1
|
González-Montalvo MA, Sorescu JM, Baltes G, Juárez O, Tuz K. The respiratory chain of Klebsiella aerogenes in urine-like conditions: critical roles of NDH-2 and bd-terminal oxidases. Front Microbiol 2024; 15:1479714. [PMID: 39568993 PMCID: PMC11576283 DOI: 10.3389/fmicb.2024.1479714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/11/2024] [Indexed: 11/22/2024] Open
Abstract
Klebsiella aerogenes is an opportunistic nosocomial bacterial pathogen that commonly causes urinary tract infections. Over the past decades, K. aerogenes strains have acquired resistance to common antibiotics that has led to the rise of multidrug-resistant and even pandrug-resistant strains. Infections produced by these strains are nearly impossible to treat, which makes K. aerogenes a global priority to develop new antibiotics and there is an urgent need to identify targets to treat infections against this pathogen. However, very little is known about the metabolism and metabolic adaptations of this bacterium in infection sites. In this work, we investigated the respiratory metabolism of K. aerogenes in conditions that resemble human urine, allowing us to identify novel targets for antibiotic development. Here we describe that, unlike other gram-negative pathogens, K. aerogenes utilizes the type-2 NADH dehydrogenase (NDH-2) as the main entry point for electrons in the respiratory chain in all growth conditions evaluated. Additionally, in urine-like media, the aerobic metabolism as a whole is upregulated, with significant increases in succinate and lactate dehydrogenase activity. Moreover, our data show that the bd-I type oxidoreductases are the main terminal oxidases of this microorganism. Our findings support an initial identification of NDH-2 and bd-I oxidase as attractive targets for the development of new drugs against K. aerogenes as they are not found in human hosts.
Collapse
Affiliation(s)
| | - Jennifer M Sorescu
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL, United States
| | - Gabriella Baltes
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL, United States
| | - Oscar Juárez
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL, United States
| | - Karina Tuz
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL, United States
| |
Collapse
|
2
|
Steuber J, Fritz G. The Na +-translocating NADH:quinone oxidoreductase (Na +-NQR): Physiological role, structure and function of a redox-driven, molecular machine. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149485. [PMID: 38955304 DOI: 10.1016/j.bbabio.2024.149485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
Many bacterial processes are powered by the sodium motive force (smf) and in case of pathogens, the smf contributes to virulence. Vibrio cholerae, the causative agent of Cholera disease, possesses a Na+-translocating NADH:quinone oxidoreductase (NQR), a six-subunit membrane protein assembly. The 3D structure of NQR revealed the arrangement of the six subunits NqrABCDEF, the position of all redox cofactors (four flavins, two [2Fe-2S] centers) and the binding sites for the substrates NADH (in NqrF) and ubiquinone (in NqrB). Upon oxidation of NADH, electrons are shuttled twice across the membrane, starting with cytoplasmic FADNqrF and electron transfer to the [2Fe2S] clusterNqrF and from there to an intra-membranous [2Fe-2S] clusterNqrDE, periplasmic FMNNqrC, FMNNqrB and from there to riboflavinNqrB. This riboflavin is located at the cytoplasmic entry site of the sodium channel in NqrB, and it donates electrons to ubiquinone-8 positioned at the cytoplasmic side of NqrB. Targeting the substrate binding sites of NQR is a promising strategy to identify new inhibitors against many bacterial pathogens. Detailed structural information on the binding mode of natural inhibitors and small molecules in the active sites of NQR is now available, paving the way for the development of new antibiotics. The NQR shows different conformations as revealed in recent cryo-EM and crystallographic studies combined with spectroscopic analyses. These conformations represent distinct steps in the catalytic cycle. Considering the structural and functional data available, we propose a mechanism of Na+-NQR based on conformational coupling of electron transfer and Na+ translocation reaction steps.
Collapse
Affiliation(s)
- Julia Steuber
- Institute of Biology, Department of Cellular Microbiology, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany.
| | - Günter Fritz
- Institute of Biology, Department of Cellular Microbiology, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany.
| |
Collapse
|
3
|
Verma A, Amnebrink D, Lee CC, Wai SN, Sandblad L, Pinhassi J, Wikner J. Prokaryotic morphological features and maintenance activities governed by seasonal productivity conditions. FEMS Microbiol Ecol 2024; 100:fiae121. [PMID: 39264060 PMCID: PMC11556340 DOI: 10.1093/femsec/fiae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/21/2024] [Accepted: 09/10/2024] [Indexed: 09/13/2024] Open
Abstract
Prokaryotic maintenance respiration and associated metabolic activities constitute a considerable proportion of the total respiration of carbon to CO2 in the ocean's mixed layer. However, seasonal influences on prokaryotic maintenance activities in terms of morphological and metabolic adaptations at low (winter) and high productivity (summer) are still unclear. To address this, we examined the natural prokaryotic communities at the mesocosm scale to analyse the differences in their morphological features and gene expression at low and high maintenance respiration, experimentally manipulated with the specific growth rate. Here, we showed that morphological features including membrane blebbing, membrane vesicles, and cell‒cell connections occurred under high productivity. Metabolic adaptations associated with maintenance activities were observed under low productivity. Several Kyoto Encyclopedia of Genes and Genomes categories related to signal transduction, energy metabolism, and translational machinery supported maintenance activities under simulated winter conditions. Differential abundances of genes related to transporters, osmoregulation, nitrogen metabolism, ribosome biogenesis, and cold stress were observed. Our results demonstrate how specific growth rate in different seasons can influence resource allocation at the levels of morphological features and metabolic adaptations. This motivates further study of morphological features and their ecological role during high productivity, while investigations of metabolic adaptations during low productivity can advance our knowledge about maintenance activities.
Collapse
Affiliation(s)
- Ashish Verma
- Department of Ecology and Environmental Science, Umeå University, SE-901 87 Umeå, Sweden
- Umeå Marine Sciences Centre, Norrbyn 557, SE-905 71 Hörnefors, Sweden
| | - Dennis Amnebrink
- Centre for Ecology and Evolution in Microbial Model Systems – EEMiS, Linnaeus University, SE-391 82 Kalmar, Sweden
| | - Cheng Choo Lee
- Umeå Centre for Electron Microscopy, Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Sun Nyunt Wai
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| | - Linda Sandblad
- Umeå Centre for Electron Microscopy, Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Jarone Pinhassi
- Centre for Ecology and Evolution in Microbial Model Systems – EEMiS, Linnaeus University, SE-391 82 Kalmar, Sweden
| | - Johan Wikner
- Department of Ecology and Environmental Science, Umeå University, SE-901 87 Umeå, Sweden
- Umeå Marine Sciences Centre, Norrbyn 557, SE-905 71 Hörnefors, Sweden
| |
Collapse
|
4
|
Gonzalez V, Abarca-Hurtado J, Arancibia A, Claverías F, Guevara MR, Orellana R. Novel Insights on Extracellular Electron Transfer Networks in the Desulfovibrionaceae Family: Unveiling the Potential Significance of Horizontal Gene Transfer. Microorganisms 2024; 12:1796. [PMID: 39338472 PMCID: PMC11434368 DOI: 10.3390/microorganisms12091796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 09/30/2024] Open
Abstract
Some sulfate-reducing bacteria (SRB), mainly belonging to the Desulfovibrionaceae family, have evolved the capability to conserve energy through microbial extracellular electron transfer (EET), suggesting that this process may be more widespread than previously believed. While previous evidence has shown that mobile genetic elements drive the plasticity and evolution of SRB and iron-reducing bacteria (FeRB), few have investigated the shared molecular mechanisms related to EET. To address this, we analyzed the prevalence and abundance of EET elements and how they contributed to their differentiation among 42 members of the Desulfovibrionaceae family and 23 and 59 members of Geobacteraceae and Shewanellaceae, respectively. Proteins involved in EET, such as the cytochromes PpcA and CymA, the outer membrane protein OmpJ, and the iron-sulfur cluster-binding CbcT, exhibited widespread distribution within Desulfovibrionaceae. Some of these showed modular diversification. Additional evidence revealed that horizontal gene transfer was involved in the acquiring and losing of critical genes, increasing the diversification and plasticity between the three families. The results suggest that specific EET genes were widely disseminated through horizontal transfer, where some changes reflected environmental adaptations. These findings enhance our comprehension of the evolution and distribution of proteins involved in EET processes, shedding light on their role in iron and sulfur biogeochemical cycling.
Collapse
Affiliation(s)
- Valentina Gonzalez
- Laboratorio de Biología Celular y Ecofisiología Microbiana, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Leopoldo Carvallo 270, Valparaíso 2360001, Chile; (V.G.); (J.A.-H.); (A.A.)
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay-Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile;
- Departamento de Química y Medio Ambiente, Sede Viña del Mar, Universidad Técnica Federico Santa María, Avenida Federico Santa María 6090, Viña del Mar 2520000, Chile
| | - Josefina Abarca-Hurtado
- Laboratorio de Biología Celular y Ecofisiología Microbiana, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Leopoldo Carvallo 270, Valparaíso 2360001, Chile; (V.G.); (J.A.-H.); (A.A.)
| | - Alejandra Arancibia
- Laboratorio de Biología Celular y Ecofisiología Microbiana, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Leopoldo Carvallo 270, Valparaíso 2360001, Chile; (V.G.); (J.A.-H.); (A.A.)
- HUB Ambiental UPLA, Universidad de Playa Ancha, Leopoldo Carvallo 207, Playa Ancha, Valparaíso 2340000, Chile
| | - Fernanda Claverías
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay-Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile;
| | - Miguel R. Guevara
- Laboratorio de Data Science, Facultad de Ingeniería, Universidad de Playa Ancha, Leopoldo Carvallo 270, Valparaíso 2340000, Chile;
| | - Roberto Orellana
- Laboratorio de Biología Celular y Ecofisiología Microbiana, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Leopoldo Carvallo 270, Valparaíso 2360001, Chile; (V.G.); (J.A.-H.); (A.A.)
- HUB Ambiental UPLA, Universidad de Playa Ancha, Leopoldo Carvallo 207, Playa Ancha, Valparaíso 2340000, Chile
- Núcleo Milenio BioGEM, Valparaíso 2390123, Chile
| |
Collapse
|
5
|
Zhang L, Einsle O. Architecture of the RNF1 complex that drives biological nitrogen fixation. Nat Chem Biol 2024; 20:1078-1085. [PMID: 38890433 DOI: 10.1038/s41589-024-01641-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 05/10/2024] [Indexed: 06/20/2024]
Abstract
Biological nitrogen fixation requires substantial metabolic energy in form of ATP as well as low-potential electrons that must derive from central metabolism. During aerobic growth, the free-living soil diazotroph Azotobacter vinelandii transfers electrons from the key metabolite NADH to the low-potential ferredoxin FdxA that serves as a direct electron donor to the dinitrogenase reductases. This process is mediated by the RNF complex that exploits the proton motive force over the cytoplasmic membrane to lower the midpoint potential of the transferred electron. Here we report the cryogenic electron microscopy structure of the nitrogenase-associated RNF complex of A. vinelandii, a seven-subunit membrane protein assembly that contains four flavin cofactors and six iron-sulfur centers. Its function requires the strict coupling of electron and proton transfer but also involves major conformational changes within the assembly that can be traced with a combination of electron microscopy and modeling.
Collapse
Affiliation(s)
- Lin Zhang
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Oliver Einsle
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.
| |
Collapse
|
6
|
Hu Y, Yuan M, Julian A, Tuz K, Juárez O. Identification of complex III, NQR, and SDH as primary bioenergetic enzymes during the stationary phase of Pseudomonas aeruginosa cultured in urine-like conditions. Front Microbiol 2024; 15:1347466. [PMID: 38468849 PMCID: PMC10926992 DOI: 10.3389/fmicb.2024.1347466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/08/2024] [Indexed: 03/13/2024] Open
Abstract
Pseudomonas aeruginosa is a common cause of urinary tract infections by strains that are often multidrug resistant, representing a major challenge to the world's health care system. This microorganism has a highly adaptable metabolism that allows it to colonize many environments, including the urinary tract. In this work, we have characterized the metabolic strategies used by stationary phase P. aeruginosa cells cultivated in urine-like media to understand the adaptations used by this microorganism to survive and produce disease. Our proteomics results show that cells rely on the Entner-Duodoroff pathway, pentose phosphate pathway, the Krebs cycle/ glyoxylate shunt and the aerobic oxidative phosphorylation to survive in urine-like media and other conditions. A deep characterization of the oxidative phosphorylation showed that the respiratory rate of stationary phase cells is increased 3-4 times compared to cells in the logarithmic phase of growth, indicating that the aerobic metabolism plays critical roles in the stationary phase of cells grown in urine like media. Moreover, the data show that respiratory complex III, succinate dehydrogenase and the NADH dehydrogenase NQR have important functions and could be used as targets to develop new antibiotics against this bacterium.
Collapse
Affiliation(s)
| | | | | | | | - Oscar Juárez
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL, United States
| |
Collapse
|
7
|
Britton TA, Wu C, Chen YW, Franklin D, Chen Y, Camacho MI, Luong TT, Das A, Ton-That H. The respiratory enzyme complex Rnf is vital for metabolic adaptation and virulence in Fusobacterium nucleatum. mBio 2024; 15:e0175123. [PMID: 38059640 PMCID: PMC10790702 DOI: 10.1128/mbio.01751-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/20/2023] [Indexed: 12/08/2023] Open
Abstract
IMPORTANCE This paper illuminates the significant question of how the oral commensal Fusobacterium nucleatum adapts to the metabolically changing environments of several extra-oral sites such as placenta and colon to promote various diseases as an opportunistic pathogen. We demonstrate here that the highly conserved Rhodobacter nitrogen-fixation complex, commonly known as Rnf complex, is key to fusobacterial metabolic adaptation and virulence. Genetic disruption of this Rnf complex causes global defects in polymicrobial interaction, biofilm formation, cell growth and morphology, hydrogen sulfide production, and ATP synthesis. Targeted metabolomic profiling demonstrates that the loss of this respiratory enzyme significantly diminishes catabolism of numerous amino acids, which negatively impacts fusobacterial virulence as tested in a preterm birth model in mice.
Collapse
Affiliation(s)
- Timmie A. Britton
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - Chenggang Wu
- Department of Microbiology & Molecular Genetics, University of Texas McGovern Medical School, Houston, Texas, USA
| | - Yi-Wei Chen
- Division of Oral & Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA
| | - Dana Franklin
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - Yimin Chen
- Division of Oral & Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA
| | - Martha I. Camacho
- Division of Oral & Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA
| | - Truc T. Luong
- Division of Oral & Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA
| | - Asis Das
- Department of Medicine, Neag Comprehensive Cancer Center, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Hung Ton-That
- Molecular Biology Institute, University of California, Los Angeles, California, USA
- Division of Oral & Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, California, USA
| |
Collapse
|
8
|
Hau JL, Schleicher L, Herdan S, Simon J, Seifert J, Fritz G, Steuber J. Functionality of the Na +-translocating NADH:quinone oxidoreductase and quinol:fumarate reductase from Prevotella bryantii inferred from homology modeling. Arch Microbiol 2023; 206:32. [PMID: 38127130 PMCID: PMC10739449 DOI: 10.1007/s00203-023-03769-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023]
Abstract
Members of the family Prevotellaceae are Gram-negative, obligate anaerobic bacteria found in animal and human microbiota. In Prevotella bryantii, the Na+-translocating NADH:quinone oxidoreductase (NQR) and quinol:fumarate reductase (QFR) interact using menaquinone as electron carrier, catalyzing NADH:fumarate oxidoreduction. P. bryantii NQR establishes a sodium-motive force, whereas P. bryantii QFR does not contribute to membrane energization. To elucidate the possible mode of function, we present 3D structural models of NQR and QFR from P. bryantii to predict cofactor-binding sites, electron transfer routes and interaction with substrates. Molecular docking reveals the proposed mode of menaquinone binding to the quinone site of subunit NqrB of P. bryantii NQR. A comparison of the 3D model of P. bryantii QFR with experimentally determined structures suggests alternative pathways for transmembrane proton transport in this type of QFR. Our findings are relevant for NADH-dependent succinate formation in anaerobic bacteria which operate both NQR and QFR.
Collapse
Affiliation(s)
- Jann-Louis Hau
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
| | - Lena Schleicher
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
- HoLMiR-Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Leonore-Blosser-Reisen-Weg 3, 70599, Stuttgart, Germany
| | - Sebastian Herdan
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
- HoLMiR-Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Leonore-Blosser-Reisen-Weg 3, 70599, Stuttgart, Germany
| | - Jörg Simon
- Microbial Energy Conservation and Biotechnology, Department of Biology, Technical University of Darmstadt, Schnittspahnstraße 10, 64287, Darmstadt, Germany
| | - Jana Seifert
- HoLMiR-Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Leonore-Blosser-Reisen-Weg 3, 70599, Stuttgart, Germany
- Institute of Animal Science, University of Hohenheim, Emil-Wolff-Straße 8, 70599, Stuttgart, Germany
| | - Günter Fritz
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
| | - Julia Steuber
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany.
- HoLMiR-Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Leonore-Blosser-Reisen-Weg 3, 70599, Stuttgart, Germany.
| |
Collapse
|
9
|
Soder-Walz JM, Wasmund K, Deobald D, Vicent T, Adrian L, Marco-Urrea E. Respiratory protein interactions in Dehalobacter sp. strain 8M revealed through genomic and native proteomic analyses. Environ Microbiol 2023; 25:2604-2620. [PMID: 37452527 DOI: 10.1111/1462-2920.16464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Dehalobacter (Firmicutes) encompass obligate organohalide-respiring bacteria used for bioremediation of groundwater contaminated with halogenated organics. Various aspects of their biochemistry remain unknown, including the identities and interactions of respiratory proteins. Here, we sequenced the genome of Dehalobacter sp. strain 8M and analysed its protein expression. Strain 8M encodes 22 reductive dehalogenase homologous (RdhA) proteins. RdhA D8M_v2_40029 (TmrA) was among the two most abundant proteins during growth with trichloromethane and 1,1,2-trichloroethane. To examine interactions of respiratory proteins, we used blue native gel electrophoresis together with dehalogenation activity tests and mass spectrometry. The highest activities were found in gel slices with the highest abundance of TmrA. Protein distributions across gel lanes provided biochemical evidence that the large and small subunits of the membrane-bound [NiFe] uptake hydrogenase (HupL and HupS) interacted strongly and that HupL/S interacted weakly with RdhA. Moreover, the interaction of RdhB and membrane-bound b-type cytochrome HupC was detected. RdhC proteins, often encoded in rdh operons but without described function, migrated in a protein complex not associated with HupL/S or RdhA. This study provides the first biochemical evidence of respiratory protein interactions in Dehalobacter, discusses implications for the respiratory architecture and advances the molecular comprehension of this unique respiratory chain.
Collapse
Affiliation(s)
- Jesica M Soder-Walz
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Kenneth Wasmund
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- School of Biological Sciences, University of Portsmouth, Portsmouth, UK
| | - Darja Deobald
- Department Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Teresa Vicent
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Lorenz Adrian
- Department Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
- Chair of Geobiotechnology, Technische Universität Berlin, Berlin, Germany
| | - Ernest Marco-Urrea
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| |
Collapse
|
10
|
Engelhart MJ, Glowacki RWP, Till JM, Harding CV, Martens EC, Ahern PP. The NQR Complex Regulates the Immunomodulatory Function of Bacteroides thetaiotaomicron. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:767-781. [PMID: 37486212 PMCID: PMC10527448 DOI: 10.4049/jimmunol.2200892] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 06/26/2023] [Indexed: 07/25/2023]
Abstract
The gut microbiome and intestinal immune system are engaged in a dynamic interplay that provides myriad benefits to host health. However, the microbiome can also elicit damaging inflammatory responses, and thus establishing harmonious immune-microbiome interactions is essential to maintain homeostasis. Gut microbes actively coordinate the induction of anti-inflammatory responses that establish these mutualistic interactions. Despite this, the microbial pathways that govern this dialogue remain poorly understood. We investigated the mechanisms through which the gut symbiont Bacteroides thetaiotaomicron exerts its immunomodulatory functions on murine- and human-derived cells. Our data reveal that B. thetaiotaomicron stimulates production of the cytokine IL-10 via secreted factors that are packaged into outer membrane vesicles, in a TLR2- and MyD88-dependent manner. Using a transposon mutagenesis-based screen, we identified a key role for the B. thetaiotaomicron-encoded NADH:ubiquinone oxidoreductase (NQR) complex, which regenerates NAD+ during respiration, in this process. Finally, we found that disruption of NQR reduces the capacity of B. thetaiotaomicron to induce IL-10 by impairing biogenesis of outer membrane vesicles. These data identify a microbial pathway with a previously unappreciated role in gut microbe-mediated immunomodulation that may be targeted to manipulate the capacity of the microbiome to shape host immunity.
Collapse
Affiliation(s)
- Morgan J. Engelhart
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Robert W. P. Glowacki
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jessica M. Till
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Clifford V. Harding
- Department of Pathology, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Eric C. Martens
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Philip P. Ahern
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
11
|
Britton TA, Wu C, Chen YW, Franklin D, Chen Y, Camacho MI, Luong TT, Das A, Ton-That H. The respiratory enzyme complex Rnf is vital for metabolic adaptation and virulence in Fusobacterium nucleatum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.13.544113. [PMID: 37398403 PMCID: PMC10312631 DOI: 10.1101/2023.06.13.544113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
A prominent oral commensal and opportunistic pathogen, Fusobacterium nucleatum can traverse to extra-oral sites such as placenta and colon, promoting adverse pregnancy outcomes and colorectal cancer, respectively. How this anaerobe sustains many metabolically changing environments enabling its virulence potential remains unclear. Informed by our genome-wide transposon mutagenesis, we report here that the highly conserved Rnf complex, encoded by the rnfCDGEAB gene cluster, is key to fusobacterial metabolic adaptation and virulence. Genetic disruption of the Rnf complex via non-polar, in-frame deletion of rnfC (Δ rnfC ) abrogates polymicrobial interaction (or coaggregation) associated with adhesin RadD and biofilm formation. The defect in coaggregation is not due to reduced cell surface of RadD, but rather an increased level of extracellular lysine, which binds RadD and inhibits coaggregation. Indeed, removal of extracellular lysine via washing Δ rnfC cells restores coaggregation, while addition of lysine inhibits this process. These phenotypes mirror that of a mutant (Δ kamAΔ ) that fails to metabolize extracellular lysine. Strikingly, the Δ rnfC mutant is defective in ATP production, cell growth, cell morphology, and expression of the enzyme MegL that produces hydrogen sulfide from cysteine. Targeted metabolic profiling demonstrated that catabolism of many amino acids, including histidine and lysine, is altered in Δ rnfC cells, thereby reducing production of ATP and metabolites including H2S and butyrate. Most importantly, we show that the Δ rnfC mutant is severely attenuated in a mouse model of preterm birth. The indispensable function of Rnf complex in fusobacterial pathogenesis via modulation of bacterial metabolism makes it an attractive target for developing therapeutic intervention.
Collapse
|
12
|
Alleman AB, Peters JW. Mechanisms for Generating Low Potential Electrons across the Metabolic Diversity of Nitrogen-Fixing Bacteria. Appl Environ Microbiol 2023; 89:e0037823. [PMID: 37154716 PMCID: PMC10231201 DOI: 10.1128/aem.00378-23] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
The availability of fixed nitrogen is a limiting factor in the net primary production of all ecosystems. Diazotrophs overcome this limit through the conversion of atmospheric dinitrogen to ammonia. Diazotrophs are phylogenetically diverse bacteria and archaea that exhibit a wide range of lifestyles and metabolisms, including obligate anaerobes and aerobes that generate energy through heterotrophic or autotrophic metabolisms. Despite the diversity of metabolisms, all diazotrophs use the same enzyme, nitrogenase, to reduce N2. Nitrogenase is an O2-sensitive enzyme that requires a high amount of energy in the form of ATP and low potential electrons carried by ferredoxin (Fd) or flavodoxin (Fld). This review summarizes how the diverse metabolisms of diazotrophs utilize different enzymes to generate low potential reducing equivalents for nitrogenase catalysis. These enzymes include substrate-level Fd oxidoreductases, hydrogenases, photosystem I or other light-driven reaction centers, electron bifurcating Fix complexes, proton motive force-driven Rnf complexes, and Fd:NAD(P)H oxidoreductases. Each of these enzymes is critical for generating low potential electrons while simultaneously integrating the native metabolism to balance nitrogenase's overall energy needs. Understanding the diversity of electron transport systems to nitrogenase in various diazotrophs will be essential to guide future engineering strategies aimed at expanding the contributions of biological nitrogen fixation in agriculture.
Collapse
Affiliation(s)
- Alexander B. Alleman
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - John W. Peters
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
13
|
Purification and structural characterization of the Na +-translocating ferredoxin: NAD + reductase (Rnf) complex of Clostridium tetanomorphum. Nat Commun 2022; 13:6315. [PMID: 36274063 PMCID: PMC9588780 DOI: 10.1038/s41467-022-34007-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/05/2022] [Indexed: 12/25/2022] Open
Abstract
Various microbial metabolisms use H+/Na+-translocating ferredoxin:NAD+ reductase (Rnf) either to exergonically oxidize reduced ferredoxin by NAD+ for generating a transmembrane electrochemical potential or reversely to exploit the latter for producing reduced ferredoxin. For cryo-EM structural analysis, we elaborated a quick four-step purification protocol for the Rnf complex from Clostridium tetanomorphum and integrated the homogeneous and active enzyme into a nanodisc. The obtained 4.27 Å density map largely allows chain tracing and redox cofactor identification complemented by biochemical data from entire Rnf and single subunits RnfB, RnfC and RnfG. On this basis, we postulated an electron transfer route between ferredoxin and NAD via eight [4Fe-4S] clusters, one Fe ion and four flavins crossing the cell membrane twice related to the pathway of NADH:ubiquinone reductase. Redox-coupled Na+ translocation is provided by orchestrating Na+ uptake/release, electrostatic effects of the assumed membrane-integrated FMN semiquinone anion and accompanied polypeptide rearrangements mediated by different redox steps.
Collapse
|
14
|
Tuz K, Yuan M, Hu Y, Do TTT, Willow SY, DePaolo-Boisvert JA, Fuller JR, Minh DDL, Juárez O. Identification of the riboflavin-cofactor binding site in the Vibrio cholerae ion-pumping NQR complex: A novel structural motif in redox enzymes. J Biol Chem 2022; 298:102182. [PMID: 35752362 PMCID: PMC9293633 DOI: 10.1016/j.jbc.2022.102182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 11/18/2022] Open
Abstract
The ion-pumping NQR complex is an essential respiratory enzyme in the physiology of many pathogenic bacteria. This enzyme transfers electrons from NADH to ubiquinone through several cofactors, including riboflavin (vitamin B2). NQR is the only enzyme reported that is able to use riboflavin as a cofactor. Moreover, the riboflavin molecule is found as a stable neutral semiquinone radical. The otherwise highly reactive unpaired electron is stabilized via an unknown mechanism. Crystallographic data suggested that riboflavin might be found in a superficially located site in the interface of NQR subunits B and E. However, this location is highly problematic, as the site does not have the expected physiochemical properties. In this work, we have located the riboflavin-binding site in an amphipathic pocket in subunit B, previously proposed to be the entry site of sodium. Here, we show that this site contains absolutely conserved residues, including N200, N203, and D346. Mutations of these residues decrease enzymatic activity and specifically block the ability of NQR to bind riboflavin. Docking analysis and molecular dynamics simulations indicate that these residues participate directly in riboflavin binding, establishing hydrogen bonds that stabilize the cofactor in the site. We conclude that riboflavin is likely bound in the proposed pocket, which is consistent with enzymatic characterizations, thermodynamic studies, and distance between cofactors.
Collapse
Affiliation(s)
- Karina Tuz
- Department of Biological Sciences, Illinois Institute of Technology, Chicago IL
| | - Ming Yuan
- Department of Biological Sciences, Illinois Institute of Technology, Chicago IL
| | - Yuyao Hu
- Department of Biological Sciences, Illinois Institute of Technology, Chicago IL
| | - Tien T T Do
- Department of Chemistry, Illinois Institute of Technology, Chicago IL
| | | | | | - James R Fuller
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL
| | - David D L Minh
- Department of Chemistry, Illinois Institute of Technology, Chicago IL
| | - Oscar Juárez
- Department of Biological Sciences, Illinois Institute of Technology, Chicago IL.
| |
Collapse
|
15
|
Phylogenomics of SAR116 Clade Reveals Two Subclades with Different Evolutionary Trajectories and an Important Role in the Ocean Sulfur Cycle. mSystems 2021; 6:e0094421. [PMID: 34609172 PMCID: PMC8547437 DOI: 10.1128/msystems.00944-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The SAR116 clade within the class Alphaproteobacteria represents one of the most abundant groups of heterotrophic bacteria inhabiting the surface of the ocean. The small number of cultured representatives of SAR116 (only two to date) is a major bottleneck that has prevented an in-depth study at the genomic level to understand the relationship between genome diversity and its role in the marine environment. In this study, we use all publicly available genomes to provide a genomic overview of the phylogeny, metabolism, and biogeography within the SAR116 clade. This increased genomic diversity has led to the discovery of two subclades that, despite coexisting in the same environment, display different properties in their genomic makeup. One represents a novel subclade for which no pure cultures have been isolated and is composed mainly of single-amplified genomes (SAGs). Genomes within this subclade showed convergent evolutionary trajectories with more streamlined features, such as low GC content (ca. 30%), short intergenic spacers (<22 bp), and strong purifying selection (low ratio of nonsynonymous to synonymous polymorphisms [dN/dS]). Besides, they were more abundant in metagenomic databases recruiting at the deep chlorophyll maximum. Less abundant and restricted to the upper photic layers of the global ocean, the other subclade of SAR116, enriched in metagenome-assembled genomes (MAGs), included the only two pure cultures. Genomic analysis suggested that both clades have a significant role in the sulfur cycle with differences in the way both clades can metabolize dimethylsulfoniopropionate (DMSP). IMPORTANCE The SAR116 clade of Alphaproteobacteria is a ubiquitous group of heterotrophic bacteria inhabiting the surface of the ocean, but the information about their ecology and population genomic diversity is scarce due to the difficulty of getting pure culture isolates. The combination of single-cell genomics and metagenomics has become an alternative approach to study these kinds of microbes. Our results expand the understanding of the genomic diversity, distribution, and lifestyles within this clade and provide evidence of different evolutionary trajectories in the genomic makeup of the two subclades that could serve to illustrate how evolutionary pressure can drive different adaptations to the same environment. Therefore, the SAR116 clade represents an ideal model organism for the study of the evolutionary streamlining of genomes in microbes that have relatively close relatedness to each other.
Collapse
|
16
|
Dibrov A, Mourin M, Dibrov P, Pierce GN. Molecular dynamics modeling of the Vibrio cholera Na +-translocating NADH:quinone oxidoreductase NqrB-NqrD subunit interface. Mol Cell Biochem 2021; 477:153-165. [PMID: 34626300 PMCID: PMC8755685 DOI: 10.1007/s11010-021-04266-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/17/2021] [Indexed: 10/29/2022]
Abstract
The Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) is the major Na+ pump in aerobic pathogens such as Vibrio cholerae. The interface between two of the NQR subunits, NqrB and NqrD, has been proposed to harbor a binding site for inhibitors of Na+-NQR. While the mechanisms underlying Na+-NQR function and inhibition remain underinvestigated, their clarification would facilitate the design of compounds suitable for clinical use against pathogens containing Na+-NQR. An in silico model of the NqrB-D interface suitable for use in molecular dynamics simulations was successfully constructed. A combination of algorithmic and manual methods was used to reconstruct portions of the two subunits unresolved in the published crystal structure and validate the resulting structure. Hardware and software optimizations that improved the efficiency of the simulation were considered and tested. The geometry of the reconstructed complex compared favorably to the published V. cholerae Na+-NQR crystal structure. Results from one 1 µs, three 150 ns and two 50 ns molecular dynamics simulations illustrated the stability of the system and defined the limitations of this model. When placed in a lipid bilayer under periodic boundary conditions, the reconstructed complex was completely stable for at least 1 µs. However, the NqrB-D interface underwent a non-physiological transition after 350 ns.
Collapse
Affiliation(s)
- Alexander Dibrov
- Department of Family Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.
| | - Muntahi Mourin
- Department of Physiology and Pathophysiology, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Albrechtsen Research Centre, St. Boniface Hospital, 351 Taché Avenue, Winnipeg, MB, Canada
| | - Pavel Dibrov
- Department of Microbiology, Faculty of Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Grant N Pierce
- Department of Physiology and Pathophysiology, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Albrechtsen Research Centre, St. Boniface Hospital, 351 Taché Avenue, Winnipeg, MB, Canada
| |
Collapse
|
17
|
Méheust R, Huang S, Rivera-Lugo R, Banfield JF, Light SH. Post-translational flavinylation is associated with diverse extracytosolic redox functionalities throughout bacterial life. eLife 2021; 10:66878. [PMID: 34032212 PMCID: PMC8238504 DOI: 10.7554/elife.66878] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/24/2021] [Indexed: 12/11/2022] Open
Abstract
Disparate redox activities that take place beyond the bounds of the prokaryotic cell cytosol must connect to membrane or cytosolic electron pools. Proteins post-translationally flavinylated by the enzyme ApbE mediate electron transfer in several characterized extracytosolic redox systems but the breadth of functions of this modification remains unknown. Here, we present a comprehensive bioinformatic analysis of 31,910 prokaryotic genomes that provides evidence of extracytosolic ApbEs within ~50% of bacteria and the involvement of flavinylation in numerous uncharacterized biochemical processes. By mining flavinylation-associated gene clusters, we identify five protein classes responsible for transmembrane electron transfer and two domains of unknown function (DUF2271 and DUF3570) that are flavinylated by ApbE. We observe flavinylation/iron transporter gene colocalization patterns that implicate functions in iron reduction and assimilation. We find associations with characterized and uncharacterized respiratory oxidoreductases that highlight roles of flavinylation in respiratory electron transport chains. Finally, we identify interspecies gene cluster variability consistent with flavinylation/cytochrome functional redundancies and discover a class of ‘multi-flavinylated proteins’ that may resemble multi-heme cytochromes in facilitating longer distance electron transfer. These findings provide mechanistic insight into an important facet of bacterial physiology and establish flavinylation as a functionally diverse mediator of extracytosolic electron transfer. In bacteria, certain chemical reactions required for life do not take place directly inside the cells. For instance, ‘redox’ reactions essential to gather minerals, repair proteins and obtain energy are localised in the membranes and space that surround a bacterium. These chemical reactions involve electrons being transferred from one molecule to another in a cascade that connects the exterior of a cell to its internal space. The enzyme ApbE allows proteins to perform electron transfer by equipping them with ring-like compounds called flavins, through a process known as flavinylation. Yet, the prevelance of flavinylation in bacteria and the scope of redox reactions it facilitates has remained unclear. To investigate this question, Méheust, Huang et al. analysed over 30,000 bacterial genomes, finding genes essential for ApbE flavinylation in about half of all bacterial species across the tree of life. The role of ApbE-flavinylated proteins was then deciphered using a ‘guilt by association’ approach. In bacteria, genes that perform similar roles are often close to each other in the genome, which helps to infer the function of a protein coded by a specific gene. This approach revealed that flavinylation is involved in processes that allow bacteria to acquire iron and to use various energy sources. A number of interesting proteins were also identified, including a group that carry multiple flavins, and could therefore, in theory, transfer electrons over long distances. This discovery could be relevant to bioelectronic applications, which are already considering another class of bacterial electron-carrying molecules as candidates to form minuscule electric wires.
Collapse
Affiliation(s)
- Raphaël Méheust
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, United States.,Innovative Genomics Institute, Berkeley, United States.,LABGeM, Génomique Métabolique, Genoscope, Institut François Jacob, CEA, Evry, France
| | - Shuo Huang
- Duchossois Family Institute, University of Chicago, Chicago, United States.,Department of Microbiology, University of Chicago, Chicago, United States
| | - Rafael Rivera-Lugo
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Jillian F Banfield
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, United States.,Innovative Genomics Institute, Berkeley, United States
| | - Samuel H Light
- Duchossois Family Institute, University of Chicago, Chicago, United States.,Department of Microbiology, University of Chicago, Chicago, United States
| |
Collapse
|
18
|
Furusawa G, Diyana T, Lau NS. Metabolic strategies of dormancy of a marine bacterium Microbulbifer aggregans CCB-MM1: Its alternative electron transfer chain and sulfate-reducing pathway. Genomics 2021; 114:443-455. [PMID: 33689784 DOI: 10.1016/j.ygeno.2021.02.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/26/2021] [Accepted: 02/28/2021] [Indexed: 12/26/2022]
Abstract
Bacterial dormancy plays a crucial role in maintaining the functioning and diversity of microbial communities in natural environments. However, the metabolic regulations of the dormancy of bacteria in natural habitats, especially marine habitats, have remained largely unknown. A marine bacterium, Microbulbifer aggregans CCB-MM1 exhibits rod-to-coccus cell shape change during the dormant state. Therefore, to clarify the metabolic regulation of the dormancy, differential gene expression analysis based on RNA-Seq was performed between rod- (vegetative), intermediate, and coccus-shaped cells (dormancy). The RNA-Seq data revealed that one of two distinct electron transfer chains was upregulated in the dormancy. Dissimilatory sulfite reductase and soluble hydrogenase were also highly upregulated in the dormancy. In addition, induction of the dormancy of MM1 in the absence of MgSO4 was slower than that in the presence of MgSO4. These results indicate that the sulfate-reducing pathway plays an important role in entering the dormancy of MM1.
Collapse
Affiliation(s)
- Go Furusawa
- Centre for Chemical Biology, Universiti Sains Malaysia, 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia.
| | - Tarmizi Diyana
- Centre for Chemical Biology, Universiti Sains Malaysia, 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia
| | - Nyok-Sean Lau
- Centre for Chemical Biology, Universiti Sains Malaysia, 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia
| |
Collapse
|
19
|
Zheng R, Wu S, Sun C. Pseudodesulfovibrio cashew sp. Nov., a Novel Deep-Sea Sulfate-Reducing Bacterium, Linking Heavy Metal Resistance and Sulfur Cycle. Microorganisms 2021; 9:429. [PMID: 33669756 PMCID: PMC7922080 DOI: 10.3390/microorganisms9020429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 11/17/2022] Open
Abstract
Sulfur cycling is primarily driven by sulfate reduction mediated by sulfate-reducing bacteria (SRB) in marine sediments. The dissimilatory sulfate reduction drives the production of enormous quantities of reduced sulfide and thereby the formation of highly insoluble metal sulfides in marine sediments. Here, a novel sulfate-reducing bacterium designated Pseudodesulfovibrio cashew SRB007 was isolated and purified from the deep-sea cold seep and proposed to represent a novel species in the genus of Pseudodesulfovibrio. A detailed description of the phenotypic traits, phylogenetic status and central metabolisms of strain SRB007 allowed the reconstruction of the metabolic potential and lifestyle of a novel member of deep-sea SRB. Notably, P. cashew SRB007 showed a strong ability to resist and remove different heavy metal ions including Co2+, Ni2+, Cd2+ and Hg2+. The dissimilatory sulfate reduction was demonstrated to contribute to the prominent removal capability of P. cashew SRB007 against different heavy metals via the formation of insoluble metal sulfides.
Collapse
Affiliation(s)
- Rikuan Zheng
- CAS Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Shimei Wu
- Department of Life Science, Qingdao University, Qingdao 266071, China;
| | - Chaomin Sun
- CAS Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
20
|
Deka RK, Liu WZ, Norgard MV, Brautigam CA. Biophysical and Biochemical Characterization of TP0037, a d-Lactate Dehydrogenase, Supports an Acetogenic Energy Conservation Pathway in Treponema pallidum. mBio 2020; 11:e02249-20. [PMID: 32963009 PMCID: PMC7512555 DOI: 10.1128/mbio.02249-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
A longstanding conundrum in Treponema pallidum biology concerns how the spirochete generates sufficient energy to fulfill its complex pathogenesis processes during human syphilitic infection. For decades, it has been assumed that the bacterium relies solely on glucose catabolism (via glycolysis) for generation of its ATP. However, the organism's robust motility, believed to be essential for human tissue invasion and dissemination, would require abundant ATP likely not provided by the parsimony of glycolysis. As such, additional ATP generation, either via a chemiosmotic gradient, substrate-level phosphorylation, or both, likely exists in T. pallidum Along these lines, we have hypothesized that T. pallidum exploits an acetogenic energy conservation pathway that relies on the redox chemistry of flavins. Central to this hypothesis is the apparent existence in T. pallidum of an acetogenic pathway for the conversion of d-lactate to acetate. Herein we have characterized the structural, biophysical, and biochemical properties of the first enzyme (d-lactate dehydrogenase [d-LDH]; TP0037) predicted in this pathway. Binding and enzymatic studies showed that recombinant TP0037 consumed d-lactate and NAD+ to produce pyruvate and NADH. The crystal structure of TP0037 revealed a fold similar to that of other d-acid dehydrogenases; residues in the cofactor-binding and active sites were homologous to those of other known d-LDHs. The crystal structure and solution biophysical experiments revealed the protein's propensity to dimerize, akin to other d-LDHs. This study is the first to elucidate the enzymatic properties of T. pallidum's d-LDH, thereby providing new compelling evidence for a flavin-dependent acetogenic energy conservation (ATP-generating) pathway in T. pallidumIMPORTANCE Because T. pallidum lacks a Krebs cycle and the capability for oxidative phosphorylation, historically it has been difficult to reconcile how the syphilis spirochete generates sufficient ATP to fulfill its energy needs, particularly for its robust motility, solely from glycolysis. We have postulated the existence in T. pallidum of a flavin-dependent acetogenic energy conservation pathway that would generate additional ATP for T. pallidum bioenergetics. In the proposed acetogenic pathway, first d-lactate would be converted to pyruvate. Pyruvate would then be metabolized to acetate in three additional steps, with ATP being generated via substrate-level phosphorylation. This study provides structural, biochemical, and biophysical evidence for the first T. pallidum enzyme in the pathway (TP0037; d-lactate dehydrogenase) requisite for the conversion of d-lactate to pyruvate. The findings represent the first experimental evidence to support a role for an acetogenic energy conservation pathway that would contribute to nonglycolytic ATP production in T. pallidum.
Collapse
Affiliation(s)
- Ranjit K Deka
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Wei Z Liu
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Michael V Norgard
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Chad A Brautigam
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, USA
- Department of Biophysics, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
21
|
Karnachuk OV, Lukina AP, Kadnikov VV, Sherbakova VA, Beletsky AV, Mardanov AV, Ravin NV. Targeted isolation based on metagenome‐assembled genomes reveals a phylogenetically distinct group of thermophilic spirochetes from deep biosphere. Environ Microbiol 2020; 23:3585-3598. [DOI: 10.1111/1462-2920.15218] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/18/2020] [Accepted: 08/27/2020] [Indexed: 12/22/2022]
Affiliation(s)
| | | | - Vitaly V. Kadnikov
- Institute of Bioengineering Research Center of Biotechnology of the Russian Academy of Sciences Moscow 119071 Russia
| | - Viktoria A. Sherbakova
- Skryabin Institute of Biochemistry and Physiology of Microorganisms Federal Research Center ‘Pushchino Scientific Center for Biological Research, Russian Academy of Sciences’ Pushchino Moscow 142290 Russia
| | - Alexey V. Beletsky
- Institute of Bioengineering Research Center of Biotechnology of the Russian Academy of Sciences Moscow 119071 Russia
| | - Andrey V. Mardanov
- Institute of Bioengineering Research Center of Biotechnology of the Russian Academy of Sciences Moscow 119071 Russia
| | - Nikolai V. Ravin
- Institute of Bioengineering Research Center of Biotechnology of the Russian Academy of Sciences Moscow 119071 Russia
| |
Collapse
|
22
|
Wada N, Yuasa H, Kajitani R, Gotoh Y, Ogura Y, Yoshimura D, Toyoda A, Tang SL, Higashimura Y, Sweatman H, Forsman Z, Bronstein O, Eyal G, Thongtham N, Itoh T, Hayashi T, Yasuda N. A ubiquitous subcuticular bacterial symbiont of a coral predator, the crown-of-thorns starfish, in the Indo-Pacific. MICROBIOME 2020; 8:123. [PMID: 32831146 PMCID: PMC7444263 DOI: 10.1186/s40168-020-00880-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Population outbreaks of the crown-of-thorns starfish (Acanthaster planci sensu lato; COTS), a primary predator of reef-building corals in the Indo-Pacific Ocean, are a major threat to coral reefs. While biological and ecological knowledge of COTS has been accumulating since the 1960s, little is known about its associated bacteria. The aim of this study was to provide fundamental information on the dominant COTS-associated bacteria through a multifaceted molecular approach. METHODS A total of 205 COTS individuals from 17 locations throughout the Indo-Pacific Ocean were examined for the presence of COTS-associated bacteria. We conducted 16S rRNA metabarcoding of COTS to determine the bacterial profiles of different parts of the body and generated a full-length 16S rRNA gene sequence from a single dominant bacterium, which we designated COTS27. We performed phylogenetic analysis to determine the taxonomy, screening of COTS27 across the Indo-Pacific, FISH to visualize it within the COTS tissues, and reconstruction of the bacterial genome from the hologenome sequence data. RESULTS We discovered that a single bacterium exists at high densities in the subcuticular space in COTS forming a biofilm-like structure between the cuticle and the epidermis. COTS27 belongs to a clade that presumably represents a distinct order (so-called marine spirochetes) in the phylum Spirochaetes and is universally present in COTS throughout the Indo-Pacific Ocean. The reconstructed genome of COTS27 includes some genetic traits that are probably linked to adaptation to marine environments and evolution as an extracellular endosymbiont in subcuticular spaces. CONCLUSIONS COTS27 can be found in three allopatric COTS species, ranging from the northern Red Sea to the Pacific, implying that the symbiotic relationship arose before the speciation events (approximately 2 million years ago). The universal association of COTS27 with COTS and nearly mono-specific association at least with the Indo-Pacific COTS provides a useful model system for studying symbiont-host interactions in marine invertebrates and may have applications for coral reef conservation. Video Abstract.
Collapse
Affiliation(s)
- Naohisa Wada
- Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-Nishi, Miyazaki, Miyazaki, 889-2192, Japan
- Biodiversity Research Center, Academia Sinica, No.128, Sec 2, Academia Rd, Nangang, Taipei, 11529, Taiwan
| | - Hideaki Yuasa
- School of Life Science and Technology, Department of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Rei Kajitani
- School of Life Science and Technology, Department of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Yasuhiro Gotoh
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshitoshi Ogura
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Dai Yoshimura
- School of Life Science and Technology, Department of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Atsushi Toyoda
- Center for Information Biology, National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540, Japan
| | - Sen-Lin Tang
- Biodiversity Research Center, Academia Sinica, No.128, Sec 2, Academia Rd, Nangang, Taipei, 11529, Taiwan
| | - Yukihiro Higashimura
- Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-Nishi, Miyazaki, Miyazaki, 889-2192, Japan
| | - Hugh Sweatman
- Australian Institute of Marine Science, PMB No.3, Townsville, QLD, 4810, Australia
| | - Zac Forsman
- Hawai'i Institute of Marine Biology, School of Ocean & Earth Sciences & Technology, University of Hawai'i at Mānoa, Coconut Island, Kāne'ohe, HI, USA
| | - Omri Bronstein
- George S. Wise Faculty of Life Sciences, School of Zoology, Tel Aviv University, 6997801, Tel Aviv, Israel
- The Steinhardt Museum of Natural History, Israel National Center for Biodiversity Studies, Tel-Aviv University, Tel-Aviv, 6997801, Israel
| | - Gal Eyal
- ARC Centre of Excellence for Coral Reef Studies, School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 5290002, Ramat Gan, Israel
| | | | - Takehiko Itoh
- School of Life Science and Technology, Department of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Nina Yasuda
- Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-Nishi, Miyazaki, Miyazaki, 889-2192, Japan.
| |
Collapse
|
23
|
Bernardes JS, Eberle RJ, Vieira FRJ, Coronado MA. A comparative pan-genomic analysis of 53 C. pseudotuberculosis strains based on functional domains. J Biomol Struct Dyn 2020; 39:6974-6986. [PMID: 32779519 DOI: 10.1080/07391102.2020.1805017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Corynebacterium pseudotuberculosis is a pathogenic bacterium with great veterinary and economic importance. It is classified into two biovars: ovis, nitrate-negative, that causes lymphadenitis in small ruminants and equi, nitrate-positive, causing ulcerative lymphangitis in equines. With the explosive growth of available genomes of several strains, pan-genome analysis has opened new opportunities for understanding the dynamics and evolution of C. pseudotuberculosis. However, few pan-genomic studies have compared biovars equi and ovis. Such studies have considered a reduced number of strains and compared entire genomes. Here we conducted an original pan-genome analysis based on protein sequences and their functional domains. We considered 53 C. pseudotuberculosis strains from both biovars isolated from different hosts and countries. We have analysed conserved domains, common domains more frequently found in each biovar and biovar-specific (unique) domains. Our results demonstrated that biovar equi is more variable; there is a significant difference in the number of proteins per strains, probably indicating the occurrence of more gene loss/gain events. Moreover, strains of biovar equi presented a higher number of biovar-specific domains, 77 against only eight in biovar ovis, most of them are associated with virulence mechanisms. With this domain analysis, we have identified functional differences among strains of biovars ovis and equi that could be related to niche-adaptation and probably help to better understanding mechanisms of virulence and pathogenesis. The distribution patterns of functional domains identified in this work might have impacts on bacterial physiology and lifestyle, encouraging the development of new diagnoses, vaccines, and treatments for C. pseudotuberculosis diseases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Juliana S Bernardes
- Laboratoire de Biologie Computationelle et Quantitative, UMR 7238, CNRS, Sorbonne Université, Paris, France
| | - Raphael J Eberle
- Multiuser Center for Biomolecular Innovation, Department of Physics, Instituto de Biociências, Letras e Ciências Exatas (Ibilce), Universidade Estadual Paulista (UNESP), São Jose do Rio Preto, Brazil
| | - Fabio R J Vieira
- Institut de Biologie de l'École Normale Supérieure (IBENS), Paris, France
| | - Mônika A Coronado
- Multiuser Center for Biomolecular Innovation, Department of Physics, Instituto de Biociências, Letras e Ciências Exatas (Ibilce), Universidade Estadual Paulista (UNESP), São Jose do Rio Preto, Brazil.,Institute of Biological Information Processing (IBI-7: Strucutral Biochemistry), Forschungszentrum Juelich, Juelich, Germany
| |
Collapse
|
24
|
Kuhns M, Schuchmann V, Schmidt S, Friedrich T, Wiechmann A, Müller V. The Rnf complex from the acetogenic bacterium Acetobacterium woodii: Purification and characterization of RnfC and RnfB. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148263. [PMID: 32663477 DOI: 10.1016/j.bbabio.2020.148263] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/26/2020] [Accepted: 07/06/2020] [Indexed: 02/09/2023]
Abstract
rnf genes are widespread in anaerobic bacteria and hypothesized to encode a respiratory enzyme that couples exergonic reduction of NAD with reduced ferredoxin as a reductant to vectorial ion (Na+, H+) translocation across the cytoplasmic membrane. However, despite its importance for the physiology of these bacteria, little is known about the subunit composition and the function of subunits. Here, we have purified the entire Rnf complex from the acetogen Acetobacterium woodii or after its production in Escherichia coli. These studies revealed covalently bound flavin in RnfB and RnfD. Unfortunately, the complex did not catalyze electron transfer from reduced ferredoxin to NAD. We, therefore, concentrated on the two cytosolic subunits RnfC and RnfB. RnfC was produced in E. coli, purified and shown to have 8.3 mol iron and 8.6 mol sulfur per mol of the subunit, consistent with the presence of two [4Fe-4S] centers, which were verified by EPR analysis. Flavins could not be detected, but RnfC catalyzed NADH-dependent FMN reduction. These data confirm RnfC as NADH-binding subunit and FMN as an intermediate in the electron transport chain. RnfB could only be produced as a fusion to the maltose-binding protein. It contained 25 mol iron and 26 mol sulfur, consistent with the predicted six [4Fe4S] centers. The FeS centers in RnfB were reduced with reduced ferredoxin as reductant. These data are consistent with RnfB as the ferredoxin-binding subunit of the complex.
Collapse
Affiliation(s)
- Martin Kuhns
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Verena Schuchmann
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Silke Schmidt
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Thorsten Friedrich
- Institute of Biochemistry, Albert-Ludwigs-University Freiburg, Alberstr. 21, 79104 Freiburg, Germany
| | - Anja Wiechmann
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Volker Müller
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
25
|
Kadnikov VV, Mardanov AV, Beletsky AV, Karnachuk OV, Ravin NV. Genome Analysis of a Member of the Uncultured Phylum Riflebacteria Revealed Pathways of Organotrophic Metabolism and Dissimilatory Iron Reduction. Microbiology (Reading) 2020. [DOI: 10.1134/s0026261720030078] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
26
|
The aerobic respiratory chain of Pseudomonas aeruginosa cultured in artificial urine media: Role of NQR and terminal oxidases. PLoS One 2020; 15:e0231965. [PMID: 32324772 PMCID: PMC7179901 DOI: 10.1371/journal.pone.0231965] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 04/04/2020] [Indexed: 12/26/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative γ-proteobacterium that forms part of the normal human microbiota and it is also an opportunistic pathogen, responsible for 30% of all nosocomial urinary tract infections. P. aeruginosa carries a highly branched respiratory chain that allows the colonization of many environments, such as the urinary tract, catheters and other medical devices. P. aeruginosa respiratory chain contains three different NADH dehydrogenases (complex I, NQR and NDH-2), whose physiologic roles have not been elucidated, and up to five terminal oxidases: three cytochrome c oxidases (COx), a cytochrome bo3 oxidase (CYO) and a cyanide-insensitive cytochrome bd-like oxidase (CIO). In this work, we studied the composition of the respiratory chain of P. aeruginosa cells cultured in Luria Broth (LB) and modified artificial urine media (mAUM), to understand the metabolic adaptations of this microorganism to the growth in urine. Our results show that the COx oxidases play major roles in mAUM, while P. aeruginosa relies on CYO when growing in LB medium. Moreover, our data demonstrate that the proton-pumping NQR complex is the main NADH dehydrogenase in both LB and mAUM. This enzyme is resistant to HQNO, an inhibitory molecule produced by P. aeruginosa, and may provide an advantage against the natural antibacterial agents produced by this organism. This work offers a clear picture of the composition of this pathogen’s aerobic respiratory chain and the main roles that NQR and terminal oxidases play in urine, which is essential to understand its physiology and could be used to develop new antibiotics against this notorious multidrug-resistant microorganism.
Collapse
|
27
|
Ancestry and adaptive radiation of Bacteroidetes as assessed by comparative genomics. Syst Appl Microbiol 2020; 43:126065. [DOI: 10.1016/j.syapm.2020.126065] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/20/2019] [Accepted: 01/16/2020] [Indexed: 11/19/2022]
|
28
|
Ito T, Gallegos R, Matano LM, Butler NL, Hantman N, Kaili M, Coyne MJ, Comstock LE, Malamy MH, Barquera B. Genetic and Biochemical Analysis of Anaerobic Respiration in Bacteroides fragilis and Its Importance In Vivo. mBio 2020; 11:e03238-19. [PMID: 32019804 PMCID: PMC7002350 DOI: 10.1128/mbio.03238-19] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 12/14/2022] Open
Abstract
In bacteria, the respiratory pathways that drive molecular transport and ATP synthesis include a variety of enzyme complexes that utilize different electron donors and acceptors. This property allows them to vary the efficiency of energy conservation and to generate different types of electrochemical gradients (H+ or Na+). We know little about the respiratory pathways in Bacteroides species, which are abundant in the human gut, and whether they have a simple or a branched pathway. Here, we combined genetics, enzyme activity measurements, and mammalian gut colonization assays to better understand the first committed step in respiration, the transfer of electrons from NADH to quinone. We found that a model gut Bacteroides species, Bacteroides fragilis, has all three types of putative NADH dehydrogenases that typically transfer electrons from the highly reducing molecule NADH to quinone. Analyses of NADH oxidation and quinone reduction in wild-type and deletion mutants showed that two of these enzymes, Na+-pumping NADH:quinone oxidoreductase (NQR) and NADH dehydrogenase II (NDH2), have NADH dehydrogenase activity, whereas H+-pumping NADH:ubiquinone oxidoreductase (NUO) does not. Under anaerobic conditions, NQR contributes more than 65% of the NADH:quinone oxidoreductase activity. When grown in rich medium, none of the single deletion mutants had a significant growth defect; however, the double Δnqr Δndh2 mutant, which lacked almost all NADH:quinone oxidoreductase activity, had a significantly increased doubling time. Despite unaltered in vitro growth, the single nqr deletion mutant was unable to competitively colonize the gnotobiotic mouse gut, confirming the importance of NQR to respiration in B. fragilis and the overall importance of respiration to this abundant gut symbiont.IMPORTANCEBacteroides species are abundant in the human intestine and provide numerous beneficial properties to their hosts. The ability of Bacteroides species to convert host and dietary glycans and polysaccharides to energy is paramount to their success in the human gut. We know a great deal about the molecules that these bacteria extract from the human gut but much less about how they convert those molecules into energy. Here, we show that B. fragilis has a complex respiratory pathway with two different enzymes that transfer electrons from NADH to quinone and a third enzyme complex that may use an electron donor other than NADH. Although fermentation has generally been believed to be the main mechanism of energy generation in Bacteroides, we found that a mutant lacking one of the NADH:quinone oxidoreductases was unable to compete with the wild type in the mammalian gut, revealing the importance of respiration to these abundant gut symbionts.
Collapse
Affiliation(s)
- Takeshi Ito
- Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Rene Gallegos
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Leigh M Matano
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Nicole L Butler
- Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Noam Hantman
- Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Matthew Kaili
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Michael J Coyne
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Laurie E Comstock
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael H Malamy
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Blanca Barquera
- Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| |
Collapse
|
29
|
Schubiger CB, Hoang KHT, Häse CC. Sodium antiporters of Pseudomonas aeruginosa in challenging conditions: effects on growth, biofilm formation, and swarming motility. J Genet Eng Biotechnol 2020; 18:4. [PMID: 32009221 PMCID: PMC6995807 DOI: 10.1186/s43141-020-0019-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/06/2020] [Indexed: 01/14/2023]
Abstract
BACKGROUND Pseudomonas aeruginosa is a bacterial pathogen that can cause grave and sometimes chronic infections in patients with weakened immune systems and cystic fibrosis. It is expected that sodium/proton transporters in the cellular membrane are crucial for the organism's survival and growth under certain conditions, since many cellular processes rely on the maintenance of Na+ and H+ transmembrane gradients. RESULTS This study focused on the role of the primary and secondary proton and/or sodium pumps Mrp, Nuo, NhaB, NhaP, and NQR for growth, biofilm formation, and swarming motility in P. aeruginosa. Using mutants with gene deletions, we investigated the impact of each sodium pump's absence on the overall growth, biofilm formation, motility, and weak acid tolerance of the organism. We found that the absence of some, but not all, of the sodium pumps have a deleterious effect on the different phenotypes of P. aeruginosa. CONCLUSION The absence of the Mrp sodium/proton antiporter was clearly important in the organism's ability to survive and function in environments of higher pH and sodium concentrations, while the absence of Complex I, which is encoded by the nuo genes, had some consistent impact on the organism's growth regardless of the pH and sodium concentration of the environment.
Collapse
Affiliation(s)
- Carla B Schubiger
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331, USA
| | - Kelli H T Hoang
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331, USA. .,College of Pharmacy, Oregon State University, Corvallis, OR, 97331, USA.
| | - Claudia C Häse
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
30
|
Raba D, Yuan M, Fang X, Menzer WM, Xie B, Liang P, Tuz K, Minh DDL, Juárez O. Role of Subunit D in Ubiquinone-Binding Site of Vibrio cholerae NQR: Pocket Flexibility and Inhibitor Resistance. ACS OMEGA 2019; 4:19324-19331. [PMID: 31763556 PMCID: PMC6868883 DOI: 10.1021/acsomega.9b02707] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
The ion-pumping NADH: ubiquinone dehydrogenase (NQR) is a vital component of the respiratory chain of numerous species of marine and pathogenic bacteria, including Vibrio cholerae. This respiratory enzyme couples the transfer of electrons from NADH to ubiquinone (UQ) to the pumping of ions across the plasma membrane, producing a gradient that sustains multiple homeostatic processes. The binding site of UQ within the enzyme is an important functional and structural motif that could be used to design drugs against pathogenic bacteria. Our group recently located the UQ site in the interface between subunits B and D and identified the residues within subunit B that are important for UQ binding. In this study, we carried out alanine scanning mutagenesis of amino acid residues located in subunit D of V. cholerae NQR to understand their role in UQ binding and enzymatic catalysis. Moreover, molecular docking calculations were performed to characterize the structure of the site at the atomic level. The results show that mutations in these positions, in particular, in residues P185, L190, and F193, decrease the turnover rate and increase the Km for UQ. These mutants also showed an increase in the resistance against the inhibitor HQNO. The data indicate that residues in subunit D fulfill important structural roles, restricting and orienting UQ in a catalytically favorable position. In addition, mutations of these residues open the site and allow the simultaneous binding of substrate and inhibitors, producing partial inhibition, which appears to be a strategy used by Pseudomonas aeruginosa to avoid autopoisoning.
Collapse
Affiliation(s)
- Daniel
A. Raba
- Department
of Biological Sciences and Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Ming Yuan
- Department
of Biological Sciences and Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Xuan Fang
- Department
of Biological Sciences and Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - William M. Menzer
- Department
of Biological Sciences and Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Bing Xie
- Department
of Biological Sciences and Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Pingdong Liang
- Department
of Biological Sciences and Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Karina Tuz
- Department
of Biological Sciences and Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - David D. L. Minh
- Department
of Biological Sciences and Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Oscar Juárez
- Department
of Biological Sciences and Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| |
Collapse
|
31
|
Mardanov AV, Beletsky AV, Ravin NV, Botchkova EA, Litti YV, Nozhevnikova AN. Genome of a Novel Bacterium " Candidatus Jettenia ecosi" Reconstructed From the Metagenome of an Anammox Bioreactor. Front Microbiol 2019; 10:2442. [PMID: 31736891 PMCID: PMC6828613 DOI: 10.3389/fmicb.2019.02442] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/10/2019] [Indexed: 11/13/2022] Open
Abstract
The microbial community of a laboratory-scale bioreactor based on the anammox process was investigated by using metagenomic approaches and fluorescent in situ hybridization (FISH). The bioreactor was initially inoculated with activated sludge from the denitrifying bioreactor of a municipal wastewater treatment station. By constantly increasing the ammonium and nitrite load, a microbial community containing the novel species of anammox bacteria "Candidatus Jettenia ecosi" developed in the bioreactor after 5 years when the maximal daily nitrogen removal rate reached 8.5 g/L. Sequencing of the metagenome of anammox granules and the binning of the contigs obtained, allowed a high quality draft genome of the dominant anammox bacterium, "Candidatus Jettenia ecosi" to be assembled. Annotation of the 3.9 Mbp long genome revealed 3970 putative protein-coding genes, 45 tRNA genes, and genes for 16S/23S rRNAs. Analysis of the genome of "Candidatus Jettenia ecosi" revealed genes involved in anammox metabolism, including nitrite and ammonium transporters, copper-containing nitrite reductase, a nitrate reductase complex, hydrazine synthase, and hydrazine dehydrogenase. Autotrophic carbon fixation could be accomplished through the Wood Ljungdahl pathway. The composition of the community was investigated through a search of 16S rRNA sequences in the metagenome and FISH analysis of the anammox granules. The presence of the members of Ignavibacteriae, Betaproteobacteria, Chloroflexi and other microbial lineages reflected the complexity of the microbial processes in the studied bioreactor performed by anammox Planctomycetes, fermentative bacteria, and denitrifiers.
Collapse
Affiliation(s)
- Andrey V. Mardanov
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Alexey V. Beletsky
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Nikolai V. Ravin
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina A. Botchkova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Yuriy V. Litti
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Alla N. Nozhevnikova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
32
|
Functional prediction, characterization, and categorization of operome from Acetoanaerobium sticklandii DSM 519. Anaerobe 2019; 61:102088. [PMID: 31425748 DOI: 10.1016/j.anaerobe.2019.102088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 01/05/2023]
Abstract
Acetoanaerobium sticklandii DSM 519 is a hyper-ammonia producing anaerobic bacterium that can be able utilizes amino acids as sole carbon and energy sources for its growth and energetic metabolism. A lack of knowledge on its molecular machinery and 30.5% conserved hypothetical proteins (HPs; operome) hinders the successful utility in biofuel applications. In this study, we have predicted, characterized and categorized its operome whose functions are still not determined accurately using a combined bioinformatics approach. The functions of 64 of the 359 predicted HPs are involved in diverse metabolic subsystems. A. sticklandii operome has consisted of 16% Rossmann fold and 46% miscellaneous folds. Subsystems-based technology has classified 51 HPs contributing to the small-molecular reactions, 26 in macromolecular reactions and 12 in the biosynthesis of cofactors, prosthetic groups and electron carriers. A generality of functions predicted from its operome contributed to the cell cycle, amino acid metabolism, membrane transport, and regulatory processes. Many of them have duplicated functions as paralogs in this genome. A. sticklandii has the ability to compete with invading microorganisms and tolerate abiotic stresses, which can be overwhelmed by the predicted functions of its operome. Results of this study revealed that it has specialized systems for amino acid catabolism-directed solventogenesis and acidogenesis but the level of gene expression may determine the metabolic function in amino acid fermenting niches in the rumina of cattle. As shown by our analysis, the predicted functions of its operome allow us for a better understanding of the growth and physiology at systems-scale.
Collapse
|
33
|
Fang X, Osipiuk J, Chakravarthy S, Yuan M, Menzer WM, Nissen D, Liang P, Raba DA, Tuz K, Howard AJ, Joachimiak A, Minh DDL, Juarez O. Conserved residue His-257 of Vibrio cholerae flavin transferase ApbE plays a critical role in substrate binding and catalysis. J Biol Chem 2019; 294:13800-13810. [PMID: 31350338 DOI: 10.1074/jbc.ra119.008261] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/23/2019] [Indexed: 12/22/2022] Open
Abstract
The flavin transferase ApbE plays essential roles in bacterial physiology, covalently incorporating FMN cofactors into numerous respiratory enzymes that use the integrated cofactors as electron carriers. In this work we performed a detailed kinetic and structural characterization of Vibrio cholerae WT ApbE and mutants of the conserved residue His-257, to understand its role in substrate binding and in the catalytic mechanism of this family. Bi-substrate kinetic experiments revealed that ApbE follows a random Bi Bi sequential kinetic mechanism, in which a ternary complex is formed, indicating that both substrates must be bound to the enzyme for the reaction to proceed. Steady-state kinetic analyses show that the turnover rates of His-257 mutants are significantly smaller than those of WT ApbE, and have increased Km values for both substrates, indicating that the His-257 residue plays important roles in catalysis and in enzyme-substrate complex formation. Analyses of the pH dependence of ApbE activity indicate that the pKa of the catalytic residue (pK ES1) increases by 2 pH units in the His-257 mutants, suggesting that this residue plays a role in substrate deprotonation. The crystal structures of WT ApbE and an H257G mutant were determined at 1.61 and 1.92 Å resolutions, revealing that His-257 is located in the catalytic site and that the substitution does not produce major conformational changes. We propose a reaction mechanism in which His-257 acts as a general base that deprotonates the acceptor residue, which subsequently performs a nucleophilic attack on FAD for flavin transfer.
Collapse
Affiliation(s)
- Xuan Fang
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois 60616
| | - Jerzy Osipiuk
- Center for Structural Genomics of Infectious Diseases (CSGID), Consortium for Advanced Science and Engineering, University of Chicago, Chicago, Illinois 60637.,Structural Biology Center, Biosciences Division, Argonne National Laboratory, Lemont, Illinois 60439
| | - Srinivas Chakravarthy
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois 60616.,Biophysics Collaborative Access Team, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439
| | - Ming Yuan
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois 60616
| | - William M Menzer
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois 60616
| | - Devin Nissen
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois 60616
| | - Pingdong Liang
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois 60616
| | - Daniel A Raba
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois 60616
| | - Karina Tuz
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois 60616
| | - Andrew J Howard
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois 60616
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases (CSGID), Consortium for Advanced Science and Engineering, University of Chicago, Chicago, Illinois 60637.,Structural Biology Center, Biosciences Division, Argonne National Laboratory, Lemont, Illinois 60439
| | - David D L Minh
- Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616
| | - Oscar Juarez
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois 60616
| |
Collapse
|
34
|
Elabed H, González-Tortuero E, Ibacache-Quiroga C, Bakhrouf A, Johnston P, Gaddour K, Blázquez J, Rodríguez-Rojas A. Seawater salt-trapped Pseudomonas aeruginosa survives for years and gets primed for salinity tolerance. BMC Microbiol 2019; 19:142. [PMID: 31234794 PMCID: PMC6591848 DOI: 10.1186/s12866-019-1499-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 05/31/2019] [Indexed: 01/08/2023] Open
Abstract
Background In nature, microorganisms have to adapt to long-term stressful conditions often with growth limitations. However, little is known about the evolution of the adaptability of new bacteria to such environments. Pseudomonas aeruginosa, an opportunistic pathogen, after natural evaporation of seawater, was shown to be trapped in laboratory-grown halite crystals and to remain viable after entrapment for years. However, how this bacterium persists and survives in such hypersaline conditions is not understood. Results In this study, we aimed to understand the basis of survival, and to characterise the physiological changes required to develop salt tolerance using P. aeruginosa as a model. Several clones of P. aeruginosa were rescued after 14 years in naturally evaporated marine salt crystals. Incubation of samples in nutrient-rich broth allowed re-growth and subsequent plating yielded observable colonies. Whole genome sequencing of the P. aeruginosa isolates confirmed the recovery of the original strain. The re-grown strains, however, showed a new phenotype consisting of an enhanced growth in growing salt concentration compared to the ancestor strain. The intracellular accumulation of K+ was elicited by high concentration of Na+ in the external medium to maintain the homeostasis. Whole transcriptomic analysis by microarray indicated that 78 genes had differential expression between the parental strain and its derivative clones. Sixty-one transcripts were up-regulated, while 17 were down-regulated. Based on a collection of single-gene knockout mutants and gene ontology analysis, we suggest that the adaptive response in P. aeruginosa to hyper-salinity relies on multiple gene product interactions. Conclusions The individual gene contributions build up the observed phenotype, but do not ease the identification of salinity-related metabolic pathways. The long-term inclusion of P. aeruginosa in salt crystals primes the bacteria, mediating a readjustment of the bacterial physiology to growth in higher salt concentrations. Our findings provide a starting point to understand how P. aeruginosa, a relevant environmental and pathogenic bacterium, survives to long-term salt stress. Electronic supplementary material The online version of this article (10.1186/s12866-019-1499-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hamouda Elabed
- Laboratory of Contagious Diseases and Biologically Active Substances LR99-ES27 Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia.,Department of Microbial Biotechnology, Spanish National Center for Biotechnology (CNB), Madrid, Spain
| | - Enrique González-Tortuero
- Department of Veterinary and Animal Sciences, Center for non-coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark
| | - Claudia Ibacache-Quiroga
- Department of Microbial Biotechnology, Spanish National Center for Biotechnology (CNB), Madrid, Spain.,Centro de Micro-Bioinnovación, Escuela de Nutrición y Dietética, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso, Chile
| | - Amina Bakhrouf
- Laboratory of Analysis, Treatment and Valorization of Environmental Polluants and products, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Paul Johnston
- Institute of Biology, FreieUniversität Berlin, Berlin, Germany
| | - Kamel Gaddour
- Laboratory of Analysis, Treatment and Valorization of Environmental Polluants and products, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Jesús Blázquez
- Department of Microbial Biotechnology, Spanish National Center for Biotechnology (CNB), Madrid, Spain
| | | |
Collapse
|
35
|
Coureuil M, Jamet A, Bille E, Lécuyer H, Bourdoulous S, Nassif X. Molecular interactions between Neisseria meningitidis and its human host. Cell Microbiol 2019; 21:e13063. [PMID: 31167044 PMCID: PMC6899865 DOI: 10.1111/cmi.13063] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/21/2019] [Accepted: 05/30/2019] [Indexed: 02/06/2023]
Abstract
Neisseria meningitidis is a Gram‐negative bacterium that asymptomatically colonises the nasopharynx of humans. For an unknown reason, N. meningitidis can cross the nasopharyngeal barrier and invade the bloodstream where it becomes one of the most harmful extracellular bacterial pathogen. This infectious cycle involves the colonisation of two different environments. (a) In the nasopharynx, N. meningitidis grow on the top of mucus‐producing epithelial cells surrounded by a complex microbiota. To survive and grow in this challenging environment, the meningococcus expresses specific virulence factors such as polymorphic toxins and MDAΦ. (b) Meningococci have the ability to survive in the extra cellular fluids including blood and cerebrospinal fluid. The interaction of N. meningitidis with human endothelial cells leads to the formation of typical microcolonies that extend overtime and promote vascular injury, disseminated intravascular coagulation, and acute inflammation. In this review, we will focus on the interplay between N. meningitidis and these two different niches at the cellular and molecular level and discuss the use of inhibitors of piliation as a potent therapeutic approach.
Collapse
Affiliation(s)
- Mathieu Coureuil
- Inserm, Institut Necker Enfants Malades, U1151, Paris, France.,Université de Paris, UMR_S 1151, Paris, France.,CNRS, UMR 8253, Paris, France
| | - Anne Jamet
- Inserm, Institut Necker Enfants Malades, U1151, Paris, France.,Université de Paris, UMR_S 1151, Paris, France.,CNRS, UMR 8253, Paris, France.,Assistance Publique - Hôpitaux de Paris, Hôpital Necker Enfants Malades, Paris, France
| | - Emmanuelle Bille
- Inserm, Institut Necker Enfants Malades, U1151, Paris, France.,Université de Paris, UMR_S 1151, Paris, France.,CNRS, UMR 8253, Paris, France.,Assistance Publique - Hôpitaux de Paris, Hôpital Necker Enfants Malades, Paris, France
| | - Hervé Lécuyer
- Inserm, Institut Necker Enfants Malades, U1151, Paris, France.,Université de Paris, UMR_S 1151, Paris, France.,CNRS, UMR 8253, Paris, France.,Assistance Publique - Hôpitaux de Paris, Hôpital Necker Enfants Malades, Paris, France
| | - Sandrine Bourdoulous
- Université de Paris, UMR_S 1151, Paris, France.,Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France
| | - Xavier Nassif
- Inserm, Institut Necker Enfants Malades, U1151, Paris, France.,Université de Paris, UMR_S 1151, Paris, France.,CNRS, UMR 8253, Paris, France.,Assistance Publique - Hôpitaux de Paris, Hôpital Necker Enfants Malades, Paris, France
| |
Collapse
|
36
|
Moradali MF, Ghods S, Angelini TE, Davey ME. Amino acids as wetting agents: surface translocation by Porphyromonas gingivalis. THE ISME JOURNAL 2019; 13:1560-1574. [PMID: 30783212 PMCID: PMC6775972 DOI: 10.1038/s41396-019-0360-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/11/2019] [Accepted: 01/17/2019] [Indexed: 02/06/2023]
Abstract
Our understanding of how oral microbiota adapt in response to changes in their surroundings remains limited. This is particularly true of the slow-growing anaerobes that persist below the gum line. Here, we report that the oral anaerobe Porphyromonas gingivalis strain 381 can surface translocate when sandwiched between two surfaces. We show that during movement, this bacterium alters its metabolism, specifically side products of arginine utilization including citrulline and ornithine accumulated in the translocating cells; while arginine, N-acetyl-arginine, and the polyamine putrescine, which is produced from arginine were consumed. In addition, our results indicate that movement requires modification of the surrounding environment via proteolysis, cell dispersion, cell-on-cell rolling, and sub-diffusive cell-driven motility. We also show that production of fimbriae and fimbriae-associated proteins; as well as the regulation of contact-dependent growth inhibition genes, which are known to be involved in self-nonself discrimination, and the type IX secretion system are central to surface translocation. These studies provide a first glimpse into P. gingivalis motility and its relationship to ecological variables.
Collapse
Affiliation(s)
- M Fata Moradali
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, 32610, USA
| | - Shirin Ghods
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, 32610, USA
| | - Thomas E Angelini
- Department of Mechanical & Aerospace Engineering, University of Florida, Gainesville, FL, 32610, USA
| | - Mary Ellen Davey
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
37
|
Tsui HS, Pham NVB, Amer BR, Bradley MC, Gosschalk JE, Gallagher-Jones M, Ibarra H, Clubb RT, Blaby-Haas CE, Clarke CF. Human COQ10A and COQ10B are distinct lipid-binding START domain proteins required for coenzyme Q function. J Lipid Res 2019; 60:1293-1310. [PMID: 31048406 DOI: 10.1194/jlr.m093534] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/12/2019] [Indexed: 12/18/2022] Open
Abstract
Coenzyme Q (CoQ or ubiquinone) serves as an essential redox-active lipid in respiratory electron and proton transport during cellular energy metabolism. CoQ also functions as a membrane-localized antioxidant protecting cells against lipid peroxidation. CoQ deficiency is associated with multiple human diseases; CoQ10 supplementation in particular has noted cardioprotective benefits. In Saccharomyces cerevisiae, Coq10, a putative START domain protein, is believed to chaperone CoQ to sites where it functions. Yeast coq10 deletion mutants (coq10Δ) synthesize CoQ inefficiently during log phase growth and are respiratory defective and sensitive to oxidative stress. Humans have two orthologs of yeast COQ10, COQ10A and COQ10B Here, we tested the human co-orthologs for their ability to rescue the yeast mutant. We showed that expression of either human ortholog, COQ10A or COQ10B, rescues yeast coq10Δ mutant phenotypes, restoring the function of respiratory-dependent growth on a nonfermentable carbon source and sensitivity to oxidative stress induced by treatment with PUFAs. These effects indicate a strong functional conservation of Coq10 across different organisms. However, neither COQ10A nor COQ10B restored CoQ biosynthesis when expressed in the yeast coq10Δ mutant. The involvement of yeast Coq10 in CoQ biosynthesis may rely on its interactions with another protein, possibly Coq11, which is not found in humans. Coexpression analyses of yeast COQ10 and human COQ10A and COQ10B provide additional insights to functions of these START domain proteins and their potential roles in other biologic pathways.
Collapse
Affiliation(s)
- Hui S Tsui
- Department of Chemistry and Biochemistry and Molecular Biology Institute,University of California, Los Angeles, Los Angeles, CA 90095
| | - Nguyen V B Pham
- Department of Chemistry and Biochemistry and Molecular Biology Institute,University of California, Los Angeles, Los Angeles, CA 90095
| | - Brendan R Amer
- Department of Chemistry and Biochemistry and Molecular Biology Institute,University of California, Los Angeles, Los Angeles, CA 90095
| | - Michelle C Bradley
- Department of Chemistry and Biochemistry and Molecular Biology Institute,University of California, Los Angeles, Los Angeles, CA 90095
| | - Jason E Gosschalk
- Department of Chemistry and Biochemistry and Molecular Biology Institute,University of California, Los Angeles, Los Angeles, CA 90095.,UCLA-Department of Energy Institute of Genomics and Proteomics University of California, Los Angeles, Los Angeles, CA 90095
| | - Marcus Gallagher-Jones
- Department of Chemistry and Biochemistry and Molecular Biology Institute,University of California, Los Angeles, Los Angeles, CA 90095
| | - Hope Ibarra
- Department of Chemistry and Biochemistry and Molecular Biology Institute,University of California, Los Angeles, Los Angeles, CA 90095
| | - Robert T Clubb
- Department of Chemistry and Biochemistry and Molecular Biology Institute,University of California, Los Angeles, Los Angeles, CA 90095
| | | | - Catherine F Clarke
- Department of Chemistry and Biochemistry and Molecular Biology Institute,University of California, Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
38
|
Occurrence and Function of the Na +-Translocating NADH:Quinone Oxidoreductase in Prevotella spp. Microorganisms 2019; 7:microorganisms7050117. [PMID: 31035603 PMCID: PMC6560451 DOI: 10.3390/microorganisms7050117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/08/2019] [Accepted: 04/25/2019] [Indexed: 12/18/2022] Open
Abstract
Strictly anaerobic Prevotella spp. are characterized by their vast metabolic potential. As members of the Prevotellaceae family, they represent the most abundant organisms in the rumen and are typically found in monogastrics such as pigs and humans. Within their largely anoxic habitats, these bacteria are considered to rely primarily on fermentation for energy conservation. A recent study of the rumen microbiome identified multiple subunits of the Na+-translocating NADH:quinone oxidoreductase (NQR) belonging to different Prevotella spp. Commonly, the NQR is associated with biochemical energy generation by respiration. The existence of this Na+ pump in Prevotella spp. may indicate an important role for electrochemical Na+ gradients in their anaerobic metabolism. However, detailed information about the potential activity of the NQR in Prevotella spp. is not available. Here, the presence of a functioning NQR in the strictly anaerobic model organism P. bryantii B14 was verified by conducting mass spectrometric, biochemical, and kinetic experiments. Our findings propose that P. bryantii B14 and other Prevotella spp. retrieved from the rumen operate a respiratory NQR together with a fumarate reductase which suggests that these ruminal bacteria utilize a sodium motive force generated during respiratory NADH:fumarate oxidoreduction.
Collapse
|
39
|
Toulouse C, Schmucker S, Metesch K, Pfannstiel J, Michel B, Starke I, Möller HM, Stefanski V, Steuber J. Mechanism and impact of catecholamine conversion by Vibrio cholerae. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:478-487. [PMID: 30986392 DOI: 10.1016/j.bbabio.2019.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/02/2019] [Accepted: 04/10/2019] [Indexed: 02/06/2023]
Abstract
Bacterial pathogens are influenced by signaling molecules including the catecholamines adrenaline and noradrenaline which are host-derived hormones and neurotransmitters. Adrenaline and noradrenaline modulate growth, motility and virulence of bacteria. We show that adrenaline is converted by the pathogen Vibrio cholerae to adrenochrome in the course of respiration, and demonstrate that superoxide produced by the respiratory, Na+ - translocating NADH:quinone oxidoreductase (NQR) acts as electron acceptor in the oxidative conversion of adrenaline to adrenochrome. Adrenochrome stimulates growth of V. cholerae, and triggers specific responses in V. cholerae and in immune cells. We performed a quantitative proteome analysis of V. cholerae grown in minimal medium with glucose as carbon source without catecholamines, or with adrenaline, noradrenaline or adrenochrome. Significant regulation of proteins participating in iron transport and iron homeostasis, in energy metabolism, and in signaling was observed upon exposure to adrenaline, noradrenaline or adrenochrome. On the host side, adrenochrome inhibited lipopolysaccharide-triggered formation of TNF-α by THP-1 monocytes, though to a lesser extent than adrenaline. It is proposed that adrenochrome produced from adrenaline by respiring V. cholerae functions as effector molecule in pathogen-host interaction.
Collapse
Affiliation(s)
| | - Sonja Schmucker
- Behavioral Physiology of Livestock, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Kristina Metesch
- Institute of Microbiology, University of Hohenheim, Stuttgart, Germany
| | - Jens Pfannstiel
- Mass Spectrometry Core Facility, University of Hohenheim, Stuttgart, Germany
| | - Bernd Michel
- Institute of Microbiology, University of Hohenheim, Stuttgart, Germany
| | - Ines Starke
- Institute of Chemistry, University of Potsdam, Potsdam, Germany
| | - Heiko M Möller
- Institute of Chemistry, University of Potsdam, Potsdam, Germany
| | - Volker Stefanski
- Behavioral Physiology of Livestock, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Julia Steuber
- Institute of Microbiology, University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
40
|
Denis K, Le Bris M, Le Guennec L, Barnier JP, Faure C, Gouge A, Bouzinba-Ségard H, Jamet A, Euphrasie D, Durel B, Barois N, Pelissier P, Morand PC, Coureuil M, Lafont F, Join-Lambert O, Nassif X, Bourdoulous S. Targeting Type IV pili as an antivirulence strategy against invasive meningococcal disease. Nat Microbiol 2019; 4:972-984. [PMID: 30911127 DOI: 10.1038/s41564-019-0395-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/30/2019] [Indexed: 11/09/2022]
Abstract
Bacterial virulence factors are attractive targets for the development of therapeutics. Type IV pili, which are associated with a remarkable array of properties including motility, the interaction between bacteria and attachment to biotic and abiotic surfaces, represent particularly appealing virulence factor targets. Type IV pili are present in numerous bacterial species and are critical for their pathogenesis. In this study, we report that trifluoperazine and related phenothiazines block functions associated with Type IV pili in different bacterial pathogens, by affecting piliation within minutes. Using Neisseria meningitidis as a paradigm of Gram-negative bacterial pathogens that require Type IV pili for pathogenesis, we show that piliation is sensitive to altered activity of the Na+ pumping NADH-ubiquinone oxidoreductase (Na+-NQR) complex and that these compounds probably altered the establishment of the sodium gradient. In vivo, these compounds exert a strong protective effect. They reduce meningococcal colonization of the human vessels and prevent subsequent vascular dysfunctions, intravascular coagulation and overwhelming inflammation, the hallmarks of invasive meningococcal infections. Finally, they reduce lethality. This work provides a proof of concept that compounds with activity against bacterial Type IV pili could beneficially participate in the treatment of infections caused by Type IV pilus-expressing bacteria.
Collapse
Affiliation(s)
- Kevin Denis
- U1016, Institut Cochin, Inserm, Paris, France.,UMR8104, CNRS, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Marion Le Bris
- U1016, Institut Cochin, Inserm, Paris, France.,UMR8104, CNRS, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Loic Le Guennec
- U1016, Institut Cochin, Inserm, Paris, France.,UMR8104, CNRS, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jean-Philippe Barnier
- U1151, Institut Necker Enfants Malades, Inserm, Paris, France.,UMR 8253, CNRS, Paris, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Hôpital Necker Enfants Malades, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Camille Faure
- U1016, Institut Cochin, Inserm, Paris, France.,UMR8104, CNRS, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Anne Gouge
- U1016, Institut Cochin, Inserm, Paris, France.,UMR8104, CNRS, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Haniaa Bouzinba-Ségard
- U1016, Institut Cochin, Inserm, Paris, France.,UMR8104, CNRS, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Anne Jamet
- U1151, Institut Necker Enfants Malades, Inserm, Paris, France.,UMR 8253, CNRS, Paris, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Hôpital Necker Enfants Malades, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Daniel Euphrasie
- U1151, Institut Necker Enfants Malades, Inserm, Paris, France.,UMR 8253, CNRS, Paris, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Hôpital Necker Enfants Malades, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Beatrice Durel
- U1016, Institut Cochin, Inserm, Paris, France.,UMR8104, CNRS, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Nicolas Barois
- Cellular Microbiology and Physics of Infection Group, Centre for Infection and Immunity of Lille, Institut Pasteur de Lille, Lille, France.,UMR 8204, CNRS, Lille, France.,U1019, Inserm, Lille, France.,Université de Lille, Lille, France
| | - Philippe Pelissier
- Service de Chirurgie Reconstructrice et Plastique, Fondation Hôpital Saint Joseph, Paris, France
| | - Philippe C Morand
- U1016, Institut Cochin, Inserm, Paris, France.,UMR8104, CNRS, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Mathieu Coureuil
- U1151, Institut Necker Enfants Malades, Inserm, Paris, France.,UMR 8253, CNRS, Paris, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Frank Lafont
- Cellular Microbiology and Physics of Infection Group, Centre for Infection and Immunity of Lille, Institut Pasteur de Lille, Lille, France.,UMR 8204, CNRS, Lille, France.,U1019, Inserm, Lille, France.,Université de Lille, Lille, France
| | - Olivier Join-Lambert
- U1151, Institut Necker Enfants Malades, Inserm, Paris, France.,UMR 8253, CNRS, Paris, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Hôpital Necker Enfants Malades, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Xavier Nassif
- U1151, Institut Necker Enfants Malades, Inserm, Paris, France.,UMR 8253, CNRS, Paris, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Hôpital Necker Enfants Malades, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Sandrine Bourdoulous
- U1016, Institut Cochin, Inserm, Paris, France. .,UMR8104, CNRS, Paris, France. .,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
41
|
Paley EL, Merkulova-Rainon T, Faynboym A, Shestopalov VI, Aksenoff I. Geographical Distribution and Diversity of Gut Microbial NADH:Ubiquinone Oxidoreductase Sequence Associated with Alzheimer's Disease. J Alzheimers Dis 2019; 61:1531-1540. [PMID: 29376868 DOI: 10.3233/jad-170764] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Earlier we reported induction of neurotoxicity and neurodegeneration by tryptophan metabolites that link the metabolic alterations to Alzheimer's disease (AD). Tryptophan is a product of Shikimate pathway (SP). Human cells lack SP, which is found in human gut bacteria exclusively using SP to produce aromatic amino acids (AAA). This study is a first attempt toward gene-targeted analysis of human gut microbiota in AD fecal samples. The oligonucleotide primers newly-designed for this work target SP-AAA in environmental bacteria associated with human activity. Using polymerase chain reaction (PCR), we found unique gut bacterial sequence in most AD patients (18 of 20), albeit rarely in controls (1 of 13). Cloning and sequencing AD-associated PCR products (ADPP) enables identification of Na(+)-transporting NADH: Ubiquinone reductase (NQR) in Clostridium sp. The ADPP of unrelated AD patients possess near identical sequences. NQR substrate, ubiquinone is a SP product and human neuroprotectant. A deficit in ubiquinone has been determined in a number of neuromuscular and neurodegenerative disorders. Antibacterial therapy prompted an ADPP reduction in an ADPP-positive control person who was later diagnosed with AD-dementia. We explored the gut microbiome databases and uncovered a sequence similarity (up to 97%) between ADPP and some healthy individuals from different geographical locations. Importantly, our main finding of the significant difference in the gut microbial genotypes between the AD and control human populations is a breakthrough.
Collapse
Affiliation(s)
- Elena L Paley
- Expert Biomed, Inc. Miami, FL, USA.,Stop Alzheimers Corp, Miami, FL, USA.,Nova Southeastern University, Fort Lauderdale, FL, USA
| | | | | | - Valery I Shestopalov
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | | |
Collapse
|
42
|
Muras V, Toulouse C, Fritz G, Steuber J. Respiratory Membrane Protein Complexes Convert Chemical Energy. Subcell Biochem 2019; 92:301-335. [PMID: 31214991 DOI: 10.1007/978-3-030-18768-2_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The invention of a biological membrane which is used as energy storage system to drive the metabolism of a primordial, unicellular organism represents a key event in the evolution of life. The innovative, underlying principle of this key event is respiration. In respiration, a lipid bilayer with insulating properties is chosen as the site for catalysis of an exergonic redox reaction converting substrates offered from the environment, using the liberated Gibbs free energy (ΔG) for the build-up of an electrochemical H+ (proton motive force, PMF) or Na+ gradient (sodium motive force, SMF) across the lipid bilayer. Very frequently , several redox reactions are performed in a consecutive manner, with the first reaction delivering a product which is used as substrate for the second redox reaction, resulting in a respiratory chain. From today's perspective, the (mostly) unicellular bacteria and archaea seem to be much simpler and less evolved when compared to multicellular eukaryotes. However, they are overwhelmingly complex with regard to the various respiratory chains which permit survival in very different habitats of our planet, utilizing a plethora of substances to drive metabolism. This includes nitrogen, sulfur and carbon compounds which are oxidized or reduced by specialized, respiratory enzymes of bacteria and archaea which lie at the heart of the geochemical N, S and C-cycles. This chapter gives an overview of general principles of microbial respiration considering thermodynamic aspects, chemical reactions and kinetic restraints. The respiratory chains of Escherichia coli and Vibrio cholerae are discussed as models for PMF- versus SMF-generating processes, respectively. We introduce main redox cofactors of microbial respiratory enzymes, and the concept of intra-and interelectron transfer. Since oxygen is an electron acceptor used by many respiratory chains, the formation and removal of toxic oxygen radicals is described. Promising directions of future research are respiratory enzymes as novel bacterial targets, and biotechnological applications relying on respiratory complexes.
Collapse
Affiliation(s)
- Valentin Muras
- Institute of Microbiology, University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany
| | - Charlotte Toulouse
- Institute of Microbiology, University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany
| | - Günter Fritz
- Institute of Microbiology, University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany
| | - Julia Steuber
- Institute of Microbiology, University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany.
| |
Collapse
|
43
|
The Rnf Complex Is an Energy-Coupled Transhydrogenase Essential To Reversibly Link Cellular NADH and Ferredoxin Pools in the Acetogen Acetobacterium woodii. J Bacteriol 2018; 200:JB.00357-18. [PMID: 30126940 DOI: 10.1128/jb.00357-18] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/13/2018] [Indexed: 11/20/2022] Open
Abstract
The Rnf complex is a respiratory enzyme that catalyzes the oxidation of reduced ferredoxin to the reduction of NAD+, and the negative free energy change of this reaction is used to generate a transmembrane ion gradient. In one class of anaerobic acetogenic bacteria, the Rnf complex is believed to be essential for energy conservation and autotrophic growth. We describe here a methodology for markerless mutagenesis in the model bacterium of this class, Acetobacterium woodii, which enabled us to delete the rnf genes and to test their in vivo role. The rnf mutant did not grow on H2 plus CO2, nor did it produce acetate or ATP from H2 plus CO2, and ferredoxin:NAD+ oxidoreductase activity and Na+ translocation were also completely lost, supporting the hypothesis that the Rnf complex is the only respiratory enzyme in this metabolism. Unexpectedly, the mutant also did not grow on low-energy substrates, such as ethanol or lactate. Oxidation of these substrates is not coupled to the reduction of ferredoxin but only of NAD+, and we speculated that the growth phenotype is caused by a loss of reduced ferredoxin, indispensable for biosynthesis and CO2 reduction. The electron-bifurcating hydrogenase of A. woodii reduces ferredoxin, and indeed, the addition of H2 to the cultures restored growth on ethanol and lactate. This is consistent with the hypothesis that endergonic reduction of ferredoxin with NADH is driven by reverse electron transport catalyzed by the Rnf complex, which renders the Rnf complex essential also for growth on low-energy substrates.IMPORTANCE Ferredoxin and NAD+ are key electron carriers in anaerobic bacteria, but energetically, they are not equivalent, since the redox potential of ferredoxin is lower than that of the NADH/NAD+ couple. We describe by mutant studies in Acetobacterium woodii that the main function of Rnf is to energetically link cellular pools of ferredoxin and NAD+ When ferredoxin is greater than NADH, exergonic electron flow from ferredoxin to NAD+ generates a chemiosmotic potential. This is essential for energy conservation during autotrophic growth. When NADH is greater than ferredoxin, Rnf works in reverse. This reaction is essential for growth on low-energy substrates to provide reduced ferredoxin, indispensable for biosynthesis and CO2 reduction. Our studies put a new perspective on the cellular function of the membrane-bound ion-translocating Rnf complex widespread in bacteria.
Collapse
|
44
|
Raba DA, Rosas-Lemus M, Menzer WM, Li C, Fang X, Liang P, Tuz K, Minh DDL, Juárez O. Characterization of the Pseudomonas aeruginosa NQR complex, a bacterial proton pump with roles in autopoisoning resistance. J Biol Chem 2018; 293:15664-15677. [PMID: 30135204 DOI: 10.1074/jbc.ra118.003194] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/13/2018] [Indexed: 12/22/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative bacterium responsible for a large number of nosocomial infections. The P. aeruginosa respiratory chain contains the ion-pumping NADH:ubiquinone oxidoreductase (NQR). This enzyme couples the transfer of electrons from NADH to ubiquinone to the pumping of sodium ions across the cell membrane, generating a gradient that drives essential cellular processes in many bacteria. In this study, we characterized P. aeruginosa NQR (Pa-NQR) to elucidate its physiologic function. Our analyses reveal that Pa-NQR, in contrast with NQR homologues from other bacterial species, is not a sodium pump, but rather a completely new form of proton pump. Homology modeling and molecular dynamics simulations suggest that cation selectivity could be determined by the exit ion channels. We also show that Pa-NQR is resistant to the inhibitor 2-n-heptyl-4-hydroxyquinoline N-oxide (HQNO). HQNO is a quinolone secreted by P. aeruginosa during infection that acts as a quorum sensing agent and also has bactericidal properties against other bacteria. Using comparative analysis and computational modeling of the ubiquinone-binding site, we identified the specific residues that confer resistance toward this inhibitor. In summary, our findings indicate that Pa-NQR is a proton pump rather than a sodium pump and is highly resistant against the P. aeruginosa-produced compound HQNO, suggesting an important role in the adaptation against autotoxicity. These results provide a deep understanding of the metabolic role of NQR in P. aeruginosa and provide insight into the structural factors that determine the functional specialization in this family of respiratory complexes.
Collapse
Affiliation(s)
| | | | - William M Menzer
- From the Departments of Biological Sciences and.,Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616
| | - Chen Li
- Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616
| | - Xuan Fang
- From the Departments of Biological Sciences and
| | | | - Karina Tuz
- From the Departments of Biological Sciences and
| | - David D L Minh
- Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616
| | | |
Collapse
|
45
|
Kadnikov VV, Mardanov AV, Beletsky AV, Banks D, Pimenov NV, Frank YA, Karnachuk OV, Ravin NV. A metagenomic window into the 2-km-deep terrestrial subsurface aquifer revealed multiple pathways of organic matter decomposition. FEMS Microbiol Ecol 2018; 94:5067867. [DOI: 10.1093/femsec/fiy152] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/06/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Vitaly V Kadnikov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky prosp. 33-2, Moscow, 119071, Russia
| | - Andrey V Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky prosp. 33-2, Moscow, 119071, Russia
| | - Alexey V Beletsky
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky prosp. 33-2, Moscow, 119071, Russia
| | - David Banks
- School of Engineering, Systems Power & Energy, Glasgow University, Glasgow G12 8QQ, and Holymoor Consultancy Ltd., 360 Ashgate Road, Chesterfield, Derbyshire S40 4BW, UK
| | - Nikolay V Pimenov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky prosp 33-2, Moscow, 119071, Russia
| | - Yulia A Frank
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, Lenina prosp. 35, Tomsk, 634050, Russia
| | - Olga V Karnachuk
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, Lenina prosp. 35, Tomsk, 634050, Russia
| | - Nikolai V Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky prosp. 33-2, Moscow, 119071, Russia
| |
Collapse
|
46
|
Dibrov P, Dibrov E, Pierce GN. Na+-NQR (Na+-translocating NADH:ubiquinone oxidoreductase) as a novel target for antibiotics. FEMS Microbiol Rev 2017; 41:653-671. [PMID: 28961953 DOI: 10.1093/femsre/fux032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/17/2017] [Indexed: 01/08/2023] Open
Abstract
The recent breakthrough in structural studies on Na+-translocating NADH:ubiquinone oxidoreductase (Na+-NQR) from the human pathogen Vibrio cholerae creates a perspective for the systematic design of inhibitors for this unique enzyme, which is the major Na+ pump in aerobic pathogens. Widespread distribution of Na+-NQR among pathogenic species, its key role in energy metabolism, its relation to virulence in different species as well as its absence in eukaryotic cells makes this enzyme especially attractive as a target for prospective antibiotics. In this review, the major biochemical, physiological and, especially, the pharmacological aspects of Na+-NQR are discussed to assess its 'target potential' for drug development. A comparison to other primary bacterial Na+ pumps supports the contention that NQR is a first rate prospective target for a new generation of antimicrobials. A new, narrowly targeted furanone inhibitor of NQR designed in our group is presented as a molecular platform for the development of anti-NQR remedies.
Collapse
Affiliation(s)
- Pavel Dibrov
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Elena Dibrov
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, Canada.,Department of Physiology and Pathophysiology, Colleges of Medicine and Pharmacy, Faculty of Health Sciences, Winnipeg, Canada
| | - Grant N Pierce
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, Canada.,Department of Physiology and Pathophysiology, Colleges of Medicine and Pharmacy, Faculty of Health Sciences, Winnipeg, Canada
| |
Collapse
|
47
|
Liang P, Rosas-Lemus M, Patel D, Fang X, Tuz K, Juárez O. Dynamic energy dependency of Chlamydia trachomatis on host cell metabolism during intracellular growth: Role of sodium-based energetics in chlamydial ATP generation. J Biol Chem 2017; 293:510-522. [PMID: 29123027 DOI: 10.1074/jbc.m117.797209] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 10/30/2017] [Indexed: 11/06/2022] Open
Abstract
Chlamydia trachomatis is an obligate intracellular human pathogen responsible for the most prevalent sexually-transmitted infection in the world. For decades C. trachomatis has been considered an "energy parasite" that relies entirely on the uptake of ATP from the host cell. The genomic data suggest that C. trachomatis respiratory chain could produce a sodium gradient that may sustain the energetic demands required for its rapid multiplication. However, this mechanism awaits experimental confirmation. Moreover, the relationship of chlamydiae with the host cell, in particular its energy dependence, is not well understood. In this work, we are showing that C. trachomatis has an active respiratory metabolism that seems to be coupled to the sodium-dependent synthesis of ATP. Moreover, our results show that the inhibition of mitochondrial ATP synthesis at an early stage decreases the rate of infection and the chlamydial inclusion size. In contrast, the inhibition of the chlamydial respiratory chain at mid-stage of the infection cycle decreases the inclusion size but has no effect on infection rate. Remarkably, the addition of monensin, a Na+/H+ exchanger, completely halts the infection. Altogether, our data indicate that chlamydial development has a dynamic relationship with the mitochondrial metabolism of the host, in which the bacterium mostly depends on host ATP synthesis at an early stage, and at later stages it can sustain its own energy needs through the formation of a sodium gradient.
Collapse
Affiliation(s)
- Pingdong Liang
- From the Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois 60616
| | - Mónica Rosas-Lemus
- From the Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois 60616
| | - Dhwani Patel
- From the Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois 60616
| | - Xuan Fang
- From the Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois 60616
| | - Karina Tuz
- From the Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois 60616
| | - Oscar Juárez
- From the Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois 60616
| |
Collapse
|
48
|
Fang X, Liang P, Raba DA, Rosas-Lemus M, Chakravarthy S, Tuz K, Juárez O. Kinetic characterization of Vibrio cholerae ApbE: Substrate specificity and regulatory mechanisms. PLoS One 2017; 12:e0186805. [PMID: 29065131 PMCID: PMC5655446 DOI: 10.1371/journal.pone.0186805] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/06/2017] [Indexed: 12/20/2022] Open
Abstract
ApbE is a member of a novel family of flavin transferases that incorporates flavin mononucleotide (FMN) to subunits of diverse respiratory complexes, which fulfill important homeostatic functions. In this work a detailed characterization of Vibrio cholerae ApbE physiologic activity, substrate specificity and pH dependency was carried out. The data obtained show novel characteristics of the regulation and function of this family. For instance, our experiments indicate that divalent cations are essential for ApbE function, and that the selectivity depends largely on size and the coordination sphere of the cation. Our data also show that ApbE regulation by pH, ADP and potassium is an important mechanism that enhances the adaptation, survival and colonization of V. cholerae in the small intestine. Moreover, studies of the pH-dependency of the activity show that the reaction is favored under alkaline conditions, with a pKa of 8.4. These studies, together with sequence and structure analysis allowed us to identify His257, which is absolutely conserved in the family, as a candidate for the residue whose deprotonation controls the activity. Remarkably, the mutant H257G abolished the flavin transfer activity, strongly indicating that this residue plays an important role in the catalytic mechanism of ApbE.
Collapse
Affiliation(s)
- Xuan Fang
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois, United States of America
| | - Pingdong Liang
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois, United States of America
| | - Daniel Alexander Raba
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois, United States of America
| | - Mónica Rosas-Lemus
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois, United States of America
| | - Srinivas Chakravarthy
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois, United States of America
- Biophysics Collaborative Access Team, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois, United States of America
| | - Karina Tuz
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois, United States of America
| | - Oscar Juárez
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
49
|
Dec K, Łukomska A, Maciejewska D, Jakubczyk K, Baranowska-Bosiacka I, Chlubek D, Wąsik A, Gutowska I. The Influence of Fluorine on the Disturbances of Homeostasis in the Central Nervous System. Biol Trace Elem Res 2017; 177:224-234. [PMID: 27787813 PMCID: PMC5418325 DOI: 10.1007/s12011-016-0871-4] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/11/2016] [Indexed: 01/21/2023]
Abstract
Fluorides occur naturally in the environment, the daily exposure of human organism to fluorine mainly depends on the intake of this element with drinking water and it is connected with the geographical region. In some countries, we can observe the endemic fluorosis-the damage of hard and soft tissues caused by the excessive intake of fluorine. Recent studies showed that fluorine is toxic to the central nervous system (CNS). There are several known mechanisms which lead to structural brain damage caused by the excessive intake of fluorine. This element is able to cross the blood-brain barrier, and it accumulates in neurons affecting cytological changes, cell activity and ion transport (e.g. chlorine transport). Additionally, fluorine changes the concentration of non-enzymatic advanced glycation end products (AGEs), the metabolism of neurotransmitters (influencing mainly glutamatergic neurotransmission) and the energy metabolism of neurons by the impaired glucose transporter-GLUT1. It can also change activity and lead to dysfunction of important proteins which are part of the respiratory chain. Fluorine also affects oxidative stress, glial activation and inflammation in the CNS which leads to neurodegeneration. All of those changes lead to abnormal cell differentiation and the activation of apoptosis through the changes in the expression of neural cell adhesion molecules (NCAM), glial fibrillary acidic protein (GFAP), brain-derived neurotrophic factor (BDNF) and MAP kinases. Excessive exposure to this element can cause harmful effects such as permanent damage of all brain structures, impaired learning ability, memory dysfunction and behavioural problems. This paper provides an overview of the fluoride neurotoxicity in juveniles and adults.
Collapse
Affiliation(s)
- K Dec
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, Broniewskiego street 24, 70-406, Szczecin, Poland
| | - A Łukomska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, Broniewskiego street 24, 70-406, Szczecin, Poland
| | - D Maciejewska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, Broniewskiego street 24, 70-406, Szczecin, Poland
| | - K Jakubczyk
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, Broniewskiego street 24, 70-406, Szczecin, Poland
| | - I Baranowska-Bosiacka
- Department of Biochemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 av., 71-111, Szczecin, Poland
| | - D Chlubek
- Department of Biochemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 av., 71-111, Szczecin, Poland
| | - A Wąsik
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neurochemistry, Smętna street 12, 31-343, Kraków, Poland
| | - I Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, Broniewskiego street 24, 70-406, Szczecin, Poland.
| |
Collapse
|
50
|
Dibrov P, Dibrov E, Maddaford TG, Kenneth M, Nelson J, Resch C, Pierce GN. Development of a novel rationally designed antibiotic to inhibit a nontraditional bacterial target. Can J Physiol Pharmacol 2017; 95:595-603. [PMID: 28425301 DOI: 10.1139/cjpp-2016-0505] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The search for new nontraditional targets is a high priority in antibiotic design today. Bacterial membrane energetics based on sodium ion circulation offers potential alternative targets. The present work identifies the Na+-translocating NADH:ubiquinone oxidoreductase (Na+-NQR), a key respiratory enzyme in many microbial pathogens, as indispensible for the Chlamydia trachomatis infectious process. Infection by Chlamydia trachomatis significantly increased first H+ and then Na+ levels within the host mammalian cell. A newly designed furanone Na+-NQR inhibitor, PEG-2S, blocked the changes in both H+ and Na+ levels induced by Chlamydia trachomatis infection. It also inhibited intracellular proliferation of Chlamydia trachomatis with a half-minimal inhibitory concentration in the submicromolar range but did not affect the viability of mammalian cells or bacterial species representing benign intestinal microflora. At low nanomolar concentrations (IC50 value = 1.76 nmol/L), PEG-2S inhibited the Na+-NQR activity in sub-bacterial membrane vesicles isolated from Vibrio cholerae. Taken together, these results show, for the first time, that Na+-NQR is critical for the bacterial infectious process and is susceptible to a precisely targeted bactericidal compound in situ. The obtained data have immediate relevance for many different diseases caused by pathogenic bacteria that rely on Na+-NQR activity for growth, including sexually transmitted, pulmonary, oral, gum, and ocular infections.
Collapse
Affiliation(s)
- Pavel Dibrov
- a Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Elena Dibrov
- b Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, MB R2H 2A6, Canada.,c Department of Physiology and Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Thane G Maddaford
- b Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, MB R2H 2A6, Canada.,c Department of Physiology and Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Melissa Kenneth
- b Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, MB R2H 2A6, Canada
| | - Jordan Nelson
- b Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, MB R2H 2A6, Canada
| | - Craig Resch
- a Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Grant N Pierce
- b Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, MB R2H 2A6, Canada.,c Department of Physiology and Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|