1
|
Kumar H, Dhalaria R, Kimta N, Guleria S, Upadhyay NK, Nepovimova E, Dhanjal DS, Sethi N, Manickam S. Curcumin: A Potential Detoxifier Against Chemical and Natural Toxicants. Phytother Res 2025. [PMID: 39853860 DOI: 10.1002/ptr.8442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/05/2025] [Accepted: 01/11/2025] [Indexed: 01/26/2025]
Abstract
The human body gets exposed to a variety of toxins intentionally or unintentionally on a regular basis from sources such as air, water, food, and soil. Certain toxins can be synthetic, while some are biological. The toxins affect the various parts of the body by activating numerous pro-inflammatory markers, like oxidative stresses, that tend to disturb the normal function of the organs ultimately. Nowadays, people use different types of herbal treatments, viz., herbal drinks that contain different spices for detoxification of their bodies. One such example is turmeric, the most commonly available spice in the kitchen and used across all kinds of households. Turmeric contains curcumin, which is a natural polyphenol. Curcumin is a medicinal compound with different biological activities, such as antioxidant, antineoplastic, anti-inflammatory, and antibacterial. Hence, this review gives a comprehensive insight into the promising potential of curcumin in the detoxification of heavy metals, carbon tetrachloride, drugs, alcohol, acrylamide, mycotoxins, nicotine, and plastics. The review encompasses diverse animal-based studies portraying curcumin's role in nullifying the different toxic effects in various organs of the body (especially the liver, kidney, testicles, and brain) by enhancing defensive signaling pathways, improving antioxidant enzyme levels, inhibiting pro-inflammatory markers activities and so on. Furthermore, this review also argues over curcumin's safety assessment for its utilization as a detoxifying agent.
Collapse
Affiliation(s)
- Harsh Kumar
- Centre of Advanced Technologies, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Rajni Dhalaria
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Neetika Kimta
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Shivani Guleria
- Department of Biotechnology, TIFAC-Centre of Relevance and Excellence in Agro and Industrial Biotechnology (CORE), Thapar Institute of Engineering and Technology, Patiala, India
| | | | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
- Centre for Advanced Innovation Technologies, VSB-Technical University of Ostrava, Ostrava-Poruba, Czech Republic
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Nidhi Sethi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Sivakumar Manickam
- Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, Brunei
| |
Collapse
|
2
|
Ou X, Xiao C, Jiang J, Liu X, Liu L, Lu Y, Zhang W, He Y, Zhao Z. Interplay analysis of lead exposure with key cardiovascular gene polymorphisms on blood pressure in a cross-sectional study of occupational workers. Sci Rep 2024; 14:28936. [PMID: 39578479 PMCID: PMC11584784 DOI: 10.1038/s41598-024-77194-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/21/2024] [Indexed: 11/24/2024] Open
Abstract
An increasing number of studies have shown that lead is an important cardiovascular risk factor, but the impact of cardiovascular related gene polymorphisms on lead induced cardiovascular diseases is still unclear. To assess the interaction of lead exposure and related key cardiovascular regulating gene polymorphisms on blood pressure traits, three single-nucleotide polymorphisms including NOTCH1 rs3124591, Cerebral cavernous malformations 3 (CCM3) rs3804610 and Vascular endothelial growth factor receptor type 2 (VEGFR2) rs2305948 were selected and genotyped using improved multiplex ligase detection reaction method in 568 lead exposure workers in South China. General characteristics, blood lead and biochemical parameters including glucose, lipid profile and creatinine were also collected according to standard protocols. Regression analysis was used to evaluate the association of blood pressure with lead exposure, polymorphisms and their interaction. This study displayed that CCM3 rs3804610 had a positive interaction with lead and VEGFR2 rs2305948 had a negative interaction with lead. Specifcally, compared with the wild-type population, the blood lead of the genotype population carrying the risk allele increased by 1 µg/dL, systolic blood pressure increased by 0.53 mmHg (p < 0.01) and diastolic blood pressure increased by 0.34 mmHg (p < 0.05) for CCM3 rs3804610, and systolic blood pressure decreased by 0.28 mmHg (p < 0.05) and diastolic blood pressure decreased by 0.22 mmHg (p < 0.05) for VEGFR2 rs2305948. Thus our findings showed that the interaction between CCM3 rs3804610 and VEGFR2 rs2305948 and lead exposure were associated with blood pressure and may provide guidance for future research on hypertension prevention and personalized clinical treatment in lead exposed populations.
Collapse
Affiliation(s)
- Xiaoyan Ou
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
- Zhaoqing Medical College, Zhaoqing, Guangdong, China
| | - Chen Xiao
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
- Immunization Planning Institute, Zhongshan Center for Disease Control and Prevention, Zhongshan, China
| | - Jun Jiang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
- School of Public Health and Healthcare Management, Anhui Medical College, Hefei, China
| | - Xinxia Liu
- Zhongshan Third People's Hospital, Guangdong, Zhongshan, China
| | - Lili Liu
- Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, Guangdong, China
| | - Yao Lu
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
- Academic Department, Southern Medical University, Guangzhou, Guangdong, China
| | - Weipeng Zhang
- Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, Guangdong, China
| | - Yun He
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Zhiqiang Zhao
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Hu H, Nakagawa T, Honda T, Yamamoto S, Mizoue T. Association of conventional cigarette smoking, heated tobacco product use and dual use with hypertension. Int J Epidemiol 2024; 53:dyae114. [PMID: 39174315 PMCID: PMC11341126 DOI: 10.1093/ije/dyae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 08/09/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Heated tobacco products (HTPs) have emerged as alternatives to conventional cigarettes. However, their health effects remain largely unknown. This study aimed to prospectively explore the association between the use of cigarettes and HTPs and the risk of hypertension. METHODS This cohort study analysed data from 30 152 workers (82.0% men, mean age 42.9 ± 11.0 years) who were initially free of hypertension, participating in the Japan Epidemiology Collaboration on Occupational Health Study. Participants were categorized into five groups based on their self-reported tobacco product use: never smokers, past smokers, exclusive cigarette smokers, exclusive HTP users and dual users of cigarettes and HTPs. Hypertension cases were identified using three data points from annual health checkup data collected between 2019 and 2021. Cox proportional hazards regression models were used to investigate the association between tobacco product use and hypertension. RESULTS During a mean follow-up of 2.6 years (range: 0.1-4.0 years), 3656 new cases of hypertension were identified. Compared with never smokers, the risk of hypertension was higher among exclusive cigarette smokers [hazard ratio (HR) 1.26, 95% confidence interval (CI) 1.13-1.41] and exclusive HTP users (HR 1.19, 95% CI 1.06-1.34). There was also a suggestion of increased risk of hypertension among dual users (HR 1.16, 95% CI 0.98-1.38). Furthermore, the risk of hypertension increased with the intensity of cigarette/HTP use in all tobacco product users. CONCLUSIONS Similarly, both cigarette smoking and HTP use elevate the risk of hypertension. HTPs should not be regarded as less harmful alternatives to traditional cigarettes for preventing hypertension.
Collapse
Affiliation(s)
- Huan Hu
- Research Center for Prevention from Radiation Hazards of Workers, National Institute of Occupational Safety and Health, Kanagawa, Japan
- Department of Epidemiology and Prevention, Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Tohru Nakagawa
- Hitachi Health Care Center, Hitachi, Ltd, Ibaraki, Japan
| | - Toru Honda
- Hitachi Health Care Center, Hitachi, Ltd, Ibaraki, Japan
| | | | - Tetsuya Mizoue
- Department of Epidemiology and Prevention, Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
4
|
Ge X, He J, Zheng Y, Wang Q, Cheng H, Bao Y, Lin S, Yang X. Association of Blood Metals and Metal Mixtures with the Myocardial Enzyme Profile: An Occupational Population-Based Study in China. Biol Trace Elem Res 2024:10.1007/s12011-024-04316-z. [PMID: 39069562 DOI: 10.1007/s12011-024-04316-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/14/2024] [Indexed: 07/30/2024]
Abstract
To investigate a cross-sectional association between blood metal mixture and myocardial enzyme profile, we quantified creatine kinase (CK), creatine kinase-MB (CK-MB), lactate dehydrogenase (LD), α-hydroxybutyrate dehydrogenase (α-HBD), and aspartate transaminase (AST) levels among participants from the manganese-exposed workers healthy cohort (MEWHC) (n = 544). The levels of 22 metals in blood cells were determined using inductively coupled plasma mass spectrometry. The least absolute shrinkage and selection operator (LASSO) penalized regression model was utilized for screening metals. The exposure-response relationship between specific metal and myocardial enzyme profile was identified by general linear regression and restricted cubic spline analyses. The overall effect and interactions were evaluated using Bayesian kernel machine regression (BKMR). Manganese was linearly and positively associated with CK (Poverall = 0.019, Pnon-linearity = 0.307), dominating the positive overall effect of mixture exposure (manganese, arsenic, and rubidium) on CK level. Calcium and zinc were linearly and negatively associated with LD levels (Poverall < 0.05, Pnon-linearity > 0.05), and asserted dominance in the negative overall effect of metal mixtures (rubidium, molybdenum, zinc, nickel, cobalt, calcium, and magnesium) on LD level. Interestingly, we observed a U-shaped dose-response relationship of molybdenum with LD level (Poverall < 0.001, Pnon-linearity = 0.015), an interaction between age and calcium on LD level (Pinteration = 0.041), and an interaction between smoking and molybdenum on LD level (Pinteration = 0.035). Our study provides evidence that metal mixture exposure affects the myocardial enzyme profile. Additional investigation is required to confirm these associations, and to reveal the fundamental mechanisms involved.
Collapse
Affiliation(s)
- Xiaoting Ge
- School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Junxiu He
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Yuan Zheng
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Qiuyue Wang
- School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Hong Cheng
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Yu Bao
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Sencai Lin
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Xiaobo Yang
- School of Public Health, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
5
|
Mahdavifard S, Nowruz N. Glutamine Defended the Kidneys Versus Lead Intoxication Via Elevating Endogenous Antioxidants, Reducing Inflammation and Carbonyl Stress, as well as Improving Insulin Resistance and Dyslipidemia. Biol Trace Elem Res 2024; 202:3141-3148. [PMID: 37776396 DOI: 10.1007/s12011-023-03887-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/24/2023] [Indexed: 10/02/2023]
Abstract
Kidneys are primarily sensitive to lead (Pb) poisoning due to their cardinal role in lead excretion. Then, we studied the effect of glutamine (Gln) on lead nephrotoxicity in rats by assessing the histopathological and biochemical parameters (the renal NF-kβ expression, metabolic profile, oxidative stress, inflammatory markers, methylglyoxal (MGO), and glyoxalase-I activity). Forty rats were allotted into four groups (ten rats in each): normal (N), Gln-treated N, Pb intoxication (Pbi), and Gln-treated Pbi. The treated groups took 0.1% Gln in drinking water for 1 month. To motivate lead poisoning, rats gained 50 mg/l lead acetate in drinking water for 1 month. Oxidative stress indices (total glutathione, its reduced and oxidized forms, their ratios, advanced protein oxidation products, malondialdehyde, and ferric ion reducing power) and inflammatory markers (renal nuclear factor-kβ expression, interleukin 1β level, and myeloperoxidase activity) were measured. Furthermore, metabolic profile (fasting blood sugar, insulin, insulin resistance, lipid profile, and atherogenic index) and renal dysfunction parameters were determined. Pb-induced renal histopathological alterations were investigated by a pathologist. In the kidney of Pbi rats, the glomerulus was damaged. Gln prevented kidney damage and reduced kidney dysfunction parameters. In addition, Gln decreased oxidative stress and inflammation in sera and kidney homogenates. In addition, it improved insulin resistance, dyslipidemia, and carbonyl stress (p < 0.001). Gln guarded the kidneys versus lead intoxication by improving insulin resistance and dyslipidemia, elevating antioxidant markers, and diminishing inflammation and carbonyl stress.
Collapse
Affiliation(s)
- Sina Mahdavifard
- Department of Clinical Biochemistry, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Najafzadeh Nowruz
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
6
|
Minigaliyeva IA, Klinova SV, Sutunkova MP, Ryabova YV, Valamina IE, Shelomentsev IG, Shtin TN, Bushueva TV, Protsenko YL, Balakin AA, Lisin RV, Kuznetsov DA, Katsnelson BA, Toropova LV. On the Mechanisms of the Cardiotoxic Effect of Lead Oxide Nanoparticles. Cardiovasc Toxicol 2024; 24:49-61. [PMID: 38108959 PMCID: PMC10838250 DOI: 10.1007/s12012-023-09814-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/06/2023] [Indexed: 12/19/2023]
Abstract
Lead compounds are one of the most common pollutants of the workplace air and the environment. In the occupational setting, the sources of their emission, including in nanoscale form, are various technological processes associated with lead smelting and handling of non-ferrous metals and their alloys, the production of copper and batteries. Both lead poisoning and lead exposure without obvious signs of poisoning have a detrimental effect on the cardiovascular system. The purpose of this research was to investigate the mechanisms of the cardiotoxic effect of lead oxide nanoparticles (PbO NPs). The toxicological experiment involved male albino rats subchronically exposed to PbO NPs (49.6 ± 16.0 nm in size) instilled intraperitoneally in a suspension. We then assessed post-exposure hematological and biochemical parameters of blood and urine, histological and ultrastructural changes in cardiomyocytes, and non-invasively recorded electrocardiograms and blood pressure parameters in the rodents. Myocardial contractility was studied on isolated preparations of cardiac muscles. We established that PbO NPs induced oxidative stress and damage to the ultrastructure of cardiomyocytes, and decreased efficiency of the contractile function of the myocardium and blood pressure parameters. We also revealed such specific changes in the organism of the exposed rats as anemia, hypoxia, and hypocalcemia.
Collapse
Affiliation(s)
- Ilzira A Minigaliyeva
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russian Federation, 620014
- Laboratory of Stochastic Transport of Nanoparticles in Living Systems, Ural Federal University, Yekaterinburg, Russian Federation, 620000
| | - Svetlana V Klinova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russian Federation, 620014
| | - Marina P Sutunkova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russian Federation, 620014
| | - Yuliya V Ryabova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russian Federation, 620014
- Laboratory of Stochastic Transport of Nanoparticles in Living Systems, Ural Federal University, Yekaterinburg, Russian Federation, 620000
| | - Irene E Valamina
- Ural State Medical University, Yekaterinburg, Russian Federation, 620109
| | - Ivan G Shelomentsev
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russian Federation, 620014
| | - Tatiana N Shtin
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russian Federation, 620014
| | - Tatiana V Bushueva
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russian Federation, 620014
| | - Yuri L Protsenko
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russian Federation, 620049
| | - Alexander A Balakin
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russian Federation, 620049
| | - Ruslan V Lisin
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russian Federation, 620049
| | - Daniil A Kuznetsov
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russian Federation, 620049
| | - Boris A Katsnelson
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russian Federation, 620014
| | - Liubov V Toropova
- Laboratory of Mathematical Modeling of Physical and Chemical Processes in Multiphase Media, Ural Federal University, Yekaterinburg, Russian Federation, 620000.
- Otto-Schott-Institut für Materialforschung, Friedrich-Schiller-Universität-Jena, 07743, Jena, Germany.
| |
Collapse
|
7
|
Wu Y, Huang H, Wu J, Qin Y, Zhao N, Chen B, Nong Q, Huang Y, Hu L. Lead activates neutrophil degranulation to induce early myocardial injury in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115694. [PMID: 37984289 DOI: 10.1016/j.ecoenv.2023.115694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/02/2023] [Accepted: 11/12/2023] [Indexed: 11/22/2023]
Abstract
Lead (Pb) is a pervasive toxic metal contaminant associated with a high risk of myocardial injury. However, the precise mechanism underlying Pb-induced myocardial injury has yet to be fully elucidated. In this study, a murine model of Pb exposure (0, 1, 5, and 10 mg/kg) was employed to investigate the involvement of neutrophil degranulation in the induction of myocardial injury. Notably, serum levels of cardiac troponin I (cTnI) and creatine kinase-MB (CK-MB) increased significantly in Pb-exposed mice, whereas cTnI levels in cardiomyocytes decreased, suggesting that Pb exposure may cause early myocardial injury. Moreover, Pb exposure was found to promote neutrophil degranulation, as evidenced by elevated myeloperoxidase (MPO) and neutrophil elastase (NE) concentrations in both the serum of Pb-exposed workers and Pb-exposed mice, as well as the extracellular supernatant of neutrophils following exposure. However, we found that serum level of cTnI enhanced by Pb exposure is associated with increased NE levels in the serum, but not with MPO levels. Upon treatment with NE inhibitor (sivelestat), the serum level of cTnI markedly reduced in Pb-exposed mice, we found that early myocardial injury is associated with NE levels in the serum. At the molecular level, western blotting analysis revealed an upregulation of ERK1/2 expression in vitro following Pb exposure, suggesting that the activation of the ERK1/2 signaling pathway may underlie the participation of neutrophil degranulation in Pb-induced myocardial injury. In summary, our findings demonstrate that Pb exposure can initiate early myocardial injury by promoting the neutrophil degranulation process, thereby highlighting the potential role of this process in the pathogenesis of Pb-associated myocardial injury.
Collapse
Affiliation(s)
- Yanjun Wu
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China; School of Public Health, Southern Medical University, Guangzhou 510505, China
| | - Hongmei Huang
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China; School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiayun Wu
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China; School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Yiru Qin
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China
| | - Na Zhao
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China; School of Public Health, Southern Medical University, Guangzhou 510505, China; School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Baowei Chen
- Southern Marine Science and Engineering Guangdong Laboratory, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Qiying Nong
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China.
| | - Yongshun Huang
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China; School of Public Health, Southern Medical University, Guangzhou 510505, China; School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China.
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
8
|
Gerzen OP, Votinova VO, Potoskueva IK, Tzybina AE, Nikitina LV. Direct Effects of Toxic Divalent Cations on Contractile Proteins with Implications for the Heart: Unraveling Mechanisms of Dysfunction. Int J Mol Sci 2023; 24:10579. [PMID: 37445756 PMCID: PMC10341779 DOI: 10.3390/ijms241310579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
The binding of calcium and magnesium ions to proteins is crucial for regulating heart contraction. However, other divalent cations, including xenobiotics, can accumulate in the myocardium and enter cardiomyocytes, where they can bind to proteins. In this article, we summarized the impact of these cations on myosin ATPase activity and EF-hand proteins, with special attention given to toxic cations. Optimal binding to EF-hand proteins occurs at an ionic radius close to that of Mg2+ and Ca2+. In skeletal Troponin C, Cd2+, Sr2+, Pb2+, Mn2+, Co2+, Ni2+, Ba2+, Mg2+, Zn2+, and trivalent lanthanides can substitute for Ca2+. As myosin ATPase is not a specific MgATPase, Ca2+, Fe2+, Mn2+, Ni2+, and Sr2+ could support myosin ATPase activity. On the other hand, Zn2+ and Cu2 significantly inhibit ATPase activity. The affinity to various divalent cations depends on certain proteins or their isoforms and can alter with amino acid substitution and post-translational modification. Cardiac EF-hand proteins and the myosin ATP-binding pocket are potential molecular targets for toxic cations, which could significantly alter the mechanical characteristics of the heart muscle at the molecular level.
Collapse
Affiliation(s)
- Oksana P Gerzen
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Ekaterinburg, Russia
| | - Veronika O Votinova
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Ekaterinburg, Russia
| | - Iulia K Potoskueva
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Ekaterinburg, Russia
| | - Alyona E Tzybina
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Ekaterinburg, Russia
| | - Larisa V Nikitina
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Ekaterinburg, Russia
| |
Collapse
|
9
|
Filetti FM, Schereider IRG, Wiggers GA, Miguel M, Vassallo DV, Simões MR. Cardiovascular Harmful Effects of Recommended Daily Doses (13 µg/kg/day), Tolerable Upper Intake Doses (0.14 mg/kg/day) and Twice the Tolerable Doses (0.28 mg/kg/day) of Copper. Cardiovasc Toxicol 2023:10.1007/s12012-023-09797-3. [PMID: 37254026 DOI: 10.1007/s12012-023-09797-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/20/2023] [Indexed: 06/01/2023]
Abstract
Copper is essential for homeostasis and regulation of body functions, but in excess, it is a cardiovascular risk factor since it increases oxidative stress. The objective of this study was to evaluate the effects of exposure to the recommended daily dose (13 µg/kg/day), upper tolerable dose (0.14 mg/kg/day) and twice the upper tolerable dose (0.28 mg/kg/day) via i.p. over 4 weeks on the vascular reactivity of aortic rings and the contraction of LV papillary muscles of male Wistar rats. It was also determined whether the antioxidant peptide from egg white hydrolysate (EWH) prevents these effects. Copper exposure at the doses evaluated did not change weight gain of male Wistar rats, the reactivity of the aortic rings or the cardiac mass. The dose of 0.13 µg/kg/day did not reduce the force of contraction, but it impaired the time derivatives of force. Doses of 0.14 and 0.28 mg/kg/day reduced the force of contraction, the inotropic response to calcium and isoproterenol, the postrest contraction and the peak and plateau of tetanized contractions. EWH treatment antagonized these effects. These results suggest that copper, even at the dose described as upper tolerable, can impair cardiac contraction without altering vascular reactivity. Antioxidative stress therapy with EWH reversed these harmful effects, suggesting a possible strategy for the amelioration of these effects.
Collapse
Affiliation(s)
- Filipe Martinuzo Filetti
- Dept. of Physiological Sciences, Health Sciences Center, Federal University of Espiríto Santo, Av. Marechal Campos, 1468, Vitória, ES, CEP 29043-900, Brazil.
- Nursing Course, College FAVENI, Venda Nova Do Imigrante, ES, CEP 29375-000, Brazil.
| | - Ingridy Reinholz Grafites Schereider
- Dept. of Physiological Sciences, Health Sciences Center, Federal University of Espiríto Santo, Av. Marechal Campos, 1468, Vitória, ES, CEP 29043-900, Brazil
| | - Giulia Alessandra Wiggers
- Cardiovascular Physiology Laboratory, Federal University of Pampa, BR 472, Km 592, Uruguaiana, RS, CEP 97500-970, Brazil
| | - Marta Miguel
- Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Dalton Valentim Vassallo
- Dept. of Physiological Sciences, Health Sciences Center, Federal University of Espiríto Santo, Av. Marechal Campos, 1468, Vitória, ES, CEP 29043-900, Brazil
- Health Science Center of Vitória-EMESCAM, Vitória, ES, CEP 29045-402, Brazil
| | - Maylla Ronacher Simões
- Dept. of Physiological Sciences, Health Sciences Center, Federal University of Espiríto Santo, Av. Marechal Campos, 1468, Vitória, ES, CEP 29043-900, Brazil
| |
Collapse
|
10
|
Akkoyun MB, Temel Y, Akkoyun HT, Melek Ş, Karagözoğlu F, Bengü AŞ, Geçmez K. The Effects of Sodium Tetraborate against Lead Toxicity in Rats: The Behavior of Some Metabolic Enzymes. ACS OMEGA 2023; 8:14792-14798. [PMID: 37125134 PMCID: PMC10134456 DOI: 10.1021/acsomega.3c01021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/30/2023] [Indexed: 05/03/2023]
Abstract
This study was planned to research the in vivo effects of lead (Pb) ions and sodium tetraborate (Na2B4O7) on G6PD and 6PGD, which are some of the enzymes of the pentose phosphate pathway, which carries vital importance for metabolism, and GR and GST, which are glutathione metabolism enzymes, and the in vitro effects of the same agents on the 6PGD enzyme. According to the in vivo analysis results, in comparison to the control group, the rat liver G6PD (p < 0.05), and 6PGD (p < 0.01) enzyme activities in the Na2B4O7 group were significantly lower. In addition, GR and GST enzyme activities were insignificantly lower in the Na2B4O7 group compared to the control group (p > 0.05). The Pb group had lower G6PD and 6PGD enzyme activity levels and higher GR and GST enzyme activity levels compared to the control group, while these changes did not reach statistical significance (p > 0.05). In the in vitro analyses of the effects of Pb ions on the 6PGD enzyme that was purified out of rat liver with the 2',5'-ADP-Sepharose 4B affinity chromatography method, it was determined that Pb ions (200-1200 μM) increased the rat liver 6PGD enzyme activity levels by 33%. On the other hand Na2B4O7 was not significantly effective on 6PGD activity. These results will also contribute to future studies in understanding the physiopathology of the states triggered by Pb ions and sodium tetraborate (Na2B4O7).
Collapse
Affiliation(s)
| | - Yusuf Temel
- Solhan Health Services Vocational School, Bingol University, 12000, Bingol, Turkey
| | - H Turan Akkoyun
- Faculty of Veterinary Science, Department of Biochemistry, Siirt University, 56100, Siirt, Turkey
| | - Şule Melek
- Department of Surgery, Faculty of Veterinary Science, Bingol Universıty, 12000, Bingöl, Turkey
| | - Fatma Karagözoğlu
- Faculty of Veterinary Science, Department of Animal Nutrition, Dokuz Eylul Universitesi, 35890, İzmir, Turkey
| | - A Şükrü Bengü
- Vocational School of Health Services, Bingöl University, 12000, Bingöl, Turkey
| | - Kübra Geçmez
- Faculty of Veterinary Science, Department of Biochemistry, Siirt University, 56100, Siirt, Turkey
| |
Collapse
|
11
|
Waeyeng D, Khamphaya T, Pouyfung P, Vattanasit U, Yimthiang S. Blood Lead Levels among Non-Occupationally Exposed Pregnant Women in Southern Thailand. TOXICS 2022; 10:599. [PMID: 36287879 PMCID: PMC9610693 DOI: 10.3390/toxics10100599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/25/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Lead (Pb) is a heavy metal that is toxic to humans, especially children and pregnant women. In Thailand, guidelines exist to minimize lead exposure in pregnant women working in lead-related occupations. However, no guidelines exist for pregnant women who are not employed in these economic sectors. This cross-sectional study aimed to examine blood lead levels (BLLs) and related risk factors among 80 non-occupationally exposed pregnant women from the general population living in Nakhon Si Thammarat province, Southern Thailand. BLLs were determined by graphite furnace atomic absorption spectrophotometry. A validated questionnaire was adopted to interview participants which included demographic, consumer goods, supplement intake, and health factors. The mean BLL was 4.68 ± 1.55 µg/dL (95% CI 4.33-5.02) and 42.50% had BLLs ≥ 5 µg/dL. Higher education was the only demographic factor associated with BLLs ≥ 5 µg/dL (aOR 0.16, 95% CI 0.03-0.80, p = 0.027). Systolic blood pressure was also associated with BLLs ≥ 5 µg/dL (aOR 5.00, 95% CI 1.23-17.16, p = 0.023). However, consumer goods and supplement intake were not associated with BLLs. Our results indicate that pregnant women from the general population who were not in the risk exposure group had lead in their bodies. Except for education, demographics were not associated with pregnant women with BLLs. However, with health factors, even low BLLs had a small effect on systolic blood pressure. These data suggest a need for promoting health education and health interventions to prevent the dangers of lead exposure, especially for pregnant women and children.
Collapse
Affiliation(s)
- Donrawee Waeyeng
- Environmental, Safety Technology and Health Program, School of Public Health, Walailak University, Thaiburi, Thasala, Nakhon Si Thammarat 80160, Thailand
| | - Tanaporn Khamphaya
- Environmental, Safety Technology and Health Program, School of Public Health, Walailak University, Thaiburi, Thasala, Nakhon Si Thammarat 80160, Thailand
| | - Phisit Pouyfung
- Occupational Health and Safety Department, School of Public Health, Walailak University, Thaiburi, Thasala, Nakhon Si Thammarat 80160, Thailand
| | - Udomratana Vattanasit
- Environmental Health and Technology Department, School of Public Health, Walailak University, Thaiburi, Thasala, Nakhon Si Thammarat 80160, Thailand
| | - Supabhorn Yimthiang
- Environmental, Safety Technology and Health Program, School of Public Health, Walailak University, Thaiburi, Thasala, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
12
|
Oluranti OI, Adeyemo VA, Achile EO, Fatokun BP, Ojo AO. Rutin Improves Cardiac and Erythrocyte Membrane-Bound ATPase Activities in Male Rats Exposed to Cadmium Chloride and Lead Acetate. Biol Trace Elem Res 2022; 200:1181-1189. [PMID: 33844168 DOI: 10.1007/s12011-021-02711-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/06/2021] [Indexed: 01/09/2023]
Abstract
Cardiovascular diseases have been associated with cadmium (Cd) and lead (Pb). Impaired Ca2+ and Na+/K+-ATPase activities have also been linked to hemolytic and cardiovascular disorders. This study investigated the effect of rutin on Cd and/or Pb-induced cardiac and erythrocyte disorders in male rats. Twenty-five (25) male Wistar rats were treated as (n=5): Control, Pb (60 mg/kg, p.o), Cd (5 mg/kg, p.o), Pb + Cd, Rutin + Pb + Cd (50 mg/kg Rt, 60 mg/kg Pb, 5 mg/kg Cd, p.o). Plasma electrolyte and Ca2+- and Na+/K+-ATPase activities in the erythrocyte and heart of the rats were assayed. There was an increased and decreased activity of cardiac and erythrocyte Na+/K+-ATPase in Pb- (172%) and Cd- (33.7%) treated groups, respectively. However, rutin increased erythrocyte Na+/K+-ATPase activity in Cd + Pb when compared with Cd and Cd + Pb groups. Erythrocyte Ca2+-ATPase activity was decreased in the Pb (68%), Cd (68%) and Cd + Pb (55.3%) groups. Cardiac Na+/K+-ATPase activity was not altered in Pb and Cd groups while it decreased in Cd + Pb. Rutin increased the activity of the pump in Cd +Pb-treated rats compared to the Cd+Pb group. Therefore, rutin reversed cadmium- and lead-induced impaired cardiac and erythrocyte membrane Ca2+- and Na+/K+-ATPase activities. Graphical Abstract Dotted lines-decrease activity, curved lines-increased activity (created with BioRender.com ).
Collapse
Affiliation(s)
- Olufemi I Oluranti
- Applied and Environmental Physiology Unit, Department of Physiology, Bowen University, P.M.B 284, Iwo, Osun State, Nigeria.
| | - Victor A Adeyemo
- Applied and Environmental Physiology Unit, Department of Physiology, Bowen University, P.M.B 284, Iwo, Osun State, Nigeria
| | - Esther O Achile
- Applied and Environmental Physiology Unit, Department of Physiology, Bowen University, P.M.B 284, Iwo, Osun State, Nigeria
| | - Bosede P Fatokun
- Applied and Environmental Physiology Unit, Department of Physiology, Bowen University, P.M.B 284, Iwo, Osun State, Nigeria
| | - Alaba O Ojo
- Cardiovascular Physiology Unit, Department of Physiology, Bowen University, P.M.B 284, Iwo, Osun State, Nigeria
| |
Collapse
|
13
|
Rawat PS, Singh S, Zahid M, Mehrotra S. An integrated assessment of lead exposure in children: Correlation with biochemical and haematological indices. J Trace Elem Med Biol 2021; 68:126835. [PMID: 34385037 DOI: 10.1016/j.jtemb.2021.126835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/03/2021] [Accepted: 08/02/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Lead (Pb) is a worldwide concern due to its persistent property in the environment. However, due to diminutive evidence and elusiveness, the impact of lead exposure on the biochemical and haematological parameter in school-age children is not well established. AIM This study primarily aimed to investigate blood lead (BL) in children and its association with haematological and biochemical parameter. METHODS A total of 43 children (4-12 years) were recruited in each control and study group. Furthermore, the study group were subdivided into two groups (group A (<10 μg/dl) and group B (>10 μg/dl)). BL level, haematological parameter including haemoglobin, packed cell volume, red blood cells, mean corpuscular haemoglobin, mean corpuscular haemoglobin concentration, total leukocytes count, neutrophils, lymphocytes, monocytes, mean corpuscular volume, red cell distribution width, eosinophil's, platelets in the whole blood and biochemical parameter such as liver function test (total bilirubin, alkaline phosphatase, serum glutamic-oxaloacetic transaminase, serum glutamic-pyruvic transaminase, total protein, albumin) and kidney function test (sodium, potassium, blood urea nitrogen, creatinine) in serum were measured using anodic stripping voltammeter (ASV), Cell-Dyn Ruby Haematology analyser, Beckman coulter Unicel Dxc 800 Synchron Clinical analyser respectively. RESULTS The arithmetical mean of BL level was 19.93 ± 9.22 μg/dl (median: 17.5 μg/dl; range 9.1-37.4 μg/dl). Only 21 % children had BL levels <10 μg/dl and there were 79 % children with BL levels >10 μg/dl. Blood mean corpuscular haemoglobin concentration, Neutrophils, Monocytes were significantly higher between the control and study group. Additionally, haemoglobin, packed cell volume, red blood cells, mean corpuscular haemoglobin, mean corpuscular haemoglobin concentration, Lymphocytes and mean corpuscular volume intensities were significantly lower in >10 μg/dl group whereas total leukocytes count, neutrophils, monocytes, red cell distribution width, eosinophil's, platelets levels were statistically higher (p < 0.001). Serum alkaline phosphatase, serum glutamic-oxaloacetic transaminase, total protein, were higher (p < 0.05) and sodium, albumin were significantly lower in the study group. The mean value of sodium, potassium, total bilirubin, alkaline phosphatase, serum glutamic-pyruvic transaminase, total protein and blood urea nitrogen, creatinine in two groups (<10 μg/dl and >10 μg/dl) was not significantly different. Serum glutamic-oxaloacetic transaminase level was significantly higher (p = 0.015) while albumin levels were significantly lower (p = 0.034) in >10 μg/dl group. A statistically significant correlation of BL levels with all haematological parameters was also observed. Creatinine is positively and albumin was negatively correlated with BL levels. CONCLUSION The outcomes specify that high BL levels were significantly associated with higher haematological and biochemical indices in exposed children. However, lead like noxious metals severely affected the haematological, kidney and liver health of children.
Collapse
Affiliation(s)
- Pushkar Singh Rawat
- Department of Biochemistry, University of Lucknow, Lucknow, 226007, Uttar Pradesh, India.
| | - Shalini Singh
- Department of Biochemistry, University of Lucknow, Lucknow, 226007, Uttar Pradesh, India
| | - Mohd Zahid
- Department of Biochemistry, University of Lucknow, Lucknow, 226007, Uttar Pradesh, India
| | - Sudhir Mehrotra
- Department of Biochemistry, University of Lucknow, Lucknow, 226007, Uttar Pradesh, India.
| |
Collapse
|
14
|
Ferreira G, Santander A, Chavarría L, Cardozo R, Savio F, Sobrevia L, Nicolson GL. Functional consequences of lead and mercury exposomes in the heart. Mol Aspects Med 2021; 87:101048. [PMID: 34785060 DOI: 10.1016/j.mam.2021.101048] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 12/20/2022]
Abstract
Lead and mercury are heavy metals that are highly toxic to life forms. There are no known physiological processes that require them, and they do not have a particular threshold concentration to produce biologic damage. They are non-biodegradable, and they slowly accumulate in the environment in a dynamic equilibrium between air, water, soil, food, and living organisms. Their accumulation in the environment has been increasing over time, because they were not banned from use in anthropogenic industrial production. In their +2 cationic state they are powerful oxidizing agents with the ability to interfere significantly with processes that require specific divalent cations. Acute or chronic exposure to lead and mercury can produce multisystemic damage, especially in the developing nervous systems of children and fetuses, resulting in variety of neurological consequences. They can also affect the cardiovascular system and especially the heart, either directly through their action on cardiomyocytes or indirectly through their effects on innervation, humoral responses or blood vessel alterations. For example, heart function modified by these heavy metals are heart rate, contraction, excitability, and rhythm. Some cardiac molecular targets have been identified and characterized. The direct mechanisms of damage of these heavy metals on heart function are discussed. We conclude that exposome to these heavy metals, should be considered as a major relevant risk factor for cardiac diseases.
Collapse
Affiliation(s)
- Gonzalo Ferreira
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling. Department of Biophysics, Faculty of Medicine, Universidad de la República, Gral. Flores, 2125, CP 11800, Montevideo, Uruguay.
| | - Axel Santander
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling. Department of Biophysics, Faculty of Medicine, Universidad de la República, Gral. Flores, 2125, CP 11800, Montevideo, Uruguay
| | - Luisina Chavarría
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling. Department of Biophysics, Faculty of Medicine, Universidad de la República, Gral. Flores, 2125, CP 11800, Montevideo, Uruguay
| | - Romina Cardozo
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling. Department of Biophysics, Faculty of Medicine, Universidad de la República, Gral. Flores, 2125, CP 11800, Montevideo, Uruguay
| | - Florencia Savio
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling. Department of Biophysics, Faculty of Medicine, Universidad de la República, Gral. Flores, 2125, CP 11800, Montevideo, Uruguay
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, Universidad Católica de Chile, Santiago, 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville, E-41012, Spain; Medical School (Faculty of Medicine), São Paulo State University (UNESP), Brazil; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD 4029, Queensland, Australia; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713GZ, Groningen, the Netherlands
| | - Garth L Nicolson
- Department of Molecular Pathology, The Institute for Molecular Medicine, 16731 Gothard St. Huntington Beach, California, 92647, USA
| |
Collapse
|
15
|
Wyparło-Wszelaki M, Machoń-Grecka A, Wąsik M, Dobrakowski M. Critical aspects of the physiological interactions between lead and magnesium. J Biochem Mol Toxicol 2021; 36:e22964. [PMID: 34766669 DOI: 10.1002/jbt.22964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 09/21/2021] [Accepted: 10/26/2021] [Indexed: 12/25/2022]
Abstract
Despite technological progress, exposure to lead is an ongoing problem. There are many mechanisms governing the toxic effects of lead on the human body. One such mechanism involves the interaction of this xenobiotic with bivalent metal ions, including magnesium. Literature data suggest that the competition between these elements for binding sites at the molecular and cellular levels, as well as at the systemic level, may represent an important aspect of lead toxicity in the human body. This is especially clear in the context of oxidative stress, immune response, and gene expression modifications. This review aims to summarize current knowledge regarding these issues.
Collapse
Affiliation(s)
- Magdalena Wyparło-Wszelaki
- Department of Biochemistry, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Zabrze, Poland
| | - Anna Machoń-Grecka
- Department of Biochemistry, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Zabrze, Poland
| | - Marta Wąsik
- Department of Clinical Biochemistry and Laboratory Diagnostics, Institute of Medicine, University of Opole, Opole, Poland
| | - Michał Dobrakowski
- Department of Biochemistry, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Zabrze, Poland
| |
Collapse
|
16
|
Gerzen OP, Nabiev SR, Nikitina LV. Influence of Chronic Lead Intoxication on Functional Characteristics and Isoform Composition of Left Ventricular Myosin in the Rat Heart. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s002209302104013x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Klinova SV, Katsnelson BA, Minigalieva IA, Gerzen OP, Balakin AA, Lisin RV, Butova KA, Nabiev SR, Lookin ON, Katsnelson LB, Privalova LI, Kuznetsov DA, Shur VY, Shishkina EV, Makeev OH, Valamina IE, Panov VG, Sutunkova MP, Nikitina LV, Protsenko YL. Cardioinotropic Effects in Subchronic Intoxication of Rats with Lead and/or Cadmium Oxide Nanoparticles. Int J Mol Sci 2021; 22:ijms22073466. [PMID: 33801669 PMCID: PMC8036427 DOI: 10.3390/ijms22073466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 01/31/2023] Open
Abstract
Subchronic intoxication was induced in outbred male rats by repeated intraperitoneal injections with lead oxide (PbO) and/or cadmium oxide (CdO) nanoparticles (NPs) 3 times a week during 6 weeks for the purpose of examining its effects on the contractile characteristics of isolated right ventricle trabeculae and papillary muscles in isometric and afterload contractions. Isolated and combined intoxication with these NPs was observed to reduce the mechanical work produced by both types of myocardial preparation. Using the in vitro motility assay, we showed that the sliding velocity of regulated thin filaments drops under both isolated and combined intoxication with CdO–NP and PbO–NP. These results correlate with a shift in the expression of myosin heavy chain (MHC) isoforms towards slowly cycling β–MHC. The type of CdO–NP + PbO–NP combined cardiotoxicity depends on the effect of the toxic impact, the extent of this effect, the ratio of toxicant doses, and the degree of stretching of cardiomyocytes and muscle type studied. Some indices of combined Pb–NP and CdO–NP cardiotoxicity and general toxicity (genotoxicity included) became fully or partly normalized if intoxication developed against background administration of a bioprotective complex.
Collapse
Affiliation(s)
- Svetlana V. Klinova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Yekaterinburg, Russia; (S.V.K.); (I.A.M.); (L.I.P.); (V.G.P.); (M.P.S.)
| | - Boris A. Katsnelson
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Yekaterinburg, Russia; (S.V.K.); (I.A.M.); (L.I.P.); (V.G.P.); (M.P.S.)
- Correspondence: ; Tel.: +7-343-253-04-21; Fax: +7-343-3717-740; Cell: +7-922-126-30-90
| | - Ilzira A. Minigalieva
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Yekaterinburg, Russia; (S.V.K.); (I.A.M.); (L.I.P.); (V.G.P.); (M.P.S.)
| | - Oksana P. Gerzen
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (O.P.G.); (A.A.B.); (R.V.L.); (K.A.B.); (S.R.N.); (O.N.L.); (L.B.K.); (D.A.K.); (L.V.N.); (Y.L.P.)
| | - Alexander A. Balakin
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (O.P.G.); (A.A.B.); (R.V.L.); (K.A.B.); (S.R.N.); (O.N.L.); (L.B.K.); (D.A.K.); (L.V.N.); (Y.L.P.)
| | - Ruslan V. Lisin
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (O.P.G.); (A.A.B.); (R.V.L.); (K.A.B.); (S.R.N.); (O.N.L.); (L.B.K.); (D.A.K.); (L.V.N.); (Y.L.P.)
| | - Ksenia A. Butova
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (O.P.G.); (A.A.B.); (R.V.L.); (K.A.B.); (S.R.N.); (O.N.L.); (L.B.K.); (D.A.K.); (L.V.N.); (Y.L.P.)
| | - Salavat R. Nabiev
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (O.P.G.); (A.A.B.); (R.V.L.); (K.A.B.); (S.R.N.); (O.N.L.); (L.B.K.); (D.A.K.); (L.V.N.); (Y.L.P.)
| | - Oleg N. Lookin
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (O.P.G.); (A.A.B.); (R.V.L.); (K.A.B.); (S.R.N.); (O.N.L.); (L.B.K.); (D.A.K.); (L.V.N.); (Y.L.P.)
| | - Leonid B. Katsnelson
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (O.P.G.); (A.A.B.); (R.V.L.); (K.A.B.); (S.R.N.); (O.N.L.); (L.B.K.); (D.A.K.); (L.V.N.); (Y.L.P.)
| | - Larisa I. Privalova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Yekaterinburg, Russia; (S.V.K.); (I.A.M.); (L.I.P.); (V.G.P.); (M.P.S.)
| | - Daniil A. Kuznetsov
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (O.P.G.); (A.A.B.); (R.V.L.); (K.A.B.); (S.R.N.); (O.N.L.); (L.B.K.); (D.A.K.); (L.V.N.); (Y.L.P.)
| | - Vladimir Ya. Shur
- School of Natural Sciences and Mathematics, The Ural Federal University, 620002 Ekaterinburg, Russia; (V.Y.S.); (E.V.S.)
| | - Ekaterina V. Shishkina
- School of Natural Sciences and Mathematics, The Ural Federal University, 620002 Ekaterinburg, Russia; (V.Y.S.); (E.V.S.)
| | - Oleg H. Makeev
- The Central Research Laboratory, The Ural State Medical University, 620014 Yekaterinburg, Russia; (O.H.M.); (I.E.V.)
| | - Irene E. Valamina
- The Central Research Laboratory, The Ural State Medical University, 620014 Yekaterinburg, Russia; (O.H.M.); (I.E.V.)
| | - Vladimir G. Panov
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Yekaterinburg, Russia; (S.V.K.); (I.A.M.); (L.I.P.); (V.G.P.); (M.P.S.)
- Institute of Industrial Ecology, The Urals Branch of the Russian Academy of Sciences, 620049 Ekaterinburg, Russia
| | - Marina P. Sutunkova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Yekaterinburg, Russia; (S.V.K.); (I.A.M.); (L.I.P.); (V.G.P.); (M.P.S.)
| | - Larisa V. Nikitina
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (O.P.G.); (A.A.B.); (R.V.L.); (K.A.B.); (S.R.N.); (O.N.L.); (L.B.K.); (D.A.K.); (L.V.N.); (Y.L.P.)
| | - Yuri L. Protsenko
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (O.P.G.); (A.A.B.); (R.V.L.); (K.A.B.); (S.R.N.); (O.N.L.); (L.B.K.); (D.A.K.); (L.V.N.); (Y.L.P.)
| |
Collapse
|
18
|
Huang Y, Liao Y, Zhang H, Li S. Lead exposure induces cell autophagy via blocking the Akt/mTOR signaling in rat astrocytes. J Toxicol Sci 2020; 45:559-567. [PMID: 32879255 DOI: 10.2131/jts.45.559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Lead is a main threat to human health due to its neurotoxicity and the astrocyte is known to be a common deposit site of lead in vivo. However, the detailed mechanisms related to lead exposure in the astrocytes were unclear. In order to deeply investigate this issue, we used Sprague-Dawley (SD) rats and astrocytes isolated from the hippocampus of SD rats to establish the lead-exposed animal and cell models through treating with lead acetate. The expression levels of GFAP, LC3, and p62 in the rat hippocampus were detected by immunofluorescence and Western blot after lead exposure. The effects of autophagy on lead-exposed astrocytes were studied by further autophagy inhibitor 3-methyladenine (3-MA) induction. Transmission electron microscopy was used to observe autophagosomes in astrocytes after lead acetate treatment, followed by assessing related autophagy protein markers. In addition, some inflammatory cytokines and oxidative stress markers were also evaluated after lead exposure and 3-MA administration. We found that lead exposure induced activation of astrocytes, as evidenced by increased GFAP levels and GFAP-positive staining cells in the rat hippocampus. Moreover, lead exposure induced autophagy in astrocytes, as evidenced by increased LC3II and Beclin 1 protein levels and decreased p62 expression in both the rat hippocampus and astrocytes, and it was confirmed that this autophagy was activated through blocking the downstream Akt/target of the rapamycin (mTOR) pathway in astrocytes. Furthermore, it was shown that treatment of lead acetate increased the release of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), and the accumulation of malondialdehyde (MDA) and myeloperoxidase (MPO) in astrocytes, which could be alleviated by further 3-MA induction. Therefore, we conclude that lead exposure can induce the autophagy of astrocytes via blocking the Akt/mTOR pathway, leading to accelerated release of inflammatory factors and oxidative stress indicators in astrocytes.
Collapse
Affiliation(s)
- Yingying Huang
- Department of Physiology, School of Life Sciences, China Medical University, China.,School of Nursing, Jinzhou Medical University, China
| | - Yingjun Liao
- Department of Physiology, School of Life Sciences, China Medical University, China
| | - Huijun Zhang
- School of Nursing, Jinzhou Medical University, China
| | - Shuyun Li
- School of Nursing, Jinzhou Medical University, China
| |
Collapse
|
19
|
Fiorim J, Simões MR, de Azevedo BF, Ribeiro RF, Dos Santos L, Padilha AS, Vassallo DV. Increased endothelial nitric oxide production after low level lead exposure in rats involves activation of angiotensin II receptors and PI3K/Akt pathway. Toxicology 2020; 443:152557. [PMID: 32791093 DOI: 10.1016/j.tox.2020.152557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Lead induces endothelial dysfunction and hypertension in humans and animals. Seven-day exposure to a low dose in rats reduces vasocontractile responses and increases nitric oxide (NO) bioavailability. We hypothesized that this occurs by angiotensin II receptors (AT1/AT2) activation. MATERIALS AND RESULTS Wistar rats were exposed to lead acetate (1 st dose 4 μg/100 g, subsequent dose 0.05 μg/100 g/day i.m., 7 days) or saline (control group). Lead acetate exposure reduced the phenylephrine vascular response. Pre-incubations with NO synthase inhibitor N-nitro-L-arginine methyl ester (L-NAME) or phosphatidylinositol 3-kinase (PI3K) inhibitor (wortmannin) increased the contractile response in aortas from lead-treated rats. Pre-incubation with AT2 antagonist (PD123319) restored normal vascular contraction, and both PD123319 or AT1 antagonist (losartan) impeded the potentiated effects of L-NAME and wortmannin. Reinforcing those findings, increased NO bioavailability was blunted by AT1 and AT2 antagonists without summative effect when co-incubated. Finally, to test whether activation of AT1 could upregulate AT2 to increase NO bioavailability rats were simultaneously exposed to lead acetate and treated with losartan (15 mg/kg/day, orally given). Losartan prevented changes on vascular reactivity and endothelial modulation in lead-exposed group. Moreover, incubation with PD123319 had no more effects in aortic from losartan-treated rats. CONCLUSION Our results suggest that low-dose lead acetate exposure induces an increase of NO involving mainly AT2 receptor activation and the PI3K/Protein Kinase B (PI3K/Akt) pathway. Additionally, we suggest that AT1 activation plays a role in AT2 upregulation, probably as a protective mechanism. Altogether, these effects might contribute to preserving endothelial function against the harmful effects by lead in the vascular system.
Collapse
Affiliation(s)
- Jonaina Fiorim
- Centre of Health Sciences, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | | | | | | | - Leonardo Dos Santos
- Centre of Health Sciences, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | | | - Dalton Valentim Vassallo
- Centre of Health Sciences, Federal University of Espirito Santo, Vitoria, ES, Brazil; Health Science Center of Vitória-EMESCAM, Vitória, ES, Brazil
| |
Collapse
|
20
|
Katsnelson BA, Klinova SV, Gerzen OP, Balakin AA, Lookin ON, Lisin RV, Nabiev SR, Privalova LI, Minigalieva IA, Panov VG, Katsnelson LB, Nikitina LV, Kuznetsov DA, Protsenko YL. Force-velocity characteristics of isolated myocardium preparations from rats exposed to subchronic intoxication with lead and cadmium acting separately or in combination. Food Chem Toxicol 2020; 144:111641. [PMID: 32758638 DOI: 10.1016/j.fct.2020.111641] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 01/28/2023]
Abstract
This investigation continues our study of the effects of Pb-Cd poisoning on the heart, extending the enquiry from isometric to auxotonic contractions, thereby examining the effect on the ability of myocardial tissues to perform mechanical work. Different shifts were revealed in myocardial force-velocity relations following subchronic exposure of rats to lead acetate and cadmium chloride acting separately, in combination, or in combination with a bioprotective complex (BPC). The experiments were conducted on isolated preparations of trabecules and papillary muscles of the right ventricle in physiological loading conditions and on isolated heart muscle contractile proteins examined by the in vitro motility assay. The results of the latter correlate with the shifts in the ratio of cardiac myosin isoforms. The amount of work performed by the myocardium was calculated on the basis of the tension-shortening loop area and was found to be similar in the preparations from all experimental groups. This fact presumably reflects adaptive capacity of the myocardial function even when contractility is damaged due to the metallic intoxication of a moderate severity. Some characteristics of rat myocardium altered by the impact of lead-cadmium intoxication became fully or partly normalized if intoxication developed against background administration of a bioprotective complex (BPC). Together with previously reported results obtained in the isometric mode of contractility, all these results strengthen the scientific foundations of risk assessment and risk management projects in the occupational and environmental conditions characterized by human exposure to lead and/or cadmium.
Collapse
Affiliation(s)
- Boris A Katsnelson
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia.
| | - Svetlana V Klinova
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Oksana P Gerzen
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Alexander A Balakin
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Oleg N Lookin
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Ruslan V Lisin
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Salavat R Nabiev
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Larisa I Privalova
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Ilzira A Minigalieva
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Vladimir G Panov
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia; The Institute of Industrial Ecology, The Urals Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Leonid B Katsnelson
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Larisa V Nikitina
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Daniil A Kuznetsov
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Yuri L Protsenko
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| |
Collapse
|
21
|
Protsenko YL, Klinova SV, Gerzen OP, Privalova LI, Minigalieva IA, Balakin AA, Lookin ON, Lisin RV, Butova KA, Nabiev SR, Katsnelson LB, Nikitina LV, Katsnelson BA. Changes in rat myocardium contractility under subchronic intoxication with lead and cadmium salts administered alone or in combination. Toxicol Rep 2020; 7:433-442. [PMID: 32181144 PMCID: PMC7063142 DOI: 10.1016/j.toxrep.2020.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 12/13/2022] Open
Abstract
Subchronic intoxications induced in male rats by repeated intraperitoneal injections of lead acetate and cadmium chloride, administered either alone or in combination, are shown to affect the biochemical, cytological and morphometric parameters of blood, liver, heart and kidneys. The single twitch parameters of myocardial trabecular and papillary muscle preparations were measured in the isometric regime to identify changes in the heterometric (length-force) and chronoinotropic (frequency-force) contractility regulation systems. Differences in the responses of these systems in trabecules and papillary muscles to the above intoxications are shown. A number of myocardium mechanical characteristics changing in rats under the effect of a combined lead-cadmium intoxication and increased proportion of α-myosin heavy chains were observed to normalize fully or partially if such intoxication was induced against background administration of a proposed bioprotective complex. Based on the experimental results and literature data, some assumptions are suggested concerning the mechanisms of the cardiotoxic effects produced by lead and cadmium.
Collapse
Affiliation(s)
- Yuri L Protsenko
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Svetlana V Klinova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Oksana P Gerzen
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Larisa I Privalova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Ilzira A Minigalieva
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Alexander A Balakin
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Oleg N Lookin
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia.,Ural Federal University, Yekaterinburg, Russia
| | - Ruslan V Lisin
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Ksenya A Butova
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Salavat R Nabiev
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Leonid B Katsnelson
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia.,Ural Federal University, Yekaterinburg, Russia
| | - Larisa V Nikitina
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Boris A Katsnelson
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| |
Collapse
|
22
|
Ivanova J, Kamenova K, Petrova E, Vladov I, Gluhcheva Y, Dorkov P. Comparative study on the effects of salinomycin, monensin and meso-2,3-dimercaptosuccinic acid on the concentrations of lead, calcium, copper, iron and zinc in lungs and heart in lead-exposed mice. J Trace Elem Med Biol 2020; 58:126429. [PMID: 31760328 DOI: 10.1016/j.jtemb.2019.126429] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 10/23/2019] [Accepted: 10/29/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND AND AIM Environmental lead (Pb) exposure damages the lungs and is a risk factor for death from cardiovascular disease. Pb induces toxicity by a mechanism, which involves alteration of the essential elements homeostasis. In this study we compare the effects of salinomycin (Sal), monensin (Mon) and meso-2,3-dimercaptosuccinic acid (DMSA) on the concentrations of lead (Pb), calcium (Ca), copper (Cu), iron (Fe) and zinc (Zn) in the lungs and heart of lead-exposed mice. METHODS Sixty days old male ICR mice were divided into five groups: control (Ctrl) - untreated mice obtained distilled water for 28 days; Pb-intoxicated group (Pb) - exposed to 80 mg/kg body weight (BW) Pb(NO3)2 during the first 14 days of the experimental protocol; DMSA-treated (Pb + DMSA) - Pb-exposed mice, subjected to treatment with an average daily dose of 20 mg/kg BW DMSA for two weeks; Monensin-treated (Pb + Mon) - Pb-exposed mice, obtained an average daily dose of 20 mg/kg BW tetraethylammonium salt of monensic acid for 14 days; Pb + Sal - Pb-exposed mice, treated with an average daily dose of 20 mg/kg BW tetraethylammonium salt of salinomycinic acid for two weeks. On the 29th day of the experiment the samples (lungs and heart) were taken for atomic absorption analysis. RESULTS The results revealed that exposure of mice to Pb for 14 days significantly increased the concentration of the toxic metal in both organs and elevated the cardiac concentrations of Ca, Cu and Fe compared to untreated mice. Pb exposure diminished the lung concentrations of Ca and Zn compared to that of untreated controls. DMSA, monensin and salinomycin decreased the concentration of Pb in the lungs and heart. Among the tested chelating agents, only salinomycin restored the cardiac Fe concentration to normal control values. CONCLUSION The results demonstrated the potential application of polyether ionophorous antibiotic salinomycin as antidote for treatment of Pb-induced toxicity in the lungs and heart. The possible complexation of the polyether ionophorous antibiotics with Ca(II) and Zn(II), which can diminish the endogenous concentrations of both ions in the lungs should be taken into account.
Collapse
Affiliation(s)
- Juliana Ivanova
- Faculty of Medicine, Sofia University "St. Kliment Ohridski", 1 Kozjak Street, 1407, Sofia, Bulgaria
| | - Kalina Kamenova
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kliment Ohridski", 1 James Bourchier Blvd., 1164, Sofia, Bulgaria
| | - Emilia Petrova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum - BAS, Acad. Georgi Bonchev Str., bl. 25, 1113, Sofia, Bulgaria.
| | - Ivelin Vladov
- Institute of Experimental Morphology, Pathology and Anthropology with Museum - BAS, Acad. Georgi Bonchev Str., bl. 25, 1113, Sofia, Bulgaria
| | - Yordanka Gluhcheva
- Institute of Experimental Morphology, Pathology and Anthropology with Museum - BAS, Acad. Georgi Bonchev Str., bl. 25, 1113, Sofia, Bulgaria
| | - Petar Dorkov
- Chemistry Department, R&D, BIOVET JSC, 39 Peter Rakov Str., 4550, Peshtera, Bulgaria
| |
Collapse
|
23
|
Klinova SV, Minigalieva IA, Privalova LI, Valamina IE, Makeyev OH, Shuman EA, Korotkov AA, Panov VG, Sutunkova MP, Ryabova JV, Bushueva TV, Shtin TN, Gurvich VB, Katsnelson BA. Further verification of some postulates of the combined toxicity theory: New animal experimental data on separate and joint adverse effects of lead and cadmium. Food Chem Toxicol 2019; 136:110971. [PMID: 31751644 DOI: 10.1016/j.fct.2019.110971] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 01/10/2023]
Abstract
Outbred male rats were repeatedly injected intraperitoneally two-level sub-lethal doses of lead acetate and/or cadmium chloride solutions 3 times a week during 6 weeks. The animals developed explicit, even if moderate, subchronic intoxication characterized by a large number of indices, both common to both metals (including increased DNA fragmentation coefficient) and lead-specific. Special attention was paid to hemodynamic and electrocardiographic effects. The combined action of lead and cadmium was modeled with the help of the Response Surface Methodology to obtain additional support for the previously substantiated postulates of combined toxicity's typological ambiguity. This is dependent on which particular effect comes under consideration, on its level, and on the acting dose ratio. For one and the same toxic combination, the type of combined toxic action can vary from synergistic to contra-directional. In particular, the actions of lead and cadmium on blood pressure were found to be opposite in direction. Furthermore, it is shown once again that the systemic toxic effects of a metal combination, its in vivo genotoxicity included, can be more or less attenuated by background administration of a theoretically justified composition of biologically active agents.
Collapse
Affiliation(s)
- Svetlana V Klinova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str, Ekaterinburg, 620014, Russia
| | - Ilzira A Minigalieva
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str, Ekaterinburg, 620014, Russia
| | - Larisa I Privalova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str, Ekaterinburg, 620014, Russia
| | - Irene E Valamina
- The Central Research Laboratory, The Ural State Medical University, 17 Klyuchevskaya Str, Ekaterinburg, 620109, Russia
| | - Oleg H Makeyev
- The Ural Federal University Named After the First President of Russia B.N. Yeltsin, 19 Mira Str, Ekaterinburg, 620002, Russia
| | - Eugene A Shuman
- The Ural Federal University Named After the First President of Russia B.N. Yeltsin, 19 Mira Str, Ekaterinburg, 620002, Russia
| | - Artem A Korotkov
- The Ural Federal University Named After the First President of Russia B.N. Yeltsin, 19 Mira Str, Ekaterinburg, 620002, Russia
| | - Vladimir G Panov
- Institute of Industrial Ecology, The Urals Branch of the Russian Academy of Sciences, 20 Sofia Kovalevskaya Str, Ekaterinburg, 620990, Russia
| | - Marina P Sutunkova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str, Ekaterinburg, 620014, Russia
| | - Julia V Ryabova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str, Ekaterinburg, 620014, Russia
| | - Tatiana V Bushueva
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str, Ekaterinburg, 620014, Russia
| | - Tatiana N Shtin
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str, Ekaterinburg, 620014, Russia
| | - Vladimir B Gurvich
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str, Ekaterinburg, 620014, Russia
| | - Boris A Katsnelson
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str, Ekaterinburg, 620014, Russia.
| |
Collapse
|
24
|
Protsenko YL, Katsnelson BA, Klinova SV, Lookin ON, Balakin AA, Nikitina LV, Gerzen OP, Nabiev SR, Minigalieva IA, Privalova LI, Gurvich VB, Sutunkova MP, Katsnelson LB. Further analysis of rat myocardium contractility changes associated with a subchronic lead intoxication. Food Chem Toxicol 2019; 125:233-241. [PMID: 30634013 DOI: 10.1016/j.fct.2018.12.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/06/2018] [Accepted: 12/29/2018] [Indexed: 10/27/2022]
Abstract
A moderate subchronic lead intoxication was observed in male rats after repeated intraperitoneal injections of lead acetate. Right ventricular trabeculae and papillary muscles were isolated for in vitro studying of the contraction-relaxation cycle under isotonic and physiological loading. The contractile function of the myocardium was also assessed by measuring the velocity of thin filament movement over myosin. Lead intoxication led in papillary muscles to a decrease in the maximal rate of isotonic shortening for all afterloads and a decrease in the thin filament sliding velocity. Papillary muscles from lead-exposed rats displayed marked changes in most of the main characteristics of afterload contraction-relaxation cycles, but in trabeculae these changes were less pronounced. The reported changes were attenuated to some extent in rats treated with a Ca-containing bioprotector. The amount of work produced by both types of heart muscle preparations was not changed by lead. Only in papillary muscles the load-dependent relaxation index was significantly increased in the lead-treated groups. Thus subchronic lead intoxication affects the peak rate of force development and relaxation properties of cardiac muscle contracting in isotonic/physiological regimes rather than the total amount of mechanical work, which may reflect adaptive changes in the myocardial function under decreased contractility.
Collapse
Affiliation(s)
- Yuri L Protsenko
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Boris A Katsnelson
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia.
| | - Svetlana V Klinova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Oleg N Lookin
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia; Ural Federal University, Ekaterinburg, Russia
| | - Alexander A Balakin
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Larisa V Nikitina
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Oksana P Gerzen
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Salavat R Nabiev
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Ilzira A Minigalieva
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Larisa I Privalova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Vladimir B Gurvich
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Marina P Sutunkova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Leonid B Katsnelson
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia; Ural Federal University, Ekaterinburg, Russia
| |
Collapse
|
25
|
Bjørklund G, Dadar M, Chirumbolo S, Aaseth J. High Content of Lead Is Associated with the Softness of Drinking Water and Raised Cardiovascular Morbidity: A Review. Biol Trace Elem Res 2018; 186:384-394. [PMID: 29656350 DOI: 10.1007/s12011-018-1336-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/04/2018] [Indexed: 10/17/2022]
Abstract
Daily ingestion of lead (Pb), even through piped drinking water, has long time been an important issue of concern, attracting for decades research in environmental science and toxicology, and again comes to prominence because of recent high-profile cases of exposure of populations in several countries to Pb-contaminated water. Numerous studies have reported an association between Pb in water and the risk of cardiovascular pathologies. Low levels of magnesium and calcium, i.e., low degree of hardness of the drinking water, may accentuate Pb leaching from water pipes and furthermore increase Pb absorption. This review evaluates the evidence for an association between Pb exposure from drinking water and cardiovascular end points in human populations.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Toften 24, 8610, Mo i Rana, Norway.
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Salvatore Chirumbolo
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Jan Aaseth
- Faculty of Public Health, Inland Norway University of Applied Sciences, Elverum, Norway
- Department of Research, Innlandet Hospital Trust, Brumunddal, Norway
| |
Collapse
|
26
|
Protsenko YL, Katsnelson BA, Klinova SV, Lookin ON, Balakin AA, Nikitina LV, Gerzen OP, Minigalieva IA, Privalova LI, Gurvich VB, Sutunkova MP, Katsnelson LB. Effects of subchronic lead intoxication of rats on the myocardium contractility. Food Chem Toxicol 2018; 120:378-389. [PMID: 30036551 DOI: 10.1016/j.fct.2018.07.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/02/2018] [Accepted: 07/19/2018] [Indexed: 01/21/2023]
Abstract
Outbred male rats were repeatedly injected IP with sub-lethal doses of lead acetate 3 times a week during 5 weeks. They developed an explicit, even if moderate, lead intoxication characterized by typical hematological and some other features. The next day after the last injection the heart of each animal was excised, and the trabecules and papillary muscles from the right ventricle were used for modeling in vitro isometric (with varying starting length of the preparation) regimes of the contraction-relaxation cycle with different preloads. Several well-established parameters of this model were found changed compared with the preparations taken from the hearts of healthy control rats. Background in vivo calcium treatment attenuated both systemic and cardiotoxic effects of lead to an extent. We show for the first time that subchronic intoxication with lead caused myocardial preparations in a wide range of lengths to respond by a decrease in the time and speed parameters of the isometric contraction while maintaining its amplitude and by a decrease in the passive stiffness of trabecules. The responses of the various heart structures are outlined, and the isomyosin ratio is shown to have shifted towards the slow isoform. Mechanistic and toxicological inferences from the results are discussed.
Collapse
Affiliation(s)
- Yuri L Protsenko
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Boris A Katsnelson
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia.
| | - Svetlana V Klinova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Oleg N Lookin
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Alexander A Balakin
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Larisa V Nikitina
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Oksana P Gerzen
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Ilzira A Minigalieva
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Larisa I Privalova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Vladimir B Gurvich
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Marina P Sutunkova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Leonid B Katsnelson
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| |
Collapse
|
27
|
Reactive oxygen species impair the excitation-contraction coupling of papillary muscles after acute exposure to a high copper concentration. Toxicol In Vitro 2018; 51:106-113. [PMID: 29772264 DOI: 10.1016/j.tiv.2018.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/24/2018] [Accepted: 05/09/2018] [Indexed: 11/24/2022]
Abstract
Copper is an essential metal for homeostasis and the functioning of living organisms. We investigated the effects of a high copper concentration on the myocardial mechanics, investigating the reactive oxygen species (ROS) mediated effects. The developed force of papillary muscles was reduced after acute exposure to a high copper concentration and was prevented by co-incubation with tempol, DMSO and catalase. The reuptake of calcium by the sarcoplasmic reticulum was reduced by copper and restored by tempol. The contractile response to Ca2+ was reduced and reversed by antioxidants. The response to the β-adrenergic agonist decreased after exposure to copper and was restored by tempol and catalase. In addition, the in situ detection showed increased O2·- and OH·. Contractions dependent on the sarcolemmal Ca2+ influx were impaired by copper and restored by antioxidants. Myosin-ATPase activity decreased significantly after copper exposure. In conclusion, a high copper concentration can acutely impair myocardial excitation-contraction coupling, reduce the capacity to generate force, reduce the Ca2+ inflow and its reuptake, and reduce myosin-ATPase activity, and these effects are mediated by the local production of O2·-, OH· and H2O2. These toxicity effects of copper overload suggest that copper is a risk factor for cardiovascular disease.
Collapse
|
28
|
The Effect of a Short-Term Exposure to Lead on the Levels of Essential Metal Ions, Selected Proteins Related to Them, and Oxidative Stress Parameters in Humans. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8763793. [PMID: 29387295 PMCID: PMC5745737 DOI: 10.1155/2017/8763793] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 10/07/2017] [Accepted: 11/13/2017] [Indexed: 01/01/2023]
Abstract
The present study was designed to explore the possible influence of subacute exposure to lead on the levels of selected essential metals, selected proteins related to them, and oxidative stress parameters in occupationally exposed workers. The study population included 36 males occupationally exposed to lead for 36 to 44 days. Their blood lead level at the beginning of the study was 10.7 ± 7.67 μg/dl and increased to the level of 49.1 ± 14.1 μg/dl at the end of the study. The levels of calcium, magnesium, and zinc increased significantly after lead exposure compared to baseline by 3%, 3%, and 8%, respectively, while the level of copper decreased significantly by 7%. The malondialdehyde (MDA) level and the activities of catalase (CAT) and superoxide dismutase (SOD) did not change due to lead exposure. However, the level of lipid hydroperoxides (LPH) in serum increased significantly by 46%, while the level of erythrocyte lipofuscin (LPS) decreased by 13%. The serum levels of essential metals are modified by a short-term exposure to lead in occupationally exposed workers. A short-term exposure to lead induces oxidative stress associated with elevated levels of LPH but not MDA.
Collapse
|
29
|
Rhythmoinotropic Response of Papillary Muscles in Rats with Different Severity of Postinfarction Cardiosclerosis. Bull Exp Biol Med 2017; 163:612-616. [PMID: 28948548 DOI: 10.1007/s10517-017-3861-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Indexed: 10/18/2022]
Abstract
We studied the dependence of post-rest positive inotropic response of isolated rat papillary muscles subjected to rhythmic stimulation on severity of postinfarction cardiosclerosis developed during 6 weeks after occlusion of the left descending coronary artery. The isolated papillary muscles were perfused with oxygenated Krebs-Henseleit solution and electrically stimulated at a rate of 0.5 Hz. In all rats, coronary occlusion provoked postinfarction cardiosclerosis with the formation of a scar occupying 20-50% (min-max of the sample) of the left ventricular wall. Despite the presence of large postinfarction scar in all rats, the positive post-rest inotropic responses greatly varied. The post-rest response in rats with scar occupying <37% left ventricular wall was similar to that in intact animals, but rats with scar area >44% demonstrated dramatically decreased inotropic response to rest periods.
Collapse
|
30
|
Lead poisoning: acute exposure of the heart to lead ions promotes changes in cardiac function and Cav1.2 ion channels. Biophys Rev 2017; 9:807-825. [PMID: 28836190 DOI: 10.1007/s12551-017-0303-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/28/2017] [Indexed: 01/02/2023] Open
Abstract
Lead ions (Pb2+) possess characteristics similar to Ca2+. Because of this and its redox capabilities, lead causes different toxic effects. The neurotoxic effects have been well documented; however, the toxic effects on cardiac tissues remain allusive. We utilized isolated guinea pig hearts and measured the effects of Pb2+ on their contractility and excitability. Acute exposure to extracellular Pb2+ had a negative inotropic effect and increased diastolic tension. The speed of contraction and relaxation were affected, though the effects were more dramatic on the speed of contraction. Excitability was also altered. Heart beat frequency increased and later diminished after lead ion exposure. Pro-arrhytmic events, such as early after-depolarization and a reduction of the action potential plateau, were also observed. In isolated cardiomyocytes and tsA 201 cells, extracellular lead blocked currents through Cav1.2 channels, diminished their activation, and enhanced their fast inactivation, negatively affecting their gating currents. Thus, Pb2+ was cardiotoxic and reduced cardiac contractility, making the heart prone to arrhythmias. This was due, in part, to Pb2+ effects on the Cav1.2 channels; however, other channels, transporters or pathways may also be involved. Acute cardiotoxic effects were observed at Pb2+ concentrations achievable during acute lead poisoning. The results suggest how Cav1.2 gating can be affected by divalent cations, such as Pb2, and also suggest a more thorough evaluation of heart function in individuals affected by lead poisoning.
Collapse
|
31
|
Toscano CM, Simões MR, Alonso MJ, Salaices M, Vassallo DV, Fioresi M. Sub-chronic lead exposure produces β 1-adrenoceptor downregulation decreasing arterial pressure reactivity in rats. Life Sci 2017; 180:93-101. [PMID: 28499935 DOI: 10.1016/j.lfs.2017.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 04/26/2017] [Accepted: 05/08/2017] [Indexed: 10/19/2022]
Abstract
Lead is considered a causative factor for hypertension and other cardiovascular diseases. AIMS To investigate the effects of sub-chronic lead exposure on blood pressure reactivity and cardiac β1-adrenoceptor activity and to evaluate whether the effects found in vitro are similar to those found in vivo. MAIN METHODS Male Wistar rats were randomly distributed into two groups: control rats (Ct) and rats administered drinking water containing 100ppm lead (Pb) for 30days. KEY FINDINGS Blood pressure in the Pb rats increased starting from the first week of treatment until the end of the study [systolic blood pressure, Ct: 122±4 vs. Pb: 143±3mmHg; diastolic blood pressure, Ct: 63±4 vs. Pb: 84±4mmHg]. The heart rate was also increased (Ct: 299±11 vs. Pb: 365±11bpm), but the pressure reactivity to phenylephrine was decreased. Losartan and hexamethonium exhibited a greater reduction in blood pressure of Pb rats than in the Ct rats. Isoproterenol increased the left ventricular systolic and end-diastolic pressure, and heart rate only in Ct rats, suggesting that lead induced β1-adrenoceptor downregulation. Indomethacin reduced the blood pressure and heart rate in the Pb rats, suggesting the involvement of cyclooxygenase-derived products (which are associated with reduced nitric oxide bioavailability) in this process. SIGNIFICANCE These findings offer further evidence that the effects of sub-chronic lead exposure in vitro can be reproduced in vivo-even at low concentrations-thus triggering mechanisms for the development of hypertension. Therefore, lead should be considered an environmental risk factor for cardiovascular disease.
Collapse
Affiliation(s)
- Cindy Medici Toscano
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitória, ES CEP 29040-091, Brazil.
| | - Maylla Ronacher Simões
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitória, ES CEP 29040-091, Brazil
| | - Maria Jesus Alonso
- Departamento de Ciencias Básicas de laSalud, Universidad Rey Juan Carlos, 28922 Alcorcón, Spain
| | - Mercedes Salaices
- Departamento de Farmacología, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Dalton Valentim Vassallo
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitória, ES CEP 29040-091, Brazil; Health Science Center of Vitória-EMESCAM, Vitória, ES CEP 29045-402, Brazil.
| | - Mirian Fioresi
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitória, ES CEP 29040-091, Brazil; Department of Nursing, Federal University of Espírito Santo, Vitória, ES CEP 29040-090, Brazil
| |
Collapse
|
32
|
Low-level Chronic Lead Exposure Impairs Neural Control of Blood Pressure and Heart Rate in Rats. Cardiovasc Toxicol 2016; 17:190-199. [DOI: 10.1007/s12012-016-9374-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
Broseghini-Filho GB, Almenara CCP, Vassallo DV, Padilha AS. Blood Pressure Decreases Following Lead Treatment Cessation: Highest NO Bioavailability Involved. Biol Trace Elem Res 2016; 170:410-4. [PMID: 26342820 DOI: 10.1007/s12011-015-0497-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 08/28/2015] [Indexed: 10/23/2022]
Abstract
Although lead is known to induce arterial hypertension and vascular damage, it is not clear if after cessation of lead treatment, the increase of blood pressure is sustained and the vascular function is different from untreated rats. Therefore, we aimed to evaluate the systolic blood pressure during and following lead-treatment discontinuance and the possible vascular alterations involved with it. Rats received lead acetate (100 mg/L) in the drinking water or distilled water for 14 days. After 14 days, lead acetate solution was substituted by water distilled for more 28 days, as control group. Systolic blood pressure (SBP) was measured weekly by tail plethysmography, and the vascular reactivity to phenylephrine in isolated aortic rings was evaluated at end of treatment time. The increase in SBP induced by lead was reversed after stopping exposure, and it was accompanied by a reduction on vasoconstrictor response to phenylephrine. L-NAME treatment increased the phenylephrine response in both groups, but its effect was greater in lead group. Our findings provide evidence that the increased modulation by NO on contractile response to phenylephrine could be a compensatory mechanism that might contribute to decrease blood pressure after lead treatment cessation.
Collapse
Affiliation(s)
- Gilson B Broseghini-Filho
- Department of Physiological Sciences, Federal University of Espirito Santo, Marechal Campos Ave, 1468, Maruípe, 29040-091, Vitória, ES, Brazil.
| | - Camila C Pereira Almenara
- Department of Physiological Sciences, Federal University of Espirito Santo, Marechal Campos Ave, 1468, Maruípe, 29040-091, Vitória, ES, Brazil
| | - Dalton V Vassallo
- Department of Physiological Sciences, Federal University of Espirito Santo, Marechal Campos Ave, 1468, Maruípe, 29040-091, Vitória, ES, Brazil
- Health Science Center of Vitoria, EMESCAM, Vitória, ES, Brazil
| | - Alessandra S Padilha
- Department of Physiological Sciences, Federal University of Espirito Santo, Marechal Campos Ave, 1468, Maruípe, 29040-091, Vitória, ES, Brazil
| |
Collapse
|
34
|
Fernandes KCM, Martins Jr. AC, Oliveira A�SD, Antunes LMG, C�lus IMDS, Barbosa Jr. F, Barcelos GRM. Polymorphism of Metallothionein 2A Modifies Lead Body Burden in Workers Chronically Exposed to the Metal. Public Health Genomics 2015; 19:47-52. [DOI: 10.1159/000441713] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 10/17/2015] [Indexed: 11/19/2022] Open
|
35
|
Silva MASC, de Oliveira TF, Almenara CCP, Broseghini-Filho GB, Vassallo DV, Padilha AS, Silveira EA. Exposure to a Low Lead Concentration Impairs Contractile Machinery in Rat Cardiac Muscle. Biol Trace Elem Res 2015; 167:280-7. [PMID: 25795172 DOI: 10.1007/s12011-015-0300-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 03/04/2015] [Indexed: 10/23/2022]
Abstract
Lead exposure has been considered to be a risk factor for hypertension and cardiovascular disease. Our purpose was to evaluate the effects of low plasma lead concentration on cardiac contractility in isolated papillary muscles. Wistar rats were divided in control group or group treated with 100 ppm of lead acetate in the drinking water for 15 days. Blood pressure (BP) was measured weekly. At the end of the treatment period, the animals were anesthetized and euthanized, and parameters related to isolated papillary muscle contractility were recorded. The lead concentrations in the blood reached 12.3 ± 2 μg/dL. The BP was increased in the group treated with 100 ppm of lead acetate. Lead treatment did not alter force and time derivatives of the force of left ventricular papillary muscles. In addition, the inotropic response induced by an increase in the extracellular Ca(2+) concentration was reduced in the Pb(2+) group. However, the uptake of Ca(2+) by the sarcoplasmic reticulum and the protein expression of SERCA and phospholamban remained unchanged. Postrest contraction was similar in the both groups, and tetanic peak and plateau tension were reduced in lead group. These results demonstrated that the reduction in the inotropic response to calcium does not appear to be caused by changes in the trans-sarcolemmal calcium flux but suggest that an impairment of the contractile machinery might be taking place. Our results demonstrate that even at a concentration below the limit considered to be safe, lead exerts deleterious effects on the cardiac contractile machinery.
Collapse
Affiliation(s)
- Marito A S C Silva
- Department of Physiological Sciences, Federal University of Espirito Santo, CCS/UFES. Av. Marechal Campos, 1468, Maruípe, 29043-090, Vitoria, Brazil
| | | | | | | | | | | | | |
Collapse
|
36
|
Ferron AJT, Jacobsen BB, Sant’Ana PG, de Campos DHS, de Tomasi LC, Luvizotto RDAM, Cicogna AC, Leopoldo AS, Lima-Leopoldo AP. Cardiac Dysfunction Induced by Obesity Is Not Related to β-Adrenergic System Impairment at the Receptor-Signalling Pathway. PLoS One 2015; 10:e0138605. [PMID: 26390297 PMCID: PMC4577087 DOI: 10.1371/journal.pone.0138605] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 09/01/2015] [Indexed: 01/29/2023] Open
Abstract
Obesity has been shown to impair myocardial performance. Some factors have been suggested as responsible for possible cardiac abnormalities in models of obesity, among them beta-adrenergic (βA) system, an important mechanism of regulation of myocardial contraction and relaxation. The objective of present study was to evaluate the involvement of βA system components in myocardial dysfunction induced by obesity. Thirty-day-old male Wistar rats were distributed in control (C, n = 25) and obese (Ob, n = 25) groups. The C group was fed a standard diet and Ob group was fed four unsaturated high-fat diets for 15 weeks. Cardiac function was evaluated by isolated papillary muscle preparation and βA system evaluated by using cumulative concentrations of isoproterenol and Western blot. After 15 weeks, the Ob rats developed higher adiposity index than C rats and several comorbidities; however, were not associated with changes in systolic blood pressure. Obesity caused structural changes and the myocardial responsiveness to post-rest contraction stimulus and increased extracellular calcium (Ca2+) was compromised. There were no changes in cardiac function between groups after βA stimulation. The obesity was not accompanied by changes in protein expression of G protein subunit alpha (Gsα) and βA receptors (β1AR and β2AR). In conclusion, the myocardial dysfunction caused by unsaturated high-fat diet-induced obesity, after 15 weeks, is not related to βAR system impairment at the receptor-signalling pathway.
Collapse
Affiliation(s)
- Artur Junio Togneri Ferron
- Center of Physical Education and Sports, Department of Sports, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Bruno Barcellos Jacobsen
- Center of Physical Education and Sports, Department of Sports, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Paula Grippa Sant’Ana
- Department of Clinical and Cardiology, School of Medicine, UNESP- Univ. Estadual Paulista, Botucatu, São Paulo, Brazil
| | | | - Loreta Casquel de Tomasi
- Department of Clinical and Cardiology, School of Medicine, UNESP- Univ. Estadual Paulista, Botucatu, São Paulo, Brazil
| | | | - Antonio Carlos Cicogna
- Department of Clinical and Cardiology, School of Medicine, UNESP- Univ. Estadual Paulista, Botucatu, São Paulo, Brazil
| | - André Soares Leopoldo
- Center of Physical Education and Sports, Department of Sports, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Ana Paula Lima-Leopoldo
- Center of Physical Education and Sports, Department of Sports, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
- * E-mail:
| |
Collapse
|
37
|
Nunes KZ, Nunes DO, Silveira EA, Cruz Pereira CA, Broseghini Filho GB, Vassallo DV, Fioresi M. Chronic lead exposure decreases the vascular reactivity of rat aortas: the role of hydrogen peroxide. PLoS One 2015; 10:e0120965. [PMID: 25807237 PMCID: PMC4373949 DOI: 10.1371/journal.pone.0120965] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/27/2015] [Indexed: 01/04/2023] Open
Abstract
We investigated whether exposure to small concentrations of lead alters blood pressure and vascular reactivity. Male Wistar rats were sorted randomly into the following two groups: control (Ct) and treatment with 100 ppm of lead (Pb), which was added to drinking water, for 30 days. Systolic blood pressure (BP) was measured weekly. Following treatment, aortic ring vascular reactivity was assessed. Tissue samples were properly stored for further biochemical investigation. The lead concentration in the blood reached approximately 8 μg/dL. Treatment increased blood pressure and decreased the contractile responses of the aortic rings to phenylephrine (1 nM–100 mM). Following N-nitro-L arginine methyl ester (L-NAME) administration, contractile responses increased in both groups but did not differ significantly between them. Lead effects on Rmax were decreased compared to control subjects following superoxide dismutase (SOD) administration. Catalase, diethyldithiocarbamic acid (DETCA), and apocynin increased the vasoconstrictor response induced by phenylephrine in the aortas of lead-treated rats but did not increase the vasoconstrictor response in the aortas of untreated rats. Tetraethylammonium (TEA) potentiated the vasoconstrictor response induced by phenylephrine in aortic segments in both groups, but these effects were greater in lead-treated rats. The co-incubation of TEA and catalase abolished the vasodilatory effect noted in the lead group. The present study is the first to demonstrate that blood lead concentrations well below the values established by international legislation increased blood pressure and decreased phenylephrine-induced vascular reactivity. The latter effect was associated with oxidative stress, specifically oxidative stress induced via increases in hydrogen peroxide levels and the subsequent effects of hydrogen peroxide on potassium channels.
Collapse
Affiliation(s)
- Karolini Zuqui Nunes
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, ES, Brazil
- * E-mail:
| | - Dieli Oliveira Nunes
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Edna Aparecida Silveira
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, ES, Brazil
| | | | | | - Dalton Valentim Vassallo
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, ES, Brazil
- Health Science Centre of Vitória—EMESCAM, Vitória, Espírito Santo, Brazil
| | - Mirian Fioresi
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, ES, Brazil
- Department of Nursing, Federal University of Espírito Santo, Vitória, ES, Brazil
| |
Collapse
|
38
|
Simões MR, Aguado A, Fiorim J, Silveira EA, Azevedo BF, Toscano CM, Zhenyukh O, Briones AM, Alonso MJ, Vassallo DV, Salaices M. MAPK pathway activation by chronic lead-exposure increases vascular reactivity through oxidative stress/cyclooxygenase-2-dependent pathways. Toxicol Appl Pharmacol 2015; 283:127-38. [DOI: 10.1016/j.taap.2015.01.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 12/21/2014] [Accepted: 01/06/2015] [Indexed: 12/24/2022]
|
39
|
Berlina AN, Sharma AK, Zherdev AV, Gaur MS, Dzantiev BB. Colorimetric Determination of Lead Using Gold Nanoparticles. ANAL LETT 2014. [DOI: 10.1080/00032719.2014.961641] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|