1
|
Guadarrama-Enríquez O, Moreno-Pérez GF, González-Trujano ME, Ángeles-López GE, Ventura-Martínez R, Díaz-Reval I, Cano-Martínez A, Pellicer F, Baenas N, Moreno DA, García-Viguera C. Antinociceptive and antiedema effects produced in rats by Brassica oleracea var. italica sprouts involving sulforaphane. Inflammopharmacology 2023; 31:3217-3226. [PMID: 37728726 PMCID: PMC10692002 DOI: 10.1007/s10787-023-01326-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/26/2023] [Indexed: 09/21/2023]
Abstract
Natural products are recognized as potential analgesics since many of them are part of modern medicine to relieve pain without serious adverse effects. The aim of this study was to investigate the antinociceptive and anti-inflammatory activities of an aqueous extract of Brassica oleracea var. italica sprouts (AEBS) and one of its main reported bioactive metabolites sulforaphane (SFN). Antinociceptive activity of the AEBS (30, 100, and 300 mg/kg, i.p. or 1000 and 2000 mg/kg, p.o.) and SFN (0.1 mg/kg, i.p.) was evaluated in the plantar test in rats to reinforce its analgesic-like activity at central level using the reference drug tramadol (TR, 50 mg/kg, i.p.). The anti-inflammatory-like response was determined in the carrageenan-induced oedema at the same dosages for comparison with ketorolac (KET, 20 mg/kg, i.p.) or indomethacin (INDO, 20 mg/kg, p.o.). A histological analysis of the swollen paw was included to complement the anti-inflammatory response. Additionally, acute toxicity observed in clinical analgesics as the most common adverse effects, such as sedation and/or gastric damage, was also explored. As a result, central and peripheral action of the AEBS was confirmed using enteral and parenteral administration, in which significant reduction of the nociceptive and inflammatory responses resembled the effects of TR, KET, or INDO, respectively, involving the presence of SFN. No adverse or toxic effects were observed in the presence of the AEBS or SFN. In conclusion, this study supports that Brassica oleracea var. italica sprouts are a potential source of antinociceptive natural products such as SFN for therapy of pain alone and associated to an inflammation condition.
Collapse
Affiliation(s)
- Omar Guadarrama-Enríquez
- Laboratorio de Neurofarmacología de Productos Naturales. Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de La Fuente Muñiz", Calz. México-Xochimilco 101, Col. San Lorenzo Huipulco, 14370, Tlalpan. C.P, Ciudad de Mexico, México
| | - Gabriel Fernando Moreno-Pérez
- Laboratorio de Neurofarmacología de Productos Naturales. Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de La Fuente Muñiz", Calz. México-Xochimilco 101, Col. San Lorenzo Huipulco, 14370, Tlalpan. C.P, Ciudad de Mexico, México
| | - María Eva González-Trujano
- Laboratorio de Neurofarmacología de Productos Naturales. Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de La Fuente Muñiz", Calz. México-Xochimilco 101, Col. San Lorenzo Huipulco, 14370, Tlalpan. C.P, Ciudad de Mexico, México.
| | - Guadalupe Esther Ángeles-López
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Col. Ciudad Universitaria, Alcaldía Coyoacán, 04510, Ciudad de Mexico, México
| | - Rosa Ventura-Martínez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Col. Ciudad Universitaria, Alcaldía Coyoacán, 04510, Ciudad de Mexico, México
| | - Irene Díaz-Reval
- Laboratorio de "Farmacología del Dolor" del Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de Julio 965, 28045, Colima, Col, Mexico
| | - Agustina Cano-Martínez
- Departamento de Fisiología, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Col. Sección XVI, Tlalpan. C.P, 14080, Ciudad de Mexico, México
| | - Francisco Pellicer
- Laboratorio de Neurofarmacología de Productos Naturales. Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de La Fuente Muñiz", Calz. México-Xochimilco 101, Col. San Lorenzo Huipulco, 14370, Tlalpan. C.P, Ciudad de Mexico, México
| | - Nieves Baenas
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence "Campus Mare Nostrum", Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University of Murcia, Espinardo, 30100, Murcia, Spain
| | - Diego A Moreno
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), CEBAS, CSIC, Campus de Espinardo - 25, 30100, Murcia, Spain
| | - Cristina García-Viguera
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), CEBAS, CSIC, Campus de Espinardo - 25, 30100, Murcia, Spain.
| |
Collapse
|
2
|
Selenge T, Vieira SF, Gendaram O, Reis RL, Tsolmon S, Tsendeekhuu E, Ferreira H, Neves NM. Antioxidant and Anti-Inflammatory Activities of Stellera chamaejasme L. Roots and Aerial Parts Extracts. Life (Basel) 2023; 13:1654. [PMID: 37629511 PMCID: PMC10456005 DOI: 10.3390/life13081654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/17/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Natural products, mainly plants, have a crucial role in folk medicine. Particularly, Stellera chamaejasme L. has been traditionally used in Mongolian medicine to treat various diseases, including chronic tracheitis, tuberculosis, and psoriasis. In this study, ethanol (EtOH) and dichloromethane (DCM) extracts of its roots (R) and aerial parts (AP) were evaluated for their antioxidant and anti-inflammatory activities. Thin-layer chromatography demonstrated the presence of flavonoids, namely kaempferol and quercetin-3-O-glucopyranoside, only in the EtOH-AP. Conversely, it showed that kaempferol, quercetin-3-O-glucopyranoside, coumarin, luteolin, rutin, morin, and riboflavin were not present in the other three extracts. The S. chamaejasme extracts exhibited strong antioxidant activity. In addition, the roots extracts presented the highest antioxidant activity against peroxyl radicals, with the EtOH-R being the most potent (IC50 = 0.90 ± 0.07 µg/mL). S. chamaejasme extracts also efficiently inhibited the production of one of the main pro-inflammatory cytokines, interleukin (IL)-6, in a dose-dependent manner by lipopolysaccharide-stimulated macrophages. Particularly, DCM-R was the strongest extract, reducing ≈ 91.5% of the IL-6 production. Since this extract was the most effective, gas chromatography-mass spectrometry (GC-MS) analyses were performed and demonstrated the presence of two fatty acids (palmitic acid and 9-octadecenoic acid), one fatty alcohol (1-hexadecanol), and one triterpenoid (squalene) that can contribute to the observed bioactivity. Herewith, S. chamaejasme extracts, mainly DCM-R, exhibit antioxidant and anti-inflammatory activities that could be applied as new and innovative natural formulations for the treatment of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Temuulen Selenge
- Department of Biotechnology and Nutrition, School of Industrial Technology, Mongolian University of Science and Technology, 8th Khoroo, Baga Toiruu 34, Sukhbaatar District, Ulaanbaatar 14191, Mongolia; (T.S.); (E.T.)
- 3B’s Research Group, I3BS—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal; (S.F.V.); (R.L.R.); (H.F.)
- ICVS/3B’s–PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sara F. Vieira
- 3B’s Research Group, I3BS—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal; (S.F.V.); (R.L.R.); (H.F.)
- ICVS/3B’s–PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Odontuya Gendaram
- Department of Pharmaceutical Chemistry and Pharmacognosy, Mongolian University of Pharmaceutical Sciences, Sonsgolon’s Road 4/A Songinokhairkhan District 20th Khoroo, Ulaanbaatar 46520, Mongolia;
| | - Rui L. Reis
- 3B’s Research Group, I3BS—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal; (S.F.V.); (R.L.R.); (H.F.)
- ICVS/3B’s–PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Soninkhishig Tsolmon
- Tana Lab, Graduate School of Business, Mongolian University of Science and Technology, Sukhbaatar District, Ulaanbaatar 14191, Mongolia;
| | - Enkhtuul Tsendeekhuu
- Department of Biotechnology and Nutrition, School of Industrial Technology, Mongolian University of Science and Technology, 8th Khoroo, Baga Toiruu 34, Sukhbaatar District, Ulaanbaatar 14191, Mongolia; (T.S.); (E.T.)
| | - Helena Ferreira
- 3B’s Research Group, I3BS—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal; (S.F.V.); (R.L.R.); (H.F.)
- ICVS/3B’s–PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno M. Neves
- 3B’s Research Group, I3BS—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal; (S.F.V.); (R.L.R.); (H.F.)
- ICVS/3B’s–PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
3
|
Dilworth L, Stennett D, Omoruyi F. Cellular and Molecular Activities of IP6 in Disease Prevention and Therapy. Biomolecules 2023; 13:972. [PMID: 37371552 DOI: 10.3390/biom13060972] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
IP6 (phytic acid) is a naturally occurring compound in plant seeds and grains. It is a poly-phosphorylated inositol derivative that has been shown to exhibit many biological activities that accrue benefits in health and diseases (cancer, diabetes, renal lithiasis, cardiovascular diseases, etc.). IP6 has been shown to have several cellular and molecular activities associated with its potential role in disease prevention. These activities include anti-oxidant properties, chelation of metal ions, inhibition of inflammation, modulation of cell signaling pathways, and modulation of the activities of enzymes and hormones that are involved in carbohydrate and lipid metabolism. Studies have shown that IP6 has anti-oxidant properties and can scavenge free radicals known to cause cellular damage and contribute to the development of chronic diseases such as cancers and cardiovascular diseases, as well as diabetes mellitus. It has also been shown to possess anti-inflammatory properties that may modulate immune responses geared towards the prevention of inflammatory conditions. Moreover, IP6 exhibits anti-cancer properties through the induction of cell cycle arrest, promoting apoptosis and inhibiting cancer cell growth. Additionally, it has been shown to have anti-mutagenic properties, which reduce the risk of malignancies by preventing DNA damage and mutations. IP6 has also been reported to have a potential role in bone health. It inhibits bone resorption and promotes bone formation, which may help in the prevention of bone diseases such as osteoporosis. Overall, IP6's cellular and molecular activities make it a promising candidate for disease prevention. As reported in many studies, its anti-inflammatory, anti-oxidant, and anti-cancer properties support its inclusion as a dietary supplement that may protect against the development of chronic diseases. However, further studies are needed to understand the mechanisms of action of this dynamic molecule and its derivatives and determine the optimal doses and appropriate delivery methods for effective therapeutic use.
Collapse
Affiliation(s)
- Lowell Dilworth
- Department of Pathology, The University of the West Indies, Mona Campus, Kingston 7, Jamaica
| | - Dewayne Stennett
- The Transitional Year Programme, University of Toronto, Toronto, ON M5S 2E8, Canada
| | - Felix Omoruyi
- Department of Life Sciences, Texas A&M University, Corpus Christi, TX 78412, USA
- Department of Health Sciences, Texas A&M University, Corpus Christi, TX 78412, USA
| |
Collapse
|
4
|
Suriyaprom S, Srisai P, Intachaisri V, Kaewkod T, Pekkoh J, Desvaux M, Tragoolpua Y. Antioxidant and Anti-Inflammatory Activity on LPS-Stimulated RAW 264.7 Macrophage Cells of White Mulberry ( Morus alba L.) Leaf Extracts. Molecules 2023; 28:molecules28114395. [PMID: 37298871 DOI: 10.3390/molecules28114395] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The white mulberry (Morus alba L.) is widely used as a medicinal plant in Asia. In this study, the bioactive compounds of ethanolic extracts of white mulberry leaves from the Sakon Nakhon and Buriram cultivars were evaluated. The ethanolic extracts of mulberry leaves from the Sakon Nakhon cultivar showed the highest total phenolic content of 49.68 mg GAE/g extract and antioxidant activities of 4.38 mg GAE/g extract, 4.53 mg TEAC/g extract, and 92.78 mg FeSO4/g extract using 2,2 diphenyl-1-picrylhydrazyl (DPPH), 2,20-azinobis-(3-ethylbenzothiazolin-6-sulfonic acid) (ABTS), and ferric reducing antioxidant power (FRAP) assays, respectively. The resveratrol and oxyresveratrol compounds in mulberry leaves were also investigated by high-performance liquid chromatography (HPLC). The mulberry leaf extracts from the Sakon Nakhon and Buriram cultivars showed oxyresveratrol contents of 1.20 ± 0.04 mg/g extract and 0.39 ± 0.02 mg/g extract, respectively, whereas resveratrol was not detected. It was also found that the potent anti-inflammatory properties of mulberry leaf extracts and its compounds, resveratrol and oxyresveratrol, suppressed the LPS-stimulated inflammatory responses in RAW 264.7 macrophage cells by significantly reducing nitric oxide production in a concentration-dependent manner. These compounds further inhibited interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) production and suppressed the mRNA and protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in LPS-stimulated RAW 264.7 macrophage cells. Therefore, it is established that mulberry leaf extract and its bioactive compounds contribute to its anti-inflammatory activity.
Collapse
Affiliation(s)
- Sureeporn Suriyaprom
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
- INRAE, UCA, UMR0454 MEDIS, 63000 Clermont-Ferrand, France
| | | | - Varachaya Intachaisri
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thida Kaewkod
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Natural Extracts and Innovative Products for Alternative Healthcare Research Group, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jeeraporn Pekkoh
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Yingmanee Tragoolpua
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Natural Extracts and Innovative Products for Alternative Healthcare Research Group, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
5
|
Burlou-Nagy C, Bănică F, Jurca T, Vicaș LG, Marian E, Muresan ME, Bácskay I, Kiss R, Fehér P, Pallag A. Echinacea purpurea (L.) Moench: Biological and Pharmacological Properties. A Review. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11091244. [PMID: 35567246 PMCID: PMC9102300 DOI: 10.3390/plants11091244] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 05/25/2023]
Abstract
Echinacea purpurea (L.) Moench (EP)is a perennial herbaceous flowering plant, commonly known as purple coneflower and it belongs to the Asteraceae family. The Echinacea genus is originally from North America, in the United States, and its species are widely distributed throughout. There are nine different species of Echinacea, but only three of them are used as medicinal plants with wide therapeutic uses: Echinacea purpurea (L.) Moench, Echinacea pallida (Nutt.) Nutt. and Echinacea angustifolia DC. Several significant groups of bioactive compounds with pharmacological activities have been isolated from Echinacea species. Numerous beneficial effects have been demonstrated about these compounds. The immunomodulatory effect was initially demonstrated, but over time other effects have also been highlighted. The present review gives a comprehensive summary of the chemical constituents, bioactive compounds, biological effects and therapeutical uses of purple coneflower. Research shows that such a well-known and recognized species needs to be further studied to obtain efficient products with a guarantee of the safety.
Collapse
Affiliation(s)
- Cristina Burlou-Nagy
- Doctoral School of Pharmaceutical Sciences, University of Oradea, 410087 Oradea, Romania;
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania; (F.B.); (T.J.); (L.G.V.); (E.M.)
| | - Florin Bănică
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania; (F.B.); (T.J.); (L.G.V.); (E.M.)
| | - Tünde Jurca
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania; (F.B.); (T.J.); (L.G.V.); (E.M.)
| | - Laura Grațiela Vicaș
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania; (F.B.); (T.J.); (L.G.V.); (E.M.)
| | - Eleonora Marian
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania; (F.B.); (T.J.); (L.G.V.); (E.M.)
| | - Mariana Eugenia Muresan
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410068 Oradea, Romania;
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, H-4032 Debrecen, Hungary; (I.B.); (P.F.)
| | - Rita Kiss
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Pálma Fehér
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, H-4032 Debrecen, Hungary; (I.B.); (P.F.)
| | - Annamaria Pallag
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania; (F.B.); (T.J.); (L.G.V.); (E.M.)
| |
Collapse
|
6
|
Hongzhi D, Xiaoying H, Yujie G, Le C, Yuhuan M, Dahui L, Luqi H. Classic mechanisms and experimental models for the anti‐inflammatory effect of traditional Chinese medicine. Animal Model Exp Med 2022; 5:108-119. [PMID: 35412027 PMCID: PMC9043716 DOI: 10.1002/ame2.12224] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 11/09/2022] Open
Abstract
Inflammation is a common disease involved in the pathogenesis, complications, and sequelae of a large number of related diseases, and therefore considerable research has been directed toward developing anti‐inflammatory drugs for the prevention and treatment of these diseases. Traditional Chinese medicine (TCM) has been used to treat inflammatory and related diseases since ancient times. According to the review of abundant modern scientific researches, it is suggested that TCM exhibit anti‐inflammatory effects at different levels, and via multiple pathways with various targets, and recently a series of in vitro and in vivo anti‐inflammatory models have been developed for anti‐inflammation research in TCM. Currently, the reported classic mechanisms of TCM and experimental models of its anti‐inflammatory effects provide reference points and guidance for further research and development of TCM. Importantly, the research clearly confirms that TCM is now and will continue to be an effective form of treatment for many types of inflammation and inflammation‐related diseases.
Collapse
Affiliation(s)
- Du Hongzhi
- National Resource Center for Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing China
- Hubei Provincial Key Laboratory of Traditional Chinese Medicine Resources and Traditional Chinese Medicine Chemistry Hubei University of Chinese Medicine Wuhan China
| | - Hou Xiaoying
- Wuhan Biomedical Research Institute, School of Medicine Jiang Han University Wuhan China
| | - Guo Yujie
- Hubei Provincial Key Laboratory of Traditional Chinese Medicine Resources and Traditional Chinese Medicine Chemistry Hubei University of Chinese Medicine Wuhan China
| | - Chen Le
- Hubei Provincial Key Laboratory of Traditional Chinese Medicine Resources and Traditional Chinese Medicine Chemistry Hubei University of Chinese Medicine Wuhan China
| | - Miao Yuhuan
- Hubei Provincial Key Laboratory of Traditional Chinese Medicine Resources and Traditional Chinese Medicine Chemistry Hubei University of Chinese Medicine Wuhan China
| | - Liu Dahui
- Hubei Provincial Key Laboratory of Traditional Chinese Medicine Resources and Traditional Chinese Medicine Chemistry Hubei University of Chinese Medicine Wuhan China
| | - Huang Luqi
- National Resource Center for Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing China
| |
Collapse
|
7
|
Odira HO, Mitema SO, Mapenay IM, Moriasi GA. Anti-inflammatory, Analgesic, and Cytotoxic Effects of The Phytexponent: A Polyherbal Formulation. J Evid Based Integr Med 2022; 27:2515690X221082986. [PMID: 35230885 PMCID: PMC8891872 DOI: 10.1177/2515690x221082986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The Phytexponent is used to treat pain and inflammation in complementary and alternative medicine practices; however, empirical data supporting its pharmacological efficacy and safety is scanty, hence the present study. We used the carrageenan-induced paw oedema and the acetic acid-induced writhing techniques to determine the anti-inflammatory and analgesic efficacies, respectively, of the Phytexponent in Swiss albino mice models. The 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay technique was used to investigate the in vitro cytotoxic effects of the Phytexponent in the Vero E6 cell line. The Phytexponent exerted significant (P < .05) anti-inflammatory effects in the carrageenan-induced paw oedema mouse model in a dose- and time-dependent manner, with significantly higher efficacy at 250 mg/Kg BW, than indomethacin (4 mg/Kg BW), in the first, second, and third hour (P < .05). Besides, the Phytexponent significantly reduced the acetic acid-induced writhing frequency in mice (P < .05), in a dose-dependent manner, depicting its analgesic efficacy. Notably, the Phytexponent (at doses: 125 mg/Kg BW and 250 mg/Kg BW) exhibited significantly higher analgesic efficacy than the Indomethacin (P<.05). Moreover, the Phytexponent was not cytotoxic to Vero E6 cells (CC50 >1000 µg/ml) compared to cyclophosphamide (CC50 = 2.48 µg/ml). Thus, the Phytexponent has significant in vivo anti-inflammatory and analgesic efficacy in mice models and is not cytotoxic to Vero E6 cell line, depicting its therapeutic potential upon further empirical investigation.
Collapse
Affiliation(s)
- Halvince O. Odira
- Department of Public Health, Pharmacology, and Toxicology, College of Veterinary and Agricultural Sciences, University of Nairobi, Nairobi, Kenya
| | - Simon O. Mitema
- Department of Public Health, Pharmacology, and Toxicology, College of Veterinary and Agricultural Sciences, University of Nairobi, Nairobi, Kenya
| | - Isaac M. Mapenay
- Department of Public Health, Pharmacology, and Toxicology, College of Veterinary and Agricultural Sciences, University of Nairobi, Nairobi, Kenya
| | - Gervason A. Moriasi
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Mount Kenya University, Thika, Kenya
| |
Collapse
|
8
|
Szandruk-Bender M, Merwid-Ląd A, Wiatrak B, Danielewski M, Dzimira S, Szkudlarek D, Szczukowski Ł, Świątek P, Szeląg A. Novel 1,3,4-Oxadiazole Derivatives of Pyrrolo[3,4- d]Pyridazinone Exert Anti-Inflammatory Activity without Acute Gastrotoxicity in the Carrageenan-Induced Rat Paw Edema Test. J Inflamm Res 2021; 14:5739-5756. [PMID: 34754217 PMCID: PMC8572108 DOI: 10.2147/jir.s330614] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
Background and Purpose Due to the risk of gastrointestinal damage and various tissue toxicity associated with non-steroidal anti-inflammatory drugs (NSAIDs) use, investigating new anti-inflammatory agents with efficacy comparable to that of NSAIDs but reduced toxicity is still a major challenge and a clinical need. Based on our previous study, new 1,3,4-oxadiazole derivatives of pyrrolo[3,4-d]pyridazinone, especially 6-butyl-3,5,7-trimethyl-1-[[4-[[4-(4-nitrophenyl)piperazin-1-yl]methyl]-5-thioxo-1,3,4-oxadiazol-2-yl]methoxy]pyrrolo[3,4-d]pyridazin-4-one and 6-butyl-1-[[4-[[4-(4-chlorophenyl)-4-hydroxy-1-piperidyl]methyl]-2-thioxo-1,3,4-oxadiazol-5-yl]methoxy]-3,5,7-trimethyl-pyrrolo[3,4-d]pyridazin-4-one (hereafter referred to as the compounds 10b and 13b, respectively) seem to be promising anti-inflammatory agents. This study aimed to elucidate the effects of these two new derivatives on the course of experimental rat inflammation, liver and kidney function, and gastric mucosa. Methods The anti-inflammatory effect of compounds 10b and 13b was evaluated using the carrageenan-induced paw edema test in rats. The increase in paw volume (paw edema), prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α) and myeloperoxidase (MPO) levels, histological alterations, and inflammatory cell infiltration in paw tissue were determined. Serum alanine transaminase (ALT) and aspartate transaminase (AST) activities, serum urea and creatinine levels, as well as changes in gastric mucosa, were measured as indicators of hepatic, renal, and gastric toxicity. Results Pretreatment with both novel derivatives at 10 mg/kg and 20 mg/kg doses reduced paw edema, counteracted the increased PGE2 and TNF-α levels, reduced the influx of inflammatory cells, and decreased histopathological alterations in paw tissue. Compound 13b at a dose of 20 mg/kg was more effective than indomethacin in reversing the increased TNF-α levels and reducing the influx of inflammatory cells. Only compound 13b at all studied doses (5, 10, or 20 mg/kg) counteracted the increased MPO level in paw tissue. Both compounds neither caused alterations in ALT, AST, urea, creatinine parameters nor gastric mucosal lesions. Conclusion New compounds exert an anti-inflammatory effect, presumably via inhibiting inflammatory mediators release and inflammatory cell infiltration. Moreover, both possess a more favorable benefit–risk profile than indomethacin, especially compound 13b.
Collapse
Affiliation(s)
| | - Anna Merwid-Ląd
- Department of Pharmacology, Wroclaw Medical University, Wrocław, Poland
| | - Benita Wiatrak
- Department of Pharmacology, Wroclaw Medical University, Wrocław, Poland
| | | | - Stanisław Dzimira
- Department of Pathology, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Danuta Szkudlarek
- Foundation of the Wroclaw Medical University, Wroclaw Medical University, Wrocław, Poland
| | - Łukasz Szczukowski
- Department of Chemistry of Drugs, Wroclaw Medical University, Wrocław, Poland
| | - Piotr Świątek
- Department of Chemistry of Drugs, Wroclaw Medical University, Wrocław, Poland
| | - Adam Szeląg
- Department of Pharmacology, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
9
|
Gomes Júnior A, Islam MT, Nicolau LAD, de Souza LKM, Araújo TDS, Lopes de Oliveira GA, de Melo Nogueira K, da Silva Lopes L, Medeiros JVR, Mubarak MS, Melo-Cavalcante AAC. Anti-Inflammatory, Antinociceptive, and Antioxidant Properties of Anacardic Acid in Experimental Models. ACS OMEGA 2020; 5:19506-19515. [PMID: 32803044 PMCID: PMC7424580 DOI: 10.1021/acsomega.0c01775] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
Anacardic acid (AA), a compound extracted from cashew nut liquid, exhibits numerous pharmacological activities. The aim of the current investigation was to assess the anti-inflammatory, antinociceptive, and antioxidant activities of AA in mouse models. For this, Swiss albino mice were pretreated with AA (10, 25, 50 mg/kg, intraperitoneally, ip) 30 min prior to the administration of carrageenan, as well as 25 mg/kg of prostaglandin E2, dextran, histamine, and compound 48/80. The antinociceptive activity was evaluated by formalin, abdominal, and hot plate tests, using antagonist of opioid receptors (naloxene, 3 mg/kg, ip) to identify antinociceptive mechanisms. Results from this study revealed that AA at 25 mg/kg inhibits carrageenan-induced edema. In addition, AA at 25 mg/kg reduced edema and leukocyte and neutrophilic migration to the intraperitoneal cavity, diminished myeloperoxidase activity and malondialdehyde concentration, and increased the levels of reduced glutathione. In nociceptive tests, it also decreased licking, abdominal writhing, and latency to thermal stimulation, possibly via interaction with opioid receptors. Taken together, these results indicate that AA exhibits anti-inflammatory and antinociceptive actions and also reduces oxidative stress in acute experimental models, suggesting AA as a promising compound in the pharmaceutical arena.
Collapse
Affiliation(s)
- Antonio
Luiz Gomes Júnior
- RENORBIO
- Post-Graduation Program in Biotechnology, Federal University of Piauí, Teresina 64049-550, Piauí, Brazil
- LAPNEX
- Laboratory of Research in Experimental Neurochemistry of Post-Graduation
Program in Pharmaceutical Sciences, Federal
University of Piauí, Teresina CEP 64049-550, Piauí, Brazil
- LAPGENIC
- Laboratory of Research in Genetic Toxicology of Post-Graduation
Program in Pharmaceutical Sciences, Federal
University of Piauí, Teresina 64049-550, Piauí, Brazil
| | - Muhammad Torequl Islam
- Laboratory
of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
- Faculty
of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| | - Lucas Antonio Duarte Nicolau
- LAFFEX -
Laboratory of Experimental Physiopharmacology in Biotechnology and
Biodiversity Center Research (BIOTEC), Federal
University of Piauí-CMRV, Parnaíba 64202-020, Piauí, Brazil
| | - Luan Kevin Miranda de Souza
- RENORBIO
- Post-Graduation Program in Biotechnology, Federal University of Piauí, Teresina 64049-550, Piauí, Brazil
- LAFFEX -
Laboratory of Experimental Physiopharmacology in Biotechnology and
Biodiversity Center Research (BIOTEC), Federal
University of Piauí-CMRV, Parnaíba 64202-020, Piauí, Brazil
| | - Tiago de Souza
Lopes Araújo
- RENORBIO
- Post-Graduation Program in Biotechnology, Federal University of Piauí, Teresina 64049-550, Piauí, Brazil
- LAFFEX -
Laboratory of Experimental Physiopharmacology in Biotechnology and
Biodiversity Center Research (BIOTEC), Federal
University of Piauí-CMRV, Parnaíba 64202-020, Piauí, Brazil
| | - Guilherme Antônio Lopes de Oliveira
- RENORBIO
- Post-Graduation Program in Biotechnology, Federal University of Piauí, Teresina 64049-550, Piauí, Brazil
- LAPNEX
- Laboratory of Research in Experimental Neurochemistry of Post-Graduation
Program in Pharmaceutical Sciences, Federal
University of Piauí, Teresina CEP 64049-550, Piauí, Brazil
- LAFFEX -
Laboratory of Experimental Physiopharmacology in Biotechnology and
Biodiversity Center Research (BIOTEC), Federal
University of Piauí-CMRV, Parnaíba 64202-020, Piauí, Brazil
| | - Kerolayne de Melo Nogueira
- LAFFEX -
Laboratory of Experimental Physiopharmacology in Biotechnology and
Biodiversity Center Research (BIOTEC), Federal
University of Piauí-CMRV, Parnaíba 64202-020, Piauí, Brazil
| | - Luciano da Silva Lopes
- LAPNEX
- Laboratory of Research in Experimental Neurochemistry of Post-Graduation
Program in Pharmaceutical Sciences, Federal
University of Piauí, Teresina CEP 64049-550, Piauí, Brazil
| | - Jand-Venes Rolim Medeiros
- RENORBIO
- Post-Graduation Program in Biotechnology, Federal University of Piauí, Teresina 64049-550, Piauí, Brazil
- LAFFEX -
Laboratory of Experimental Physiopharmacology in Biotechnology and
Biodiversity Center Research (BIOTEC), Federal
University of Piauí-CMRV, Parnaíba 64202-020, Piauí, Brazil
| | | | - Ana Amélia
de Carvalho Melo-Cavalcante
- RENORBIO
- Post-Graduation Program in Biotechnology, Federal University of Piauí, Teresina 64049-550, Piauí, Brazil
- LAPGENIC
- Laboratory of Research in Genetic Toxicology of Post-Graduation
Program in Pharmaceutical Sciences, Federal
University of Piauí, Teresina 64049-550, Piauí, Brazil
| |
Collapse
|
10
|
Exhaled Volatile Organic Compounds during Inflammation Induced by TNF-α in Ventilated Rats. Metabolites 2020; 10:metabo10060245. [PMID: 32549262 PMCID: PMC7345252 DOI: 10.3390/metabo10060245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 02/01/2023] Open
Abstract
Systemic inflammation alters the composition of exhaled breath, possibly helping clinicians diagnose conditions such as sepsis. We therefore evaluated changes in exhaled breath of rats given tumor necrosis factor-alpha (TNF-α). Thirty male Sprague-Dawley rats were randomly assigned to three groups (n = 10 each) with intravenous injections of normal saline (control), 200 µg·kg−1 bodyweight TNF-α (TNF-α-200), or 600 µg·kg−1 bodyweight TNF-α (TNF-α-600), and were observed for 24 h or until death. Animals were ventilated with highly-purified synthetic air to analyze exhaled air by multicapillary column–ion mobility spectrometry. Volatile organic compounds (VOCs) were identified from a database. We recorded blood pressure and cardiac output, along with cytokine plasma concentrations. Control rats survived the 24 h observation period, whereas mean survival time decreased to 22 h for TNF-α-200 and 23 h for TNF-α-600 rats. Mean arterial pressure decreased in TNF-α groups, whereas IL-6 increased, consistent with mild to moderate inflammation. Hundreds of VOCs were detected in exhalome. P-cymol increased by a factor-of-two 4 h after injection of TNF-α-600 compared to the control and TNF-α-200. We found that 1-butanol and 1-pentanol increased in both TNF-α groups after 20 h compared to the control. As breath analysis distinguishes between two doses of TNF-α and none, we conclude that it might help clinicians identify systemic inflammation.
Collapse
|
11
|
Lombardo GE, Cirmi S, Musumeci L, Pergolizzi S, Maugeri A, Russo C, Mannucci C, Calapai G, Navarra M. Mechanisms Underlying the Anti-Inflammatory Activity of Bergamot Essential Oil and Its Antinociceptive Effects. PLANTS 2020; 9:plants9060704. [PMID: 32492797 PMCID: PMC7356015 DOI: 10.3390/plants9060704] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/22/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022]
Abstract
Renewed interest in natural products as potential source of drugs led us to investigate on both the anti-inflammatory and anti-nociceptive activity of Citrus bergamia Risso et Poiteau (bergamot) essential oil (BEO). Carrageenan-induced paw edema in rats was used as an experimental model of inflammation. Because of the toxicity of furocoumarins, we performed our study by using the BEO fraction deprived of these compounds (BEO-FF). Treatment with BEO-FF led to a significant inhibition of paw edema induced by a sub-plantar injection of carrageenan. Moreover, histological examination of BEO-FF-treated rat paw biopsies showed a reduction of pathological changes typical of edema. Pre-treatment with BEO-FF significantly reduced interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α levels in the paw homogenates, as well as nitrite/nitrate and prostaglandin E2 (PGE2) content in exudates. In addition, BEO-FF possesses antioxidant properties, as determined by cell-free assays. Furthermore, results of the writhing test showed that BEO-FF elicited a pronounced analgesic response, as demonstrated by a significant inhibition of constrictions in mice receiving acetic acid, with respect to control animals, whereas the results of the hot plate test suggested that the supra-spinal analgesia participates in the anti-nociceptive effect of BEO-FF. Our study indicates that BEO-FF exerts anti-inflammatory and anti-nociceptive effects, and suggests its potential role as an anti-edemigen and analgesic drug.
Collapse
Affiliation(s)
- Giovanni Enrico Lombardo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (G.E.L.); (S.C.); (L.M.); (S.P.); (A.M.); (C.R.)
| | - Santa Cirmi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (G.E.L.); (S.C.); (L.M.); (S.P.); (A.M.); (C.R.)
| | - Laura Musumeci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (G.E.L.); (S.C.); (L.M.); (S.P.); (A.M.); (C.R.)
- Fondazione “Prof. Antonio Imbesi”, 98168 Messina, Italy
| | - Simona Pergolizzi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (G.E.L.); (S.C.); (L.M.); (S.P.); (A.M.); (C.R.)
| | - Alessandro Maugeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (G.E.L.); (S.C.); (L.M.); (S.P.); (A.M.); (C.R.)
| | - Caterina Russo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (G.E.L.); (S.C.); (L.M.); (S.P.); (A.M.); (C.R.)
- Fondazione “Prof. Antonio Imbesi”, 98168 Messina, Italy
| | - Carmen Mannucci
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98100 Messina, Italy; (C.M.); (G.C.)
| | - Gioacchino Calapai
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98100 Messina, Italy; (C.M.); (G.C.)
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (G.E.L.); (S.C.); (L.M.); (S.P.); (A.M.); (C.R.)
- Correspondence: ; Tel.: +39-090-676-6431
| |
Collapse
|
12
|
Okuda-Hanafusa C, Uchio R, Fuwa A, Kawasaki K, Muroyama K, Yamamoto Y, Murosaki S. Turmeronol A and turmeronol B from Curcuma longa prevent inflammatory mediator production by lipopolysaccharide-stimulated RAW264.7 macrophages, partially via reduced NF-κB signaling. Food Funct 2019; 10:5779-5788. [PMID: 31454011 DOI: 10.1039/c9fo00336c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chronic inflammation depends on inflammatory mediators produced by activated macrophages and is the common pathological basis for various diseases. Turmeronol is a sesquiterpenoid found in the spice turmeric (Curcuma longa), which is known to have anti-inflammatory activity. To elucidate the anti-inflammatory mechanism of turmeronol, we investigated the influence of turmeronol A and turmeronol B in mouse macrophages (RAW264.7 cells) stimulated with lipopolysaccharide (LPS). Pretreatment of RAW264.7 cells with either turmeronol A or B significantly inhibited LPS-induced production of prostaglandin E2 and nitric oxide, as well as expression of mRNAs for the corresponding synthetic enzymes. In addition, the turmeronols significantly inhibited LPS-induced upregulation of interleukin-1β, interleukin-6, and tumor necrosis factor-α at the mRNA and protein levels. Both turmeronols also inhibited nuclear translocation of nuclear factor κB (NF-κB), with a similar time course to the NF-κB inhibitor pyrrolidine dithiocarbamate, but not curcumin (another NF-κB inhibitor). Thus, both turmeronols prevented activation of macrophages and inflammatory mediator production, possibly by suppressing activation of NF-κB, and therefore have potential for use in preventing chronic inflammatory diseases.
Collapse
Affiliation(s)
- Chinatsu Okuda-Hanafusa
- Research & Development Institute, House Wellness Foods Corporation, 3-20 Imoji, Itami City, Hyogo 664-0011, Japan.
| | - Ryusei Uchio
- Research & Development Institute, House Wellness Foods Corporation, 3-20 Imoji, Itami City, Hyogo 664-0011, Japan.
| | - Arisa Fuwa
- Research & Development Institute, House Wellness Foods Corporation, 3-20 Imoji, Itami City, Hyogo 664-0011, Japan.
| | - Kengo Kawasaki
- Research & Development Institute, House Wellness Foods Corporation, 3-20 Imoji, Itami City, Hyogo 664-0011, Japan.
| | - Koutarou Muroyama
- Research & Development Institute, House Wellness Foods Corporation, 3-20 Imoji, Itami City, Hyogo 664-0011, Japan.
| | - Yoshihiro Yamamoto
- Research & Development Institute, House Wellness Foods Corporation, 3-20 Imoji, Itami City, Hyogo 664-0011, Japan.
| | - Shinji Murosaki
- Research & Development Institute, House Wellness Foods Corporation, 3-20 Imoji, Itami City, Hyogo 664-0011, Japan.
| |
Collapse
|
13
|
Evaluation of Anti-Inflammatory Activities of a Triterpene β-Elemonic Acid in Frankincense In Vivo and In Vitro. Molecules 2019; 24:molecules24061187. [PMID: 30917586 PMCID: PMC6471661 DOI: 10.3390/molecules24061187] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 12/04/2022] Open
Abstract
The purpose of this research was to extract and separate the compounds from frankincense, and then evaluate their anti-inflammatory effects. The isolated compound was a representative tetracyclic triterpenes of glycine structure according to 1H-NMR and 13C-NMR spectra, which is β-elemonic acid (β-EA). We determined the content of six different localities of frankincense; the average content of β-EA was 41.96 mg/g. The toxic effects of β-EA administration (400, 200, 100 mg/kg) for four weeks in Kunming (KM) mice were observed. Compared with the control group, the body weight of mice, the visceral coefficients and serum indicators in the β-EA groups showed no systematic variations. The anti-inflammatory effects of β-EA were evaluated in LPS-induced RAW264.7 cells, xylene-induced induced ear inflammation in mice, carrageenin-induced paw edema in mice, and cotton pellet induced granuloma formation in rats. β-EA inhibited overproduction of tumor necrosis factor-α(TNF-α), interleukin-6 (IL-6), monocyte chemotactic protein 1 (MCP-1), soluble TNF receptor 1 (sTNF R1), Eotaxin-2, Interleukin 10 (IL-10) and granulocyte colony-stimulating factor (GCSF) in the RAW264.7 cells. Intragastric administration with β-EA (300, 200, and 100 mg/kg in mice, and 210, 140, and 70 mg/kg in rats) all produced distinct anti-inflammatory effects in vivo in a dose-dependent manner. Following treatment with β-EA (300 mg/kg, i.g.), the NO level in mice ears and PGE2 in mice paws both decreased (p < 0.01). In conclusion, our study indicates that β-EA could be a potential anti-inflammatory agent for the treatment of inflammatory diseases.
Collapse
|
14
|
Camponogara C, Silva CR, Brusco I, Piana M, Faccin H, de Carvalho LM, Schuch A, Trevisan G, Oliveira SM. Nasturtium officinale R. Br. effectively reduces the skin inflammation induced by croton oil via glucocorticoid receptor-dependent and NF-κB pathways without causing toxicological effects in mice. JOURNAL OF ETHNOPHARMACOLOGY 2019; 229:190-204. [PMID: 30339978 DOI: 10.1016/j.jep.2018.10.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 09/25/2018] [Accepted: 10/09/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inflammatory skin diseases treatments currently used cause adverse effects. Nasturtium officinale (watercress) is used popularly as an anti-inflammatory. However, until now, no study proved its effectiveness as a topical treatment to inflammatory skin diseases. The topical anti-inflammatory activity of N. officinale crude extract leaves (NoE) on an irritant contact dermatitis (ICD) model croton oil-induced in mice was investigated. MATERIALS AND METHODS ICD models were induced by a single (1 mg/ear; acute) or repeated (0.4 mg/ear; chronic; 9 days total) croton oil application. NoE and dexamethasone solutions' (diluted in acetone; 20 μL/ear) or NoE gel, dexamethasone gel and base gel (15 mg/ear) were topically applied immediately after croton oil application. The NoE topical anti-inflammatory effect was evaluated for inflammatory parameters (ear edema, inflammatory cells infiltration, and inflammatory cytokines levels). NoE topical anti-inflammatory mechanism (NF-κB pathway and effect glucocorticoid-like) were assessed by western blot and ear edema analyses, respectively. UHPLC-MS/MS chromatography, gels accelerated stability and preliminary study of adverse effects was also performed. RESULTS UHPLC-MS/MS of the NoE revealed the presence of coumaric acid, rutin, and ferulic acid. NoE gels stability study showed no relevant changes at low temperature. NoE, dexamethasone, NoE gel and dexamethasone gel inhibited the ear edema croton oil-induced by 82 ± 6% (1 mg/ear), 99 ± 1% (0.1 mg/ear), 81 ± 8% (3%) and 70 ± 6% (0.5%) for the acute model, and 49 ± 7% (1 mg/ear), 80 ± 4% (0.1 mg/ear), 41 ± 8% (3%) and 46 ± 14% (0.5%) for the chronic model, respectively. The same treatments also reduced the inflammatory cells infiltration by 62 ± 3% (1 mg/ear), 97 ± 2% (0.1 mg/ear), 60 ± 3% (3%) and 66 ± 6% (0.5%) for the acute model, respectively, and 25 ± 8% (1 mg/ear) to NoE and 83 ± 13% to dexamethasone to the chronic model. NoE and NoE gel reduced the pro-inflammatory cytokines levels (acute ICD model) by 62 ± 5% and 71 ± 3% (MIP-2) and 32 ± 3% and 44 ± 4% (IL-1β), while dexamethasone solution's and gel reduced by 79 ± 7% and 44 ± 4% to MIP-2 and 98 ± 2% and 83 ± 9% to IL-1β, respectively. NoE' and dexamethasone' solutions inhibited the reduction of IkB-α protein expression induced by croton oil by 100% and 80 ± 14%, respectively. Besides, the mifepristone (glucocorticoid receptor antagonist) pre-treatment prevented the topical anti-edematogenic effect of NoE' and dexamethasone' solutions by 61 ± 5% to NoE and 78 ± 16% to dexamethasone. The repeated topical application of NoE did not cause adverse effects. CONCLUSION Our results suggest the N. officinale use in the cutaneous inflammatory process treatment and demonstrate the NoE potential to develop a promising topical anti-inflammatory agent to treat inflammatory disorders.
Collapse
Affiliation(s)
- Camila Camponogara
- Laboratory Neurotoxicity and Psychopharmacology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Cássia R Silva
- Graduate Program in Genetics and Biochemistry, Institute of Genetics and Biochemistry, Federal University of Uberlandia, Uberlandia, MG, Brazil
| | - Indiara Brusco
- Laboratory Neurotoxicity and Psychopharmacology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Mariana Piana
- Phytochemical Research Laboratory, Graduate Program in Pharmaceutical Sciences, Health Sciences Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Henrique Faccin
- Graduate Program in Chemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Leandro Machado de Carvalho
- Graduate Program in Chemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - André Schuch
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Gabriela Trevisan
- Graduate Program in Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, Camobi, Santa Maria, RS, Brazil
| | - Sara Marchesan Oliveira
- Laboratory Neurotoxicity and Psychopharmacology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
15
|
Araujo ACM, Almeida Jr. EB, Rocha CQ, Lima AS, Silva CR, Tangerina MMP, Lima Neto JS, Costa-Junior LM. Antiparasitic activities of hydroethanolic extracts of Ipomoea imperati (Vahl) Griseb. (Convolvulaceae). PLoS One 2019; 14:e0211372. [PMID: 30682142 PMCID: PMC6347238 DOI: 10.1371/journal.pone.0211372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/13/2019] [Indexed: 11/19/2022] Open
Abstract
Ipomoea imperati is widely used in tropical areas to treat several pathological conditions. The effect of this plant against parasitic species has not been investigated even being used for this purpose in the Brazilian northeastern. This study aimed to evaluate the anthelmintic and acaricide potential of a hydroethanolic extract of I. imperati leaves and stolons. I. imperati leaves and stolons were crushed and subjected to maceration in ethanol 70% (v/v), after which the solvent was removed using a rotary evaporator. The chromatographic profile of the extract was obtained by UV Spectrum high-performance liquid chromatography and compounds were identified by liquid chromatography/electrospray ionization tandem mass spectrometry. Identification of the compounds present in the extract was achieved by comparing their retention times and UV spectra with data in the literature. Anthelmintic activity was evaluated by larval exsheathment inhibition assays using Haemonchus contortus larvae and five concentrations of each extract ranging from 0.07 to 1.2 mg/mL. Acaricide activity was evaluated via larval immersion of Rhipicephalus microplus in eight concentrations of each extract ranging from 5.0 to 25.0 mg/mL. Live and dead larvae were counted after 24 hours. The median inhibitory concentration (IC50) for H. contortus larvae and the median lethal concentration (LC50) for R. microplus larvae were calculated. Twelve compounds were observed in the hydroethanolic extract of leaves, with a predominance of the aglycone form of flavonoids and tannins. This extract was effective against H. contortus larvae, presenting an average inhibitory concentration of 0.22 mg/mL, but showed no activity toward R. microplus larvae. The stolon hydroethanolic extract presented 11 compounds, with phenolic acids and glycosylated flavonoids prevailing. This extract showed low activity on R. microplus and no effect on inhibiting H. contortus larval exsheathment at the concentrations tested. This study is the first to assess the anthelmintic and acaricidal activities of I. imperati. Data reported confirm promising potential of I. imperati leaves hydroethanolic extract against H. contortus. This effect could be due to its secondary compounds presents in this extract, such as procyanidin, kaempferol, isoquercitrin and rutin.
Collapse
Affiliation(s)
- Ana Cássia M. Araujo
- Programa de Pós-Graduação em Biodiversidade e Conservação, Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão, São Luís, Maranhão, Brazil
| | - Eduardo B. Almeida Jr.
- Departamento de Biologia, Universidade Federal do Maranhão, São Luís, Maranhão, Brazil
- * E-mail: (EBA); (LMC-J)
| | - Cláudia Q. Rocha
- Departamento de Química, Universidade Federal do Maranhão, São Luís, Maranhão, Brazil
| | - Aldilene S. Lima
- Departamento de Química, Universidade Federal do Maranhão, São Luís, Maranhão, Brazil
| | - Carolina R. Silva
- Departamento de Patologia, Universidade Federal do Maranhão, São Luís, Maranhão, Brazil
| | - Marcelo M. P. Tangerina
- Laboratório de Bioprospecção de Produtos Naturais, Instituto de Biociências, Universidade Estadual Paulista, São Vicente, São Paulo, Brazil
| | - José S. Lima Neto
- Universidade Federal do Piauí, Departamento de Farmácia, Laboratório de Geoquímica Orgânica, Teresina, Piauí, Brazil
| | - Lívio M. Costa-Junior
- Departamento de Patologia, Universidade Federal do Maranhão, São Luís, Maranhão, Brazil
- * E-mail: (EBA); (LMC-J)
| |
Collapse
|
16
|
BAYIR YASIN, UN HARUN, CADIRCI ELIF, AKPINAR EROL, DIYARBAKIR BUSRA, CALIK ILKNUR, HALICI ZEKAI. Effects of Aliskiren, an RAAS inhibitor, on a carrageenan-induced pleurisy model of rats. ACTA ACUST UNITED AC 2019; 91:e20180106. [DOI: 10.1590/0001-3765201820180106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/15/2018] [Indexed: 02/07/2023]
Affiliation(s)
| | - HARUN UN
- Agri Ibrahim Cecen University Campus, Turkey
| | | | | | | | - ILKNUR CALIK
- Erzurum Region Education and Research Hospital, Turkey
| | | |
Collapse
|
17
|
Sreeja PS, Arunachalam K, Martins DTDO, Lima JCDS, Balogun SO, Pavan E, Saikumar S, Dhivya S, Kasipandi M, Parimelazhagan T. Sphenodesme involucrata var. paniculata (C.B. Clarke) Munir.: Chemical characterization, anti-nociceptive and anti-inflammatory activities of methanol extract of leaves. JOURNAL OF ETHNOPHARMACOLOGY 2018; 225:71-80. [PMID: 29960023 DOI: 10.1016/j.jep.2018.06.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/21/2018] [Accepted: 06/25/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sphenodesme involucrata var. paniculata (C. B. Clarke) Munir is native as well as endemic to South India. Its leaves are used in folklore medicine to treat pain and rheumatism. OBJECTIVE This study was aimed to investigate the chemical characterization, anti-nociceptive and mode of action underlying the anti-inflammatory effects of methanol extract of S. involucrata leaves (MESi). METHODS Phytoconstituents of MESi was analyzed using colorimetric and liquid chromatography-mass spectrometry (LC-MS) methods, and the oral acute toxicity was evaluated in mice up to 2000 mg/kg. The anti-nociceptive effect was evaluated in hot plate and writhing tests; whereas the anti-inflammatory effect was investigated using carrageenan, cotton pellet and lipopolysaccharide (LPS)-induced peritonitis models at doses of 100, 200 and 400 mg/kg. Additionally nitric oxide (NO) and inflammatory cytokines levels were also evaluated. RESULTS MESi exhibited the high content of phenolics and flavonoids as well as compounds like austricine, benzylglucosinolate, gossypin, justicidin B and cirsimarin were detected in LC-MS. In the acute toxicity study, oral administration of MESi did not cause any toxic effect and mortality up to 2000 mg/kg body weight in mice. In the anti-nociceptive tests, MESi augmented the latency period at higher dose (400 mg/kg), on the other hand attenuated writhings at the dose of 400 mg/kg by 87.87% (p < 0.001). In the carrageenan induced paw oedema MESi significantly inhibited the oedema formation at dose 400 mg/kg by 32.1%; besides, anti-inflammatory effect was registered in the cotton pellets-induced inflammation model at doses 200 and 400 mg/kg by 27.09% (p < 0.001) and 35.47% (p < 0.001) respectively. On the other hand, MESi appreciably reduced leukocyte, neutrophils infiltration, nitric oxide, TNF-α and IL-1β levels and increased the IL-10 level in the (LPS)-induced peritonitis model. CONCLUSION The results conclude that MESi has no acute toxic effect and it demonstrated potent anti-nociceptive and anti-inflammatory activities. Its anti-nociceptive activities are probably mediated through peripheral and central mechanisms. The anti-inflammatory effect of MESi involved the inhibition of neutrophils migration and the modulation of Th1 and Th2 cytokines, besides the attenuation of production of PGE2 and NO. LC-MS analysis revealed the predominant presence of the austricine, benzylglucosinolate, gossypin, justicidin B and cirsimarin compounds, which are possibly involved in the anti-nociceptive and anti-inflammatory effects of MESi. The current study provided supportive evidence for the folklore use of S. involucrata in the treatment of pain and inflammatory conditions.
Collapse
Affiliation(s)
| | - Karuppusamy Arunachalam
- Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil
| | | | - Joaquim Corsino da Silva Lima
- Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil
| | - Sikiru Olaitan Balogun
- Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil; Faculdade Noroeste do Mato Grosso, Acadêmia Juinense de Ensino Superior LTDA-ME (AJES), Juína, Mato Grosso, Brazil
| | - Eduarda Pavan
- Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil
| | - Sathyanarayanan Saikumar
- Bioprospecting Lab, Department of Botany, Bharathiar University (BU), Coimbatore, Tamil Nadu, India
| | - Sivaraj Dhivya
- Bioprospecting Lab, Department of Botany, Bharathiar University (BU), Coimbatore, Tamil Nadu, India
| | - Muniyandi Kasipandi
- Bioprospecting Lab, Department of Botany, Bharathiar University (BU), Coimbatore, Tamil Nadu, India
| | - Thangaraj Parimelazhagan
- Bioprospecting Lab, Department of Botany, Bharathiar University (BU), Coimbatore, Tamil Nadu, India.
| |
Collapse
|
18
|
Ghate NB, Chaudhuri D, Panja S, Singh SS, Gupta G, Lee CY, Mandal N. In Vitro Mechanistic Study of the Anti-inflammatory Activity of a Quinoline Isolated from Spondias pinnata Bark. JOURNAL OF NATURAL PRODUCTS 2018; 81:1956-1961. [PMID: 30215255 DOI: 10.1021/acs.jnatprod.8b00036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The search for new plant-based anti-inflammatory drugs continues in order to overcome the detrimental side effects of conventional anti-inflammatory agents, both steroidal and nonsteroidal. This study involves the quinoline SPE2, 7-hydroxy-6-methoxyquinolin-2(1 H)-one, isolated from the EtOAc fraction of Spondias pinnata bark. Structure elucidation was done using analytical spectroscopic methods including Fourier transform infrared spectroscopy, high-resolution electrospray ionization mass spectrometry, nuclear magnetic resonance spectroscopy, and single-crystal X-ray crystallography. The anti-inflammatory activity of SPE2 was evaluated in a lipopolysaccharide (LPS)-stimulated murine macrophage RAW 264.7 model. SPE2 effectively suppressed LPS-induced overproduction of pro-inflammatory mediators such as nitric oxide (NO), tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β, and reactive oxygen species. Expression levels of NO synthesizing enzyme, cyclooxygenase-2, TNF-α, IL-6 and IL-1β were also determined to return to normal after SPE2 treatment. Localization of NF-κB was evaluated by confocal microscopy and Western blotting, which showed a dose-dependent reduction of NF-κB inside the nucleus and an increase in cytoplasmic NF-κB with SPE2 treatment. Collectively, the results suggest that SPE2 has anti-inflammatory activity via inhibition of NF-κB activation.
Collapse
Affiliation(s)
- Nikhil B Ghate
- Division of Molecular Medicine , Bose Institute , P-1/12, CIT Scheme VIIM, Kolkata 700054 , India
| | - Dipankar Chaudhuri
- Division of Molecular Medicine , Bose Institute , P-1/12, CIT Scheme VIIM, Kolkata 700054 , India
| | - Sourav Panja
- Division of Molecular Medicine , Bose Institute , P-1/12, CIT Scheme VIIM, Kolkata 700054 , India
| | - Sudhir S Singh
- TCG Lifesciences Limited , Block BN, Plot 7, Salt Lake Electronics Complex, Sector V, Kolkata 700091 , India
| | - Gajendra Gupta
- Department of Energy and Chemical Engineering , Incheon National University , 119 Academy-ro, Yeonsu-gu, Incheon 22012 , Republic of Korea
| | - Chang Yeon Lee
- Department of Energy and Chemical Engineering , Incheon National University , 119 Academy-ro, Yeonsu-gu, Incheon 22012 , Republic of Korea
| | - Nripendranath Mandal
- Division of Molecular Medicine , Bose Institute , P-1/12, CIT Scheme VIIM, Kolkata 700054 , India
| |
Collapse
|
19
|
Aarland RC, Bañuelos-Hernández AE, Fragoso-Serrano M, Sierra-Palacios EDC, Díaz de León-Sánchez F, Pérez-Flores LJ, Rivera-Cabrera F, Mendoza-Espinoza JA. Studies on phytochemical, antioxidant, anti-inflammatory, hypoglycaemic and antiproliferative activities of Echinacea purpurea and Echinacea angustifolia extracts. PHARMACEUTICAL BIOLOGY 2017; 55:649-656. [PMID: 27951745 PMCID: PMC6130640 DOI: 10.1080/13880209.2016.1265989] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 08/23/2016] [Accepted: 11/22/2016] [Indexed: 05/31/2023]
Abstract
CONTEXT Echinacea (Asteraceae) is used because of its pharmacological properties. However, there are few studies that integrate phytochemical analyses with pharmacological effects. OBJECTIVE Evaluate the chemical profile and biological activity of hydroalcoholic Echinacea extracts. MATERIALS AND METHODS Density, dry matter, phenols (Folin-Ciocalteu method), flavonoids (AlCl3 method), alkylamides (GC-MS analysis), antioxidant capacity (DPPH and ABTS methods), antiproliferative effect (SRB assay), anti-inflammatory effect (paw oedema assay, 11 days/Wistar rats; 0.4 mL/kg) and hypoglycaemic effect (33 days/Wistar rats; 0.4 mL/kg) were determined in three Echinacea extracts which were labelled as A, B and C (A, roots of Echinacea purpurea L. Moench; B, roots, leaves, flowers and seeds of Echinacea purpurea; C, aerial parts and roots of Echinacea purpurea and roots of Echinacea angustifolia DC). RESULTS Extract C showed higher density (0.97 g/mL), dry matter (0.23 g/mL), phenols (137.5 ± 2.3 mEAG/mL), flavonoids (0.62 ± 0.02 mEQ/mL), and caffeic acid (0.048 mg/L) compared to A and B. A, B presented 11 alkylamides, whereas C presented those 11 and three more. B decreased the oedema (40%) on day 2 similar to indomethacin. A and C showed hypoglycaemic activity similar to glibenclamide. Antiproliferative effect was only detected for C (IC50 270 μg/mL; 8171 μg/mL; 9338 μg/mL in HeLa, MCF-7, HCT-15, respectively). DISCUSSION AND CONCLUSION The difference in the chemical and pharmacological properties among extracts highlights the need to consider strategies and policies for standardization of commercial herbal extracts in order to guarantee the safety and identity of this type of products.
Collapse
Affiliation(s)
- Rayn Clarenc Aarland
- Postgraduate Program in Experimental Biology, Universidad Autónoma Metropolitana, Iztapalapa, Ciudad de México, México
| | | | - Mabel Fragoso-Serrano
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | | | | | - Laura Josefina Pérez-Flores
- Departamento de Ciencias de la Salud DCBS, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, México
| | - Fernando Rivera-Cabrera
- Departamento de Ciencias de la Salud DCBS, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, México
| | | |
Collapse
|
20
|
Aware C, Patil R, Gaikwad S, Yadav S, Bapat V, Jadhav J. Evaluation of l -dopa, proximate composition with in vitro anti-inflammatory and antioxidant activity of Mucuna macrocarpa beans: A future drug for Parkinson treatment. Asian Pac J Trop Biomed 2017. [DOI: 10.1016/j.apjtb.2017.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
|
21
|
Giovannini P, Howes MJR. Medicinal plants used to treat snakebite in Central America: Review and assessment of scientific evidence. JOURNAL OF ETHNOPHARMACOLOGY 2017; 199:240-256. [PMID: 28179114 DOI: 10.1016/j.jep.2017.02.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 02/02/2017] [Accepted: 02/03/2017] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Every year between 1.2 and 5.5 million people worldwide are victims of snakebites, with about 400,000 left permanently injured. In Central America an estimated 5500 snakebite cases are reported by health centres, but this is likely to be an underestimate due to unreported cases in rural regions. The aim of this study is to review the medicinal plants used traditionally to treat snakebites in seven Central American countries: Belize, Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua and Panama. MATERIALS AND METHODS A literature search was performed on published primary data on medicinal plants of Central America and those specifically pertaining to use against snakebites. Plant use reports for traditional snakebite remedies identified in primary sources were extracted and entered in a database, with data analysed in terms of the most frequent numbers of use reports. The scientific evidence that might support the local uses of the most frequently reported species was also examined. RESULTS A total of 260 independent plant use reports were recorded in the 34 sources included in this review, encompassing 208 species used to treat snakebite in Central America. Only nine species were reported in at least three studies: Cissampelos pareira L., Piper amalago L., Aristolochia trilobata L., Sansevieria hyacinthoides (L.) Druce, Strychnos panamensis Seem., Dorstenia contrajerva L., Scoparia dulcis L., Hamelia patens Jacq., and Simaba cedron Planch. Genera with the highest number of species used to treat snakebite were Piper, Aristolochia, Hamelia, Ipomoea, Passiflora and Peperomia. The extent of the scientific evidence available to understand any pharmacological basis for their use against snakebites varied between different plant species. CONCLUSION At least 208 plant species are traditionally used to treat snakebite in Central America but there is a lack of clinical research to evaluate their efficacy and safety. Available pharmacological data suggest different plant species may target different symptoms of snakebites, such as pain or anxiety, although more studies are needed to further evaluate the scientific basis for their use.
Collapse
Affiliation(s)
- Peter Giovannini
- Natural Capital and Plant Health Department, Royal Botanic Gardens Kew, Wakehurst Place, Ardingly, West Sussex RH17 6TN, UK.
| | - Melanie-Jayne R Howes
- Natural Capital and Plant Health Department, Jodrell Laboratory, Royal Botanic Gardens Kew, Richmond, Surrey TW9 3AB, UK; Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, Franklin-Wilkins Building, King's College London, 150 Stamford Street, London SE1 9NH, UK
| |
Collapse
|
22
|
Bai X, Yang P, Zhou Q, Cai B, Buist‐Homan M, Cheng H, Jiang J, Shen D, Li L, Luo X, Faber KN, Moshage H, Shi G. The protective effect of the natural compound hesperetin against fulminant hepatitis in vivo and in vitro. Br J Pharmacol 2017; 174:41-56. [PMID: 27714757 PMCID: PMC5341490 DOI: 10.1111/bph.13645] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 09/21/2016] [Accepted: 09/23/2016] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Liver diseases are mostly accompanied by inflammation and hepatocyte death. Therapeutic approaches targeting both hepatocyte injury and inflammation are not available. Natural compounds are considered as potential treatment for inflammatory liver diseases. Hesperetin, a flavonoid component of citrus fruits, has been reported to have anti-inflammatory properties. The aim of this study was to evaluate the cytoprotective and anti-inflammatory properties of hesperetin both in vitro and in models of fulminant hepatitis. EXPERIMENTAL APPROACH Apoptotic cell death and inflammation were induced in primary cultures of rat hepatocytes by bile acids and cytokine mixture respectively. Apoptosis was quantified by caspase-3 activity and necrosis by LDH release. The concanavalin A (ConA) and D-galactosamine/LPS (D-GalN/LPS) were used as models of fulminant hepatitis. Liver injury was assessed by alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, liver histology and TUNEL assay and inflammation by inducible NOS (iNOS) expression. KEY RESULTS Hesperetin blocked bile acid-induced apoptosis and cytokine-induced inflammation in rat hepatocytes. Moreover, hesperetin improved liver histology and protected against hepatocyte injury in ConA- and D-GalN/LPS-induced fulminant hepatitis, as assessed by TUNEL assay and serum AST and ALT levels. Hesperetin also reduced expression of the inflammatory marker iNOS and the expression and serum levels of TNFα and IFN-γ, the main mediators of cell toxicity in fulminant hepatitis. CONCLUSION AND IMPLICATIONS Hesperetin has anti-inflammatory and cytoprotective actions in models of acute liver toxicity. Hesperetin therefore has therapeutic potential for the treatment of inflammatory liver diseases accompanied by extensive hepatocyte injury, such as fulminant hepatitis.
Collapse
Affiliation(s)
- Xueting Bai
- Department of PharmacologyShantou University Medical CollegeShantouChina
- Department of Gastroenterology and HepatologyUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Peixuan Yang
- Health Care CenterThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Qiaoling Zhou
- Department of PharmacologyShantou University Medical CollegeShantouChina
| | - Bozhi Cai
- Laboratory of Molecular CardiologyThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Manon Buist‐Homan
- Department of Gastroenterology and HepatologyUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
- Department of Laboratory MedicineUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - He Cheng
- Department of PharmacologyShantou University Medical CollegeShantouChina
| | - Jiyang Jiang
- Department of PharmacologyShantou University Medical CollegeShantouChina
| | - Daifei Shen
- Department of PharmacologyShantou University Medical CollegeShantouChina
| | - Lijun Li
- Department of PharmacologyShantou University Medical CollegeShantouChina
| | - Xiajiong Luo
- Department of PharmacologyShantou University Medical CollegeShantouChina
| | - Klaas Nico Faber
- Department of Gastroenterology and HepatologyUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
- Department of Laboratory MedicineUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Han Moshage
- Department of Gastroenterology and HepatologyUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
- Department of Laboratory MedicineUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Ganggang Shi
- Department of PharmacologyShantou University Medical CollegeShantouChina
| |
Collapse
|
23
|
Wang Y, Li GH, Liu XY, Xu L, Wang SS, Zhang XM. IN VIVO ANTI-INFLAMMATORY EFFECTS OF TARAXASTEROL AGAINST ANIMAL MODELS. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES : AJTCAM 2016; 14:43-51. [PMID: 28480383 PMCID: PMC5411885 DOI: 10.21010/ajtcam.v14i1.6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
BACKGROUND Traditional Chinese medicine Taraxacum officinale has been widely used to treat various inflammatory diseases. Taraxasterol is one of the main active components isolated from Taraxacum officinale. Recently, we have demonstrated that taraxasterol has the in vitro anti-inflammatory effects. This study aims to determine the in vivo anti-inflammatory effects of taraxasterol against animal models. MATERIALS AND METHODS Anti-inflammatory effects were assessed in four animal models by using dimethylbenzene-induced mouse ear edema, carrageenan-induced rat paw edema, acetic acid-induced mouse vascular permeability and cotton pellet-induced rat granuloma tests. RESULTS Our results demonstrated that taraxasterol dose-dependently attenuated dimethylbenzene-induced mouse ear edema and carrageenan-induced rat paw edema, decreased acetic acid-induced mouse vascular permeability and inhibited cotton pellet-induced rat granuloma formation. CONCLUSION Our finding indicates that taraxasterol has obvious in vivo anti-inflammatory effects against animal models. It will provide experimental evidences for the traditional use of Taraxacum officinale and taraxasterol in inflammatory diseases.
Collapse
Affiliation(s)
- Ying Wang
- Agricultural College of Yanbian University, China
| | - Guan-Hao Li
- Agricultural College of Yanbian University, China
| | - Xin-Yu Liu
- Agricultural College of Yanbian University, China
| | - Lu Xu
- Agricultural College of Yanbian University, China
| | - Sha-Sha Wang
- Agricultural College of Yanbian University, China
| | | |
Collapse
|
24
|
Anti-inflammatory and anti-arthritic effects of Guge Fengtong Formula: in vitro and in vivo studies. Chin J Nat Med 2016; 13:842-853. [PMID: 26614459 DOI: 10.1016/s1875-5364(15)30088-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Indexed: 11/20/2022]
Abstract
Rheumatoid arthritis (RA) is the most common inflammatory arthritis and a major cause of disability. Presently, the clinical therapeutic medicines for inflammatory and arthritic diseases are unsatisfactory due to severe adverse effects or ineffectiveness. The Guge Fengtong formula (GGFT), containing the standardized extracts of Dioscoreae Nipponicae Rhizoma, Spatholobi Caulis, and Zingiberis Rhizoma, has long been used for RA treatment by Chinese doctorsin China. However, the detailed anti-inflammatory and anti-arthritic activity of GGFT has not been reported so far. In the present work, we aimed to evaluate the anti-inflammatory and anti-arthritic effects of GGFT using three in vivo animal models, and tried to uncover its preliminarythe underlying mechanism of action mechanism in RAW 264.7 macrophages. The obtained results indicated that GGFT significantly attenuated ear edema, decreased carrageenan-induced paw edema, reduced the arthritis score, and reversed the weight loss of the complete Freund's adjuvant (CFA)CFA-injected rats. Additionally, marked decrease of in synovial inflammatory infiltration and synovial lining hyperplasia in the joints and decline of inflammatory factors (TNF-α and IL-1β) in the serum were observed in the GGFT-treated rats. In lipopolysaccharide-activated RAW264.7 macrophages, GGFT reduced the production of NO, PGE2, and IL-6, and inhibited the expression of iNOS, COX-2, and NF-κB expression. Our results demonstrated that GGFT possessed considerable anti-inflammatory activity and have had potential therapeutic effects on adjuvant induced arthritis in rats, which provided providing experimental evidences for its traditional application in the treatment of RA and other inflammatory diseases.
Collapse
|
25
|
Cai C, Chen Y, Zhong S, Zhang Y, Jiang J, Xu H, Shi G. Synergistic Effect of Compounds from a Chinese Herb: Compatibility and Dose Optimization of Compounds from N-Butanol Extract of Ipomoea stolonifera. Sci Rep 2016; 6:27014. [PMID: 27255791 PMCID: PMC4891665 DOI: 10.1038/srep27014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 05/10/2016] [Indexed: 02/05/2023] Open
Abstract
The herbal medicine Ipomoea stolonifera (I. stolonifera) has previously been shown to have considerable anti-inflammatory potential in vivo and in vitro. To establish a method for exploring the synergistic effects of multiple compounds, we study the compatibility and dose optimization of compounds isolated from n-butanol extract of I. stolonifera (BE-IS). Raw264.7 cell was treated with lipopolysaccharide (LPS) in the presence of compounds from BE-IS, namely scopoletin, umbelliferone, esculetin, hesperetin and curcumin, using the orthogonal design, uniform design and median-effect method. To verify the best efficacy of principal constituents in vivo, the uniform design was used in the croton oil-induced mouse ear edema model. The results from LPS-induced the production of prostaglandin E2 (PGE2) show that, esculetin, curcumin and hesperetin were the principal constituents that had synergistic effects when used at the optimal ratio. Additionally, the principal constituents were found to work synergistically in the croton oil-induced mouse ear edema model at low doses. It turned out that the three experimental optimization and analysis methods (orthogonal design, uniform design and median-effect method) can be effectively used to solve both compatibility and dose optimization for combined use of multiple compounds.
Collapse
Affiliation(s)
- Congyi Cai
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, Guangdong, China
- Department of Pharmacy, Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Yicun Chen
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Shuping Zhong
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | - Yanmei Zhang
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Jiyang Jiang
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Han Xu
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Ganggang Shi
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, Guangdong, China
- Department of Cardiovascular Diseases, First Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, China
| |
Collapse
|
26
|
Rungqu P, Oyedeji O, Nkeh-Chungag B, Songca S, Oluwafemi O, Oyedeji A. Anti-inflammatory activity of the essential oils of Cymbopogon validus (Stapf) Stapf ex Burtt Davy from Eastern Cape, South Africa. ASIAN PAC J TROP MED 2016; 9:426-31. [PMID: 27261849 DOI: 10.1016/j.apjtm.2016.03.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/16/2016] [Accepted: 03/15/2016] [Indexed: 12/09/2022] Open
Abstract
OBJECTIVE To evaluate the essential oil composition and the anti-inflammatory activity of Cymbopogon validus (C. validus) leaves and flowers. METHODS A total of 300 g of fresh or dry (leaves and flowers) of C. validus were cut into small pieces and subjected to hydro-distillation method for approximately 5 h using the Clevenger apparatus. The extracted essential oils were then used for testing the anti-inflammatory activity. The anti-inflammatory activity was evaluated by using egg albumin-induced paw edema. RESULTS The extracted oils had the following yields 2.2% for fresh leaves, 2.0% for dry leaves and 2.4% v/w for dry flowers. GC-MS results revealed that the oils contained artemisia ketone (37.5%), linalool (3.2%-29.6%), northujane (4.4%-16.8%), verbenone (13.5%), naphthalene (1.7%-9.6%), δ-cadinene (0.5%-8.1%), hedycaryol (5.4%-7.6%) and α-eudesmol (6.5%-6.7%) as the major constituents. C. validus essential oils showed significant (P < 0.05) anti-inflammatory effects from the first 30 min after albumin injection compared to aspirin which had a later onset of effect. CONCLUSIONS The findings of this study show that the essential oil extracted from C. validus fresh or dry leaves and flowers have anti-inflammatory properties; that might be associated with the major components and the minor components found in the essential oils.
Collapse
Affiliation(s)
- Pamela Rungqu
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Alice 5700, South Africa
| | - Opeoluwa Oyedeji
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Alice 5700, South Africa.
| | - Benedicta Nkeh-Chungag
- Department of Biological and Environmental Sciences, Faculty of Natural Sciences, Walter Sisulu University, Mthatha 5099, South Africa
| | - Sandile Songca
- Department of Chemical and Physical Sciences, Faculty of Natural Sciences, Walter Sisulu University, Mthatha 5099, South Africa
| | - Oluwatobi Oluwafemi
- Department of Applied Chemistry, Faculty of Sciences, University of Johannesburg, Doornfontein 2028, South Africa
| | - Adebola Oyedeji
- Department of Chemical and Physical Sciences, Faculty of Natural Sciences, Walter Sisulu University, Mthatha 5099, South Africa
| |
Collapse
|
27
|
Lü S, Wang Q, Li G, Sun S, Guo Y, Kuang H. The treatment of rheumatoid arthritis using Chinese medicinal plants: From pharmacology to potential molecular mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2015; 176:177-206. [PMID: 26471289 DOI: 10.1016/j.jep.2015.10.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 10/02/2015] [Accepted: 10/03/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rheumatoid arthritis (RA) is a common worldwide public health problem. Traditional Chinese Medicine (TCM) achieved some results to some extent in the treatment of rheumatoid arthritis (RA). Especially in China, TCM formulas are used in the clinic because of their advantages. Some of these TCM formulas have been used for thousands of years in ancient China, they pays much attention to strengthening healthy qi, cleaning heat, and wet, activating blood, etc. So TCM in anti-RA drug is considered as a simple and effective method. In addition, TCM are also traditionally used as extracts and many Chinese herbs which are considered to be effective for RA. With the advancement of technologies and research methods, researchers have devoted themselves to exploring new therapeutic materials from troves of TCM. The components of TCM are identified and purified, which include alkaloids, coumarins, flavonoids, saponins and so on. However, little or no review works are found in the research literature on the anti-RA drugs from TCM. The present review aims to provide systematically reorganized information on the ethnopharmacology, phytochemistry and pharmacology of TCM used traditionally against RA. The information recorded in this review will provide new directions for researchers in the future. MATERIALS AND METHODS Relevant scientific literatures were collected from Chinese traditional books and Chinese Pharmacopoeia. Several important pharmacology data, clinical observations, animal experiments on effects of anti-RA drugs from TCM and their mechanisms were extracted from a library and electric search (Pubmed, PubChem Compound, Science Direct, Spring Link, Elsevier, Web of Science, CNKI, Wan Fang, Bai du, The Plant List, etc.). We collected information published between 2002 and 2015 on Chinese medicine in the treatment of RA. Information was also acquired from local classic herbal literature, conference papers, government reports, and PhD and MSc dissertations. RESULTS This review mainly introduces the current research on anti-RA TCM formulas, extracts and compounds from TCM, pharmacological data and potential mechanisms (inhibit osteoclast proliferation, suppress fibroblast-like synoviocytes (FLSs) growth, decrease the expression of inflammatory cytokines, blocking signal pathways, etc.). CONCLUSIONS TCM, as a multi-component and multi-target approach, which is a perfect match with the holistic concept of systems biology, is applicable in the treatment of RA. The synergistic connections of Chinese herbs and mechanisms of related active compounds on RA increase the trust for TCM. TCM as alternative remedies for RA not only has an important position in the world market, but also has an irreplaceable role in the treatment of RA in future.
Collapse
Affiliation(s)
- Shaowa Lü
- Key Laboratory of Ministry of Education, Department of Pharmacology, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Qiushi Wang
- Key Laboratory of Ministry of Education, Department of Pharmacology, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Guoyu Li
- College of Pharmacy, Harbin Medical University, Harbin 150040, China
| | - Shuang Sun
- Key Laboratory of Ministry of Education, Department of Pharmacology, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yuyan Guo
- Key Laboratory of Ministry of Education, Department of Pharmacology, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Haixue Kuang
- Key Laboratory of Ministry of Education, Department of Pharmacology, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| |
Collapse
|
28
|
Ham YM, Yoon WJ, Lee WJ, Kim SC, Baik JS, Kim JH, Lee GS, Lee NH, Hyun CG. Anti-inflammatory effects of isoketocharbroic acid from brown alga, Sargassum micracanthum. EXCLI JOURNAL 2015; 14:1116-21. [PMID: 26600756 PMCID: PMC4650962 DOI: 10.17179/excli2015-555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 10/08/2015] [Indexed: 11/12/2022]
Abstract
During our on-going screening program designed to isolate natural compounds from marine environments, we isolated isoketochabrolic acid (IKCA) from Sargassum micracanthum, an important brown algae distributed in Jeju Island, Korea. Furthermore, we evaluated the inhibitory effects of IKCA on nitric oxide (NO) production in lipopolysaccharide (LPS)-triggered macrophages. IKCA strongly inhibited NO production, with an IC50 value of 58.31 μM. Subsequent studies demonstrated that IKCA potently and concentration-dependently reduced prostaglandin E2 (PGE2), tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, and IL-6 cytokine production. In conclusion, to the best of our knowledge, this is the first study to show that IKCA isolated from S. micracanthum has a potent anti-inflammatory activity. Therefore, IKCA might be useful as an anti-inflammatory health supplement or functional cosmetics.
Collapse
Affiliation(s)
- Young Min Ham
- Jeju Biodiversity Research Institute (JBRI), Jeju Technopark, Jeju 699-943, Korea
| | - Weon-Jong Yoon
- Jeju Biodiversity Research Institute (JBRI), Jeju Technopark, Jeju 699-943, Korea
| | - Wook Jae Lee
- Nakdonggang National Institute of Biological Resources, Chungbuk 742-350, Korea
| | - Sang-Cheol Kim
- Nakdonggang National Institute of Biological Resources, Chungbuk 742-350, Korea
| | - Jong Seok Baik
- Cosmetic Science Center, Department of Chemistry and Cosmetics, Jeju National University, Jeju 690-756, Korea
| | - Jin Hwa Kim
- R & D Center, Hanbul Cosmetics Co., Chungbuk 369-830, Korea
| | - Geun Soo Lee
- R & D Center, Hanbul Cosmetics Co., Chungbuk 369-830, Korea
| | - Nam Ho Lee
- Cosmetic Science Center, Department of Chemistry and Cosmetics, Jeju National University, Jeju 690-756, Korea
| | - Chang-Gu Hyun
- Cosmetic Science Center, Department of Chemistry and Cosmetics, Jeju National University, Jeju 690-756, Korea
| |
Collapse
|
29
|
El-Shitany NA, Shaala LA, Abbas AT, Abdel-dayem UA, Azhar EI, Ali SS, van Soest RWM, Youssef DTA. Evaluation of the Anti-Inflammatory, Antioxidant and Immunomodulatory Effects of the Organic Extract of the Red Sea Marine Sponge Xestospongia testudinaria against Carrageenan Induced Rat Paw Inflammation. PLoS One 2015; 10:e0138917. [PMID: 26422010 PMCID: PMC4589291 DOI: 10.1371/journal.pone.0138917] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 09/05/2015] [Indexed: 01/24/2023] Open
Abstract
Marine sponges are found to be a rich source of bioactive compounds which show a wide range of biological activities including antiviral, antibacterial, and anti-inflammatory activities. This study aimed to investigate the possible anti-inflammatory, antioxidant and immunomodulator effects of the methanolic extract of the Red Sea marine sponge Xestospongia testudinaria. The chemical composition of the Xestospongia testudinaria methanolic extract was determined using Gas chromatography-mass spectroscopy (GC-MS) analysis. DPPH (2, 2-diphenyl-1-picryl-hydrazyl) was measured to assess the antioxidant activity of the sponge extract. Carrageenan-induced rat hind paw edema was adopted in this study. Six groups of rats were used: group1: Control, group 2: Carrageenan, group 3: indomethacin (10 mg/kg), group 4-6: Xestospongia testudinaria methanolic extract (25, 50, and 100 mg/kg). Evaluation of the anti-inflammatory activity was performed by both calculating the percentage increase in paw weight and hisopathologically. Assessment of the antioxidant and immunomodulatory activity was performed. GC-MS analysis revealed that there were 41 different compounds present in the methanolic extract. Sponge extract exhibited antioxidant activity against DPPH free radicals. Xestospongia testudinaria methanolic extract (100 mg/kg) significantly decreased % increase in paw weight measured at 1, 2, 3 and 4 h after carrageenan injection. Histopathologically, the extract caused a marked decrease in the capillary congestion and inflammatory cells infiltrate. The extract decreased paw malondialdehyde (MDA) and nitric oxide (NO) and increased the reduced glutathione (GSH), glutathione peroxidase (GPx), and catalase (CAT) activity. It also decreased the inflammatory cytokines, tumor necrosis factor-α (TNF-α), interleukin-1 β(IL-1β) and IL-6. The results of this study demonstrated the anti-inflammatory, antioxidant, and immunomodulatory effects of the methanolic extract of the Red Sea sponge Xestospongia testudinaria (100 mg/kg).
Collapse
Affiliation(s)
- Nagla A. El-Shitany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Lamiaa A. Shaala
- Natural Products Unit, King Fahd Medical Research Center, King Abdulaziz University, Jedda, Kingdom of Saudi Arabia
| | - Aymn T. Abbas
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Biotechnology Research Laboratories, Gastroenterology Surgery Center, Mansoura University, Mansoura, Egypt
| | - Umama A. Abdel-dayem
- Animal Facility Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Esam I. Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Soad S. Ali
- Anatomy Department (Cytology and Histology), Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Rob W. M. van Soest
- Naturalis Biodiversity Center, Deptartment of Marine Zoology, P.O. Box 9517, 2300 RA Leiden, The Netherlands
| | - Diaa T. A. Youssef
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
30
|
Wilches I, Tobar V, Peñaherrera E, Cuzco N, Jerves L, Vander Heyden Y, León-Tamariz F, Vila E. Evaluation of anti-inflammatory activity of the methanolic extract from Jungia rugosa leaves in rodents. JOURNAL OF ETHNOPHARMACOLOGY 2015; 173:166-71. [PMID: 26192806 DOI: 10.1016/j.jep.2015.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/16/2015] [Accepted: 07/03/2015] [Indexed: 05/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jungia rugosa Less (Asteraceae), popularly known in Ecuador as "Carne humana" or "Fompo", is a vine present into the Andean region. It is traditionally used as medicine for the treatment of bruises, cuts and other external inflammatory processes. This study was designed to investigate the anti-inflammatory activity of J. rugosa leaves extract (JRLE) in rodents. MATERIAL AND METHODS The acute anti-inflammatory activity was evaluated by animal models, including croton oil-induced ear oedema in mice, carrageenan-induced paw oedema in rats and myeloperoxidase (MPO); the chronic anti-inflammatory activity was evaluated by cotton pellet-induced granuloma. RESULTS Intraperitoneal administration of JRLE (125, 250, 500mg/kg) significantly (p<0.01-0.001) inhibited the croton oil-induced ear oedema and MPO activity in mice; the carrageenan-induced paw oedema in rats was significantly (p<0.05) reduced by 500mg/kg. Repeated (6 days) administration of the extract to mice previously implanted with cotton pellets reduced the formed granuloma (125mg/kg: 11.7%; 250mg/kg: 17.9%; 500mg/kg: 32.4%) but only the inhibition by 500mg/kg reached statistical significance (p<0.01). CONCLUSIONS The results show that JRLE is effective as an anti-inflammatory agent in acute and chronic inflammation in mice, supporting its traditional use.
Collapse
Affiliation(s)
- Isabel Wilches
- Faculty of Chemistry, School of Biochemistry and Pharmacy, University of Cuenca, Cuenca, Ecuador
| | - Vladimiro Tobar
- Faculty of Engineering, University of Cuenca, Cuenca, Ecuador
| | - Eugenia Peñaherrera
- Faculty of Chemistry, School of Biochemistry and Pharmacy, University of Cuenca, Cuenca, Ecuador
| | - Nancy Cuzco
- Faculty of Chemistry, School of Biochemistry and Pharmacy, University of Cuenca, Cuenca, Ecuador
| | - Lourdes Jerves
- Faculty of Chemistry, School of Biochemistry and Pharmacy, University of Cuenca, Cuenca, Ecuador
| | - Yvan Vander Heyden
- Department Analytical Chemistry and Pharmaceutical Technology, Vrije Universiteit Brussels-VUB, Belgium
| | - Fabián León-Tamariz
- Faculty of Chemistry, School of Biochemistry and Pharmacy, University of Cuenca, Cuenca, Ecuador
| | - Elisabet Vila
- Faculty of Chemistry, School of Biochemistry and Pharmacy, University of Cuenca, Cuenca, Ecuador; Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|