1
|
Graham VA, Easterbrook L, Rayner E, Findlay-Wilson S, Flett L, Kennedy E, Fotheringham S, Kempster S, Almond N, Dowall S. Comparison of Chikungunya Virus-Induced Disease Progression and Pathogenesis in Type-I Interferon Receptor-Deficient Mice (A129) and Two Wild-Type (129Sv/Ev and C57BL/6) Mouse Strains. Viruses 2024; 16:1534. [PMID: 39459867 PMCID: PMC11512278 DOI: 10.3390/v16101534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/10/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus causing a debilitating febrile illness with rheumatic disease symptoms of arthralgia and arthritis. Since its spread outside of Africa in 2005, it continues to cause outbreaks and disseminates into new territories. Intervention strategies are urgently required, including vaccination and antiviral approaches. To test efficacy, the use of small animal models is required. Two mouse strains, A129, with a deficiency in their type-I interferon (IFN) receptor, and C57BL/6 are widely used. A direct comparison of these strains alongside the wild-type parental strain of the A129 mice, 129Sv/Ev, was undertaken to assess clinical disease progression, viral loads in key tissues, histological changes and levels of sera biomarkers. Our results confirm the severe disease course in A129 mice which was not observed in the parental 129Sv/Ev strain. Of the two wild-type strains, viral loads were higher in 129Sv/Ev mice compared to C57BL/6 counterparts. Our results have established these models and parameters for the future testing of vaccines and antiviral approaches.
Collapse
Affiliation(s)
- Victoria A. Graham
- UK Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, Wiltshire, UK; (V.A.G.); (L.E.); (E.R.); (S.F.-W.); (L.F.); (E.K.); (S.F.)
| | - Linda Easterbrook
- UK Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, Wiltshire, UK; (V.A.G.); (L.E.); (E.R.); (S.F.-W.); (L.F.); (E.K.); (S.F.)
| | - Emma Rayner
- UK Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, Wiltshire, UK; (V.A.G.); (L.E.); (E.R.); (S.F.-W.); (L.F.); (E.K.); (S.F.)
| | - Stephen Findlay-Wilson
- UK Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, Wiltshire, UK; (V.A.G.); (L.E.); (E.R.); (S.F.-W.); (L.F.); (E.K.); (S.F.)
| | - Lucy Flett
- UK Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, Wiltshire, UK; (V.A.G.); (L.E.); (E.R.); (S.F.-W.); (L.F.); (E.K.); (S.F.)
| | - Emma Kennedy
- UK Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, Wiltshire, UK; (V.A.G.); (L.E.); (E.R.); (S.F.-W.); (L.F.); (E.K.); (S.F.)
| | - Susan Fotheringham
- UK Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, Wiltshire, UK; (V.A.G.); (L.E.); (E.R.); (S.F.-W.); (L.F.); (E.K.); (S.F.)
| | - Sarah Kempster
- Medicines and Healthcare Products Regulatory Agency (MHRA), Blanche Ln, South Mimms, Potters Bar EN6 3QG, Hertfordshire, UK; (S.K.); (N.A.)
| | - Neil Almond
- Medicines and Healthcare Products Regulatory Agency (MHRA), Blanche Ln, South Mimms, Potters Bar EN6 3QG, Hertfordshire, UK; (S.K.); (N.A.)
| | - Stuart Dowall
- UK Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, Wiltshire, UK; (V.A.G.); (L.E.); (E.R.); (S.F.-W.); (L.F.); (E.K.); (S.F.)
| |
Collapse
|
2
|
da Silva MOL, Figueiredo CM, Neris RLS, Guimarães-Andrade IP, Gavino-Leopoldino D, Miler-da-Silva LL, Valença HDM, Ladislau L, de Lima CVF, Coccarelli FM, Benjamim CF, Assunção-Miranda I. Chikungunya and Mayaro Viruses Induce Chronic Skeletal Muscle Atrophy Triggered by Pro-Inflammatory and Oxidative Response. Int J Mol Sci 2024; 25:8909. [PMID: 39201595 PMCID: PMC11354814 DOI: 10.3390/ijms25168909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 09/02/2024] Open
Abstract
Chikungunya (CHIKV) and Mayaro (MAYV) viruses are arthritogenic alphaviruses that promote an incapacitating and long-lasting inflammatory muscle-articular disease. Despite studies pointing out the importance of skeletal muscle (SkM) in viral pathogenesis, the long-term consequences on its physiology and the mechanism of persistence of symptoms are still poorly understood. Combining molecular, morphological, nuclear magnetic resonance imaging, and histological analysis, we conduct a temporal investigation of CHIKV and MAYV replication in a wild-type mice model, focusing on the impact on SkM composition, structure, and repair in the acute and late phases of infection. We found that viral replication and induced inflammation promote a rapid loss of muscle mass and reduction in fiber cross-sectional area by upregulation of muscle-specific E3 ubiquitin ligases MuRF1 and Atrogin-1 expression, both key regulators of SkM fibers atrophy. Despite a reduction in inflammation and clearance of infectious viral particles, SkM atrophy persists until 30 days post-infection. The genomic CHIKV and MAYV RNAs were still detected in SkM in the late phase, along with the upregulation of chemokines and anti-inflammatory cytokine expression. In agreement with the involvement of inflammatory mediators on induced atrophy, the neutralization of TNF and a reduction in oxidative stress using monomethyl fumarate, an agonist of Nrf2, decreases atrogen expression and atrophic fibers while increasing weight gain in treated mice. These data indicate that arthritogenic alphavirus infection could chronically impact body SkM composition and also harm repair machinery, contributing to a better understanding of mechanisms of arthritogenic alphavirus pathogenesis and with a description of potentially new targets of therapeutic intervention.
Collapse
Affiliation(s)
- Mariana Oliveira Lopes da Silva
- Department of Virology, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (M.O.L.d.S.); (C.M.F.); (R.L.S.N.); (I.P.G.-A.); (D.G.-L.)
| | - Camila Menezes Figueiredo
- Department of Virology, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (M.O.L.d.S.); (C.M.F.); (R.L.S.N.); (I.P.G.-A.); (D.G.-L.)
| | - Rômulo Leão Silva Neris
- Department of Virology, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (M.O.L.d.S.); (C.M.F.); (R.L.S.N.); (I.P.G.-A.); (D.G.-L.)
| | - Iris Paula Guimarães-Andrade
- Department of Virology, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (M.O.L.d.S.); (C.M.F.); (R.L.S.N.); (I.P.G.-A.); (D.G.-L.)
| | - Daniel Gavino-Leopoldino
- Department of Virology, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (M.O.L.d.S.); (C.M.F.); (R.L.S.N.); (I.P.G.-A.); (D.G.-L.)
| | - Leonardo Linhares Miler-da-Silva
- Department of Virology, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (M.O.L.d.S.); (C.M.F.); (R.L.S.N.); (I.P.G.-A.); (D.G.-L.)
| | - Helber da Maia Valença
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (H.d.M.V.)
| | - Leandro Ladislau
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (H.d.M.V.)
| | - Caroline Victorino Felix de Lima
- National Center for Structural Biology and Bioimaging (CENABio), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (C.V.F.d.L.); (F.M.C.)
- Instituto D’Or de Pesquisa e Ensino, Rio de Janeiro 22281-100, Brazil
| | - Fernanda Meireles Coccarelli
- National Center for Structural Biology and Bioimaging (CENABio), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (C.V.F.d.L.); (F.M.C.)
- Instituto D’Or de Pesquisa e Ensino, Rio de Janeiro 22281-100, Brazil
| | - Claudia Farias Benjamim
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil;
| | - Iranaia Assunção-Miranda
- Department of Virology, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (M.O.L.d.S.); (C.M.F.); (R.L.S.N.); (I.P.G.-A.); (D.G.-L.)
| |
Collapse
|
3
|
Shaikh MS, Faiyazuddin M, Khan MS, Pathan SK, Syed IJ, Gholap AD, Akhtar MS, Sah R, Mehta R, Sah S, Bonilla-Aldana DK, Luna C, Rodriguez-Morales AJ. Chikungunya virus vaccine: a decade of progress solving epidemiological dilemma, emerging concepts, and immunological interventions. Front Microbiol 2024; 15:1413250. [PMID: 39104592 PMCID: PMC11298817 DOI: 10.3389/fmicb.2024.1413250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
Chikungunya virus (CHIKV), a single-stranded RNA virus transmitted by Aedes mosquitoes, poses a significant global health threat, with severe complications observed in vulnerable populations. The only licensed vaccine, IXCHIQ, approved by the US FDA, is insufficient to address the growing disease burden, particularly in endemic regions lacking herd immunity. Monoclonal antibodies (mAbs), explicitly targeting structural proteins E1/E2, demonstrate promise in passive transfer studies, with mouse and human-derived mAbs showing protective efficacy. This article explores various vaccine candidates, including live attenuated, killed, nucleic acid-based (DNA/RNA), virus-like particle, chimeric, subunit, and adenovirus vectored vaccines. RNA vaccines have emerged as promising candidates due to their rapid response capabilities and enhanced safety profile. This review underscores the importance of the E1 and E2 proteins as immunogens, emphasizing their antigenic potential. Several vaccine candidates, such as CHIKV/IRES, measles vector (MV-CHIK), synthetic DNA-encoded antibodies, and mRNA-lipid nanoparticle vaccines, demonstrate encouraging preclinical and clinical results. In addition to identifying potential molecular targets for antiviral therapy, the study looks into the roles played by Toll-like receptors, RIG-I, and NOD-like receptors in the immune response to CHIKV. It also offers insights into novel tactics and promising vaccine candidates. This article discusses potential antiviral targets, the significance of E1 and E2 proteins, monoclonal antibodies, and RNA vaccines as prospective Chikungunya virus vaccine candidates.
Collapse
Affiliation(s)
| | - Md. Faiyazuddin
- School of Pharmacy, Al – Karim University, Katihar, India
- Centre for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | | | - Shahbaz K. Pathan
- Medmecs Medical Coding & Billing Services, Universal Business Park, Mumbai, Maharashtra, India
| | - Imran J. Syed
- Y. B. Chavan College of Pharmacy, Aurangabad, Maharashtra, India
- SBSPM’s B. Pharmacy College, Beed, Maharashtra, India
| | - Amol D. Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
| | - Mohammad Shabib Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Ranjit Sah
- Green City Hospital, Kathmandu, Nepal
- Research Unit, Department of Microbiology, Dr. DY Patil Medical College, Hospital and Research Centre, DY Patil Vidyapeeth, Pune, Maharashtra, India
- Department of Public Health Dentistry, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Rachana Mehta
- Dr Lal PathLabs Nepal, Kathmandu, Nepal
- Medical Laboratories Techniques Department, AL-Mustaqbal University, Hillah, Babil, Iraq
- Clinical Microbiology, School of Dental Science, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana, India
| | | | | | - Camila Luna
- Faculty of Health Sciences, Universidad Científica del Sur, Lima, Peru
| | - Alfonso J. Rodriguez-Morales
- Faculty of Health Sciences, Universidad Científica del Sur, Lima, Peru
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónoma de las Américas-Institución Universitaria Visión de las Américas, Pereira, Colombia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| |
Collapse
|
4
|
Varikkodan MM, Kunnathodi F, Azmi S, Wu TY. An Overview of Indian Biomedical Research on the Chikungunya Virus with Particular Reference to Its Vaccine, an Unmet Medical Need. Vaccines (Basel) 2023; 11:1102. [PMID: 37376491 DOI: 10.3390/vaccines11061102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Chikungunya virus (CHIKV) is an infectious agent spread by mosquitos, that has engendered endemic or epidemic outbreaks of Chikungunya fever (CHIKF) in Africa, South-East Asia, America, and a few European countries. Like most tropical infections, CHIKV is frequently misdiagnosed, underreported, and underestimated; it primarily affects areas with limited resources, like developing nations. Due to its high transmission rate and lack of a preventive vaccine or effective treatments, this virus poses a serious threat to humanity. After a 32-year hiatus, CHIKV reemerged as the most significant epidemic ever reported, in India in 2006. Since then, CHIKV-related research was begun in India, and up to now, more than 800 peer-reviewed research papers have been published by Indian researchers and medical practitioners. This review gives an overview of the outbreak history and CHIKV-related research in India, to favor novel high-quality research works intending to promote effective treatment and preventive strategies, including vaccine development, against CHIKV infection.
Collapse
Affiliation(s)
- Muhammed Muhsin Varikkodan
- Department of Bioscience Technology, College of Science, Chung Yuan Christian University, Chung-Li, Taoyuan City 320314, Taiwan
| | - Faisal Kunnathodi
- Scientific Research Center, Prince Sultan Military Medical City, Riyadh 11159, Saudi Arabia
| | - Sarfuddin Azmi
- Scientific Research Center, Prince Sultan Military Medical City, Riyadh 11159, Saudi Arabia
| | - Tzong-Yuan Wu
- Department of Bioscience Technology, College of Science, Chung Yuan Christian University, Chung-Li, Taoyuan City 320314, Taiwan
- R&D Center of Membrane Technology, Chung Yuan Christian University, Chung-Li, Taoyuan City 320314, Taiwan
| |
Collapse
|
5
|
Deubiquitinating Enzyme Inhibitors Block Chikungunya Virus Replication. Viruses 2023; 15:v15020481. [PMID: 36851696 PMCID: PMC9966916 DOI: 10.3390/v15020481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Ubiquitination and deubiquitination processes are widely involved in modulating the function, activity, localization, and stability of multiple cellular proteins regulating almost every aspect of cellular function. Several virus families have been shown to exploit the cellular ubiquitin-conjugating system to achieve a productive infection: enter the cell, promote genome replication, or assemble and release viral progeny. In this study, we analyzed the role of deubiquitinating enzymes (DUBs) during chikungunya virus (CHIKV) infection. HEK293T, Vero-E6, and Huh-7 cells were treated with two DUB inhibitors (PR619 or WP1130). Then, infected cells were evaluated by flow cytometry, and viral progeny was quantified using the plaque assay method. The changes in viral proteins and viral RNA were analyzed using Western blotting and RT-qPCR, respectively. Results indicate that treatment with DUB inhibitors impairs CHIKV replication due to significant protein and viral RNA synthesis deregulation. Therefore, DUB activity may be a pharmacological target for blocking CHIKV infection.
Collapse
|
6
|
Mahish C, De S, Chatterjee S, Ghosh S, Keshry SS, Mukherjee T, Khamaru S, Tung KS, Subudhi BB, Chattopadhyay S, Chattopadhyay S. TLR4 is one of the receptors for Chikungunya virus envelope protein E2 and regulates virus induced pro-inflammatory responses in host macrophages. Front Immunol 2023; 14:1139808. [PMID: 37153546 PMCID: PMC10157217 DOI: 10.3389/fimmu.2023.1139808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/29/2023] [Indexed: 05/09/2023] Open
Abstract
Toll like receptor 4 (TLR4), a pathogen-associated molecular pattern (PAMP) receptor, is known to exert inflammation in various cases of microbial infection, cancer and autoimmune disorders. However, any such involvement of TLR4 in Chikungunya virus (CHIKV) infection is yet to be explored. Accordingly, the role of TLR4 was investigated towards CHIKV infection and modulation of host immune responses in the current study using mice macrophage cell line RAW264.7, primary macrophage cells of different origins and in vivo mice model. The findings suggest that TLR4 inhibition using TAK-242 (a specific pharmacological inhibitor) reduces viral copy number as well as reduces the CHIKV-E2 protein level significantly using p38 and JNK-MAPK pathways. Moreover, this led to reduced expression of macrophage activation markers like CD14, CD86, MHC-II and pro-inflammatory cytokines (TNF, IL-6, MCP-1) significantly in both the mouse primary macrophages and RAW264.7 cell line, in vitro. Additionally, TAK-242-directed TLR4 inhibition demonstrated a significant reduction of percent E2-positive cells, viral titre and TNF expression in hPBMC-derived macrophages, in vitro. These observations were further validated in TLR4-knockout (KO) RAW cells. Furthermore, the interaction between CHIKV-E2 and TLR4 was demonstrated by immuno-precipitation studies, in vitro and supported by molecular docking analysis, in silico. TLR4-dependent viral entry was further validated by an anti-TLR4 antibody-mediated blocking experiment. It was noticed that TLR4 is necessary for the early events of viral infection, especially during the attachment and entry stages. Interestingly, it was also observed that TLR4 is not involved in the post-entry stages of CHIKV infection in host macrophages. The administration of TAK-242 decreased CHIKV infection significantly by reducing disease manifestations, improving survivability (around 75%) and reducing inflammation in mice model. Collectively, for the first time, this study reports TLR4 as one of the novel receptors to facilitate the attachment and entry of CHIKV in host macrophages, the TLR4-CHIKV-E2 interactions are essential for efficient viral entry and modulation of infection-induced pro-inflammatory responses in host macrophages, which might have translational implication for designing future therapeutics to regulate the CHIKV infection.
Collapse
Affiliation(s)
- Chandan Mahish
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, Jatni, Odisha, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, Maharashtra, India
| | - Saikat De
- Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Sanchari Chatterjee
- Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Soumyajit Ghosh
- Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Supriya Suman Keshry
- Institute of Life Sciences, Bhubaneswar, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar, India
| | - Tathagata Mukherjee
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, Jatni, Odisha, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, Maharashtra, India
| | - Somlata Khamaru
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, Jatni, Odisha, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, Maharashtra, India
| | - Kshyama Subhadarsini Tung
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, Jatni, Odisha, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, Maharashtra, India
| | - Bharat Bhusan Subudhi
- School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Soma Chattopadhyay
- Institute of Life Sciences, Bhubaneswar, India
- *Correspondence: Subhasis Chattopadhyay, ; Soma Chattopadhyay,
| | - Subhasis Chattopadhyay
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, Jatni, Odisha, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, Maharashtra, India
- *Correspondence: Subhasis Chattopadhyay, ; Soma Chattopadhyay,
| |
Collapse
|
7
|
Rosendo Machado S, Qu J, Koopman WJH, Miesen P. The DEAD-box RNA helicase Dhx15 controls glycolysis and arbovirus replication in Aedes aegypti mosquito cells. PLoS Pathog 2022; 18:e1010694. [PMID: 36441781 PMCID: PMC9731432 DOI: 10.1371/journal.ppat.1010694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/08/2022] [Accepted: 11/11/2022] [Indexed: 11/30/2022] Open
Abstract
Aedes aegypti mosquitoes are responsible for the transmission of arthropod-borne (arbo)viruses including dengue and chikungunya virus (CHIKV) but in contrast to human hosts, arbovirus-infected mosquitoes are able to efficiently control virus replication to sub-pathological levels. Yet, our knowledge of the molecular interactions of arboviruses with their mosquito hosts is incomplete. Here, we aimed to identify and characterize novel host genes that control arbovirus replication in Aedes mosquitoes. RNA binding proteins (RBPs) are well-known to regulate immune signaling pathways in all kingdoms of life. We therefore performed a knockdown screen targeting 461 genes encoding predicted RBPs in Aedes aegypti Aag2 cells and identified 15 genes with antiviral activity against Sindbis virus. Amongst these, the three DEAD-box RNA helicases AAEL004419/Dhx15, AAEL008728, and AAEL004859 also acted as antiviral factors in dengue and CHIKV infections. Here, we explored the mechanism of Dhx15 in regulating an antiviral transcriptional response in mosquitoes by silencing Dhx15 in Aag2 cells followed by deep-sequencing of poly-A enriched RNAs. Dhx15 knockdown in uninfected and CHIKV-infected cells resulted in differential expression of 856 and 372 genes, respectively. Interestingly, amongst the consistently downregulated genes, glycolytic process was the most enriched gene ontology (GO) term as the expression of all core enzymes of the glycolytic pathway was reduced, suggesting that Dhx15 regulates glycolytic function. A decrease in lactate production indicated that Dhx15 silencing indeed functionally impaired glycolysis. Modified rates of glycolytic metabolism have been implicated in controlling the replication of several classes of viruses and strikingly, infection of Aag2 cells with CHIKV by itself also resulted in the decrease of several glycolytic genes. Our data suggests that Dhx15 regulates replication of CHIKV, and possibly other arboviruses, by controlling glycolysis in mosquito cells.
Collapse
Affiliation(s)
- Samara Rosendo Machado
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jieqiong Qu
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Werner J. H. Koopman
- Department of Pediatrics, Amalia Children’s Hospital, Radboud Institute for Molecular Life Sciences, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Pascal Miesen
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
8
|
Mamidi P, Nayak TK, Kumar A, Kumar S, Chatterjee S, De S, Datey A, Ghosh S, Keshry SS, Singh S, Laha E, Ray A, Chattopadhyay S, Chattopadhyay S. MK2a inhibitor CMPD1 abrogates chikungunya virus infection by modulating actin remodeling pathway. PLoS Pathog 2021; 17:e1009667. [PMID: 34780576 PMCID: PMC8592423 DOI: 10.1371/journal.ppat.1009667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/15/2021] [Indexed: 02/06/2023] Open
Abstract
Chikungunya virus (CHIKV) epidemics around the world have created public health concern with the unavailability of effective drugs and vaccines. This emphasizes the need for molecular understanding of host-virus interactions for developing effective targeted antivirals. Microarray analysis was carried out using CHIKV strain (Prototype and Indian) infected Vero cells and two host isozymes, MAPK activated protein kinase 2 (MK2) and MAPK activated protein kinase 3 (MK3) were selected for further analysis. The substrate spectrum of both enzymes is indistinguishable and covers proteins involved in cytokines production, endocytosis, reorganization of the cytoskeleton, cell migration, cell cycle control, chromatin remodeling and transcriptional regulation. Gene silencing and drug treatment were performed in vitro and in vivo to unravel the role of MK2/MK3 in CHIKV infection. Gene silencing of MK2 and MK3 abrogated around 58% CHIKV progeny release from the host cell and a MK2 activation inhibitor (CMPD1) treatment demonstrated 68% inhibition of viral infection suggesting a major role of MAPKAPKs during late CHIKV infection in vitro. Further, it was observed that the inhibition in viral infection is primarily due to the abrogation of lamellipodium formation through modulation of factors involved in the actin cytoskeleton remodeling pathway. Moreover, CHIKV-infected C57BL/6 mice demonstrated reduction in the viral copy number, lessened disease score and better survivability after CMPD1 treatment. In addition, reduction in expression of key pro-inflammatory mediators such as CXCL13, RAGE, FGF, MMP9 and increase in HGF (a CHIKV infection recovery marker) was observed indicating the effectiveness of the drug against CHIKV. Taken together it can be proposed that MK2 and MK3 are crucial host factors for CHIKV infection and can be considered as important target for developing effective anti-CHIKV strategies. Chikungunya virus has been a dreaded disease from the first time it occurred in 1952 Tanzania. Since then it has been affecting the different parts of the world at different time periods in large scale. It is typically transmitted to humans by bites of Aedes aegypti and Aedes albopictus mosquitoes. Although, studies have been undertaken to combat its prevalence still there are no effective strategies like vaccines or antivirals against it. Therefore it is essential to understand the virus and host interaction to overcome this hurdle. In this study two host factors MK2 and MK3 have been taken into consideration to see how they affect the multiplication of the virus. The in vitro and in vivo experiments conducted demonstrated that inhibition of MK2 and MK3 not only restricted viral release but also decreased the disease score and allowed better survivability. Therefore, MK2 and MK3 could be considered as the key targets in the anti CHIKV approach.
Collapse
Affiliation(s)
| | - Tapas Kumar Nayak
- National Institute of Science Education and Research, Bhubaneswar, India
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Abhishek Kumar
- Institute of Life Sciences, Bhubaneswar, India
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, United States of America
| | - Sameer Kumar
- Institute of Life Sciences, Bhubaneswar, India
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Sanchari Chatterjee
- Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Saikat De
- Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Ankita Datey
- Institute of Life Sciences, Bhubaneswar, India
- KIIT school of Biotechnology, Bhubaneswar, India
| | - Soumyajit Ghosh
- Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Supriya Suman Keshry
- Institute of Life Sciences, Bhubaneswar, India
- KIIT school of Biotechnology, Bhubaneswar, India
| | - Sharad Singh
- Institute of Life Sciences, Bhubaneswar, India
- KIIT school of Biotechnology, Bhubaneswar, India
| | - Eshna Laha
- Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Amrita Ray
- Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | | | | |
Collapse
|
9
|
Telmisartan restricts Chikungunya virus infection in vitro and in vivo through the AT1/PPAR-γ/MAPKs pathways. Antimicrob Agents Chemother 2021; 66:e0148921. [PMID: 34748384 DOI: 10.1128/aac.01489-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Chikungunya virus (CHIKV) has re-emerged as a global public health threat. The inflammatory pathways of RAS and PPAR-γ are usually involved in viral infections. Thus, Telmisartan (TM) with known capacity to block AT1 receptor and activate PPAR-γ, was investigated against CHIKV. The anti-CHIKV effect of TM was investigated in vitro (Vero, RAW 264.7 cells and hPBMCs) and in vivo (C57BL/6 mice). TM was found to abrogate CHIKV infection efficiently (IC50 of 15.34-20.89μM in the Vero and RAW 264.7 cells respectively). Viral RNA and proteins were reduced remarkably. Additionally, TM interfered in the early and late stages of CHIKV life cycle with efficacy in both pre and post-treatment assay. Moreover, the agonist of AT1 receptor and antagonist of PPAR-γ increased CHIKV infection suggesting TM's anti-viral potential by modulating host factors. Besides, reduced activation of all major MAPKs, NF-κB (p65) and cytokines by TM through the inflammatory axis supported the fact that the anti-CHIKV efficacy of TM is partly mediated through the AT1/PPAR-γ/MAPKs pathways. Interestingly, at the human equivalent dose, TM abrogated CHIKV infection and inflammation significantly leading to reduced clinical score and complete survival of C57BL/6 mice. Additionally, TM reduced infection in hPBMC derived monocyte-macrophage populations in vitro. Hence, TM was found to reduce CHIKV infection by targeting both viral and host factors. Considering its safety and in vivo efficacy, it can be a suitable candidate in future for repurposing against CHIKV.
Collapse
|
10
|
Hibl BM, Dailey Garnes NJM, Kneubehl AR, Vogt MB, Spencer Clinton JL, Rico-Hesse RR. Mosquito-bite infection of humanized mice with chikungunya virus produces systemic disease with long-term effects. PLoS Negl Trop Dis 2021; 15:e0009427. [PMID: 34106915 PMCID: PMC8189471 DOI: 10.1371/journal.pntd.0009427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/02/2021] [Indexed: 12/13/2022] Open
Abstract
Chikungunya virus (CHIKV) is an emerging, mosquito-borne alphavirus responsible for acute to chronic arthralgias and neuropathies. Although it originated in central Africa, recent reports of disease have come from many parts of the world, including the Americas. While limiting human CHIKV cases through mosquito control has been used, it has not been entirely successful. There are currently no licensed vaccines or treatments specific for CHIKV disease, thus more work is needed to develop effective countermeasures. Current animal research on CHIKV is often not representative of human disease. Most models use CHIKV needle inoculation via unnatural routes to create immediate viremia and localized clinical signs; these methods neglect the natural route of transmission (the mosquito vector bite) and the associated human immune response. Since mosquito saliva has been shown to have a profound effect on viral pathogenesis, we evaluated a novel model of infection that included the natural vector, Aedes species mosquitoes, transmitting CHIKV to mice containing components of the human immune system. Humanized mice infected by 3-6 mosquito bites showed signs of systemic infection, with demonstrable viremia (by qRT-PCR and immunofluorescent antibody assay), mild to moderate clinical signs (by observation, histology, and immunohistochemistry), and immune responses consistent with human infection (by flow cytometry and IgM ELISA). This model should give a better understanding of human CHIKV disease and allow for more realistic evaluations of mechanisms of pathogenesis, prophylaxis, and treatments.
Collapse
Affiliation(s)
- Brianne M. Hibl
- Center for Comparative Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Natalie J. M. Dailey Garnes
- Section of Infectious Disease, Department of Internal Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Section of Pediatric Infectious Diseases, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Alexander R. Kneubehl
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Megan B. Vogt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jennifer L. Spencer Clinton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Rebecca R. Rico-Hesse
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
11
|
Arboviruses and Muscle Disorders: From Disease to Cell Biology. Viruses 2020; 12:v12060616. [PMID: 32516914 PMCID: PMC7354517 DOI: 10.3390/v12060616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 12/23/2022] Open
Abstract
Infections due to arboviruses (arthropod-borne viruses) have dramatically increased worldwide during the last few years. In humans, symptoms associated with acute infection of most arboviruses are often described as "dengue-like syndrome", including fever, rash, conjunctivitis, arthralgia, and muscular symptoms such as myalgia, myositis, or rhabdomyolysis. In some cases, muscular symptoms may persist over months, especially following flavivirus and alphavirus infections. However, in humans the cellular targets of infection in muscle have been rarely identified. Animal models provide insights to elucidate pathological mechanisms through studying viral tropism, viral-induced inflammation, or potential viral persistence in the muscle compartment. The tropism of arboviruses for muscle cells as well as the viral-induced cytopathic effect and cellular alterations can be confirmed in vitro using cellular models. This review describes the link between muscle alterations and arbovirus infection, and the underlying mechanisms.
Collapse
|
12
|
Sukkaew A, Suksatu A, Roytrakul S, Smith DR, Ubol S. Proteomic analysis of CHIKV-infected human fibroblast-like synoviocytes: Identification of host factors potentially associated with CHIKV replication and cellular pathogenesis. Microbiol Immunol 2020; 64:445-457. [PMID: 32246487 DOI: 10.1111/1348-0421.12793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/21/2020] [Accepted: 03/26/2020] [Indexed: 01/02/2023]
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne virus that causes arthralgic fever. Fibroblast-like synoviocytes play a key role in joint damage in inflammatory arthritides and can additionally serve as target cells for CHIKV infection. To gain a better understanding of CHIKV-induced arthralgia, the interaction between CHIKV and synoviocytes was investigated at the protein level. A gel-enhanced liquid chromatography-mass spectrometry (GeLC-MS/MS) approach was used to examine protein expression from primary human fibroblast-like synoviocytes (HFLS) infected with clinical isolates of CHIKV at 12 and 24 hr post infection. Our analysis identified 259 and 241 proteins of known function that were differentially expressed (>1.5 or <-1.5 fold change) following CHIKV infection at 12 and 24 hpi, respectively. These proteins are involved in cellular homeostasis, including cellular trafficking, cytoskeletal organization, immune response, metabolic process, and protein modification. Some of these proteins have previously been reported to participate in arthralgia/arthritis and the death of infected cells. Our results provide information on the CHIKV-induced modulation of cellular proteins of HFLS at an early stage of infection, as well as highlighting biological processes associated with CHIKV infection in the main target cells of the joint.
Collapse
Affiliation(s)
- Apamas Sukkaew
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Ampa Suksatu
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Sittiruk Roytrakul
- Proteomics Research Laboratory, Genome Institute, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Duncan R Smith
- Center for Emerging and Neglected Infectious Diseases, Mahidol University, Bangkok, Thailand.,Institute of Molecular Bioscience, Mahidol University Salaya Campus, Nakorn Pathom, Thailand
| | - Sukathida Ubol
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Center for Emerging and Neglected Infectious Diseases, Mahidol University, Bangkok, Thailand
| |
Collapse
|
13
|
Activation of the PI3K-AKT Pathway by Old World Alphaviruses. Cells 2020; 9:cells9040970. [PMID: 32326388 PMCID: PMC7226951 DOI: 10.3390/cells9040970] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
Alphaviruses can infect a broad range of vertebrate hosts, including birds, horses, primates, and humans, in which infection can lead to rash, fever, encephalitis, and arthralgia or arthritis. They are most often transmitted by mosquitoes in which they establish persistent, asymptomatic infections. Currently, there are no vaccines or antiviral therapies for any alphavirus. Several Old World alphaviruses, including Semliki Forest virus, Ross River virus and chikungunya virus, activate or hyperactivate the phosphatidylinositol-3-kinase (PI3K)-AKT pathway in vertebrate cells, potentially influencing many cellular processes, including survival, proliferation, metabolism and autophagy. Inhibition of PI3K or AKT inhibits replication of several alphaviruses either in vitro or in vivo, indicating the importance for viral replication. In this review, we discuss what is known about the mechanism(s) of activation of the pathway during infection and describe those effects of PI3K-AKT activation which could be of advantage to the alphaviruses. Such knowledge may be useful for the identification and development of therapies.
Collapse
|
14
|
Cavalheiro MG, Costa LSDA, Campos HS, Alves LS, Assunção-Miranda I, Poian ATDA. Macrophages as target cells for Mayaro virus infection: involvement of reactive oxygen species in the inflammatory response during virus replication. AN ACAD BRAS CIENC 2018; 88:1485-99. [PMID: 27627069 DOI: 10.1590/0001-3765201620150685] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 03/18/2016] [Indexed: 02/05/2023] Open
Abstract
Alphaviruses among the viruses that cause arthritis, consisting in a public health problem worldwide by causing localized outbreaks, as well as large epidemics in humans. Interestingly, while the Old World alphaviruses are arthritogenic, the New World alphaviruses cause encephalitis. One exception is Mayaro virus (MAYV), which circulates exclusively in South America but causes arthralgia and is phylogenetically related to the Old World alphaviruses. Although MAYV-induced arthritis in humans is well documented, the molecular and cellular factors that contribute to its pathogenesis are completely unknown. In this study, we demonstrated for the first time that macrophages, key players in arthritis development, are target cells for MAYV infection, which leads to cell death through apoptosis. We showed that MAYV replication in macrophage induced the expression of TNF, a cytokine that would contribute to pathogenesis of MAYV fever, since TNF promotes an inflammatory profile characteristic of arthritis. We also found a significant increase in the production of reactive oxygen species (ROS) at early times of infection, which coincides with the peak of virus replication and precedes TNF secretion. Treatment of the cells with antioxidant agents just after infection completely abolished TNF secretion, indicating an involvement of ROS in inflammation induced during MAYV infection.
Collapse
Affiliation(s)
- Mariana G Cavalheiro
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco E, Sala 18, 21941-902 Rio de Janeiro, RJ Brasil
| | - Leandro Silva DA Costa
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco E, Sala 18, 21941-902 Rio de Janeiro, RJ Brasil
| | - Holmes S Campos
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco E, Sala 18, 21941-902 Rio de Janeiro, RJ Brasil
| | - Letícia S Alves
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco I, Sala I0-55, 21941-902 Rio de Janeiro, RJ, Brasil
| | - Iranaia Assunção-Miranda
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco I, Sala I0-55, 21941-902 Rio de Janeiro, RJ, Brasil
| | - Andrea T DA Poian
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco E, Sala 18, 21941-902 Rio de Janeiro, RJ Brasil
| |
Collapse
|
15
|
Abraham R, Singh S, Nair SR, Hulyalkar NV, Surendran A, Jaleel A, Sreekumar E. Nucleophosmin (NPM1)/B23 in the Proteome of Human Astrocytic Cells Restricts Chikungunya Virus Replication. J Proteome Res 2017; 16:4144-4155. [PMID: 28959884 DOI: 10.1021/acs.jproteome.7b00513] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chikungunya virus (CHIKV), a positive-stranded RNA virus, can cause neurological complications by infecting the major parenchymal cells of the brain such as neurons and astrocytes. A proteomic analysis of CHIKV-infected human astrocytic cell line U-87 MG revealed tight functional associations among the modulated proteins. The predominant cellular pathways involved were of transcription-translation machinery, cytoskeletol reorganization, apoptosis, ubiquitination, and metabolism. In the proteome, we could also identify a few proteins that are reported to be involved in host-virus interactions. One such protein, Nucleophosmin (NPM1)/B23, a nucleolar protein, showed enhanced cytoplasmic aggregation in CHIKV-infected cells. NPM1 aggregation was predominantly localized in areas wherein CHIKV antigen could be detected. Furthermore, we observed that inhibition of this aggregation using a specific NPM1 oligomerization inhibitor, NSC348884, caused a significant dose-dependent enhancement in virus replication. There was a marked increase in the amount of intracellular viral RNA, and ∼105-fold increase in progeny virions in infected cells. Our proteomic analysis provides a comprehensive spectrum of host proteins modulated in response to CHIKV infection in astrocytic cells. Our results also show that NPM1/B23, a multifunctional chaperone, plays a critical role in restricting CHIKV replication and is a possible target for antiviral strategies.
Collapse
Affiliation(s)
- Rachy Abraham
- Molecular Virology Laboratory and ‡Proteomics Core Facility, Rajiv Gandhi Centre for Biotechnology (RGCB) , Thiruvananthapram 695014, Kerala, India
| | - Sneha Singh
- Molecular Virology Laboratory and ‡Proteomics Core Facility, Rajiv Gandhi Centre for Biotechnology (RGCB) , Thiruvananthapram 695014, Kerala, India
| | - Sreeja R Nair
- Molecular Virology Laboratory and ‡Proteomics Core Facility, Rajiv Gandhi Centre for Biotechnology (RGCB) , Thiruvananthapram 695014, Kerala, India
| | - Neha Vijay Hulyalkar
- Molecular Virology Laboratory and ‡Proteomics Core Facility, Rajiv Gandhi Centre for Biotechnology (RGCB) , Thiruvananthapram 695014, Kerala, India
| | - Arun Surendran
- Molecular Virology Laboratory and ‡Proteomics Core Facility, Rajiv Gandhi Centre for Biotechnology (RGCB) , Thiruvananthapram 695014, Kerala, India
| | - Abdul Jaleel
- Molecular Virology Laboratory and ‡Proteomics Core Facility, Rajiv Gandhi Centre for Biotechnology (RGCB) , Thiruvananthapram 695014, Kerala, India
| | - Easwaran Sreekumar
- Molecular Virology Laboratory and ‡Proteomics Core Facility, Rajiv Gandhi Centre for Biotechnology (RGCB) , Thiruvananthapram 695014, Kerala, India
| |
Collapse
|
16
|
Amdekar S, Parashar D, Alagarasu K. Chikungunya Virus-Induced Arthritis: Role of Host and Viral Factors in the Pathogenesis. Viral Immunol 2017; 30:691-702. [PMID: 28910194 DOI: 10.1089/vim.2017.0052] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chikungunya virus (CHIKV), a member of Alphavirus genus, is responsible for chikungunya fever (CHIKF), which is characterized by the presence of fever, rash, myalgia, and arthralgia. Reemergence of CHIKV has become a significant public health concern in Asian and African countries and is newly emerging in the Middle East, Pacific, American, and European countries. Cytokines, innate (monocytes, natural killer cells) and adaptive immune response (role of B cells and T cells i.e. CD4+ and CD8+), and/or viral factors contribute to CHIKV-induced arthritis. Vector factors such as vector competence (that includes extrinsic and intrinsic factors) and effect of genome mutations on viral replication and fitness in mosquitoes are responsible for the spread of virus, although they are not directly responsible for CHIKV-induced arthritis. CHIKV-induced arthritis mimics arthritis by involving joints and a common pattern of leukocyte infiltrate, cytokine production, and complement activation. Successful establishment of CHIKV infection and induction of arthritis depends on its ability to manipulate host cellular processes or host factors. CHIKV-induced joint damage is due to host inflammatory response mediated by macrophages, T cells, and antibodies, as well as the possible persistence of the virus in hidden sites. This review provides insight into mechanisms of CHIKV-induced arthritis. Understanding the pathogenesis of CHIKV-induced arthritis will help in developing novel strategies to predict and prevent the disease in virus-infected subjects and combat the disease, thereby decreasing the worldwide burden of the disease.
Collapse
Affiliation(s)
- Sarika Amdekar
- Dengue/Chikungunya Group, ICMR-National Institute of Virology , Pune, India
| | - Deepti Parashar
- Dengue/Chikungunya Group, ICMR-National Institute of Virology , Pune, India
| | | |
Collapse
|
17
|
Ruiz Silva M, van der Ende-Metselaar H, Mulder HL, Smit JM, Rodenhuis-Zybert IA. Mechanism and role of MCP-1 upregulation upon chikungunya virus infection in human peripheral blood mononuclear cells. Sci Rep 2016; 6:32288. [PMID: 27558873 PMCID: PMC4997611 DOI: 10.1038/srep32288] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/04/2016] [Indexed: 12/30/2022] Open
Abstract
Monocyte chemoattractant protein-1 (MCP-1/CCL2)-mediated migration of monocytes is essential for immunological surveillance of tissues. During chikungunya virus (CHIKV) infection however, excessive production of MCP-1 has been linked to disease pathogenesis. High MCP-1 serum levels are detected during the viremic phase of CHIKV infection and correlate with the virus titre. In vitro CHIKV infection was also shown to stimulate MCP-1 production in whole blood; yet the role and the mechanism of MCP-1 production upon infection of human peripheral blood mononuclear cells remain unknown. Here we found that active CHIKV infection stimulated production of MCP-1 in monocytes. Importantly however, we found that communication with other leukocytes is crucial to yield MCP-1 by monocytes upon CHIKV infection. Indeed, blocking interferon-α/β receptor or the JAK1/JAK2 signalling downstream of the receptor abolished CHIKV-mediated MCP-1 production. Additionally, we show that despite the apparent correlation between IFN type I, CHIKV replication and MCP-1, modulating the levels of the chemokine did not influence CHIKV infection. In summary, our data disclose the complexity of MCP-1 regulation upon CHIKV infection and point to a crucial role of IFNβ in the chemokine secretion. We propose that balance between these soluble factors is imperative for an appropriate host response to CHIKV infection.
Collapse
Affiliation(s)
- Mariana Ruiz Silva
- Department of Medical Microbiology, University of Groningen and University Medical Center Groningen, 9700 RB, Groningen, The Netherlands
| | - Heidi van der Ende-Metselaar
- Department of Medical Microbiology, University of Groningen and University Medical Center Groningen, 9700 RB, Groningen, The Netherlands
| | - H. Lie Mulder
- Department of Medical Microbiology, University of Groningen and University Medical Center Groningen, 9700 RB, Groningen, The Netherlands
| | - Jolanda M. Smit
- Department of Medical Microbiology, University of Groningen and University Medical Center Groningen, 9700 RB, Groningen, The Netherlands
| | - Izabela A. Rodenhuis-Zybert
- Department of Medical Microbiology, University of Groningen and University Medical Center Groningen, 9700 RB, Groningen, The Netherlands
| |
Collapse
|
18
|
Agarwal A, Joshi G, Nagar DP, Sharma AK, Sukumaran D, Pant SC, Parida MM, Dash PK. Mosquito saliva induced cutaneous events augment Chikungunya virus replication and disease progression. INFECTION GENETICS AND EVOLUTION 2016; 40:126-135. [PMID: 26925703 DOI: 10.1016/j.meegid.2016.02.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 12/20/2022]
Abstract
Chikungunya virus (CHIKV) is transmitted when infected mosquito probes the host skin. While probing, mosquito saliva is expectorated into host skin along with virus which contains cocktail of molecules having anti-hemostatic and immunomodulatory properties. As mosquito saliva is a critical factor during natural arboviral infection, therefore we investigated mosquito saliva induced cutaneous events that modulate CHIKV infection. The effect of mosquito saliva on CHIKV infection was examined through inoculation of suckling mice subcutaneously with either CHIKV alone or uninfected mosquito bite followed by CHIKV. Histopathological evaluation of skin revealed infiltration of transmigrated inflammatory cells. Dermal blood vessels were hyperemic and adnexa showed degenerating lesions. Severe hemorrhage was observed in dermis and hypodermis in mosquito bite+CHIKV group compared to CHIKV group. Analysis of cytokines in skin showed significant downregulation of inflammatory genes like TLR-3, IL-2, IFN-γ, TNF-α and IFN-β in mosquito bite+CHIKV group compared to CHIKV group. In contrast, significant upregulation of anti-inflammatory genes like IL-4 and IL-10 was observed. These early events might have been responsible for increased dissemination of CHIKV to serum and peripheral organs as demonstrated through >10-fold higher viremia, antigen localization, cellular infiltration and degenerative changes. Thus mosquito saliva induced early cellular infiltration and associated cytokines augment CHIKV pathogenesis in a mouse model. This mosquito improved CHIKV mouse model simulates the realistic conditions that occur naturally during infected mosquito bite to a host. It will lead to better understanding of CHIKV pathobiology and promote the evaluation of novel medical countermeasures against emerging CHIKV.
Collapse
Affiliation(s)
- Ankita Agarwal
- Division of Virology, Defence R and D Establishment, Jhansi Road, Gwalior 474 002, M. P., India
| | - Gaurav Joshi
- Division of Virology, Defence R and D Establishment, Jhansi Road, Gwalior 474 002, M. P., India
| | - Durga P Nagar
- Pharmacology and Toxicology Division, Defence R and D Establishment, Jhansi Road, Gwalior 474 002, M. P., India
| | - Ajay K Sharma
- Vector Management Division, Defence R and D Establishment, Jhansi Road, Gwalior 474 002, M. P., India
| | - D Sukumaran
- Vector Management Division, Defence R and D Establishment, Jhansi Road, Gwalior 474 002, M. P., India
| | - Satish C Pant
- Pharmacology and Toxicology Division, Defence R and D Establishment, Jhansi Road, Gwalior 474 002, M. P., India
| | - Man Mohan Parida
- Division of Virology, Defence R and D Establishment, Jhansi Road, Gwalior 474 002, M. P., India
| | - Paban Kumar Dash
- Division of Virology, Defence R and D Establishment, Jhansi Road, Gwalior 474 002, M. P., India.
| |
Collapse
|
19
|
Lam S, Nyo M, Phuektes P, Yew CW, Tan YJ, Chu JJH. A potent neutralizing IgM mAb targeting the N218 epitope on E2 protein protects against Chikungunya virus pathogenesis. MAbs 2015; 7:1178-94. [PMID: 26305993 DOI: 10.1080/19420862.2015.1083664] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Chikungunya virus (CHIKV) is a medically important human viral pathogen that causes Chikungunya fever accompanied with debilitating and persistent joint pain. Host-elicited or passively-transferred monoclonal antibodies (mAb) are essential mediators of CHIKV clearance. Therefore, this study aimed to generate and characterize a panel of mAbs for their neutralization efficacy against CHIKV infection in a cell-based and murine model. To evaluate their antigenicity and neutralization profile, indirect enzyme-linked immunosorbent assay (ELISA), an immunofluorescence assay (IFA) and a plaque reduction neutralization test were performed on mAbs of IgM isotype. CHIKV escape mutants against mAb 3E7b neutralization were generated, and reverse genetics techniques were then used to create an infectious CHIKV clone with a single mutation. 3E7b was also administered to neonate mice prior or after CHIKV infection. The survival rate, CHIKV burden in tissues and histopathology of the limb muscles were evaluated. Both IgM 3E7b and 8A2c bind strongly to native CHIKV surface and potently neutralize CHIKV replication. Further analyses of 3E7b binding and neutralization of CHIKV single-mutant clones revealed that N218 of CHIKV E2 protein is a potent neutralizing epitope. In a pre-binding neutralization assay, 3E7b blocks CHIKV attachment to permissive cells, possibly by binding to the surface-accessible E2-N218 residue. Prophylactic administration of 3E7b to neonate mice markedly reduced viremia and protected against CHIKV pathogenesis in various mice tissues. Given therapeutically at 4 h post-infection, 3E7b conferred 100% survival rate and similarly reduced CHIKV load in most mice tissues except the limb muscles. Collectively, these findings highlight the usefulness of 3E7b for future prophylactic or epitope-based vaccine design.
Collapse
Affiliation(s)
- Shirley Lam
- a Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology; Yong Loo Lin School of Medicine, National University Health System, National University of Singapore ; Singapore
| | - Min Nyo
- a Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology; Yong Loo Lin School of Medicine, National University Health System, National University of Singapore ; Singapore
| | - Patchara Phuektes
- a Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology; Yong Loo Lin School of Medicine, National University Health System, National University of Singapore ; Singapore
| | - Chow Wenn Yew
- b Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research) ; Singapore
| | - Yee Joo Tan
- b Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research) ; Singapore.,c Hepatitis Viruses and Newly Emerging Viruses; Department of Microbiology; Yong Loo Lin School of Medicine, National University Health System, National University of Singapore ; Singapore
| | - Justin Jang Hann Chu
- a Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology; Yong Loo Lin School of Medicine, National University Health System, National University of Singapore ; Singapore.,b Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research) ; Singapore
| |
Collapse
|
20
|
Her Z, Teng TS, Tan JJL, Teo TH, Kam YW, Lum FM, Lee WWL, Gabriel C, Melchiotti R, Andiappan AK, Lulla V, Lulla A, Win MK, Chow A, Biswas SK, Leo YS, Lecuit M, Merits A, Rénia L, Ng LFP. Loss of TLR3 aggravates CHIKV replication and pathology due to an altered virus-specific neutralizing antibody response. EMBO Mol Med 2015; 7:24-41. [PMID: 25452586 PMCID: PMC4309666 DOI: 10.15252/emmm.201404459] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
RNA-sensing toll-like receptors (TLRs) mediate innate immunity and regulate anti-viral response. We show here that TLR3 regulates host immunity and the loss of TLR3 aggravates pathology in Chikungunya virus (CHIKV) infection. Susceptibility to CHIKV infection is markedly increased in human and mouse fibroblasts with defective TLR3 signaling. Up to 100-fold increase in CHIKV load was observed in Tlr3−/− mice, alongside increased virus dissemination and pro-inflammatory myeloid cells infiltration. Infection in bone marrow chimeric mice showed that TLR3-expressing hematopoietic cells are required for effective CHIKV clearance. CHIKV-specific antibodies from Tlr3−/− mice exhibited significantly lower in vitro neutralization capacity, due to altered virus-neutralizing epitope specificity. Finally, SNP genotyping analysis of CHIKF patients on TLR3 identified SNP rs6552950 to be associated with disease severity and CHIKV-specific neutralizing antibody response. These results demonstrate a key role for TLR3-mediated antibody response to CHIKV infection, virus replication and pathology, providing a basis for future development of immunotherapeutics in vaccine development.
Collapse
Affiliation(s)
- Zhisheng Her
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Terk-Shin Teng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore
| | - Jeslin J L Tan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore
| | - Teck-Hui Teo
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Yiu-Wing Kam
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore
| | - Fok-Moon Lum
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wendy W L Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Christelle Gabriel
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore
| | - Rossella Melchiotti
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore Doctoral School in Translational and Molecular Medicine (DIMET), University of Milano-Bicocca, Milan, Italy
| | - Anand K Andiappan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore
| | - Valeria Lulla
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Aleksei Lulla
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Mar K Win
- Institute of Infectious Disease and Epidemiology (IIDE), Tan Tock Seng Hospital, Singapore, Singapore
| | - Angela Chow
- Institute of Infectious Disease and Epidemiology (IIDE), Tan Tock Seng Hospital, Singapore, Singapore
| | - Subhra K Biswas
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore
| | - Yee-Sin Leo
- Institute of Infectious Disease and Epidemiology (IIDE), Tan Tock Seng Hospital, Singapore, Singapore
| | - Marc Lecuit
- Institut Pasteur, Biology of Infection Unit, Paris, France Inserm U1117, Paris, France Paris Descartes University Sorbonne Paris Cité, Necker-Enfants Malades University Hospital, Institut Imagine, Paris, France
| | - Andres Merits
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Laurent Rénia
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore
| | - Lisa F P Ng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| |
Collapse
|
21
|
Treffers EE, Tas A, Scholte FE, Van MN, Heemskerk MT, de Ru AH, Snijder EJ, van Hemert MJ, van Veelen PA. Temporal SILAC-based quantitative proteomics identifies host factors involved in chikungunya virus replication. Proteomics 2015; 15:2267-80. [DOI: 10.1002/pmic.201400581] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/12/2015] [Accepted: 03/06/2015] [Indexed: 12/24/2022]
Affiliation(s)
- Emmely E. Treffers
- Molecular Virology Laboratory; Department of Medical Microbiology; Leiden University Medical Center; ZA Leiden The Netherlands
- Department of Immunohematology and Blood transfusion; Leiden University Medical Center; ZA Leiden The Netherlands
| | - Ali Tas
- Molecular Virology Laboratory; Department of Medical Microbiology; Leiden University Medical Center; ZA Leiden The Netherlands
| | - Florine E.M. Scholte
- Molecular Virology Laboratory; Department of Medical Microbiology; Leiden University Medical Center; ZA Leiden The Netherlands
| | - Myrthe N. Van
- Molecular Virology Laboratory; Department of Medical Microbiology; Leiden University Medical Center; ZA Leiden The Netherlands
| | - Matthias T. Heemskerk
- Molecular Virology Laboratory; Department of Medical Microbiology; Leiden University Medical Center; ZA Leiden The Netherlands
| | - Arnoud H. de Ru
- Department of Immunohematology and Blood transfusion; Leiden University Medical Center; ZA Leiden The Netherlands
| | - Eric J. Snijder
- Molecular Virology Laboratory; Department of Medical Microbiology; Leiden University Medical Center; ZA Leiden The Netherlands
| | - Martijn J. van Hemert
- Molecular Virology Laboratory; Department of Medical Microbiology; Leiden University Medical Center; ZA Leiden The Netherlands
| | - Peter A. van Veelen
- Department of Immunohematology and Blood transfusion; Leiden University Medical Center; ZA Leiden The Netherlands
| |
Collapse
|
22
|
High throughput proteomic analysis and a comparative review identify the nuclear chaperone, Nucleophosmin among the common set of proteins modulated in Chikungunya virus infection. J Proteomics 2015; 120:126-41. [PMID: 25782748 PMCID: PMC7102674 DOI: 10.1016/j.jprot.2015.03.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 02/14/2015] [Accepted: 03/04/2015] [Indexed: 01/14/2023]
Abstract
Global re-emergence of Chikungunya virus (CHIKV) has renewed the interest in its cellular pathogenesis. We subjected CHIKV-infected Human Embryo Kidney cells (HEK293), a widely used cell-based system for CHIKV infection studies, to a high throughput expression proteomics analysis by Liquid Chromatography–tandem mass spectrometry. A total of 1047 differentially expressed proteins were identified in infected cells, consistently in three biological replicates. Proteins involved in transcription, translation, apoptosis and stress response were the major ones among the 209 proteins that had significant up-regulation. In the set of 45 down-regulated proteins, those involved in carbohydrate and lipid metabolism predominated. A STRING network analysis revealed tight interaction of proteins within the apoptosis, stress response and protein synthesis pathways. We short-listed a common set of 30 proteins that can be implicated in cellular pathology of CHIKV infection by comparing our results and results of earlier CHIKV proteomics studies. Modulation of eight proteins selected from this set was re-confirmed at transcript level. One among them, Nucleophosmin, a nuclear chaperone, showed temporal modulation and cytoplasmic aggregation upon CHIKV infection in double immunofluorescence staining and confocal microscopy. The short-listed cellular proteins will be potential candidates for targeted study of the molecular interactions of CHIKV with host cells. Biological significance Chikungunya remained as a neglected tropical disease till its re-emergence in 2005 in the La RéUnion islands and subsequently, in India and many parts of South East Asia. These and the epidemics that followed in subsequent years ran an explosive course leading to extreme morbidity and attributed mortality to this originally benign virus infection. Apart from classical symptoms of acute fever and debilitating polyarthralgia lasting for several weeks, a number of complications were documented. These included aphthous-like ulcers and vesiculo-bullous eruptions on the skin, hepatic involvement, central nervous system complications such as encephalopathy and encephalitis, and transplacental transmission. The disease has recently spread to the Americas with its initial documentation in the Caribbean islands. The Asian genotype of this positive-stranded RNA virus of the Alphavirus genus has been attributed in these outbreaks. However, the disease ran a similar course as the one caused by the East, Central and South African (ECSA) genotype in the other parts of the world. Studies have documented a number of mutations in the re-emerging strains of the virus that enhances mosquito adaptability and modulates virus infectivity. This might support the occurrence of fiery outbreaks in the absence of herd immunity in affected population. Several research groups work to understand the pathogenesis of chikungunya and the mechanisms of complications using cellular and animal models. A few proteomics approaches have been employed earlier to understand the protein level changes in the infected cells. Our present study, which couples a high throughput proteomic analysis and a comparative review of these earlier studies, identifies a few critical molecules as hypothetical candidates that might be important in this infection and for future study. High throughput expression proteomics analysis in HEK293 cells Identified four major cellular pathways affected in Chikungunya virus infection Short-listed 30 key proteins modulated by a comparative review Confirmed modulation of Nucleophosmin and other selected proteins upon infection
Collapse
|
23
|
Lohachanakul J, Phuklia W, Thannagith M, Thongsakulprasert T, Smith DR, Ubol S. Differences in response of primary human myoblasts to infection with recent epidemic strains of Chikungunya virus isolated from patients with and without myalgia. J Med Virol 2015; 87:733-9. [DOI: 10.1002/jmv.24081] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2014] [Indexed: 12/30/2022]
Affiliation(s)
- Jindarat Lohachanakul
- Department of Microbiology; Faculty of Science; Mahidol University; Bangkok Thailand
| | - Weerawat Phuklia
- Department of Microbiology; Faculty of Science; Mahidol University; Bangkok Thailand
| | | | | | - Duncan R. Smith
- Institute of Molecular Biosciences; Mahidol University; Bangkok Thailand
- Center for Emerging and Neglected Infectious Diseases; Mahidol University; Bangkok Thailand
| | - Sukathida Ubol
- Department of Microbiology; Faculty of Science; Mahidol University; Bangkok Thailand
- Center for Emerging and Neglected Infectious Diseases; Mahidol University; Bangkok Thailand
| |
Collapse
|
24
|
Taylor A, Herrero LJ, Rudd PA, Mahalingam S. Mouse models of alphavirus-induced inflammatory disease. J Gen Virol 2014; 96:221-238. [PMID: 25351726 DOI: 10.1099/vir.0.071282-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Part of the Togaviridae family, alphaviruses are arthropod-borne viruses that are widely distributed throughout the globe. Alphaviruses are able to infect a variety of vertebrate hosts, but in humans, infection can result in extensive morbidity and mortality. Symptomatic infection can manifest as fever, an erythematous rash and/or significant inflammatory pathologies such as arthritis and encephalitis. Recent overwhelming outbreaks of alphaviral disease have highlighted the void in our understanding of alphavirus pathogenesis and the re-emergence of alphaviruses has given new impetus to anti-alphaviral drug design. In this review, the development of viable mouse models of Old Word and New World alphaviruses is examined. How mouse models that best replicate human disease have been used to elucidate the immunopathology of alphavirus pathogenesis and trial novel therapeutic discoveries is also discussed.
Collapse
Affiliation(s)
- Adam Taylor
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD, Australia
| | - Lara J Herrero
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD, Australia
| | - Penny A Rudd
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD, Australia
| | - Suresh Mahalingam
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD, Australia
| |
Collapse
|
25
|
Smith DR. Global protein profiling studies of chikungunya virus infection identify different proteins but common biological processes. Rev Med Virol 2014; 25:3-18. [PMID: 25066270 DOI: 10.1002/rmv.1802] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/26/2014] [Accepted: 06/26/2014] [Indexed: 12/24/2022]
Abstract
Chikungunya fever (CHIKF) caused by the mosquito-transmitted chikungunya virus (CHIKV) swept into international prominence from late 2005 as an epidemic of CHIKF spread around countries surrounding the Indian Ocean. Although significant advances have been made in understanding the pathobiology of CHIKF, numerous questions still remain. In the absence of commercially available specific drugs to treat the disease, or a vaccine to prevent the diseases, the questions have particular significance. A number of studies have used global proteome analysis to increase our understanding of the process of CHIKV infection using a number of different experimental techniques and experimental systems. In all, over 700 proteins have been identified in nine different analyses by five different groups as being differentially regulated. Remarkably, only a single protein, eukaryotic elongation factor 2, has been identified by more than two different groups as being differentially regulated during CHIKV infection. This review provides a critical overview of the studies that have used global protein profiling to understand CHIKV infection and shows that while a broad consensus is emerging on which biological processes are altered during CHIKV infection, this consensus is poorly supported in terms of consistent identification of any key proteins mediating those biological processes.
Collapse
Affiliation(s)
- Duncan R Smith
- Institute of Molecular Biosciences, Mahidol University, Bangkok, Thailand; Center for Emerging and Neglected Infectious Diseases, Mahidol University, Bangkok, Thailand
| |
Collapse
|