1
|
Bonney-King J, Fischer J, Miller-Cushon E. Effects of reward type and previous social experience on cognitive testing outcomes of weaned dairy calves. Sci Rep 2025; 15:7571. [PMID: 40038388 DOI: 10.1038/s41598-025-91843-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/24/2025] [Indexed: 03/06/2025] Open
Abstract
Animal cognitive and behavioral testing often requires a reward to motivate task acquisition, yet reward perception may depend on reward type and previous experience. We first assessed the effects of reward types on initial discrimination and reversal learning ability in weaned dairy calves, with calves tested in a T-maze containing either a food, social, or exit reward. During the initial stage, success rate was greater for calves provided the social vs. food reward, whereas success in the reversal stage was greater for calves provided the exit vs. social reward. We also assessed effects of social experience in calves previously housed individually or in pairs tested with either a social or exit reward. Interactive effects of previous housing and reward type were evident during the initial discrimination stage of testing, with previously pair housed calves relatively more successful if given the exit reward and individually housed calves relatively more successful if given the social reward. During the reversal stage, success rate was greater for calves given the exit reward, particularly if previously housed individually. These results suggest that previous social experience can affect the subjective perception of different reward types, and that the subjective valuation of an exit reward may uniquely increase with repeated testing.
Collapse
Affiliation(s)
- Jessica Bonney-King
- Department of Animal Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Jonathan Fischer
- Department of Biostatistics, University of Florida, Gainesville, FL, 32603, USA
| | - Emily Miller-Cushon
- Department of Animal Sciences, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
2
|
McClafferty SR, Paniagua-Ugarte C, Hannabass ZM, Jackson PA, Hayes DM. Comparing the effects of infant maternal and sibling separation on adolescent behavior in rats (Rattus norvegicus). PLoS One 2024; 19:e0308958. [PMID: 39150925 PMCID: PMC11329123 DOI: 10.1371/journal.pone.0308958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/01/2024] [Indexed: 08/18/2024] Open
Abstract
Maternal separation in early life has been observed to have lasting, detrimental effects that impair personal and social development and can persist into adulthood. Maternal separation during infancy can be most detrimental during adolescence, leading to long-term adverse effects on development and social behavior. This research study compared the effects of sibling and maternal separation in infancy on anxiety, sociability, or memory later in adolescence (postnatal day, PND, 50-58) in male and female Long-Evans Rats (Rattus norvegicus). Rat pups were semi-randomly assigned into eight conditions for daily isolation (PND 1-14). The groups were separated by the duration of isolation between 15 minutes (control group) or 180 minutes (experimental group) and the sex of the rat. They were also separated by comfort conditions with the dam present in an adjoining cage versus not present and siblings present or not present during isolation. The result was a 2 (15-min vs. 180-min) x 2 (dam vs. no dam) x 2 (single vs. grouped) x 2 (male vs. female) design. Once pups had reached adolescence (PND 50), researchers tested for differences in anxiety, activity, and social behavior using elevated plus-maze, open field habituation, a three-chamber social interaction, and a social discrimination task. Results indicate that longer isolation was more stressful and caused lower body weight. The female rats showed more anxious behavior in the open field but only if they were in the shorter isolation group. Social interaction showed that the rats isolated with the dam had different effects of isolation. In males, shorter isolation with the dam increased sociability but decreased sociability in females. These complicated findings may be due to the effects of inoculation, which describes how moderate stress combined with comfort may produce adaptation or immunity to stress and affect males and females differently.
Collapse
Affiliation(s)
- Shane R McClafferty
- Radford University, Radford, VA, United States of America
- Virginia Polytechnic Institute and State University, Blacksburg, VA, United States of America
| | | | | | | | - Dayna M Hayes
- Radford University, Radford, VA, United States of America
| |
Collapse
|
3
|
Liu X, Mohtasebi M, Safavi P, Fathi F, Haratbar SR, Chen L, Chen J, Bada HS, Chen L, Abu Jawdeh EG, Yu G. Wearable fiber-free optical sensor for continuous monitoring of neonatal cerebral blood flow and oxygenation. Pediatr Res 2024; 96:486-493. [PMID: 38503982 DOI: 10.1038/s41390-024-03137-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 02/15/2024] [Accepted: 03/01/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND Unstable cerebral hemodynamics places preterm infants at high risk of brain injury. We adapted an innovative, fiber-free, wearable diffuse speckle contrast flow-oximetry (DSCFO) device for continuous monitoring of both cerebral blood flow (CBF) and oxygenation in neonatal piglets and preterm infants. METHODS DSCFO uses two small laser diodes as focused-point and a tiny CMOS camera as a high-density two-dimensional detector to detect spontaneous spatial fluctuation of diffuse laser speckles for CBF measurement, and light intensity attenuations for cerebral oxygenation measurement. The DSCFO was first validated against the established diffuse correlation spectroscopy (DCS) in neonatal piglets and then utilized for continuous CBF and oxygenation monitoring in preterm infants during intermittent hypoxemia (IH) events. RESULTS Significant correlations between the DSCFO and DCS measurements of CBF variations in neonatal piglets were observed. IH events induced fluctuations in CBF, cerebral oxygenation, and peripheral cardiorespiratory vitals in preterm infants. However, no consistent correlation patterns were observed among peripheral and cerebral monitoring parameters. CONCLUSIONS This pilot study demonstrated the feasibility of DSCFO technology to serve as a low-cost wearable sensor for continuous monitoring of multiple cerebral hemodynamic parameters. The results suggested the importance of multi-parameter measurements for understanding deep insights of peripheral and cerebral regulations. IMPACT The innovative DSCFO technology may serve as a low-cost wearable sensor for continuous bedside monitoring of multiple cerebral hemodynamic parameters in neonatal intensive care units. Concurrent DSCFO and DCS measurements of CBF variations in neonatal piglet models generated consistent results. No consistent correlation patterns were observed among peripheral and cerebral monitoring parameters in preterm neonates, suggesting the importance of multi-parameter measurements for understanding deep insights of peripheral and cerebral regulations during IH events. Integrating and correlating multiple cerebral functional parameters with clinical outcomes may identify biomarkers for prediction and management of IH associated brain injury.
Collapse
Affiliation(s)
- Xuhui Liu
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| | - Mehrana Mohtasebi
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| | - Pegah Safavi
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| | - Faraneh Fathi
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| | | | - Li Chen
- Biostatistics and Bioinformatics Shared Resource Facility, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Jin Chen
- Department of Internal Medicine and Department of Computer Science, Institute for Biomedical Informatics, University of Kentucky, Lexington, KY, USA
| | - Henrietta S Bada
- Division of Neonatology, Department of Pediatrics, University of Kentucky, Lexington, KY, USA
| | - Lei Chen
- Department of Physiology and the Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
| | - Elie G Abu Jawdeh
- Division of Neonatology, Department of Pediatrics, University of Kentucky, Lexington, KY, USA
| | - Guoqiang Yu
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
4
|
Nian H, Ding S, Feng Y, Liu H, Li J, Li X, Zhang R, Bao J. Effect of Noise and Music on Neurotransmitters in the Amygdala: The Role Auditory Stimuli Play in Emotion Regulation. Metabolites 2023; 13:928. [PMID: 37623873 PMCID: PMC10456833 DOI: 10.3390/metabo13080928] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/15/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023] Open
Abstract
Stress caused by noise is becoming widespread globally. Noise may lead to deafness, endocrine disorders, neurological diseases, and a decline in mental health. The mechanism behind noise-induced neurodevelopmental abnormalities is unclear, but apoptosis and pro-inflammatory signals may play an important role. In this study, weaned piglets were used as a model to explore noise-induced neurodevelopmental abnormalities. We hypothesized that long-term noise exposure would induce anxiety and cause acute stress, exhibited by alterations in neurotransmission in the amygdala. A total of 72 hybrid piglets (Large White × Duroc × Min Pig) were randomly divided into three groups, including noise (exposed to mechanical noise, 80-85 dB), control (blank, exposed to natural background sound, <40 dB), and music (positive control, exposed to Mozart K.448, 60-70 dB) groups. The piglets were exposed to 6 h of auditory noise daily (10:00-16:00) for 28 days. Compared with the control group, piglets exposed to noise showed more aggressive behavior. The expression of Caspase3, Caspase9, Bax, NF-κB (p56), TLR4, MYD88, I κ B α, IL-1 β, TNF-α, and IL-12RB2 was significantly upregulated in the amygdala, while the expression of Nrf2, HO-1, CAT, and SOD was downregulated in piglets in the noise group. Cell death occurred, and numerous inflammatory cells accumulated in the amygdala of piglets in the noise group. Targeted metabolomics showed that the content of inhibitory neurotransmitter GABA was higher in the amygdala of piglets in the noise group. Compared with the noise group, piglets in the music group displayed more positive emotion-related behaviors. Compared with the noise group, the expression of genes related to apoptosis, inflammation, and oxidative damage was lower in the music group. Cells of the amygdala in the music group were also of normal morphology. Our results show that noise-induced stress causes apoptosis and neuroinflammation in the amygdala and induces anxiety during the early neonatal neural development of piglets. In contrast, to some extent, music alleviates noise-induced anxiety.
Collapse
Affiliation(s)
- Haoyang Nian
- College of Animal Science and Technology, Northeast Agricultural University, Mucai Street No. 59, Harbin 150030, China
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Changjiang Road No. 600, Harbin 150030, China
| | - Susu Ding
- College of Animal Science and Technology, Northeast Agricultural University, Mucai Street No. 59, Harbin 150030, China
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Changjiang Road No. 600, Harbin 150030, China
| | - Yanru Feng
- College of Animal Science and Technology, Northeast Agricultural University, Mucai Street No. 59, Harbin 150030, China
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Changjiang Road No. 600, Harbin 150030, China
| | - Honggui Liu
- College of Animal Science and Technology, Northeast Agricultural University, Mucai Street No. 59, Harbin 150030, China
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Changjiang Road No. 600, Harbin 150030, China
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, Mucai Street No. 59, Harbin 150030, China
| | - Xiang Li
- College of Animal Science and Technology, Northeast Agricultural University, Mucai Street No. 59, Harbin 150030, China
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Changjiang Road No. 600, Harbin 150030, China
| | - Runxiang Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Mucai Street No. 59, Harbin 150030, China
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, Mucai Street No. 59, Harbin 150030, China
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Changjiang Road No. 600, Harbin 150030, China
| |
Collapse
|
5
|
Sun J, Chong J, Zhang J, Ge L. Preterm pigs for preterm birth research: reasonably feasible. Front Physiol 2023; 14:1189422. [PMID: 37520824 PMCID: PMC10374951 DOI: 10.3389/fphys.2023.1189422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023] Open
Abstract
Preterm birth will disrupt the pattern and course of organ development, which may result in morbidity and mortality of newborn infants. Large animal models are crucial resources for developing novel, credible, and effective treatments for preterm infants. This review summarizes the classification, definition, and prevalence of preterm birth, and analyzes the relationship between the predicted animal days and one human year in the most widely used animal models (mice, rats, rabbits, sheep, and pigs) for preterm birth studies. After that, the physiological characteristics of preterm pig models at different gestational ages are described in more detail, including birth weight, body temperature, brain development, cardiovascular system development, respiratory, digestive, and immune system development, kidney development, and blood constituents. Studies on postnatal development and adaptation of preterm pig models of different gestational ages will help to determine the physiological basis for survival and development of very preterm, middle preterm, and late preterm newborns, and will also aid in the study and accurate optimization of feeding conditions, diet- or drug-related interventions for preterm neonates. Finally, this review summarizes several accepted pediatric applications of preterm pig models in nutritional fortification, necrotizing enterocolitis, neonatal encephalopathy and hypothermia intervention, mechanical ventilation, and oxygen therapy for preterm infants.
Collapse
Affiliation(s)
- Jing Sun
- Chongqing Academy of Animal Sciences, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, China
| | - Jie Chong
- Chongqing Academy of Animal Sciences, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
| | - Jinwei Zhang
- Chongqing Academy of Animal Sciences, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, China
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, China
| |
Collapse
|
6
|
Stanke KL, Larsen RJ, Rund L, Leyshon BJ, Louie AY, Steelman AJ. Automated identification of piglet brain tissue from MRI images using Region-based Convolutional Neural Networks. PLoS One 2023; 18:e0284951. [PMID: 37167205 PMCID: PMC10174584 DOI: 10.1371/journal.pone.0284951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/12/2023] [Indexed: 05/13/2023] Open
Abstract
Magnetic resonance imaging is an important tool for characterizing volumetric changes of the piglet brain during development. Typically, an early step of an imaging analysis pipeline is brain extraction, or skull stripping. Brain extractions are usually performed manually; however, this approach is time-intensive and can lead to variation between brain extractions when multiple raters are used. Automated brain extractions are important for reducing the time required for analyses and improving the uniformity of the extractions. Here we demonstrate the use of Mask R-CNN, a Region-based Convolutional Neural Network (R-CNN), for automated brain extractions of piglet brains. We validate our approach using Nested Cross-Validation on six sets of training/validation data drawn from 32 pigs. Visual inspection of the extractions shows acceptable accuracy, Dice coefficients are in the range of 0.95-0.97, and Hausdorff Distance values in the range of 4.1-8.3 voxels. These results demonstrate that R-CNNs provide a viable tool for skull stripping of piglet brains.
Collapse
Affiliation(s)
- Kayla L. Stanke
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Champaign, Illinois, United States of America
| | - Ryan J. Larsen
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Champaign, Illinois, United States of America
| | - Laurie Rund
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Champaign, Illinois, United States of America
| | - Brian J. Leyshon
- Abbott Nutrition, Discovery Research, Columbus, Ohio, United States of America
| | - Allison Y. Louie
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Champaign, Illinois, United States of America
| | - Andrew J. Steelman
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Champaign, Illinois, United States of America
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Champaign, Illinois, United States of America
- Neuroscience Program, University of Illinois Urbana-Champaign, Champaign, Illinois, United States of America
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Champaign, Illinois, United States of America
| |
Collapse
|
7
|
Morales A, Andrews MG. Approaches to investigating metabolism in human neurodevelopment using organoids: insights from intestinal and cancer studies. Development 2022; 149:dev200506. [PMID: 36255366 PMCID: PMC9720749 DOI: 10.1242/dev.200506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Interrogating the impact of metabolism during development is important for understanding cellular and tissue formation, organ and systemic homeostasis, and dysregulation in disease states. To evaluate the vital functions metabolism coordinates during human brain development and disease, pluripotent stem cell-derived models, such as organoids, provide tractable access to neurodevelopmental processes. Despite many strengths of neural organoid models, the extent of their replication of endogenous metabolic programs is currently unclear and requires direct investigation. Studies in intestinal and cancer organoids that functionally evaluate dynamic bioenergetic changes provide a framework that can be adapted for the study of neural metabolism. Validation of in vitro models remains a significant challenge; investigation using in vivo models and primary tissue samples is required to improve our in vitro model systems and, concomitantly, improve our understanding of human development.
Collapse
Affiliation(s)
- Alexandria Morales
- Schoolof Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85281, USA
- Biomedical Engineering Graduate Program, Arizona State University, Tempe, AZ 85281, USA
| | - Madeline G. Andrews
- Schoolof Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
8
|
Sutkus LT, Joung S, Hirvonen J, Jensen HM, Ouwehand AC, Mukherjea R, Donovan SM, Dilger RN. Influence of 2'-Fucosyllactose and Bifidobacterium longum Subspecies infantis Supplementation on Cognitive and Structural Brain Development in Young Pigs. Front Neurosci 2022; 16:860368. [PMID: 35546890 PMCID: PMC9081927 DOI: 10.3389/fnins.2022.860368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/21/2022] [Indexed: 12/18/2022] Open
Abstract
Development of the gut-brain axis during early-life is an important contributor of brain structural and functional development. Human milk oligosaccharides and gut microbiota have potential beneficial effects on various aspects of development; however, the effects of 2′-fucosyllactose (2′-FL) and Bifidobacterium longum subsp. infantis Bi-26 (Bi-26) administration during infancy separately and combined are still not clear. Therefore, we investigated the effects of early administration of dietary 2′-FL and Bi-26 on brain structural and functional development in the young pig. From postnatal day (PND) 2–34 or 35, fifty-two intact male pigs were randomly assigned to treatment groups in a 2 × 2 factorial arrangement and provided ad libitum access to a nutritionally adequate milk replacer without or with 1.0 g of 2′-FL/L of reconstituted liquid. Pigs within each diet group were further stratified to receive a daily oral dose of glycerol stock without or with Bi-26 (109 CFU). Pigs were subjected to the novel object recognition (NOR) task from PND 27–31 to assess recognition memory and subsequently underwent magnetic resonance imaging procedures at PND 32 or 33 to assess brain macrostructure and microstructure. Pigs that received Bi-26 had smaller absolute brain volumes for 9 of 27 brain regions of interest, and smaller relative volumes for 2 regions associated with kinesthesia (P < 0.05). Synbiotic administration of 2′-FL and Bi-26 elicited interactive effects (P < 0.05) on several microstructural brain components, where dual supplementation negated the effects of each test article alone. Behavioral outcomes indicated that pigs did not express novelty preference, regardless of treatment group, demonstrating no effects of 2′-FL and Bi-26 on recognition memory when supplemented alone or in combination. Interactive effects (P < 0.05) were observed for the number of all object visits, latency to the first object visit, and number of familiar object visits. Pigs that did not receive Bi-26 supplementation exhibited less time interacting with the familiar object in total (P = 0.002) and on average (P = 0.005). In conclusion, supplementation of 2′-FL and/or Bi-26 elicited some alterations in object exploratory behaviors and macro/micro-structures of the brain, but changes in recognition memory were not observed. Specifically in brain microstructure, synbiotic administration of 2′-FL and Bi-26 appeared to negate effects observed when each dietary article was supplemented separately.
Collapse
Affiliation(s)
- Loretta T Sutkus
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Sangyun Joung
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | | | - Henrik Max Jensen
- IFF R&D-Enabling Technologies, Advanced Analytical, Brabrand, Denmark
| | | | | | - Sharon M Donovan
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Ryan N Dilger
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| |
Collapse
|
9
|
Henriksen NL, Asmussen KS, Pan X, Jiang PP, Mori Y, Christiansen LI, Sprenger RR, Ejsing CS, Pankratova S, Thymann T. Brain lipidomics and neurodevelopmental outcomes in intrauterine growth restricted piglets fed dairy or vegetable fat diets. Sci Rep 2022; 12:3303. [PMID: 35228576 PMCID: PMC8885751 DOI: 10.1038/s41598-022-07133-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/14/2022] [Indexed: 11/18/2022] Open
Abstract
Breast milk has neurodevelopmental advantages compared to infant formula, especially in low-birth-weight infants, which may in part relate to the fat source. This study compared neurodevelopmental outcomes in three-day-old normal birth weight (NBW) and intrauterine growth restricted (IUGR) piglets fed a formula diet with either vegetable oil (VEG) or bovine milk fat sources (MILK) for three weeks in a 2 × 2 factorial design. Behavioural tests, lipidomics, MRI and RNA sequencing analyses of plasma and brain tissue were conducted. The absolute levels of 82% and 11% of lipid molecules were different between dietary groups in plasma and hippocampus, respectively. Of the lipid molecules with differential abundance in the hippocampus, the majority were upregulated in MILK versus VEG, and they mainly belonged to the group of glycerophospholipids. Lower absolute brain weights, absolute grey and white matter volumes and behaviour and motor function scores, and higher relative total brain weights were present in IUGR compared to NBW with minor influence of diet. Cognitive function and cerebellar gene expression profiles were similar for dietary and weight groups, and overall only minor interactive effects between diet and birth weight were observed. Overall, we show that the dietary fat source influences the plasma and to a lesser degree the hippocampal lipidome and is unable to improve on IUGR-induced brain structural and functional impairments.
Collapse
Affiliation(s)
- Nicole L Henriksen
- Section of Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Dyrlægevej 68, 1870, Frederiksberg C, Denmark
| | - Karina S Asmussen
- Section of Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Dyrlægevej 68, 1870, Frederiksberg C, Denmark
| | - Xiaoyu Pan
- Section of Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Dyrlægevej 68, 1870, Frederiksberg C, Denmark
| | - Ping-Ping Jiang
- Section of Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Dyrlægevej 68, 1870, Frederiksberg C, Denmark
| | - Yuki Mori
- Center for Translational Neuromedicine, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Line I Christiansen
- Section of Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Dyrlægevej 68, 1870, Frederiksberg C, Denmark
| | - Richard R Sprenger
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Christer S Ejsing
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Stanislava Pankratova
- Section of Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Dyrlægevej 68, 1870, Frederiksberg C, Denmark
| | - Thomas Thymann
- Section of Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Dyrlægevej 68, 1870, Frederiksberg C, Denmark.
| |
Collapse
|
10
|
Neurovascular Unit Alterations in the Growth-Restricted Newborn Are Improved Following Ibuprofen Treatment. Mol Neurobiol 2021; 59:1018-1040. [PMID: 34825315 DOI: 10.1007/s12035-021-02654-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 11/17/2021] [Indexed: 10/19/2022]
Abstract
The developing brain is particularly vulnerable to foetal growth restriction (FGR) and abnormal neurodevelopment is common in the FGR infant ranging from behavioural and learning disorders to cerebral palsy. No treatment exists to protect the FGR newborn brain. Recent evidence suggests inflammation may play a key role in the mechanism responsible for the progression of brain impairment in the FGR newborn, including disruption to the neurovascular unit (NVU). We explored whether ibuprofen, an anti-inflammatory drug, could reduce NVU disruption and brain impairment in the FGR newborn. Using a preclinical FGR piglet model, ibuprofen was orally administered for 3 days from birth. FGR brains demonstrated a proinflammatory state, with changes to glial morphology (astrocytes and microglia), and blood-brain barrier disruption, assessed by IgG and albumin leakage into the brain parenchyma and a decrease in blood vessel density. Loss of interaction between astrocytic end-feet and blood vessels was evident where plasma protein leakage was present, suggestive of structural deficits to the NVU. T-cell infiltration was also evident in the parenchyma of FGR piglet brains. Ibuprofen treatment reduced the pro-inflammatory response in FGR piglets, reducing the number of activated microglia and enhancing astrocyte interaction with blood vessels. Ibuprofen also attenuated plasma protein leakage, regained astrocytic end-feet interaction around vessels, and decreased T-cell infiltration into the FGR brain. These findings suggest postnatal administration of ibuprofen modulates the inflammatory state, allowing for stronger interaction between vasculature and astrocytic end-feet to restore NVU integrity. Modulation of the NVU improves the FGR brain microenvironment and may be key to neuroprotection.
Collapse
|
11
|
McAllister JP, Talcott MR, Isaacs AM, Zwick SH, Garcia-Bonilla M, Castaneyra-Ruiz L, Hartman AL, Dilger RN, Fleming SA, Golden RK, Morales DM, Harris CA, Limbrick DD. A novel model of acquired hydrocephalus for evaluation of neurosurgical treatments. Fluids Barriers CNS 2021; 18:49. [PMID: 34749745 PMCID: PMC8576945 DOI: 10.1186/s12987-021-00281-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 10/09/2021] [Indexed: 02/07/2023] Open
Abstract
Background Many animal models have been used to study the pathophysiology of hydrocephalus; most of these have been rodent models whose lissencephalic cerebral cortex may not respond to ventriculomegaly in the same way as gyrencephalic species and whose size is not amenable to evaluation of clinically relevant neurosurgical treatments. Fewer models of hydrocephalus in gyrencephalic species have been used; thus, we have expanded upon a porcine model of hydrocephalus in juvenile pigs and used it to explore surgical treatment methods. Methods Acquired hydrocephalus was induced in 33–41-day old pigs by percutaneous intracisternal injections of kaolin (n = 17). Controls consisted of sham saline-injected (n = 6) and intact (n = 4) animals. Magnetic resonance imaging (MRI) was employed to evaluate ventriculomegaly at 11–42 days post-kaolin and to plan the surgical implantation of ventriculoperitoneal shunts at 14–38-days post-kaolin. Behavioral and neurological status were assessed. Results Bilateral ventriculomegaly occurred post-induction in all regions of the cerebral ventricles, with prominent CSF flow voids in the third ventricle, foramina of Monro, and cerebral aqueduct. Kaolin deposits formed a solid cast in the basal cisterns but the cisterna magna was patent. In 17 untreated hydrocephalic animals. Mean total ventricular volume was 8898 ± 5917 SD mm3 at 11–43 days of age, which was significantly larger than the baseline values of 2251 ± 194 SD mm3 for 6 sham controls aged 45–55 days, (p < 0.001). Past the post-induction recovery period, untreated pigs were asymptomatic despite exhibiting mild-moderate ventriculomegaly. Three out of 4 shunted animals showed a reduction in ventricular volume after 20–30 days of treatment, however some developed ataxia and lethargy, from putative shunt malfunction. Conclusions Kaolin induction of acquired hydrocephalus in juvenile pigs produced an in vivo model that is highly translational, allowing systematic studies of the pathophysiology and clinical treatment of hydrocephalus. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-021-00281-0.
Collapse
Affiliation(s)
- James P McAllister
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA. .,Department of Neurosurgery, BJC Institute of Health, 425 S. Euclid, Campus, Box 8057, St. Louis, MO, 63143, USA.
| | - Michael R Talcott
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA.,Division of Comparative Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Albert M Isaacs
- Department of Surgery, Division of Neurosurgery, University of Calgary School of Medicine, Calgary, AB, T2N 2T9, Canada
| | - Sarah H Zwick
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Maria Garcia-Bonilla
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Leandro Castaneyra-Ruiz
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Alexis L Hartman
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Ryan N Dilger
- Department of Animal Sciences, Division of Nutritional Sciences, Neuroscience Program, University of Illinois, Champagne-Urbana, Illinois, 61801, USA.,Traverse Science, Champaign, IL, 61801, USA
| | - Stephen A Fleming
- Department of Animal Sciences, Division of Nutritional Sciences, Neuroscience Program, University of Illinois, Champagne-Urbana, Illinois, 61801, USA.,Traverse Science, Champaign, IL, 61801, USA
| | - Rebecca K Golden
- Department of Animal Sciences, Division of Nutritional Sciences, Neuroscience Program, University of Illinois, Champagne-Urbana, Illinois, 61801, USA
| | - Diego M Morales
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Carolyn A Harris
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI, 48202 , USA.,Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, 48202, USA
| | - David D Limbrick
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA.,Department of Pediatrics, St. Louis Children's Hospital, St. Louis, MO, 63110, USA
| |
Collapse
|
12
|
Sridharan A, Hwang M, Kutty S, McCarville MB, Paltiel HJ, Piskunowicz M, Shellikeri S, Silvestro E, Taylor GA, Didier RA. Translational research in pediatric contrast-enhanced ultrasound. Pediatr Radiol 2021; 51:2425-2436. [PMID: 33991196 PMCID: PMC11459366 DOI: 10.1007/s00247-021-05095-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/21/2021] [Accepted: 04/28/2021] [Indexed: 10/21/2022]
Abstract
The role of contrast-enhanced ultrasound (CEUS) imaging is being widely explored by various groups for its use in the pediatric population. Clinical implementation of new diagnostic or therapeutic techniques requires extensive and meticulous preclinical testing and evaluation. The impact of CEUS will be determined in part by the extent to which studies are oriented specifically toward a pediatric population. Rather than simply applying principles and techniques used in the adult population, these studies are expected to advance and augment preexisting knowledge with pediatric-specific information. To further develop this imaging modality for use in children, pediatric-focused preclinical research is essential. In this paper we describe the development and implementation of the pediatric-specific preclinical animal and phantom models that are being used to evaluate CEUS with the goal of clinical translation to children.
Collapse
Affiliation(s)
- Anush Sridharan
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA.
| | - Misun Hwang
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Shelby Kutty
- Taussig Heart Center, Johns Hopkins University, Baltimore, MD, USA
| | - M Beth McCarville
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Harriet J Paltiel
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Sphoorti Shellikeri
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
| | - Elizabeth Silvestro
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
| | - George A Taylor
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
- Harvard Medical School, Boston, MA, USA
| | - Ryne A Didier
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
13
|
Zhu J, Chen F, Luo L, Wu W, Dai J, Zhong J, Lin X, Chai C, Ding P, Liang L, Wang S, Ding X, Chen Y, Wang H, Qiu J, Wang F, Sun C, Zeng Y, Fang J, Jiang X, Liu P, Tang G, Qiu X, Zhang X, Ruan Y, Jiang S, Li J, Zhu S, Xu X, Li F, Liu Z, Cao G, Chen D. Single-cell atlas of domestic pig cerebral cortex and hypothalamus. Sci Bull (Beijing) 2021; 66:1448-1461. [PMID: 36654371 DOI: 10.1016/j.scib.2021.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/07/2020] [Accepted: 03/12/2021] [Indexed: 01/20/2023]
Abstract
The brain of the domestic pig (Sus scrofa domesticus) has drawn considerable attention due to its high similarities to that of humans. However, the cellular compositions of the pig brain (PB) remain elusive. Here we investigated the single-nucleus transcriptomic profiles of five regions of the PB (frontal lobe, parietal lobe, temporal lobe, occipital lobe, and hypothalamus) and identified 21 cell subpopulations. The cross-species comparison of mouse and pig hypothalamus revealed the shared and specific gene expression patterns at the single-cell resolution. Furthermore, we identified cell types and molecular pathways closely associated with neurological disorders, bridging the gap between gene mutations and pathogenesis. We reported, to our knowledge, the first single-cell atlas of domestic pig cerebral cortex and hypothalamus combined with a comprehensive analysis across species, providing extensive resources for future research regarding neural science, evolutionary developmental biology, and regenerative medicine.
Collapse
Affiliation(s)
- Jiacheng Zhu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Fang Chen
- BGI-Shenzhen, Shenzhen 518083, China; MGI, BGI-Shenzhen, Shenzhen 518083, China
| | - Lihua Luo
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Weiying Wu
- BGI-Shenzhen, Shenzhen 518083, China; Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, and the MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou 310031, China
| | - Jinxia Dai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jixing Zhong
- School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiumei Lin
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Chaochao Chai
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Peiwen Ding
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Langchao Liang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Shiyou Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Xiangning Ding
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Yin Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Haoyu Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Jiaying Qiu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI-Shenzhen, Shenzhen 518083, China
| | | | - Chengcheng Sun
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI-Shenzhen, Shenzhen 518083, China; School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Yuying Zeng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI-Shenzhen, Shenzhen 518083, China; College of Life Science, South China Agricultural University, Guangzhou 510642, China
| | - Jian Fang
- BGI-Shenzhen, Shenzhen 518083, China
| | - Xiaosen Jiang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Ping Liu
- BGI-Shenzhen, Shenzhen 518083, China; MGI, BGI-Shenzhen, Shenzhen 518083, China
| | - Gen Tang
- Shenzhen Children's Hospital, Shenzhen 518083, China
| | - Xin Qiu
- Shenzhen Children's Hospital, Shenzhen 518083, China
| | | | - Yetian Ruan
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | | | | | - Shida Zhu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Fang Li
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Zhongmin Liu
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Gang Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China.
| | | |
Collapse
|
14
|
Fanous M, Shi C, Caputo MP, Rund LA, Johnson RW, Das T, Kuchan MJ, Sobh N, Popescu G. Label-free screening of brain tissue myelin content using phase imaging with computational specificity (PICS). APL PHOTONICS 2021; 6:076103. [PMID: 34291159 PMCID: PMC8278825 DOI: 10.1063/5.0050889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/24/2021] [Indexed: 05/03/2023]
Abstract
Inadequate myelination in the central nervous system is associated with neurodevelopmental complications. Thus, quantitative, high spatial resolution measurements of myelin levels are highly desirable. We used spatial light interference microcopy (SLIM), a highly sensitive quantitative phase imaging (QPI) technique, to correlate the dry mass content of myelin in piglet brain tissue with dietary changes and gestational size. We combined SLIM micrographs with an artificial intelligence (AI) classifying model that allows us to discern subtle disparities in myelin distributions with high accuracy. This concept of combining QPI label-free data with AI for the purpose of extracting molecular specificity has recently been introduced by our laboratory as phase imaging with computational specificity. Training on 8000 SLIM images of piglet brain tissue with the 71-layer transfer learning model Xception, we created a two-parameter classification to differentiate gestational size and diet type with an accuracy of 82% and 80%, respectively. To our knowledge, this type of evaluation is impossible to perform by an expert pathologist or other techniques.
Collapse
Affiliation(s)
| | - Chuqiao Shi
- Quantitative Light Imaging Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Megan P. Caputo
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Laurie A. Rund
- Laboratory of Integrative Immunology & Behavior, Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | - Tapas Das
- Abbott Nutrition, Discovery Research, Columbus, Ohio 43219, USA
| | - Matthew J. Kuchan
- Abbott Nutrition, Strategic Research, 3300 Stelzer Road, Columbus, Ohio 43219, USA
| | | | | |
Collapse
|
15
|
Buddington RK, Yakimkova T, Adebiyi A, Chizhikov VV, Iskusnykh IY, Buddington KK. Organ Growth and Intestinal Functions of Preterm Pigs Fed Low and High Protein Formulas With or Without Supplemental Leucine or Hydroxymethylbutyrate as Growth Promoters. Front Nutr 2021; 8:687703. [PMID: 34150831 PMCID: PMC8211743 DOI: 10.3389/fnut.2021.687703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/10/2021] [Indexed: 01/07/2023] Open
Abstract
The goal of enteral nutritional support for infants born preterm or small for gestational age (SGA) is to achieve normal growth and development. Yet, this is difficult to achieve because of intestinal immaturity. Our objective was to determine if birth weight, protein intake, and the growth promoters leucine (10 g/L) or calcium-ß-hydroxy-ß-methylbutryate (HMB; 1.1 g/L) would affect trajectories of intestinal growth and functions and weights of other organs. Preterm pigs were delivered at gestational day 105 (91% of term) and fed for 6 or 7 days isocaloric formulas that differed in protein content (50 g or 100 g protein/L), with and without the growth promoters leucine or HMB. For comparative purposes organ weights were measured within 12 h after delivery for six term pigs of low and six of average birth weights. The responses of intestinal growth and total intestinal brush border membrane carbohydrases to protein level and supplemental leucine were of greater magnitude for preterm pigs of lower birth weight. Forskolin stimulated chloride secretion in the proximal small intestine was lower for pigs fed the low protein milk replacers. Capacities of the entire small intestine to transport glucose (mmol/kg-day) were not responsive to protein level, leucine, or HMB, and did not differ between small and large pigs. Relative organ weights of the small and average weight term pigs were similar, but some differed from those of the preterm pigs suggesting preterm birth and the standards of care used for this study altered the trajectories of development for the intestine and other organs. Although leucine is an effective generalized growth promoter that enhances gut development of small preterm pigs, it does not mitigate compromised neurodevelopment. Our findings using preterm pigs as a relevant preclinical model indicate nutrition support strategies can influence development of some gastrointestinal tract characteristics and the growth of other organs.
Collapse
Affiliation(s)
| | - Taisiya Yakimkova
- College of Health Studies, University of Memphis, Memphis, TN, United States
| | - Adebowale Adebiyi
- Department of Physiology, University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Victor V Chizhikov
- Department of Anatomy and Neurobiology, University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Igor Y Iskusnykh
- Department of Anatomy and Neurobiology, University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Karyl K Buddington
- Department of Biological Sciences, University of Memphis, Memphis, TN, United States
| |
Collapse
|
16
|
Fleming SA, Hauser J, Yan J, Donovan SM, Wang M, Dilger RN. A Mediation Analysis to Identify Links between Gut Bacteria and Memory in Context of Human Milk Oligosaccharides. Microorganisms 2021; 9:846. [PMID: 33920826 PMCID: PMC8071191 DOI: 10.3390/microorganisms9040846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/23/2022] Open
Abstract
Elucidating relationships between the gut and brain is of intense research focus. Multiple studies have demonstrated that modulation of the intestinal environment via prebiotics or probiotics can induce cognitively beneficial effects, such as improved memory or reduced anxiety. However, the mechanisms by which either act remain largely unknown. We previously demonstrated that different types of oligosaccharides affected short- and long-term memory in distinct ways. Given that the oligosaccharide content of human milk is highly variable, and that formula-fed infants typically do not consume similar amounts or types of oligosaccharides, their potential effects on brain development warrant investigation. Herein, a mediation analysis was performed on existing datasets, including relative abundance of bacterial genera, gene expression, brain volume, and cognition in young pigs. Analyses revealed that numerous bacterial genera in both the colon and feces were related to short- and/or long-term memory. Relationships between genera and memory appeared to differ between diets. Mediating variables frequently included GABAergic and glutamatergic hippocampal gene expression. Other mediating variables included genes related to myelination, transcription factors, brain volume, and exploratory behavior. Overall, this analysis identified multiple pathways between the gut and brain, with a focus on genes related to excitatory/inhibitory neurotransmission.
Collapse
Affiliation(s)
| | - Jonas Hauser
- Société des Produits Nestlé SA, 1000 Lausanne, Switzerland;
| | - Jian Yan
- Nestlé Product Technology Center Nutrition, CH-1800 Vevey, Switzerland;
| | - Sharon M. Donovan
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL 61801, USA; (S.M.D.); (M.W.)
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Mei Wang
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL 61801, USA; (S.M.D.); (M.W.)
| | - Ryan N. Dilger
- Traverse Science, Inc., Champaign, IL 61820, USA;
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
- Piglet Nutrition and Cognition Laboratory, Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
- Neuroscience Program, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
17
|
Iskusnykh IY, Fattakhov N, Buddington RK, Chizhikov VV. Intrauterine growth restriction compromises cerebellar development by affecting radial migration of granule cells via the JamC/Pard3a molecular pathway. Exp Neurol 2020; 336:113537. [PMID: 33259808 DOI: 10.1016/j.expneurol.2020.113537] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/30/2020] [Accepted: 11/22/2020] [Indexed: 12/30/2022]
Abstract
Intrauterine growth restriction (IUGR) affects ~10% of human pregnancies, results in infants born small for gestational age (SGA), and is associated with motor and cognitive deficits. Human studies suggest that some deficits in SGA patients originate in the cerebellum, a major motor-coordination and cognitive center, but the underlying mechanisms remain unknown. To identify the cerebellar developmental program affected by IUGR, we analyzed the pig as a translational animal model in which some fetuses spontaneously develop IUGR due to early-onset chronic placental insufficiency. Similar to humans, SGA pigs revealed small cerebella, which contained fewer mature granule cells (GCs) in the internal granule cell layer (IGL). Surprisingly, newborn SGA pigs had increased proliferation of GC precursors in the external granule cell layer (EGL), which was associated with an increased density of Purkinje cells, known to non-autonomously promote the proliferation of GCs. However, the GCs of SGA pigs did not properly initiate exit from the EGL to IGL, which was associated with a decreased density of guiding Bergmann glial fibers, reduced expression of pro-migratory genes Pard3a, JamC and Sema6a, and increased apoptosis. While proliferation spontaneously normalized during postnatal development, accumulation of pre-migratory GCs and apoptosis in the EGL were long-lasting consequences of IUGR. Using organotypic cerebellar slice cultures, we showed that normalizing expression of Pard3a and JamC, which operate in the same molecular pathway in GCs, was sufficient to rescue both migratory and, at a later time point, apoptotic defects of IUGR. Thus, a decreased exit of GCs from the EGL, due to disrupted Pard3a/JamC radial migration initiation pathway, is a major mechanism of IUGR-related cerebellar pathology.
Collapse
Affiliation(s)
- Igor Y Iskusnykh
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Nikolai Fattakhov
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Randal K Buddington
- Babies Taking Flight, Memphis, TN 38117, USA; School of Health Studies, University of Memphis, Memphis, TN 38152, USA; College of Nursing, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Victor V Chizhikov
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
18
|
Docq S, Spoelder M, Wang W, Homberg JR. The Protective and Long-Lasting Effects of Human Milk Oligosaccharides on Cognition in Mammals. Nutrients 2020; 12:nu12113572. [PMID: 33233361 PMCID: PMC7700157 DOI: 10.3390/nu12113572] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 12/22/2022] Open
Abstract
Over the last few years, research indicated that Human Milk Oligosaccharides (HMOs) may serve to enhance cognition during development. HMOs hereby provide an exciting avenue in the understanding of the molecular mechanisms that contribute to cognitive development. Therefore, this review aims to summarize the reported observations regarding the effects of HMOs on memory and cognition in rats, mice and piglets. Our main findings illustrate that the administration of fucosylated (single or combined with Lacto-N-neoTetraose (LNnT) and other oligosaccharides) and sialylated HMOs results in marked improvements in spatial memory and an accelerated learning rate in operant tasks. Such beneficial effects of HMOs on cognition already become apparent during infancy, especially when the behavioural tasks are cognitively more demanding. When animals age, its effects become increasingly more apparent in simpler tasks as well. Furthermore, the combination of HMOs with other oligosaccharides yields different effects on memory performance as opposed to single HMO administration. In addition, an enhanced hippocampal long-term potentiation (LTP) response both at a young and at a mature age are reported as well. These results point towards the possibility that HMOs administered either in singular or combination forms have long-lasting, beneficial effects on memory and cognition in mammals.
Collapse
Affiliation(s)
- Sylvia Docq
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 EN Nijmegen, The Netherlands; (S.D.); (M.S.)
| | - Marcia Spoelder
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 EN Nijmegen, The Netherlands; (S.D.); (M.S.)
| | - Wendan Wang
- Inner Mongolia Yili Industrial Group, Co., Ltd., Jinshan road 1, Hohhot 010110, China;
| | - Judith R. Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 EN Nijmegen, The Netherlands; (S.D.); (M.S.)
- Correspondence: ; Tel.: +31-24-3610906
| |
Collapse
|
19
|
Fanous M, Caputo MP, Lee YJ, Rund LA, Best-Popescu C, Kandel ME, Johnson RW, Das T, Kuchan MJ, Popescu G. Quantifying myelin content in brain tissue using color Spatial Light Interference Microscopy (cSLIM). PLoS One 2020; 15:e0241084. [PMID: 33211727 PMCID: PMC7676665 DOI: 10.1371/journal.pone.0241084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 10/08/2020] [Indexed: 12/18/2022] Open
Abstract
Deficient myelination of the brain is associated with neurodevelopmental delays, particularly in high-risk infants, such as those born small in relation to their gestational age (SGA). New methods are needed to further study this condition. Here, we employ Color Spatial Light Interference Microscopy (cSLIM), which uses a brightfield objective and RGB camera to generate pathlength-maps with nanoscale sensitivity in conjunction with a regular brightfield image. Using tissue sections stained with Luxol Fast Blue, the myelin structures were segmented from a brightfield image. Using a binary mask, those portions were quantitatively analyzed in the corresponding phase maps. We first used the CLARITY method to remove tissue lipids and validate the sensitivity of cSLIM to lipid content. We then applied cSLIM to brain histology slices. These specimens are from a previous MRI study, which demonstrated that appropriate for gestational age (AGA) piglets have increased internal capsule myelination (ICM) compared to small for gestational age (SGA) piglets and that a hydrolyzed fat diet improved ICM in both. The identity of samples was blinded until after statistical analyses.
Collapse
Affiliation(s)
- Michael Fanous
- Quantitative Light Imaging Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Megan P. Caputo
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Young Jae Lee
- Quantitative Light Imaging Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Laurie A. Rund
- Laboratory of Integrative Immunology & Behavior, Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Catherine Best-Popescu
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Mikhail E. Kandel
- Quantitative Light Imaging Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Rodney W. Johnson
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Laboratory of Integrative Immunology & Behavior, Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Tapas Das
- Abbott Nutrition, Discovery Research, Columbus, OH, United States of America
| | - Matthew J. Kuchan
- Abbott Nutrition, Strategic Research, Columbus, OH, United States of America
| | - Gabriel Popescu
- Quantitative Light Imaging Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- * E-mail:
| |
Collapse
|
20
|
Koppes EA, Redel BK, Johnson MA, Skvorak KJ, Ghaloul-Gonzalez L, Yates ME, Lewis DW, Gollin SM, Wu YL, Christ SE, Yerle M, Leshinski A, Spate LD, Benne JA, Murphy SL, Samuel MS, Walters EM, Hansen SA, Wells KD, Lichter-Konecki U, Wagner RA, Newsome JT, Dobrowolski SF, Vockley J, Prather RS, Nicholls RD. A porcine model of phenylketonuria generated by CRISPR/Cas9 genome editing. JCI Insight 2020; 5:141523. [PMID: 33055427 PMCID: PMC7605535 DOI: 10.1172/jci.insight.141523] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/17/2020] [Indexed: 12/17/2022] Open
Abstract
Phenylalanine hydroxylase-deficient (PAH-deficient) phenylketonuria (PKU) results in systemic hyperphenylalaninemia, leading to neurotoxicity with severe developmental disabilities. Dietary phenylalanine (Phe) restriction prevents the most deleterious effects of hyperphenylalaninemia, but adherence to diet is poor in adult and adolescent patients, resulting in characteristic neurobehavioral phenotypes. Thus, an urgent need exists for new treatments. Additionally, rodent models of PKU do not adequately reflect neurocognitive phenotypes, and thus there is a need for improved animal models. To this end, we have developed PAH-null pigs. After selection of optimal CRISPR/Cas9 genome-editing reagents by using an in vitro cell model, zygote injection of 2 sgRNAs and Cas9 mRNA demonstrated deletions in preimplantation embryos, with embryo transfer to a surrogate leading to 2 founder animals. One pig was heterozygous for a PAH exon 6 deletion allele, while the other was compound heterozygous for deletions of exon 6 and of exons 6-7. The affected pig exhibited hyperphenylalaninemia (2000-5000 μM) that was treatable by dietary Phe restriction, consistent with classical PKU, along with juvenile growth retardation, hypopigmentation, ventriculomegaly, and decreased brain gray matter volume. In conclusion, we have established a large-animal preclinical model of PKU to investigate pathophysiology and to assess new therapeutic interventions.
Collapse
Affiliation(s)
- Erik A. Koppes
- Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh School of Medicine, and Universityof Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Bethany K. Redel
- Division ofAnimal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, Missouri, USA
- National Swine Research and Resource Center (NSRRC), College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Marie A. Johnson
- Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh School of Medicine, and Universityof Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kristen J. Skvorak
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Lina Ghaloul-Gonzalez
- Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh School of Medicine, and Universityof Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Megan E. Yates
- Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh School of Medicine, and Universityof Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Dale W. Lewis
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Susanne M. Gollin
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Yijen L. Wu
- Department of Developmental Biology, University of Pittsburgh, and UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Shawn E. Christ
- Department of Psychological Sciences, University of Missouri, Columbia, Missouri, USA
| | - Martine Yerle
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet-Tolosan, France
| | - Angela Leshinski
- Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh School of Medicine, and Universityof Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lee D. Spate
- Division ofAnimal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, Missouri, USA
- National Swine Research and Resource Center (NSRRC), College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Joshua A. Benne
- National Swine Research and Resource Center (NSRRC), College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Stephanie L. Murphy
- National Swine Research and Resource Center (NSRRC), College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Melissa S. Samuel
- Division ofAnimal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, Missouri, USA
- National Swine Research and Resource Center (NSRRC), College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Eric M. Walters
- Division ofAnimal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, Missouri, USA
- National Swine Research and Resource Center (NSRRC), College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Sarah A. Hansen
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Kevin D. Wells
- Division ofAnimal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, Missouri, USA
- National Swine Research and Resource Center (NSRRC), College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Uta Lichter-Konecki
- Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh School of Medicine, and Universityof Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Robert A. Wagner
- Division of Laboratory Animal Resources, Office of Research, Health Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joseph T. Newsome
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Division of Laboratory Animal Resources, Office of Research, Health Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Steven F. Dobrowolski
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jerry Vockley
- Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh School of Medicine, and Universityof Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Randall S. Prather
- Division ofAnimal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, Missouri, USA
- National Swine Research and Resource Center (NSRRC), College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Robert D. Nicholls
- Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh School of Medicine, and Universityof Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
21
|
Fleming SA, Mudd AT, Hauser J, Yan J, Metairon S, Steiner P, Donovan SM, Dilger RN. Human and Bovine Milk Oligosaccharides Elicit Improved Recognition Memory Concurrent With Alterations in Regional Brain Volumes and Hippocampal mRNA Expression. Front Neurosci 2020; 14:770. [PMID: 32903658 PMCID: PMC7438728 DOI: 10.3389/fnins.2020.00770] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 06/30/2020] [Indexed: 01/05/2023] Open
Abstract
Human milk contains a unique profile of oligosaccharides (OS) and preliminary evidence suggests they impact brain development. The objective of this study was to assess the impact of bovine and/or human milk oligosaccharides (HMO) (2′-fucosyllactose and Lacto-N-neotetraose) on cognition, brain development, and hippocampal gene expression. Beginning on postnatal day (PND) 2, male pigs received one of four milk replacers containing bovine milk oligosaccharides (BMOS), HMO, both (BMOS + HMO), or neither. Pigs were tested on the novel object recognition task using delays of 1- or 48-h at PND 22. At PND 32–33, magnetic resonance imaging procedures were used to assess structural brain development and hippocampal tissue was collected for analysis of mRNA expression. Pigs consuming only HMO exhibited recognition memory after a 1-h delay and those consuming BMOS + HMO exhibited recognition memory after a 48-h delay. Both absolute and relative volumes of cortical and subcortical brain regions were altered by diet. Hippocampal mRNA expression of GABRB2, SLC1A7, CHRM3, and GLRA4 were most strongly affected by diet. HMO and BMOS had distinct effects on brain structure and cognitive performance. These data suggest different mechanisms underlie their influence on brain development.
Collapse
Affiliation(s)
- Stephen A Fleming
- Piglet Nutrition and Cognition Laboratory, Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Austin T Mudd
- Piglet Nutrition and Cognition Laboratory, Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | | | - Jian Yan
- Nestlé Product Technology Center Nutrition, Vevey, Switzerland
| | | | | | - Sharon M Donovan
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Ryan N Dilger
- Piglet Nutrition and Cognition Laboratory, Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
22
|
Effects of Iron Deficiency on Serum Metabolome, Hepatic Histology, and Function in Neonatal Piglets. Animals (Basel) 2020; 10:ani10081353. [PMID: 32764239 PMCID: PMC7460156 DOI: 10.3390/ani10081353] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Iron deficiency is a serious nutrient deficiency in neonatal pigs during the suckling period in modern intensive farming systems and leads to impaired immune response, infection risks, and retardation of growth. The objective was to determine how iron deficiency in neonatal pigs alters the serum metabolomic profile using quantitative and qualitative analysis by ultra-performance liquid chromatography-tandem mass spectrometer (UPLCMS/MS). The current results revealed that iron deficiency led to a series of metabolic changes involved in tyrosine metabolism, phenylalanine metabolism, bile secretion, primary bile acid biosynthesis, steroid biosynthesis, and upregulated activities of the urea cycle enzymes in the liver of neonatal piglets. Abstract Few studies focused on the effects of iron on characterizing alterations of metabolic processes in neonatal piglets. In the present study, 16 neonatal piglets were randomly assigned to two groups. In the first group piglets were given an intramuscularly injection of iron dextran at 150 mg as a positive control (CON) and the second group were not supplemented with iron as a negative control for iron deficiency (ID). At day 8, iron status, serum biochemical parameters, serum metabolome, hepatic histology, and hepatic expression of genes for the metabolism were analyzed. Results indicated that piglets without iron supplementation had significantly reduced iron values and increased blood urea nitrogen concentrations at day 8 (p < 0.05). Analysis of serum metabolome revealed that concentrations of serum lysine, leucine, tyrosine, methionine, and cholesterol were significantly decreased while concentrations of 3-Methyldioxyindole, chenodeoxycholate acid, indoleacetic acid, icosadienoic acid, phenylpyruvic acid, pantothenic acid, ursocholic acid, and cholic acid were significantly increased in iron deficient piglets (p < 0.05). Furthermore, expressions of cyp7a1 and the urea cycle enzyme (ornithinetranscarbamoylase and argininosuccinate synthetase) were significantly increased in iron deficient pigs (p < 0.05). The present experimental results indicated that neonatal piglets without iron supplementation drop to borderline anemia within 8 days after birth. Iron deficiency led to a series of metabolic changes involved in tyrosine metabolism, phenylalanine metabolism, bile secretion, primary bile acid biosynthesis, steroid biosynthesis, and upregulated activities of the urea cycle enzymes in the liver of neonatal piglets, suggesting early effects on metabolic health of neonatal piglets.
Collapse
|
23
|
Piceatannol Ameliorates Hepatic Oxidative Damage and Mitochondrial Dysfunction of Weaned Piglets Challenged with Diquat. Animals (Basel) 2020; 10:ani10071239. [PMID: 32708214 PMCID: PMC7401537 DOI: 10.3390/ani10071239] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/14/2020] [Accepted: 07/19/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary In our experiment, piglets in two challenged groups were orally administrated either piceatannol or another vehicle solution, and then injected with diquat, a bipyridyl herbicide that can cause a large amount of reactive oxygen species in animal bodies and is widely used to cause oxidative stress, to investigate the effects of piceatannol on hepatic redox status, mitochondrial function and the underlying mechanism. A control group was given neither piceatannol supplementation nor diquat injection. Results showed that piceatannol could improve hepatic redox status, preserve mitochondrial function, and prevent excessive apoptosis of liver cells. In addition, piceatannol might exert its protective effects through a classic antioxidant signaling pathway named Nrf2. Our findings indicated that piceatannol might be an appropriate candidate for further development as an antioxidant food supplement to minimize the risk of oxidative stress in young animals. Abstract The liver is an organ that produces large amounts of reactive oxygen species (ROS). Human infants or piglets are prone to oxidative damage due to their uncompleted development of the antioxidant system, causing liver disease. Piceatannol (PIC) has been found to have significant antioxidant effects. The aim of this experiment was to investigate the effects of PIC on the liver in piglets experiencing oxidative stress caused by diquat (DQ). After weaning, 54 male piglets (Duroc × [Landrace × Yorkshire]) were selected and randomly divided into three treatment groups: the CON group, the DQ-CON group, and the DQ-PIC group. The two challenged groups were injected with DQ and then orally administrated either PIC or another vehicle solution, while the control group was given sterile saline injections and an orally administrated vehicle solution. Compared to the results of the CON group, DQ increased the percentage of apoptosis cells in the liver, also decreased the amount of reduced glutathione (GSH) and increased the concentration of malondialdehyde (MDA). In addition, the adenosine triphosphate (ATP) production, activities of mitochondrial complex I, II, III, and V, and the protein expression level of sirtuin 1 (SIRT1) were inhibited by DQ. Furthermore, PIC supplementation inhibited the apoptosis of hepatic cells caused by DQ. PIC also decreased MDA levels and increased the amount of GSH. Piglets given PIC supplementation exhibited increased activities of mitochondrial complex I, II, III, and V, the protein expression level of SIRT1, and the ATP production in the liver. In conclusion, PIC affected the liver of piglets by improving redox status, preserving mitochondrial function, and preventing excessive apoptosis.
Collapse
|
24
|
Dietary Oligofructose Alone or in Combination with 2'-Fucosyllactose Differentially Improves Recognition Memory and Hippocampal mRNA Expression. Nutrients 2020; 12:nu12072131. [PMID: 32709093 PMCID: PMC7400822 DOI: 10.3390/nu12072131] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 12/13/2022] Open
Abstract
Mounting evidence suggests that dietary oligosaccharides promote brain development. This study assessed the capacity of oligofructose (OF) alone or in combination with 2'-fucosyllactose (2'-FL) to alter recognition memory, structural brain development, and hippocampal gene expression. Beginning on postnatal day (PND) 2, male pigs received one of three milk replacers formulated to contain OF, OF + 2'-FL, or no oligosaccharides (CON). Pigs were tested on the novel object recognition task using delays of 1 or 48 h at PND 22. At PND 32-33, magnetic resonance imaging (MRI) procedures were used to assess structural brain development and hippocampal tissue was collected for analysis of mRNA expression. Pigs that consumed the OF diet demonstrated increased recognition memory after a 1 h delay, whereas those consuming diets containing OF + 2'-FL displayed increased recognition memory after a 48 h delay. Pigs fed OF or OF + 2'-FL exhibited a larger relative volume of the olfactory bulbs compared with CON pigs. Provision of OF or OF + 2'-FL altered gene expression related to dopaminergic, GABAergic, cholinergic, cell adhesion, and chromatin remodeling processes. Collectively, these data indicate that dietary OF and OF + 2'-FL differentially improve cognitive performance and affect olfactory bulb structural development and hippocampal gene expression.
Collapse
|
25
|
Fang X, Sun W, Jeon J, Azain M, Kinder H, Ahn J, Chung HC, Mote RS, Filipov NM, Zhao Q, Rayalam S, Park HJ. Perinatal Docosahexaenoic Acid Supplementation Improves Cognition and Alters Brain Functional Organization in Piglets. Nutrients 2020; 12:E2090. [PMID: 32679753 PMCID: PMC7400913 DOI: 10.3390/nu12072090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 12/22/2022] Open
Abstract
Epidemiologic studies associate maternal docosahexaenoic acid (DHA)/DHA-containing seafood intake with enhanced cognitive development; although, it should be noted that interventional trials show inconsistent findings. We examined perinatal DHA supplementation on cognitive performance, brain anatomical and functional organization, and the brain monoamine neurotransmitter status of offspring using a piglet model. Sows were fed a control (CON) or a diet containing DHA (DHA) from late gestation throughout lactation. Piglets underwent an open field test (OFT), an object recognition test (ORT), and magnetic resonance imaging (MRI) to acquire anatomical, diffusion tensor imaging (DTI), and resting-state functional MRI (rs-fMRI) at weaning. Piglets from DHA-fed sows spent 95% more time sniffing the walls than CON in OFT and exhibited an elevated interest in the novel object in ORT, while CON piglets demonstrated no preference. Maternal DHA supplementation increased fiber length and tended to increase fractional anisotropy in the hippocampus of offspring than CON. DHA piglets exhibited increased functional connectivity in the cerebellar, visual, and default mode network and decreased activity in executive control and sensorimotor network compared to CON. The brain monoamine neurotransmitter levels did not differ in healthy offspring. Perinatal DHA supplementation may increase exploratory behaviors, improve recognition memory, enhance fiber tract integrity, and alter brain functional organization in offspring at weaning.
Collapse
Affiliation(s)
- Xi Fang
- Department of Foods and Nutrition, College of Family and Consumer Sciences, University of Georgia, Athens, GA 30602, USA; (X.F.); (J.J.)
| | - Wenwu Sun
- Department of Physics and Astronomy, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30602, USA; (W.S.); (Q.Z.)
| | - Julie Jeon
- Department of Foods and Nutrition, College of Family and Consumer Sciences, University of Georgia, Athens, GA 30602, USA; (X.F.); (J.J.)
| | - Michael Azain
- Department of Animal and Dairy Science, College of Agricultural & Environmental Sciences, University of Georgia, Athens, GA 30602, USA; (M.A.); (H.K.)
| | - Holly Kinder
- Department of Animal and Dairy Science, College of Agricultural & Environmental Sciences, University of Georgia, Athens, GA 30602, USA; (M.A.); (H.K.)
| | - Jeongyoun Ahn
- Department of Statistics, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30602, USA; (J.A.); (H.C.C.)
| | - Hee Cheol Chung
- Department of Statistics, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30602, USA; (J.A.); (H.C.C.)
| | - Ryan S. Mote
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (R.S.M.); (N.M.F.)
| | - Nikolay M. Filipov
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (R.S.M.); (N.M.F.)
| | - Qun Zhao
- Department of Physics and Astronomy, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30602, USA; (W.S.); (Q.Z.)
| | - Srujana Rayalam
- Department of Pharmaceutical Sciences, Philadelphia College of Osteopathic Medicine, Suwanee, GA 30024, USA
| | - Hea Jin Park
- Department of Foods and Nutrition, College of Family and Consumer Sciences, University of Georgia, Athens, GA 30602, USA; (X.F.); (J.J.)
| |
Collapse
|
26
|
Caputo MP, Williams JN, Drnevich J, Radlowski EC, Larsen RJ, Sutton BP, Leyshon BJ, Hussain J, Nakamura MT, Kuchan MJ, Das T, Johnson RW. Hydrolyzed Fat Formula Increases Brain White Matter in Small for Gestational Age and Appropriate for Gestational Age Neonatal Piglets. Front Pediatr 2020; 8:32. [PMID: 32117837 PMCID: PMC7029735 DOI: 10.3389/fped.2020.00032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/22/2020] [Indexed: 12/23/2022] Open
Abstract
Background: Intrauterine growth restriction is a common cause of small for gestational age (SGA) infants worldwide. SGA infants are deficient in digestive enzymes required for fat digestion and absorption compared to appropriate for gestational age (AGA) infants, putting them at risk for impaired neurocognitive development. Objective: The objective was to determine if a hydrolyzed fat (HF) infant formula containing soy free fatty acids, 2-monoacylglycerolpalmitate, cholesterol, and soy lecithin could increase brain tissue incorporation of essential fatty acids or white matter to enhance brain development in SGA and AGA neonatal piglet models. Methods: Sex-matched, littermate pairs of SGA (0.5-0.9 kg) and AGA (1.2-1.8 kg) 2 days old piglets (N = 60) were randomly assigned to control (CON) or HF formula diets in a 2 × 2 factorial design. On day 14, 24 piglets were used for hippocampal RNA-sequencing; the rest began a spatial learning task. On days 26-29, brain structure was assessed by magnetic resonance imaging (MRI). Cerebellum and hippocampus were analyzed for fatty acid content. Results: SGA piglets grew more slowly than AGA piglets, with no effect of diet on daily weight gain or weight at MRI. HF diet did not affect brain weight. HF diet increased relative volumes of 7 brain regions and white matter (WM) volume in both SGA and AGA piglets. However, HF did not ameliorate SGA total WM integrity deficits. RNA sequencing revealed SGA piglets had increased gene expression of synapse and cell signaling pathways and decreased expression of ribosome pathways in the hippocampus compared to AGA. HF decreased expression of immune response related genes in the hippocampus of AGA and SGA piglets, but did not correct gene expression patterns in SGA piglets. Piglets learned the T-maze task at the same rate, but SGA HF, SGA CON, and AGA HF piglets had more accurate performance than AGA CON piglets on reversal day 2. HF increased arachidonic acid (ARA) percentage in the cerebellum and total ARA in the hippocampus. Conclusions: HF enhanced brain development in the neonatal piglet measured by brain volume and WM volume in specific brain regions; however, more studies are needed to assess long-term outcomes.
Collapse
Affiliation(s)
- Megan P Caputo
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States.,Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| | - Jennifer N Williams
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States.,Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| | - Jenny Drnevich
- High Performance Biological Computing Group and the Carver Biotechnology Center, University of Illinois, Urbana, IL, United States
| | - Emily C Radlowski
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States.,Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| | - Ryan J Larsen
- Beckman Institute, University of Illinois, Urbana, IL, United States
| | - Bradley P Sutton
- Beckman Institute, University of Illinois, Urbana, IL, United States.,Department of Bioengineering, University of Illinois, Urbana, IL, United States
| | - Brian J Leyshon
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States.,Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| | - Jamal Hussain
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL, United States
| | - Manabu T Nakamura
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States.,Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL, United States
| | - Matthew J Kuchan
- Abbott Nutrition, Discovery Research, Columbus, OH, United States
| | - Tapas Das
- Abbott Nutrition, Discovery Research, Columbus, OH, United States
| | - Rodney W Johnson
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States.,Department of Animal Sciences, University of Illinois, Urbana, IL, United States.,Neuroscience Program, University of Illinois, Urbana, IL, United States
| |
Collapse
|
27
|
Abbasi H, Unsworth CP. Electroencephalogram studies of hypoxic ischemia in fetal and neonatal animal models. Neural Regen Res 2020; 15:828-837. [PMID: 31719243 PMCID: PMC6990791 DOI: 10.4103/1673-5374.268892] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Alongside clinical achievements, experiments conducted on animal models (including primate or non-primate) have been effective in the understanding of various pathophysiological aspects of perinatal hypoxic/ischemic encephalopathy (HIE). Due to the reasonably fair degree of flexibility with experiments, most of the research around HIE in the literature has been largely concerned with the neurodevelopmental outcome or how the frequency and duration of HI seizures could relate to the severity of perinatal brain injury, following HI insult. This survey concentrates on how EEG experimental studies using asphyxiated animal models (in rodents, piglets, sheep and non-human primate monkeys) provide a unique opportunity to examine from the exact time of HI event to help gain insights into HIE where human studies become difficult.
Collapse
Affiliation(s)
- Hamid Abbasi
- Department of Engineering Science, the University of Auckland, Auckland, New Zealand
| | - Charles P Unsworth
- Department of Engineering Science, the University of Auckland, Auckland, New Zealand
| |
Collapse
|
28
|
|
29
|
Kaynezhad P, Mitra S, Bale G, Bauer C, Lingam I, Meehan C, Avdic-Belltheus A, Martinello KA, Bainbridge A, Robertson NJ, Tachtsidis I. Quantification of the severity of hypoxic-ischemic brain injury in a neonatal preclinical model using measurements of cytochrome-c-oxidase from a miniature broadband-near-infrared spectroscopy system. NEUROPHOTONICS 2019; 6:045009. [PMID: 31737744 PMCID: PMC6855218 DOI: 10.1117/1.nph.6.4.045009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/14/2019] [Indexed: 05/05/2023]
Abstract
We describe the development of a miniaturized broadband near-infrared spectroscopy system (bNIRS), which measures changes in cerebral tissue oxyhemoglobin ( [ HbO 2 ] ) and deoxyhemoglobin ([HHb]) plus tissue metabolism via changes in the oxidation state of cytochrome-c-oxidase ([oxCCO]). The system is based on a small light source and a customized mini-spectrometer. We assessed the instrument in a preclinical study in 27 newborn piglets undergoing transient cerebral hypoxia-ischemia (HI). We aimed to quantify the recovery of the HI insult and estimate the severity of the injury. The recovery in brain oxygenation ( Δ [ HbDiff ] = Δ [ HbO 2 ] - Δ [ HHb ] ), blood volume ( Δ [ HbT ] = Δ [ HbO 2 ] + Δ [ HHb ] ), and metabolism ( Δ [ oxCCO ] ) for up to 30 min after the end of HI were quantified in percentages using the recovery fraction (RF) algorithm, which quantifies the recovery of a signal with respect to baseline. The receiver operating characteristic analysis was performed on bNIRS-RF measurements compared to proton ( H 1 ) magnetic resonance spectroscopic (MRS)-derived thalamic lactate/N-acetylaspartate (Lac/NAA) measured at 24-h post HI insult; Lac/NAA peak area ratio is an accurate surrogate marker of neurodevelopmental outcome in babies with neonatal HI encephalopathy. The Δ [ oxCCO ] -RF cut-off threshold of 79% within 30 min of HI predicted injury severity based on Lac/NAA with high sensitivity (100%) and specificity (93%). A significant difference in thalamic Lac/NAA was noticed ( p < 0.0001 ) between the two groups based on this cut-off threshold of 79% Δ [ oxCCO ] -RF. The severe injury group ( n = 13 ) had ∼ 30 % smaller recovery in Δ [ HbDiff ] -RF ( p = 0.0001 ) and no significant difference was observed in Δ [ HbT ] -RF between groups. At 48 h post HI, significantly higher P 31 -MRS-measured inorganic phosphate/exchangeable phosphate pool (epp) ( p = 0.01 ) and reduced phosphocreatine/epp ( p = 0.003 ) were observed in the severe injury group indicating persistent cerebral energy depletion. Based on these results, the bNIRS measurement of the oxCCO recovery fraction offers a noninvasive real-time biomarker of brain injury severity within 30 min following HI insult.
Collapse
Affiliation(s)
- Pardis Kaynezhad
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
- Address all correspondence to Ilias Tachtsidis, E-mail:
| | - Subhabrata Mitra
- University College London, Institute for Women’s Health, London, United Kingdom
| | - Gemma Bale
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Cornelius Bauer
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Ingran Lingam
- University College London, Institute for Women’s Health, London, United Kingdom
| | - Christopher Meehan
- University College London, Institute for Women’s Health, London, United Kingdom
| | | | | | - Alan Bainbridge
- University College London Hospital, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Nicola J. Robertson
- University College London, Institute for Women’s Health, London, United Kingdom
| | - Ilias Tachtsidis
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| |
Collapse
|
30
|
Caputo MP, Radlowski EC, Lawson M, Antonson A, Watson JE, Matt SM, Leyshon BJ, Das A, Johnson RW. Herring roe oil supplementation alters microglial cell gene expression and reduces peripheral inflammation after immune activation in a neonatal piglet model. Brain Behav Immun 2019; 81:455-469. [PMID: 31271868 PMCID: PMC6754775 DOI: 10.1016/j.bbi.2019.06.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/20/2019] [Accepted: 06/29/2019] [Indexed: 01/29/2023] Open
Abstract
Neonatal brain development can be disrupted by infection that results in microglial cell activation and neuroinflammation. Studies indicate that polyunsaturated fatty acids (PUFAs) and their metabolites can resolve inflammation. It is not known if dietary PUFA increases lipid metabolites in brain or reduces neuroinflammation in neonates. We hypothesized that dietary PUFAs might suppress neuroinflammation by inhibiting pro-inflammatory cytokine over-production and promoting inflammatory resolution in the periphery and brain. Piglets were obtained on postnatal day (PD) 2 and randomly assigned to herring roe oil (HRO) or control (CON) diet. HRO was included at 2 g/kg powdered diet. HRO increased DHA levels in occipital lobe and the DHA to arachidonic acid (ARA) ratio in hippocampal tissue. HRO decreased ARA metabolites in occipital lobe. HRO failed to attenuate microglial pro-inflammatory cytokine production ex vivo. HRO did not affect fever or circulating resolvin D1 levels. HRO decreased circulating neutrophils and liver inflammatory gene expression, but increased resolution marker gene expression in liver post LPS. HRO upregulated CXCL16, TGFBR1, and C1QA in microglial cells. HRO supplementation exerted beneficial effects on inflammation in the periphery, but further studies are needed to evaluate the specific effects of omega-3 supplementation on microglial cell physiology in the neonate.
Collapse
Affiliation(s)
- Megan P. Caputo
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 449 Bevier Hall, 905 South Goodwin Ave, Urbana, IL, 61802 USA,Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 West Gregory Dr., Urbana, IL, 61802 USA,Veterinary Medical Scholars Program, Office of Research and Advanced Studies, University of Illinois at Urbana-Champaign, College of Veterinary Medicine, 3505 VMBSB, 2001 South Lincoln Ave, Urbana, IL, 61802 USA
| | - Emily C. Radlowski
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 449 Bevier Hall, 905 South Goodwin Ave, Urbana, IL, 61802 USA,Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 West Gregory Dr., Urbana, IL, 61802 USA
| | - Marcus Lawson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 West Gregory Dr., Urbana, IL, 61802 USA
| | - Adrienne Antonson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 West Gregory Dr., Urbana, IL, 61802 USA
| | - Josephine E. Watson
- Department of Biochemistry, School of Molecular & Cellular Biology, University of Illinois at Urbana-Champaign, 393 Morrill Hall, 505 South Goodwin Ave, Urbana, IL, 61802 USA
| | - Stephanie M. Matt
- Neuroscience Program, University of Illinois at Urbana-Champaign, 2325/21 Beckman Institute, 405 North Matthews Ave, Urbana, IL, 61801 USA
| | - Brian J. Leyshon
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 449 Bevier Hall, 905 South Goodwin Ave, Urbana, IL, 61802 USA,Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 West Gregory Dr., Urbana, IL, 61802 USA
| | - Aditi Das
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 449 Bevier Hall, 905 South Goodwin Ave, Urbana, IL 61802, USA; Department of Biochemistry, School of Molecular & Cellular Biology, University of Illinois at Urbana-Champaign, 393 Morrill Hall, 505 South Goodwin Ave, Urbana, IL 61802, USA; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, 3516 VMBSB, 2001 South Lincoln Ave, Urbana, IL 61802, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, 2325/21 Beckman Institute, 405 North Matthews Ave, Urbana, IL 61801, USA; Bioengineering Department, University of Illinois at Urbana-Champaign, 1102 Everitt Lab, MC-278, 1406 West Green St., Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Matthews Ave, M/C 251, Urbana, IL 61801, USA.
| | - Rodney W. Johnson
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 449 Bevier Hall, 905 South Goodwin Ave, Urbana, IL, 61802 USA,Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 West Gregory Dr., Urbana, IL, 61802 USA,Neuroscience Program, University of Illinois at Urbana-Champaign, 2325/21 Beckman Institute, 405 North Matthews Ave, Urbana, IL, 61801 USA
| |
Collapse
|
31
|
Kinder HA, Baker EW, Howerth EW, Duberstein KJ, West FD. Controlled Cortical Impact Leads to Cognitive and Motor Function Deficits that Correspond to Cellular Pathology in a Piglet Traumatic Brain Injury Model. J Neurotrauma 2019; 36:2810-2826. [PMID: 31084390 DOI: 10.1089/neu.2019.6405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability in the United States, with children who sustain a TBI having a greater risk of developing long-lasting cognitive, behavioral, and motor function deficits. This has led to increased interest in utilizing large animal models to study pathophysiologic and functional changes after injury in hopes of identifying novel therapeutic targets. In the present study, a controlled cortical impact (CCI) piglet TBI model was utilized to evaluate cognitive, motor, and histopathologic outcomes. CCI injury (4 m/sec velocity, 9 mm depression, 400 msec dwell time) was induced at the parietal cortex. Compared with normal pigs (n = 5), TBI pigs (n = 5) exhibited appreciable cognitive deficiencies, including significantly impaired spatial memory in spatial T-maze testing and a significant decrease in exploratory behaviors followed by marked hyperactivity in open field testing. Additionally, gait analysis revealed significant increases in cycle time and stance percent, significant decreases in hind reach, and a shift in the total pressure index from the front to the hind limb on the affected side, suggesting TBI impairs gait and balance. Pigs were sacrificed 28 days post-TBI and histological analysis revealed that TBI lead to a significant decrease in neurons and a significant increase in microglia activation and astrogliosis/astrocytosis at the perilesional area, a significant loss in neurons at the dorsal hippocampus, and significantly increased neuroblast proliferation at the subventricular zone. These data demonstrate a strong relationship between TBI-induced cellular changes and functional outcomes in our piglet TBI model that lay the framework for future studies that assess the ability of therapeutic interventions to contribute to functional improvements.
Collapse
Affiliation(s)
- Holly A Kinder
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| | - Emily W Baker
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| | - Elizabeth W Howerth
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Pathology, University of Georgia, Athens, Georgia
| | - Kylee J Duberstein
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| | - Franklin D West
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| |
Collapse
|
32
|
Roelofs S, Alferink FAC, Ipema AF, van de Pas T, van der Staay FJ, Nordquist RE. Discrimination learning and judgment bias in low birth weight pigs. Anim Cogn 2019; 22:657-671. [PMID: 31049725 PMCID: PMC6687882 DOI: 10.1007/s10071-019-01262-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 03/29/2019] [Accepted: 04/06/2019] [Indexed: 12/22/2022]
Abstract
Low birth weight (LBW) is a risk factor for cognitive and emotional impairments in humans. In pigs, LBW is a common occurrence, but its effects on cognition and emotion have received only limited scientific attention. To assess whether LBW pigs suffer from impaired cognitive and emotional development, we trained and tested 21 LBW and 21 normal birth weight (NBW) pigs in a judgment bias task. Judgment bias is a measure of emotional state which reflects the influence of emotion on an animal’s interpretation of ambiguous stimuli. Pigs were trained to perform a specific behavioral response to two auditory stimuli, predicting either a positive or negative outcome. Once pigs successfully discriminated between these stimuli, they were presented with intermediate, ambiguous stimuli. The pigs’ responses to ambiguous stimuli were scored as optimistic (performance of ‘positive’ response) or pessimistic (performance of ‘negative’ response). Optimistic or pessimistic interpretation of an ambiguous stimulus is indicative of a positive or negative emotional state, respectively. We found LBW pigs to require more discrimination training sessions than NBW pigs to reach criterion performance, suggesting that LBW causes a mild cognitive impairment in pigs. No effects of LBW on judgment bias were found, suggesting a similar emotional state for LBW and NBW pigs. This was supported by comparable salivary and hair cortisol concentrations for both groups. It is possible the enriched housing conditions and social grouping applied during our study influenced these results.
Collapse
Affiliation(s)
- Sanne Roelofs
- Behaviour and Welfare Group, Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL, Utrecht, The Netherlands.,Brain Center Rudolf Magnus, Utrecht University, Stratenum Building, Room STR5.203, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands.,Department of Clinical Studies, Swine Teaching and Research Center, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, 382 W Street Road, Kennett Square, PA, 19348, USA
| | - Floor A C Alferink
- Behaviour and Welfare Group, Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL, Utrecht, The Netherlands.,Study Programme Applied Biology, HAS University of Applied Sciences, Onderwijsboulevard 221, 5223 DE, 's Hertogenbosch, The Netherlands
| | - Allyson F Ipema
- Behaviour and Welfare Group, Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL, Utrecht, The Netherlands.,Adaptation Physiology Group, Wageningen University, De Elst 1, 6708 WD, Wageningen, The Netherlands
| | - Tessa van de Pas
- Behaviour and Welfare Group, Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL, Utrecht, The Netherlands.,Department of Clinical Studies, Swine Teaching and Research Center, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, 382 W Street Road, Kennett Square, PA, 19348, USA
| | - Franz Josef van der Staay
- Behaviour and Welfare Group, Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL, Utrecht, The Netherlands.,Brain Center Rudolf Magnus, Utrecht University, Stratenum Building, Room STR5.203, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Rebecca E Nordquist
- Behaviour and Welfare Group, Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL, Utrecht, The Netherlands. .,Brain Center Rudolf Magnus, Utrecht University, Stratenum Building, Room STR5.203, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands.
| |
Collapse
|
33
|
Schmitt O, O'Driscoll K, Baxter EM. Exploratory study of the effects of intra-uterine growth retardation and neonatal energy supplementation of low birth-weight piglets on their post-weaning cognitive abilities. Anim Cogn 2019; 22:373-385. [PMID: 30820769 PMCID: PMC6459783 DOI: 10.1007/s10071-019-01251-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 02/08/2019] [Accepted: 02/15/2019] [Indexed: 11/25/2022]
Abstract
The present study investigated the effects of intra-uterine growth retardation (IUGR, score 0-3; i.e., "normal" to "severe") level at birth, and the effects of neonatal energy supplementation (dosed with 2 ml of coconut oil, commercial product or water, or sham-dosed), on post-weaning cognitive abilities of low birth-weight piglets (< 1.1 kg). In total, 184 piglets were recruited at weaning (27 ± 0.1 days) for habituation to the test procedures, and were either tested for spatial learning and memory in a T-maze (n = 42; 37 ± 0.5 days) or for short-term memory in a spontaneous object recognition task (SORT; n = 47; 41 ± 0.3 days). Neonatal supplementation did not affect performances of pigs in the T-maze task or SORT. IUGR3 pigs tended to be faster to enter the reward arm and to obtain the reward in the reversal step of the T-Maze task, suggesting a better learning flexibility, compared to IUGR1 (entry t72.8=2.9, P = 0.024; reward t80 = 3.28, P = 0.008) and IUGR2 (entry t70.3=2.5, P = 0.068; reward t73.9 = 2.77, P = 0.034) pigs. However, a higher percentage of IUGR1 pigs tended to approach the novel object first (DSCF-value = 3.07; P = 0.076) and to interact with it more (t40 = 2.19, P = 0.085), relative to IGUR3 pigs. IUGR1 pigs showed a strong preference for the novel object, as they had a greater percentage time difference interacting with the objects when the novel object was presented (t81 = - 3.41, P = 0.013). In conclusion, some low birth-weight piglets are able to perform a spatial task and an object recognition test, but performances in these tests may be modulated by IUGR level.
Collapse
Affiliation(s)
- Océane Schmitt
- Pig Development Department, Teagasc Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, CoCork, Ireland.
- Department of Animal Production, Easter Bush Veterinary Centre, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, EH25 9RG, Midlothian, UK.
- Animal Behaviour and Welfare Team, Animal and Veterinary Sciences Research Group, SRUC, West Mains Road, EH9 3JG, Edinburgh, UK.
| | - Keelin O'Driscoll
- Pig Development Department, Teagasc Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, CoCork, Ireland
| | - Emma M Baxter
- Animal Behaviour and Welfare Team, Animal and Veterinary Sciences Research Group, SRUC, West Mains Road, EH9 3JG, Edinburgh, UK
| |
Collapse
|
34
|
Plomgaard AM, Andersen AD, Petersen TH, van de Looij Y, Thymann T, Sangild PT, Thomsen C, Sizonenko SV, Greisen G. Structural brain maturation differs between preterm and term piglets, whereas brain activity does not. Acta Paediatr 2019; 108:637-644. [PMID: 30144173 DOI: 10.1111/apa.14556] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 06/14/2018] [Accepted: 08/22/2018] [Indexed: 12/17/2022]
Abstract
AIM The aim of the study was to investigate whether amplitude-integrated electroencephalography (aEEG) and cerebral magnetic resonance imaging (MRI) in preterm piglets would provide measures of cerebral functional, microstructural and anatomical maturation, which might reflect the signs of functional brain immaturity, documented in preterm piglets. METHODS During July-October 2013 at the NEOMUNE Centre, Copenhagen University, Denmark, 31 preterm (90% gestation) and 10 term piglets underwent aEEG on days 1, 2, 4 and 11, and MRI on day 25. Physical activity levels were recorded. RESULTS Preterm showed delayed neonatal arousal and physical activity, relative to term piglets. Preterm piglets had lower growth rates and brain volume than term piglets, but aEEG patterns were similar. MRI mean diffusivity was also similar, but fractional anisotropy (FA) was lower in preterm piglets (p < 0.001). CONCLUSION Functional brain maturation, as assessed by aEEG, was relatively advanced in preterm piglets. Conversely, the low FA in the preterm piglets suggests that the white matter microstructure remains less mature in preterm compared to term piglets at postnatal day 25. The results might be utilised to define whether and how preterm piglets may contribute to preclinical models for brain development in preterm infants.
Collapse
Affiliation(s)
- A M Plomgaard
- Department of Neonatology; Rigshospitalet; Copenhagen University Hospital; Copenhagen Denmark
| | - A D Andersen
- Comparative Pediatrics and Nutrition; Department of Veterinary Clinical and Animal Science; Frederiksberg C Denmark
| | - T H Petersen
- Research Unit on Brain Injury Neurorehabilitation Copenhagen; Department of Neurorehabilitation; TBI Unit; Rigshospitalet; Copenhagen University Hospital; Hvidovre Denmark
| | - Y van de Looij
- Division of Child Development and Growth; University Children's Hospital Geneva; Geneva Switzerland
- Functional and Metabolic Imaging Laboratory; EPFL-SB-IPSB-LIFMET CH; Lausanne Switzerland
| | - T Thymann
- Comparative Pediatrics and Nutrition; Department of Veterinary Clinical and Animal Science; Frederiksberg C Denmark
| | - P T Sangild
- Comparative Pediatrics and Nutrition; Department of Veterinary Clinical and Animal Science; Frederiksberg C Denmark
| | - C Thomsen
- Department of Radiology; Rigshospitalet; Copenhagen University Hospital; Copenhagen Denmark
| | - S V Sizonenko
- Division of Child Development and Growth; University Children's Hospital Geneva; Geneva Switzerland
| | - G Greisen
- Department of Neonatology; Rigshospitalet; Copenhagen University Hospital; Copenhagen Denmark
| |
Collapse
|
35
|
Aubid NN, Liu Y, Vidal JMP, Hall VJ. Isolation and culture of porcine primary fetal progenitors and neurons from the developing dorsal telencephalon. J Vet Sci 2019; 20:e3. [PMID: 30944526 PMCID: PMC6441812 DOI: 10.4142/jvs.2019.20.e3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/26/2018] [Accepted: 12/04/2018] [Indexed: 01/20/2023] Open
Abstract
The development of long-term surviving fetal cell cultures from primary cell tissue from the developing brain is important for facilitating studies investigating neural development and for modelling neural disorders and brain congenital defects. The field faces current challenges in co-culturing both progenitors and neurons long-term. Here, we culture for the first time, porcine fetal cells from the dorsal telencephalon at embryonic day (E) 50 and E60 in conditions that promoted both the survival of progenitor cells and young neurons. We applied a novel protocol designed to collect, isolate and promote survival of both progenitors and young neurons. Herein, we used a combination of low amount of fetal bovine serum, together with pro-survival factors, including basic fibroblast growth factor and retinoic acid, together with arabinofuranosylcytosine and could maintain progenitors and facilitate in vitro differentiation into calbindin 1+ neurons and reelin+ interneurons for a period of 7 days. Further improvements to the protocol that might extend the survival of the fetal primary neural cells would be beneficial. The development of new porcine fetal culture methods is of value for the field, given the pig's neuroanatomical and developmental similarities to the human brain.
Collapse
Affiliation(s)
- Niroch Nawzad Aubid
- Department of Veterinary and Animal Sciences, Faculty of Health Sciences, University of Copenhagen, Frederiksberg C, DK-1870, Denmark
| | - Yong Liu
- Department of Veterinary and Animal Sciences, Faculty of Health Sciences, University of Copenhagen, Frederiksberg C, DK-1870, Denmark
| | - Juan Miguel Peralvo Vidal
- Department of Veterinary and Animal Sciences, Faculty of Health Sciences, University of Copenhagen, Frederiksberg C, DK-1870, Denmark
| | - Vanessa Jane Hall
- Department of Veterinary and Animal Sciences, Faculty of Health Sciences, University of Copenhagen, Frederiksberg C, DK-1870, Denmark
| |
Collapse
|
36
|
Abstract
In Australia, there are two distinct populations, each with vastly disparate health outcomes: Aboriginal and Torres Strait Islander People and non-Aboriginal Australians. Aboriginal Australians have significantly higher rates of health and socioeconomic disadvantage, and Aboriginal babies are also more likely to be born low birth weight or growth restricted. The Developmental Origins of Health and Disease (DOHaD) hypothesis advocates that a sub-optimal intrauterine environment, often manifested as diminished foetal growth, during critical periods of foetal development has the potential to alter the risk of non-communicable disease in the offspring. A better understanding of the role of the intrauterine environment and subsequent developmental programming, in response to both transgenerational and immediate stimuli, in Aboriginal Australians remains a relatively unexplored field and may provide insights into the prevailing health disparities between Aboriginal and non-Aboriginal children. This narrative review explores the role of DOHaD in explaining the ongoing disadvantage experienced by Aboriginal People in today's society through a detailed discussion of the literature on the association between foetal growth, as a proxy for the quality of the intrauterine environment, and outcomes in the offspring including perinatal health, early life development and childhood education. The literature largely supports this hypothesis and this review therefore has potential implications for policy makers not only in Australia but also in other countries that have minority and Indigenous populations who suffer disproportionate disadvantage such as the United States, Canada and New Zealand.
Collapse
Affiliation(s)
- E C McEwen
- 1School of Medicine and Public Health,University of Newcastle,Newcastle,NSW,Australia
| | - T J Boulton
- 1School of Medicine and Public Health,University of Newcastle,Newcastle,NSW,Australia
| | - R Smith
- 1School of Medicine and Public Health,University of Newcastle,Newcastle,NSW,Australia
| |
Collapse
|
37
|
Wixey JA, Lee KM, Miller SM, Goasdoue K, Colditz PB, Tracey Bjorkman S, Chand KK. Neuropathology in intrauterine growth restricted newborn piglets is associated with glial activation and proinflammatory status in the brain. J Neuroinflammation 2019; 16:5. [PMID: 30621715 PMCID: PMC6323795 DOI: 10.1186/s12974-018-1392-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/17/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The fetal brain is particularly vulnerable to intrauterine growth restriction (IUGR) conditions evidenced by neuronal and white matter abnormalities and altered neurodevelopment in the IUGR infant. To further our understanding of neurodevelopment in the newborn IUGR brain, clinically relevant models of IUGR are required. This information is critical for the design and implementation of successful therapeutic interventions to reduce aberrant brain development in the IUGR newborn. We utilise the piglet as a model of IUGR as growth restriction occurs spontaneously in the pig as a result of placental insufficiency, making it a highly relevant model of human IUGR. The purpose of this study was to characterise neuropathology and neuroinflammation in the neonatal IUGR piglet brain. METHODS Newborn IUGR (< 5th centile) and normally grown (NG) piglets were euthanased on postnatal day 1 (P1; < 18 h) or P4. Immunohistochemistry was utilised to examine neuronal, white matter and inflammatory responses, and PCR for cytokine analysis in parietal cortex of IUGR and NG piglets. RESULTS The IUGR piglet brain displayed less NeuN-positive cells and reduced myelination at both P1 and P4 in the parietal cortex, indicating neuronal and white matter disruption. A concurrent decrease in Ki67-positive proliferative cells and increase in cell death (caspase-3) in the IUGR piglet brain was also apparent on P4. We observed significant increases in the number of both Iba-1-positive microglia and GFAP-positive astrocytes in the white matter in IUGR piglet brain on both P1 and P4 compared with NG piglets. These increases were associated with a change in activation state, as noted by altered glial morphology. This inflammatory state was further evident with increased expression levels of proinflammatory cytokines (interleukin-1β, tumour necrosis factor-α) and decreased levels of anti-inflammatory cytokines (interleukin-4 and -10) observed in the IUGR piglet brains. CONCLUSIONS These findings suggest that the piglet model of IUGR displays the characteristic neuropathological outcomes of neuronal and white matter impairment similar to those reported in the IUGR human brain. The activated glial morphology and elevated proinflammatory cytokines is indicative of an inflammatory response that may be associated with neuronal damage and white matter disruption. These findings support the use of the piglet as a pre-clinical model for studying mechanisms of altered neurodevelopment in the IUGR newborn.
Collapse
Affiliation(s)
- Julie A Wixey
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD, 4029, Australia.
| | - Kah Meng Lee
- Institute of Health Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, Australia
| | - Stephanie M Miller
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD, 4029, Australia
| | - Kate Goasdoue
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD, 4029, Australia
| | - Paul B Colditz
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD, 4029, Australia.,Perinatal Research Centre, Royal Brisbane and Women's Hospital, Herston, QLD, 4029, Australia
| | - S Tracey Bjorkman
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD, 4029, Australia
| | - Kirat K Chand
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD, 4029, Australia
| |
Collapse
|
38
|
Iskusnykh IY, Buddington RK, Chizhikov VV. Preterm birth disrupts cerebellar development by affecting granule cell proliferation program and Bergmann glia. Exp Neurol 2018; 306:209-221. [PMID: 29772246 PMCID: PMC6291230 DOI: 10.1016/j.expneurol.2018.05.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 05/09/2018] [Accepted: 05/12/2018] [Indexed: 01/17/2023]
Abstract
Preterm birth is a leading cause of long-term motor and cognitive deficits. Clinical studies suggest that some of these deficits result from disruption of cerebellar development, but the mechanisms that mediate cerebellar abnormalities in preterm infants are largely unknown. Furthermore, it remains unclear whether preterm birth and precocious exposure to the ex-utero environment directly disrupt cerebellar development or indirectly by increasing the probability of cerebellar injury, including that resulting from clinical interventions and protocols associated with the care of preterm infants. In this study, we analyzed the cerebellum of preterm pigs delivered via c-section at 91% term and raised for 10 days, until term-equivalent age. The pigs did not receive any treatments known or suspected to affect cerebellar development and had no evidence of brain damage. Term pigs sacrificed at birth were used as controls. Immunohistochemical analysis revealed that preterm birth did not affect either size or numbers of Purkinje cells or molecular layer interneurons at term-equivalent age. The number of granule cell precursors and Bergmann glial fibers, however, were reduced in preterm pigs. Preterm pigs had reduced proliferation but not differentiation of granule cells. qRT-PCR analysis of laser capture microdissected external granule cell layer showed that preterm pigs had a reduced expression of Ccnd1 (Cyclin D1), Ccnb1 (Cyclin B1), granule cell master regulatory transcription factor Atoh1, and signaling molecule Jag1. In vitro rescue experiments identified Jag1 as a central granule cell gene affected by preterm birth. Thus, preterm birth and precocious exposure to the ex-utero environment disrupt cerebellum by modulating expression of key cerebellar developmental genes, predominantly affecting development of granule precursors and Bergmann glia.
Collapse
Affiliation(s)
- Igor Y Iskusnykh
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | - Victor V Chizhikov
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
39
|
Roelofs S, van Bommel I, Melis S, van der Staay FJ, Nordquist RE. Low Birth Weight Impairs Acquisition of Spatial Memory Task in Pigs. Front Vet Sci 2018; 5:142. [PMID: 29998130 PMCID: PMC6028702 DOI: 10.3389/fvets.2018.00142] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/08/2018] [Indexed: 11/18/2022] Open
Abstract
In commercial pig farming, an increasing number of low birth weight (LBW) piglets are born, due to selection for large litter sizes. While LBW piglets have a higher risk of pre-weaning mortality, a considerable number of these piglets survive to slaughter age. In humans, LBW is a risk factor for long-term cognitive impairments. In pigs, studies examining the post-weaning effects of LBW on cognition have reported contradictory results. Therefore, the current study aimed to assess the effects of LBW on cognitive development in pigs using an improved study design, by (1) testing a larger sample size than previous studies, (2) assessing acute and chronic stress responses to account for a potential altered stress response in LBW pigs, and (3) testing both female and male pigs to account for potential confounding effects of sex. Learning and memory of 20 LBW pigs and 20 normal birth weight (NBW) pigs, both groups consisting of 10 females and 10 males, were compared using a spatial holeboard task. In this task, pigs had to learn and remember the locations of hidden food rewards. After a pig had successfully acquired the task, it was presented with two successive reversal phases during which it was presented with a new configuration of reward locations. The holeboard allows for simultaneous assessment of working and reference memory, as well as measures of motivation, exploration, and behavioral flexibility. Mixed model ANOVAs revealed a transiently impaired reference memory performance of LBW pigs, implying they had more difficulty learning their reward configuration in the holeboard. Also, LBW piglets showed increased pre-weaning hair cortisol concentrations compared to their NBW siblings. No other effects of LBW were found. Sex had no direct or interaction effects on any measures of holeboard performance or stress. It is possible that the enriched housing conditions applied during our study had an ameliorating effect on our pigs' cognitive development. Overall, our results suggest LBW has a negative effect on post-weaning cognitive performance in pigs. This could have welfare consequences as cognitive skills are required for pigs to learn how to correctly respond to their environment.
Collapse
Affiliation(s)
- Sanne Roelofs
- Behavior and Welfare Group, Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,Brain Center Rudolf Magnus, Utrecht University, Utrecht, Netherlands
| | - Ilse van Bommel
- Behavior and Welfare Group, Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,Graduate School of Life Sciences, Utrecht University, Utrecht, Netherlands
| | - Stephanie Melis
- Behavior and Welfare Group, Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,Study Programme Applied Biology, HAS University of Applied Sciences, Den Bosch, Netherlands
| | - Franz J van der Staay
- Behavior and Welfare Group, Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,Brain Center Rudolf Magnus, Utrecht University, Utrecht, Netherlands
| | - Rebecca E Nordquist
- Behavior and Welfare Group, Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,Brain Center Rudolf Magnus, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
40
|
Mudd AT, Getty CM, Dilger RN. Maternal Dietary Choline Status Influences Brain Gray and White Matter Development in Young Pigs. Curr Dev Nutr 2018; 2:nzy015. [PMID: 29955727 PMCID: PMC6007439 DOI: 10.1093/cdn/nzy015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/06/2018] [Accepted: 03/06/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Choline is an essential nutrient that is pivotal to proper brain development. Research in animal models suggests that perinatal choline deficiency influences neuron development in the hippocampus and cortex, yet these observations require invasive techniques. OBJECTIVE This study aimed to characterize the effects of perinatal choline deficiency on gray and white matter development with the use of noninvasive neuroimaging techniques in young pigs. METHODS During the last 64 d of the 114-d gestation period Yorkshire sows were provided with a choline-sufficient (CS) or choline-deficient (CD) diet, analyzed to contain 1214 mg or 483 mg total choline/kg diet, respectively. Upon farrowing, pigs (Sus scrofa domesticus) were allowed colostrum consumption for ≤48 h, were further stratified into postnatal treatment groups, and were provided either CS or CD milk replacers, analyzed to contain 1591 or 518 mg total choline/kg diet, respectively, for 28 d. At 30 d of age, pigs were subjected to MRI procedures to assess brain development. Gray and white matter development was assessed through voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS) to assess the effects of prenatal and postnatal dietary choline status. RESULTS VBM analysis indicated that prenatally CS pigs exhibited increased (P < 0.01) gray matter in the left and right cortex compared with prenatally CD pigs. Analysis of white matter indicated that prenatally CS pigs exhibited increased (P < 0.01) white matter in the internal capsule, putamen-globus pallidus, and right cortex compared with prenatally CD pigs. No postnatal effects (P > 0.05) of choline status were noted for VBM analyses of gray and white matter. TBSS also showed no significant effects (P > 0.05) of prenatal or postnatal choline status for diffusion values along white matter tracts. CONCLUSIONS Observations from this study suggest that prenatal choline deficiency results in altered cortical gray matter and reduced white matter in the internal capsule and putamen of young pigs. With the use of noninvasive neuroimaging techniques, results from our study indicate that prenatal choline deficiency greatly alters gray and white matter development in pigs, thereby providing a translational assessment that may be used in clinical populations.
Collapse
Affiliation(s)
- Austin T Mudd
- Piglet Nutrition and Cognition Laboratory
- Neuroscience Program
| | - Caitlyn M Getty
- Piglet Nutrition and Cognition Laboratory
- Division of Nutrition Sciences
- College of Veterinary Medicine
| | - Ryan N Dilger
- Piglet Nutrition and Cognition Laboratory
- Neuroscience Program
- Division of Nutrition Sciences
- Beckman Institute for Advanced Science and Technology
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL
| |
Collapse
|
41
|
Antonson AM, Balakrishnan B, Radlowski EC, Petr G, Johnson RW. Altered Hippocampal Gene Expression and Morphology in Fetal Piglets following Maternal Respiratory Viral Infection. Dev Neurosci 2018. [PMID: 29539630 DOI: 10.1159/000486850] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Maternal infection during pregnancy increases the risk of neurobehavioral problems in offspring. Evidence from rodent models indicates that the maternal immune response to infection can alter fetal brain development, particularly in the hippocampus. However, information on the effects of maternal viral infection on fetal brain development in gyrencephalic species is limited. Thus, the objective of this study was to assess several effects of maternal viral infection in the last one-third of gestation on hippocampal gene expression and development in fetal piglets. Pregnant gilts were inoculated with porcine reproductive and respiratory syndrome virus (PRRSV) at gestational day (GD) 76 and the fetuses were removed by cesarean section at GD 111 (3 days before anticipated parturition). The gilts infected with PRRSV had elevated plasma interleukin-6 levels and developed transient febrile and anorectic responses lasting approximately 21 days. Despite having a similar overall body weight, fetuses from the PRRSV-infected gilts had a decreased brain weight and altered hippocampal gene expression compared to fetuses from control gilts. Notably, maternal infection caused a reduction in estimated neuronal numbers in the fetal dentate gyrus and subiculum. The number of proliferative Ki-67+ cells was not altered, but the relative integrated density of GFAP+ staining was increased, in addition to an increase in GFAP gene expression, indicating astrocyte-specific gliosis. Maternal viral infection caused an increase in fetal hippocampal gene expression of the inflammatory cytokines TNF-α and IFN-γ and the myelination marker myelin basic protein. MHCII protein, a classic monocyte activation marker, was reduced in microglia, while expression of the MHCII gene was decreased in hippocampal tissue of the fetuses from PRRSV-infected gilts. Together, these data suggest that maternal viral infection at the beginning of the last trimester results in a reduction in fetal hippocampal neurons that is evident 5 weeks after infection, when fetal piglets are near full term. The neuronal reduction was not accompanied by pronounced neuroinflammation at GD 111, indicating that any activation of classic neuroinflammatory pathways by maternal viral infection, if present, is mostly resolved by parturition.
Collapse
Affiliation(s)
- Adrienne M Antonson
- Department of Animal Sciences, Laboratory of Integrative Immunology and Behavior, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Bindu Balakrishnan
- Department of Animal Sciences, Laboratory of Integrative Immunology and Behavior, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Emily C Radlowski
- Department of Animal Sciences, Laboratory of Integrative Immunology and Behavior, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Geraldine Petr
- Department of Animal Sciences, Laboratory of Integrative Immunology and Behavior, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Rodney W Johnson
- Department of Animal Sciences, Laboratory of Integrative Immunology and Behavior, University of Illinois Urbana-Champaign, Urbana, Illinois, USA.,Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA.,Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
42
|
McEwen EC, Guthridge SL, He VY, McKenzie JW, Boulton TJ, Smith R. What birthweight percentile is associated with optimal perinatal mortality and childhood education outcomes? Am J Obstet Gynecol 2018; 218:S712-S724. [PMID: 29268938 DOI: 10.1016/j.ajog.2017.11.574] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/08/2017] [Accepted: 11/10/2017] [Indexed: 11/23/2022]
Abstract
BACKGROUND Small for gestational age, defined as birthweight <10th percentile for gestational age, is known to be associated with clinically meaningful impairments in health and development. The effects of variation within the normal range of birthweight percentile on perinatal mortality and childhood education remain less well defined. OBJECTIVE We sought to quantify the association among birthweight percentile, perinatal mortality, and educational outcomes and to determine the optimal birthweight percentile for those outcomes in Aboriginal and non-Aboriginal Australian children. STUDY DESIGN This was a retrospective cohort study. Perinatal data for all children born in the Northern Territory, Australia, from 1999 through 2008 were linked to measures of educational attainment at age 8-9 years. Multivariable analysis was used to determine the optimal birthweight percentile for low perinatal mortality and high reading and numeracy scores. RESULTS The birth cohort contained 35,239 births (42% Aboriginal), of which 11,214 had linked and valid education records. Median birthweight percentile was 29.2 in Aboriginal infants and 44.0 in non-Aboriginal infants. The odds of perinatal mortality decreased by 4% with each 1-percentile increase birthweight percentile overall (adjusted odds ratio, 0.96; P = .000) and lowest mortality rates were at the 61st and 78th percentile in Aboriginal and non-Aboriginal infants, respectively. Although birthweights <10th percentile were associated with greatly increased odds of perinatal mortality, the increased risk extended well beyond this cut-off. Birthweight percentile was also positively correlated with scores in reading (P = .000) and numeracy (P = .000). In non-Aboriginal children, reading and numeracy scores peaked at the 66th percentile, but for Aboriginal children there was continuous benefit with increasing birthweight percentile. Birthweight percentile explained 1% of the variation in education outcomes, with much greater variation explained by other perinatal and sociodemographic factors. CONCLUSION Birthweights between the 50th-93rd percentiles were most consistently associated with both low perinatal mortality and high reading and numeracy scores, suggesting that small for gestational age does not sufficiently capture the risks associated with variation in fetal growth. Our data indicate that the effect of birthweight percentile accounts for 1% of variation in perinatal and education outcomes.
Collapse
Affiliation(s)
- Ellie C McEwen
- Mothers and Babies Research Center, Priority Center in Reproduction, Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia; School of Medicine and Public Health, University of Newcastle, Newcastle, Australia
| | - Steven L Guthridge
- Health Gains Planning Branch, Northern Territory Department of Health, Darwin, Australia; Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Vincent Yf He
- Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - John W McKenzie
- Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Thomas J Boulton
- School of Medicine and Public Health, University of Newcastle, Newcastle, Australia
| | - Roger Smith
- Mothers and Babies Research Center, Priority Center in Reproduction, Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia; School of Medicine and Public Health, University of Newcastle, Newcastle, Australia.
| |
Collapse
|
43
|
Mudd AT, Fleming SA, Labhart B, Chichlowski M, Berg BM, Donovan SM, Dilger RN. Dietary Sialyllactose Influences Sialic Acid Concentrations in the Prefrontal Cortex and Magnetic Resonance Imaging Measures in Corpus Callosum of Young Pigs. Nutrients 2017; 9:nu9121297. [PMID: 29182578 PMCID: PMC5748748 DOI: 10.3390/nu9121297] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 01/08/2023] Open
Abstract
Sialic acid (SA) is a key component of gangliosides and neural cell adhesion molecules important during neurodevelopment. Human milk contains SA in the form of sialyllactose (SL) an abundant oligosaccharide. To better understand the potential role of dietary SL on neurodevelopment, the effects of varying doses of dietary SL on brain SA content and neuroimaging markers of development were assessed in a newborn piglet model. Thirty-eight male pigs were provided one of four experimental diets from 2 to 32 days of age. Diets were formulated to contain: 0 mg SL/L (CON), 130 mg SL/L (LOW), 380 mg SL/L (MOD) or 760 mg SL/L (HIGH). At 32 or 33 days of age, all pigs were subjected to magnetic resonance imaging (MRI) to assess brain development. After MRI, pig serum and brains were collected and total, free and bound SA was analyzed. Results from this study indicate dietary SL influenced (p = 0.05) bound SA in the prefrontal cortex and the ratio of free SA to bound SA in the hippocampus (p = 0.04). Diffusion tensor imaging indicated treatment effects in mean (p < 0.01), axial (p < 0.01) and radial (p = 0.01) diffusivity in the corpus callosum. Tract-based spatial statistics (TBSS) indicated differences (p < 0.05) in white matter tracts and voxel-based morphometry (VBM) indicated differences (p < 0.05) in grey matter between LOW and MOD pigs. CONT and HIGH pigs were not included in the TBSS and VBM assessments. These findings suggest the corpus callosum, prefrontal cortex and hippocampus may be differentially sensitive to dietary SL supplementation.
Collapse
Affiliation(s)
- Austin T Mudd
- Piglet Nutrition & Cognition Lab, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| | - Stephen A Fleming
- Piglet Nutrition & Cognition Lab, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| | - Beau Labhart
- Mead Johnson Pediatric Nutrition Institute, Mead Johnson Nutrition, 2400 W Lloyd Expressway, Evansville, IN 47712, USA.
| | - Maciej Chichlowski
- Mead Johnson Pediatric Nutrition Institute, Mead Johnson Nutrition, 2400 W Lloyd Expressway, Evansville, IN 47712, USA.
| | - Brian M Berg
- Mead Johnson Pediatric Nutrition Institute, Mead Johnson Nutrition, 2400 W Lloyd Expressway, Evansville, IN 47712, USA.
- Division of Nutrition Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| | - Sharon M Donovan
- Division of Nutrition Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| | - Ryan N Dilger
- Piglet Nutrition & Cognition Lab, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
- Division of Nutrition Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
44
|
Mudd AT, Berding K, Wang M, Donovan SM, Dilger RN. Serum cortisol mediates the relationship between fecal Ruminococcus and brain N-acetylaspartate in the young pig. Gut Microbes 2017; 8:589-600. [PMID: 28703640 PMCID: PMC5730385 DOI: 10.1080/19490976.2017.1353849] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A dynamic relationship between the gut microbiota and brain is pivotal in neonatal development. Dysbiosis of the microbiome may result in altered neurodevelopment; however, it is unclear which specific members of microbiota are most influential and what factors might mediate the relationship between the gut and the brain. Twenty-four vaginally-derived male piglets were subjected to magnetic resonance spectroscopy at 30 d of age. Ascending colon contents, feces, and blood were collected and analyzed for volatile fatty acids, microbiota relative abundance by 16s rRNA, and serum metabolites, respectively. A mediation analysis was performed to assess the mediatory effect of serum biomarkers on the relationship between microbiota and neurometabolites. Results indicated fecal Ruminococcus and Butyricimonas predicted brain N-acetylaspartate (NAA). Analysis of serum biomarkers indicated Ruminococcus independently predicted serum serotonin and cortisol. A 3-step mediation indicated: i) Ruminococcus negatively predicted NAA, ii) Ruminococcus negatively predicted cortisol, and iii) a significant indirect effect (i.e., the effect of fecal Ruminococcus through cortisol on NAA) was observed and the direct effect became insignificant. Thus, serum cortisol fully mediated the relationship between fecal Ruminococcus and brain NAA. Using magnetic resonance spectroscopy, this study used a statistical mediation analysis and provides a novel perspective into the potential underlying mechanisms through which the microbiota may shape brain development. This is the first study to link Ruminococcus, cortisol, and NAA in vivo, and these findings are substantiated by previous literature indicating these factors may be influential in the etiology of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Austin T. Mudd
- Piglet Nutrition & Cognition Laboratory, University of Illinois, Urbana, IL, USA,Neuroscience Program, University of Illinois, Urbana, IL, USA
| | - Kirsten Berding
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| | - Mei Wang
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL, USA
| | - Sharon M. Donovan
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA,Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL, USA
| | - Ryan N. Dilger
- Piglet Nutrition & Cognition Laboratory, University of Illinois, Urbana, IL, USA,Neuroscience Program, University of Illinois, Urbana, IL, USA,Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA,CONTACT Ryan N. Dilger 186 Animal Sciences Laboratory, 1207 W. Gregory Street, Urbana, IL, 61801, USA
| |
Collapse
|
45
|
Pascalau R, Szabo B. Fibre Dissection and Sectional Study of the Major Porcine Cerebral White Matter Tracts. Anat Histol Embryol 2017; 46:378-390. [PMID: 28677169 DOI: 10.1111/ahe.12280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/02/2017] [Indexed: 01/19/2023]
Abstract
White matter anatomy is the basis for numerous applications in neurology, neurosurgery and fundamental neuroscience. Although the porcine brain is frequently used as experimental model in these fields of research, the description of its white matter is not as thorough as in the human brain or other species. Thus, the aim of this study is to describe the porcine white matter tracts in a complex manner. Two stepwise dissection protocols adapted from human anatomy were performed on six adult pig brain hemispheres prepared according to the Klingler method. Other four hemispheres were sectioned along section planes that were chosen similar to the Talairach coordinate system. As a result, three commissural tracts, seven association tracts and one projection tract were identified: corpus callosum, fornix, commissura rostralis, the short-association tracts, fasciculus longitudinalis superior, fasciculus uncinatus, fasciculus longitudinalis inferior, fasciculus occipitofrontalis inferior, cingulum, tractus mamillothalamicus and capsula interna. They were described and illustrated from multiple points of view, focusing on their trajectory, position, dimensions and anatomical relations. All in all, we achieved a three-dimensional understanding of the major tracts. The results are ready to be applied in future imagistic or experimental studies.
Collapse
Affiliation(s)
- R Pascalau
- Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Street, 400012, Cluj-Napoca, Romania
| | - B Szabo
- Department of Anatomy and Embryology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Street, 400012, Cluj-Napoca, Romania.,Department of Ophthalmology, Emergency County Hospital, 3-5 Clinicilor Street, 400006, Cluj-Napoca, Romania
| |
Collapse
|
46
|
Meyerholz DK, Reznikov LR. Simple and reproducible approaches for the collection of select porcine ganglia. J Neurosci Methods 2017; 289:93-98. [PMID: 28602889 DOI: 10.1016/j.jneumeth.2017.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 06/05/2017] [Accepted: 06/07/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND The anatomy and physiology of the pig nervous system is more similar to humans compared to traditional rodent models. This makes the pig an attractive model to answer questions relating to human health and disease. Yet the technical and molecular tools available to pig researchers are limited compared to rodent researchers. NEW METHOD We developed simple and rapid methods to isolate the trigeminal, nodose (distal vagal), and dorsal root ganglia from neonatal pigs. We selected these ganglia due to their broad applicability to basic science researchers and clinicians. RESULTS Use of these methods resulted in reproducible isolation of all three types of ganglia as validated by histological examination. COMPARISON WITH EXISTING METHOD(S) There are currently no methods that describe a step-by-step protocol to isolate these porcine ganglia. CONCLUSIONS In conclusion, these methods for ganglia collection will facilitate and accelerate future neuroscience investigations in pig models of human disease.
Collapse
Affiliation(s)
- David K Meyerholz
- Department of Pathology, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
| | - Leah R Reznikov
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
47
|
Bergström A, Kaalund SS, Skovgaard K, Andersen AD, Pakkenberg B, Rosenørn A, van Elburg RM, Thymann T, Greisen GO, Sangild PT. Limited effects of preterm birth and the first enteral nutrition on cerebellum morphology and gene expression in piglets. Physiol Rep 2017; 4:4/14/e12871. [PMID: 27462071 PMCID: PMC4962075 DOI: 10.14814/phy2.12871] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 06/30/2016] [Indexed: 01/07/2023] Open
Abstract
Preterm pigs show many signs of immaturity that are characteristic of preterm infants. In preterm infants, the cerebellum grows particularly rapid and hypoplasia and cellular lesions are associated with motor dysfunction and cognitive deficits. We hypothesized that functional brain delays observed in preterm pigs would be paralleled by both structural and molecular differences in the cerebellum relative to term born piglets. Cerebella were collected from term (n = 56) and preterm (90% gestation, n = 112) pigs at 0, 5, and 26 days after birth for stereological volume estimations, large‐scale qPCR gene expression analyses (selected neurodevelopmental genes) and western blot protein expression analysis (Sonic Hedgehog pathway). Memory and learning was tested using a T‐maze, documenting that preterm pigs showed delayed learning. Preterm pigs also showed reduced volume of both white and gray matter at all three ages but the proportion of white matter increased postnatally, relative to term pigs. Early initiation of enteral nutrition had limited structural or molecular effects. The Sonic Hedgehog pathway was unaffected by preterm birth. Few differences in expression of the selected genes were found, except consistently higher mRNA levels of Midkine, p75, and Neurotrophic factor 3 in the preterm cerebellum postnatally, probably reflecting an adaptive response to preterm birth. Pig cerebellar development appears more affected by postconceptional age than by environmental factors at birth or postnatally. Compensatory mechanisms following preterm birth may include faster white matter growth and increased expression of selected genes for neurotrophic factors and regulation of angiogenesis. While the pig cerebellum is immature in 90% gestation preterm pigs, it appears relatively mature and resilient toward environmental factors.
Collapse
Affiliation(s)
- Anders Bergström
- Comparative Pediatrics and Nutrition, Department of Clinical Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Sanne S Kaalund
- Comparative Pediatrics and Nutrition, Department of Clinical Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospitals, Copenhagen, Denmark
| | - Kerstin Skovgaard
- Veterinary Institute, Technical University of Denmark, Frederiksberg, Denmark
| | - Anders D Andersen
- Comparative Pediatrics and Nutrition, Department of Clinical Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Bente Pakkenberg
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospitals, Copenhagen, Denmark
| | - Ann Rosenørn
- Comparative Pediatrics and Nutrition, Department of Clinical Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Ruurd M van Elburg
- Danone Nutricia Early Life Nutrition, Nutricia Research, Utrecht, the Netherlands Emma Children's Hospital, Academic Medical Center, Amsterdam, the Netherlands
| | - Thomas Thymann
- Comparative Pediatrics and Nutrition, Department of Clinical Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Gorm O Greisen
- Department of Paediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Per T Sangild
- Comparative Pediatrics and Nutrition, Department of Clinical Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark Department of Paediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
48
|
Mudd AT, Dilger RN. Early-Life Nutrition and Neurodevelopment: Use of the Piglet as a Translational Model. Adv Nutr 2017; 8:92-104. [PMID: 28096130 PMCID: PMC5227977 DOI: 10.3945/an.116.013243] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Optimal nutrition early in life is critical to ensure proper structural and functional development of infant organ systems. Although pediatric nutrition historically has emphasized research on the relation between nutrition, growth rates, and gastrointestinal maturation, efforts increasingly have focused on how nutrition influences neurodevelopment. The provision of human milk is considered the gold standard in pediatric nutrition; thus, there is interest in understanding how functional nutrients and bioactive components in milk may modulate developmental processes. The piglet has emerged as an important translational model for studying neurodevelopmental outcomes influenced by pediatric nutrition. Given the comparable nutritional requirements and strikingly similar brain developmental patterns between young pigs and humans, the piglet is being used increasingly in developmental nutritional neuroscience studies. The piglet primarily has been used to assess the effects of dietary fatty acids and their accretion in the brain throughout neurodevelopment. However, recent research indicates that other dietary components, including choline, iron, cholesterol, gangliosides, and sialic acid, among other compounds, also affect neurodevelopment in the pig model. Moreover, novel analytical techniques, including but not limited to MRI, behavioral assessments, and molecular quantification, allow for a more holistic understanding of how nutrition affects neurodevelopmental patterns. By combining early-life nutritional interventions with innovative analytical approaches, opportunities abound to quantify factors affecting neurodevelopmental trajectories in the neonate. This review discusses research using the translational pig model with primary emphasis on early-life nutrition interventions assessing neurodevelopment outcomes, while also discussing nutritionally-sensitive methods to characterize brain maturation.
Collapse
Affiliation(s)
- Austin T Mudd
- Piglet Nutrition and Cognition Laboratory
- Neuroscience Program
| | - Ryan N Dilger
- Piglet Nutrition and Cognition Laboratory,
- Neuroscience Program
- Division of Nutritional Sciences, and
- Department of Animal Sciences, University of Illinois, Urbana, IL
| |
Collapse
|
49
|
Zhong J, Chen DQ, Walker M, Waspe A, Looi T, Piorkowska K, Drake JM, Hodaie M. An In vivo Multi-Modal Structural Template for Neonatal Piglets Using High Angular Resolution and Population-Based Whole-Brain Tractography. Front Neuroanat 2016; 10:92. [PMID: 27729850 PMCID: PMC5037218 DOI: 10.3389/fnana.2016.00092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/14/2016] [Indexed: 11/13/2022] Open
Abstract
An increasing number of applications use the postnatal piglet model in neuroimaging studies, however, these are based primarily on T1 weighted image templates. There is a growing need for a multimodal structural brain template for a comprehensive depiction of the piglet brain, particularly given the growing applications of diffusion weighted imaging for characterizing tissue microstructures and white matter organization. In this study, we present the first multimodal piglet structural brain template which includes a T1 weighted image with tissue segmentation probability maps, diffusion weighted metric templates with multiple diffusivity maps, and population-based whole-brain fiber tracts for postnatal piglets. These maps provide information about the integrity of white matter that is not available in T1 images alone. The availability of this diffusion weighted metric template will contribute to the structural imaging analysis of the postnatal piglet brain, especially models that are designed for the study of white matter diseases. Furthermore, the population-based whole-brain fiber tracts permit researchers to visualize the white matter connections in the piglet brain across subjects, guiding the delineation of a specific white matter region for structural analysis where current diffusion data is lacking. Researchers are able to augment the tracts by merging tracts from their own data to the population-based fiber tracts and thus improve the confidence of the population-wise fiber distribution.
Collapse
Affiliation(s)
- Jidan Zhong
- Division of Brain, Imaging and Behaviour - Systems Neuroscience, Krembil Research Institute, University Health Network, Toronto ON, Canada
| | - David Q Chen
- Division of Brain, Imaging and Behaviour - Systems Neuroscience, Krembil Research Institute, University Health Network, TorontoON, Canada; Institute of Medical Science, University of Toronto, TorontoON, Canada
| | - Matthew Walker
- Division of Brain, Imaging and Behaviour - Systems Neuroscience, Krembil Research Institute, University Health Network, TorontoON, Canada; Institute of Medical Science, University of Toronto, TorontoON, Canada
| | - Adam Waspe
- Centre for Image Guided Innovation and Therapeutic Intervention, The Hospital for Sick Children, Toronto ON, Canada
| | - Thomas Looi
- Centre for Image Guided Innovation and Therapeutic Intervention, The Hospital for Sick Children, Toronto ON, Canada
| | - Karolina Piorkowska
- Centre for Image Guided Innovation and Therapeutic Intervention, The Hospital for Sick Children, Toronto ON, Canada
| | - James M Drake
- Centre for Image Guided Innovation and Therapeutic Intervention, The Hospital for Sick Children, TorontoON, Canada; Division of Neurosurgery, The Hospital for Sick Children, TorontoON, Canada
| | - Mojgan Hodaie
- Division of Brain, Imaging and Behaviour - Systems Neuroscience, Krembil Research Institute, University Health Network, TorontoON, Canada; Institute of Medical Science, University of Toronto, TorontoON, Canada; Division of Neurosurgery, Toronto Western Hospital - University of Toronto, TorontoON, Canada
| |
Collapse
|
50
|
Jacob RM, Mudd AT, Alexander LS, Lai CS, Dilger RN. Comparison of Brain Development in Sow-Reared and Artificially Reared Piglets. Front Pediatr 2016; 4:95. [PMID: 27672632 PMCID: PMC5018487 DOI: 10.3389/fped.2016.00095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 08/29/2016] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Provision of adequate nutrients is critical for proper growth and development of the neonate, yet the impact of breastfeeding versus formula feeding on neural maturation has to be fully determined. Using the piglet as a model for the human infant, our objective was to compare neurodevelopment of piglets that were either sow-reared (SR) or artificially reared (AR) in an artificial setting. METHODS Over a 25-day feeding study, piglets (1.5 ± 0.2 kg initial bodyweight) were either SR (n = 10) with ad libitum intake or AR (n = 29) receiving an infant formula modified to mimic the nutritional profile and intake pattern of sow's milk. At study conclusion, piglets were subjected to a standardized set of magnetic resonance imaging (MRI) procedures to quantify structure and composition of the brain. RESULTS Diffusion tensor imaging, an MRI sequence that characterizes brain microstructure, revealed that SR piglets had greater (P < 0.05) average white matter (WM) (generated from a piglet specific brain atlas) fractional anisotropy (FA), and lower (P < 0.05) mean and radial and axial diffusivity values compared with AR piglets, suggesting differences in WM organization. Voxel-based morphometric analysis, a measure of white and gray matter (GM) volumes concentrations, revealed differences (P < 0.05) in bilateral development of GM clusters in the cortical brain regions of the AR piglets compared with SR piglets. Region of interest analysis revealed larger (P < 0.05) whole brain volumes in SR animals compared with AR, and certain subcortical regions to be larger (P < 0.05) as a percentage of whole brain volume in AR piglets compared with SR animals. Quantification of brain metabolites using magnetic resonance spectroscopy revealed SR piglets had higher (P < 0.05) concentrations of myo-inositol, glycerophosphocholine + phosphocholine, and creatine + phosphocreatine compared with AR piglets. However, glutamate + glutamine levels were higher (P < 0.05) in AR piglets when compared with SR animals. CONCLUSION Overall, increases in brain metabolite concentrations, coupled with greater FA values in WM tracts and volume differences in GM of specific brain regions, suggest differences in myelin development and cell proliferation in SR versus AR piglets.
Collapse
Affiliation(s)
- Reeba M. Jacob
- Piglet Nutrition and Cognition Laboratory, University of Illinois, Urbana, IL, USA
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - Austin T. Mudd
- Piglet Nutrition and Cognition Laboratory, University of Illinois, Urbana, IL, USA
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
- Neuroscience Program, University of Illinois, Urbana, IL, USA
| | - Lindsey S. Alexander
- Piglet Nutrition and Cognition Laboratory, University of Illinois, Urbana, IL, USA
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - Chron-Si Lai
- Abbott Nutrition, Abbott Laboratories, Columbus, OH, USA
| | - Ryan N. Dilger
- Piglet Nutrition and Cognition Laboratory, University of Illinois, Urbana, IL, USA
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
- Neuroscience Program, University of Illinois, Urbana, IL, USA
| |
Collapse
|