1
|
Thomas ACQ, Stead CA, Burniston JG, Phillips SM. Exercise-specific adaptations in human skeletal muscle: Molecular mechanisms of making muscles fit and mighty. Free Radic Biol Med 2024; 223:341-356. [PMID: 39147070 DOI: 10.1016/j.freeradbiomed.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
The mechanisms leading to a predominantly hypertrophied phenotype versus a predominantly oxidative phenotype, the hallmarks of resistance training (RT) or aerobic training (AT), respectively, are being unraveled. In humans, exposure of naïve persons to either AT or RT results in their skeletal muscle exhibiting generic 'exercise stress-related' signaling, transcription, and translation responses. However, with increasing engagement in AT or RT, the responses become refined, and the phenotype typically associated with each form of exercise emerges. Here, we review some of the mechanisms underpinning the adaptations of how muscles become, through AT, 'fit' and RT, 'mighty.' Much of our understanding of molecular exercise physiology has arisen from targeted analysis of post-translational modifications and measures of protein synthesis. Phosphorylation of specific residue sites has been a dominant focus, with canonical signaling pathways (AMPK and mTOR) studied extensively in the context of AT and RT, respectively. These alone, along with protein synthesis, have only begun to elucidate key differences in AT and RT signaling. Still, key yet uncharacterized differences exist in signaling and regulation of protein synthesis that drive unique adaptation to AT and RT. Omic studies are required to better understand the divergent relationship between exercise and phenotypic outcomes of training.
Collapse
Affiliation(s)
- Aaron C Q Thomas
- Protein Metabolism Research Lab, Department of Kinesiology, McMaster University, Hamilton, ON, Canada; Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Connor A Stead
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Jatin G Burniston
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Stuart M Phillips
- Protein Metabolism Research Lab, Department of Kinesiology, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
2
|
Hughes AK, Francis T, Rooney J, Pollock R, Witard OC. The effect of protein or amino acid provision on immobilization-induced muscle atrophy in healthy adults: A systematic review and meta-analysis. Exp Physiol 2024; 109:873-888. [PMID: 38424716 PMCID: PMC11140175 DOI: 10.1113/ep090434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/25/2024] [Indexed: 03/02/2024]
Abstract
Bed rest and limb immobilization are models of muscle disuse associated with skeletal muscle atrophy and reduced strength. The purpose of this systematic review was to examine the impact of protein or amino acid provision before and/or during a period of muscle disuse on muscle atrophy (primary outcome), strength and muscle protein synthesis (secondary outcomes) following a disuse period. We performed a systematic review of Embase, MEDLINE, Web of Science, PubMed and Clinical Trials in December 2022. Eligible studies were randomized controlled trials that combined a dietary protein or amino acid intervention versus control during an experimental model of disuse (bed rest or unilateral limb immobilization) in healthy individuals aged ≥18 years. Nine articles from eight independent trials were identified and rated for risk of bias by two authors. A meta-analysis of muscle mass data revealed no effect (standardized mean difference: 0.2; 95% confidence interval: -0.18 to 0.57, P = 0.31) of protein/amino acid intervention in preventing disuse-induced muscle atrophy. Although the meta-analysis was not conducted on strength or muscle protein synthesis data, there was insufficient evidence in the reviewed articles to support the use of protein/amino acid provision in mitigating the disuse-induced decline in either outcome measurement. Additional high-quality studies, including the reporting of randomization procedures and blinding procedures and the provision of statistical analysis plans, might be required to determine whether protein or amino acid provision serves as an effective strategy to attenuate muscle atrophy during periods of disuse.
Collapse
Affiliation(s)
- Alix K. Hughes
- Centre for Human and Applied Physiological SciencesKing's College LondonLondonUK
| | - Thomas Francis
- Centre for Human and Applied Physiological SciencesKing's College LondonLondonUK
| | - Jessica Rooney
- Centre for Human and Applied Physiological SciencesKing's College LondonLondonUK
| | - Ross Pollock
- Centre for Human and Applied Physiological SciencesKing's College LondonLondonUK
| | - Oliver C. Witard
- Centre for Human and Applied Physiological SciencesKing's College LondonLondonUK
| |
Collapse
|
3
|
Layman DK. Impacts of protein quantity and distribution on body composition. Front Nutr 2024; 11:1388986. [PMID: 38765819 PMCID: PMC11099237 DOI: 10.3389/fnut.2024.1388986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/02/2024] [Indexed: 05/22/2024] Open
Abstract
The importance of meal distribution of dietary protein to optimize muscle mass and body remains unclear, and the findings are intertwined with age, physical activity, and the total quantity and quality of protein consumed. The concept of meal distribution evolved from multiple discoveries about regulating protein synthesis in skeletal muscle. The most significant was the discovery of the role of the branched-chain amino acid leucine as a metabolic signal to initiate a post-meal anabolic period of muscle protein synthesis (MPS) in older adults. Aging is often characterized by loss of muscle mass and function associated with a decline in protein synthesis. The age-related changes in protein synthesis and subsequent muscle atrophy were generally considered inevitable until the discovery of the unique role of leucine for the activation of the mTOR signal complex for the initiation of MPS. Clinical studies demonstrated that older adults (>60 years) require meals with at least 2.8 g of leucine (~30 g of protein) to stimulate MPS. This meal requirement for leucine is not observed in younger adults (<30 years), who produce a nearly linear response of MPS in proportion to the protein content of a meal. These findings suggest that while the efficiency of dietary protein to stimulate MPS declines with aging, the capacity for MPS to respond is maintained if a meal provides adequate protein. While the meal response of MPS to total protein and leucine is established, the long-term impact on muscle mass and body composition remains less clear, at least in part, because the rate of change in muscle mass with aging is small. Because direct diet studies for meal distribution during aging are impractical, research groups have applied meal distribution and the leucine threshold to protein-sparing concepts during acute catabolic conditions such as weight loss. These studies demonstrate enhanced MPS at the first meal after an overnight fast and net sparing of lean body mass during weight loss. While the anabolic benefits of increased protein at the first meal to stimulate MPS are clear, the benefits to long-term changes in muscle mass and body composition in aging adults remain speculative.
Collapse
Affiliation(s)
- Donald K. Layman
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
4
|
Li DCW, Rudloff S, Langer HT, Norman K, Herpich C. Age-Associated Differences in Recovery from Exercise-Induced Muscle Damage. Cells 2024; 13:255. [PMID: 38334647 PMCID: PMC10854791 DOI: 10.3390/cells13030255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024] Open
Abstract
Understanding the intricate mechanisms governing the cellular response to resistance exercise is paramount for promoting healthy aging. This narrative review explored the age-related alterations in recovery from resistance exercise, focusing on the nuanced aspects of exercise-induced muscle damage in older adults. Due to the limited number of studies in older adults that attempt to delineate age differences in muscle discovery, we delve into the multifaceted cellular influences of chronic low-grade inflammation, modifications in the extracellular matrix, and the role of lipid mediators in shaping the recovery landscape in aging skeletal muscle. From our literature search, it is evident that aged muscle displays delayed, prolonged, and inefficient recovery. These changes can be attributed to anabolic resistance, the stiffening of the extracellular matrix, mitochondrial dysfunction, and unresolved inflammation as well as alterations in satellite cell function. Collectively, these age-related impairments may impact subsequent adaptations to resistance exercise. Insights gleaned from this exploration may inform targeted interventions aimed at enhancing the efficacy of resistance training programs tailored to the specific needs of older adults, ultimately fostering healthy aging and preserving functional independence.
Collapse
Affiliation(s)
- Donna Ching Wah Li
- Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
| | - Stefan Rudloff
- Department of Geriatrics and Medical Gerontology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13347 Berlin, Germany
| | | | - Kristina Norman
- Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
- Department of Geriatrics and Medical Gerontology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13347 Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, 10785 Berlin, Germany
| | - Catrin Herpich
- Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
- Department of Geriatrics and Medical Gerontology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13347 Berlin, Germany
| |
Collapse
|
5
|
Kataoka R, Hammert WB, Yamada Y, Song JS, Seffrin A, Kang A, Spitz RW, Wong V, Loenneke JP. The Plateau in Muscle Growth with Resistance Training: An Exploration of Possible Mechanisms. Sports Med 2024; 54:31-48. [PMID: 37787845 DOI: 10.1007/s40279-023-01932-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2023] [Indexed: 10/04/2023]
Abstract
It is hypothesized that there is likely a finite ability for muscular adaptation. While it is difficult to distinguish between a true plateau following a long-term training period and short-term stalling in muscle growth, a plateau in muscle growth has been attributed to reaching a genetic potential, with limited discussion on what might physiologically contribute to this muscle growth plateau. The present paper explores potential physiological factors that may drive the decline in muscle growth after prolonged resistance training. Overall, with chronic training, the anabolic signaling pathways may become more refractory to loading. While measures of anabolic markers may have some predictive capabilities regarding muscle growth adaptation, they do not always demonstrate a clear connection. Catabolic processes may also constrain the ability to achieve further muscle growth, which is influenced by energy balance. Although speculative, muscle cells may also possess cell scaling mechanisms that sense and regulate their own size, along with molecular brakes that hinder growth rate over time. When considering muscle growth over the lifespan, there comes a point when the anabolic response is attenuated by aging, regardless of whether or not individuals approach their muscle growth potential. Our goal is that the current review opens avenues for future experimental studies to further elucidate potential mechanisms to explain why muscle growth may plateau.
Collapse
Affiliation(s)
- Ryo Kataoka
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - William B Hammert
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Yujiro Yamada
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Jun Seob Song
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Aldo Seffrin
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Anna Kang
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Robert W Spitz
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Vickie Wong
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Jeremy P Loenneke
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA.
| |
Collapse
|
6
|
Fennel ZJ, Ducharme JB, Berkemeier QN, Specht JW, McKenna ZJ, Simpson SE, Nava RC, Escobar KA, Hafen PS, Deyhle MR, Amorim FT, Mermier CM. Effect of heat stress on heat shock protein expression and hypertrophy-related signaling in the skeletal muscle of trained individuals. Am J Physiol Regul Integr Comp Physiol 2023; 325:R735-R749. [PMID: 37842742 DOI: 10.1152/ajpregu.00031.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/17/2023]
Abstract
Muscle mass is balanced between hypertrophy and atrophy by cellular processes, including activation of the protein kinase B-mechanistic target of rapamycin (Akt-mTOR) signaling cascade. Stressors apart from exercise and nutrition, such as heat stress, can stimulate the heat shock protein A (HSPA) and C (HSPC) families alongside hypertrophic signaling factors and muscle growth. The effects of heat stress on HSP expression and Akt-mTOR activation in human skeletal muscle and their magnitude of activation compared with known hypertrophic stimuli are unclear. Here, we show a single session of whole body heat stress following resistance exercise increases the expression of HSPA and activation of the Akt-mTOR cascade in skeletal muscle compared with resistance exercise in a healthy, resistance-trained population. Heat stress alone may also exert similar effects, though the responses are notably variable and require further investigation. In addition, acute heat stress in C2C12 muscle cells enhanced myotube growth and myogenic fusion, albeit to a lesser degree than growth factor-mediated hypertrophy. Though the mechanisms by which heat stress stimulates hypertrophy-related signaling and the potential mechanistic role of HSPs remain unclear, these findings provide additional evidence implicating heat stress as a novel growth stimulus when combined with resistance exercise in human skeletal muscle and alone in isolated murine muscle cells. We believe these findings will help drive further applied and mechanistic investigation into how heat stress influences muscular hypertrophy and atrophy.NEW & NOTEWORTHY We show that acute resistance exercise followed by whole body heat stress increases the expression of HSPA and increases activation of the Akt-mTOR cascade in a physically active and resistance-trained population.
Collapse
Affiliation(s)
- Zachary J Fennel
- Department of Health, Exercise & Sports Sciences, University of New Mexico, Albuquerque, New Mexico, United States
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States
| | - Jeremy B Ducharme
- Department of Health, Exercise & Sports Sciences, University of New Mexico, Albuquerque, New Mexico, United States
| | - Quint N Berkemeier
- Department of Health, Exercise & Sports Sciences, University of New Mexico, Albuquerque, New Mexico, United States
| | - Jonathan W Specht
- Department of Health, Exercise & Sports Sciences, University of New Mexico, Albuquerque, New Mexico, United States
| | - Zachary J McKenna
- Department of Health, Exercise & Sports Sciences, University of New Mexico, Albuquerque, New Mexico, United States
- Institute for Exercise and Environmental Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Shandy E Simpson
- Department of Health, Exercise & Sports Sciences, University of New Mexico, Albuquerque, New Mexico, United States
| | - Roberto C Nava
- Fulcrum Therapeutics, Cambridge, Massachusetts, United States
| | - Kurt A Escobar
- Department of Kinesiology, California State University Long Beach, Long Beach, California, United States
| | - Paul S Hafen
- Division of Science, Indiana University Purdue University Columbus, Columbus, Indiana, United States
- Department of Anatomy, Cell Biology, and Physiology, Indiana Center for Musculoskeletal Health, Indiana University School of Medicine Indianapolis, Indianapolis, Indiana, United States
| | - Michael R Deyhle
- Department of Health, Exercise & Sports Sciences, University of New Mexico, Albuquerque, New Mexico, United States
- Department of Cell Biology and Physiology, School of Medicine, University of New Mexico, Albuquerque, New Mexico, United States
| | - Fabiano T Amorim
- Department of Health, Exercise & Sports Sciences, University of New Mexico, Albuquerque, New Mexico, United States
| | - Christine M Mermier
- Department of Health, Exercise & Sports Sciences, University of New Mexico, Albuquerque, New Mexico, United States
| |
Collapse
|
7
|
Heileson JL, Machek SB, Harris DR, Tomek S, de Souza LC, Kieffer AJ, Barringer ND, Gallucci A, Forsse JS, Funderburk LK. The effect of fish oil supplementation on resistance training-induced adaptations. J Int Soc Sports Nutr 2023; 20:2174704. [PMID: 36822153 PMCID: PMC9970203 DOI: 10.1080/15502783.2023.2174704] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Resistance exercise training (RET) is a common and well-established method to induce hypertrophy and improvement in strength. Interestingly, fish oil supplementation (FOS) may augment RET-induced adaptations. However, few studies have been conducted on young, healthy adults. METHODS A randomized, placebo-controlled design was used to determine the effect of FOS, a concentrated source of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), compared to placebo (PL) on RET-induced adaptations following a 10-week RET program (3 days·week-1). Body composition was measured by dual-energy x-ray absorptiometry (LBM, fat mass [FM], percent body fat [%BF]) and strength was measured by 1-repetition maximum barbell back squat (1RMSQT) and bench press (1RMBP) at PRE (week 0) and POST (10 weeks). Supplement compliance was assessed via self-report and bottle collection every two weeks and via fatty acid dried blood spot collection at PRE and POST. An a priori α-level of 0.05 was used to determine statistical significance and Cohen's d was used to quantify effect sizes (ES). RESULTS Twenty-one of 28 male and female participants (FOS, n = 10 [4 withdrawals]; PL, n = 11 [3 withdrawals]) completed the 10-week progressive RET program and PRE/POST measurements. After 10-weeks, blood EPA+DHA substantially increased in the FOS group (+109.7%, p< .001) and did not change in the PL group (+1.3%, p = .938). Similar between-group changes in LBM (FOS: +3.4%, PL: +2.4%, p = .457), FM (FOS: -5.2%, PL: 0.0%, p = .092), and %BF (FOS: -5.9%, PL: -2.5%, p = .136) were observed, although, the between-group ES was considered large for FM (d = 0.84). Absolute and relative (kg·kg [body mass]-1) 1RMBP was significantly higher in the FOS group compared to PL (FOS: +17.7% vs. PL: +9.7%, p = .047; FOS: +17.6% vs. PL: +7.3%, p = .011; respectively), whereas absolute 1RMSQT was similar between conditions (FOS: +28.8% vs. PL: +20.5%, p = .191). Relative 1RMSQT was higher in the FOS group (FOS: +29.3% vs. PL: +17.9%, p = .045). CONCLUSIONS When combined with RET, FOS improves absolute and relative 1RM upper-body and relative 1RM lower-body strength to a greater extent than that observed in the PL group of young, recreationally trained adults.
Collapse
Affiliation(s)
- Jeffery L. Heileson
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA,Nutrition Services Division, Walter Reed National Military Medical Center, Bethesda, MD, USA,CONTACT Jeffery L. Heileson Nutrition Services Division, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Steven B. Machek
- Kinesiology Department, College of Health Sciences and Human Services, California State University - Monterey Bay, Seaside, CA, USA
| | - Dillon R. Harris
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| | - Sara Tomek
- Department of Educational Psychology, Baylor University, Waco, TX, USA
| | - Leticia C. de Souza
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| | - Adam J. Kieffer
- Department of Nutrition, U.S. Military-Baylor University Graduate Program in Nutrition, Fort Sam Houston, TX, USA
| | - Nicholas D. Barringer
- Department of Nutrition, U.S. Military-Baylor University Graduate Program in Nutrition, Fort Sam Houston, TX, USA
| | - Andrew Gallucci
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| | - Jeffrey S. Forsse
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| | - LesLee K. Funderburk
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA,Department of Human Sciences and Design, Baylor University, Waco, TX, USA
| |
Collapse
|
8
|
Bishop DJ, Hoffman NJ, Taylor DF, Saner NJ, Lee MJC, Hawley JA. Discordant skeletal muscle gene and protein responses to exercise. Trends Biochem Sci 2023; 48:927-936. [PMID: 37709636 DOI: 10.1016/j.tibs.2023.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 09/16/2023]
Abstract
The ability of skeletal muscle to adapt to repeated contractile stimuli is one of the most intriguing aspects of physiology. The molecular bases underpinning these adaptations involve increased protein activity and/or expression, mediated by an array of pre- and post-transcriptional processes, as well as translational and post-translational control. A longstanding dogma assumes a direct relationship between exercise-induced increases in mRNA levels and subsequent changes in the abundance of the proteins they encode. Drawing on the results of recent studies, we dissect and question the common assumption of a direct relationship between changes in the skeletal muscle transcriptome and proteome induced by repeated muscle contractions (e.g., exercise).
Collapse
Affiliation(s)
- David J Bishop
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia.
| | - Nolan J Hoffman
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | - Dale F Taylor
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - Nicholas J Saner
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - Matthew J-C Lee
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - John A Hawley
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| |
Collapse
|
9
|
Ely IA, Phillips BE, Smith K, Wilkinson DJ, Piasecki M, Breen L, Larsen MS, Atherton PJ. A focus on leucine in the nutritional regulation of human skeletal muscle metabolism in ageing, exercise and unloading states. Clin Nutr 2023; 42:1849-1865. [PMID: 37625315 DOI: 10.1016/j.clnu.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/23/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Muscle protein synthesis (MPS) and muscle protein breakdown (MPB) are influenced through dietary protein intake and physical (in)activity, which it follows, regulate skeletal muscle (SKM) mass across the lifespan. Following consumption of dietary protein, the bio-availability of essential amino acids (EAA), and primarily leucine (LEU), drive a transient increase in MPS with an ensuing refractory period before the next MPS stimulation is possible (due to the "muscle full" state). At the same time, MPB is periodically constrained via reflex insulin actions. Layering exercise on top of protein intake increases the sensitivity of SKM to EAA, therefore extending the muscle full set-point (∼48 h), to permit long-term remodelling (e.g., hypertrophy). In contrast, ageing and physical inactivity are associated with a premature muscle full set-point in response to dietary protein/EAA and contractile activity. Of all the EAA, LEU is the most potent stimulator of the mechanistic target of rapamycin complex 1 (mTORC1)-signalling pathway, with the phosphorylation of mTORC1 substrates increasing ∼3-fold more than with all other EAA. Furthermore, maximal MPS stimulation is also achieved following low doses of LEU-enriched protein/EAA, negating the need for larger protein doses. As a result, LEU supplementation has been of long term interest to maximise muscle anabolism and subsequent net protein accretion, especially when in tandem with resistance exercise. This review highlights current knowledge vis-à-vis the anabolic effects of LEU supplementation in isolation, and in enriched protein/EAA sources (i.e., EAA and/or protein sources with added LEU), in the context of ageing, exercise and unloading states.
Collapse
Affiliation(s)
- Isabel A Ely
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham NIHR Biomedical Research Centre, Derby, DE22 3DT, UK
| | - Bethan E Phillips
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham NIHR Biomedical Research Centre, Derby, DE22 3DT, UK
| | - Kenneth Smith
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham NIHR Biomedical Research Centre, Derby, DE22 3DT, UK
| | - Daniel J Wilkinson
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham NIHR Biomedical Research Centre, Derby, DE22 3DT, UK
| | - Mathew Piasecki
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham NIHR Biomedical Research Centre, Derby, DE22 3DT, UK
| | - Leigh Breen
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | - Philip J Atherton
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham NIHR Biomedical Research Centre, Derby, DE22 3DT, UK.
| |
Collapse
|
10
|
Roberts MD, McCarthy JJ, Hornberger TA, Phillips SM, Mackey AL, Nader GA, Boppart MD, Kavazis AN, Reidy PT, Ogasawara R, Libardi CA, Ugrinowitsch C, Booth FW, Esser KA. Mechanisms of mechanical overload-induced skeletal muscle hypertrophy: current understanding and future directions. Physiol Rev 2023; 103:2679-2757. [PMID: 37382939 PMCID: PMC10625844 DOI: 10.1152/physrev.00039.2022] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Mechanisms underlying mechanical overload-induced skeletal muscle hypertrophy have been extensively researched since the landmark report by Morpurgo (1897) of "work-induced hypertrophy" in dogs that were treadmill trained. Much of the preclinical rodent and human resistance training research to date supports that involved mechanisms include enhanced mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling, an expansion in translational capacity through ribosome biogenesis, increased satellite cell abundance and myonuclear accretion, and postexercise elevations in muscle protein synthesis rates. However, several lines of past and emerging evidence suggest that additional mechanisms that feed into or are independent of these processes are also involved. This review first provides a historical account of how mechanistic research into skeletal muscle hypertrophy has progressed. A comprehensive list of mechanisms associated with skeletal muscle hypertrophy is then outlined, and areas of disagreement involving these mechanisms are presented. Finally, future research directions involving many of the discussed mechanisms are proposed.
Collapse
Affiliation(s)
- Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - Troy A Hornberger
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gustavo A Nader
- Department of Kinesiology and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Andreas N Kavazis
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Paul T Reidy
- Department of Kinesiology, Nutrition and Health, Miami University, Oxford, Ohio, United States
| | - Riki Ogasawara
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Cleiton A Libardi
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Karyn A Esser
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
11
|
Oxfeldt M, Phillips SM, Andersen OE, Johansen FT, Bangshaab M, Risikesan J, McKendry J, Melin AK, Hansen M. Low energy availability reduces myofibrillar and sarcoplasmic muscle protein synthesis in trained females. J Physiol 2023; 601:3481-3497. [PMID: 37329147 DOI: 10.1113/jp284967] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/14/2023] [Indexed: 06/18/2023] Open
Abstract
Low energy availability (LEA) describes a state where the energy intake is insufficient to cover the energy costs of both exercise energy expenditure and basal physiological body functions. LEA has been associated with various physiological consequences, such as reproductive dysfunction. However, the effect of LEA on skeletal muscle protein synthesis in females performing exercise training is still poorly understood. We conducted a randomized controlled trial to investigate the impact of LEA on daily integrated myofibrillar and sarcoplasmic muscle protein synthesis in trained females. Thirty eumenorrheic females were matched based on training history and randomized to undergo 10 days of LEA (25 kcal · kg fat-free mass (FFM)-1 · day-1 ) or optimal energy availability (OEA, 50 kcal · kg FFM-1 · day-1 ). Before the intervention, both groups underwent a 5-day 'run-in' period with OEA. All foods were provided throughout the experimental period with a protein content of 2.2 g kg lean mass-1 · day-1 . A standardized, supervised combined resistance and cardiovascular exercise training programme was performed over the experimental period. Daily integrated muscle protein synthesis was measured by deuterium oxide (D2 O) consumption along with changes in body composition, resting metabolic rate, blood biomarkers and 24 h nitrogen balance. We found that LEA reduced daily integrated myofibrillar and sarcoplasmic muscle protein synthesis compared with OEA. Concomitant reductions were observed in lean mass, urinary nitrogen balance, free androgen index, thyroid hormone concentrations and resting metabolic rate following LEA. These results highlight that LEA may negatively affect skeletal muscle adaptations in females performing exercise training. KEY POINTS: Low energy availability (LEA) with potential health and performance impairments is widespread among female athletes. We investigated the impact of 10 days of LEA on daily integrated myofibrillar and sarcoplasmic muscle protein synthesis in young, trained females. We show that LEA impairs myofibrillar and sarcoplasmic muscle protein synthesis in trained females performing exercise training. These findings suggest that LEA may have negative consequences for skeletal muscle adaptations and highlight the importance of ensuring adequate energy availability in female athletes.
Collapse
Affiliation(s)
- Mikkel Oxfeldt
- Department of Public Health, Aarhus University, Aarhus C, Denmark
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Ole Emil Andersen
- Department of Public Health, Aarhus University, Aarhus C, Denmark
- Steno Diabetes Center Aarhus, Aarhus University, Aarhus, Denmark
| | | | - Maj Bangshaab
- Steno Diabetes Center Aarhus, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus C, Denmark
| | - Jeyanthini Risikesan
- Department of Child and Adolescent Medicine, Regional Hospital Gødstrup, Gødstrup, Denmark
| | - James McKendry
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | | - Mette Hansen
- Department of Public Health, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
12
|
Smith MA, Sexton CL, Smith KA, Osburn SC, Godwin JS, Beausejour JP, Ruple BA, Goodlett MD, Edison JL, Fruge AD, Robinson AT, Gladden LB, Young KC, Roberts MD. Molecular predictors of resistance training outcomes in young untrained female adults. J Appl Physiol (1985) 2023; 134:491-507. [PMID: 36633866 PMCID: PMC10190845 DOI: 10.1152/japplphysiol.00605.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
We sought to determine if the myofibrillar protein synthetic (MyoPS) response to a naïve resistance exercise (RE) bout, or chronic changes in satellite cell number and muscle ribosome content, were associated with hypertrophic outcomes in females or differed in those who classified as higher (HR) or lower (LR) responders to resistance training (RT). Thirty-four untrained college-aged females (23.4 ± 3.4 kg/m2) completed a 10-wk RT protocol (twice weekly). Body composition and leg imaging assessments, a right leg vastus lateralis biopsy, and strength testing occurred before and following the intervention. A composite score, which included changes in whole body lean/soft tissue mass (LSTM), vastus lateralis (VL) muscle cross-sectional area (mCSA), midthigh mCSA, and deadlift strength, was used to delineate upper and lower HR (n = 8) and LR (n = 8) quartiles. In all participants, training significantly (P < 0.05) increased LSTM, VL mCSA, midthigh mCSA, deadlift strength, mean muscle fiber cross-sectional area, satellite cell abundance, and myonuclear number. Increases in LSTM (P < 0.001), VL mCSA (P < 0.001), midthigh mCSA (P < 0.001), and deadlift strength (P = 0.001) were greater in HR vs. LR. The first-bout 24-hour MyoPS response was similar between HR and LR (P = 0.367). While no significant responder × time interaction existed for muscle total RNA concentrations (i.e., ribosome content) (P = 0.888), satellite cell abundance increased in HR (P = 0.026) but not LR (P = 0.628). Pretraining LSTM (P = 0.010), VL mCSA (P = 0.028), and midthigh mCSA (P < 0.001) were also greater in HR vs. LR. Female participants with an enhanced satellite cell response to RT, and more muscle mass before RT, exhibited favorable resistance training adaptations.NEW & NOTEWORTHY This study continues to delineate muscle biology differences between lower and higher responders to resistance training and is unique in that a female population was interrogated. As has been reported in prior studies, increases in satellite cell numbers are related to positive responses to resistance training. Satellite cell responsivity, rather than changes in muscle ribosome content per milligrams of tissue, may be a more important factor in delineating resistance-training responses in women.
Collapse
Affiliation(s)
- Morgan A Smith
- School of Kinesiology, Auburn University, Auburn, Alabama
| | - Casey L Sexton
- School of Kinesiology, Auburn University, Auburn, Alabama
| | - Kristen A Smith
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, Alabama
| | | | | | | | | | - Michael D Goodlett
- Athletics Department, Auburn University, Auburn, Alabama
- Edward Via College of Osteopathic Medicine, Auburn, Alabama
| | - Joseph L Edison
- Athletics Department, Auburn University, Auburn, Alabama
- Edward Via College of Osteopathic Medicine, Auburn, Alabama
| | - Andrew D Fruge
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, Alabama
- College of Nursing, Auburn University, Auburn, Alabama
| | | | | | - Kaelin C Young
- School of Kinesiology, Auburn University, Auburn, Alabama
- Edward Via College of Osteopathic Medicine, Auburn, Alabama
| | - Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama
- Edward Via College of Osteopathic Medicine, Auburn, Alabama
| |
Collapse
|
13
|
Grgic J. No Pain, No Gain? Examining the Influence of Ibuprofen Consumption on Muscle Hypertrophy. Strength Cond J 2022. [DOI: 10.1519/ssc.0000000000000747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
LIM CHANGHYUN, NUNES EVERSONA, CURRIER BRADS, MCLEOD JONATHANC, THOMAS AARONCQ, PHILLIPS STUARTM. An Evidence-Based Narrative Review of Mechanisms of Resistance Exercise-Induced Human Skeletal Muscle Hypertrophy. Med Sci Sports Exerc 2022; 54:1546-1559. [PMID: 35389932 PMCID: PMC9390238 DOI: 10.1249/mss.0000000000002929] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Skeletal muscle plays a critical role in physical function and metabolic health. Muscle is a highly adaptable tissue that responds to resistance exercise (RE; loading) by hypertrophying, or during muscle disuse, RE mitigates muscle loss. Resistance exercise training (RET)-induced skeletal muscle hypertrophy is a product of external (e.g., RE programming, diet, some supplements) and internal variables (e.g., mechanotransduction, ribosomes, gene expression, satellite cells activity). RE is undeniably the most potent nonpharmacological external variable to stimulate the activation/suppression of internal variables linked to muscular hypertrophy or countering disuse-induced muscle loss. Here, we posit that despite considerable research on the impact of external variables on RET and hypertrophy, internal variables (i.e., inherent skeletal muscle biology) are dominant in regulating the extent of hypertrophy in response to external stimuli. Thus, identifying the key internal skeletal muscle-derived variables that mediate the translation of external RE variables will be pivotal to determining the most effective strategies for skeletal muscle hypertrophy in healthy persons. Such work will aid in enhancing function in clinical populations, slowing functional decline, and promoting physical mobility. We provide up-to-date, evidence-based perspectives of the mechanisms regulating RET-induced skeletal muscle hypertrophy.
Collapse
Affiliation(s)
- CHANGHYUN LIM
- Department of Kinesiology, McMaster University, Hamilton, Ontario, CANADA
| | - EVERSON A. NUNES
- Department of Kinesiology, McMaster University, Hamilton, Ontario, CANADA
- Department of Physiological Science, Federal University of Santa Catarina, Florianópolis, Santa-Catarina, BRAZIL
| | - BRAD S. CURRIER
- Department of Kinesiology, McMaster University, Hamilton, Ontario, CANADA
| | - JONATHAN C. MCLEOD
- Department of Kinesiology, McMaster University, Hamilton, Ontario, CANADA
| | - AARON C. Q. THOMAS
- Department of Kinesiology, McMaster University, Hamilton, Ontario, CANADA
| | - STUART M. PHILLIPS
- Department of Kinesiology, McMaster University, Hamilton, Ontario, CANADA
| |
Collapse
|
15
|
Messina M, Duncan A, Messina V, Lynch H, Kiel J, Erdman JW. The health effects of soy: A reference guide for health professionals. Front Nutr 2022; 9:970364. [PMID: 36034914 PMCID: PMC9410752 DOI: 10.3389/fnut.2022.970364] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/25/2022] [Indexed: 11/22/2022] Open
Abstract
Soy is a hotly debated and widely discussed topic in the field of nutrition. However, health practitioners may be ill-equipped to counsel clients and patients about the use of soyfoods because of the enormous, and often contradictory, amount of research that has been published over the past 30 years. As interest in plant-based diets increases, there will be increased pressure for practitioners to gain a working knowledge of this area. The purpose of this review is to provide concise literature summaries (400-500 words) along with a short perspective on the current state of knowledge of a wide range of topics related to soy, from the cholesterol-lowering effects of soy protein to the impact of isoflavones on breast cancer risk. In addition to the literature summaries, general background information on soyfoods, soy protein, and isoflavones is provided. This analysis can serve as a tool for health professionals to be used when discussing soyfoods with their clients and patients.
Collapse
Affiliation(s)
- Mark Messina
- Soy Nutrition Institute Global, Washington, DC, United States
| | - Alison Duncan
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | | | - Heidi Lynch
- Kinesiology Department, Point Loma Nazarene University, San Diego, CA, United States
| | - Jessica Kiel
- Scientific and Clinical Affairs, Medifast Inc., Baltimore, MD, United States
| | - John W. Erdman
- Division of Nutritional Sciences and Beckman Institute, Department of Food Science and Human Nutrition, University of Illinois at Urbana/Champaign, Urbana, IL, United States
| |
Collapse
|
16
|
Abou Sawan S, Hodson N, Malowany JM, West DWD, Tinline-Goodfellow C, Brook MS, Smith K, Atherton PJ, Kumbhare D, Moore DR. Trained Integrated Postexercise Myofibrillar Protein Synthesis Rates Correlate with Hypertrophy in Young Males and Females. Med Sci Sports Exerc 2022; 54:953-964. [PMID: 35081094 DOI: 10.1249/mss.0000000000002878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Resistance training induces skeletal muscle hypertrophy via the summated effects of postexercise elevations in myofibrillar protein synthesis (MyoPS) that persist for up to 48 h, although research in females is currently lacking. MyoPS is regulated by mTOR translocation and colocalization; however, the effects of resistance training on these intracellular processes are unknown. We hypothesized that MyoPS would correlate with hypertrophy only after training in both sexes and would be associated with intracellular redistribution of mTOR. METHODS Recreationally active males and females (n = 10 each) underwent 8 wk of whole-body resistance exercise three times a week. Fasted muscle biopsies were obtained immediately before (REST) and 24 and 48 h after acute resistance exercise in the untrained (UT) and trained (T) states to determine integrated MyoPS over 48 h (D2O ingestion) and intracellular mTOR colocalization (immunofluorescence microscopy). RESULTS Training increased (P < 0.01) muscle strength (~20%-126%), muscle thickness (~8%-11%), and average fiber cross-sectional area (~15%-20%). MyoPS increased above REST in UT (P = 0.032) and T (P < 0.01), but to a greater extent in males (~23%; P = 0.023), and was positively (P < 0.01) associated with muscle thickness and fiber cross-sectional area at T only in both males and females. mTOR colocalization with the cell periphery increased (P < 0.01) in T, irrespective of sex or acute exercise. Training increased (P ≤ 0.043) total mTOR, LAMP2 (lysosomal marker), and their colocalization (P < 0.01), although their colocalization was greater in males at 24 and 48 h independent of training status (P < 0.01). CONCLUSIONS MyoPS during prolonged recovery from exercise is greater in males but related to muscle hypertrophy regardless of sex only in the trained state, which may be underpinned by altered mTOR localization.
Collapse
Affiliation(s)
- Sidney Abou Sawan
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, CANADA
| | - Nathan Hodson
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, CANADA
| | - Julia M Malowany
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, CANADA
| | | | | | - Matthew S Brook
- School of Life Sciences, University of Nottingham, Nottingham, UNITED KINGDOM
| | - Kenneth Smith
- School of Medicine, University of Nottingham, Derby Medical School, Derby, UNITED KINGDOM
| | - Philip J Atherton
- School of Medicine, University of Nottingham, Derby Medical School, Derby, UNITED KINGDOM
| | | | - Daniel R Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, CANADA
| |
Collapse
|
17
|
Jacko D, Schaaf K, Masur L, Windoffer H, Aussieker T, Schiffer T, Zacher J, Bloch W, Gehlert S. Repeated and Interrupted Resistance Exercise Induces the Desensitization and Re-Sensitization of mTOR-Related Signaling in Human Skeletal Muscle Fibers. Int J Mol Sci 2022; 23:ijms23105431. [PMID: 35628242 PMCID: PMC9141560 DOI: 10.3390/ijms23105431] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 02/06/2023] Open
Abstract
The acute resistance exercise (RE)-induced phosphorylation of mTOR-related signaling proteins in skeletal muscle can be blunted after repeated RE. The time frame in which the phosphorylation (p) of mTORS2448, p70S6kT421/S424, and rpS6S235/236 will be reduced during an RE training period in humans and whether progressive (PR) loading can counteract such a decline has not been described. (1) To enclose the time frame in which pmTORS2448, prpS6S235/236, and pp70S6kT421/S424 are acutely reduced after RE occurs during repeated RE. (2) To test whether PR will prevent that reduction compared to constant loading (CO) and (3) whether 10 days without RE may re-increase blunted signaling. Fourteen healthy males (24 ± 2.8 yrs.; 1.83 ± 0.1 cm; 79.3 ± 8.5 kg) were subjected to RE with either PR (n = 8) or CO (n = 6) loading. Subjects performed RE thrice per week, conducting three sets with 10−12 repetitions on a leg press and leg extension machine. Muscle biopsies were collected at rest (T0), 45 min after the first (T1), seventh (T7), 13th (T13), and 14th (X-T14) RE session. No differences were found between PR and CO for any parameter. Thus, the groups were combined, and the results show the merged values. prpS6S235/236 and pp70s6kT421/S424 were increased at T1, but were already reduced at T7 and up to T13 compared to T1. Ten days without RE re-increased prpS6S235/236 and pp70S6kT421/S424 at X-T14 to a level comparable to that of T1. pmTORS2448 was increased from T1 to X-T14 and did not decline over the training period. Single-fiber immunohistochemistry revealed a reduction in prpS6S235/236 in type I fibers from T1 to T13 and a re-increase at X-T14, which was more augmented in type II fibers at T13 (p < 0.05). The entity of myofibers revealed a high heterogeneity in the level of prpS6S235/236, possibly reflecting individual contraction-induced stress during RE. The type I and II myofiber diameter increased from T0 and T1 to T13 and X-T14 (p < 0.05) prpS6S235/236 and pp70s6kT421/S424 reflect RE-induced states of desensitization and re-sensitization in dependency on frequent loading by RE, but also by its cessation.
Collapse
Affiliation(s)
- Daniel Jacko
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, 50933 Cologne, Germany; (D.J.); (K.S.); (L.M.); (H.W.); (T.A.); (W.B.)
- Olympic Base Center NRW/Rhineland, 50933 Cologne, Germany
| | - Kirill Schaaf
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, 50933 Cologne, Germany; (D.J.); (K.S.); (L.M.); (H.W.); (T.A.); (W.B.)
| | - Lukas Masur
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, 50933 Cologne, Germany; (D.J.); (K.S.); (L.M.); (H.W.); (T.A.); (W.B.)
| | - Hannes Windoffer
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, 50933 Cologne, Germany; (D.J.); (K.S.); (L.M.); (H.W.); (T.A.); (W.B.)
| | - Thorben Aussieker
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, 50933 Cologne, Germany; (D.J.); (K.S.); (L.M.); (H.W.); (T.A.); (W.B.)
| | - Thorsten Schiffer
- Outpatient Clinic for Sports Traumatology and Public Health Consultation, German Sport University Cologne, 50933 Cologne, Germany;
| | - Jonas Zacher
- Department ofPreventative and Rehabilitative Sports and Performance Medicine, Institute of Cardiology and Sports Medicine, German Sports University Cologne, 50933 Cologne, Germany;
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, 50933 Cologne, Germany; (D.J.); (K.S.); (L.M.); (H.W.); (T.A.); (W.B.)
- German Research Centre of Elite Sport (Momentum), German Sport University Cologne, 50933 Cologne, Germany
| | - Sebastian Gehlert
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, 50933 Cologne, Germany; (D.J.); (K.S.); (L.M.); (H.W.); (T.A.); (W.B.)
- Institute of Sport Science, Biosciences of Sports, University of Hildesheim, 31141 Hildesheim, Germany
- Correspondence: ; Tel.: +49-(0)-5121-883-580; Fax: +49-(0)-5121-883-591
| |
Collapse
|
18
|
Myofibrillar protein synthesis rates are increased in chronically exercised skeletal muscle despite decreased anabolic signaling. Sci Rep 2022; 12:7553. [PMID: 35534615 PMCID: PMC9085756 DOI: 10.1038/s41598-022-11621-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/23/2022] [Indexed: 01/05/2023] Open
Abstract
The molecular responses to acute resistance exercise are well characterized. However, how cellular signals change over time to modulate chronic adaptations to more prolonged exercise training is less well understood. We investigated anabolic signaling and muscle protein synthesis rates at several time points after acute and chronic eccentric loading. Adult rat tibialis anterior muscle was stimulated for six sets of ten repetitions, and the muscle was collected at 0 h, 6 h, 18 h and 48 h. In the last group of animals, 48 h after the first exercise bout a second bout was conducted, and the muscle was collected 6 h later (54 h total). In a second experiment, rats were exposed to four exercise sessions over the course of 2 weeks. Anabolic signaling increased robustly 6 h after the first bout returning to baseline between 18 and 48 h. Interestingly, 6 h after the second bout mTORC1 activity was significantly lower than following the first bout. In the chronically exercised rats, we found baseline anabolic signaling was decreased, whereas myofibrillar protein synthesis (MPS) was substantially increased, 48 h after the last bout of exercise. The increase in MPS occurred in the absence of changes to muscle fiber size or mass. In conclusion, we find that anabolic signaling is already diminished after the second bout of acute resistance type exercise. Further, chronic exposure to resistance type exercise training results in decreased basal anabolic signaling but increased overall MPS rates.
Collapse
|
19
|
Lavin KM, Coen PM, Baptista LC, Bell MB, Drummer D, Harper SA, Lixandrão ME, McAdam JS, O’Bryan SM, Ramos S, Roberts LM, Vega RB, Goodpaster BH, Bamman MM, Buford TW. State of Knowledge on Molecular Adaptations to Exercise in Humans: Historical Perspectives and Future Directions. Compr Physiol 2022; 12:3193-3279. [PMID: 35578962 PMCID: PMC9186317 DOI: 10.1002/cphy.c200033] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
For centuries, regular exercise has been acknowledged as a potent stimulus to promote, maintain, and restore healthy functioning of nearly every physiological system of the human body. With advancing understanding of the complexity of human physiology, continually evolving methodological possibilities, and an increasingly dire public health situation, the study of exercise as a preventative or therapeutic treatment has never been more interdisciplinary, or more impactful. During the early stages of the NIH Common Fund Molecular Transducers of Physical Activity Consortium (MoTrPAC) Initiative, the field is well-positioned to build substantially upon the existing understanding of the mechanisms underlying benefits associated with exercise. Thus, we present a comprehensive body of the knowledge detailing the current literature basis surrounding the molecular adaptations to exercise in humans to provide a view of the state of the field at this critical juncture, as well as a resource for scientists bringing external expertise to the field of exercise physiology. In reviewing current literature related to molecular and cellular processes underlying exercise-induced benefits and adaptations, we also draw attention to existing knowledge gaps warranting continued research effort. © 2021 American Physiological Society. Compr Physiol 12:3193-3279, 2022.
Collapse
Affiliation(s)
- Kaleen M. Lavin
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Center for Human Health, Resilience, and Performance, Institute for Human and Machine Cognition, Pensacola, Florida, USA
| | - Paul M. Coen
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Liliana C. Baptista
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Margaret B. Bell
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Devin Drummer
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sara A. Harper
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Manoel E. Lixandrão
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jeremy S. McAdam
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Samia M. O’Bryan
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sofhia Ramos
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Lisa M. Roberts
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rick B. Vega
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Bret H. Goodpaster
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Marcas M. Bamman
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Center for Human Health, Resilience, and Performance, Institute for Human and Machine Cognition, Pensacola, Florida, USA
| | - Thomas W. Buford
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
20
|
Pavis GF, Jameson TSO, Blackwell JR, Fulford J, Abdelrahman DR, Murton AJ, Alamdari N, Mikus CR, Wall BT, Stephens FB. Daily protein-polyphenol ingestion increases daily myofibrillar protein synthesis rates and promotes early muscle functional gains during resistance training. Am J Physiol Endocrinol Metab 2022; 322:E231-E249. [PMID: 35037473 PMCID: PMC8897029 DOI: 10.1152/ajpendo.00328.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 02/03/2023]
Abstract
Factors underpinning the time-course of resistance-type exercise training (RET) adaptations are not fully understood. This study hypothesized that consuming a twice-daily protein-polyphenol beverage (PPB; n = 15; age, 24 ± 1 yr; BMI, 22.3 ± 0.7 kg·m-2) previously shown to accelerate recovery from muscle damage and increase daily myofibrillar protein synthesis (MyoPS) rates would accelerate early (10 sessions) improvements in muscle function and potentiate quadriceps volume and muscle fiber cross-sectional area (fCSA) following 30 unilateral RET sessions in healthy, recreationally active, adults. Versus isocaloric placebo (PLA; n = 14; age, 25 ± 2 yr; BMI, 23.9 ± 1.0 kg·m-2), PPB increased 48 h MyoPS rates after the first RET session measured using deuterated water (2.01 ± 0.15 vs. 1.51 ± 0.16%·day-1, respectively; P < 0.05). In addition, PPB increased isokinetic muscle function over 10 sessions of training relative to the untrained control leg (%U) from 99.9 ± 1.8 pretraining to 107.2 ± 2.4%U at session 10 (vs. 102.6 ± 3.9 to 100.8 ± 2.4%U at session 10 in PLA; interaction P < 0.05). Pre to posttraining, PPB increased type II fCSA (PLA: 120.8 ± 8.2 to 109.5 ± 8.6%U; PPB: 92.8 ± 6.2 to 108.4 ± 9.7%U; interaction P < 0.05), but the gain in quadriceps muscle volume was similar between groups. Similarly, PPB did not further increase peak isometric torque, muscle function, or MyoPS measured posttraining. This suggests that although PPB increases MyoPS and early adaptation, it may not influence longer term adaptations to unilateral RET.NEW & NOTEWORTHY Using a unilateral model of resistance training, we show for the first time that a protein-polyphenol beverage increases initial rates of myofibrillar protein synthesis and promotes early functional improvements. Following a prolonged period of training, this strategy also increases type II fiber hypertrophy and causes large individual variation in gains in quadricep muscle cross-sectional area.
Collapse
Affiliation(s)
- George F Pavis
- Nutritional Physiology Research Group, Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Tom S O Jameson
- Nutritional Physiology Research Group, Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Jamie R Blackwell
- Nutritional Physiology Research Group, Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Jonathan Fulford
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Doaa R Abdelrahman
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas
- Sealy Center of Aging, University of Texas Medical Branch, Galveston, Texas
| | - Andrew J Murton
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas
- Sealy Center of Aging, University of Texas Medical Branch, Galveston, Texas
| | | | | | - Benjamin T Wall
- Nutritional Physiology Research Group, Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Francis B Stephens
- Nutritional Physiology Research Group, Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
21
|
Evaluating the Effects of Increased Protein Intake on Muscle Strength, Hypertrophy and Power Adaptations with Concurrent Training: A Narrative Review. Sports Med 2022; 52:441-461. [PMID: 34822138 DOI: 10.1007/s40279-021-01585-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2021] [Indexed: 12/17/2022]
Abstract
Concurrent training incorporates dual exercise modalities, typically resistance and aerobic-based exercise, either in a single session or as part of a periodized training program, that can promote muscle strength, mass, power/force and aerobic capacity adaptations for the purposes of sports performance or general health/wellbeing. Despite multiple health and exercise performance-related benefits, diminished muscle hypertrophy, strength and power have been reported with concurrent training compared to resistance training in isolation. Dietary protein is well-established to facilitate skeletal muscle growth, repair and regeneration during recovery from exercise. The degree to which increased protein intake can amplify adaptation responses with resistance exercise, and to a lesser extent aerobic exercise, has been highly studied. In contrast, much less focus has been directed toward the capacity for protein to enhance anabolic and metabolic responses with divergent contractile stimuli inherent to concurrent training and potentially negate interference in muscle strength, power and hypertrophy. This review consolidates available literature investigating increased protein intake on rates of muscle protein synthesis, hypertrophy, strength and force/power adaptations following acute and chronic concurrent training. Acute concurrent exercise studies provide evidence for the significant stimulation of myofibrillar protein synthesis with protein compared to placebo ingestion. High protein intake can also augment increases in lean mass with chronic concurrent training, although these increases do not appear to translate into further improvements in strength adaptations. Similarly, the available evidence indicates protein intake twice the recommended intake and beyond does not rescue decrements in selective aspects of muscle force and power production with concurrent training.
Collapse
|
22
|
Attwaters M, Hughes SM. Cellular and molecular pathways controlling muscle size in response to exercise. FEBS J 2022; 289:1428-1456. [PMID: 33755332 DOI: 10.1111/febs.15820] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/27/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022]
Abstract
From the discovery of ATP and motor proteins to synaptic neurotransmitters and growth factor control of cell differentiation, skeletal muscle has provided an extreme model system in which to understand aspects of tissue function. Muscle is one of the few tissues that can undergo both increase and decrease in size during everyday life. Muscle size depends on its contractile activity, but the precise cellular and molecular pathway(s) by which the activity stimulus influences muscle size and strength remain unclear. Four correlates of muscle contraction could, in theory, regulate muscle growth: nerve-derived signals, cytoplasmic calcium dynamics, the rate of ATP consumption and physical force. Here, we summarise the evidence for and against each stimulus and what is known or remains unclear concerning their molecular signal transduction pathways and cellular effects. Skeletal muscle can grow in three ways, by generation of new syncytial fibres, addition of nuclei from muscle stem cells to existing fibres or increase in cytoplasmic volume/nucleus. Evidence suggests the latter two processes contribute to exercise-induced growth. Fibre growth requires increase in sarcolemmal surface area and cytoplasmic volume at different rates. It has long been known that high-force exercise is a particularly effective growth stimulus, but how this stimulus is sensed and drives coordinated growth that is appropriately scaled across organelles remains a mystery.
Collapse
Affiliation(s)
- Michael Attwaters
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, UK
| | - Simon M Hughes
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, UK
| |
Collapse
|
23
|
Alkhayl FFA, Ismail AD, Celis-Morales C, Wilson J, Radjenovic A, Johnston L, Welsh P, Sattar N, Gill JMR, Preston T, Gray SR. Muscle protein synthesis and muscle/metabolic responses to resistance exercise training in South Asian and White European men. Sci Rep 2022; 12:2469. [PMID: 35169204 PMCID: PMC8847359 DOI: 10.1038/s41598-022-06446-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/14/2022] [Indexed: 11/08/2022] Open
Abstract
The aims of the current study, therefore, were to compare (1) free-living MPS and (2) muscle and metabolic adaptations to resistance exercise in South Asian and white European adults. Eighteen South Asian and 16 White European men were enrolled in the study. Free-living muscle protein synthesis was measured at baseline. Muscle strength, body composition, resting metabolic rate, VO2max and metabolic responses (insulin sensitivity) to a mixed meal were measured at baseline and following 12 weeks of resistance exercise training. Free-living muscle protein synthesis was not different between South Asians (1.48 ± 0.09%/day) and White Europeans (1.59 ± 0.15%/day) (p = 0.522). In response to resistance exercise training there were no differences, between South Asians and White Europeans, muscle mass, lower body strength or insulin sensitivity. However, there were differences between the ethnicities in response to resistance exercise training in body fat, resting carbohydrate and fat metabolism, blood pressure, VO2max and upper body strength with responses less favourable in South Asians. In this exploratory study there were no differences in muscle protein synthesis or anabolic and metabolic responses to resistance exercise, yet there were less favourable responses in several outcomes. These findings require further investigation.
Collapse
Affiliation(s)
- Faris F Aba Alkhayl
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ahmad D Ismail
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
- Faculty of Sports Science and Recreation, Universiti Teknologi MARA, Perlis Branch, Arau, Malaysia
| | - Carlos Celis-Morales
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - John Wilson
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Aleksandra Radjenovic
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | | | - Paul Welsh
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Naveed Sattar
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Jason M R Gill
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Tom Preston
- Scottish Universities Environmental Research Centre, University of Glasgow, Glasgow, UK
| | - Stuart R Gray
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK.
| |
Collapse
|
24
|
Hirono T, Ikezoe T, Taniguchi M, Tanaka H, Saeki J, Yagi M, Umehara J, Ichihashi N. Relationship Between Muscle Swelling and Hypertrophy Induced by Resistance Training. J Strength Cond Res 2022; 36:359-364. [PMID: 31904714 DOI: 10.1519/jsc.0000000000003478] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Hirono, T, Ikezoe, T, Taniguchi, M, Tanaka, H, Saeki, J, Yagi, M, Umehara, J, and Ichihashi, N. Relationship between muscle swelling and hypertrophy induced by resistance training. J Strength Cond Res 36(2): 359-364, 2022-Muscle swelling immediately after resistance exercise may be induced by metabolic stress. The accumulation of metabolic stress is considered to promote muscle hypertrophy after several weeks of resistance training (RT). The purpose of this study was to determine the relationship between muscle swelling immediately after the first session of RT and muscle hypertrophy after a 6-week RT using ultrasonography. Twenty-two untrained young men performed knee extension resistance exercise consisting of 3 sets with 8 repetitions at a load of 80% of one repetition maximum for 6 weeks (3 d·wk-1). Muscle thickness of the quadriceps femoris was measured using ultrasonography device at 3 anatomical sites (proximal, medial, and distal sites) of the middle, lateral, and medial part of the anterior thigh. The sum of the muscle thickness at 9 measurement sites was used for analysis. Acute change in muscle thickness immediately after the first session of RT was used as an indicator of muscle swelling. Chronic change in muscle thickness after the 6-week RT was used as an indicator of muscle hypertrophy. A significant increase in muscle thickness was observed immediately after the first session of RT (8.3 ± 3.2%, p < 0.001). After the 6-week RT, muscle thickness increased significantly (2.9 ± 2.6%, p < 0.001). A significant positive correlation was found between muscle swelling and muscle hypertrophy (ρ = 0.443, p = 0.039). This study suggests that the greater the muscle swelling immediately after the first session of RT, the greater the muscle hypertrophy after RT.
Collapse
Affiliation(s)
- Tetsuya Hirono
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Tome Ikezoe
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masashi Taniguchi
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroki Tanaka
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Rehabilitation Unit, Kyoto University Hospital, Kyoto, Japan ; and
| | - Junya Saeki
- Japan Society for the Promotion of Science, Tokyo, Japan.,Faculty of Sport Sciences, Waseda University, Saitama, Japan
| | - Masahide Yagi
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jun Umehara
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Noriaki Ichihashi
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
25
|
Vigotsky AD, Halperin I, Trajano GS, Vieira TM. Longing for a Longitudinal Proxy: Acutely Measured Surface EMG Amplitude is not a Validated Predictor of Muscle Hypertrophy. Sports Med 2022; 52:193-199. [PMID: 35006527 DOI: 10.1007/s40279-021-01619-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2021] [Indexed: 12/29/2022]
Abstract
Surface electromyography amplitudes are commonly measured in acute sports and exercise science studies to make inferences about muscular strength, performance, and hypertrophic adaptations that may result from different exercises or exercise-related variables. Here, we discuss the presumptive logic and assumptions underlying these inferences, focusing on hypertrophic adaptations for simplicity's sake. We present counter-evidence for each of its premises and discuss evidence both for and against the logical conclusion. Given the limited evidence validating the amplitude of surface electromyograms as a predictor of longitudinal hypertrophic adaptations, coupled with its weak mechanistic foundation, we suggest that acute comparative studies that wish to assess stimulus potency be met with scrutiny.
Collapse
Affiliation(s)
- Andrew D Vigotsky
- Departments of Biomedical Engineering and Statistics, Northwestern University, Evanston, IL, USA.
| | - Israel Halperin
- School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel.,Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Gabriel S Trajano
- School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Taian M Vieira
- Laboratory for Engineering of the Neuromuscular System, Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| |
Collapse
|
26
|
Muscle growth adaptations to high-load training and low-load training with blood flow restriction in calf muscles. Eur J Appl Physiol 2022; 122:623-634. [PMID: 34981201 DOI: 10.1007/s00421-021-04862-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/22/2021] [Indexed: 11/03/2022]
Abstract
PURPOSE To compare muscle growth adaptations between traditional high-load training and low-load training with blood flow restriction (BFR) in the calf muscles over 6 weeks. METHODS 27 trained individuals performed calf exercise in both legs for 6 weeks. Each leg was randomly assigned to one of the two conditions: (1) Traditional (70% of 1RM) training (TRAD); and (2) Low-load (30% of 1RM) training with BFR. In addition, subjects performed standing calf raises with or without BFR. Measures were taken pre- and post-intervention. RESULTS For the posterior muscle site, there was no condition (BFR vs. TRAD) × time (pre vs. post) interaction (p = 0.15). In addition, there was no main effect for condition (p = 0.83) or time (p = 0.20). For the lateral muscle site, there was no condition × time interaction (p = 0.47). In addition, there was no main effect for condition (p = 0.10) or time (p = 0.57). For the medial muscle site, there was no condition × time interaction (p = 0.60). In addition, there was no main effect for condition (p = 0.44) or time (p = 0.72). For RPE, there was no condition × time interaction. However, there was a main effect for condition (p < 0.05) with BFR having higher RPE. For discomfort, there was no condition × time interaction. However, there was a main effect for condition (p < 0.001) with the BFR condition displaying higher discomfort. CONCLUSION No muscle growth was detected in the calf musculature. BFR was not more effective at eliciting muscle hypertrophy compared to traditional training. However, it was accompanied with higher exertion and discomfort.
Collapse
|
27
|
Muscle Protein Synthesis Responses Following Aerobic-Based Exercise or High-Intensity Interval Training with or Without Protein Ingestion: A Systematic Review. Sports Med 2022; 52:2713-2732. [PMID: 35675022 PMCID: PMC9585015 DOI: 10.1007/s40279-022-01707-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Systematic investigation of muscle protein synthesis (MPS) responses with or without protein ingestion has been largely limited to resistance training. OBJECTIVE This systematic review determined the capacity for aerobic-based exercise or high-intensity interval training (HIIT) to stimulate post-exercise rates of MPS and whether protein ingestion further significantly increases MPS compared with placebo. METHODS Three separate models analysed rates of either mixed, myofibrillar, sarcoplasmic, or mitochondrial protein synthesis (PS) following aerobic-based exercise or HIIT: Model 1 (n = 9 studies), no protein ingestion; Model 2 (n = 7 studies), peri-exercise protein ingestion with no placebo comparison; Model 3 (n = 14 studies), peri-exercise protein ingestion with placebo comparison. RESULTS Eight of nine studies and all seven studies in Models 1 and 2, respectively, demonstrated significant post-exercise increases in either mixed or a specific muscle protein pool. Model 3 observed significantly greater MPS responses with protein compared with placebo in either mixed or a specific muscle fraction in 7 of 14 studies. Seven studies showed no difference in MPS between protein and placebo, while three studies reported no significant increases in mitochondrial PS with protein compared with placebo. CONCLUSION Most studies reporting significant increases in MPS were confined to mixed and myofibrillar PS that may facilitate power generating capacity of working skeletal muscle with aerobic-based exercise and HIIT. Only three of eight studies demonstrated significant increases in mitochondrial PS post-exercise, with no further benefits of protein ingestion. This lack of change may be explained by the acute analysis window in most studies and apparent latency in exercise-induced stimulation of mitochondrial PS.
Collapse
|
28
|
Making Sense of Muscle Protein Synthesis: A Focus on Muscle Growth During Resistance Training. Int J Sport Nutr Exerc Metab 2021; 32:49-61. [PMID: 34697259 DOI: 10.1123/ijsnem.2021-0139] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/20/2021] [Accepted: 09/20/2021] [Indexed: 11/18/2022]
Abstract
The acute response of muscle protein synthesis (MPS) to resistance exercise and nutrition is often used to inform recommendations for exercise programming and dietary interventions, particularly protein nutrition, to support and enhance muscle growth with training. Those recommendations are worthwhile only if there is a predictive relationship between the acute response of MPS and subsequent muscle hypertrophy during resistance exercise training. The metabolic basis for muscle hypertrophy is the dynamic balance between the synthesis and degradation of myofibrillar proteins in muscle. There is ample evidence that the process of MPS is much more responsive to exercise and nutrition interventions than muscle protein breakdown. Thus, it is intuitively satisfying to translate the acute changes in MPS to muscle hypertrophy with training over a longer time frame. Our aim is to examine and critically evaluate the strength and nature of this relationship. Moreover, we examine the methodological and physiological factors related to measurement of MPS and changes in muscle hypertrophy that contribute to uncertainty regarding this relationship. Finally, we attempt to offer recommendations for practical and contextually relevant application of the information available from studies of the acute response of MPS to optimize muscle hypertrophy with training.
Collapse
|
29
|
Lixandrão ME, Longobardi I, Leitão AE, Morais JVM, Swinton PA, Aihara AY, Goes PCK, Ugrinowitsch C, Candow DG, Gualano B, Roschel H. Daily Leucine Intake Is Positively Associated with Lower Limb Skeletal Muscle Mass and Strength in the Elderly. Nutrients 2021; 13:nu13103536. [PMID: 34684538 PMCID: PMC8539207 DOI: 10.3390/nu13103536] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 01/03/2023] Open
Abstract
Higher daily protein intake, with an emphasis on leucine content, is thought to mitigate age-related anabolic resistance, potentially counteracting age-related morphological and functional declines. The present study investigated potential associations between total daily leucine intake and dependent variables, including quadriceps muscle cross-sectional area (CSA) and maximum dynamic muscle strength (1-RM) in a cohort of healthy free-living older individuals of both sexes (n = 67; 34/33 men/women). Participants performed three 24 h dietary recalls and underwent a magnetic resonance imaging exam followed by 1-RM tests. Our results demonstrate moderate associations between total daily leucine and both quadriceps CSA (r = 0.42; p = 0.004) and 1-RM (r = 0.45; p = 0.001). Furthermore, our exploratory biphasic linear regression analyses, adjusted for sex, age, and protein intake relative to body weight, revealed a plateau for daily leucine intake and muscle mass and muscle strength (~7.6–8.0 g·day−1) in older adults. In conclusion, we demonstrated that total daily leucine intake is associated with muscle mass and strength in healthy older individuals and this association remains after controlling for multiple factors, including overall protein intake. Furthermore, our breakpoint analysis revealed non-linearities and a potential threshold for habitual leucine intake, which may help guide future research on the effects of chronic leucine intake in age-related muscle loss.
Collapse
Affiliation(s)
- Manoel E. Lixandrão
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, University of São Paulo, São Paulo 01246-903, SP, Brazil; (M.E.L.); (I.L.); (A.E.L.); (J.V.M.M.); (B.G.)
- School of Physical Education and Sport, University of São Paulo, São Paulo 05508-030, SP, Brazil;
| | - Igor Longobardi
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, University of São Paulo, São Paulo 01246-903, SP, Brazil; (M.E.L.); (I.L.); (A.E.L.); (J.V.M.M.); (B.G.)
| | - Alice E. Leitão
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, University of São Paulo, São Paulo 01246-903, SP, Brazil; (M.E.L.); (I.L.); (A.E.L.); (J.V.M.M.); (B.G.)
| | - João V. M. Morais
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, University of São Paulo, São Paulo 01246-903, SP, Brazil; (M.E.L.); (I.L.); (A.E.L.); (J.V.M.M.); (B.G.)
| | - Paul A. Swinton
- School of Health Sciences, Robert Gordon University, Aberdeen AB10 7QE, UK;
| | - André Y. Aihara
- Laboratório Delboni Auriemo, São Paulo 04037-005, SP, Brazil; (A.Y.A.); (P.C.K.G.)
| | - Paola C. K. Goes
- Laboratório Delboni Auriemo, São Paulo 04037-005, SP, Brazil; (A.Y.A.); (P.C.K.G.)
| | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of São Paulo, São Paulo 05508-030, SP, Brazil;
| | - Darren G. Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK S4S 0A2, Canada;
| | - Bruno Gualano
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, University of São Paulo, São Paulo 01246-903, SP, Brazil; (M.E.L.); (I.L.); (A.E.L.); (J.V.M.M.); (B.G.)
| | - Hamilton Roschel
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, University of São Paulo, São Paulo 01246-903, SP, Brazil; (M.E.L.); (I.L.); (A.E.L.); (J.V.M.M.); (B.G.)
- Correspondence: ; Tel.: +55-11-3091-8783
| |
Collapse
|
30
|
The Effect of Whole Egg Intake on Muscle Mass: Are the Yolk and Its Nutrients Important? Int J Sport Nutr Exerc Metab 2021; 31:514-521. [PMID: 34504041 DOI: 10.1123/ijsnem.2021-0086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 11/18/2022]
Abstract
Whole egg may have potential benefits for enhancing muscle mass, independent of its protein content. The yolk comprises ∼40% of the total protein in an egg, as well as containing several nonprotein nutrients that could possess anabolic properties (e.g., microRNAs, vitamins, minerals, lipids, phosphatidic acid and other phospholipids). Therefore, the purpose of this narrative review is to discuss the current evidence as to the possible effects of egg yolk compounds on skeletal muscle accretion beyond those of egg whites alone. The intake of whole egg seems to promote greater myofibrillar protein synthesis than egg white intake in young men. However, limited evidence shows no difference in muscle hypertrophy when comparing the consumption of whole egg versus an isonitrogenous quantity of egg white in young men performing resistance training. Although egg yolk intake seems to promote additional acute increases on myofibrillar protein synthesis, it does not seem to further enhance muscle mass when compared to egg whites when consumed as part of a high-protein dietary patterns, at least in young men. This conclusion is based on very limited evidence and more studies are needed to evaluate the effects of egg yolk (or whole eggs) intake on muscle mass not only in young men, but also in other populations such as women, older adults, and individuals with muscle wasting diseases.
Collapse
|
31
|
Pasiakos SM, Howard EE. High-Quality Supplemental Protein Enhances Acute Muscle Protein Synthesis and Long-Term Strength Adaptations to Resistance Training in Young and Old Adults. J Nutr 2021; 151:1677-1679. [PMID: 33978162 DOI: 10.1093/jn/nxab099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 11/14/2022] Open
Affiliation(s)
- Stefan M Pasiakos
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Emily E Howard
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA.,Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| |
Collapse
|
32
|
McKendry J, Stokes T, Mcleod JC, Phillips SM. Resistance Exercise, Aging, Disuse, and Muscle Protein Metabolism. Compr Physiol 2021; 11:2249-2278. [PMID: 34190341 DOI: 10.1002/cphy.c200029] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Skeletal muscle is the organ of locomotion, its optimal function is critical for athletic performance, and is also important for health due to its contribution to resting metabolic rate and as a site for glucose uptake and storage. Numerous endogenous and exogenous factors influence muscle mass. Much of what is currently known regarding muscle protein turnover is owed to the development and use of stable isotope tracers. Skeletal muscle mass is determined by the meal- and contraction-induced alterations of muscle protein synthesis and muscle protein breakdown. Increased loading as resistance training is the most potent nonpharmacological strategy by which skeletal muscle mass can be increased. Conversely, aging (sarcopenia) and muscle disuse lead to the development of anabolic resistance and contribute to the loss of skeletal muscle mass. Nascent omics-based technologies have significantly improved our understanding surrounding the regulation of skeletal muscle mass at the gene, transcript, and protein levels. Despite significant advances surrounding the mechanistic intricacies that underpin changes in skeletal muscle mass, these processes are complex, and more work is certainly needed. In this article, we provide an overview of the importance of skeletal muscle, describe the influence that resistance training, aging, and disuse exert on muscle protein turnover and the molecular regulatory processes that contribute to changes in muscle protein abundance. © 2021 American Physiological Society. Compr Physiol 11:2249-2278, 2021.
Collapse
Affiliation(s)
- James McKendry
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Tanner Stokes
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan C Mcleod
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Stuart M Phillips
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
33
|
Callahan MJ, Parr EB, Hawley JA, Camera DM. Can High-Intensity Interval Training Promote Skeletal Muscle Anabolism? Sports Med 2021; 51:405-421. [PMID: 33512698 DOI: 10.1007/s40279-020-01397-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Exercise training in combination with optimal nutritional support is an effective strategy to maintain or increase skeletal muscle mass. A single bout of resistance exercise undertaken with adequate protein availability increases rates of muscle protein synthesis and, when repeated over weeks and months, leads to increased muscle fiber size. While resistance-based training is considered the 'gold standard' for promoting muscle hypertrophy, other modes of exercise may be able to promote gains in muscle mass. High-intensity interval training (HIIT) comprises short bouts of exercise at or above the power output/speed that elicits individual maximal aerobic capacity, placing high tensile stress on skeletal muscle, and somewhat resembling the demands of resistance exercise. While HIIT induces rapid increases in skeletal muscle oxidative capacity, the anabolic potential of HIIT for promoting concurrent gains in muscle mass and cardiorespiratory fitness has received less scientific inquiry. In this review, we discuss studies that have determined muscle growth responses after HIIT, with a focus on molecular responses, that provide a rationale for HIIT to be implemented among populations who are susceptible to muscle loss (e.g. middle-aged or older adults) and/or in clinical settings (e.g. pre- or post-surgery).
Collapse
Affiliation(s)
- Marcus J Callahan
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, 215 Spring street, Melbourne, VIC, 3000, Australia
| | - Evelyn B Parr
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, 215 Spring street, Melbourne, VIC, 3000, Australia
| | - John A Hawley
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, 215 Spring street, Melbourne, VIC, 3000, Australia.
| | - Donny M Camera
- Department of Health and Medical Sciences, Swinburne University of Technology, Melbourne, VIC, Australia
| |
Collapse
|
34
|
Lee EJ, Neppl RL. Influence of Age on Skeletal Muscle Hypertrophy and Atrophy Signaling: Established Paradigms and Unexpected Links. Genes (Basel) 2021; 12:genes12050688. [PMID: 34063658 PMCID: PMC8147613 DOI: 10.3390/genes12050688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022] Open
Abstract
Skeletal muscle atrophy in an inevitable occurrence with advancing age, and a consequence of disease including cancer. Muscle atrophy in the elderly is managed by a regimen of resistance exercise and increased protein intake. Understanding the signaling that regulates muscle mass may identify potential therapeutic targets for the prevention and reversal of muscle atrophy in metabolic and neuromuscular diseases. This review covers the major anabolic and catabolic pathways that regulate skeletal muscle mass, with a focus on recent progress and potential new players.
Collapse
|
35
|
Molecular Transducers of Human Skeletal Muscle Remodeling under Different Loading States. Cell Rep 2021; 32:107980. [PMID: 32755574 PMCID: PMC7408494 DOI: 10.1016/j.celrep.2020.107980] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 02/27/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
Loading of skeletal muscle changes the tissue phenotype reflecting altered metabolic and functional demands. In humans, heterogeneous adaptation to loading complicates the identification of the underpinning molecular regulators. A within-person differential loading and analysis strategy reduces heterogeneity for changes in muscle mass by ∼40% and uses a genome-wide transcriptome method that models each mRNA from coding exons and 3' and 5' untranslated regions (UTRs). Our strategy detects ∼3-4 times more regulated genes than similarly sized studies, including substantial UTR-selective regulation undetected by other methods. We discover a core of 141 genes correlated to muscle growth, which we validate from newly analyzed independent samples (n = 100). Further validating these identified genes via RNAi in primary muscle cells, we demonstrate that members of the core genes were regulators of protein synthesis. Using proteome-constrained networks and pathway analysis reveals notable relationships with the molecular characteristics of human muscle aging and insulin sensitivity, as well as potential drug therapies.
Collapse
|
36
|
Morgan PT, Harris DO, Marshall RN, Quinlan JI, Edwards SJ, Allen SL, Breen L. Protein Source and Quality for Skeletal Muscle Anabolism in Young and Older Adults: A Systematic Review and Meta-Analysis. J Nutr 2021; 151:1901-1920. [PMID: 33851213 PMCID: PMC8245874 DOI: 10.1093/jn/nxab055] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/07/2021] [Accepted: 02/11/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND There is much debate regarding the source/quality of dietary proteins in supporting indices of skeletal muscle anabolism. OBJECTIVE We performed a systematic review and meta-analysis to determine the effect of protein source/quality on acute muscle protein synthesis (MPS) and changes in lean body mass (LBM) and strength, when combined with resistance exercise (RE). METHODS A systematic search of the literature was conducted to identify studies that compared the effects of ≥2 dose-matched, predominantly isolated protein sources of varying "quality." Three separate models were employed as follows: 1) protein feeding alone on MPS, 2) protein feeding combined with a bout of RE on MPS, and 3) protein feeding combined with longer-term resistance exercise training (RET) on LBM and strength. Further subgroup analyses were performed to compare the effects of protein source/quality between young and older adults. A total of 27 studies in young (18-35 y) and older (≥60 y) adults were included. RESULTS Analysis revealed an effect favoring higher-quality protein for postprandial MPS at rest [mean difference (MD): 0.014%/h; 95% CI: 0.006, 0.021; P < 0.001] and following RE (MD: 0.022%/h; 95% CI: 0.014, 0.030; P < 0.00001) in young (model 1: 0.016%/h; 95% CI: -0.004, 0.036; P = 0.12; model 2: 0.030%/h; 95% CI: 0.015, 0.045; P < 0.0001) and older (model 1: 0.012%/h; 95% CI: 0.006, 0.018; P < 0.001; model 2: 0.014%/h; 95% CI: 0.007, 0.021; P < 0.001) adults. However, although higher protein quality was associated with superior strength gains with RET [standardized mean difference (SMD): 0.24 kg; 95% CI: 0.02, 0.45; P = 0.03)], no effect was observed on changes to LBM (SMD: 0.05 kg; 95% CI: -0.16, 0.25; P = 0.65). CONCLUSIONS The current review suggests that protein quality may provide a small but significant impact on indices of muscle protein anabolism in young and older adults. However, further research is warranted to elucidate the importance of protein source/quality on musculoskeletal aging, particularly in situations of low protein intake.
Collapse
Affiliation(s)
- Paul T Morgan
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Dane O Harris
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Ryan N Marshall
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Jonathan I Quinlan
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK,National Institute for Health Research, Birmingham Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Sophie J Edwards
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Sophie L Allen
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | | |
Collapse
|
37
|
Mertz KH, Reitelseder S, Bechshoeft R, Bulow J, Højfeldt G, Jensen M, Schacht SR, Lind MV, Rasmussen MA, Mikkelsen UR, Tetens I, Engelsen SB, Nielsen DS, Jespersen AP, Holm L. The effect of daily protein supplementation, with or without resistance training for 1 year, on muscle size, strength, and function in healthy older adults: A randomized controlled trial. Am J Clin Nutr 2021; 113:790-800. [PMID: 33564844 DOI: 10.1093/ajcn/nqaa372] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Protein supplementation alone or combined with resistance training has been proposed to be effective in counteracting age-related losses of muscle mass and strength. OBJECTIVES To investigate the effect of protein supplementation alone or combined with light-intensity or heavy-load resistance exercise on muscle size, strength, and function in older adults. METHODS In a 1-y randomized controlled trial, 208 healthy older adults (>65 y) were randomly assigned to 1 of 5 interventions: 1) carbohydrate supplementation (CARB); 2) collagen protein supplementation (COLL); 3) whey protein supplementation (WHEY); 4) light-intensity resistance training 3-5 times/wk with whey protein supplementation (LITW); and 5) heavy resistance training 3 times weekly with whey protein supplementation (HRTW). Protein supplements contained 20 g protein + 10 g carbohydrate, whereas CARB contained 30 g of carbohydrates. All intervention groups received the supplement twice daily. The primary outcome was change in the quadriceps cross-sectional area (qCSA). Secondary outcomes included measures of lower extremity strength and power, functional capabilities, and body composition. RESULTS There were 184 participants who completed the study. COLL and WHEY did not affect any measured parameter compared to CARB. Compared to WHEY, HRTW improved the qCSA size (between-group difference, +1.68 cm2; 95% CI, +0.41 to +2.95 cm2; P = 0.03), as well as dynamic (+18.4 Nm; 95% CI, +10.1 to +26.6 Nm; P < 10-4) and isometric knee extensor strength (+23.9 Nm; 95% CI, +14.2 to +33.6 Nm; P < 10-5). LITW did not improve the qCSA size, but increased dynamic knee extensor strength compared to WHEY (+13.7 Nm; 95% CI, +5.3 and +22.1 Nm; P = 0.01). CONCLUSIONS Recommending protein supplementation as a stand-alone intervention for healthy older individuals seems ineffective in improving muscle mass and strength. Only HRTW was effective in both preserving muscle mass and increasing strength. Thus, we recommend that future studies investigate strategies to increase long-term compliance to heavy resistance exercise in healthy older adults. This trial was registered at clinicaltrials.gov as NCT02034760.
Collapse
Affiliation(s)
- Kenneth H Mertz
- Institute of Sports Medicine, Department of Orthopaedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark
| | - Søren Reitelseder
- Institute of Sports Medicine, Department of Orthopaedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Bechshoeft
- Institute of Sports Medicine, Department of Orthopaedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark
| | - Jacob Bulow
- Institute of Sports Medicine, Department of Orthopaedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark
| | - Grith Højfeldt
- Institute of Sports Medicine, Department of Orthopaedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark
| | - Mikkel Jensen
- Institute of Sports Medicine, Department of Orthopaedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark
| | - Simon R Schacht
- Vitality Centre for Good Older Lives, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Mads Vendelbo Lind
- Vitality Centre for Good Older Lives, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Morten A Rasmussen
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | | | - Inge Tetens
- Vitality Centre for Good Older Lives, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Søren B Engelsen
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Dennis S Nielsen
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Astrid P Jespersen
- Copenhagen Center for Health Research in the Humanities, Saxo-Institute, University of Copenhagen, Copenhagen, Denmark
| | - Lars Holm
- Institute of Sports Medicine, Department of Orthopaedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
38
|
Chapple LAS, Dirks ML, Kouw IW. Stable isotope approaches to study muscle mass outcomes in clinical populations. CLINICAL NUTRITION OPEN SCIENCE 2021. [DOI: 10.1016/j.nutos.2021.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
39
|
Tagawa K, Choi Y, Ra SG, Yoshikawa T, Kumagai H, Maeda S. Stature is negatively associated with increased arterial stiffness after high-intensity bicep curls training in young Japanese men. Eur J Sport Sci 2021; 22:1104-1112. [PMID: 33673788 DOI: 10.1080/17461391.2021.1900402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Reports have indicated that high-intensity resistance training (RT) increases or does not change arterial stiffness. Meanwhile, higher stature has been suggested to have a protective effect on cardiovascular disease and arterial stiffness. Stature could explain the disagreement in the reported effects of RT on arterial stiffness. This study was aimed at investigating whether stature is related to RT-induced change in arterial stiffness. Thirty-six young Japanese men were assigned to the control (n = 15) and training groups (n = 21). RT programme consisted of supervised bicep curls 3 days per week for 4 weeks (5 sets of 10 repetitions at 75% of 1-repetition maximum). Arterial compliance (AC) and β-stiffness index (via combination of ultrasound and carotid pressure waveforms) were measured in all participants. To verify the effect of stature on RT-induced change in arterial stiffness, the training group was divided into tertiles of stature: lower, middle, and higher stature groups (each group, n = 7). RT significantly decreased AC and increased β-stiffness index in only the lower stature group (both, P < 0.05). Moreover, stature was positively associated with decreased AC and negatively associated with increased β-stiffness index, even after adjusting for confounders including changes in relative strength, pulse pressure, and arterial distension (P < 0.05). The present results suggest that short stature contributes to the increase in arterial stiffness induced by RT in young Japanese men. The present findings suggest that stature should be taken into consideration when designing/engaging in RT programme, due to potential implications for cardiovascular health.Highlights Participants were divided into 3 groups according to tertiles of statures, and arterial stiffness of lower stature group (range of stature: 161.0-169.8 cm) increased after resistance training in young Japanese men, but not middle and higher stature group.Stature was negatively associated with the changed arterial stiffness by resistance training.This study suggests that short stature contributes to the elevation in arterial stiffness elicited by resistance training.
Collapse
Affiliation(s)
- Kaname Tagawa
- Division of Sports Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Graduate School of Education, Miyagi University of Education, Sendai, Japan
| | - Youngju Choi
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan.,Institute of Sport & Art Convergence, Inha University, Incheon, Republic of Korea
| | - Song-Gyu Ra
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan.,Institute of Liberal Arts and Sciences, Tokushima University, Tokushima, Japan
| | - Toru Yoshikawa
- Division of Sports Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Faculty of Health and Sport Sciences, Ryutsu Keizai University, Ryugasaki, Japan
| | - Hiroshi Kumagai
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan.,Institute of Health and Sports Science & Medicine, Juntendo University, Tokyo, Japan
| | - Seiji Maeda
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
40
|
Schoenfeld BJ, Grgic J, Van Every DW, Plotkin DL. Loading Recommendations for Muscle Strength, Hypertrophy, and Local Endurance: A Re-Examination of the Repetition Continuum. Sports (Basel) 2021; 9:sports9020032. [PMID: 33671664 PMCID: PMC7927075 DOI: 10.3390/sports9020032] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 12/16/2022] Open
Abstract
Loading recommendations for resistance training are typically prescribed along what has come to be known as the “repetition continuum”, which proposes that the number of repetitions performed at a given magnitude of load will result in specific adaptations. Specifically, the theory postulates that heavy load training optimizes increases maximal strength, moderate load training optimizes increases muscle hypertrophy, and low-load training optimizes increases local muscular endurance. However, despite the widespread acceptance of this theory, current research fails to support some of its underlying presumptions. Based on the emerging evidence, we propose a new paradigm whereby muscular adaptations can be obtained, and in some cases optimized, across a wide spectrum of loading zones. The nuances and implications of this paradigm are discussed herein.
Collapse
Affiliation(s)
- Brad J. Schoenfeld
- Department of Health Sciences, CUNY Lehman College, Bronx, NY 10468, USA; (D.W.V.E.); (D.L.P.)
- Correspondence:
| | - Jozo Grgic
- Institute for Health and Sport, Victoria University, Melbourne, VIC 8001, Australia;
| | - Derrick W. Van Every
- Department of Health Sciences, CUNY Lehman College, Bronx, NY 10468, USA; (D.W.V.E.); (D.L.P.)
| | - Daniel L. Plotkin
- Department of Health Sciences, CUNY Lehman College, Bronx, NY 10468, USA; (D.W.V.E.); (D.L.P.)
| |
Collapse
|
41
|
Craddock JC, Genoni A, Strutt EF, Goldman DM. Limitations with the Digestible Indispensable Amino Acid Score (DIAAS) with Special Attention to Plant-Based Diets: a Review. Curr Nutr Rep 2021; 10:93-98. [PMID: 33409931 DOI: 10.1007/s13668-020-00348-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW This review describes several limitations of the Digestible Indispensable Amino Acid Score (DIAAS) with a focus on its application to plant-based dietary patterns. RECENT FINDINGS Evaluating protein quality in terms of digestibility is paramount to support and optimize the health and well-being of human populations in situations where food insecurity and protein energy malnutrition are widespread. The Food and Agriculture Organization (FAO) of the United Nations has endorsed the DIAAS to replace the previously recommended Protein Digestibility Corrected Amino Acid Score (PDCAAS) for protein quality assessment. While multiple strengths characterize the DIAAS, substantial limitations remain, many of which are accentuated in the context of a plant-based dietary pattern. Some of these limitations include a failure to translate differences in nitrogen-to-protein conversion factors between plant- and animal-based foods, limited representation of commonly consumed plant-based foods within the scoring framework, inadequate recognition of the increased digestibility of commonly consumed heat-treated and processed plant-based foods, its formulation centered on fast-growing animal models rather than humans, and a focus on individual isolated foods vs the food matrix. The DIAAS is also increasingly being used out of context where its application could produce erroneous results such as exercise settings. When investigating protein quality, particularly in a plant-based dietary context, the DIAAS should ideally be avoided.
Collapse
Affiliation(s)
- Joel C Craddock
- Sydney School of Education and Social Work, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Angela Genoni
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA, 6027, Australia
| | | | | |
Collapse
|
42
|
Hertzler SR, Lieblein-Boff JC, Weiler M, Allgeier C. Plant Proteins: Assessing Their Nutritional Quality and Effects on Health and Physical Function. Nutrients 2020; 12:E3704. [PMID: 33266120 PMCID: PMC7760812 DOI: 10.3390/nu12123704] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/21/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
Consumer demand for plant protein-based products is high and expected to grow considerably in the next decade. Factors contributing to the rise in popularity of plant proteins include: (1) potential health benefits associated with increased intake of plant-based diets; (2) consumer concerns regarding adverse health effects of consuming diets high in animal protein (e.g., increased saturated fat); (3) increased consumer recognition of the need to improve the environmental sustainability of food production; (4) ethical issues regarding the treatment of animals; and (5) general consumer view of protein as a "positive" nutrient (more is better). While there are health and physical function benefits of diets higher in plant-based protein, the nutritional quality of plant proteins may be inferior in some respects relative to animal proteins. This review highlights the nutritional quality of plant proteins and strategies for wisely using them to meet amino acid requirements. In addition, a summary of studies evaluating the potential benefits of plant proteins for both health and physical function is provided. Finally, potential safety issues associated with increased intake of plant proteins are addressed.
Collapse
Affiliation(s)
- Steven R. Hertzler
- Scientific and Medical Affairs, Abbott Nutrition, 2900 Easton Square Place, Columbus, OH 43219, USA; (J.C.L.-B.); (M.W.); (C.A.)
| | | | | | | |
Collapse
|
43
|
Hinde KL, O'Leary TJ, Greeves JP, Wardle SL. Measuring Protein Turnover in the Field: Implications for Military Research. Adv Nutr 2020; 12:887-896. [PMID: 33079983 PMCID: PMC8166569 DOI: 10.1093/advances/nmaa123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 11/15/2022] Open
Abstract
Protein turnover reflects the continual synthesis and breakdown of body proteins, and can be measured at a whole-body (i.e. aggregated across all body proteins) or tissue (e.g. skeletal muscle only) level using stable isotope methods. Evaluating protein turnover in free-living environments, such as military training, can help inform protein requirements. We undertook a narrative review of published literature with the aim of reviewing the suitability of, and advancements in, stable isotope methods for measuring protein turnover in field research. The 2 primary approaches for measuring protein turnover are based on precursor- and end-product methods. The precursor method is the gold-standard for measuring acute (over several hours) skeletal muscle protein turnover, whereas the end-product method measures chronic (over several weeks) skeletal muscle protein turnover and provides the opportunity to monitor free-living activities. Both methods require invasive procedures such as the infusion of amino acid tracers and muscle biopsies to assess the uptake of the tracer into tissue. However, the end-product method can also be used to measure acute (over 9-24 h) whole-body protein turnover noninvasively by ingesting 15N-glycine, or equivalent isotope tracers, and collecting urine samples. The end-product method using 15N-glycine is a practical method for measuring whole-body protein turnover in the field over short (24 h) time frames and has been used effectively in recent military field research. Application of this method may improve our understanding of protein kinetics during conditions of high physiological stress in free-living environments such as military training.
Collapse
Affiliation(s)
- Katrina L Hinde
- Army Health and Performance Research, Army Headquarters, Andover, United Kingdom
| | - Thomas J O'Leary
- Army Health and Performance Research, Army Headquarters, Andover, United Kingdom,Division of Surgery & Interventional Science, University College London, London, United Kingdom
| | - Julie P Greeves
- Army Health and Performance Research, Army Headquarters, Andover, United Kingdom,Division of Surgery & Interventional Science, University College London, London, United Kingdom,Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | | |
Collapse
|
44
|
Santos PC, Libardi CA, Nóbrega SR, de Carvalho MB, Galan BSM, de Freitas EC. Effect of Protein and Carbohydrate Combined with Resistance Training on Muscular Adaptation. Int J Sports Med 2020; 42:259-263. [PMID: 33063309 DOI: 10.1055/a-1263-1185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The purpose was to compare the effects of protein (whey protein) and carbohydrate supplementation and protein alone both combined with resistance training on muscle strength, muscle mass and total training volume progression in untrained young men. Resistance training was performed using the leg press and knee extension until concentric failure (8-12 repetition maximum), three times a week for eight weeks. Muscle strength and muscle cross-sectional area were assessed before and after training. Total training volume progression was calculated considering the first and eighth week. Seventeen men completed the study (protein and carbohydrate, n=9, age 23.44 ± 4.56 years, weight: 62.13±6.17 kg, height: 1.75±0.02 m, body mass index: 20.29±2.08 kg/m2; protein, n=8, age 24.63±2.39 years, weight: 69.01±5.57 kg, height: 1.77±0.07 m; body mass index: 21.64±1.05 kg/m2. Both protocols showed similar increases in muscle strength (effect size: protein and carbohydrate=1.28; protein=0.97; p<0.001), muscle cross sectional area (effect size: protein and carbohydrate=0.66; protein=0.47; p<0.001) and total training volume progression (effect size: protein and carbohydrate=2.68; protein=1.63; p<0.001) after training. No differences were found between groups p>0.05). Protein and carbohydrate supplementation combined with resistance training does not induce greater gains in muscle strength, hypertrophy and total training volume compared to resistance training combined with protein alone in untrained individuals.
Collapse
Affiliation(s)
- Priscila Carvalho Santos
- Department of Food and Nutrition, School of Pharmaceutical Science, Sao Paulo State University (UNESP), Sao Paulo, Brazil
| | - Cleiton Augusto Libardi
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of Sao Carlos, Sao Carlos, SP, Brazil
| | - Sanmy Rocha Nóbrega
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of Sao Carlos, Sao Carlos, SP, Brazil
| | - Milena Barbon de Carvalho
- Department of Food and Nutrition, School of Pharmaceutical Science, Sao Paulo State University (UNESP), Sao Paulo, Brazil
| | - Bryan Steve Martinez Galan
- Department of Food and Nutrition, School of Pharmaceutical Science, Sao Paulo State University (UNESP), Sao Paulo, Brazil
| | - Ellen Cristini de Freitas
- Department of Food and Nutrition, School of Pharmaceutical Science, Sao Paulo State University (UNESP), Sao Paulo, Brazil.,School of Physical Education and Sport of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
45
|
Protective Effect of Vitis labrusca Leaves Extract on Cardiovascular Dysfunction through HMGB1-TLR4-NFκB Signaling in Spontaneously Hypertensive Rats. Nutrients 2020; 12:nu12103096. [PMID: 33050676 PMCID: PMC7601160 DOI: 10.3390/nu12103096] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022] Open
Abstract
The Vitis labrusca is a grapevine that has antioxidant, neuroprotective, hepatoprotective, and anticarcinogenic activity. However, the effect of Vitis labrusca leaves on the cardiovascular system is yet to be ascertained. The present study was designed to investigate the effects of Vitis labrusca leaves extract (HP1) on cardiovascular remodeling in spontaneously hypertensive rats. Experiments were performed in rats and were randomly divided into the following groups: Wistar Kyoto rat (WKY), normal control group; spontaneously hypertensive rats (SHR), negative control group; SHR + Losa, positive control group (losartan, 10 mg/kg/daily, AT1 receptor blocker) and SHR + HP1 (100 mg/kg/daily). HP1 was orally administered daily for 4 weeks. The HP1 treatment significantly improved blood pressure, electrocardiographic parameters, and echocardiogram parameters compared to hypertensive rats. Additionally, the left ventricular (LV) remodeling and LV dysfunction were significantly improved in HP1-treated hypertensive rats. Furthermore, an increase in fibrotic area has been observed in hypertensive rats compared with WKY. However, administration of HP1 significantly attenuated cardiac fibrosis in hypertensive rats. Moreover, HP1 suppressed the expression of high mobility group box 1 (HMGB1), toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88), nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB), tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), receptor for advanced glycation end products (RAGE), and extracellular signal-regulated kinases (ERK1/2) induced by hypertensive rats, resulting in improved vascular remodeling. Therefore, these results suggest that HP1 can improve the cardiovascular remodeling in hypertensive rats, and the mechanisms may be related to the suppressive effect of HP1 on HMGB1-TLR4-NFκB signaling in the cardiovascular system. Thus, the protective role of the traditional herbal medicine HP1 may provide new insights into the development of therapeutic drugs on the development of hypertensive cardiovascular dysfunction.
Collapse
|
46
|
Tagawa K, Nakata Y, Yokota A, Sato T, Maeda S. Music attenuates a widened central pulse pressure caused by resistance exercise: A randomized, single-blinded, sham-controlled, crossover study. Eur J Sport Sci 2020; 21:1225-1233. [PMID: 32859143 DOI: 10.1080/17461391.2020.1817153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Increasing central blood pressure is an independent predictor of cardiovascular disease and is an acute effect of high-intensity resistance exercise. It has been shown that classical music suppresses increased peripheral pressure during exercise. We hypothesized that classical music would suppress increased central pressure induced by high-intensity resistance exercise. To confirm this hypothesis, we examined the effect of classical music on central pressure following high-intensity resistance exercise in 18 young men. A randomized, single-blinded, sham-controlled, crossover trial was conducted under parallel experimental conditions on four separate days. The order of experiments was randomized between sham control (seated rest), music (20-min classical music track compilation), resistance exercise (5 sets of 10 repetitions at 75% of 1 repetition maximum), and resistance exercise with music conditions. Aortic pressure was measured in all subjects. No significant interaction between time, music, and resistance exercise was observed for aortic systolic pressure and diastolic pressure. In contrast, aortic pulse pressure showed a significant interaction; that is, aortic pulse pressure significantly widened after resistance exercise, whereas music significantly attenuated this widening. No significant change was observed in aortic pulse pressure in sham control and music conditions. The present findings suggest that music attenuates resistance exercise-induced increase in central pressure.
Collapse
Affiliation(s)
- Kaname Tagawa
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Graduate School of Education, Miyagi University of Education, Sendai, Japan
| | - Yoshio Nakata
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Atsumu Yokota
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tomohito Sato
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Seiji Maeda
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
47
|
Gwin JA, Church DD, Wolfe RR, Ferrando AA, Pasiakos SM. Muscle Protein Synthesis and Whole-Body Protein Turnover Responses to Ingesting Essential Amino Acids, Intact Protein, and Protein-Containing Mixed Meals with Considerations for Energy Deficit. Nutrients 2020; 12:nu12082457. [PMID: 32824200 PMCID: PMC7469068 DOI: 10.3390/nu12082457] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/07/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023] Open
Abstract
Protein intake recommendations to optimally stimulate muscle protein synthesis (MPS) are derived from dose-response studies examining the stimulatory effects of isolated intact proteins (e.g., whey, egg) on MPS in healthy individuals during energy balance. Those recommendations may not be adequate during periods of physiological stress, specifically the catabolic stress induced by energy deficit. Providing supplemental intact protein (20–25 g whey protein, 0.25–0.3 g protein/kg per meal) during strenuous military operations that elicit severe energy deficit does not stimulate MPS-associated anabolic signaling or attenuate lean mass loss. This occurs likely because a greater proportion of the dietary amino acids consumed are targeted for energy-yielding pathways, whole-body protein synthesis, and other whole-body essential amino acid (EAA)-requiring processes than the proportion targeted for MPS. Protein feeding formats that provide sufficient energy to offset whole-body energy and protein-requiring demands during energy deficit and leverage EAA content, digestion, and absorption kinetics may optimize MPS under these conditions. Understanding the effects of protein feeding format-driven alterations in EAA availability and subsequent changes in MPS and whole-body protein turnover is required to design feeding strategies that mitigate the catabolic effects of energy deficit. In this manuscript, we review the effects, advantages, disadvantages, and knowledge gaps pertaining to supplemental free-form EAA, intact protein, and protein-containing mixed meal ingestion on MPS. We discuss the fundamental role of whole-body protein balance and highlight the importance of comprehensively assessing whole-body and muscle protein kinetics when evaluating the anabolic potential of varying protein feeding formats during energy deficit.
Collapse
Affiliation(s)
- Jess A. Gwin
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA 01760, USA;
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - David D. Church
- Department of Geriatrics, Donald W. Reynolds Institute on Aging, Center for Translational Research in Aging & Longevity, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (D.D.C); (R.R.W.); (A.A.F.)
| | - Robert R. Wolfe
- Department of Geriatrics, Donald W. Reynolds Institute on Aging, Center for Translational Research in Aging & Longevity, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (D.D.C); (R.R.W.); (A.A.F.)
| | - Arny A. Ferrando
- Department of Geriatrics, Donald W. Reynolds Institute on Aging, Center for Translational Research in Aging & Longevity, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (D.D.C); (R.R.W.); (A.A.F.)
| | - Stefan M. Pasiakos
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA 01760, USA;
- Correspondence: ; Tel.: +1-508-206-2353
| |
Collapse
|
48
|
Effects of pre-sleep protein consumption on muscle-related outcomes - A systematic review. J Sci Med Sport 2020; 24:177-182. [PMID: 32811763 DOI: 10.1016/j.jsams.2020.07.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVES The timing of protein intake over the day on muscle mass and strength gains have received interest in the literature. Thus, the aim of this systematic review is to analyze clinical studies that evaluated the acute effects of pre-sleep protein consumption on overnight muscle protein synthesis and the chronic effects on muscle mass and strength. DESIGNS Systematic review. METHODS A literature search was conducted up to June 2020 according to PRISMA statement and nine articles were included to analyze. RESULTS The consumption of 20-40 g of casein approximately 30 min before sleep stimulates whole-body protein synthesis rates over a subsequent overnight period in young and elderly men (preceded or not by resistance exercise, respectively). In addition, pre-sleep protein consumption can augment the muscle adaptive response (muscle fiber cross-sectional area, strength and muscle mass) during 10-12 weeks of resistance exercise in young, but not in elderly men. CONCLUSIONS Based on current evidence, the consumption of 20-40 g of casein approximately 30 min before sleep improves protein synthetic response during an overnight recovery period in healthy young adult men, with possible positive effects on muscle mass and strength following prolonged resistance exercise. In elderly, despite the initial evidence regarding the pre-sleep protein enhances overnight muscle protein synthesis rates, the current available evidence is limited precluding to conclude about the chronic effects on skeletal muscle mass or strength. These conclusions need to be taken with caution due to uneven protein intakes between experimental groups. Therefore, more data are needed before further considering pre-sleep protein as an effective nutritional intervention.
Collapse
|
49
|
Jorgenson KW, Phillips SM, Hornberger TA. Identifying the Structural Adaptations that Drive the Mechanical Load-Induced Growth of Skeletal Muscle: A Scoping Review. Cells 2020; 9:cells9071658. [PMID: 32660165 PMCID: PMC7408414 DOI: 10.3390/cells9071658] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/21/2022] Open
Abstract
The maintenance of skeletal muscle mass plays a critical role in health and quality of life. One of the most potent regulators of skeletal muscle mass is mechanical loading, and numerous studies have led to a reasonably clear understanding of the macroscopic and microscopic changes that occur when the mechanical environment is altered. For instance, an increase in mechanical loading induces a growth response that is mediated, at least in part, by an increase in the cross-sectional area of the myofibers (i.e., myofiber hypertrophy). However, very little is known about the ultrastructural adaptations that drive this response. Even the most basic questions, such as whether mechanical load-induced myofiber hypertrophy is mediated by an increase in the size of the pre-existing myofibrils and/or an increase in the number myofibrils, have not been resolved. In this review, we thoroughly summarize what is currently known about the macroscopic, microscopic and ultrastructural changes that drive mechanical load-induced growth and highlight the critical gaps in knowledge that need to be filled.
Collapse
Affiliation(s)
- Kent W. Jorgenson
- School of Veterinary Medicine and the Department of Comparative Biosciences, University of Wisconsin, Madison, WI 53706, USA;
| | - Stuart M. Phillips
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada;
| | - Troy A. Hornberger
- School of Veterinary Medicine and the Department of Comparative Biosciences, University of Wisconsin, Madison, WI 53706, USA;
- Correspondence:
| |
Collapse
|
50
|
Hyldahl RD, Peake JM. Combining cooling or heating applications with exercise training to enhance performance and muscle adaptations. J Appl Physiol (1985) 2020; 129:353-365. [PMID: 32644914 DOI: 10.1152/japplphysiol.00322.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Athletes use cold water immersion, cryotherapy chambers, or icing in the belief that these strategies improve postexercise recovery and promote greater adaptations to training. A number of studies have systematically investigated how regular cold water immersion influences long-term performance and muscle adaptations. The effects of regular cold water immersion after endurance or high-intensity interval training on aerobic capacity, lactate threshold, power output, and time trial performance are equivocal. Evidence for changes in angiogenesis and mitochondrial biogenesis in muscle in response to regular cold water immersion is also mixed. More consistent evidence is available that regular cold water immersion after strength training attenuates gains in muscle mass and strength. These effects are attributable to reduced activation of satellite cells, ribosomal biogenesis, anabolic signaling, and muscle protein synthesis. Athletes use passive heating to warm up before competition or improve postexercise recovery. Emerging evidence indicates that regular exposure to ambient heat, wearing garments perfused with hot water, or microwave diathermy can mimic the effects of endurance training by stimulating angiogenesis and mitochondrial biogenesis in muscle. Some passive heating applications may also mitigate muscle atrophy through their effects on mitochondrial biogenesis and muscle fiber hypertrophy. More research is needed to consolidate these findings, however. Future research in this field should focus on 1) the optimal modality, temperature, duration, and frequency of cooling and heating to enhance long-term performance and muscle adaptations and 2) whether molecular and morphological changes in muscle in response to cooling and heating applications translate to improvements in exercise performance.
Collapse
Affiliation(s)
- Robert D Hyldahl
- Department of Exercise Sciences, Brigham Young University, Provo, Utah
| | - Jonathan M Peake
- Queensland University of Technology, School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Brisbane, Queensland, Australia.,Sport Performance Innovation and Knowledge Excellence, Queensland Academy of Sport, Brisbane, Queensland, Australia
| |
Collapse
|