5 and 25 pmol) was injected into the RVM at 2 h prior to BMSC infusion. Pretreatment with BAY 11-7082 attenuated BMSCs' antihyperalgesia, but post-treatment at 5 weeks post-BMSC was not effective. On the contrary, in TL rats receiving BAY 11-7082 without BMSCs, TL-induced hyperalgesia was attenuated, consistent with dual roles of NF-κB in pain hypersensitivity and BMSC-produced pain relief. These results indicate that the NF-κB signaling pathway in the descending circuitry is involved in initiation of BMSC-produced behavioral antihyperalgesia.
Collapse
Affiliation(s)
- Wei Guo
- Department of Neural and Pain Sciences, School of Dentistry & Program in Neuroscience, University of Maryland, Baltimore, MD, United States
| | - Satoshi Imai
- Department of Neural and Pain Sciences, School of Dentistry & Program in Neuroscience, University of Maryland, Baltimore, MD, United States.,Department of Clinical Pharmacology & Therapeutics, Kyoto University Hospital, Kyoto, Japan
| | - Jia-Le Yang
- Department of Neural and Pain Sciences, School of Dentistry & Program in Neuroscience, University of Maryland, Baltimore, MD, United States
| | - Shiping Zou
- Department of Neural and Pain Sciences, School of Dentistry & Program in Neuroscience, University of Maryland, Baltimore, MD, United States
| | - Huijuan Li
- Department of Neural and Pain Sciences, School of Dentistry & Program in Neuroscience, University of Maryland, Baltimore, MD, United States.,Department of Neurology, The 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huakun Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Kamal D Moudgil
- Department of Microbiology & Immunology, University of Maryland, Baltimore, MD, United States
| | - Ronald Dubner
- Department of Neural and Pain Sciences, School of Dentistry & Program in Neuroscience, University of Maryland, Baltimore, MD, United States
| | - Feng Wei
- Department of Neural and Pain Sciences, School of Dentistry & Program in Neuroscience, University of Maryland, Baltimore, MD, United States
| | - Ke Ren
- Department of Neural and Pain Sciences, School of Dentistry & Program in Neuroscience, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
25
|
Ignacio RMC, Gibbs CR, Lee ES, Son DS. The TGFα-EGFR-Akt signaling axis plays a role in enhancing proinflammatory chemokines in triple-negative breast cancer cells. Oncotarget 2018; 9:29286-29303. [PMID: 30034618 PMCID: PMC6047672 DOI: 10.18632/oncotarget.25389] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 04/28/2018] [Indexed: 12/30/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is aggressive and typically has a poor prognosis. Chemokines have chemoattractant potential for cancer metastasis. Here, we investigated the chemokine signatures in BC subtypes and the underlying mechanisms that enhance proinflammatory chemokines in TNBC. Analysis from microarray dataset revealed that basal-like BC subtype including TNBC expressed dominantly proinflammatory chemokines, such as CXCL1 and 8, compared to non-TNBC. Chemokine PCR array confirmed the dominant chemokines in TNBC cells. To identify a driving factor for proinflammatory chemokines in TNBC cells, we determined the expression and signaling profiles of epidermal growth factor receptor (EGFR) family members. TNBC cells expressed higher levels of EGFR and phosphorylated Akt/Erk than non-TNBC cells. In addition, EGF further enhanced the proinflammatory chemokines in TNBC cells, including CXCL2. Knockdown of Akt reduced the CXCL2 promoter activity, while overexpression of Akt enhanced it. MK2206, an Akt inhibitor, reduced the CXCL2 promoter activity, while inhibition and knockdown of Erk did not reduce its activity. We found that transforming growth factor alpha (TGFα) could serve as a main ligand for EGFR to drive EGFR-mediated Akt activation in TNBC cells. MK2206 decreased TGFα promoter activity, while overexpression of Akt increased it. MK2206 also reduced TGFα release from TNBC cells. Moreover, MK2206 downregulated CXCL2 mRNA expression, while TGFα upregulated it. Taken together, the TGFα-EGFR-Akt signaling axis can play a role in enhancing proinflammatory chemokine expression in TNBC, subsequently contributing to the inflammatory burden that ultimately lead to cancer progression and a higher mortality rate among TNBC patients.
Collapse
Affiliation(s)
- Rosa Mistica C Ignacio
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208 USA
| | - Carla R Gibbs
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208 USA
| | - Eun-Sook Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL 32301 USA
| | - Deok-Soo Son
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208 USA
| |
Collapse
|
26
|
Kim KH, Park SH, Do KH, Kim J, Choi KU, Moon Y. NSAID-activated gene 1 mediates pro-inflammatory signaling activation and paclitaxel chemoresistance in type I human epithelial ovarian cancer stem-like cells. Oncotarget 2018; 7:72148-72166. [PMID: 27708225 PMCID: PMC5342151 DOI: 10.18632/oncotarget.12355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 09/20/2016] [Indexed: 12/30/2022] Open
Abstract
Epithelial ovarian cancer (EOC) remains the most lethal gynecologic malignancy in developed countries. Chronic endogenous sterile pro-inflammatory responses are strongly linked to EOC progression and chemoresistance to anti-cancer therapeutics. In the present study, the activity of epithelial NF-κB, a key pro-inflammatory transcription factor, was enhanced with the progress of EOC. This result was mechanistically linked with an increased expression of NSAID-Activated Gene 1 (NAG-1) in MyD88-positive type I EOC stem-like cells, compared with that in MyD88-negative type II EOC cells. Elevated NAG-1 as a potent biomarker of poor prognosis in the ovarian cancer was positively associated with the levels of NF-κB activation, chemokines and stemness markers in type I EOC cells. In terms of signal transduction, NAG-1-activated SMAD-linked and non-canonical TGFβ-activated kinase 1 (TAK-1)-activated pathways contributed to NF-κB activation and the subsequent induction of some chemokines and cancer stemness markers. In addition to effects on NF-κB-dependent gene regulation, NAG-1 was involved in expression of EGF receptor and subsequent activation of EGF receptor-linked signaling. The present study also provided evidences for links between NAG-1-linked signaling and chemoresistance in ovarian cancer cells. NAG-1 and pro-inflammatory NF-κB were positively associated with resistance to paclitaxel in MyD88-positive type I EOC cells. Mechanistically, this chemoresistance occurred due to enhanced activation of the SMAD-4- and non-SMAD-TAK-1-linked pathways. All of the present data suggested NAG-1 protein as a crucial mediator of EOC progression and resistance to the standard first-line chemotherapy against EOC, particularly in MyD88-positive ovarian cancer stem-like cells.
Collapse
Affiliation(s)
- Ki-Hyung Kim
- Department of Biomedical Sciences, Pusan National University School of Medicine, Yangsan, South Korea.,Biomedical Research Institute and Pusan Cancer Center, Pusan National University Hospital, Busan, South Korea.,Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Busan, South Korea
| | - Seong-Hwan Park
- Department of Biomedical Sciences, Pusan National University School of Medicine, Yangsan, South Korea.,Research Institute for Basic Sciences, Pusan National University, Busan, South Korea
| | - Kee Hun Do
- Department of Biomedical Sciences, Pusan National University School of Medicine, Yangsan, South Korea.,Research Institute for Basic Sciences, Pusan National University, Busan, South Korea
| | - Juil Kim
- Department of Biomedical Sciences, Pusan National University School of Medicine, Yangsan, South Korea.,Research Institute for Basic Sciences, Pusan National University, Busan, South Korea
| | - Kyung Un Choi
- Biomedical Research Institute and Pusan Cancer Center, Pusan National University Hospital, Busan, South Korea.,Department of Pathology, Pusan National University School of Medicine, Busan, South Korea
| | - Yuseok Moon
- Department of Biomedical Sciences, Pusan National University School of Medicine, Yangsan, South Korea.,Biomedical Research Institute and Pusan Cancer Center, Pusan National University Hospital, Busan, South Korea.,Research Institute for Basic Sciences, Pusan National University, Busan, South Korea
| |
Collapse
|
27
|
Yung MMH, Tang HWM, Cai PCH, Leung THY, Ngu SF, Chan KKL, Xu D, Yang H, Ngan HYS, Chan DW. GRO-α and IL-8 enhance ovarian cancer metastatic potential via the CXCR2-mediated TAK1/NFκB signaling cascade. Am J Cancer Res 2018; 8:1270-1285. [PMID: 29507619 PMCID: PMC5835935 DOI: 10.7150/thno.22536] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/20/2017] [Indexed: 12/12/2022] Open
Abstract
Intraperitoneal metastasis is a common occurrence and is usually involved in the poor prognosis of ovarian cancer. Its specific metastatic pattern implies that certain indispensable microenvironmental factors secreted in the peritoneal cavity can direct metastatic ovarian cancer cells to permissive niches for secondary lesion formation. However, the underlying molecular mechanisms are ill defined. Herein, we report that GRO-α and IL-8 are predominately upregulated in culture media derived from either normal or cancerous omenta and are associated with increased ovarian cancer aggressiveness. Methods: OCM was established from culture medium of fresh human omental tissues. Primary and metastatic ovarian cancer cell lines were generated from human tumor tissues and verified by specific antibodies. The functional roles of GRO-α, IL-8, and their specific receptor CXCR2 were examined by neutralizing antibodies, shRNA gene knockdown, CRISPR/Cas9 gene knockout and pharmaceutical CXCR2 inhibitor SB225002. The oncogenic properties of ovarian cancer cells were examined by in vitro and in vivo mouse models. Results: Both GRO-α and IL-8 can activate TAK1/NFκB signaling via the CXCR2 receptor. Intriguingly, TAK1/NFκB signaling activity was higher in metastatic ovarian cancer cells; this higher activity makes them more susceptible to OCM-induced tumor aggressiveness. Treatment of ovarian cancer cells with GRO-α and IL-8 neutralizing antibodies or ablation of CXCR2 by shRNA gene knockdown, CRISPR/Cas9 gene knockout, or CXCR2 inhibitor SB225002 treatment significantly attenuated TAK1/NFκB signaling and decreased in vitro and in vivo oncogenic and metastatic potential, suggesting CXCR2 plays a key role in the GRO-α and IL-8-governed metastatic spreading of ovarian cancer cells in the intraperitoneal cavity. Conclusion: This study highlights the significance of GRO-α and IL-8 as the key chemokines in the peritoneal tumor microenvironment and suggests the utility of targeting their receptor CXCR2 as a potential target-based therapy for peritoneal metastases of ovarian cancer.
Collapse
|
28
|
Ignacio RMC, Dong YL, Kabir SM, Choi H, Lee ES, Wilson AJ, Beeghly-Fadiel A, Whalen MM, Son DS. CXCR2 is a negative regulator of p21 in p53-dependent and independent manner via Akt-mediated Mdm2 in ovarian cancer. Oncotarget 2018. [PMID: 29515768 PMCID: PMC5839399 DOI: 10.18632/oncotarget.24231] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Ovarian cancer (OC) has the highest rate of mortality among gynecological malignancy. Chemokine receptor CXCR2 in OC is associated with poor outcomes. However, the mechanisms by which CXCR2 regulates OC proliferation remain poorly understood. We generated CXCR2-positive cells from parental p53 wild-type (WT), mutant and null OC cells, and assessed the roles of CXCR2 on proliferation of OC cells in p53-dependent and independent manner. CXCR2 promoted cell growth rate: p53WT > mutant = null cells. Nutlin-3, a p53 stabilizer, inhibited cell proliferation in p53WT cells, but had little effect in p53-mutant or null cells, indicating p53-dependence of CXCR2-mediated proliferation. CXCR2 decreased p53 protein, a regulator of p21, and downregulated p21 promoter activity only in p53WT cells. The p53 responsive element (RE) of p21 promoter played a critical role in this CXCR2-mediated p21 downregulation. Moreover, CXCR2-positive cells activated more Akt than CXCR2-negative cells followed by enhanced murine double minute (Mdm2). Silencing Mdm2 or Akt1 upregulated p21 expression, whereas Akt1 overexpression downregulated p21 at the promoter and protein levels in p53WT cells. Cell cycle analysis revealed that CXCR2 decreased p21 gene in p53-null cells. Interestingly, romidepsin (histone deacetylase inhibitor)-induced p21 upregulation did not involve the p53 RE in the p21 promoter in p53-null cells. Romidepsin decreased the protein levels of Akt1 and Mdm2, leading to induction of p21 in p53-null cells. CXCR2 reduced romidepsin-induced p21 upregulation by activating Akt-induced Mdm2. Taken together, CXCR2 enhances cell proliferation by suppressing p21 through Akt-Mdm2 signaling in p53-dependent and independent manner.
Collapse
Affiliation(s)
- Rosa Mistica C Ignacio
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - Yuan-Lin Dong
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - Syeda M Kabir
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - Hyeongjwa Choi
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - Eun-Sook Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL 32301, USA
| | - Andrew J Wilson
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| | - Alicia Beeghly-Fadiel
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37203, USA.,Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| | - Margaret M Whalen
- Department of Chemistry, Tennessee State University, Nashville, TN 37209, USA
| | - Deok-Soo Son
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| |
Collapse
|
29
|
Chen L, Yao Y, Sun L, Tang J. Galectin-1 promotes tumor progression via NF-κB signaling pathway in epithelial ovarian cancer. J Cancer 2017; 8:3733-3741. [PMID: 29151961 PMCID: PMC5688927 DOI: 10.7150/jca.20814] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 06/27/2017] [Indexed: 12/11/2022] Open
Abstract
Purpose: We previously reported that Galectin-1 (Gal-1) played a role in epithelial ovarian cancer (EOC) progression. In this study, we aimed to further investigate the association between Gal-1 expression and prognosis in EOC patients and tried to reveal some novel potential mechanisms of Gal-1 in EOC invasion and migration. Materials and Methods: Gal-1 and nucleus NF-κBp65 expression in 109 human epithelial ovarian cancer tissue specimens were evaluated by immunohistochemistry. The Cox model and survival curves were used to investigate the effect of Gal-1 on EOC prognosis. Correlation between Gal-1 expression and NF-κB activation in EOC patients was also analyzed. In vitro experiments were further performed to reveal the function and mechanisms of Gal-1 in invasion and migration of EOC cells. Results: Expression level of Gal-1 in EOC tissue was an independent prognostic factor on overall survival (p<0.05) and progression-free survival (p<0.05). Patients with high Galectin-1 expression had shorter overall survival (OS, p<0.05)) and progression-free survival (PFS, p<0.05). Immunohistochemistry revealed that expression of Gal-1 was positively associated with activation of NF-κBp65 in EOC tissues (Kappa coefficient=0.458, p<0.001). Patients with tumors concomitantly co-over-expressing Gal-1 and NF-κBp65 had the worse OS (p<0.001) and PFS (p<0.001). The abilities of migration and invasion for EOC cells were significantly reduced after Gal-1 knocked-down in human EOC cell line HO8910, which was accompanied with the suppression of NF-κb pathway activation and with the matrix metalloproteinase-2 and matrix metalloproteinase-9 down-regulation. Conclusions: Our results suggest that Gal-1 is associated with poor outcome in EOC and Galectin-1 promotes tumor progression via NF-κB pathway activation in EOC.
Collapse
Affiliation(s)
- Le Chen
- Department of Gynecologic Oncology, Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, P.R. China
| | - Ying Yao
- Department of Gynecology and Obstetrics, the First People's Hospital of Yueyang, Yueyang, P.R. China
| | - Lijuan Sun
- Department of Gynecologic Oncology, Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, P.R. China
| | - Jie Tang
- Department of Gynecologic Oncology, Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, P.R. China
| |
Collapse
|
30
|
Jung JH, Kang KW, Kim J, Hong SC, Park Y, Kim BS. CXCR2 Inhibition in Human Pluripotent Stem Cells Induces Predominant Differentiation to Mesoderm and Endoderm Through Repression of mTOR, β-Catenin, and hTERT Activities. Stem Cells Dev 2017; 25:1006-19. [PMID: 27188501 PMCID: PMC4931345 DOI: 10.1089/scd.2015.0395] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
On the basis of our previous report verifying that chemokine (C-X-C motif) receptor 2 (CXCR2) ligands in human placenta-derived cell conditioned medium (hPCCM) support human pluripotent stem cell (hPSC) propagation without exogenous basic fibroblast growth factor (bFGF), this study was designed to identify the effect of CXCR2 manipulation on the fate of hPSCs and the underlying mechanism, which had not been previously determined. We observed that CXCR2 inhibition in hPSCs induces predominant differentiation to mesoderm and endoderm with concomitant loss of hPSC characteristics and accompanying decreased expression of mammalian target of rapamycin (mTOR), β-catenin, and human telomerase reverse transcriptase (hTERT). These phenomena are recapitulated in hPSCs propagated in conventional culture conditions, including bFGF as well as those in hPCCM without exogenous bFGF, suggesting that the action of CXCR2 on hPSCs might not be associated with a bFGF-related mechanism. In addition, the specific CXCR2 ligand growth-related oncogene α (GROα) markedly increased the expression of ectodermal markers in differentiation-committed embryoid bodies derived from hPSCs. This finding suggests that CXCR2 inhibition in hPSCs prohibits the propagation of hPSCs and leads to predominant differentiation to mesoderm and endoderm owing to the blockage of ectodermal differentiation. Taken together, our results indicate that CXCR2 preferentially supports the maintenance of hPSC characteristics as well as facilitates ectodermal differentiation after the commitment to differentiation, and the mechanism might be associated with mTOR, β-catenin, and hTERT activities.
Collapse
Affiliation(s)
- Ji-Hye Jung
- 1 Institute of Stem Cell Research, Korea University , Seoul, Korea.,2 Department of Biomedical Science, Graduate School of Medicine, Korea University , Seoul, Korea
| | - Ka-Won Kang
- 1 Institute of Stem Cell Research, Korea University , Seoul, Korea.,3 Department of Hematology/Oncology, Korea University Anam Medical Center , Seoul, Korea
| | - Jihea Kim
- 1 Institute of Stem Cell Research, Korea University , Seoul, Korea
| | - Soon-Chul Hong
- 4 Department of Obstetrics/Gynecology, Korea University Anam Medical Center , Seoul, Korea
| | - Yong Park
- 1 Institute of Stem Cell Research, Korea University , Seoul, Korea.,3 Department of Hematology/Oncology, Korea University Anam Medical Center , Seoul, Korea
| | - Byung Soo Kim
- 1 Institute of Stem Cell Research, Korea University , Seoul, Korea.,2 Department of Biomedical Science, Graduate School of Medicine, Korea University , Seoul, Korea.,3 Department of Hematology/Oncology, Korea University Anam Medical Center , Seoul, Korea
| |
Collapse
|
31
|
Downregulation of lncRNA TUBA4B is Associated with Poor Prognosis for Epithelial Ovarian Cancer. Pathol Oncol Res 2017; 24:419-425. [PMID: 28578489 DOI: 10.1007/s12253-017-0258-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 05/30/2017] [Indexed: 12/20/2022]
Abstract
A host of studies have revealed that long non-coding RNAs (lncRNAs) are critically involved in the development and progression of epithelial ovarian cancer. LncRNA TUBA4B is recently identified to be a critical mediator in non-small cell lung cancer. However, the clinical roles and biological functions of lncRNA TUBA4B in epithelial ovarian cancer have yet to be fully clarified. The present study was conducted to explore the expression of lncRNA TUBA4B in human epithelial ovarian cancer tissues and potential roles of lncRNA TUBA4B in ovarian cancer cells. The matched epithelial ovarian cancer specimens and adjacent normal tissues were employed to detect the expression of lncRNA TUBA4B. The prognostic value of lncRNA TUBA4B for tumor progression and survival rate was investigated. The effects of lncRNA TUBA4B on ovarian cancer cell proliferation and migration were also explored. The expression of lncRNA TUBA4B was significantly decreased in epithelial ovarian cancer tissue specimens. The low lncRNA TUBA4B level was closely related with pathological grade, FIGO stage and lymph node metastases, and serum CA125 level. Enforced expression of lncRNA TUBA4B obviously reduced the proliferation of SKOV3 cells, and attenuated the activation of ERK and Akt signaling pathways. Our data demonstrate for the first time that lower lncRNA TUBA4B may be a novel independent prognostic biomarker for overall survival of epithelial ovarian cancer. Overexpression of lncRNA TUBA4B inhibits the proliferation of ovarian cancer cells. LncRNA TUBA4B may be an important target for therapeutic intervention in ovarian cancer.
Collapse
|
32
|
Choi H, Ignacio RMC, Lee ES, Wilson AJ, Khabele D, Son DS. Augmented Serum Amyloid A1/2 Mediated by TNF-induced NF-κB in Human Serous Ovarian Epithelial Tumors. Immune Netw 2017; 17:121-127. [PMID: 28458624 PMCID: PMC5407984 DOI: 10.4110/in.2017.17.2.121] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 12/13/2022] Open
Abstract
Tumor necrosis factor-α (TNF) is well known to be involved in the immune system and ovarian inflammation. Ovarian cancer is an inflammation-related malignancy that lacks early screening strategies, resulting in late diagnosis followed by high mortality. Based on our previous data, TNF induced abundant serum amyloid A (SAA), an acute phase protein linked to inflammation, in ovarian granulosal cells. To date, the regulation and expression of SAA in ovarian cancer is not fully elucidated. Here, we investigated the relationship between TNF and SAA by comparing human normal ovarian tissues and serous ovarian tumors. We found that SAA1/2 was significantly expressed in tumor tissues, but no or trace expression levels in normal tissues. TNF was also significantly upregulated in ovarian tumor tissues compared to normal tissues. Moreover, TNF significantly increased SAA1/2 levels in human ovarian cancer cell lines, OVCAR-3 and SKOV-3, in a time-dependent manner. Since the SAA1 promoter contains two nuclear factor (NF)-κB sites, we examined whether TNF regulates SAA1 promoter activity. Deletion analysis revealed that the proximal NF-κB site (-95/-85) played a critical role in regulating TNF-induced SAA1 promoter activity. Within 2 h after intraperitoneal injection of lipopolysaccharide, a product known to stimulate release of TNF, SAA preferably localized to ovarian epithelial cells and the thecal-interstitial layers compared to granulosal cell layers. Based on Gene Expression Omnibus (GEO) database, SAA1/2 and TNF were dominantly expressed in advanced grade ovarian cancer. Taken together, the accumulation of SAA1/2 in ovarian cancer could be mediated by TNF-induced NF-κB activation.
Collapse
Affiliation(s)
- Hyeongjwa Choi
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - Rosa Mistica C Ignacio
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - Eun-Sook Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL 32301, USA
| | - Andrew J Wilson
- Department of Obstetrics and Gynecology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Dineo Khabele
- Department of Obstetrics and Gynecology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Deok-Soo Son
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| |
Collapse
|
33
|
Jin Y, Wu W, Zhang W, Zhao Y, Wu Y, Ge G, Ba Y, Guo Q, Gao T, Chi X, Hao H, Wang J, Feng F. Involvement of EGF receptor signaling and NLRP12 inflammasome in fine particulate matter-induced lung inflammation in mice. ENVIRONMENTAL TOXICOLOGY 2017; 32:1121-1134. [PMID: 27377055 DOI: 10.1002/tox.22308] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 06/09/2016] [Accepted: 06/11/2016] [Indexed: 06/06/2023]
Abstract
Epidemiological studies have shown that exposure to ambient fine particulate matter (PM2.5 ) is associated with respiratory diseases. Lung inflammation is a central feature of many pulmonary diseases, which can be induced by PM2.5 exposure. However, the mechanisms underlying PM2.5 -induced lung inflammation remain unclear. To characterize the role of epidermal growth factor receptor (EGFR) and inflammasome in PM2.5 -induced lung inflammation in mice, 30 BALB/c mice were intrabroncheally instilled with saline and PM2.5 suspension (4.0 mg/kg b.w.) for 5 consecutive days, respectively. Bronchoalveolar lavage (BAL) was conducted and BAL fluid (BALF) was collected. The levels of reactive oxygen species (ROS), inducible nitric oxide synthase (iNOS), epidermal growth factor (EGF), CXCL1, interleukin (IL)-1β, and IL-18 in BALF were determined using ELISA. mRNA levels of IL-6, IL-1β, IL-18, CXCL1, IL-10, NLRP3, Caspase-1, and NLRP12 in lung tissues were determined by RT-PCR. Phospho-EGFR (Tyr1068) and phospho-Akt (Thr308) in lung tissues were examined using immunohistochemical staining and Western blotting, respectively. Protein levels of Caspase-1, NLRP3, NF-κB-p52/p100, and NF-κB-p65 in bronchial epithelium were examined using immunohistochemical staining. It was shown that PM2.5 exposure induced lung inflammation. Levels of total protein, ROS, iNOS, EGF, and CXCL1 and cell number in the BALF of mice exposed to PM2.5 were markedly elevated relative to the control. mRNA levels of CXCL1, IL-1β, and IL-18 in lung tissues of PM2.5 -exposed mice were increased in comparison with the control. However, level of NLRP12 mRNA in lung tissues of PM2.5 -exposed mice was reduced. Phospho-EGFR (Tyr1068) and phospho-Akt (Thr308) levels in the lungs of PM2.5 -instilled mice were higher than those in the lungs of the control. The protein levels of NF-κB-p52/p100 and NF-κB-p65 in bronchial epithelium of PM2.5 -exposed mice were also increased compared with the control. This study suggests that EGF-EGFR-Akt-NF-κB signaling and NLRP12 inflammasome may be associated with PM2.5 -induced lung inflammation in mice. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1121-1134, 2017.
Collapse
Affiliation(s)
- Yuefei Jin
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Weiguo Zhang
- Department of Immunology and Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Yang Zhao
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Guoyin Ge
- Zhengzhou Center for Disease Control and Prevention, Zhengzhou, Henan, China
| | - Yue Ba
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Qiang Guo
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Tianyu Gao
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xuejing Chi
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Huiyun Hao
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jing Wang
- Department of Pulmonary Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Feifei Feng
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
34
|
Hartwig T, Montinaro A, von Karstedt S, Sevko A, Surinova S, Chakravarthy A, Taraborrelli L, Draber P, Lafont E, Arce Vargas F, El-Bahrawy MA, Quezada SA, Walczak H. The TRAIL-Induced Cancer Secretome Promotes a Tumor-Supportive Immune Microenvironment via CCR2. Mol Cell 2017; 65:730-742.e5. [PMID: 28212753 PMCID: PMC5316415 DOI: 10.1016/j.molcel.2017.01.021] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/21/2016] [Accepted: 01/17/2017] [Indexed: 01/14/2023]
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is known for specifically killing cancer cells, whereas in resistant cancers, TRAIL/TRAIL-R can promote metastasis via Rac1 and PI3K. It remains unknown, however, whether and to what extent TRAIL/TRAIL-R signaling in cancer cells can affect the immune microenvironment. Here we show that TRAIL-triggered cytokine secretion from TRAIL-resistant cancer cells is FADD dependent and identify the TRAIL-induced secretome to drive monocyte polarization to myeloid-derived suppressor cells (MDSCs) and M2-like macrophages. TRAIL-R suppression in tumor cells impaired CCL2 production and diminished both lung MDSC presence and tumor growth. In accordance, the receptor of CCL2, CCR2, is required to facilitate increased MDSC presence and tumor growth. Finally, TRAIL and CCL2 are co-regulated with MDSC/M2 markers in lung adenocarcinoma patients. Collectively, endogenous TRAIL/TRAIL-R-mediated CCL2 secretion promotes accumulation of tumor-supportive immune cells in the cancer microenvironment, thereby revealing a tumor-supportive immune-modulatory role of the TRAIL/TRAIL-R system in cancer biology.
Collapse
Affiliation(s)
- Torsten Hartwig
- Centre for Cell Death, Cancer, and Inflammation, Department of Cancer Biology, UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Antonella Montinaro
- Centre for Cell Death, Cancer, and Inflammation, Department of Cancer Biology, UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Silvia von Karstedt
- Centre for Cell Death, Cancer, and Inflammation, Department of Cancer Biology, UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Alexandra Sevko
- Centre for Cell Death, Cancer, and Inflammation, Department of Cancer Biology, UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Silvia Surinova
- Centre for Cell Death, Cancer, and Inflammation, Department of Cancer Biology, UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Ankur Chakravarthy
- Department of Oncology, UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Lucia Taraborrelli
- Centre for Cell Death, Cancer, and Inflammation, Department of Cancer Biology, UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Peter Draber
- Centre for Cell Death, Cancer, and Inflammation, Department of Cancer Biology, UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Elodie Lafont
- Centre for Cell Death, Cancer, and Inflammation, Department of Cancer Biology, UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Frederick Arce Vargas
- Cancer Immunology Unit, Department of Haematology, UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Mona A El-Bahrawy
- Department of Histopathology, Imperial College London, London W12 0NN, UK
| | - Sergio A Quezada
- Cancer Immunology Unit, Department of Haematology, UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Henning Walczak
- Centre for Cell Death, Cancer, and Inflammation, Department of Cancer Biology, UCL Cancer Institute, University College London, London WC1E 6DD, UK.
| |
Collapse
|
35
|
The CRISPR/Cas9 system targeting EGFR exon 17 abrogates NF-κB activation via epigenetic modulation of UBXN1 in EGFRwt/vIII glioma cells. Cancer Lett 2016; 388:269-280. [PMID: 27998759 DOI: 10.1016/j.canlet.2016.12.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/07/2016] [Accepted: 12/09/2016] [Indexed: 12/21/2022]
Abstract
Worldwide, glioblastoma (GBM) is the most lethal and frequent intracranial tumor. Despite decades of study, the overall survival of GBM patients remains unchanged. epidermal growth factor receptor (EGFR) amplification and gene mutation are thought to be negatively correlated with prognosis. In this study, we used proteomics to determine that UBXN1 is a negative downstream regulator of the EGFR mutation vIII (EGFRvIII). Via bioinformatics analysis, we found that UBXN1 is a factor that can improve glioma patients' overall survival time. We also determined that the down-regulation of UBXN1 is mediated by the upregulation of H3K27me3 in the presence of EGFRvIII. Because NF-κB can be negatively regulated by UBXN1, we believe that EGFRwt/vIII activates NF-κB by suppressing UBXN1 expression. Importantly, we used the latest genomic editing tool, CRISPR/Cas9, to knockout EGFRwt/vIII on exon 17 and further proved that UBXN1 is negatively regulated by EGFRwt/vIII. Furthermore, knockout of EGFR/EGFRvIII could benefit GBM in vitro and in vivo, indicating that CRISPR/Cas9 is a promising therapeutic strategy for both EGFR amplification and EGFR mutation-bearing patients.
Collapse
|
36
|
Ignacio RMC, Kabir SM, Lee ES, Adunyah SE, Son DS. NF-κB-Mediated CCL20 Reigns Dominantly in CXCR2-Driven Ovarian Cancer Progression. PLoS One 2016; 11:e0164189. [PMID: 27723802 PMCID: PMC5056735 DOI: 10.1371/journal.pone.0164189] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 09/19/2016] [Indexed: 12/19/2022] Open
Abstract
Ovarian cancer is an inflammation-associated malignancy with a high mortality rate. CXCR2 expressing ovarian cancers are aggressive with poorer outcomes. We previously demonstrated that CXCR2-driven ovarian cancer progression potentiated NF-κB activation through EGFR-transactivated Akt. Here, we identified the chemokine signature involved in CXCR2-driven ovarian cancer progression using a mouse peritoneal xenograft model for ovarian cancer spreading with CXCR2-negative (SKA) and positive (SKCXCR2) cells generated previously from parental SKOV-3 cells. Compared to SKA bearing mice, SKCXCR2 bearing mice had the following characteristics: 1) shorter survival time, 2) greater tumor spreading in the peritoneal cavity and 3) higher tumor weight in the omentum and pelvic site. Particularly, SKCXCR2-derived tumor tissues induced higher activation of the NF-κB signaling pathway, while having no change in EGFR-activated signaling such as Raf, MEK, Akt, mTOR and Erk compared to SKA-derived tumors. Chemokine PCR array revealed that CCL20 mRNA levels were significantly increased in SKCXCR2-derived tumor tissues. The CCL20 promoter activity was regulated by NF-κB dependent pathways. Interestingly, all three κB-like sites in the CCL20 promoter were involved in regulating CCL20 and the proximal region between -92 and -83 was the most critical κB-like site. In addition, SKCXCR2-derived tumor tissues maintained high CCL20 mRNA expression and induced greater CCL24 and CXCR4 compared to SKCXCR2 cells, indicating the shift of chemokine network during the peritoneal spreading of tumor cells via interaction with other cell types in tumor microenvironment. Furthermore, we compared expression profiling array between human ovarian cancer cell lines and tumor tissues based on GEO datasets. The expression profiles in comparison with cell lines revealed that dominant chemokines expressed in ovarian tumor tissues are likely shifted from CXCL1-3 and 8 to CCL20. Taken together, the progression of ovarian cancer in the peritoneal cavity involves NF-κB-mediated CCL20 as a main chemokine network, which is potentiated by CXCR2 expression.
Collapse
Affiliation(s)
- Rosa Mistica C. Ignacio
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Syeda M. Kabir
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Eun-Sook Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, Florida, United States of America
| | - Samuel E. Adunyah
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Deok-Soo Son
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
37
|
Selitrennik M, Lev S. PYK2 integrates growth factor and cytokine receptors signaling and potentiates breast cancer invasion via a positive feedback loop. Oncotarget 2016; 6:22214-26. [PMID: 26084289 PMCID: PMC4673158 DOI: 10.18632/oncotarget.4257] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/29/2015] [Indexed: 12/27/2022] Open
Abstract
The involvement of ErbB family members in breast cancer progression and metastasis has been demonstrated by many studies. However, the downstream effectors that mediate their migratory and invasive responses have not been fully explored. In this study, we show that the non-receptor tyrosine kinase PYK2 is a key effector of EGFR and HER2 signaling in human breast carcinoma. We found that PYK2 is activated by both EGF and heregulin (HRG) in breast cancer cells, and positively regulates EGF/HRG-induced cell spreading, migration and invasion. PYK2 depletion markedly affects ERK1/2 and STAT3 phosphorylation in response to EGF/HRG as well as to IL8 treatment. Importantly, PYK2 depletion also reduced EGF/HRG-induced MMP9 and IL8 transcription, while IL8 inhibition abrogated EGF-induced MMP9 transcription and attenuated cell invasion. IL8, which is transcriptionally regulated by STAT3 and induces PYK2 activation, prolonged EGF-induced PYK2, STAT3 and ERK1/2 phosphorylation suggesting that IL8 acts through an autocrine loop to reinforce EGF-induced signals. Collectively our studies suggest that PYK2 is a common downstream effector of ErbB and IL8 receptors, and that PYK2 integrates their signaling pathways through a positive feedback loop to potentiate breast cancer invasion. Hence, PYK2 could be a potential therapeutic target for a subset of breast cancer patients.
Collapse
Affiliation(s)
- Michael Selitrennik
- Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Sima Lev
- Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
38
|
Abstract
The human body combats infection and promotes wound healing through the remarkable process of inflammation. Inflammation is characterized by the recruitment of stromal cell activity including recruitment of immune cells and induction of angiogenesis. These cellular processes are regulated by a class of soluble molecules called cytokines. Based on function, cell target, and structure, cytokines are subdivided into several classes including: interleukins, chemokines, and lymphokines. While cytokines regulate normal physiological processes, chronic deregulation of cytokine expression and activity contributes to cancer in many ways. Gene polymorphisms of all types of cytokines are associated with risk of disease development. Deregulation RNA and protein expression of interleukins, chemokines, and lymphokines have been detected in many solid tumors and hematopoetic malignancies, correlating with poor patient prognosis. The current body of literature suggests that in some tumor types, interleukins and chemokines work against the human body by signaling to cancer cells and remodeling the local microenvironment to support the growth, survival, and invasion of primary tumors and enhance metastatic colonization. Some lymphokines are downregulated to suppress tumor progression by enhancing cytotoxic T cell activity and inhibiting tumor cell survival. In this review, we will describe the structure/function of several cytokine families and review our current understanding on the roles and mechanisms of cytokines in tumor progression. In addition, we will also discuss strategies for exploiting the expression and activity of cytokines in therapeutic intervention.
Collapse
Affiliation(s)
- M Yao
- University of Kansas Medical Center, Kansas City, KS, United States
| | - G Brummer
- University of Kansas Medical Center, Kansas City, KS, United States
| | - D Acevedo
- University of Kansas Medical Center, Kansas City, KS, United States
| | - N Cheng
- University of Kansas Medical Center, Kansas City, KS, United States.
| |
Collapse
|
39
|
Jin Y, Wu Z, Wang N, Duan S, Wu Y, Wang J, Wu W, Feng F. Association of EGF Receptor and NLRs signaling with Cardiac Inflammation and Fibrosis in Mice Exposed to Fine Particulate Matter. J Biochem Mol Toxicol 2016; 30:429-37. [PMID: 27158778 DOI: 10.1002/jbt.21806] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/02/2016] [Accepted: 03/11/2016] [Indexed: 11/08/2022]
Abstract
ЄAmbient fine particulate matter (PM2.5 ) could induce cardiovascular diseases (CVD), but the mechanism remains unknown. To investigate the roles of epidermal growth factor receptor (EGFR) and NOD-like receptors (NLRs) in PM2.5 -induced cardiac injury, we set up a BALB/c mice model of PM2.5 -induced cardiac inflammation and fibrosis with intratracheal instillation of PM2.5 suspension (4.0 mg/kg b.w.) for 5 consecutive days (once per day). After exposure, we found that mRNA levels of CXCL1, interleukin (IL)-6, and IL-18 were elevated, but interestingly, mRNA level of NLRP12 was significant decreased in heart tissue from PM2.5 -induced mice compared with those of saline-treated mice using real-time PCR. Protein levels of phospho-EGFR (Tyr1068), phospho-Akt (Thr308), NLRP3, NF-κB-p52/p100, and NF-κB-p65 in heart tissue of PM2.5 -exposed mice were all significantly increased using immunohistochemistry or Western blotting. Therefore, PM2.5 exposure could induce cardiac inflammatory injury in mice, which may be involved with EGFR/Akt signaling, NLRP3, and NLRP12.
Collapse
Affiliation(s)
- Yuefei Jin
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Zhaoke Wu
- Department of Geriatrics, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, Henan, People's Republic of China
| | - Na Wang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Shuyin Duan
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Jing Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan, People's Republic of China.
| | - Feifei Feng
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
| |
Collapse
|
40
|
Wu D, Hong H, Huang X, Huang L, He Z, Fang Q, Luo Y. CXCR2 is decreased in preeclamptic placentas and promotes human trophoblast invasion through the Akt signaling pathway. Placenta 2016; 43:17-25. [PMID: 27324095 DOI: 10.1016/j.placenta.2016.04.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/27/2016] [Accepted: 04/19/2016] [Indexed: 02/01/2023]
Abstract
INTRODUCTION CXCR2, the receptor of the CXC chemokines, plays a critical role in cell migration and invasion in many types of cancer. It is unclear what impact CXCR2 may have on Preeclampsia (PE), a pregnancy-specific disease, which is related to insufficient trophoblast invasion. The aim of this study was to investigate the expression pattern of CXCR2 in the placentas of healthy and PE pregnancies, and to investigate the molecular mechanism of CXCR2 involvement in the development of PE. METHODS CXCR2 expression levels in newly delivered placentas from 38 pregnant women with PE and 21 healthy pregnant women were detected using quantitative real-time PCR, immunohistochemistry and Western blot assays. The effect of CXCR2 on trophoblast invasion and the underlying mechanisms were examined in two trophoblast cell lines (HTR-8/SVneo and TEV-1 cells). RESULTS CXCR2 mRNA and protein expression levels were significantly decreased in preeclamptic placentas than normal control. The invasive abilities of the two trophoblast cell lines were significantly inhibited when CXCR2 was silenced, but that CXCR2 overexpression promoted trophoblast cells invasion. In addition, silencing CXCR2 reduced the expression of matrix metalloproteinase 2 and 9 (MMP2 and MMP9) and phosphorylated Akt (p-Akt). Furthermore, an Akt inhibitor suppressed the expression of MMP-2 and MMP-9. DISCUSSION Our results suggest that the decreased CXCR2 may contribute to the development of preeclampsia through impairing trophoblast invasion by down-regulating MMP-2 and MMP-9 via the Akt signaling pathway.
Collapse
Affiliation(s)
- Dongcai Wu
- Fetal Medicine Center, Department of Obstetrics & Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Honghai Hong
- Clinical Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xuan Huang
- Fetal Medicine Center, Department of Obstetrics & Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Linhuan Huang
- Fetal Medicine Center, Department of Obstetrics & Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhiming He
- Fetal Medicine Center, Department of Obstetrics & Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qun Fang
- Fetal Medicine Center, Department of Obstetrics & Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Yanmin Luo
- Fetal Medicine Center, Department of Obstetrics & Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
41
|
Yip HY, Poh MSW, Chia YY. The effects of glycyrrhizic acid and glabridin in the regulation of CXCL5 inflammation gene on acceleration of wound healing. Asian Pac J Trop Biomed 2016. [DOI: 10.1016/j.apjtb.2015.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
42
|
Xiang Z, Jiang DAP, Xia GG, Wei ZW, Chen W, He Y, Zhang CH. CXCL1 expression is correlated with Snail expression and affects the prognosis of patients with gastric cancer. Oncol Lett 2015; 10:2458-2464. [PMID: 26622871 DOI: 10.3892/ol.2015.3614] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 07/09/2015] [Indexed: 12/23/2022] Open
Abstract
Gastric cancer (GC) continues to result in a poor survival rate and prognostic biomarkers for the disease are lacking. Chemokine (C-X-C motif) ligand (CXCL1) expression plays a critical role in tumor metastasis, and Snail promotes epithelial-mesenchymal transition (EMT) to promote metastasis. Therefore, the present study aimed to investigate the correlation between CXCL1 and Snail expression and the effect of CXCL1 expression on the survival of patients with GC. CXCL1 and Snail expression in paraffin-embedded tissue sections from 127 patients with GC were each assessed by immunohistochemistry. Cox regression and Kaplan-Meier analyses were performed to evaluate the prognostic significance of CXCL1 and Snail. Evaluation of the association between CXCL1 and Snail expression and clinical characteristics was based on the χ2 test. Spearman's rank correlation coefficient and Fisher's exact test were used to explore the association between CXCL1 and Snail expression in GC tissues. CXCL1 was found to be significantly associated with tumor invasion (P=0.003), tumor-node-metastasis (TNM) staging (P=0.001), tumor size (P=0.013) and lymph node metastasis (P=0.022) in GC. Snail overexpression was also significantly associated with tumor invasion (P=0.001), TNM staging (P=0.005), tumor size (P=0.026), lymph node metastases (P=0.014) and perineural invasion (P=0.009). CXCL1 and Snail expression were independent factors for a worse overall survival rate, as determined by multivariate analysis (P=0.011 and P=0.018; respectively). The combined expression of CXCL1 and Snail resulted in a worse prognosis compared with the other three groups (P=0.005). Furthermore, there was a significantly positive correlation between CXCL1 and Snail expression in GC (r=0.431; P<0.001). The expression of CXCL1 is significantly associated with Snail expression and may be used as a predictive co-biomarker for patient prognosis and tumor aggressiveness in GC. CXCL1 may promote GC metastasis by regulating EMT.
Collapse
Affiliation(s)
- Zhen Xiang
- Department of Gastrointestinopancreatic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - DA-Ping Jiang
- Department of Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Guang-Gai Xia
- Department of Gastrointestinopancreatic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Zhe-Wei Wei
- Department of Gastrointestinopancreatic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Wei Chen
- Department of Gastrointestinopancreatic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yulong He
- Department of Gastrointestinopancreatic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Chang-Hua Zhang
- Department of Gastrointestinopancreatic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
43
|
Yaswen P, MacKenzie KL, Keith WN, Hentosh P, Rodier F, Zhu J, Firestone GL, Matheu A, Carnero A, Bilsland A, Sundin T, Honoki K, Fujii H, Georgakilas AG, Amedei A, Amin A, Helferich B, Boosani CS, Guha G, Ciriolo MR, Chen S, Mohammed SI, Azmi AS, Bhakta D, Halicka D, Niccolai E, Aquilano K, Ashraf SS, Nowsheen S, Yang X. Therapeutic targeting of replicative immortality. Semin Cancer Biol 2015; 35 Suppl:S104-S128. [PMID: 25869441 PMCID: PMC4600408 DOI: 10.1016/j.semcancer.2015.03.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 03/06/2015] [Accepted: 03/13/2015] [Indexed: 12/15/2022]
Abstract
One of the hallmarks of malignant cell populations is the ability to undergo continuous proliferation. This property allows clonal lineages to acquire sequential aberrations that can fuel increasingly autonomous growth, invasiveness, and therapeutic resistance. Innate cellular mechanisms have evolved to regulate replicative potential as a hedge against malignant progression. When activated in the absence of normal terminal differentiation cues, these mechanisms can result in a state of persistent cytostasis. This state, termed “senescence,” can be triggered by intrinsic cellular processes such as telomere dysfunction and oncogene expression, and by exogenous factors such as DNA damaging agents or oxidative environments. Despite differences in upstream signaling, senescence often involves convergent interdependent activation of tumor suppressors p53 and p16/pRB, but can be induced, albeit with reduced sensitivity, when these suppressors are compromised. Doses of conventional genotoxic drugs required to achieve cancer cell senescence are often much lower than doses required to achieve outright cell death. Additional therapies, such as those targeting cyclin dependent kinases or components of the PI3K signaling pathway, may induce senescence specifically in cancer cells by circumventing defects in tumor suppressor pathways or exploiting cancer cells’ heightened requirements for telomerase. Such treatments sufficient to induce cancer cell senescence could provide increased patient survival with fewer and less severe side effects than conventional cytotoxic regimens. This positive aspect is countered by important caveats regarding senescence reversibility, genomic instability, and paracrine effects that may increase heterogeneity and adaptive resistance of surviving cancer cells. Nevertheless, agents that effectively disrupt replicative immortality will likely be valuable components of new combinatorial approaches to cancer therapy.
Collapse
Affiliation(s)
- Paul Yaswen
- Life Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA, United States.
| | - Karen L MacKenzie
- Children's Cancer Institute Australia, Kensington, New South Wales, Australia.
| | | | | | | | - Jiyue Zhu
- Washington State University College of Pharmacy, Pullman, WA, United States.
| | | | | | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, HUVR, Consejo Superior de Investigaciones Cientificas, Universdad de Sevilla, Seville, Spain.
| | | | | | | | | | | | | | - Amr Amin
- United Arab Emirates University, Al Ain, United Arab Emirates; Cairo University, Cairo, Egypt
| | - Bill Helferich
- University of Illinois at Urbana Champaign, Champaign, IL, United States
| | | | - Gunjan Guha
- SASTRA University, Thanjavur, Tamil Nadu, India
| | | | - Sophie Chen
- Ovarian and Prostate Cancer Research Trust, Guildford, Surrey, United Kingdom
| | | | - Asfar S Azmi
- Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | | | | | | | | | - S Salman Ashraf
- United Arab Emirates University, Al Ain, United Arab Emirates; Cairo University, Cairo, Egypt
| | | | - Xujuan Yang
- University of Illinois at Urbana Champaign, Champaign, IL, United States
| |
Collapse
|
44
|
Tissue invasion and metastasis: Molecular, biological and clinical perspectives. Semin Cancer Biol 2015; 35 Suppl:S244-S275. [PMID: 25865774 DOI: 10.1016/j.semcancer.2015.03.008] [Citation(s) in RCA: 336] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 03/17/2015] [Accepted: 03/18/2015] [Indexed: 12/12/2022]
Abstract
Cancer is a key health issue across the world, causing substantial patient morbidity and mortality. Patient prognosis is tightly linked with metastatic dissemination of the disease to distant sites, with metastatic diseases accounting for a vast percentage of cancer patient mortality. While advances in this area have been made, the process of cancer metastasis and the factors governing cancer spread and establishment at secondary locations is still poorly understood. The current article summarizes recent progress in this area of research, both in the understanding of the underlying biological processes and in the therapeutic strategies for the management of metastasis. This review lists the disruption of E-cadherin and tight junctions, key signaling pathways, including urokinase type plasminogen activator (uPA), phosphatidylinositol 3-kinase/v-akt murine thymoma viral oncogene (PI3K/AKT), focal adhesion kinase (FAK), β-catenin/zinc finger E-box binding homeobox 1 (ZEB-1) and transforming growth factor beta (TGF-β), together with inactivation of activator protein-1 (AP-1) and suppression of matrix metalloproteinase-9 (MMP-9) activity as key targets and the use of phytochemicals, or natural products, such as those from Agaricus blazei, Albatrellus confluens, Cordyceps militaris, Ganoderma lucidum, Poria cocos and Silybum marianum, together with diet derived fatty acids gamma linolenic acid (GLA) and eicosapentanoic acid (EPA) and inhibitory compounds as useful approaches to target tissue invasion and metastasis as well as other hallmark areas of cancer. Together, these strategies could represent new, inexpensive, low toxicity strategies to aid in the management of cancer metastasis as well as having holistic effects against other cancer hallmarks.
Collapse
|
45
|
Wei ZW, Xia GK, Wu Y, Chen W, Xiang Z, Schwarz RE, Brekken RA, Awasthi N, He YL, Zhang CH. CXCL1 promotes tumor growth through VEGF pathway activation and is associated with inferior survival in gastric cancer. Cancer Lett 2015; 359:335-43. [DOI: 10.1016/j.canlet.2015.01.033] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/22/2015] [Accepted: 01/24/2015] [Indexed: 02/07/2023]
|
46
|
Transcriptional regulation of chemokine expression in ovarian cancer. Biomolecules 2015; 5:223-43. [PMID: 25790431 PMCID: PMC4384120 DOI: 10.3390/biom5010223] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/04/2015] [Accepted: 03/09/2015] [Indexed: 12/14/2022] Open
Abstract
The increased expression of pro-inflammatory and pro-angiogenic chemokines contributes to ovarian cancer progression through the induction of tumor cell proliferation, survival, angiogenesis, and metastasis. The substantial potential of these chemokines to facilitate the progression and metastasis of ovarian cancer underscores the need for their stringent transcriptional regulation. In this Review, we highlight the key mechanisms that regulate the transcription of pro-inflammatory chemokines in ovarian cancer cells, and that have important roles in controlling ovarian cancer progression. We further discuss the potential mechanisms underlying the increased chemokine expression in drug resistance, along with our perspective for future studies.
Collapse
|
47
|
Erin N, Nizam E, Tanrıöver G, Köksoy S. Autocrine control of MIP-2 secretion from metastatic breast cancer cells is mediated by CXCR2: a mechanism for possible resistance to CXCR2 antagonists. Breast Cancer Res Treat 2015; 150:57-69. [DOI: 10.1007/s10549-015-3297-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/03/2015] [Indexed: 02/06/2023]
|
48
|
Live imaging and gene expression analysis in zebrafish identifies a link between neutrophils and epithelial to mesenchymal transition. PLoS One 2014; 9:e112183. [PMID: 25372289 PMCID: PMC4221567 DOI: 10.1371/journal.pone.0112183] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 10/06/2014] [Indexed: 12/18/2022] Open
Abstract
Chronic inflammation is associated with epithelial to mesenchymal transition (EMT) and cancer progression however the relationship between inflammation and EMT remains unclear. Here, we have exploited zebrafish to visualize and quantify the earliest events during epithelial cell transformation induced by oncogenic HRasV12. Live imaging revealed that expression of HRasV12 in the epidermis results in EMT and chronic neutrophil and macrophage infiltration. We have developed an in vivo system to probe and quantify gene expression changes specifically in transformed cells from chimeric zebrafish expressing oncogenic HRasV12 using translating ribosomal affinity purification (TRAP). We found that the expression of genes associated with EMT, including slug, vimentin and mmp9, are enriched in HRasV12 transformed epithelial cells and that this enrichment requires the presence of neutrophils. An early signal induced by HRasV12 in epithelial cells is the expression of il-8 (cxcl8) and we found that the chemokine receptor, Cxcr2, mediates neutrophil but not macrophage recruitment to the transformed cells. Surprisingly, we also found a cell autonomous role for Cxcr2 signaling in transformed cells for both neutrophil recruitment and EMT related gene expression associated with Ras transformation. Taken together, these findings implicate both autocrine and paracrine signaling through Cxcr2 in the regulation of inflammation and gene expression in transformed epithelial cells.
Collapse
|
49
|
Kabir SM, Lee ES, Son DS. Chemokine network during adipogenesis in 3T3-L1 cells: Differential response between growth and proinflammatory factor in preadipocytes vs. adipocytes. Adipocyte 2014; 3:97-106. [PMID: 24719782 PMCID: PMC3979886 DOI: 10.4161/adip.28110] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/27/2014] [Accepted: 02/04/2014] [Indexed: 01/21/2023] Open
Abstract
Obesity is recognized as a low-grade chronic inflammatory state which involves a chemokine network contributing to a variety of diseases. As a first step toward understanding the roles of the obesity-driven chemokine network, we used a 3T3-L1 cell differentiation model to identify the chemokine profiles elicited during adipogenesis and how this profile is modified by epidermal growth factor (EGF) and tumor necrosis factor-α (TNF) as a growth and proinflammatory factor, respectively. The chemokine network was monitored using PCR arrays and qRT-PCR while main signaling pathways of EGF and TNF were measured using immunoblotting. The dominant chemokines in preadipocytes were CCL5, CCL8, CXCL1, and CXCL16, and in adipocytes CCL6 and CXCL13. The following chemokines were found in both preadipocytes and adipocytes: CCL2, CCL7, CCL25, CCL27, CXCL5, CXCL12, and CX3CL1. Among chemokine receptors, CXCR7 was specific for preadipocytes and CXCR2 for adipocytes. These findings indicate the development of a CXCL12–CXCR7 axis in preadipocytes and a CXCL5–CXCR2 axis in adipocytes. In addition to induction of CCL2 and CCL7 in both preadipocytes and adipocytes, EGF enhanced specifically CXCL1 and CXCL5 in adipocytes, indicating the potentiation of CXCR2-mediated pathway in adipocytes. TNF induced CCL2, CCL7, and CXCL1 in preadipocytes but had no response in adipocytes. EGFR downstream activation was dominant in adipocytes whereas NFκB activation was dominant in preadipocytes. Taken together, the adipocyte-driven chemokine network in the 3T3-L1 cell differentiation model involves CXCR2-mediated signaling which appears more potentiated to growth factors like EGF than proinflammatory factors like TNF.
Collapse
|