1
|
Zhou Z, Zhang G, Hua J, Xue J, Yu C. Tree species selection for optimizing soil carbon storage: Insights from litter decomposition and bacterial community analysis in coastal ecosystems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122984. [PMID: 39437689 DOI: 10.1016/j.jenvman.2024.122984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/20/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Coastal wetland ecosystems are critical sinks for atmospheric carbon dioxide, playing a vital role in global carbon cycling and climate regulation. The decomposition of leaf litter plays a crucial role in the formation and stability of soil organic carbon (SOC) in these environments. This study investigated the impact of leaf litter decomposition from five tree species (Populus deltoids, Ligustrum lucidum, Taxodium 'Zhongshanshan', Hibiscus hamabo, and Nerium oleander) on SOC dynamics, humus composition, and soil bacterial community structure in a tidal flat. Litterbags were used to monitor the mass loss and changes in litter chemical composition over 270 days. The results revealed significant differences in decomposition rates among the tree species, with Nerium oleander exhibiting the fastest decomposition and Populus deltoids the slowest. Surprisingly, initial litter chemistry did not correlate with decomposition rates; however, changes in lignin and hemicellulose content during decomposition were significantly related to mass loss. Despite its rapid decomposition, Nerium oleander litter resulted in the highest accumulation of SOC, total humus, and humin compared to the other species, challenging the conventional view that slower decomposition leads to greater SOC storage. The soil microbial community structure was significantly influenced by SOC, humus, and litter components, with distinct microbial assemblages associated with each tree species. A random forest model identified key bacterial taxa, predominantly Proteobacteria, as important predictors of SOC content, highlighting the role of bacterial diversity in regulating SOC dynamics. These findings underscore the importance of considering litter quality, decomposition dynamics, and bacterial community composition in strategies aimed at enhancing soil carbon sequestration. This study suggests that selecting tree species with rapidly decomposing litter, such as Nerium oleander, in coastal plantations can be an effective management tool for optimizing soil carbon storage, offering valuable insights for mitigating climate change impacts.
Collapse
Affiliation(s)
- Zhidong Zhou
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, 210014, China
| | - Gang Zhang
- Key Laboratory of Coastal Salt Marsh Ecosystems and Resources, Ministry of Natural Resources, Nanjing, 210007, China; Jiangsu Geological Bureau, Institute of Geochemical Exploration and Marine Geological Survey, Nanjing, 210007, China
| | - Jianfeng Hua
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, 210014, China.
| | - Jianhui Xue
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, 210014, China
| | - Chaoguang Yu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, 210014, China
| |
Collapse
|
2
|
Gao J, Ali MY, Kamaraj Y, Zhang Z, Weike L, Sethupathy S, Zhu D. A comprehensive review on biological funnel mechanism in lignin valorization: Pathways and enzyme dynamics. Microbiol Res 2024; 287:127835. [PMID: 39032264 DOI: 10.1016/j.micres.2024.127835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/17/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
Lignin, a significant byproduct of the paper and pulp industry, is attracting interest due to its potential utilization in biomaterial-based sectors and biofuel production. Investigating biological methods for converting lignin into valuable products is crucial for effective utilization and has recently gained growing attention. Several microorganisms effectively decomposed low molecular weight lignins, transforming them into intermediate compounds via upper and lower metabolic pathways. This review focuses on assessing bacterial metabolic pathways involved in the breakdown of lignin into aromatic compounds and their subsequent utilization by different bacteria through various metabolic pathways. Understanding these pathways is essential for developing efficient synthetic metabolic systems to valorize lignin and obtain valuable industrial aromatic chemicals. The concept of "biological funneling," which involves examining key enzymes, their interactions, and the complex metabolic pathways associated with lignin conversion, is crucial in lignin valorization. By manipulating lignin metabolic pathways and utilizing biological routes, many aromatic compounds can be synthesized within cellular factories. Although there is insufficient evidence regarding the complete metabolism of polyaromatic hydrocarbons by particular microorganisms, understanding lignin-degrading enzymes, regulatory mechanisms, and interactions among various enzyme systems is essential for optimizing lignin valorization. This review highlights recent advancements in lignin valorization, bio-funneling, multi-omics, and analytical characterization approaches for aromatic utilization. It provides up-to-date information and insights into the latest research findings and technological innovations. The review offers valuable insights into the future potential of biological routes for lignin valorization.
Collapse
Affiliation(s)
- Jiayue Gao
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Mohamed Yassin Ali
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China; Department of Biochemistry, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Yoganathan Kamaraj
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhenghao Zhang
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Li Weike
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Sivasamy Sethupathy
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Daochen Zhu
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
3
|
Eaton WD, Hamilton DA. Increasing Ages of Inga punctata Tree Soils Facilitate Greater Fungal Community Abundance and Successional Development, and Efficiency of Microbial Organic Carbon Utilization. Microorganisms 2024; 12:1996. [PMID: 39458304 PMCID: PMC11509470 DOI: 10.3390/microorganisms12101996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Leguminous Inga trees are thought to enhance soil carbon (C) accumulation following reforestation, through mostly unknown mechanisms. This study amplified soil DNA using the ITS1F and ITS4 primers for PCR and Illumina MiSeq methods to identify fungal taxa, and traditional C analysis methods to evaluate how planted 4-, 8-, and 11-year-old Inga punctata trees affected soil fungal community compositions and C utilization patterns compared to old-growth I. punctata trees and an adjacent unplanted pasture within the same reforestation zone in Monteverde, Costa Rica. Along the tree age gradient, the planted I. punctata trees enhanced the tree soil C capture capacity, as indicated by increased levels of soil biomass C, Respiration, and efficiency of organic C use (with lower qCO2 values), and development of increasingly more abundant, stable, and successionally developed fungal communities, including those associated with the decomposition of complex organic C compounds. The level and strength of differences coincided with differences in the time of separation between the pasture and tree age or between the different tree ages. Fungal taxa were also identified as potential indicators of the early and late stages of soil recovery. Thus, planting I. punctata should be part of future reforestation strategies used in this region of the Monteverde Cloud Forest in Costa Rica.
Collapse
Affiliation(s)
- William D. Eaton
- Biology Department, Dyson College, Pace University, New York, NY 10038, USA
- Department of Environment and Development, University for Peace, El Rodeo de Mora, San José 10701, Costa Rica
| | - Debra A. Hamilton
- Vermont Cooperative Fish and Wildlife Research Unit, Rubenstein School of the Environment and Natural Resources, University of Vermont, Burlington, VT 05405, USA;
- Monteverde Institute, Monteverde, Puntarenas 60109, Costa Rica
| |
Collapse
|
4
|
Wang F, Gao Y, Li X, Luan M, Wang X, Zhao Y, Zhou X, Du G, Wang P, Ye C, Guo H. Changes in microbial composition explain the contrasting responses of glucose and lignin decomposition to soil acidification in an alpine grassland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172671. [PMID: 38653407 DOI: 10.1016/j.scitotenv.2024.172671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/03/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Soil acidification often suppresses microbial growth and activities, resulting in a negative impact on soil organic carbon (C) decomposition. While the detrimental effects of acidification on soil and plant properties have been extensively studied, less attention has been paid on the shifts in soil microbial communities and their influences of the decomposition of organic C with different chemical complexities. Taking advantage of an acid addition experiment in a Tibetan alpine meadow, here we examined the response of soil microbial communities to soil acidification and microbial effect on the decomposition of organic C with different chemical complexities (i.e., glucose and lignin, representing labile and recalcitrant C respectively). We found that soil acidification had no impact on microbial respiration and microbial abundance even though it decreased bacterial diversity significantly. Soil acidification increased the relative abundance of some microbial taxa, like Alphaproteobacteria and Acidobacteriia in bacteria increased by 36 %, 284 %, and Eurotiomycetes, Sordariomycetes and Leotiomycetes in fungi increased by 145 %, 279 % and 12.7-fold, but decreased the relative abundance of Acidimicrobiia by 33 % in highest acid addition treatment. Changes in microbial communities (bacterial and fungal community composition, the diversity of bacterial community and the ratio of fungi to bacteria) are significantly related to the decomposition of glucose and lignin. More specifically, soil acidification decreased the decomposition of glucose but increased the decomposition of lignin, indicating a trade-off between the decomposition of labile and recalcitrant soil organic C under soil acidification. Overall, shifts in microbial communities under soil acidification might be accompanied by an increased ability to break down more recalcitrant C. This trade-off between the decomposition of labile and recalcitrant C may change soil C quality under future acid deposition scenarios.
Collapse
Affiliation(s)
- Fuwei Wang
- Ecosystem Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; College of Resource and Environment, Anhui Science and Technology University, Fengyang 233100, China
| | - Yue Gao
- Ecosystem Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Li
- Ecosystem Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengdi Luan
- Ecosystem Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoyi Wang
- Ecosystem Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanwen Zhao
- Ecosystem Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xianhui Zhou
- State Key Laboratory of Grassland and Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Guozhen Du
- State Key Laboratory of Grassland and Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Peng Wang
- Ecosystem Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chenglong Ye
- Ecosystem Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Hui Guo
- Ecosystem Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
5
|
Qu T, Zhao X, Yan S, Liu Y, Ameer MJ, Zhao L. Interruption after Short-Term Nitrogen Additions Improves Ecological Stability of Larix olgensis Forest Soil by Affecting Bacterial Communities. Microorganisms 2024; 12:969. [PMID: 38792798 PMCID: PMC11123698 DOI: 10.3390/microorganisms12050969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Atmospheric nitrogen deposition can alter soil microbial communities and further impact the structure and function of forest ecosystems. However, most studies are focused on positive or negative effects after nitrogen addition, and few studies pay attention to its interruption. In order to investigate whether interruption after different levels of short-term N additions still benefit soil health, we conducted a 2-year interruption after a 4-year short-term nitrogen addition (10 and 20 kg N·hm-2·yr-1) experiment; then, we compared soil microbial diversity and structure and analyzed soil physicochemical properties and their correlations before and after the interruption in Larix olgensis forest soil in northeast China. The results showed that soil ecological stabilization of Larix olgensis forest further improved after the interruption compared to pre-interruption. The TN, C:P, N:P, and C:N:P ratios increased significantly regardless of the previous nitrogen addition concentration, and soil nutrient cycling was further promoted. The relative abundance of the original beneficial microbial taxa Gemmatimonas, Sphingomonas, and Pseudolabrys increased; new beneficial bacteria Ellin6067, Massilia, Solirubrobacter, and Bradyrhizobium appeared, and the species of beneficial soil microorganisms were further improved. The results of this study elucidated the dynamics of the bacterial community before and after the interruption of short-term nitrogen addition and could provide data support and a reference basis for forest ecosystem restoration strategies and management under the background of global nitrogen deposition.
Collapse
Affiliation(s)
| | | | | | | | | | - Lei Zhao
- College of Forestry and Grassland, Jilin Agricultural University, Changchun 130118, China; (T.Q.); (X.Z.); (S.Y.); (Y.L.); (M.J.A.)
| |
Collapse
|
6
|
Su Y, Qian J, Wang J, Mi X, Huang Q, Zhang Y, Jiang Q, Wang Q. Unraveling the mechanism of norfloxacin removal and fate of antibiotics resistance genes (ARGs) in the sulfur-mediated autotrophic denitrification via metagenomic and metatranscriptomic analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171328. [PMID: 38428600 DOI: 10.1016/j.scitotenv.2024.171328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
The co-contamination of antibiotics and nitrogen has attracted widespread concerns due to its potential harm to ecological safety and human health. Sulfur-driven autotrophic denitrification (SAD) with low sludge production rate was adopted to treat antibiotics laden-organic deficient wastewater. Herein, a lab-scale sequencing batch reactor (SBR) was established to explore the simultaneous removal of nitrate and antibiotics, i.e. Norfloxacin (NOR), as well as microbial response mechanism of SAD sludge system towards NOR exposure. About 80.78 % of NOR was removed by SAD sludge when the influent NOR level was 0.5 mg/L, in which biodegradation was dominant removal route. The nitrate removal efficiency decreased slightly from 98.37 ± 0.58 % to 96.58 ± 1.03 % in the presence of NOR. Thiobacillus and Sulfurimonas were the most abundant sulfur-oxidizing bacteria (SOB) in SAD system, but Thiobacillus was more sensitive to NOR. The up-regulated genes related to Xenobiotics biodegradation and metabolism and CYP450 indicated the occurrence of NOR biotransformation in SAD system. The resistance of SAD sludge to the exposure of NOR was mainly ascribed to antibiotic efflux. And the effect of antibiotic inactivation was enhanced after long-term fed with NOR. The NOR exposure resulted in the increased level of antibiotics resistance genes (ARGs) and mobile genetic elements (MGEs). Besides, the enhanced ARG-MGE co-existence patterns further reveals the higher horizontal mobility potential of ARGs under NOR exposure pressures. The most enriched sulfur oxidizing bacterium Thiobacillus was a potential host for most of ARGs. This study provides a new insight for the treatment of NOR-laden wastewater with low C/N ratio based on the sulfur-mediated biological process.
Collapse
Affiliation(s)
- Yan Su
- Xi'an TPRI Water-Management & Environmental Protection Co. Ltd., State Key Laboratory of High-Efficiency Flexible Coal Power Generation and Carbon Capture Utilization and Storage, PR China
| | - Jin Qian
- Research & Development Institute in Shenzhen, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, PR China.
| | - Jing Wang
- Xi'an TPRI Water-Management & Environmental Protection Co. Ltd., State Key Laboratory of High-Efficiency Flexible Coal Power Generation and Carbon Capture Utilization and Storage, PR China
| | - Xiaohui Mi
- Research & Development Institute in Shenzhen, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, PR China
| | - Qiong Huang
- Xi'an TPRI Water-Management & Environmental Protection Co. Ltd., State Key Laboratory of High-Efficiency Flexible Coal Power Generation and Carbon Capture Utilization and Storage, PR China; Xi'an Yitong Thermal Technology Service Co., Ltd., Xi'an 710000, PR China
| | - Yichu Zhang
- Research & Development Institute in Shenzhen, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, PR China
| | - Qi Jiang
- Xi'an TPRI Water-Management & Environmental Protection Co. Ltd., State Key Laboratory of High-Efficiency Flexible Coal Power Generation and Carbon Capture Utilization and Storage, PR China
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
7
|
Shamshitov A, Kadžienė G, Supronienė S. The Role of Soil Microbial Consortia in Sustainable Cereal Crop Residue Management. PLANTS (BASEL, SWITZERLAND) 2024; 13:766. [PMID: 38592825 PMCID: PMC10974107 DOI: 10.3390/plants13060766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/11/2024]
Abstract
The global escalation in cereal production, essential to meet growing population demands, simultaneously augments the generation of cereal crop residues, estimated annually at approximately 3107 × 106 Mg/year. Among different crop residue management approaches, returning them to the soil can be essential for various ecological benefits, including nutrient recycling and soil carbon sequestration. However, the recalcitrant characteristics of cereal crop residues pose significant challenges in their management, particularly in the decomposition rate. Therefore, in this review, we aim to summarize the influence of different agricultural practices on enhancing soil microbial decomposer communities, thereby effectively managing cereal crop residues. Moreover, this manuscript provides indirect estimates of cereal crop residue production in Northern Europe and Lithuania, and highlights the diverse roles of lignocellulolytic microorganisms in the decomposition process, with a particular focus on enzymatic activities. This review bridges the knowledge gap and indicates future research directions concerning the influence of agricultural practices on cereal crop residue-associated microbial consortia.
Collapse
Affiliation(s)
- Arman Shamshitov
- Laboratory of Microbiology, Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, Akademija, LT-58344 Kedainiai, Lithuania;
| | - Gražina Kadžienė
- Department of Soil and Crop Management, Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, Akademija, LT-58344 Kedainiai, Lithuania
| | - Skaidrė Supronienė
- Laboratory of Microbiology, Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, Akademija, LT-58344 Kedainiai, Lithuania;
| |
Collapse
|
8
|
Wang X, Li J, Zheng J, Zhao L, Ruan C, Zhang D, Pan X. Polysaccharide preferred minority-dominant community assembly and exoenzyme enrichment in transparent exopolymer particles: Implication for global carbon cycle in water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169976. [PMID: 38199380 DOI: 10.1016/j.scitotenv.2024.169976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
The ubiquitous transparent exopolymer particles (TEPs) are an important organic carbon pool and an ideal microhabitat for bacteria in aquatic environments. They play a crucial role in the global carbon cycle. Organic matter transformation and carbon turnover in TEPs strongly depend on the assembly of their associated bacterial communities and enzyme activity. However, the mechanisms of bacterial community assembly and their potential effects on the organic carbon cycle in TEPs are still unclear. In this study, we comparatively explored the community assembly of TEP-associated bacteria and bacterioplankton from surface freshwater using metagenomics. It was found that the bacterial community assembly in TEPs followed a minority-dominant rule and was governed by homogeneous selection. Pseudomonadota and Actinomycetota, which are responsible for polysaccharide degradation, serve as taxon-specific biomarkers among the abundant and diverse bacteria in TEPs. The network of TEP-associated bacteria displayed stronger robustness than that of bacterioplankton. Bin 76 (majorly Acinetobacter) was the overwhelmingly dominant taxa in TEPs, whereas there was no clearly dominant taxa in TEP-free water. Exoenzyme analysis showed that 64 out of 71 identified polysaccharide hydrolases were markedly linked with the dominant bin 76 in TEPs, while no such linkage was observed for bacterioplankton. Generally, Acinetobacter, which is capable of utilizing polysaccharides, is preferred to be assembled in TEPs together with high polysaccharide hydrolase activity. This may significantly accelerate the turnover of organic carbon in the giant global TEP pool. These findings are important for a deep understanding of the carbon cycle in water.
Collapse
Affiliation(s)
- Xiaonan Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Hangzhou 310015, China; School of Environment Science and Spatial Information, China University of Mining and Technology, Xuzhou 221116, China; Shaoxing Research Institute of Zhejiang University of Technology, Shaoxing 312000, China
| | - Jiahao Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jieyan Zheng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lanxin Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chenghao Ruan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
9
|
Bautista-Cruz A, Aquino-Bolaños T, Hernández-Canseco J, Quiñones-Aguilar EE. Cellulolytic Aerobic Bacteria Isolated from Agricultural and Forest Soils: An Overview. BIOLOGY 2024; 13:102. [PMID: 38392320 PMCID: PMC10886624 DOI: 10.3390/biology13020102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024]
Abstract
This review provides insights into cellulolytic bacteria present in global forest and agricultural soils over a period of 11 years. It delves into the study of soil-dwelling cellulolytic bacteria and the enzymes they produce, cellulases, which are crucial in both soil formation and the carbon cycle. Forests and agricultural activities are significant contributors to the production of lignocellulosic biomass. Forest ecosystems, which are key carbon sinks, contain 20-30% cellulose in their leaf litter. Concurrently, the agricultural sector generates approximately 998 million tons of lignocellulosic waste annually. Predominant genera include Bacillus, Pseudomonas, Stenotrophomonas, and Streptomyces in forests and Bacillus, Streptomyces, Pseudomonas, and Arthrobacter in agricultural soils. Selection of cellulolytic bacteria is based on their hydrolysis ability, using artificial cellulose media and dyes like Congo red or iodine for detection. Some studies also measure cellulolytic activity in vitro. Notably, bacterial cellulose hydrolysis capability may not align with their cellulolytic enzyme production. Enzymes such as GH1, GH3, GH5, GH6, GH8, GH9, GH10, GH12, GH26, GH44, GH45, GH48, GH51, GH74, GH124, and GH148 are crucial, particularly GH48 for crystalline cellulose degradation. Conversely, bacteria with GH5 and GH9 often fail to degrade crystalline cellulose. Accurate identification of cellulolytic bacteria necessitates comprehensive genomic analysis, supplemented by additional proteomic and transcriptomic techniques. Cellulases, known for degrading cellulose, are also significant in healthcare, food, textiles, bio-washing, bleaching, paper production, ink removal, and biotechnology, emphasizing the importance of discovering novel cellulolytic strains in soil.
Collapse
Affiliation(s)
- Angélica Bautista-Cruz
- Instituto Politécnico Nacional, CIIDIR-Oaxaca, Hornos 1003, Santa Cruz Xoxocotlán 71230, Oaxaca, Mexico
| | - Teodulfo Aquino-Bolaños
- Instituto Politécnico Nacional, CIIDIR-Oaxaca, Hornos 1003, Santa Cruz Xoxocotlán 71230, Oaxaca, Mexico
| | - Jessie Hernández-Canseco
- Doctoral Programme in Conservation and Use of Natural Resources, Instituto Politécnico Nacional, CIIDIR-Oaxaca, Hornos 1003, Santa Cruz Xoxocotlán 71230, Oaxaca, Mexico
| | - Evangelina Esmeralda Quiñones-Aguilar
- Laboratorio de Fitopatología de Biotecnología Vegetal, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Camino Arenero 1227, El Bajío del Arenal, Zapopan 45019, Jalisco, Mexico
| |
Collapse
|
10
|
Kopecky J, Kamenik Z, Omelka M, Novotna J, Stefani T, Sagova-Mareckova M. Phylogenetically related soil actinomycetes distinguish isolation sites by their metabolic activities. FEMS Microbiol Ecol 2023; 99:fiad139. [PMID: 37935470 DOI: 10.1093/femsec/fiad139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/24/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023] Open
Abstract
Soil environments are inhabited by microorganisms adapted to its diversified microhabitats. The metabolic activity of individual strains/populations reflects resources available at a particular spot, quality of which may not comply with broad soil characteristics. To explore the potential of individual strains to adapt to particular micro-niches of carbon sources, a set of 331 Actinomycetia strains were collected at ten sites differing in vegetation, soil pH, organic matter content and quality. The strains were isolated on the same complex medium with neutral pH and their metabolites analyzed by UHPLC and LC-MS/MS in spent cultivation medium (metabolic profiles). For all strains, their metabolic profiles correlated with soil pH and organic matter content of the original sites. In comparison, strains phylogeny based on either 16S rRNA or the beta-subunit of DNA-dependent RNA polymerase (rpoB) genes was partially correlated with soil organic matter content but not soil pH at the sites. Antimicrobial activities of strains against Kocuria rhizophila, Escherichia coli, and Saccharomyces cerevisiae were both site- and phylogeny-dependent. The precise adaptation of metabolic profiles to overall sites characteristics was further supported by the production of locally specific bioactive metabolites and suggested that carbon resources represent a significant selection pressure connected to specific antibiotic activities.
Collapse
Affiliation(s)
- Jan Kopecky
- Epidemiology and Ecology of Microorganisms, Crop Research Institute, 161 06 Prague, Czechia
| | - Zdenek Kamenik
- Laboratory for Biology of Secondary Metabolism, Institute of Microbiology, Czech Acad Sci, 142 20 Prague, Czechia
| | - Marek Omelka
- Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, Charles University, 186 75 Prague, Czechia
| | - Jitka Novotna
- Epidemiology and Ecology of Microorganisms, Crop Research Institute, 161 06 Prague, Czechia
| | - Tommaso Stefani
- Laboratory for Biology of Secondary Metabolism, Institute of Microbiology, Czech Acad Sci, 142 20 Prague, Czechia
| | - Marketa Sagova-Mareckova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 165 21 Prague, Czechia
| |
Collapse
|
11
|
Mu Y, Wan L, Liang Z, Yang D, Han H, Yi J, Dai X. Enhanced biological phosphorus removal by high concentration powder carrier bio-fluidized bed (HPB): Phosphorus distribution, cyclone separation, and metagenomics. CHEMOSPHERE 2023; 337:139353. [PMID: 37414297 DOI: 10.1016/j.chemosphere.2023.139353] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/08/2023] [Accepted: 06/25/2023] [Indexed: 07/08/2023]
Abstract
This study provides a comparative investigation of phosphorus removal between anaerobic-anoxic-oxic (AAO) and high-concentration powder carrier bio-fluidized bed (HPB) in the same full-scale wastewater treatment plant. The results showed that the total phosphorus removal of HPB was 71.45%-96.71%. Compared with AAO, the total phosphorus removal of HPB can be increased by a maximum of 15.73%. The mechanisms of enhanced phosphorus removal by HPB include the followings. Biological phosphorus removal was significant. The anaerobic phosphorus release capacity of HPB was enhanced and polyphosphate (Poly-P) in the excess sludge of HPB was 1.5 times higher than that of AAO. The relative abundance of Candidatus Accumulibacter was 5 times higher than that of AAO, and oxidative phosphorylation and butanoate metabolism were enhanced. The analysis of phosphorus distribution showed that cyclone separation increased the chemical phosphorus precipitation (Chem-P) in the excess sludge by 16.96% to avoid accumulation in the biochemical tank. The phosphorus adsorbed by extracellular polymeric substance (EPS) in the recycled sludge was stripped, and the EPS bound-P in the excess sludge increased by 1.5 times. This study demonstrated the feasibility of HPB to improve the phosphorus removal efficiency for domestic wastewater.
Collapse
Affiliation(s)
- Yanyu Mu
- Tongji University, College of Environmental Science and Engineering, State Key Lab Pollution Control and Resource Reuse, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Li Wan
- Hunan Wufang Environmental Science and Technology Research Institute Co. Ltd., Changsha, Hunan, China
| | - Zixuan Liang
- Tongji University, College of Environmental Science and Engineering, State Key Lab Pollution Control and Resource Reuse, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Donghai Yang
- Tongji University, College of Environmental Science and Engineering, State Key Lab Pollution Control and Resource Reuse, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Hongbo Han
- Hunan Sanyou Environmental Protection Co. Ltd., Changsha, Hunan, China
| | - Jing Yi
- Hunan Sanyou Environmental Protection Co. Ltd., Changsha, Hunan, China
| | - Xiaohu Dai
- Tongji University, College of Environmental Science and Engineering, State Key Lab Pollution Control and Resource Reuse, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
12
|
Ji M, Giangeri G, Yu F, Sessa F, Liu C, Sang W, Canu P, Li F, Treu L, Campanaro S. An integrated metagenomic model to uncover the cooperation between microbes and magnetic biochar during microplastics degradation in paddy soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131950. [PMID: 37421863 DOI: 10.1016/j.jhazmat.2023.131950] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 07/10/2023]
Abstract
The free radicals released from the advanced oxidation processes can enhance microplastics degradation, however, the existence of microbes acting synergistically in this process is still uncertain. In this study, magnetic biochar was used to initiate the advanced oxidation process in flooded soil. paddy soil was contaminated with polyethylene and polyvinyl chloride microplastics in a long-term incubation experiment, and subsequently subjected to bioremediation with biochar or magnetic biochar. After incubation, the total organic matter present in the samples containing polyvinyl chloride or polyethylene, and treated with magnetic biochar, significantly increased compared to the control. In the same samples there was an accumulation of "UVA humic" and "protein/phenol-like" substances. The integrated metagenomic investigation revealed that the relative abundance of some key genes involved in fatty acids degradation and in dehalogenation changed in different treatments. Results from genome-centric investigation suggest that a Nocardioides species can cooperate with magnetic biochar in the degradation of microplastics. In addition, a species assigned to the Rhizobium taxon was identified as a candidate in the dehalogenation and in the benzoate metabolism. Overall, our results suggest that cooperation between magnetic biochar and some microbial species involved in microplastic degradation is relevant in determining the fate of microplastics in soil.
Collapse
Affiliation(s)
- Mengyuan Ji
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy
| | - Ginevra Giangeri
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy
| | - Fengbo Yu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Filippo Sessa
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy
| | - Chao Liu
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Wenjing Sang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Paolo Canu
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy
| | - Fangbai Li
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Laura Treu
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy
| | - Stefano Campanaro
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy.
| |
Collapse
|
13
|
Wang J, Chen S, Sun R, Liu B, Waghmode T, Hu C. Spatial and temporal dynamics of the bacterial community under experimental warming in field-grown wheat. PeerJ 2023; 11:e15428. [PMID: 37334112 PMCID: PMC10276554 DOI: 10.7717/peerj.15428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/25/2023] [Indexed: 06/20/2023] Open
Abstract
Climate change may lead to adverse effects on agricultural crops, plant microbiomes have the potential to help hosts counteract these effects. While plant-microbe interactions are known to be sensitive to temperature, how warming affects the community composition and functioning of plant microbiomes in most agricultural crops is still unclear. Here, we utilized a 10-year field experiment to investigate the effects of warming on root zone carbon availability, microbial activity and community composition at spatial (root, rhizosphere and bulk soil) and temporal (tillering, jointing and ripening stages of plants) scales in field-grown wheat (Triticum aestivum L.). The dissolved organic carbon and microbial activity in the rhizosphere were increased by soil warming and varied considerably across wheat growth stages. Warming exerted stronger effects on the microbial community composition in the root and rhizosphere samples than in the bulk soil. Microbial community composition, particularly the phyla Actinobacteria and Firmicutes, shifted considerably in response to warming. Interestingly, the abundance of a number of known copiotrophic taxa, such as Pseudomonas and Bacillus, and genera in Actinomycetales increased in the roots and rhizosphere under warming and the increase in these taxa implies that they may play a role in increasing the resilience of plants to warming. Taken together, we demonstrated that soil warming along with root proximity and plant growth status drives changes in the microbial community composition and function in the wheat root zone.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, The Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuaimin Chen
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, The Chinese Academy of Sciences, Shijiazhuang, Hebei, China
| | - Ruibo Sun
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, The Chinese Academy of Sciences, Shijiazhuang, Hebei, China
| | - Binbin Liu
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, The Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- Xiong’an Institute of Innovation, Chinese Academy of Sciences, Xiong’an New Area, China
| | - Tatoba Waghmode
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, The Chinese Academy of Sciences, Shijiazhuang, Hebei, China
| | - Chunsheng Hu
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, The Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- Xiong’an Institute of Innovation, Chinese Academy of Sciences, Xiong’an New Area, China
| |
Collapse
|
14
|
Zhou H, Li L, Liu Y. Biological soil crust development affects bacterial communities in the Caragana microphylla community in alpine sandy areas. Front Microbiol 2023; 14:1106739. [PMID: 37007529 PMCID: PMC10050341 DOI: 10.3389/fmicb.2023.1106739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
IntroductionBiological soil crusts (BSCs) constitute a substantial portion of primary production in dryland ecosystems. They successionally mature to deliver a series of ecosystem services. Bacteria, as an important community in BSCs, play critical roles in maintaining the structure and functions of BSCs. However, the process by which bacterial diversity and community are altered with BSC development is not fully understood.MethodsIn this study, amplicons sequencing was used to investigate bacterial diversity and community compositions across five developmental stages of BSCs (bare sand, microbial crusts, algae crusts, lichen crusts, and moss crusts) and their relationship with environmental variables in the Gonghe basin sandy land in Qinghai-Tibet Plateau, northwestern China.ResultsThe results showed that Proteobacteria, Actinobacteria, Cyanobacteria, Acidobacteria, Bacteroidetes, and Firmicutes were predominant in different developmental stages of BSCs, accounting for more than 77% of the total relative abundance. The phyla of Acidobacteria and Bacteroidetes were abundant in this region. With BSC development, bacterial diversity significantly increased, and the taxonomic community composition significantly altered. The relative abundance of copiotrophic bacteria, such as Actinobacteria, Acidobacteria, Bacteroidetes, Verrucomicrobia, Planctomycetes, and Gemmatimonadetes significantly increased, whereas the relative abundance of oligotrophic bacteria, such as Proteobacteria and Firmicutes significantly decreased. The relative abundance of Cyanobacteria in the algae crusts was significantly higher than that in the other developmental stages (p < 0.05).ConclusionVariations in bacterial composition suggested that the potential ecological functions of the bacterial community were altered with BSC development. The functions varied from enhancing soil surface stability by promoting soil particle cementation in the early stages to promoting material circulation of the ecosystem by fixing carbon and nitrogen and decomposing litter in the later stages of BSC development. Bacterial community is a sensitive index of water and nutrient alterations during BSC development. SWC, pH value, TC, TOC, TN, NO3−, TP and soil texture were the primary environmental variables that promoted changes in the bacterial community composition of BSCs.
Collapse
Affiliation(s)
- Hong Zhou
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- Qinghai Academy of Agricultural and Forestry Sciences, Xining, China
| | - Lun Li
- Qilian Mountain National Park Qinghai Service Guarantee Center, Xining, China
| | - Yunxiang Liu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- Qinghai Academy of Agricultural and Forestry Sciences, Xining, China
- *Correspondence: Yunxiang Liu,
| |
Collapse
|
15
|
Lei J, Wu H, Li X, Guo W, Duan A, Zhang J. Response of Rhizosphere Bacterial Communities to Near-Natural Forest Management and Tree Species within Chinese Fir Plantations. Microbiol Spectr 2023; 11:e0232822. [PMID: 36688690 PMCID: PMC9927156 DOI: 10.1128/spectrum.02328-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Near-natural forest management plays an important role in the maintenance of the long-term productivity and soil fertility of plantations. We conducted high-throughput absolute quantitative sequencing of 16S rRNA genes to compare the structures and diversity of rhizosphere soil bacterial communities among a pure Chinese fir (Cunninghamia lanceolata) plantation (S), a Cunninghamia lanceolata-Castanopsis hystrix-Michelia hedyosperma mixed plantation (SHX), and a Cunninghamia lanceolata-Castanopsis fissa mixed plantation (SD). The results revealed that near-natural forest management improved the rhizosphere soil properties of Chinese fir, especially the phosphorus content. Rhizosphere soil bacterial communities of Chinese fir in SHX and SD contained higher total absolute abundances and more unique operational taxonomic units (OTUs) than the pure plantation forest. Planctomycetes and Actinobacteria were abundant in SD, and Actinobacteria were enriched in SHX. The tree species also had an impact on the rhizosphere soil bacterial communities. For the rhizosphere soils of different tree species of SHX, the available phosphorus (AP) content of the rhizosphere of Chinese fir significantly surpassed those of Castanopsis hystrix and Michelia hedyosperma. Bacteria related to nitrogen fixing, such as Burkholderiales and Rhizobiales, were more abundant in Chinese fir in SD than in Castanopsis fissa. Acdiobacteria and Proteobacteria underpinned the differences found in the compositions of soil bacteria. The pH and soil organic matter were key variables influencing the rhizosphere soil bacterial communities. Our results demonstrated that in Chinese fir plantations, 12 years of near-natural management of introduced broad-leaved tree species can drive alterations of the physicochemical characteristics, bacterial community structure, and composition of rhizosphere soil, with tree species identity further influencing the rhizosphere soil bacterial community. IMPORTANCE Near-natural forest management is an important way to change the soil fertility decline and productivity reduction of pure Chinese fir plantations. At present, many detailed studies have been carried out on the impact of near-natural forest management on Chinese fir plantations at home and abroad. However, there are still few studies on the response of rhizosphere bacterial communities to near-natural forest management. Our study determined absolute quantities of Chinese fir rhizosphere bacterial communities in different mixed patterns. The results underscore the importance of near-natural forest management for Chinese fir plantation rhizosphere bacterial communities and provide new information on soil factors that affect rhizosphere bacterial communities in South China.
Collapse
Affiliation(s)
- Jie Lei
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, People's Republic of China
| | - Hanbin Wu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, People's Republic of China
| | - Xiaoyan Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, People's Republic of China
| | - Wenfu Guo
- Experimental Center of Tropical Forestry, Chinese Academy of Forestry, Pingxiang, People's Republic of China
| | - Aiguo Duan
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, People's Republic of China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Jianguo Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, People's Republic of China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, People's Republic of China
| |
Collapse
|
16
|
Stanek M, Kushwaha P, Murawska-Wlodarczyk K, Stefanowicz AM, Babst-Kostecka A. Quercus rubra invasion of temperate deciduous forest stands alters the structure and functions of the soil microbiome. GEODERMA 2023; 430:116328. [PMID: 37600960 PMCID: PMC10438910 DOI: 10.1016/j.geoderma.2023.116328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Invasive plants can modify the diversity and taxonomical structure of soil microbiomes. However, it is difficult to generalize the underlying factors as their influence often seems to depend on the complex plant-soil-microbial interactions. In this paper, we investigated how Quercus rubra impacts on the soil microbiome across two soil horizons in relation to native woodland. Five paired adjacent invaded vs native vegetation plots in a managed forest in southern Poland were investigated. Soil microbial communities were assessed along with soil enzyme activities and soil physicochemical parameters, separately for both organic and mineral horizons, as well as forest stand characteristics to explore plant-soil-microbe interactions. Although Q. rubra did not significantly affect pH, organic C, total N, available nutrients nor enzymatic activity, differences in soil abiotic properties (except C to N ratio) were primarily driven by soil depth for both vegetation types. Further, we found significant differences in soil microbiome under invasion in relation to native vegetation. Microbial richness and diversity were lower in both horizons of Q. rubra vs control plots. Moreover, Q. rubra increased relative abundance of unique amplicon sequence variants in both horizons and thereby significantly changed the structure of the core soil microbial communities, in comparison to the control plots. In addition, predicted microbial functional groups indicated a predominant soil depth effect in both vegetation plots with higher abundance of aerobic chemoheterotrophic bacteria and endophytic fungi in the organic horizon and greater abundance of methanotrophic and methylotrophic bacteria, and ectomycorrhizal fungi in the mineral horizon. Overall, our results indicate strong associations between Q. rubra invasion and changes in soil microbiome and associated functions, a finding that needs to be further investigated to predict modifications in ecosystem functioning caused by this invasive species.
Collapse
Affiliation(s)
- Małgorzata Stanek
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland
| | - Priyanka Kushwaha
- Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA
| | | | - Anna M. Stefanowicz
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland
| | - Alicja Babst-Kostecka
- Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
17
|
The Necrobiome of Deadwood: The Life after Death. ECOLOGIES 2022. [DOI: 10.3390/ecologies4010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In recent decades, sustainable forest management has been increasingly recognized, promoting the diffusion of silvicultural practices aimed at considering all components of the forest system. Deadwood is an important component of the forest ecosystem. It plays a fundamental role in providing nutrients and habitats for a wide variety of saprotrophic and heterotrophic organisms and significantly contributes to soil formation and carbon storage. Deadwood is inhabited by a plethora of organisms from various kingdoms that have evolved the ability to utilize decaying organic matter. This community, consisting of both eukaryotic and prokaryotic species, can be defined as “necrobiome”. Through the interactions between its various members, the necrobiome influences the decay rates of deadwood and plays a crucial role in the balance between organic matter decomposition, carbon sequestration, and gas exchanges (e.g., CO2) with the atmosphere. The present work aims to provide an overview of the biodiversity and role of the microbial communities that inhabit deadwood and their possible involvement in greenhouse gas (CO2, N2O, and CH4) emissions.
Collapse
|
18
|
Pothula SK, Adams BJ. Community assembly in the wake of glacial retreat: A meta-analysis. GLOBAL CHANGE BIOLOGY 2022; 28:6973-6991. [PMID: 36087341 DOI: 10.1111/gcb.16427] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Ecosystems shaped by retreating glaciers provide a unique opportunity to study the order and timing of biotic colonization, and how this influences the structure of successive ecological communities. In the last century glaciers across most of the cryosphere have receded at an unprecedented pace. Many studies have been published from different parts of the world testing hypotheses about how soil ecosystems are responding to rapid, contemporary deglaciation events. To better understand and draw general conclusions about how soil ecosystems respond to deglaciation, we conducted a global meta-analysis of 95 published articles focused on the succession of various organisms and soil physicochemical properties in glacier forefields along the chronosequence. Our global synthesis reveals that key soil properties and the abundance and richness of biota follow two conspicuous patterns: (1) some taxa demonstrate a persistent increase in abundance and richness over the entire chronosequence, (2) other taxa increase in abundance and richness during the first 50 years of succession, then gradually decline 50 years onward. The soil properties and soil organisms that are intimately tied to vegetation follow the first pattern, consistent with the idea that aboveground patterns of vegetation can drive patterns of belowground biodiversity. The second pattern may be due to an initial increase and subsequent decline in available nutrients and habitat suitability caused by increased biotic interactions, including resource competition among soil biota. A consensus view of the patterns of historical and contemporary soil ecosystem responses to deglaciation provides a better understanding of the processes that generate these patterns and informs predictions of ongoing and future responses to environmental changes.
Collapse
Affiliation(s)
| | - Byron J Adams
- Department of Biology, Brigham Young University, Provo, Utah, USA
- Evolutionary Ecology Laboratories, Brigham Young University, Provo, Utah, USA
- Life Science Museum, Brigham Young University, Provo, Utah, USA
| |
Collapse
|
19
|
Guts Bacterial Communities of Porcellio dilatatus: Symbionts Predominance, Functional Significance and Putative Biotechnological Potential. Microorganisms 2022; 10:microorganisms10112230. [PMID: 36422301 PMCID: PMC9692603 DOI: 10.3390/microorganisms10112230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Terrestrial isopods are effective herbivorous scavengers with an important ecological role in organic matter cycling. Their guts are considered to be a natural enrichment environment for lignocellulosic biomass (LCB)-degrading bacteria. The main goal of this work was to assess the structural diversity of Porcellio dilatatus gut bacterial communities using NGS technologies, and to predict their functional potential using PICRUSt2 software. Pseudomonadota, Actinomycetota, Bacillota, Cyanobacteria, Mycoplasmatota, Bacteroidota, Candidatus Patescibacteria and Chloroflexota were the most abundant phyla found in P. dilatatus gut bacterial communities. At a family level, we identified the presence of eleven common bacterial families. Functionally, the P. dilatatus gut bacterial communities exhibited enrichment in KEGG pathways related to the functional module of metabolism. With the predicted functional profile of P. dilatatus metagenomes, it was possible to envision putative symbiotic relationships between P. dilatatus gut bacterial communities and their hosts. It was also possible to foresee the presence of a well-adapted bacterial community responsible for nutrient uptake for the host and for maintaining host homeostasis. Genes encoding LCB-degrading enzymes were also predicted in all samples. Therefore, the P. dilatatus digestive tract may be considered a potential source of LCB-degrading enzymes that is not to be neglected.
Collapse
|
20
|
Shinde R, Shahi DK, Mahapatra P, Naik SK, Thombare N, Singh AK. Potential of lignocellulose degrading microorganisms for agricultural residue decomposition in soil: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115843. [PMID: 36056484 DOI: 10.1016/j.jenvman.2022.115843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Lignocellulosic crop residues (LCCRs) hold a significant share of the terrestrial biomass, estimated at 5 billion Mg per annum globally. A massive amount of these LCCRs are burnt in many countries resulting in immense environmental pollution; hence, its proper disposal in a cost-effective and eco-friendly manner is a significant challenge. Among the different options for management of LCCRs, the use of lignocellulose degrading microorganisms (LCDMOs), like fungi and bacteria, has emerged as an eco-friendly and effective way for its on-site disposal. LCDMOs achieve degradation through various mechanisms, including multiple supportive enzymes, causing oxidative attacks by which recalcitrance of lignocellulose material is reduced, paving the way to further activity by depolymerizing enzymes. This improves the physical properties of soil, recycles plant nutrients, promotes plant growth and thus helps improve productivity. Rapid and proper microbial degradation may be achieved through the correct combination of the LCDMOs, supplementing nutrients and controlling different factors affecting microbial activity in the field. The review is a critical discussion of previous studies revealing the potential of individuals or a set of LCDMOs, factors controlling the rate of degradation and the key researchable areas for better understanding of the role of these decomposers for future use.
Collapse
Affiliation(s)
- Reshma Shinde
- ICAR- Research Complex for Eastern Region, Farming System Research Centre for Hill and Plateau Region, Ranchi, 834010, Jharkhand, India.
| | | | | | - Sushanta Kumar Naik
- ICAR- Research Complex for Eastern Region, Farming System Research Centre for Hill and Plateau Region, Ranchi, 834010, Jharkhand, India
| | - Nandkishore Thombare
- ICAR- Indian Institute of Natural Resin and Gums, Ranchi, 834010, Jharkhand, India
| | - Arun Kumar Singh
- ICAR- Research Complex for Eastern Region, Farming System Research Centre for Hill and Plateau Region, Ranchi, 834010, Jharkhand, India
| |
Collapse
|
21
|
Renaudin M, Laforest-Lapointe I, Bellenger JP. Unraveling global and diazotrophic bacteriomes of boreal forest floor feather mosses and their environmental drivers at the ecosystem and at the plant scale in North America. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155761. [PMID: 35533858 DOI: 10.1016/j.scitotenv.2022.155761] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 06/14/2023]
Abstract
Feather mosses are abundant cryptogams of the boreal forest floor and shelter a broad diversity of bacteria who have important ecological functions (e.g., decomposition, nutrient cycling). In particular, nitrogen (N2-) fixation performed by feather moss-associated diazotrophs constitutes an important entry of nitrogen in the boreal forest ecosystem. However, the composition of the feather moss bacteriome and its environmental drivers are still unclear. Using cDNA amplicon sequencing of the 16S rRNA and nifH genes and cyanobacterial biomass quantification, we explored the active global and diazotrophic bacterial communities of two dominant feather moss species (i) at the ecosystem scale, along a 500-km climatic and nutrient deposition gradient in the North American boreal forest, and (ii) at the plant scale, along the moss shoot senescence gradient. We found that cyanobacteria were major actors of the feather moss bacteriome, accounting for 33% of global bacterial communities and 65% of diazotrophic communities, and that several cyanobacterial and methanotrophic genera were contributing to N2-fixation. Moreover, we showed that bacteria were occupying ecological niches along the moss shoot, with phototrophs being dominant in the apical part and methanotrophs being dominant in the basal part. Finally, climate (temperature, precipitation), environmental variables (moss species, month, tree density) and nutrients (nitrogen, phosphorus, molybdenum, vanadium, iron) strongly shaped global and diazotrophic bacteriomes. In summary, this work presents evidence that the feather moss bacteriome plays crucial roles in supporting moss growth, health, and decomposition, as well as in the boreal forest carbon and nitrogen cycles. This study also highlights the substantial effects of climate and nutrients on the feather moss bacteriome, suggesting the importance of understanding the impacts of global change on moss-associated bacterial growth and activity.
Collapse
Affiliation(s)
- Marie Renaudin
- Centre Sève, Département de Chimie, Université de Sherbrooke, J1K 2R1 Sherbrooke, QC, Canada.
| | | | - Jean-Philippe Bellenger
- Centre Sève, Département de Chimie, Université de Sherbrooke, J1K 2R1 Sherbrooke, QC, Canada.
| |
Collapse
|
22
|
Liu Q, Kong W, Cui X, Hu S, Shi Z, Wu J, Zhang Y, Qiu L. Dynamic succession of microbial compost communities and functions during Pleurotus ostreatus mushroom cropping on a short composting substrate. Front Microbiol 2022; 13:946777. [PMID: 36060741 PMCID: PMC9433973 DOI: 10.3389/fmicb.2022.946777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Cultivating oyster mushrooms (Pleurotus ostreatus), a typical primary decomposer of lignocellulose, on a short composting substrate is a novel procedure which possesses energy conserves, reduced the chance of infection by competitive species, shorter production duration and achieved high production efficiency. However, the microbiome and microbial metabolic functions in the composting substrate during the mushroom cropping is unknown. In the present study, the contents of hemicellulose, cellulose and lignin and the activities of protease, laccase and cellulase were evaluated in the corncob short composting substrate from before oyster mushroom spawning to first flush fructification; meanwhile the changes in the microbiome and microbial metabolic functions were surveyed by using metagenomic sequencing. Results showed that the hemicellulose, cellulose and lignin in the short composting substrate were decomposed of 42.76, 34.01, and 30.18%, respectively, during the oyster mushroom cropping process. In addition, the contents of hemicellulose, cellulose and lignin in the composting substrate were reduced rapidly and negatively correlated with the abundance of the Actinobacteria phylum. The activities of protease, laccase and cellulase fastly increased in the period of before oyster mushroom spawning to full colonization and were positively correlated to the abundance of Actinobacteria phylum. The total abundance of bacteria domain gradually decreased by only approximately 15%, while the abundance of Actinobacteria phylum increased by 68% and was positively correlated with that of oyster mushroom. The abundance of oyster mushroom increased by 50 times from spawning to first flush fructification. The dominant genera, all in the order of Actinomycetales, were Cellulosimicrobium, Mycobacterium, Streptomyces and Saccharomonospora. The total abundance of genes with functions annotated in the Clusters of Orthologous Groups of proteins (COG) for Bacteria and Archaea and Kyoto Encyclopedia of Genes and Genomes (KEGG) database for all three life domains was positively correlated.The three metabolic pathways for carbohydrates, amino acids and energy were the primary enrichment pathways in KEGG pathway, accounting for more than 30% of all pathways, during the mushroom cropping in which the glycine metabolic pathway, carbon fixation pathways in prokaryotes and methane metabolism were all dominated by bacteria. The genes of cellulolytic enzymes, hemicellulolytic enzymes, laccase, chitinolytic enzymes, peptidoglycanlytic enzymes and ammonia assimilation enzymes with abundances from 0.28 to 0.24%, 0.05 to 0.02%, 0.02 to 0.01%, 0.14 to 0.08%, 0.39 to 0.16%, and 0.13 to 0.12% during the mushroom cropping identified in the Evolutionary Genealogy of Genes: Non-supervised Orthologous Groups (eggNOG) database for all three life domains were all aligned to COG database. These results indicated that bacteria, especially Actinomycetales, were the main metabolism participants in the short composting substrate during the oyster mushroom cropping. The relationship between oyster mushrooms and bacteria was cooperative, Actinomycetales were oyster mushroom growth promoting bacteria (OMGPB).
Collapse
Affiliation(s)
- Qin Liu
- Institute of Plant Nutrition, Agricultural Resources and Environmental Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Weili Kong
- Institute of Plant Nutrition, Agricultural Resources and Environmental Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
- *Correspondence: Weili Kong,
| | - Xiao Cui
- Institute of Plant Nutrition, Agricultural Resources and Environmental Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Sujuan Hu
- Institute of Plant Nutrition, Agricultural Resources and Environmental Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Ziwen Shi
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Jie Wu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Yuting Zhang
- Institute of Plant Nutrition, Agricultural Resources and Environmental Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Liyou Qiu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- Liyou Qiu,
| |
Collapse
|
23
|
Tian C, Pang J, Bu C, Wu S, Bai H, Li Y, Guo Q, Siddique KHM. The Microbiomes in Lichen and Moss Biocrust Contribute Differently to Carbon and Nitrogen Cycles in Arid Ecosystems. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02077-7. [PMID: 35864173 DOI: 10.1007/s00248-022-02077-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Biological soil crusts (biocrusts) are distributed in arid and semiarid regions across the globe. Microorganisms are an essential component in biocrusts. They add and accelerate critical biochemical processes. However, little is known about the functional genes and metabolic processes of microbiomes in lichen and moss biocrust. This study used shotgun metagenomic sequencing to compare the microbiomes of lichen-dominated and moss-dominated biocrust and reveal the microbial genes and metabolic pathways involved in carbon and nitrogen cycling. The results showed that Actinobacteria, Bacteroidetes, and Acidobacteria were more abundant in moss biocrust than lichen biocrust, while Proteobacteria and Cyanobacteria were more abundant in lichen biocrust than moss biocrust. The relative abundance of carbohydrate-active enzymes and enzymes associated with carbon and nitrogen metabolism differed significantly between microbiomes of the two biocrust types. However, in the microbial communities of both biocrust types, respiration pathways dominated over carbon fixation pathways. The genes encoding carbon monoxide dehydrogenase were more abundant than those encoding ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCo) involved in carbon fixation. Similarly, metabolic N-pathway diversity was dominated by nitrogen reduction, followed by denitrification, with nitrogen fixation the lowest proportion. Gene diversity involved in N cycling differed between the microbiomes of the two biocrust types. Assimilatory nitrate reduction genes had higher relative abundance in lichen biocrust, whereas dissimilatory nitrate reduction genes had higher relative abundance in moss biocrust. As dissolved organic carbon and soil organic carbon are considered the main drivers of the community structure in the microbiome of biocrust, these results indicate that biocrust type has a pivotal role in microbial diversity and related biogeochemical cycling.
Collapse
Affiliation(s)
- Chang Tian
- Institute of Soil and Water Conservation, Northwest A & F University, Yangling, Shaanxi, 712100, China
- Institute of Soil and Water Conservation, CAS & MWR, Yangling, Shaanxi, 712100, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingwen Pang
- Institute of Soil and Water Conservation, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Chongfeng Bu
- Institute of Soil and Water Conservation, Northwest A & F University, Yangling, Shaanxi, 712100, China.
- Institute of Soil and Water Conservation, CAS & MWR, Yangling, Shaanxi, 712100, China.
| | - Shufang Wu
- College of Water Resources and Architectural Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Hao Bai
- Sichuan Expressway Construction & Development Group Co., Ltd, Chengdu, Sichuan, 610041, China
| | - Yahong Li
- Institute of Soil and Water Conservation, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Qi Guo
- Institute of Soil and Water Conservation, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture and School of Agriculture & Environment, The University of Western Australia, Perth, WA, 6001, Australia
| |
Collapse
|
24
|
Meena M, Yadav G, Sonigra P, Nagda A, Mehta T, Swapnil P, Marwal A, Kumar S. Multifarious Responses of Forest Soil Microbial Community Toward Climate Change. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02051-3. [PMID: 35657425 DOI: 10.1007/s00248-022-02051-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Forest soils are a pressing subject of worldwide research owing to the several roles of forests such as carbon sinks. Currently, the living soil ecosystem has become dreadful as a consequence of several anthropogenic activities including climate change. Climate change continues to transform the living soil ecosystem as well as the soil microbiome of planet Earth. The majority of studies have aimed to decipher the role of forest soil bacteria and fungi to understand and predict the impact of climate change on soil microbiome community structure and their ecosystem in the environment. In forest soils, microorganisms live in diverse habitats with specific behavior, comprising bulk soil, rhizosphere, litter, and deadwood habitats, where their communities are influenced by biotic interactions and nutrient accessibility. Soil microbiome also drives multiple crucial steps in the nutrient biogeochemical cycles (carbon, nitrogen, phosphorous, and sulfur cycles). Soil microbes help in the nitrogen cycle through nitrogen fixation during the nitrogen cycle and maintain the concentration of nitrogen in the atmosphere. Soil microorganisms in forest soils respond to various effects of climate change, for instance, global warming, elevated level of CO2, drought, anthropogenic nitrogen deposition, increased precipitation, and flood. As the major burning issue of the globe, researchers are facing the major challenges to study soil microbiome. This review sheds light on the current scenario of knowledge about the effect of climate change on living soil ecosystems in various climate-sensitive soil ecosystems and the consequences for vegetation-soil-climate feedbacks.
Collapse
Affiliation(s)
- Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India.
| | - Garima Yadav
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Priyankaraj Sonigra
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Adhishree Nagda
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Tushar Mehta
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Prashant Swapnil
- Department of Botany, School of Biological Science, Central University of Punjab, Bhatinda, Punjab, 151401, India
| | - Avinash Marwal
- Department of Biotechnology, Vigyan Bhawan - Block B, New Campus, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Sumit Kumar
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
25
|
Mundra S, Kauserud H, Økland T, Nordbakken J, Ransedokken Y, Kjønaas OJ. Shift in tree species changes the belowground biota of boreal forests. THE NEW PHYTOLOGIST 2022; 234:2073-2087. [PMID: 35307841 PMCID: PMC9325058 DOI: 10.1111/nph.18109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
The replacement of native birch with Norway spruce has been initiated in Norway to increase long-term carbon storage in forests. However, there is limited knowledge on the impacts that aboveground changes will have on the belowground microbiota. We examined which effects a tree species shift from birch to spruce stands has on belowground microbial communities, soil fungal biomass and relationships with vegetation biomass and soil organic carbon (SOC). Replacement of birch with spruce negatively influenced soil bacterial and fungal richness and strongly altered microbial community composition in the forest floor layer, most strikingly for fungi. Tree species-mediated variation in soil properties was a major factor explaining variation in bacterial communities. For fungi, both soil chemistry and understorey vegetation were important community structuring factors, particularly for ectomycorrhizal fungi. The relative abundance of ectomycorrhizal fungi and the ectomycorrhizal : saprotrophic fungal ratio were higher in spruce compared to birch stands, particularly in the deeper mineral soil layers, and vice versa for saprotrophs. The positive relationship between ergosterol (fungal biomass) and SOC stock in the forest floor layer suggests higher carbon sequestration potential in spruce forest soil, alternatively, that the larger carbon stock leads to an increase in soil fungal biomass.
Collapse
Affiliation(s)
- Sunil Mundra
- Section for Genetics and Evolutionary Biology (EvoGene)Department of BiosciencesUniversity of OsloPO Box 1066 BlindernOsloNO‐0316Norway
- Department of BiologyCollege of ScienceUnited Arab Emirates UniversityPO Box 15551Al‐Ain, Abu‐DhabiUnited Arab Emirates
| | - Håvard Kauserud
- Section for Genetics and Evolutionary Biology (EvoGene)Department of BiosciencesUniversity of OsloPO Box 1066 BlindernOsloNO‐0316Norway
| | - Tonje Økland
- Norwegian Institute of Bioeconomy ResearchPO Box 115ÅsNO‐1431Norway
| | | | - Yngvild Ransedokken
- Faculty of Environmental Sciences and Natural Resource ManagementNorwegian University of Life SciencesPO Box 5003ÅsNO‐1432Norway
| | - O. Janne Kjønaas
- Norwegian Institute of Bioeconomy ResearchPO Box 115ÅsNO‐1431Norway
| |
Collapse
|
26
|
Wang JL, Liu KL, Zhao XQ, Gao GF, Wu YH, Shen RF. Microbial keystone taxa drive crop productivity through shifting aboveground-belowground mineral element flows. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152342. [PMID: 34919922 DOI: 10.1016/j.scitotenv.2021.152342] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/05/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Unbalanced fertilization of nutritional elements is a potential threat to environmental quality and agricultural productivity in acid soil. Harnessing keystone taxa in soil microbiome represents a promising strategy to enhance crop productivity as well as reducing the adverse environmental effects of fertilizers, with the goal of agricultural sustainability. However, there is a lack of information on which and how soil microbial keystone taxa contribute to sustainable crop productivity in acid soil. Here, we examined soil microbial communities (including bacteria, fungi, and archaea) and soil nutrients, and the mineral nutrition and yield of maize subjected to different inorganic and organic fertilization treatments over 35 years in acid soil. The application of organic fertilizer alone or in combination with inorganic fertilizers sustained high maize yield when compared with the other fertilization treatments. Microbial abundances and community structures rather than their alpha diversities explained the main variation in maize yield among different treatments. Sixteen soil keystone taxa (a fungal operational taxonomic unit and 15 bacterial operational taxonomic units) were identified from the microbial co-occurrence network. Among them, five keystone taxa (in Hypocreales, Bryobacter, Solirubrobacterales, Thermomicrobiales, and Roseiflexaceae) contributed to high maize yield through increasing phosphorus flow and inhibiting toxic aluminum and manganese flow from soils to plants. However, the remaining eleven keystone taxa (in Conexibacter, Acidothermus, Ktedonobacteraceae, Deltaproteobacteria, Actinobacteria, Elsterales, Ktedonobacterales, and WPS-2) exerted the opposite effects. As a result, maize productivity varied among different fertilization treatments because of the altered maize mineral element flows by microbial keystone taxa. We conclude that microbial keystone taxa drive crop productivity through shifting aboveground-belowground mineral element flows in acid soil. This study highlights the importance of microbial keystone taxa for sustainable crop productivity in acid soil and provides deep insights into the relationships between soil microbial keystone taxa, crop mineral nutrition, and productivity.
Collapse
Affiliation(s)
- Jia Lin Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Kai Lou Liu
- National Engineering and Technology Research Center for Red Soil Improvement, Jiangxi Institute of Red Soil, Nanchang 331717, China.
| | - Xue Qiang Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Gui-Feng Gao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yong Hong Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
27
|
Tian C, Wang H, Wu S, Bu C, Bai X, Li Y, Siddique KHM. Exogenous Microorganisms Promote Moss Biocrust Growth by Regulating the Microbial Metabolic Pathway in Artificial Laboratory Cultivation. Front Microbiol 2022; 13:819888. [PMID: 35308403 PMCID: PMC8924459 DOI: 10.3389/fmicb.2022.819888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/07/2022] [Indexed: 01/24/2023] Open
Abstract
Moss-dominated biocrusts (moss crusts) are a feasible approach for the ecological restoration of drylands, but difficulty obtaining inoculum severely limits the progress of large-scale field applications. Exogenous microorganisms could improve moss growth and be conducive to moss inoculum propagation. In this study, we investigated the growth-promoting effects and potential mechanisms of exogenous microorganism additives on moss crusts. We used an incubator study to examine the effects of inoculation by heterotrophic microorganisms (Streptomyces pactum, Bacillus megaterium) and autotrophic microorganisms (Chlorella vulgaris, Microcoleus vaginatus) combined with Artemisia sphaerocephala gum on the growth of Bryum argenteum, the dominant moss crusts species in sandy deserts. Amplicon sequencing (16S and 18S rRNA) and PICRUSt2 were used to illustrate the microbial community structure and potential function in the optimal treatment at different developmental stages. Our results showed that exogenous microorganisms significantly promoted moss growth and increased aboveground biomass. After 30 days of cultivation, the Streptomyces pactum (1 g kg-1 substrate) + Chlorella vulgaris (3.33 L m-2) treatment presented optimal moss coverage, height, and density of 97.14%, 28.31 mm, and 2.28 g cm-2, respectively. The best-performing treatment had a higher relative abundance of Streptophyta-involved in moss growth-than the control. The control had significantly higher soil organic carbon than the best-performing treatment on day 30. Exogenous microorganisms improved eukaryotic community diversity and richness and may enhance soil microbial functional and metabolic diversity, such as growth and reproduction, carbon fixation, and cellulose and lignin decomposition, based on functional predictions. In summary, we identified the growth-promoting mechanisms of exogenous additives, providing a valuable reference for optimizing propagation technology for moss inoculum.
Collapse
Affiliation(s)
- Chang Tian
- Institute of Soil and Water Conservation, CAS and MWR, Yangling, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Heming Wang
- College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, China
| | - Shufang Wu
- College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, China
| | - Chongfeng Bu
- Institute of Soil and Water Conservation, CAS and MWR, Yangling, China
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, China
| | - Xueqiang Bai
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, China
| | - Yahong Li
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, China
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture and School of Agriculture & Environment, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
28
|
Banerjee A, Show BK, Chaudhury S, Balachandran S. Biological pretreatment for enhancement of biogas production. COST EFFECTIVE TECHNOLOGIES FOR SOLID WASTE AND WASTEWATER TREATMENT 2022:101-114. [DOI: 10.1016/b978-0-12-822933-0.00020-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
29
|
Dargode PS, More PP, Gore SS, Asodekar BR, Sharma MB, Lali AM. Microbial consortia adaptation to substrate changes in anaerobic digestion. Prep Biochem Biotechnol 2021; 52:924-936. [PMID: 34895061 DOI: 10.1080/10826068.2021.2009859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Renewable natural gas (RNG) produced from anaerobic digestion (AD) of agricultural residues is emerging a serious biofuel alternative. Complex nature of lignocellulosic biomass residues coupled with complex biochemical transformations involving a large spectrum of microbial communities make anaerobic digestion of biomass difficult to understand and control. The present work aims at studying adaptation of microbial consortia in AD to substrates changes and correlating these to biogas generation. The double edged study deals with (a) using a common starting culture inoculum on different fractions of pretreated lignocellulosic biomass (LBM) fractions; and (b) using different starter inocula for gas generation from simple glucose substrate. Taxonomic analysis using 16S amplicon sequencing is shown to highlight changes in microbial community structure and predominance, majorly in hydrolytic bacterial populations. Observed variations in the rate of digestion with different starter inocula could be related to differences in microbial community structure and relative abundance. Results with different treated biomass fractions as substrates indicated that AD performance could be related to abundance of substrate-specific microbial communities. The work is a step to a deeper understanding of AD processes that may lead to better control and operation of AD for super-scale production of RNG from biomass feedstocks.
Collapse
Affiliation(s)
- Priyanka S Dargode
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology (Formerly UDCT), Mumbai, India
| | - Pooja P More
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology (Formerly UDCT), Mumbai, India
| | - Suhas S Gore
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology (Formerly UDCT), Mumbai, India
| | - Bhupal R Asodekar
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology (Formerly UDCT), Mumbai, India
| | - Manju B Sharma
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology (Formerly UDCT), Mumbai, India
| | - Arvind M Lali
- Institute of Chemical Technology (Formerly UDCT), Mumbai, India
| |
Collapse
|
30
|
Biocrust microbiomes influence ecosystem structure and function in the Mu Us Sandland, northwest China. ECOL INFORM 2021. [DOI: 10.1016/j.ecoinf.2021.101441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
31
|
Rodríguez-Fonseca MF, Sánchez-Suárez J, Valero MF, Ruiz-Balaguera S, Díaz LE. Streptomyces as Potential Synthetic Polymer Degraders: A Systematic Review. Bioengineering (Basel) 2021; 8:bioengineering8110154. [PMID: 34821720 PMCID: PMC8614672 DOI: 10.3390/bioengineering8110154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022] Open
Abstract
The inherent resistance of synthetic plastics to degradation has led to an increasing challenge of waste accumulation problem and created a pollution issue that can only be addressed with novel complementary methods such as biodegradation. Since biocontrol is a promising eco-friendly option to address this challenge, the identification of suitable biological agents is a crucial requirement. Among the existing options, organisms of the Streptomyces genus have been reported to biodegrade several complex polymeric macromolecules such as chitin, lignin, and cellulose. Therefore, this systematic review aimed to evaluate the potential of Streptomyces strains for the biodegradation of synthetic plastics. The results showed that although Streptomyces strains are widely distributed in different ecosystems in nature, few studies have explored their capacity as degraders of synthetic polymers. Moreover, most of the research in this field has focused on Streptomyces strains with promising biotransforming potential against polyethylene-like polymers. Our findings suggest that this field of study is still in the early stages of development. Moreover, considering the diverse ecological niches associated with Streptomyces, these actinobacteria could serve as complementary agents for plastic waste management and thereby enhance carbon cycle dynamics.
Collapse
Affiliation(s)
- Maria Fernanda Rodríguez-Fonseca
- Master in Process Design and Management, School of Engineering, Universidad de La Sabana, Chía 250001, Colombia;
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Chía 250001, Colombia;
| | - Jeysson Sánchez-Suárez
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Chía 250001, Colombia;
| | - Manuel Fernando Valero
- Energy, Materials and Environment Group, School of Engineering, Universidad de La Sabana, Chía 250001, Colombia;
| | - Sonia Ruiz-Balaguera
- Conservation, Bioprospecting and Sustainable Development Group, Environmental Engineering Program, Universidad Nacional Abierta y a Distancia (UNAD), Bogotá 110911, Colombia;
| | - Luis Eduardo Díaz
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Chía 250001, Colombia;
- Correspondence: ; Tel.: +57-861-5555 (ext. 25208)
| |
Collapse
|
32
|
Microbial Diversity and Ecosystem Functioning in Deadwood of Black Pine of a Temperate Forest. FORESTS 2021. [DOI: 10.3390/f12101418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The present study provides a deeper insight on variations of microbial abundance and community composition concerning specific environmental parameters related to deadwood decay, focusing on a mesocosm experiment conducted with deadwood samples from black pine of different decay classes. The chemical properties and microbial communities of deadwood changed over time. The total carbon percentage remained constant in the first stage of decomposition, showing a significant increase in the last decay class. The percentage of total nitrogen and the abundances of nifH harbouring bacteria significantly increased as decomposition advanced, suggesting N wood-enrichment by microbial N immobilization and/or N2-fixation. The pH slightly decreased during decomposition and significantly correlated with fungal abundance. CO2 production was higher in the last decay class 5 and positively correlated with bacterial abundance. Production of CH4 was registered in one sample of decay class 3, which correlates with the highest abundance of methanogenic archaea that probably belonged to Methanobrevibacter genus. N2O consumption increased along decomposition progress, indicating a complete reduction of nitrate compounds to N2 via denitrification, as proved by the highest nosZ gene copy number in decay class 5. Conversely, our results highlighted a low involvement of nitrifying communities in deadwood decomposition.
Collapse
|
33
|
Tarquinio F, Attlan O, Vanderklift MA, Berry O, Bissett A. Distinct Endophytic Bacterial Communities Inhabiting Seagrass Seeds. Front Microbiol 2021; 12:703014. [PMID: 34621247 PMCID: PMC8491609 DOI: 10.3389/fmicb.2021.703014] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Seagrasses are marine angiosperms that can live completely or partially submerged in water and perform a variety of significant ecosystem services. Like terrestrial angiosperms, seagrasses can reproduce sexually and, the pollinated female flower develop into fruits and seeds, which represent a critical stage in the life of plants. Seed microbiomes include endophytic microorganisms that in terrestrial plants can affect seed germination and seedling health through phytohormone production, enhanced nutrient availability and defence against pathogens. However, the characteristics and origins of the seagrass seed microbiomes is unknown. Here, we examined the endophytic bacterial community of six microenvironments (flowers, fruits, and seeds, together with leaves, roots, and rhizospheric sediment) of the seagrass Halophila ovalis collected from the Swan Estuary, in southwestern Australia. An amplicon sequencing approach (16S rRNA) was used to characterize the diversity and composition of H. ovalis bacterial microbiomes and identify core microbiome bacteria that were conserved across microenvironments. Distinct communities of bacteria were observed within specific seagrass microenvironments, including the reproductive tissues (flowers, fruits, and seeds). In particular, bacteria previously associated with plant growth promoting characteristics were mainly found within reproductive tissues. Seagrass seed-borne bacteria that exhibit growth promoting traits, the ability to fix nitrogen and anti-pathogenic potential activity, may play a pivotal role in seed survival, as is common for terrestrial plants. We present the endophytic community of the seagrass seeds as foundation for the identification of potential beneficial bacteria and their selection in order to improve seagrass restoration.
Collapse
Affiliation(s)
- Flavia Tarquinio
- Oceans and Atmosphere, Indian Ocean Marine Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Crawley, WA, Australia.,Environomics Future Science Platform, Indian Ocean Marine Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Crawley, WA, Australia
| | - Océane Attlan
- Oceans and Atmosphere, Indian Ocean Marine Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Crawley, WA, Australia.,Sciences et Technologies, Université de la Réunion, Saint-Denis, France
| | - Mathew A Vanderklift
- Oceans and Atmosphere, Indian Ocean Marine Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Crawley, WA, Australia
| | - Oliver Berry
- Environomics Future Science Platform, Indian Ocean Marine Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Crawley, WA, Australia
| | - Andrew Bissett
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Hobart, TAS, Australia
| |
Collapse
|
34
|
Gupta GK, Dixit M, Kapoor RK, Shukla P. Xylanolytic Enzymes in Pulp and Paper Industry: New Technologies and Perspectives. Mol Biotechnol 2021; 64:130-143. [PMID: 34580813 DOI: 10.1007/s12033-021-00396-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/08/2021] [Indexed: 11/26/2022]
Abstract
The pulp and paper industry discharges massive amount of wastewater containing hazardous organochlorine compounds released during different processing stages. Therefore, some cost-effective and nonpolluting practices such as enzymatic treatments are required for the potential mitigation of effluents released in the environment. Various xylanolytic enzymes such as xylanases, laccases, cellulases and hemicellulases are used to hydrolyse raw materials in the paper manufacturing industry. These enzymes are used either individually or in combination, which has the efficient potential to be considered for bio-deinking and bio-bleaching components. They are highly dynamic, renewable, and high in specificity for enhancing paper quality. The xylanase act on the xylan and cellulases act on the cellulose fibers, and thus increase the bleaching efficacy of paper. Similarly, hemicellulase enzyme like endo-xylanases, arabinofuranosidase and β-D-xylosidases have been described as functional properties towards the biodegradation of biomass. In contrast, laccase enzymes act as multi-copper oxidoreductases, bleaching the paper by the oxidation and reduction process. Laccases possess low redox potential compared to other enzymes, which need some redox mediators to catalyze. The enzymatic process can be affected by various factors such as pH, temperature, metal ions, incubation periods, etc. These factors can either increase or decrease the efficiency of the enzymes. This review draws attention to the xylanolytic enzyme-based advanced technologies for pulp bleaching in the paper industry.
Collapse
Affiliation(s)
- Guddu Kumar Gupta
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Mandeep Dixit
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Rajeev Kumar Kapoor
- Enzyme and Fermentation Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
35
|
Becerra-Lucio AA, Labrín-Sotomayor NY, Becerra-Lucio PA, Trujillo-Elisea FI, Chávez-Bárcenas AT, Machkour-M'Rabet S, Peña-Ramírez YJ. Diversity and Interactomics of Bacterial Communities Associated with Dominant Trees During Tropical Forest Recovery. Curr Microbiol 2021; 78:3417-3429. [PMID: 34244846 DOI: 10.1007/s00284-021-02603-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 07/01/2021] [Indexed: 10/20/2022]
Abstract
Bacterial communities have been identified as functional key members in soil ecology. A deep relation with these communities maintains forest coverture. Trees harbor particular bacteriomes in the rhizosphere, endosphere, or phyllosphere, different from bulk-soil representatives. Moreover, the plant microbiome appears to be specific for the plant-hosting species, varies through season, and responsive to several environmental factors. This work reports the changes in bacterial communities associated with dominant pioneer trees [Tabebuia rosea and Handroanthus chrysanthus [(Bignoniaceae)] during tropical forest recovery chronosequence in the Mayan forest in Campeche, Mexico. Massive 16S sequencing approach leads to identifying phylotypes associated with rhizosphere, bulk-soil, or recovery stage. Lotka-Volterra interactome modeling suggests the presence of putative regulatory roles of some phylotypes over the rest of the community. Our results may indicate that bacterial communities associated with pioneer trees may establish more complex regulatory networks than those found in bulk-soil. Moreover, modeled regulatory networks predicted from rhizosphere samples resulted in a higher number of nodes and interactions than those found in the analysis of bulk-soil samples.
Collapse
Affiliation(s)
- Angel A Becerra-Lucio
- Department of Sustainability Sciences, El Colegio de la Frontera Sur Unidad Campeche, Av. Rancho Polígono 2-A Col. Ciudad Industrial, Lerma, CP 24500, Campeche, Campeche, México
| | - Natalia Y Labrín-Sotomayor
- Department of Sustainability Sciences, El Colegio de la Frontera Sur Unidad Campeche, Av. Rancho Polígono 2-A Col. Ciudad Industrial, Lerma, CP 24500, Campeche, Campeche, México
| | - Patricia A Becerra-Lucio
- Department of Sustainability Sciences, El Colegio de la Frontera Sur Unidad Campeche, Av. Rancho Polígono 2-A Col. Ciudad Industrial, Lerma, CP 24500, Campeche, Campeche, México
| | - Flor I Trujillo-Elisea
- Department of Sustainability Sciences, El Colegio de la Frontera Sur Unidad Campeche, Av. Rancho Polígono 2-A Col. Ciudad Industrial, Lerma, CP 24500, Campeche, Campeche, México
| | - Ana T Chávez-Bárcenas
- Agrobiologia School, Universidad Michoacana de San Nicolás de Hidalgo, CP 6017, Uruapan, Michoacán, México
| | - Salima Machkour-M'Rabet
- Department of Biodiversity Conservation, El Colegio de la Frontera Sur Unidad Chetumal, Av. Centenario km 5.5, CP 77014, Chetumal, Quintana Roo, México
| | - Yuri J Peña-Ramírez
- Department of Sustainability Sciences, El Colegio de la Frontera Sur Unidad Campeche, Av. Rancho Polígono 2-A Col. Ciudad Industrial, Lerma, CP 24500, Campeche, Campeche, México.
| |
Collapse
|
36
|
Xu Z, Xu W, Zhang L, Ma Y, Li Y, Li G, Nghiem LD, Luo W. Bacterial dynamics and functions driven by bulking agents to mitigate gaseous emissions in kitchen waste composting. BIORESOURCE TECHNOLOGY 2021; 332:125028. [PMID: 33813180 DOI: 10.1016/j.biortech.2021.125028] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
This study investigated the impacts of different bulking agents (i.e. garden waste, cornstalks, and spent mushroom substrates) on bacterial structure and functions for gaseous emissions during kitchen waste composting. High-throughput sequencing was integrated with functional Annotation of Prokaryotic Taxa (FAPROTAX) to decipher the bacterial structure and functions. Results show that adding cornstalks constructed a more complex and mutualistic bacterial network to enhance organic biodegradation. This scenario, however, aggravated the emission of ammonia and hydrogen sulphide with the enrichment of the genus Bacillus and Desulfitibacter at the thermophilic stage of composting to facilitate ammonification and sulphur-related respiration, respectively. By contrast, spent mushroom substrates facilitated the proliferation of the genus Pseudomonas to promote nitrate reduction at the cooling stage, leading to considerable emission of nitrous oxide. Compared to these two agents, garden waste contained less easily biodegradable substances to limit bacterial mutualism, thereby reducing gaseous emissions in composting.
Collapse
Affiliation(s)
- Zhicheng Xu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Wenjia Xu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Lanxia Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Yu Ma
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Yanming Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
37
|
Tláskal V, Baldrian P. Deadwood-Inhabiting Bacteria Show Adaptations to Changing Carbon and Nitrogen Availability During Decomposition. Front Microbiol 2021; 12:685303. [PMID: 34220772 PMCID: PMC8247643 DOI: 10.3389/fmicb.2021.685303] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/04/2021] [Indexed: 01/01/2023] Open
Abstract
Deadwood decomposition is responsible for a significant amount of carbon (C) turnover in natural forests. While fresh deadwood contains mainly plant compounds and is extremely low in nitrogen (N), fungal biomass and N content increase during decomposition. Here, we examined 18 genome-sequenced bacterial strains representing the dominant deadwood taxa to assess their adaptations to C and N utilization in deadwood. Diverse gene sets for the efficient decomposition of plant and fungal cell wall biopolymers were found in Acidobacteria, Bacteroidetes, and Actinobacteria. In contrast to these groups, Alphaproteobacteria and Gammaproteobacteria contained fewer carbohydrate-active enzymes and depended either on low-molecular-mass C sources or on mycophagy. This group, however, showed rich gene complements for N2 fixation and nitrate/nitrite reduction—key assimilatory and dissimilatory steps in the deadwood N cycle. We show that N2 fixers can obtain C independently from either plant biopolymers or fungal biomass. The succession of bacteria on decomposing deadwood reflects their ability to cope with the changing quality of C-containing compounds and increasing N content.
Collapse
Affiliation(s)
- Vojtěch Tláskal
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Praha, Czechia
| | - Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Praha, Czechia
| |
Collapse
|
38
|
Soil Microbiome Composition along the Natural Norway Spruce Forest Life Cycle. FORESTS 2021. [DOI: 10.3390/f12040410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Stand-replacing disturbances are a key element of the Norway spruce (Picea abies) forest life cycle. While the effect of a natural disturbance regime on forest physiognomy, spatial structure and pedocomplexity was well described in the literature, its impact on the microbiome, a crucial soil component that mediates nutrient cycling and stand productivity, remains largely unknown. For this purpose, we conducted research on a chronosequence of sites representing the post-disturbance development of a primeval Norway spruce forest in the Calimani Mts., Romania. The sites were selected along a gradient of duration from 16 to 160 years that ranges from ecosystem regeneration phases of recently disturbed open gaps to old-growth forest stands. Based on DNA amplicon sequencing, we followed bacterial and fungal community composition separately in organic, upper mineral and spodic horizons of present Podzol soils. We observed that the canopy opening and subsequent expansion of the grass-dominated understorey increased soil N availability and soil pH, which was reflected in enlarged bacterial abundance and diversity, namely due to the contribution of copiotrophic bacteria that prefer nutrient-richer conditions. The fungal community composition was affected by the disturbance as well but, contrary to our expectations, with no obvious effect on the relative abundance of ectomycorrhizal fungi. Once the mature stand was re-established, the N availability was reduced, the pH gradually decreased and the original old-growth forest microbial community dominated by acidotolerant oligotrophs recovered. The effect of the disturbance and forest regeneration was most evident in organic horizons, while the manifestation of these events was weaker and delayed in deeper soil horizons.
Collapse
|
39
|
Choma M, Tahovská K, Kaštovská E, Bárta J, Růžek M, Oulehle F. Bacteria but not fungi respond to soil acidification rapidly and consistently in both a spruce and beech forest. FEMS Microbiol Ecol 2021; 96:5894924. [PMID: 32815987 DOI: 10.1093/femsec/fiaa174] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/18/2020] [Indexed: 11/13/2022] Open
Abstract
Anthropogenically enhanced atmospheric sulphur (S) and nitrogen (N) deposition has acidified and eutrophied forest ecosystems worldwide. However, both S and N mechanisms have an impact on microbial communities and the consequences for microbially driven soil functioning differ. We conducted a two-forest stand (Norway spruce and European beech) field experiment involving acidification (sulphuric acid addition) and N (ammonium nitrate) loading and their combination. For 4 years, we monitored separate responses of soil microbial communities to the treatments and investigated the relationship to changes in the activity of extracellular enzymes. We observed that acidification selected for acidotolerant and oligotrophic taxa of Acidobacteria and Actinobacteria decreased bacterial community richness and diversity in both stands in parallel, disregarding their original dissimilarities in soil chemistry and composition of microbial communities. The shifts in bacterial community influenced the stoichiometry and magnitude of enzymatic activity. The bacterial response to experimental N addition was much weaker, likely due to historically enhanced N availability. Fungi were not influenced by any treatment during 4-year manipulation. We suggest that in the onset of acidification when fungi remain irresponsive, bacterial reaction might govern the changes in soil enzymatic activity.
Collapse
Affiliation(s)
- Michal Choma
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Karolina Tahovská
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Eva Kaštovská
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Jiří Bárta
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Michal Růžek
- Czech Geological Survey, Department of Environmental Geochemistry and Biogeochemistry, Geologická 6, Prague 5, 152 00, Czech Republic.,Department of Physical Geography, Faculty of Science, Charles University, Albertov 6, 128 43 Prague, Czech Republic
| | - Filip Oulehle
- Czech Geological Survey, Department of Environmental Geochemistry and Biogeochemistry, Geologická 6, Prague 5, 152 00, Czech Republic
| |
Collapse
|
40
|
Nutrient availability is a dominant predictor of soil bacterial and fungal community composition after nitrogen addition in subtropical acidic forests. PLoS One 2021; 16:e0246263. [PMID: 33621258 PMCID: PMC7901772 DOI: 10.1371/journal.pone.0246263] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 01/17/2021] [Indexed: 11/19/2022] Open
Abstract
Nutrient addition to forest ecosystems significantly influences belowground microbial diversity, community structure, and ecosystem functioning. Nitrogen (N) addition in forests is common in China, especially in the southeast region. However, the influence of N addition on belowground soil microbial community diversity in subtropical forests remains unclear. In May 2018, we randomly selected 12 experimental plots in a Pinus taiwanensis forest within the Daiyun Mountain Nature Reserve, Fujian Province, China, and subjected them to N addition treatments for one year. We investigated the responses of the soil microbial communities and identified the major elements that influenced microbial community composition in the experimental plots. The present study included three N treatments, i.e., the control (CT), low N addition (LN, 40 kg N ha-1 yr-1), and high N addition (HN, 80 kg N ha-1 yr-1), and two depths, 0−10 cm (topsoil) and 10−20 cm (subsoil), which were all sampled in the growing season (May) of 2019. Soil microbial diversity and community composition in the topsoil and subsoil were investigated using high-throughput sequencing of bacterial 16S rDNA genes and fungal internal transcribed spacer sequences. According to our results, 1) soil dissolved organic carbon (DOC) significantly decreased after HN addition, and available nitrogen (AN) significantly declined after LN addition, 2) bacterial α-diversity in the subsoil significantly decreased with HN addition, which was affected significantly by the interaction between N addition and soil layer, and 3) soil DOC, rather than pH, was the dominant environmental factor influencing soil bacterial community composition, while AN and MBN were the best predictors of soil fungal community structure dynamics. Moreover, N addition influence both diversity and community composition of soil bacteria more than those of fungi in the subtropical forests. The results of the present study provide further evidence to support shifts in soil microbial community structure in acidic subtropical forests in response to increasing N deposition.
Collapse
|
41
|
Almela P, Justel A, Quesada A. Heterogeneity of Microbial Communities in Soils From the Antarctic Peninsula Region. Front Microbiol 2021; 12:628792. [PMID: 33664717 PMCID: PMC7920962 DOI: 10.3389/fmicb.2021.628792] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/28/2021] [Indexed: 01/04/2023] Open
Abstract
Ice-free areas represent less than 1% of the Antarctic surface. However, climate change models predict a significant increase in temperatures in the coming decades, triggering a relevant reduction of the ice-covered surface. Microorganisms, adapted to the extreme and fluctuating conditions, are the dominant biota. In this article we analyze the diversity and composition of soil bacterial communities in 52 soil samples on three scales: (i) fine scale, where we compare the differences in the microbial community between top-stratum soils (0-2 cm) and deeper-stratum soils (5-10 cm) at the same sampling point; (ii) medium scale, in which we compare the composition of the microbial community of top-stratum soils from different sampling points within the same sampling location; and (iii) coarse scale, where we compare communities between comparable ecosystems located hundreds of kilometers apart along the Antarctic Peninsula. The results suggest that in ice-free soils exposed for longer periods of time (millennia) microbial communities are significantly different along the soil profiles. However, in recently (decades) deglaciated soils the communities are not different along the soil profile. Furthermore, the microbial communities found in soils at the different sampling locations show a high degree of heterogeneity, with a relevant proportion of unique amplicon sequence variants (ASV) that appeared mainly in low abundance, and only at a single sampling location. The Core90 community, defined as the ASVs shared by 90% of the soils from the 4 sampling locations, was composed of 26 ASVs, representing a small percentage of the total sequences. Nevertheless, the taxonomic composition of the Core80 (ASVs shared by 80% of sampling points per location) of the different sampling locations, was very similar, as they were mostly defined by 20 common taxa, representing up to 75.7% of the sequences of the Core80 communities, suggesting a greater homogeneity of soil bacterial taxa among distant locations.
Collapse
Affiliation(s)
- Pablo Almela
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ana Justel
- Department of Mathematics, Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonio Quesada
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
42
|
Hero JS, Pisa JH, Raimondo EE, Martínez MA. Proteomic analysis of secretomes from Bacillus sp. AR03: characterization of enzymatic cocktails active on complex carbohydrates for xylooligosaccharides production. Prep Biochem Biotechnol 2021; 51:871-880. [PMID: 33439095 DOI: 10.1080/10826068.2020.1870136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Bacillus sp. AR03 have been described as an important producer of carbohydrate-active enzymes (CAZymes) when growing in a peptone-based medium supplemented with simple sugars and/or carboxymethyl cellulose (CMC) as carbon sources. This work aimed to identify the extracellular enzymatic cocktails through shotgun proteomics. The proteomic analysis showed that enzymes involved in cellulose and xylan degradation were among the most abundant proteins. These enzymes included an endo-glucanase GH5_2 and a glucuronoxylanase GH30_8, which were found in all conditions. In addition, several proteins were differentially expressed in the three evaluated culture media, indicating microbial metabolic changes due to the different supplied carbon sources, particularly, in the presence of CMC. Finally, the capability of the crude enzymatic cocktails from culture media to degrade birchwood xylan was assessed, which produced mostly xylooligosaccharides containing among 3-5 xylose units. Consequently, this work shows the potential of the extracellular enzymes from Bacillus sp. AR03 for producing emergent prebiotics.
Collapse
Affiliation(s)
- Johan S Hero
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Tucumán, Argentina
| | - José H Pisa
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Tucumán, Argentina
| | - Enzo E Raimondo
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Tucumán, Argentina.,Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - M Alejandra Martínez
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Tucumán, Argentina.,Facultad de Ciencias Exactas y Tecnología, Universidad Nacional de Tucumán, Tucumán, Argentina
| |
Collapse
|
43
|
Sekhohola-Dlamini L, Selvarajan R, Ogola HJO, Tekere M. Community diversity metrics, interactions, and metabolic functions of bacteria associated with municipal solid waste landfills at different maturation stages. Microbiologyopen 2020; 10:e1118. [PMID: 33314739 PMCID: PMC7818627 DOI: 10.1002/mbo3.1118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/13/2020] [Accepted: 08/20/2020] [Indexed: 01/26/2023] Open
Abstract
Municipal landfills are hot spots of dynamic bioprocesses facilitated by complex interactions of a multifaceted microbiome, whose functioning in municipal landfills at different maturing stages is poorly understood. This study determined bacterial community composition, interaction conetworks, metabolic functions, and controlling physicochemical properties in two landfills aged 14 and 36 years. High throughput sequencing revealed a similar distribution of bacterial diversity, evenness, and richness in the 14‐ and 36‐year‐old landfills in the 0–90 cm depth. At deeper layers (120–150 cm), the 14‐year‐old landfill had significantly greater bacterial diversity and richness indicating that it is a more active microcosm than the 36‐year‐old landfill, where phylum Epsilonbacteraeota was overwhelmingly dominant. The taxonomic and functional diversity in the 14‐year‐old landfill was further reflected by the abundant presence of indicator genera Pseudomonas,Lutispora,Hydrogenspora, and Sulfurimonas coupled with the presence of biomarker enzymes associated with carbon (C), nitrogen (N), and sulfur (S) metabolism. Furthermore, canonical correspondence analysis revealed that bacteria in the 14‐year‐old landfill were positively correlated with high C, N, S, and phosphorus resulting in positive cooccurrence interactions. In the 36‐year‐old landfill, negative coexclusion interactions populated by members of N fixing Rhizobiales were dominant, with metabolic functions and biomarker enzymes predicting significant N fixation that, as indicated by interaction network, potentially inhibited ammonia‐intolerant bacteria. Overall, our findings show that diverse bacterial community in the 14‐year‐old landfill was dominated by copiotrophs associated with positive conetworks, whereas the 36‐year‐old landfill was dominated by lithotrophs linked to coexclusion interactions that greatly reduced bacterial diversity and richness.
Collapse
Affiliation(s)
- Lerato Sekhohola-Dlamini
- Department of Environmental Sciences, University of South Africa (UNISA), Johannesburg, South Africa
| | - Ramganesh Selvarajan
- Department of Environmental Sciences, University of South Africa (UNISA), Johannesburg, South Africa
| | - Henry Joseph Odour Ogola
- Department of Environmental Sciences, University of South Africa (UNISA), Johannesburg, South Africa.,School of Food and Agricultural Sciences, Jaramogi Oginga Odinga University of Science and Technology, Bondo, Kenya
| | - Memory Tekere
- Department of Environmental Sciences, University of South Africa (UNISA), Johannesburg, South Africa
| |
Collapse
|
44
|
Xie F, Zhang G, Zheng Q, Liu K, Yin X, Sun X, Saud S, Shi Z, Yuan R, Deng W, Zhang L, Cui G, Chen Y. Beneficial Effects of Mixing Kentucky Bluegrass With Red Fescue via Plant-Soil Interactions in Black Soil of Northeast China. Front Microbiol 2020; 11:556118. [PMID: 33193137 PMCID: PMC7656059 DOI: 10.3389/fmicb.2020.556118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/28/2020] [Indexed: 12/26/2022] Open
Abstract
Continuous monoculture of cool-season turfgrass causes soil degradation, and visual turf quality decline is a major concern in black soil regions of Northeast China. Turf mixtures can enhance turfgrass resistance to biotic and abiotic stresses and increase soil microbial diversity. Understanding mechanism by plant-soil interactions and changes of black soil microbial communities in turf mixture is beneficial to restoring the degradation of urbanized black soils and maintaining sustainable development of urban landscape ecology. In this study, based on the previous research of different sowing models, two schemes of turf monoculture and mixture were conducted in field plots during 2016-2018 in a black soil of Heilongjiang province of Northeast China. The mixture turf was established by mixing 50% Kentucky bluegrass "Midnight" (Poa pratensis L.) with 50% Red fescue "Frigg" (Festuca rubra L.); and the monoculture turf was established by sowing with pure Kentucky bluegrass. Turf performance, soil physiochemical properties, and microbial composition from rhizosphere were investigated. Soil microbial communities and abundance were analyzed by Illumina MiSeq sequencing and quantitative PCR methods. Results showed that turfgrass quality, turfgrass biomass, soil organic matter (SOM), urease, alkaline phosphatase, invertase, and catalase activities increased in PF mixture, but disease percentage and soil pH decreased. The microbial diversity was also significantly enhanced under turf mixture model. The microbial community compositions were significantly different between the two schemes. Turf mixtures obviously increased the abundances of Beauveria, Lysobacter, Chryseolinea, and Gemmatimonas spp., while remarkably reduced the abundances of Myrothecium and Epicoccum spp. Redundancy analysis showed that the compositions of bacteria and fungi were related to edaphic parameters, such as SOM, pH, and enzyme activities. Since the increasing of turf quality, biomass, and disease resistance were highly correlated with the changes of soil physiochemical parameters and microbial communities in turf mixture, which suggested that turf mixture with two species (i.e., Kentucky blue grass and Red fescue) changed soil microbial communities and enhanced visual turfgrass qualities through positive plant-soil interactions by soil biota.
Collapse
Affiliation(s)
- Fuchun Xie
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Gaoyun Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Qianjiao Zheng
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Kemeng Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China.,Beijing Oriental Garden Environment Co., Ltd, Beijing, China
| | - Xiujie Yin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xiaoyang Sun
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Shah Saud
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Zhenjie Shi
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Runli Yuan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Wenjing Deng
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Lu Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Guowen Cui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yajun Chen
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
45
|
Wang J, Sun Z. Effects of different carbon sources on 2,4,6-trichlorophenol degradation in the activated sludge process. Bioprocess Biosyst Eng 2020; 43:2143-2152. [DOI: 10.1007/s00449-020-02400-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/27/2020] [Indexed: 12/14/2022]
|
46
|
Jovanne Rivera-Rivera M, Cuevas E. First Insights into the Resilience of the Soil Microbiome of a Tropical Dry Forest in Puerto Rico. Microorganisms 2020. [DOI: 10.5772/intechopen.90395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
47
|
Wang J, Sun Z. Exploring the effects of carbon source level on the degradation of 2,4,6-trichlorophenol in the co-metabolism process. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122293. [PMID: 32097852 DOI: 10.1016/j.jhazmat.2020.122293] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/20/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
External organic sources could make up for the lack of carbon in the treatment of chlorophenol; but the impact on external carbon concentration on the degradation of 2,4,6-trichlorophenol (2,4,6-TCP) has rarely been studied. In this study, the effect of carbon addition on the degradation of 2,4,6-TCP was investigated using the lab-scale sequencing batch reactor (SBR). The results indicated that excessive carbon amounts inhibited 2,4,6-TCP degradation in the long-term operation and a typical cycle, while a suitable dosage could increase the removal of 2,4,6-TCP. The application of external carbon rapidly decreased the dissolved oxygen level of the system, resulting in inhibited chlorophenol removal. The concentration of removed 2,4,6-TCP could be increased from 35.49-152.89 mg L-1 by adjusting the carbon dosage. At the phylum level, Proteobacteria and Acidobacteria phylum bacteria, related to 2,4,6-TCP removal, were dominant when no carbon source was added, while excessive carbon levels resulted in the overgrowth of Saccharibacteria (50.19 %), responsible for carbon metabolism. In co-metabolism systems, chlorophenol-contaminated wastewater can effectively be treated by adjusting the external carbon source.
Collapse
Affiliation(s)
- Jianguang Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Zhirong Sun
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
48
|
Yang Z, Sun H, Zhou Q, Zhao L, Wu W. Nitrogen removal performance in pilot-scale solid-phase denitrification systems using novel biodegradable blends for treatment of waste water treatment plants effluent. BIORESOURCE TECHNOLOGY 2020; 305:122994. [PMID: 32105842 DOI: 10.1016/j.biortech.2020.122994] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 06/10/2023]
Abstract
In this study, three pilot-scale solid-phase denitrification (SPD) systems filled with poly-3-hydroxybutyrate-co-hyroxyvelate (PHBV), PHBV-Rice hulls (PHBV-RH) and PHBV-Sawdust (PHBV-S) were operated to treat effluent of waste water treatment pangts (WWTPs). The fast start-up and intensified nitrogen removal performance were obtained in PHBV-RH and PHBV-S systems. Besides, the optimal total nitrogen (TN) removal efficiency was obtained in PHBV-S system (91.65 ± 4.12%) with less ammonia accumulation and dissolved organic carbon (DOC) release. The significant enrichment of amx 16S rRNA and nirS genes in PHBV-RH and PHBV-S systems indicated the possible coexistence of anammox and denitrification. Miseq sequencing analysis exhibited more complex community diversity, more abundant denitrifying and fermenting bacteria in PHBV-RH and PHBV-S systems. The co-existence of denitrification and anammox might contribute to better control of nitrogen and dissolved organic carbon in PHBV-S system. The outcomes provide an economical and eco-friendly alternative to improve nitrogen removal of WWTPs effluent.
Collapse
Affiliation(s)
- Zhongchen Yang
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Haimeng Sun
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Qi Zhou
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Liu Zhao
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Weizhong Wu
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China.
| |
Collapse
|
49
|
Complete Genome Sequence of the Lignocellulose-Degrading Actinomycete Streptomyces albus CAS922. Microbiol Resour Announc 2020; 9:9/21/e00227-20. [PMID: 32439662 PMCID: PMC7242664 DOI: 10.1128/mra.00227-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptomyces albus CAS922 was isolated from sunflower seed hulls. Its fully sequenced genome harbors a multitude of genes for carbohydrate-active enzymes, which likely facilitate growth on lignocellulosic biomass. Furthermore, the presence of 27 predicted biosynthetic gene clusters indicates a significant potential for the production of bioactive secondary metabolites.
Collapse
|
50
|
Soil microbial community characteristics under different vegetation types at the national nature reserve of Xiaolongshan Mountains, Northwest China. ECOL INFORM 2020. [DOI: 10.1016/j.ecoinf.2019.101020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|