1
|
Bhati FK, Bhat MK. An anti-neoplastic tale of metformin through its transport. Life Sci 2024; 357:123060. [PMID: 39278619 DOI: 10.1016/j.lfs.2024.123060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/31/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Metformin is an attractive candidate drug among all the repurposed drugs for cancer. Extensive preclinical and clinical research has evaluated its efficacy in cancer therapy, revealing a mixed outcome in clinical settings. To fully exploit metformin's therapeutic potential, understanding cellular factors relevant to its transport and accumulation in cancer cells needs to be understood. This review highlights the relevance of metformin transporter status towards its anti-cancer potential. Metformin transporters are regulated at pre-transcriptional, transcriptional, and post-translational levels. Moreover, the tumour microenvironment can also influence metformin accumulation in cancer cells. Also, Metformin treatment can regulate its transporters by altering global DNA methylation, protein acetylation, and transcription factors. Importantly, metformin transporters not only influence chemotherapeutic drug toxicity but are also associated with the prognosis and survival of individuals having cancer. Strategic decisions based on the expression and regulation of metformin transporters holds promise for its therapeutic implications and relevance.
Collapse
Affiliation(s)
- Firoz Khan Bhati
- Biotechnology Research and Innovation Council - National Centre for Cell Science (BRIC- NCCS), Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411 007, India
| | - Manoj Kumar Bhat
- Biotechnology Research and Innovation Council - National Centre for Cell Science (BRIC- NCCS), Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411 007, India.
| |
Collapse
|
2
|
Mattar M, Umutoni F, Hassan MA, Wamburu MW, Turner R, Patton JS, Chen X, Lei W. Chemotherapy-Induced Peripheral Neuropathy: A Recent Update on Pathophysiology and Treatment. Life (Basel) 2024; 14:991. [PMID: 39202733 PMCID: PMC11355765 DOI: 10.3390/life14080991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/29/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a major long-lasting side effect of some chemotherapy drugs, which threatens cancer survival rate. CIPN mostly affects sensory neurons and occasionally motor neurons, causing numbness, tingling, discomfort, and burning pain in the upper and lower extremities. The pathophysiology of CIPN is not completely understood; however, it is believed that chemotherapies induce peripheral neuropathy via directly damaging mitochondria, impairing the function of ion channels, triggering immunological mechanisms, and disrupting microtubules. The treatment of CIPN is a medical challenge, and there are no approved pharmacological options. Currently, duloxetine and other antidepressants, antioxidant, anti-inflammatory, and ion-channel targeted therapies are commonly used in clinics to relieve the symptoms of CIPN. Several other types of drugs, such as cannabinoids, sigma-1 receptor antagonists, and nicotinamides ribose, are being evaluated in preclinical and clinical studies. This paper summarizes the information related to the physiology of CIPN and medicines that could be used for treating this condition.
Collapse
Affiliation(s)
- Marina Mattar
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC 29325, USA; (M.M.); (M.A.H.)
| | - Florence Umutoni
- Department of Pharmaceutical and Graduate Life Sciences, College of Health Sciences, Nursing, and Pharmacy, Manchester University, Fort Wayne, IN 46845, USA; (F.U.); (J.S.P.)
| | - Marwa A. Hassan
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC 29325, USA; (M.M.); (M.A.H.)
| | - M. Wambui Wamburu
- Department of Pharmacy Practice, College of Health Sciences, Nursing, and Pharmacy, Manchester University, Fort Wayne, IN 46845, USA;
| | - Reagan Turner
- Department of Biology, Presbyterian College, Clinton, SC 29325, USA;
| | - James S. Patton
- Department of Pharmaceutical and Graduate Life Sciences, College of Health Sciences, Nursing, and Pharmacy, Manchester University, Fort Wayne, IN 46845, USA; (F.U.); (J.S.P.)
| | - Xin Chen
- Department of Pharmaceutical and Clinical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC 27506, USA;
| | - Wei Lei
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC 29325, USA; (M.M.); (M.A.H.)
- Department of Pharmaceutical and Graduate Life Sciences, College of Health Sciences, Nursing, and Pharmacy, Manchester University, Fort Wayne, IN 46845, USA; (F.U.); (J.S.P.)
| |
Collapse
|
3
|
Manengu C, Zhu CH, Zhang GD, Tian MM, Lan XB, Tao LJ, Ma L, Liu Y, Yu JQ, Liu N. HDAC inhibitors as a potential therapy for chemotherapy-induced neuropathic pain. Inflammopharmacology 2024; 32:2153-2175. [PMID: 38761314 DOI: 10.1007/s10787-024-01488-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 03/22/2024] [Indexed: 05/20/2024]
Abstract
Cancer, a chronic disease characterized by uncontrolled cell development, kills millions of people globally. The WHO reported over 10 million cancer deaths in 2020. Anticancer medications destroy healthy and malignant cells. Cancer treatment induces neuropathy. Anticancer drugs cause harm to spinal cord, brain, and peripheral nerve somatosensory neurons, causing chemotherapy-induced neuropathic pain. The chemotherapy-induced mechanisms underlying neuropathic pain are not fully understood. However, neuroinflammation has been identified as one of the various pathways associated with the onset of chemotherapy-induced neuropathic pain. The neuroinflammatory processes may exhibit varying characteristics based on the specific type of anticancer treatment delivered. Neuroinflammatory characteristics have been observed in the spinal cord, where microglia and astrocytes have a significant impact on the development of chemotherapy-induced peripheral neuropathy. The patient's quality of life might be affected by sensory deprivation, loss of consciousness, paralysis, and severe disability. High cancer rates and ineffective treatments are associated with this disease. Recently, histone deacetylases have become a novel treatment target for chemotherapy-induced neuropathic pain. Chemotherapy-induced neuropathic pain may be treated with histone deacetylase inhibitors. Histone deacetylase inhibitors may be a promising therapeutic treatment for chemotherapy-induced neuropathic pain. Common chemotherapeutic drugs, mechanisms, therapeutic treatments for neuropathic pain, and histone deacetylase and its inhibitors in chemotherapy-induced neuropathic pain are covered in this paper. We propose that histone deacetylase inhibitors may treat several aspects of chemotherapy-induced neuropathic pain, and identifying these inhibitors as potentially unique treatments is crucial to the development of various chemotherapeutic combination treatments.
Collapse
Affiliation(s)
- Chalton Manengu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
- School of International Education, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Chun-Hao Zhu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Guo-Dong Zhang
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Miao-Miao Tian
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Xiao-Bing Lan
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Li-Jun Tao
- Department of Pharmacy, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750004, China
| | - Lin Ma
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Yue Liu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Jian-Qiang Yu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China.
| | - Ning Liu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China.
| |
Collapse
|
4
|
Kummer K, Sheets PL. Targeting Prefrontal Cortex Dysfunction in Pain. J Pharmacol Exp Ther 2024; 389:268-276. [PMID: 38702195 PMCID: PMC11125798 DOI: 10.1124/jpet.123.002046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/12/2024] [Accepted: 04/02/2024] [Indexed: 05/06/2024] Open
Abstract
The prefrontal cortex (PFC) has justifiably become a significant focus of chronic pain research. Collectively, decades of rodent and human research have provided strong rationale for studying the dysfunction of the PFC as a contributing factor in the development and persistence of chronic pain and as a key supraspinal mechanism for pain-induced comorbidities such as anxiety, depression, and cognitive decline. Chronic pain alters the structure, chemistry, and connectivity of PFC in both humans and rodents. In this review, we broadly summarize the complexities of reported changes within both rodent and human PFC caused by pain and offer insight into potential pharmacological and nonpharmacological approaches for targeting PFC to treat chronic pain and pain-associated comorbidities. SIGNIFICANCE STATEMENT: Chronic pain is a significant unresolved medical problem causing detrimental changes to physiological, psychological, and behavioral aspects of life. Drawbacks of currently approved pain therapeutics include incomplete efficacy and potential for abuse producing a critical need for novel approaches to treat pain and comorbid disorders. This review provides insight into how manipulation of prefrontal cortex circuits could address this unmet need of more efficacious and safer pain therapeutics.
Collapse
Affiliation(s)
- Kai Kummer
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria (K.K.); Department of Pharmacology and Toxicology (P.L.S.), Medical Neurosciences Graduate Program (P.L.S.), and Stark Neurosciences Research Institute (P.L.S.), Indiana University School of Medicine, Indianapolis, Indiana
| | - Patrick L Sheets
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria (K.K.); Department of Pharmacology and Toxicology (P.L.S.), Medical Neurosciences Graduate Program (P.L.S.), and Stark Neurosciences Research Institute (P.L.S.), Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
5
|
Wang W, Ma X, Du W, Lin R, Li Z, Jiang W, Wang LY, Worley PF, Xu T. Small G-Protein Rheb Gates Mammalian Target of Rapamycin Signaling to Regulate Morphine Tolerance in Mice. Anesthesiology 2024; 140:786-802. [PMID: 38147625 DOI: 10.1097/aln.0000000000004885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
BACKGROUND Analgesic tolerance due to long-term use of morphine remains a challenge for pain management. Morphine acts on μ-opioid receptors and downstream of the phosphatidylinositol 3-kinase signaling pathway to activate the mammalian target of rapamycin (mTOR) pathway. Rheb is an important regulator of growth and cell-cycle progression in the central nervous system owing to its critical role in the activation of mTOR. The hypothesis was that signaling via the GTP-binding protein Rheb in the dorsal horn of the spinal cord is involved in morphine-induced tolerance. METHODS Male and female wild-type C57BL/6J mice or transgenic mice (6 to 8 weeks old) were injected intrathecally with saline or morphine twice daily at 12-h intervals for 5 consecutive days to establish a tolerance model. Analgesia was assessed 60 min later using the tail-flick assay. After 5 days, the spine was harvested for Western blot or immunofluorescence analysis. RESULTS Chronic morphine administration resulted in the upregulation of spinal Rheb by 4.27 ± 0.195-fold (P = 0.0036, n = 6), in turn activating mTOR by targeting rapamycin complex 1 (mTORC1). Genetic overexpression of Rheb impaired morphine analgesia, resulting in a tail-flick latency of 4.65 ± 1.10 s (P < 0.0001, n = 7) in Rheb knock-in mice compared to 10 s in control mice (10 ± 0 s). Additionally, Rheb overexpression in spinal excitatory neurons led to mTORC1 signaling overactivation. Genetic knockout of Rheb or inhibition of mTORC1 signaling by rapamycin potentiated morphine-induced tolerance (maximum possible effect, 52.60 ± 9.56% in the morphine + rapamycin group vs. 16.60 ± 8.54% in the morphine group; P < 0.0001). Moreover, activation of endogenous adenosine 5'-monophosphate-activated protein kinase inhibited Rheb upregulation and retarded the development of morphine-dependent tolerance (maximum possible effect, 39.51 ± 7.40% in morphine + metformin group vs. 15.58 ± 5.79% in morphine group; P < 0.0001). CONCLUSIONS This study suggests spinal Rheb as a key molecular factor for regulating mammalian target of rapamycin signaling. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Wenying Wang
- Department of Anesthesiology, Sixth People's Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaqing Ma
- Department of Anesthesiology, Sixth People's Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjie Du
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Raozhou Lin
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Zhongping Li
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Wei Jiang
- Department of Anesthesiology, Sixth People's Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu-Yang Wang
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario, Canada; and Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Paul F Worley
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tao Xu
- Department of Anesthesiology, Sixth People's Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Anesthesiology, Suzhou Hospital of Anhui Medical University, Suzhou, China; and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
6
|
Morais MÍ, Braga AV, Silva RRL, Barbosa BCM, Costa SOAM, Rodrigues FF, Melo ISF, Matos RC, Carobin NV, Sabino AP, Coelho MM, Machado RR. Metformin inhibits paclitaxel-induced mechanical allodynia by activating opioidergic pathways and reducing cytokines production in the dorsal root ganglia and thalamus. Cytokine 2024; 174:156468. [PMID: 38101167 DOI: 10.1016/j.cyto.2023.156468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/17/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023]
Abstract
It has been shown that AMP-activated protein kinase (AMPK) is involved in the nociceptive processing. This observation has prompted us to investigate the effects of the AMPK activator metformin on the paclitaxel-induced mechanical allodynia, a well-established model of neuropathic pain. Mechanical allodynia was induced by four intraperitoneal (i.p) injections of paclitaxel (2 mg/kg.day) in mice. Metformin was administered per os (p.o.). Naltrexoneandglibenclamide were used to investigate mechanisms mediating metformin activity. Concentrations of cytokines in the dorsal root ganglia (DRG) and thalamus were determined. After a single p.o. administration, the two highest doses of metformin (500 and 1000 mg/kg) attenuated the mechanical allodynia. This response was attenuated by all doses of metformin (250, 500 and 1000 mg/kg) when two administrations, 2 h apart, were carried out. Naltrexone (5 and 10 mg/kg, i.p.), but not glibenclamide (20 and 40 mg/kg, p.o.), attenuated metformin activity. Concentrations of tumor necrosis factor (TNF)-α, interleukin (IL)-1β and CXCL-1 in the DRG were increased after administration of paclitaxel. Metformin (1000 mg/kg) reduced concentrations of TNF-α, IL-1β and CXCL-1 in the DRG. Concentration of IL-6, but not TNF-α, in the thalamus was increased after administration of paclitaxel. Metformin (1000 mg/kg) reduced concentration of IL-6 in the thalamus. In summary, metformin exhibits activity in the model of neuropathic pain induced by paclitaxel. This activity may be mediated by activation of opioidergic pathways and reduced production of TNF-α, IL-1β and CXCL-1 in the DRG and IL-6 in the thalamus.
Collapse
Affiliation(s)
- Marcela Í Morais
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alysson V Braga
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Roger R L Silva
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bárbara C M Barbosa
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Sarah O A M Costa
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Felipe F Rodrigues
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ivo S F Melo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rafael C Matos
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Natália V Carobin
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Adriano P Sabino
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Márcio M Coelho
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Renes R Machado
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
7
|
Saleh T, Naffa R, Barakat NA, Ismail MA, Alotaibi MR, Alsalem M. Cisplatin Provokes Peripheral Nociception and Neuronal Features of Therapy-Induced Senescence and Calcium Dysregulation in Rats. Neurotox Res 2024; 42:10. [PMID: 38294571 DOI: 10.1007/s12640-024-00690-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
Therapy-Induced Senescence (TIS) is a form of senescence that is typically described in malignant cells in response to the exposure of cancer chemotherapy or radiation but can also be precipitated in non-malignant cells. TIS has been shown to contribute to the development of several cancer therapy-related adverse effects; however, evidence on its role in mediating chemotherapy-induced neurotoxicity, such as Chemotherapy-induced Peripheral Neuropathy (CIPN), is limited. We here show that cisplatin treatment over two cycles (cumulative dose of 23 mg/kg) provoked mechanical allodynia and thermal hyperalgesia in Sprague-Dawley rats. Isolation of dorsal root ganglia (DRG) from the cisplatin-treated rats demonstrated robust SA-β-gal upregulation at both day 8 (after the first cycle) and day 18 (after the second cycle), decreased lmnb1 expression, increased expression of cdkn1a and cdkn2a, and of several factors of the Senescence-associated Secretory Phenotype (SASP) (Il6, Il1b, and mmp9). Moreover, single-cell calcium imaging of cultured DRGs revealed a significant increase in terms of the magnitude of KCl-evoked calcium responses in cisplatin-treated rats compared to vehicle-treated rats. No significant change was observed in terms of the magnitude of capsaicin-evoked calcium responses in cisplatin-treated rats compared to vehicle-treated rats but with decreased area under the curve of the responses in cisplatin-treated rats. Further evidence to support the contribution of TIS to therapy adverse effects is required but should encourage the use of senescence-modulating agents (senotherapeutics) as novel palliative approaches to mitigate chemotherapy-induced neurotoxicity.
Collapse
Affiliation(s)
- Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan.
| | - Randa Naffa
- Department of Basic Dental Sciences, Faculty of Dentistry, Al-Ahliyya Amman University, Amman, Jordan
| | - Noor A Barakat
- Department of Pharmacy, Faculty of Pharmacy, Middle East University, Amman, Jordan
- Department of Anatomy and Histology, School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Mohammad A Ismail
- Cell Therapy Center (CTC), The University of Jordan, Amman, Jordan
- Adelaide Medical School, South Australian ImmunoGENomics Cancer Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Moureq R Alotaibi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Mohammad Alsalem
- Department of Anatomy and Histology, School of Medicine, The University of Jordan, Amman, 11942, Jordan.
| |
Collapse
|
8
|
Alsalem M, Ellaithy A, Bloukh S, Haddad M, Saleh T. Targeting therapy-induced senescence as a novel strategy to combat chemotherapy-induced peripheral neuropathy. Support Care Cancer 2024; 32:85. [PMID: 38177894 DOI: 10.1007/s00520-023-08287-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a treatment-limiting adverse effect of anticancer therapy that complicates the lifestyle of many cancer survivors. There is currently no gold-standard for the assessment or management of CIPN. Subsequently, understanding the underlying mechanisms that lead to the development of CIPN is essential for finding better pharmacological therapy. Therapy-induced senescence (TIS) is a form of senescence that is triggered in malignant and non-malignant cells in response to the exposure to chemotherapy. Recent evidence has also suggested that TIS develops in the dorsal root ganglia of rodent models of CIPN. Interestingly, several components of the senescent phenotype are commensurate with the currently established primary processes implicated in the pathogenesis of CIPN including mitochondrial dysfunction, oxidative stress, and neuroinflammation. In this article, we review the literature that supports the hypothesis that TIS could serve as a holistic mechanism leading to CIPN, and we propose the potential for investigating senotherapeutics as means to mitigate CIPN in cancer survivors.
Collapse
Affiliation(s)
- Mohammad Alsalem
- Department of Anatomy and Histology, School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Amr Ellaithy
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Sarah Bloukh
- Department of Anatomy and Histology, School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Mansour Haddad
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, Irbid, 21163, Jordan
| | - Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan.
| |
Collapse
|
9
|
Chen M, Shin M, Ware TB, Donvito G, Muchhala KH, Mischel R, Mustafa MA, Serbulea V, Upchurch CM, Leitinger N, Akbarali HI, Lichtman AH, Hsu KL. Endocannabinoid biosynthetic enzymes regulate pain response via LKB1-AMPK signaling. Proc Natl Acad Sci U S A 2023; 120:e2304900120. [PMID: 38109529 PMCID: PMC10756258 DOI: 10.1073/pnas.2304900120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 11/08/2023] [Indexed: 12/20/2023] Open
Abstract
Diacylglycerol lipase-beta (DAGLβ) serves as a principal 2-arachidonoylglycerol (2-AG) biosynthetic enzyme regulating endocannabinoid and eicosanoid metabolism in immune cells including macrophages and dendritic cells. Genetic or pharmacological inactivation of DAGLβ ameliorates inflammation and hyper-nociception in preclinical models of pathogenic pain. These beneficial effects have been assigned principally to reductions in downstream proinflammatory lipid signaling, leaving alternative mechanisms of regulation largely underexplored. Here, we apply quantitative chemical- and phospho-proteomics to find that disruption of DAGLβ in primary macrophages leads to LKB1-AMPK signaling activation, resulting in reprogramming of the phosphoproteome and bioenergetics. Notably, AMPK inhibition reversed the antinociceptive effects of DAGLβ blockade, thereby directly supporting DAGLβ-AMPK crosstalk in vivo. Our findings uncover signaling between endocannabinoid biosynthetic enzymes and ancient energy-sensing kinases to mediate cell biological and pain responses.
Collapse
Affiliation(s)
- Miaomiao Chen
- Department of Chemistry, University of Virginia, Charlottesville, VA22904
| | - Myungsun Shin
- Department of Chemistry, University of Virginia, Charlottesville, VA22904
| | - Timothy B. Ware
- Department of Chemistry, University of Virginia, Charlottesville, VA22904
| | - Giulia Donvito
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA23298
| | - Karan H. Muchhala
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA23298
| | - Ryan Mischel
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA23298
| | - Mohammed A. Mustafa
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA23298
| | - Vlad Serbulea
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA22908
| | - Clint M. Upchurch
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA22908
| | - Norbert Leitinger
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA22908
| | - Hamid I. Akbarali
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA23298
| | - Aron H. Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA23298
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA23298
| | - Ku-Lung Hsu
- Department of Chemistry, University of Virginia, Charlottesville, VA22904
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA22908
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA22908
- University of Virginia Cancer Center, Cancer Biology Program, University of Virginia, Charlottesville, VA22903
| |
Collapse
|
10
|
Martínez-Martel I, Pol O. A Novel Therapy for Cisplatin-Induced Allodynia and Dysfunctional and Emotional Impairments in Male and Female Mice. Antioxidants (Basel) 2023; 12:2063. [PMID: 38136183 PMCID: PMC10741113 DOI: 10.3390/antiox12122063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Patients undergoing chemotherapy with cisplatin (CIS) develop neuropathy in addition to other symptoms such as, anxiety, depression, muscle wasting and body weight loss. This symptomatology greatly weakens patients and may even lead to adjournment of chemotherapy. The protecting actions of molecular hydrogen in many neurological illnesses have been described, but its effect on the functional and emotional deficiencies caused by CIS has not been assessed. In C57BL/6J male and female mice injected with CIS, we examined the impact of the prophylactic treatment with hydrogen-rich water (HRW) on: (i) the tactile and cold allodynia, (ii) the deficits of grip strength and weight loss, (iii) the anxiodepressive-like behaviors and (iv) the inflammatory and oxidative reactions incited by CIS in the dorsal root ganglia (DRG) and prefrontal cortex (PFC). The results demonstrate that the mechanical allodynia and the anxiodepressive-like comportment provoked by CIS were similarly manifested in both sexes, whereas the cold allodynia, grip strength deficits and body weight loss produced by this chemotherapeutic agent were greater in female mice. Nonetheless, the prophylactic treatment with HRW prevented the allodynia and the functional and emotional impairments resulting from CIS in both sexes. This treatment also inhibited the inflammatory and oxidative responses activated by CIS in the DRG and PFC in both sexes, which might explain the therapeutic actions of HRW in male and female mice. In conclusion, this study revealed the plausible use of HRW as a new therapy for the allodynia and physical and mental impairments linked with CIS and its possible mechanism of action.
Collapse
Affiliation(s)
- Ignacio Martínez-Martel
- Grup de Neurofarmacologia Molecular, Institut de Recerca Sant Pau, Sant Quintí 77-79, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut de Recerca Sant Pau, Sant Quintí 77-79, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
11
|
Tiwari A, Kumar Singh R, Satone PD, Meshram RJ. Metformin-Induced Vitamin B12 Deficiency in Patients With Type-2 Diabetes Mellitus. Cureus 2023; 15:e47771. [PMID: 38034222 PMCID: PMC10688235 DOI: 10.7759/cureus.47771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023] Open
Abstract
Diabetes mellitus (DM) is the most common metabolic disease worldwide. Hence, the prevalence of the disease continues to increase across the globe. Metformin is used as a first-line oral hypoglycemic drug to keep control of type-2 DM (T2DM) in adults. Diabetic patients on metformin have been largely seen to be suffering from a deficiency of vitamin B12. It is a water-soluble vitamin mainly obtained from animal food like meat. At the basic cell level, it acts as a cofactor for enzymes essential for DNA synthesis and neuroprotection. As a result, vitamin B12 deficiency can show clinical effects such as progressive demyelination, peripheral neuropathy and haematological abnormalities (such as macrocytic anaemia and neutrophil hypersegmentation). Various studies also show a relation between vitamin B12 insufficiency and metformin-treated T2DM patients as decreased absorption of vitamin B12. There could be a severe complication of vitamin B12 deficiency in T2DM patients. The use of proton pump inhibitors, gastric bypass surgery, older patients and patients with a higher red blood cell turnover are factors that hasten the depletion of vitamin B12 reserves in the liver. Methylmalonic acid and homocysteine levels can be measured to identify vitamin B12 insufficiency at its early stage if blood vitamin B12 levels are borderline. The action of metformin on vitamin B12 absorption and its potential mechanisms of inhibition will be the main topics of discussion in this review. The review will also discuss how vitamin B12 deficiencies in T2DM patients using metformin affect their clinical results.
Collapse
Affiliation(s)
- Aakriti Tiwari
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Rakshit Kumar Singh
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Prasiddhi D Satone
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Revat J Meshram
- Paediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
12
|
Malaekeh-Nikouei A, Shokri-Naei S, Karbasforoushan S, Bahari H, Baradaran Rahimi V, Heidari R, Askari VR. Metformin beyond an anti-diabetic agent: A comprehensive and mechanistic review on its effects against natural and chemical toxins. Biomed Pharmacother 2023; 165:115263. [PMID: 37541178 DOI: 10.1016/j.biopha.2023.115263] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023] Open
Abstract
In addition to the anti-diabetic effect of metformin, a growing number of studies have shown that metformin has some exciting properties, such as anti-oxidative capabilities, anticancer, genomic stability, anti-inflammation, and anti-fibrosis, which have potent, that can treat other disorders other than diabetes mellitus. We aimed to describe and review the protective and antidotal efficacy of metformin against biologicals, chemicals, natural, medications, pesticides, and radiation-induced toxicities. A comprehensive search has been performed from Scopus, Web of Science, PubMed, and Google Scholar databases from inception to March 8, 2023. All in vitro, in vivo, and clinical studies were considered. Many studies suggest that metformin affects diseases other than diabetes. It is a radioprotective and chemoprotective drug that also affects viral and bacterial diseases. It can be used against inflammation-related and apoptosis-related abnormalities and against toxins to lower their effects. Besides lowering blood sugar, metformin can attenuate the effects of toxins on body weight, inflammation, apoptosis, necrosis, caspase-3 activation, cell viability and survival rate, reactive oxygen species (ROS), NF-κB, TNF-α, many interleukins, lipid profile, and many enzymes activity such as catalase and superoxide dismutase. It also can reduce the histopathological damages induced by many toxins on the kidneys, liver, and colon. However, clinical trials and human studies are needed before using metformin as a therapeutic agent against other diseases.
Collapse
Affiliation(s)
- Amirhossein Malaekeh-Nikouei
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sina Shokri-Naei
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sobhan Karbasforoushan
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Bahari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Heidari
- Medical Biotechnology Research Center, AJA University of Medical Sciences, Tehran, Iran; Research Center for Cancer Screening and Epidemiology, AJA University of Medical Sciences, Tehran, Iran
| | - Vahid Reza Askari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Bakry HM, Mansour NO, ElKhodary TR, Soliman MM. Efficacy of metformin in prevention of paclitaxel-induced peripheral neuropathy in breast cancer patients: a randomized controlled trial. Front Pharmacol 2023; 14:1181312. [PMID: 37583905 PMCID: PMC10424931 DOI: 10.3389/fphar.2023.1181312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/17/2023] [Indexed: 08/17/2023] Open
Abstract
Background: Paclitaxel-induced peripheral neuropathy (PN) is a serious clinical problem with no approved drug for prevention. This study aimed to examine the neuroprotective effect of metformin against paclitaxel-induced PN in breast cancer patients. Methods: Patients with confirmed breast cancer diagnosis who were planned to receive paclitaxel were randomized to receive either metformin or placebo. Both groups received the standard chemotherapy protocol for breast cancer. Patients started metformin/placebo 1 week before paclitaxel initiation and continued study interventions thereafter for nine consecutive weeks. The primary outcome was the incidence of development of grade two or more paclitaxel-induced sensory PN. The PN was graded according to the National Cancer Institute Common Terminology Criteria for Adverse Events (NCI-CTCAE). Patients' quality of life (QoL) was assessed by the Functional Assessment of Cancer Therapy/Gynecologic Oncology Group-Neurotoxicity (FACTGOG-Ntx) subscale. Pain severity was measured by the Brief Pain Inventory Short Form (BPI-SF). Serum levels of nerve growth factor (NGF) and neurotensin (NT) were measured at baseline and at the end paclitaxel treatment. Results: A total of 73 patients (36 in the metformin arm and 37 in the control arm) were evaluated. The cumulative incidence of development of grade two or more PN was significantly lower in the metformin arm (14 (38.9%) than the control arm (28 (75.7%); p = 0.001). At the end of paclitaxel treatment, patients' QoL was significantly better in the metformin arm [median (IQR) FACTGOG-Ntx subscale of (24.0 (20.5-26.5)] compared to the control arm (21.0 (18.0-24.0); p = 0.003). The metformin arm showed lower "average" and "worst" pain scores than those detected in the control arm. At the end of the paclitaxel treatment, there was a significant difference in the median serum NGF levels between the two arms, favoring metformin (p < 0.05), while NT serum levels were deemed comparable between the two study arms (p = 0.09). Conclusion: The use of metformin in breast cancer patients offered a marked protection against paclitaxel-induced PN, which translated to better patient QoL. Clinical Trial Registration: https://classic.clinicaltrials.gov/ct2/show/NCT05351021, identifier NCT05351021.
Collapse
Affiliation(s)
- Hala M. Bakry
- Clinical Pharmacy and Pharmacy Practice Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Noha O. Mansour
- Clinical Pharmacy and Pharmacy Practice Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Tawfik R. ElKhodary
- Oncology Center, Medical Oncology Unit, Mansoura University, Mansoura, Egypt
| | - Moetaza M. Soliman
- Clinical Pharmacy and Pharmacy Practice Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
14
|
Liu TT, Qiu CY, Hu WP. Metformin inhibits spontaneous excitatory postsynaptic currents in spinal dorsal cord neurons from paclitaxel-treated rats. Front Synaptic Neurosci 2023; 15:1191383. [PMID: 37216004 PMCID: PMC10195993 DOI: 10.3389/fnsyn.2023.1191383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction Cancer patients treated with paclitaxel often develop chemotherapy-induced peripheral neuropathy, which has not been effectively treated with drugs. The anti-diabetic drug metformin is effective in the treatment of neuropathic pain. The aim of this study was to elucidate effect of metformin on paclitaxel-induced neuropathic pain and spinal synaptic transmission. Methods Electrophysiological experiments on rat spinal slices were performed in vitro and mechanical allodynia quantified in vitro. Results The present data demonstrated that intraperitoneal injection of paclitaxel produced mechanical allodynia and potentiated spinal synaptic transmission. Intrathecal injection of metformin significantly reversed the established mechanical allodynia induced by paclitaxel in rats. Either spinal or systemic administration of metformin significantly inhibited the increased frequency of spontaneous excitatory postsynaptic currents (sEPSCs) in spinal dorsal horn neurons from paclitaxel-treated rats. We found that 1 h incubation of metformin also reduced the frequency rather than the amplitude of sEPSCs in the spinal slices from paclitaxel-treated rats. Discussion These results suggested that metformin was able to depress the potentiated spinal synaptic transmission, which may contribute to alleviating the paclitaxel-induced neuropathic pain.
Collapse
Affiliation(s)
- Ting-Ting Liu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Chun-Yu Qiu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Wang-Ping Hu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
- Department of Physiology, Hubei College of Chinese Medicine, Jingzhou, Hubei, China
| |
Collapse
|
15
|
Serageldin MA, Kassem AB, El-Kerm Y, Helmy MW, El-Mas MM, El-Bassiouny NA. The Effect of Metformin on Chemotherapy-Induced Toxicities in Non-diabetic Breast Cancer Patients: A Randomised Controlled Study. Drug Saf 2023; 46:587-599. [PMID: 37131014 DOI: 10.1007/s40264-023-01305-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND AND OBJECTIVE Breast cancer patients treated with adriamycin-cyclophosphamide plus paclitaxel (AC-T) are often challenged with serious adverse effects for which no effective therapies are available. Here, we investigated whether metformin, an antidiabetic drug with additional pleiotropic effects could favourably offset AC-T induced toxicities. PATIENTS AND METHODS Seventy non-diabetic breast cancer patients were randomised to receive either AC-T (adriamycin 60 mg/m2 + cyclophosphamide 600 mg/m2 × 4 cycles Q21 days, followed by weekly paclitaxel 80 mg/m2 × 12 cycles) alone or AC-T plus metformin (1700 mg/day). Patients were assessed regularly after each cycle to record the incidence and severity of adverse events based on the National Cancer Institute Common Terminology Criteria for Adverse Events (NCI-CTCAE), version 5.0. Moreover, baseline echocardiography and ultrasonography were done and repeated after the end of neoadjuvant therapy. RESULTS Addition of metformin to AC-T resulted in significantly less incidence and severity of peripheral neuropathy, oral mucositis, and fatigue (p < 0.05) compared to control arm. Moreover, the left ventricular ejection fraction (LVEF%) in the control arm dropped from a mean of 66.69 ± 4.57 to 62.2 ± 5.22% (p = 0.0004) versus a preserved cardiac function in the metformin arm (64.87 ± 4.84 to 65.94 ± 3.44%, p = 0.2667). Furthermore, fatty liver incidence was significantly lower in metformin compared with control arm (8.33% vs 51.85%, p = 0.001). By contrast, haematological disturbances caused by AC-T were preserved after concurrent metformin administration (p > 0.05). CONCLUSION Metformin offers a therapeutic opportunity for controlling toxicities caused by neoadjuvant chemotherapy in non-diabetic breast cancer patients. TRIAL REGISTRATION This randomised controlled trial was registered on November 20, 2019 in ClinicalTrials.gov under registration number: NCT04170465.
Collapse
Affiliation(s)
- Manar A Serageldin
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| | - Amira B Kassem
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Yasser El-Kerm
- Oncology Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Maged W Helmy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
- Department of Pharmacology and Toxicology, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
| | - Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Department of Pharmacology and Toxicology, College of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Noha A El-Bassiouny
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| |
Collapse
|
16
|
Hammad ASA, Sayed-Ahmed MM, Abdel Hafez SMN, Ibrahim ARN, Khalifa MMA, El-Daly M. Trimetazidine alleviates paclitaxel-induced peripheral neuropathy through modulation of TLR4/p38/NFκB and klotho protein expression. Chem Biol Interact 2023; 376:110446. [PMID: 36898573 DOI: 10.1016/j.cbi.2023.110446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Chemotherapy-induced peripheral neuropathy is a common adverse effect associated with a number of chemotherapeutic agents including paclitaxel (PTX) which is commonly used in a wide range of solid tumors. Development of PTX-induced peripheral neuropathy (PIPN) during cancer treatment requires dose reduction which limits its clinical benefits. This study is conducted to investigate the role of toll like receptor-4 (TLR4) and p38 signaling and Klotho protein expression in PIPN and the role of Trimetazidine (TMZ) in this pathway. Sixty-four male Swiss albino mice were divided into 4 groups (n = 16); Group (1) injected intraperitoneally (IP) with ethanol/tween 80/saline for 8 successive days. Group (2) received TMZ (5 mg/kg, IP, day) for 8 successive days. Group (3) treated with 4 doses of PTX (4.5 mg/kg, IP) every other day over a period of 8 days. Group (4) received a combination of TMZ as group 2 and PTX as group 3. The Effect of TMZ on the antitumor activity of PTX was studied in another set of mice-bearing Solid Ehrlich Carcinoma (SEC) that was similarly divided as the above-mentioned set. TMZ mitigated tactile allodynia, thermal hypoalgesia, numbness and fine motor dyscoordination associated with PTX in Swiss mice. The results of the current study show that the neuroprotective effect of TMZ can be attributed to inhibition of TLR4/p38 signaling which also includes a reduction in matrix metalloproteinase-9 (MMP9) protein levels as well as the proinflammatory interleukin-1β (IL-1β) and preserving the levels of the anti-inflammatory IL-10. Moreover, the current study is the first to demonstrate that PTX reduces the neuronal levels of klotho protein and showed its modulation via cotreatment with TMZ. In addition, this study showed that TMZ neither alter the growth of SEC nor the antitumor activity of PTX. In conclusion, we suggest that (1) Inhibition of Klotho protein and upregulation of TLR4/p38 signals in nerve tissues may contribute to PIPN. (2) TMZ attenuates PIPN by modulating TLR4/p38 and Klotho protein expression in without interfering with its antitumor activity.
Collapse
Affiliation(s)
- Asmaa S A Hammad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, 61511, Egypt.
| | - Mohamed M Sayed-Ahmed
- Pharmacology and Experimental Oncology Unit, National Cancer Institute, Cairo University, Cairo, 11796, Egypt
| | - Sara M N Abdel Hafez
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, Minia, 61511, Egypt
| | - Ahmed R N Ibrahim
- Clinical Pharmacy Department, College of Pharmacy, King Khalid University, Abha, 61441, Saudi Arabia; Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61511, Egypt
| | - Mohamed M A Khalifa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, 61511, Egypt
| | - Mahmoud El-Daly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, 61511, Egypt
| |
Collapse
|
17
|
Yap TA, Daver N, Mahendra M, Zhang J, Kamiya-Matsuoka C, Meric-Bernstam F, Kantarjian HM, Ravandi F, Collins ME, Francesco MED, Dumbrava EE, Fu S, Gao S, Gay JP, Gera S, Han J, Hong DS, Jabbour EJ, Ju Z, Karp DD, Lodi A, Molina JR, Baran N, Naing A, Ohanian M, Pant S, Pemmaraju N, Bose P, Piha-Paul SA, Rodon J, Salguero C, Sasaki K, Singh AK, Subbiah V, Tsimberidou AM, Xu QA, Yilmaz M, Zhang Q, Li Y, Bristow CA, Bhattacharjee MB, Tiziani S, Heffernan TP, Vellano CP, Jones P, Heijnen CJ, Kavelaars A, Marszalek JR, Konopleva M. Complex I inhibitor of oxidative phosphorylation in advanced solid tumors and acute myeloid leukemia: phase I trials. Nat Med 2023; 29:115-126. [PMID: 36658425 DOI: 10.1038/s41591-022-02103-8] [Citation(s) in RCA: 112] [Impact Index Per Article: 112.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 10/21/2022] [Indexed: 01/21/2023]
Abstract
Although targeting oxidative phosphorylation (OXPHOS) is a rational anticancer strategy, clinical benefit with OXPHOS inhibitors has yet to be achieved. Here we advanced IACS-010759, a highly potent and selective small-molecule complex I inhibitor, into two dose-escalation phase I trials in patients with relapsed/refractory acute myeloid leukemia (NCT02882321, n = 17) and advanced solid tumors (NCT03291938, n = 23). The primary endpoints were safety, tolerability, maximum tolerated dose and recommended phase 2 dose (RP2D) of IACS-010759. The PK, PD, and preliminary antitumor activities of IACS-010759 in patients were also evaluated as secondary endpoints in both clinical trials. IACS-010759 had a narrow therapeutic index with emergent dose-limiting toxicities, including elevated blood lactate and neurotoxicity, which obstructed efforts to maintain target exposure. Consequently no RP2D was established, only modest target inhibition and limited antitumor activity were observed at tolerated doses, and both trials were discontinued. Reverse translational studies in mice demonstrated that IACS-010759 induced behavioral and physiological changes indicative of peripheral neuropathy, which were minimized with the coadministration of a histone deacetylase 6 inhibitor. Additional studies are needed to elucidate the association between OXPHOS inhibition and neurotoxicity, and caution is warranted in the continued development of complex I inhibitors as antitumor agents.
Collapse
Affiliation(s)
- Timothy A Yap
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Naval Daver
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mikhila Mahendra
- Translational Research to AdvanCe Therapeutics and Innovation in ONcology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jixiang Zhang
- Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carlos Kamiya-Matsuoka
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hagop M Kantarjian
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Farhad Ravandi
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Meghan E Collins
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, USA
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Maria Emilia Di Francesco
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ecaterina E Dumbrava
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Siqing Fu
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sisi Gao
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Translational Research to AdvanCe Therapeutics and Innovation in ONcology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason P Gay
- Translational Research to AdvanCe Therapeutics and Innovation in ONcology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sonal Gera
- Translational Research to AdvanCe Therapeutics and Innovation in ONcology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Han
- Translational Research to AdvanCe Therapeutics and Innovation in ONcology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David S Hong
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elias J Jabbour
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhenlin Ju
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel D Karp
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alessia Lodi
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, USA
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Jennifer R Molina
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Natalia Baran
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aung Naing
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maro Ohanian
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shubham Pant
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naveen Pemmaraju
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Prithviraj Bose
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sarina A Piha-Paul
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jordi Rodon
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carolina Salguero
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Koji Sasaki
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anand K Singh
- Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vivek Subbiah
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Apostolia M Tsimberidou
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Quanyun A Xu
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Musa Yilmaz
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qi Zhang
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuan Li
- Department of Biostatistics and Data Science, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Christopher A Bristow
- Translational Research to AdvanCe Therapeutics and Innovation in ONcology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Meenakshi B Bhattacharjee
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Stefano Tiziani
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, USA
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Department of Oncology, Dell Medical School, Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX, USA
| | - Timothy P Heffernan
- Translational Research to AdvanCe Therapeutics and Innovation in ONcology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher P Vellano
- Translational Research to AdvanCe Therapeutics and Innovation in ONcology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Philip Jones
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Cobi J Heijnen
- Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Psychological Sciences, Rice University, Houston, TX, USA
| | - Annemieke Kavelaars
- Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joseph R Marszalek
- Translational Research to AdvanCe Therapeutics and Innovation in ONcology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Marina Konopleva
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
18
|
Chemotherapy-Induced Peripheral Neuropathy. Handb Exp Pharmacol 2023; 277:299-337. [PMID: 36253554 DOI: 10.1007/164_2022_609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating side effect of many common anti-cancer agents that can lead to dose reduction or treatment discontinuation, which decrease chemotherapy efficacy. Long-term CIPN can interfere with activities of daily living and diminish the quality of life. The mechanism of CIPN is not yet fully understood, and biomarkers are needed to identify patients at high risk and potential treatment targets. Metabolomics can capture the complex behavioral and pathophysiological processes involved in CIPN. This chapter is to review the CIPN metabolomics studies to find metabolic pathways potentially involved in CIPN. These potential CIPN metabolites are then investigated to determine whether there is evidence from studies of other neuropathy etiologies such as diabetic neuropathy and Leber hereditary optic neuropathy to support the importance of these pathways in peripheral neuropathy. Six potential biomarkers and their putative mechanisms in peripheral neuropathy were reviewed. Among these biomarkers, histidine and phenylalanine have clear roles in neurotransmission or neuroinflammation in peripheral neuropathy. Further research is needed to discover and validate CIPN metabolomics biomarkers in large clinical studies.
Collapse
|
19
|
Meregalli C, Monza L, Jongen JLM. A mechanistic understanding of the relationship between skin innervation and chemotherapy-induced neuropathic pain. FRONTIERS IN PAIN RESEARCH (LAUSANNE, SWITZERLAND) 2022; 3:1066069. [PMID: 36582196 PMCID: PMC9792502 DOI: 10.3389/fpain.2022.1066069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022]
Abstract
Neuropathic pain is a frequent complication of chemotherapy-induced peripheral neurotoxicity (CIPN). Chemotherapy-induced peripheral neuropathies may serve as a model to study mechanisms of neuropathic pain, since several other common causes of peripheral neuropathy like painful diabetic neuropathy may be due to both neuropathic and non-neuropathic pain mechanisms like ischemia and inflammation. Experimental studies are ideally suited to study changes in morphology, phenotype and electrophysiologic characteristics of primary afferent neurons that are affected by chemotherapy and to correlate these changes to behaviors reflective of evoked pain, mainly hyperalgesia and allodynia. However, hyperalgesia and allodynia may only represent one aspect of human pain, i.e., the sensory-discriminative component, while patients with CIPN often describe their pain using words like annoying, tiring and dreadful, which are affective-emotional descriptors that cannot be tested in experimental animals. To understand why some patients with CIPN develop neuropathic pain and others not, and which are the components of neuropathic pain that they are experiencing, experimental and clinical pain research should be combined. Emerging evidence suggests that changes in subsets of primary afferent nerve fibers may contribute to specific aspects of neuropathic pain in both preclinical models and in patients with CIPN. In addition, the role of cutaneous neuroimmune interactions is considered. Since obtaining dorsal root ganglia and peripheral nerves in patients is problematic, analyses performed on skin biopsies from preclinical models as well as patients provide an opportunity to study changes in primary afferent nerve fibers and to associate these changes to human pain. In addition, other biomarkers of small fiber damage in CIPN, like corneal confocal microscope and quantitative sensory testing, may be considered.
Collapse
Affiliation(s)
- Cristina Meregalli
- School of Medicine and Surgery, Experimental Neurology Unit and Milan Center for Neuroscience, University of Milano-Bicocca, Monza, Italy,Correspondence: Cristina Meregalli
| | - Laura Monza
- School of Medicine and Surgery, Experimental Neurology Unit and Milan Center for Neuroscience, University of Milano-Bicocca, Monza, Italy
| | - Joost L. M. Jongen
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| |
Collapse
|
20
|
Silva Santos Ribeiro P, Willemen HLDM, Eijkelkamp N. Mitochondria and sensory processing in inflammatory and neuropathic pain. FRONTIERS IN PAIN RESEARCH 2022; 3:1013577. [PMID: 36324872 PMCID: PMC9619239 DOI: 10.3389/fpain.2022.1013577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/26/2022] [Indexed: 01/24/2023] Open
Abstract
Rheumatic diseases, such as osteoarthritis and rheumatoid arthritis, affect over 750 million people worldwide and contribute to approximately 40% of chronic pain cases. Inflammation and tissue damage contribute to pain in rheumatic diseases, but pain often persists even when inflammation/damage is resolved. Mechanisms that cause this persistent pain are still unclear. Mitochondria are essential for a myriad of cellular processes and regulate neuronal functions. Mitochondrial dysfunction has been implicated in multiple neurological disorders, but its role in sensory processing and pain in rheumatic diseases is relatively unexplored. This review provides a comprehensive understanding of how mitochondrial dysfunction connects inflammation and damage-associated pathways to neuronal sensitization and persistent pain. To provide an overall framework on how mitochondria control pain, we explored recent evidence in inflammatory and neuropathic pain conditions. Mitochondria have intrinsic quality control mechanisms to prevent functional deficits and cellular damage. We will discuss the link between neuronal activity, mitochondrial dysfunction and chronic pain. Lastly, pharmacological strategies aimed at reestablishing mitochondrial functions or boosting mitochondrial dynamics as therapeutic interventions for chronic pain are discussed. The evidence presented in this review shows that mitochondria dysfunction may play a role in rheumatic pain. The dysfunction is not restricted to neuronal cells in the peripheral and central nervous system, but also includes blood cells and cells at the joint level that may affect pain pathways indirectly. Pre-clinical and clinical data suggest that modulation of mitochondrial functions can be used to attenuate or eliminate pain, which could be beneficial for multiple rheumatic diseases.
Collapse
Affiliation(s)
| | | | - Niels Eijkelkamp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
21
|
Tay N, Laakso EL, Schweitzer D, Endersby R, Vetter I, Starobova H. Chemotherapy-induced peripheral neuropathy in children and adolescent cancer patients. Front Mol Biosci 2022; 9:1015746. [PMID: 36310587 PMCID: PMC9614173 DOI: 10.3389/fmolb.2022.1015746] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/20/2022] [Indexed: 11/22/2022] Open
Abstract
Brain cancer and leukemia are the most common cancers diagnosed in the pediatric population and are often treated with lifesaving chemotherapy. However, chemotherapy causes severe adverse effects and chemotherapy-induced peripheral neuropathy (CIPN) is a major dose-limiting and debilitating side effect. CIPN can greatly impair quality of life and increases morbidity of pediatric patients with cancer, with the accompanying symptoms frequently remaining underdiagnosed. Little is known about the incidence of CIPN, its impact on the pediatric population, and the underlying pathophysiological mechanisms, as most existing information stems from studies in animal models or adult cancer patients. Herein, we aim to provide an understanding of CIPN in the pediatric population and focus on the 6 main substance groups that frequently cause CIPN, namely the vinca alkaloids (vincristine), platinum-based antineoplastics (cisplatin, carboplatin and oxaliplatin), taxanes (paclitaxel and docetaxel), epothilones (ixabepilone), proteasome inhibitors (bortezomib) and immunomodulatory drugs (thalidomide). We discuss the clinical manifestations, assessments and diagnostic tools, as well as risk factors, pathophysiological processes and current pharmacological and non-pharmacological approaches for the prevention and treatment of CIPN.
Collapse
Affiliation(s)
- Nicolette Tay
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - E-Liisa Laakso
- Mater Research Institute-The University of Queensland, South Brisbane, QLD, Australia
| | - Daniel Schweitzer
- Mater Research Institute-The University of Queensland, South Brisbane, QLD, Australia
| | - Raelene Endersby
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
- The School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia
| | - Hana Starobova
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
- *Correspondence: Hana Starobova,
| |
Collapse
|
22
|
Barakat HE, Hussein RRS, Elberry AA, Zaki MA, Ramadan ME. The impact of metformin use on the outcomes of locally advanced breast cancer patients receiving neoadjuvant chemotherapy: an open-labelled randomized controlled trial. Sci Rep 2022; 12:7656. [PMID: 35538143 PMCID: PMC9091204 DOI: 10.1038/s41598-022-11138-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 04/19/2022] [Indexed: 12/20/2022] Open
Abstract
Recently, several clinical trials have attempted to find evidence that supports the anticancer use of metformin in breast cancer (BC) patients. The current study evaluates the anticancer activity of metformin in addition to neoadjuvant chemotherapy (NACT) in locally advanced BC patients. Additionally, we assess the safety and tolerability of this combination and its effect on the quality of life (QoL) of BC patients. Eighty non-diabetic female patients with proven locally advanced BC were randomized into two arms. The first arm received anthracycline/taxane-based NACT plus metformin. The second arm received anthracycline/taxane-based NACT only. Overall response rate (ORR), clinical complete response (cCr), pathological complete response (pCR), and breast conservative rate (BCR) were evaluated between both groups, and correlated with serum metformin concentration. ORR, cCr, pCR, and BCR increased non-significantly in the metformin group compared to the control group; 80.6% vs 68.4%, 27.8% vs 10.5%, 22.2% vs 10.5%, and 19.4% vs 13.2%, respectively. A trend towards cCR and pCR was associated with higher serum metformin concentrations. Metformin decreased the incidence of peripheral neuropathy, bone pain, and arthralgia, although worsened the gastrointestinal adverse events. Metformin combination with NACT has no effect on the QoL of BC patients. Metformin combination with NACT is safe, tolerable, and improves non-significantly the clinical and pathological tumor response of BC patients.
Collapse
Affiliation(s)
- Hadeer Ehab Barakat
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt.
| | - Raghda R S Hussein
- Department of Clinical Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
- Department of Clinical Pharmacy, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Ahmed Abdullah Elberry
- Department of Pharmacy Practice, Batterjee Medical College, Pharmacy Program, Jeddah, Saudi Arabia
- Department of Clinical Pharmacology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | | | | |
Collapse
|
23
|
Liu M, Zhao YT, Lv YY, Xu T, Li D, Xiong YC, Xin WJ, Lin SY. Metformin Relieves Bortezomib-Induced Neuropathic Pain by Regulating AMPKa2-Mediated Autophagy in the Spinal Dorsal Horn. Neurochem Res 2022; 47:1878-1887. [PMID: 35278160 DOI: 10.1007/s11064-022-03571-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/25/2022] [Accepted: 03/03/2022] [Indexed: 11/28/2022]
Abstract
Chemotherapy-induced neuropathic pain is a major clinical problem with limited treatment options. Here, we show that metformin relieves bortezomib (BTZ)-evoked induction and maintenance of neuropathic pain by preventing the reduction in the expression of Beclin-1, an autophagy marker, in the spinal dorsal horn. Application of rapamycin or 3-methyladenine, autophagy inducer and inhibitor, respectively, affected the mechanical allodynia differently. Co-application of 3-methyladenine and metformin partially inhibited the effect of metformin in recovering Beclin-1 expression and in reducing the pain behavior in rats subjected to BTZ treatment. BTZ treatment also reduced the expression of AMPKa2 in the dorsal horn, which was recovered by metformin treatment. Overexpression of AMPKa2 attenuated the BTZ-evoked reduction in Beclin-1 expression and mechanical allodynia, whereas intrathecal injection of AMPKa2 siRNA decreased the Beclin-1 expression and induced mechanical allodynia in naive rats. Moreover, BTZ treatment increased the GATA3 expression in the dorsal horn, and GATA3 siRNA attenuated the AMPKa2 downregulation and mechanical allodynia induced by BTZ. Chromatin immunoprecipitation further showed that BTZ induced an increased recruitment of GATA3 to multiple sites in the AMPKa2 promoter region. Furthermore, decreased acetylation and increased methylation of histone H3 in the AMPKa2 promoter in the spinal dorsal horn was detected after BTZ treatment. Our findings suggest that metformin may regulate AMPKa2-mediated autophagy in the dorsal horn and alleviate the behavioral hypersensitivity induced by BTZ.
Collapse
Affiliation(s)
- Meng Liu
- Zhongshan Medical School and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, Zhongshan Rd. 2, Guangzhou, China.,Department of Anesthesia and Pain Medicine, Guangzhou First People's Hospital, Guangzhou, China
| | - Yu-Ting Zhao
- Zhongshan Medical School and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, Zhongshan Rd. 2, Guangzhou, China
| | - You-You Lv
- Department of Anesthesia, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Ting Xu
- Zhongshan Medical School and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, Zhongshan Rd. 2, Guangzhou, China
| | - Dai Li
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yuan-Chang Xiong
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wen-Jun Xin
- Zhongshan Medical School and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, Zhongshan Rd. 2, Guangzhou, China
| | - Su-Yan Lin
- Zhongshan Medical School and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, Zhongshan Rd. 2, Guangzhou, China.
| |
Collapse
|
24
|
The Antidiabetic Drug Metformin Regulates Voltage-Gated Sodium Channel Na V1.7 via the Ubiquitin-Ligase NEDD4-2. eNeuro 2022; 9:ENEURO.0409-21.2022. [PMID: 35131865 PMCID: PMC8906783 DOI: 10.1523/eneuro.0409-21.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/10/2021] [Accepted: 01/01/2022] [Indexed: 12/14/2022] Open
Abstract
The antidiabetic drug metformin has been shown to reduce pain hypersensitivity in preclinical models of chronic pain and in neuropathic pain in humans. Multiple intracellular pathways have been described as metformin targets. Among them, metformin is an activator of the adenosine 5′-monophosphate protein kinase that can in turn modulate the activity of the E3 ubiquitin ligase NEDD4-2 and thus post-translational expression of voltage-gated sodium channels (NaVs). In this study, we found that the bulk of the effect of metformin on Na1.7 is dependent on NEDD4-2. In HEK cells, the expression of NaV1.7 at the membrane fraction, obtained by a biotinylation approach, is only reduced by metformin when cotransfected with NEDD4-2. Similarly, in voltage-clamp recordings, metformin significantly reduced NaV1.7 current density when cotransfected with NEDD4-2. In mouse dorsal root ganglion (DRG) neurons, without changing the biophysical properties of NaV1.7, metformin significantly decreased NaV1.7 current densities, but not in Nedd4L knock-out mice (SNS-Nedd4L−/−). In addition, metformin induced a significant reduction in NEDD4-2 phosphorylation at the serine-328 residue in DRG neurons, an inhibitory phosphorylation site of NEDD4-2. In current-clamp recordings, metformin reduced the number of action potentials elicited by DRG neurons from Nedd4Lfl/fl, with a partial decrease also present in SNS-Nedd4L−/− mice, suggesting that metformin can also change neuronal excitability in an NEDD4-2-independent manner. We suggest that NEDD4-2 is a critical player for the effect of metformin on the excitability of nociceptive neurons; this action may contribute to the relief of neuropathic pain.
Collapse
|
25
|
Goel Y, Fouda R, Gupta K. Endoplasmic Reticulum Stress in Chemotherapy-Induced Peripheral Neuropathy: Emerging Role of Phytochemicals. Antioxidants (Basel) 2022; 11:antiox11020265. [PMID: 35204148 PMCID: PMC8868275 DOI: 10.3390/antiox11020265] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a significant dose-limiting long-term sequela in cancer patients undergoing treatment, often leading to discontinuation of treatment. No established therapy exists to prevent and/or ameliorate CIPN. Reactive oxygen species (ROS) and mitochondrial dysregulation have been proposed to underlie the pathobiology of CIPN. However, interventions to prevent and treat CIPN are largely ineffective. Additional factors and mechanism-based targets need to be identified to develop novel strategies to target CIPN. The role of oxidative stress appears to be central, but the contribution of endoplasmic reticulum (ER) stress remains under-examined in the pathobiology of CIPN. This review describes the significance of ER stress and its contribution to CIPN, the protective role of herbal agents in countering ER stress in nervous system-associated disorders, and their possible repurposing for preventing CIPN.
Collapse
Affiliation(s)
- Yugal Goel
- Hematology/Oncology, Department of Medicine, University of California, Irvine, CA 92697, USA; (Y.G.); (R.F.)
| | - Raghda Fouda
- Hematology/Oncology, Department of Medicine, University of California, Irvine, CA 92697, USA; (Y.G.); (R.F.)
| | - Kalpna Gupta
- Hematology/Oncology, Department of Medicine, University of California, Irvine, CA 92697, USA; (Y.G.); (R.F.)
- VA Medical Center, Southern California Institute for Research and Education, Long Beach, CA 90822, USA
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
- Correspondence:
| |
Collapse
|
26
|
Methods and protocols for chemotherapy-induced peripheral neuropathy (CIPN) mouse models using paclitaxel. Methods Cell Biol 2022; 168:277-298. [DOI: 10.1016/bs.mcb.2021.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Ma X, Chen Y, Li XC, Mi WL, Chu YX, Wang YQ, Mao-Ying QL. Spinal Neuronal GRK2 Contributes to Preventive Effect by Electroacupuncture on Cisplatin-Induced Peripheral Neuropathy in Mice. Anesth Analg 2021; 134:204-215. [PMID: 34652301 PMCID: PMC8647702 DOI: 10.1213/ane.0000000000005768] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The main symptoms of chemotherapy-induced peripheral neuropathy (CIPN) include pain and numbness. Neuronal G protein–coupled receptor kinase 2 (GRK2) plays an important role in various pain models. Cisplatin treatment can induce the activation of proinflammatory microglia in spinal cord. The purpose of this study was to investigate the role of spinal neuronal GRK2 in cisplatin-induced CIPN and in the prevention of CIPN by electroacupuncture (EA).
Collapse
Affiliation(s)
- Xue Ma
- From the Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine
| | - Yu Chen
- From the Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine
| | - Xiao-Chen Li
- From the Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine
| | - Wen-Li Mi
- From the Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine
| | - Yu-Xia Chu
- From the Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine
| | - Yan-Qing Wang
- From the Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science.,Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, People's Republic of China
| | - Qi-Liang Mao-Ying
- From the Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine.,Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
28
|
Ma J, Goodwani S, Acton PJ, Buggia-Prevot V, Kesler SR, Jamal I, Mahant ID, Liu Z, Mseeh F, Roth BL, Chakraborty C, Peng B, Wu Q, Jiang Y, Le K, Soth MJ, Jones P, Kavelaars A, Ray WJ, Heijnen CJ. Inhibition of dual leucine zipper kinase prevents chemotherapy-induced peripheral neuropathy and cognitive impairments. Pain 2021; 162:2599-2612. [PMID: 33872235 PMCID: PMC8442742 DOI: 10.1097/j.pain.0000000000002256] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 01/15/2021] [Accepted: 01/26/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Chemotherapy-induced peripheral neuropathy (CIPN) and chemotherapy-induced cognitive impairments (CICI) are common, often severe neurotoxic side effects of cancer treatment that greatly reduce quality of life of cancer patients and survivors. Currently, there are no Food and Drug Administration-approved agents for the prevention or curative treatment of CIPN or CICI. The dual leucine zipper kinase (DLK) is a key mediator of axonal degeneration that is localized to axons and coordinates the neuronal response to injury. We developed a novel brain-penetrant DLK inhibitor, IACS'8287, which demonstrates potent and highly selective inhibition of DLK in vitro and in vivo. Coadministration of IACS'8287 with the platinum derivative cisplatin prevents mechanical allodynia, loss of intraepidermal nerve fibers in the hind paws, cognitive deficits, and impairments in brain connectivity in mice, all without interfering with the antitumor activity of cisplatin. The protective effects of IACS'8287 are associated with preservation of mitochondrial function in dorsal root ganglion neurons and in brain synaptosomes. In addition, RNA sequencing analysis of dorsal root ganglia reveals modulation of genes involved in neuronal activity and markers for immune cell infiltration by DLK inhibition. These data indicate that CIPN and CICI require DLK signaling in mice, and DLK inhibitors could become an attractive treatment in the clinic when coadministered with cisplatin, and potentially other chemotherapeutic agents, to prevent neurotoxicities as a result of cancer treatment.
Collapse
Affiliation(s)
- Jiacheng Ma
- The Neurodegeneration Consortium, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sunil Goodwani
- The Neurodegeneration Consortium, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Paul J. Acton
- The Neurodegeneration Consortium, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Virginie Buggia-Prevot
- The Neurodegeneration Consortium, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Shelli R. Kesler
- Cancer Neuroscience Lab, School of Nursing, Department of Diagnostic Medicine, LIVESTRONG Cancer Institutes, University of Texas at Austin, Austin, TX, United States
| | - Imran Jamal
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Iteeben D. Mahant
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Zhen Liu
- Institute for Applied Cancer Science, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Faika Mseeh
- Institute for Applied Cancer Science, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Bruce L. Roth
- The Neurodegeneration Consortium, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Chaitali Chakraborty
- The Neurodegeneration Consortium, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Bo Peng
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Qi Wu
- Institute for Applied Cancer Science, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yongying Jiang
- Institute for Applied Cancer Science, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Kang Le
- Institute for Applied Cancer Science, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Michael J. Soth
- Institute for Applied Cancer Science, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Philip Jones
- Institute for Applied Cancer Science, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Annemieke Kavelaars
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - William J. Ray
- The Neurodegeneration Consortium, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Cobi J. Heijnen
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
29
|
Kasembeli MM, Singhmar P, Ma J, Edralin J, Tang Y, Adams C, Heijnen CJ, Kavelaars A, Tweardy DJ. TTI-101: A competitive inhibitor of STAT3 that spares oxidative phosphorylation and reverses mechanical allodynia in mouse models of neuropathic pain. Biochem Pharmacol 2021; 192:114688. [PMID: 34274354 PMCID: PMC8478865 DOI: 10.1016/j.bcp.2021.114688] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 01/06/2023]
Abstract
Signal Transducer and Activator of Transcription (STAT) 3 emerged rapidly as a high-value target for treatment of cancer. However, small-molecule STAT3 inhibitors have been slow to enter the clinic due, in part, to serious adverse events (SAE), including lactic acidosis and peripheral neuropathy, which have been attributed to inhibition of STAT3's mitochondrial function. Our group developed TTI-101, a competitive inhibitor of STAT3 that targets the receptor pY705-peptide binding site within the Src homology 2 (SH2) domain to block its recruitment and activation. TTI-101 has shown target engagement, no toxicity, and evidence of clinical benefit in a Phase I study in patients with solid tumors. Here we report that TTI-101 did not affect mitochondrial function, nor did it cause STAT3 aggregation, chemically modify STAT3 or cause neuropathic pain. Instead, TTI-101 unexpectedly suppressed neuropathic pain induced by chemotherapy or in a spared nerve injury model. Thus, in addition to its direct anti-tumor effect, TTI-101 may be of benefit when administered to cancer patients at risk of developing chemotherapy-induced peripheral neuropathy (CIPN).
Collapse
Affiliation(s)
- Moses M Kasembeli
- The Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009, United States
| | - Pooja Singhmar
- The Department of Symptom Research, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009, United States
| | - Jiacheng Ma
- The Department of Symptom Research, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009, United States
| | - Jules Edralin
- The Department of Symptom Research, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009, United States
| | - Yongfu Tang
- The Department of Symptom Research, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009, United States
| | - Clydell Adams
- The Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009, United States
| | - Cobi J Heijnen
- The Department of Symptom Research, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009, United States
| | - Annemieke Kavelaars
- The Department of Symptom Research, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009, United States
| | - David J Tweardy
- The Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009, United States.
| |
Collapse
|
30
|
Bae EH, Greenwald MK, Schwartz AG. Chemotherapy-Induced Peripheral Neuropathy: Mechanisms and Therapeutic Avenues. Neurotherapeutics 2021; 18:2384-2396. [PMID: 34676514 PMCID: PMC8804039 DOI: 10.1007/s13311-021-01142-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2021] [Indexed: 12/12/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a serious and often persistent adverse consequence of certain chemotherapeutic agents. It is a major dose-limiting factor of many first-line chemotherapies, affecting 20-50% of patients at standard doses and nearly all patients at high doses. As cancer survivorship continues to increase with improvements in early diagnosis and treatment, more patients will experience CIPN despite completing cancer treatment, which interferes with recovery, leading to chronic pain and worsening quality of life. The National Cancer Institute has identified CIPN as a priority in translational research. To date, there are no FDA-approved drugs for preventing or treating CIPN, with emerging debate on mechanisms and promising new targets. This review highlights current literature and suggests novel approaches to CIPN based on proposed mechanisms of action that aim either to confer neuroprotection against chemotherapy-induced neurotoxicity or reverse the downstream effects of painful neuropathy.
Collapse
Affiliation(s)
- Esther H Bae
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, 3901 Chrysler Service Drive, Suite 2A, Detroit, MI, 48201, USA
| | - Mark K Greenwald
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, 3901 Chrysler Service Drive, Suite 2A, Detroit, MI, 48201, USA.
- Karmanos Cancer Institute, Detroit, MI, USA.
| | - Ann G Schwartz
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, 3901 Chrysler Service Drive, Suite 2A, Detroit, MI, 48201, USA
- Karmanos Cancer Institute, Detroit, MI, USA
| |
Collapse
|
31
|
Wang S, Dai Y. Roles of AMPK and Its Downstream Signals in Pain Regulation. Life (Basel) 2021; 11:life11080836. [PMID: 34440581 PMCID: PMC8401922 DOI: 10.3390/life11080836] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/06/2021] [Accepted: 08/12/2021] [Indexed: 12/20/2022] Open
Abstract
Pain is an unpleasant sensory and emotional state that decreases quality of life. A metabolic sensor, adenosine monophosphate-activated protein kinase (AMPK), which is ubiquitously expressed in mammalian cells, has recently attracted interest as a new target of pain research. Abnormal AMPK expression and function in the peripheral and central nervous systems are associated with various types of pain. AMPK and its downstream kinases participate in the regulation of neuron excitability, neuroinflammation and axonal and myelin regeneration. Numerous AMPK activators have reduced pain behavior in animal models. The current understanding of pain has been deepened by AMPK research, but certain issues, such as the interactions of AMPK at each step of pain regulation, await further investigation. This review examines the roles of AMPK and its downstream kinases in neurons and non-neuronal cells, as well as their contribution to pain regulation.
Collapse
Affiliation(s)
- Shenglan Wang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe 650-8530, Japan
- Correspondence: (S.W.); (Y.D.); Tel.: +86-10-53912197 (S.W.); +81-78-304-3147 (Y.D.)
| | - Yi Dai
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe 650-8530, Japan
- Traditional Medicine Research Center, Chinese Medicine Confucius Institute, Hyogo College of Medicine, Kobe 663-8501, Japan
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Nishinomiya 663-8501, Japan
- Correspondence: (S.W.); (Y.D.); Tel.: +86-10-53912197 (S.W.); +81-78-304-3147 (Y.D.)
| |
Collapse
|
32
|
Eltony SA, Mohaseb HS, Sayed MM, Ahmed AA. Metformin treatment confers protection of the optic nerve following photoreceptor degeneration. Anat Cell Biol 2021; 54:249-258. [PMID: 34162765 PMCID: PMC8225472 DOI: 10.5115/acb.20.320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 11/27/2022] Open
Abstract
Acquired or inherited or photoreceptor loss causes retinal ganglion cell loss and ultimately axonal transport alteration. Thus, therapies should be applied early during photoreceptors degeneration before the remodeling process reaches the inner retina. This study aimed to evaluate the protective effect of metformin on the rat optic nerve following photoreceptors loss induced by N-Ethyl-N-nitrosourea (ENU). Eighteen adults male Wistar rats were divided into two groups. Group I: normal vehicle control (n=6). Group II: ENU-induced photoreceptors degeneration (n=12) received a single intraperitoneal injection of ENU at a dose of 600 mg/kg. Rats in group II were equally divided into two subgroups: IIa: photoreceptor degeneration induced group and IIb: metformin treated group (200 mg/kg) for 7 days. Specimens from the optic nerve were processed for light and electron microscopy. In ENU treated group, the optic nerve revealed reduction in the diameter of the optic nerve fibers and thinning of myelin sheath with morphological changes in the glia (astrocytes, oligodendrocytes, and microglia). Caspase-3 (apoptotic marker), iNOS (oxidative stress marker) and CD68 (macrophage marker) expression increased. In metformin-treated group, the diameter of optic nerve fibers and myelin sheath thickness increased with improvement of the deterioration in the glia. Caspase-3, iNOS and CD68 expression decreased. Metformin ameliorates the histological changes of the rat optic nerve following photoreceptors loss induced by ENU.
Collapse
Affiliation(s)
- Sohair A Eltony
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Heba S Mohaseb
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Manal M Sayed
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Amel A Ahmed
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
33
|
Hasan HF, Rashed LA, El Bakary NM. Concerted outcome of metformin and low dose of radiation in modulation of cisplatin induced uremic encephalopathy via renal and neural preservation. Life Sci 2021; 276:119429. [PMID: 33785333 DOI: 10.1016/j.lfs.2021.119429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
Abstract
AIM The therapeutic expediency of cisplatin was limited due to its nephrotoxic side effects, so this study planned to assess the nephrotic and neuroprotective impact of metformin (MET) and low-dose radiation (LDR) in cisplatin-prompted kidney injury and uremic encephalopathy (UE). METHODS The effect of the 10-day MET treatment (200 mg/kg, orally) and/or fractionated LDR (0.25 Gy, of the total dose of 0.5 Gy, 1st and 7th day, respectively) on (5 mg/kg, intraperitoneally) cisplatin as a single dose was administered at the 5th day. Serum urea, creatinine and renal kidney injury molecule-1 were measured for the assessment of kidney function. Furthermore, the antioxidant potential in the renal and brain tissues was evaluated through, malondialdehyde and reduced glutathione estimation. Moreover, renal apoptotic markers: AMP-activated protein kinase, lipocalin, B-cell lymphoma 2 associated X protein, B-cell lymphoma 2, P53 and beclin 1 were estimated. UE was evaluated through the determination of serum inflammatory markers: nuclear factor kappa B, tumor-necrosis factor-α and interleukin 1 beta likewise, the cognitive deficits were assessed via forced swimming test, gamma-aminobutyric acid, n-methyl-d-aspartate and neuronal nitric oxide synthases besides AMP-activated protein kinase, light chain 3 and caspase3 levels in rats' cerebella. KEY FINDINGS The obtained results revealed a noticeable improvement in the previously mentioned biochemical factors and behavioral tasks that was reinforced by histopathological examination when using the present remedy. SIGNIFICANCE metformin and low doses of radiation afforded renoprotection and neuroprotection against cisplatin-induced acute uremic encephalopathy.
Collapse
Affiliation(s)
- Hesham Farouk Hasan
- Radiation Biology Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Laila A Rashed
- Department of Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nermeen M El Bakary
- Radiation Biology Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
34
|
Zhang Y, Li C, Qin Y, Cepparulo P, Millman M, Chopp M, Kemper A, Szalad A, Lu X, Wang L, Zhang ZG. Small extracellular vesicles ameliorate peripheral neuropathy and enhance chemotherapy of oxaliplatin on ovarian cancer. J Extracell Vesicles 2021; 10:e12073. [PMID: 33728031 PMCID: PMC7931803 DOI: 10.1002/jev2.12073] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/07/2021] [Accepted: 02/13/2021] [Indexed: 12/17/2022] Open
Abstract
There are no effective treatments for chemotherapy induced peripheral neuropathy (CIPN). Small extracellular vesicles (sEVs) facilitate intercellular communication and mediate nerve function and tumour progression. We found that the treatment of mice bearing ovarian tumour with sEVs derived from cerebral endothelial cells (CEC-sEVs) in combination with a chemo-drug, oxaliplatin, robustly reduced oxaliplatin-induced CIPN by decreasing oxaliplatin-damaged myelination and nerve fibres of the sciatic nerve and significantly amplified chemotherapy of oxaliplatin by reducing tumour size. The combination therapy substantially increased a set of sEV cargo-enriched miRNAs, but significantly reduced oxaliplatin-increased proteins in the sciatic nerve and tumour tissues. Bioinformatics analysis revealed the altered miRNAs and proteins formed two distinct networks that regulate neuropathy and tumour growth, respectively. Intravenously administered CEC-sEVs were internalized by axons of the sciatic nerve and cancer cells. Reduction of CEC-sEV cargo miRNAs abolished the effects of CEC-sEVs on oxaliplatin-inhibited axonal growth and on amplification of the anti-cancer effect in ovarian cancer cells, suggesting that alterations in the networks of miRNAs and proteins in recipient cells contribute to the therapeutic effect of CEC-sEVs on CIPN. Together, the present study demonstrates that CEC-sEVs suppressed CIPN and enhanced chemotherapy of oxaliplatin in the mouse bearing ovarian tumour.
Collapse
Affiliation(s)
- Yi Zhang
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
| | - Chao Li
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
| | - Yi Qin
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
| | | | | | - Michael Chopp
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
- Department of PhysicsOakland UniversityRochesterMichiganUSA
| | - Amy Kemper
- Department of PathologyHenry Ford Health SystemDetroitMichiganUSA
| | - Alexandra Szalad
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
| | - Xuerong Lu
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
| | - Lei Wang
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
| | - Zheng Gang Zhang
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
| |
Collapse
|
35
|
Singh SV, Chaube B, Mayengbam SS, Singh A, Malvi P, Mohammad N, Deb A, Bhat MK. Metformin induced lactic acidosis impaired response of cancer cells towards paclitaxel and doxorubicin: Role of monocarboxylate transporter. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166011. [PMID: 33212188 DOI: 10.1016/j.bbadis.2020.166011] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/30/2022]
Abstract
Abnormal glucose metabolism in cancer cells causes generation and secretion of excess lactate, which results in acidification of the extracellular microenvironment. This altered metabolism aids not only in survival and proliferation but also in suppressing immune-mediated destruction of cancer cells. However, how it influences the response of cancer cells to chemotherapeutic drugs is not clearly understood. We employed appropriate in vitro approaches to explore the role of mono-carboxylate transporter 4 (MCT4) mediated altered intra and extracellular pH on the outcome of the therapeutic efficacy of chemotherapeutic drugs in breast and lung cancer models. We demonstrate by in vitro experiments that inhibition of complex I enhances glycolysis and increases expression as well as membrane translocation of MCT4. It causes a decrease in extracellular pH (pHe) and impairs doxorubicin and paclitaxel's therapeutic efficacy. Acidic pHe inhibits doxorubicin's uptake, while acidic intracellular pH (pH i) impairs the efficacy of paclitaxel. Under in vivo experimental settings, the modulation of pHe with phloretin or alkalizer (NaHCO3) enhances cytotoxicity of drugs and inhibits the growth of MCF-7 xenografts in mice. In a nutshell, this study indicates that MCT4 mediated extracellular acidosis is involved in impairing chemotherapeutic drugs' efficacy on cancer cells. Therefore, the use of pH neutralizing agents or MCT inhibitors may be beneficial towards circumventing impairment in the efficacy of certain drugs that are sensitive to pH changes.
Collapse
Affiliation(s)
- Shivendra Vikram Singh
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| | - Balkrishna Chaube
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| | | | - Abhijeet Singh
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| | - Parmanand Malvi
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| | - Naoshad Mohammad
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| | - Ankita Deb
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| | - Manoj Kumar Bhat
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India.
| |
Collapse
|
36
|
Liang Z, Zhang T, Zhan T, Cheng G, Zhang W, Jia H, Yang H. Metformin alleviates cisplatin-induced ototoxicity by autophagy induction possibly via the AMPK/FOXO3a pathway. J Neurophysiol 2021; 125:1202-1212. [PMID: 33625942 DOI: 10.1152/jn.00417.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cisplatin is an antitumor drug that is widely used for the treatment of various solid tumors. Unfortunately, patients are often troubled by serious side effects, especially hearing loss. Up to now, there have been no clear and effective measures to prevent cisplatin-induced ototoxicity in clinical use. We explored the role of autophagy and the efficacy of metformin in cisplatin-induced ototoxicity in cells, zebrafish, and mice. Furthermore, the underlying molecular mechanism of how metformin affects cisplatin-induced ototoxicity was examined. In in vitro experiments, autophagy levels in HEI-OC1 cells were assessed using fluorescence and Western blot analyses. In in vivo experiments, whether metformin had a protective effect against cisplatin ototoxicity was validated in zebrafish and C57BL/6 mice. The results showed that cisplatin induced autophagy activation in HEI-OC1 cells. Metformin exerted antagonistic effects against cisplatin ototoxicity in HEI-OC1 cells, zebrafish, and mice. Notably, metformin activated autophagy and increased the expression levels of the adenosine monophosphate-activated protein kinase (AMPK) and the transcription factor Forkhead box protein O3 (FOXO3a), whereas cells with AMPK silencing displayed otherwise. Our findings indicate that metformin alleviates cisplatin-induced ototoxicity possibly through AMPK/FOXO3a-mediated autophagy machinery. This study underpins further researches on the prevention and treatment of cisplatin ototoxicity.NEW & NOTEWORTHY Cisplatin is an antitumor drug that is widely used for the treatment of various solid tumors. Up to now, there have been no clear and effective measures to prevent cisplatin-induced ototoxicity in clinical use. We investigated the protective effect of metformin on cisplatin ototoxicity in vitro and in vivo. Our findings indicate that metformin alleviates cisplatin-induced ototoxicity possibly through AMPK/FOXO3a-mediated autophagy machinery. This study underpins further researches on the prevention and treatment of cisplatin ototoxicity.
Collapse
Affiliation(s)
- Zhengrong Liang
- Department of Otolaryngology, The First Affiliated Hospital of Jinan University, Guangzhou, People's Republic of China
| | - Tao Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Jinan University, Guangzhou, People's Republic of China
| | - Ting Zhan
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Gui Cheng
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Weijian Zhang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Haiying Jia
- Department of Otolaryngology, The First Affiliated Hospital of Jinan University, Guangzhou, People's Republic of China
| | - Haidi Yang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.,Hearing and Speech Department, Xinhua College of Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
37
|
Ahmad N, Subhan F, Islam NU, Shahid M, Ullah N, Ullah R, Akbar S, Amin MU, Khurram M, Ullah I, Sewell RDE. A novel gabapentin analogue assuages neuropathic pain response in chronic sciatic nerve constriction model in rats. Behav Brain Res 2021; 405:113190. [PMID: 33607164 DOI: 10.1016/j.bbr.2021.113190] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 02/11/2021] [Accepted: 02/11/2021] [Indexed: 01/19/2023]
Abstract
Gabapentin (GBP) is an established drug that has been used in the management of symptoms of neuropathy but it is associated with unwanted side effects such as sedation and motor incoordination. The goal of the study was to find out a drug with greater efficacy and safety for the treatment of neuropathic pain. Our previously synthesized GABA analogue (Gabapentsal, GPS) was tested (25-100 mg/kg, i.p) in chronic constriction injury (CCI) induced nociceptive model of static allodynia, dynamic allodynia, thermal hyperalgesia, mechanical hyperalgesia and cold allodynia in rats (Sprague Dawley). Open field and rotarod tests were performed to assess the impact of GPS on the motor performance of the animals. GBP (100 mg/kg, i.p) was used as a standard for comparison. GPS dose dependently reduced static (P <0.001) and dynamic allodynia (P <0.001), thermal hyperalgesia (P <0.001), mechanical hyperalgesia (P < 0.001) and cold allodynia (P < 0.001). In comparison to GBP, GPS failed to alter any significantly the motor performance of rats in both the open field and rotarod assays. These results suggest that GPS is effective in alleviating nociception in CCI neuropathic pain model but free from the side effect of motor discoordination seen in the treatment with GBP. In conclusion, GPS may prove to be a prospectively more effective and safer option in the management of neuropathic syndromes.
Collapse
Affiliation(s)
- Nisar Ahmad
- Islam College of Pharmacy, Sialkot, Pakistan.
| | - Fazal Subhan
- Department of Pharmacy, CECOS University of IT and Emerging Sciences, Peshawar, Pakistan.
| | - Nazar Ul Islam
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, Pakistan.
| | - Muhammad Shahid
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, Pakistan.
| | | | - Rahim Ullah
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan.
| | - Shehla Akbar
- Department of Pharmacy, CECOS University of IT and Emerging Sciences, Peshawar, Pakistan.
| | | | - Muhammad Khurram
- Department of Pharmacy, Abasyn University Peshawar, Peshawar, Pakistan.
| | - Ihsan Ullah
- Department of Pharmacy, University of Swabi, Swabi, Pakistan.
| | - Robert D E Sewell
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF103NB, UK.
| |
Collapse
|
38
|
Brown T, Sykes D, Allen AR. Implications of Breast Cancer Chemotherapy-Induced Inflammation on the Gut, Liver, and Central Nervous System. Biomedicines 2021; 9:biomedicines9020189. [PMID: 33668580 PMCID: PMC7917715 DOI: 10.3390/biomedicines9020189] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 12/18/2022] Open
Abstract
Breast Cancer is still one of the most common cancers today; however, with advancements in diagnostic and treatment methods, the mortality and survivorship of patients continues to decrease and increase, respectively. Commonly used treatments today consist of drug combinations, such as doxorubicin and cyclophosphamide; docetaxel, doxorubicin, and cyclophosphamide; or doxorubicin, cyclophosphamide, and paclitaxel. Although these combinations are effective at destroying cancer cells, there is still much to be understood about the effects that chemotherapy can have on normal organ systems such as the nervous system, gastrointestinal tract, and the liver. Patients can experience symptoms of cognitive impairments or “chemobrain”, such as difficulty in concentrating, memory recollection, and processing speed. They may also experience gastrointestinal (GI) distress symptoms such as diarrhea and vomiting, as well as hepatotoxicity and long term liver damage. Chemotherapy treatment has also been shown to induce peripheral neuropathy resulting in numbing, pain, and tingling sensations in the extremities of patients. Interestingly, researchers have discovered that this array of symptoms that cancer patients experience are interconnected and mediated by the inflammatory response.
Collapse
Affiliation(s)
- Taurean Brown
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - DeLawrence Sykes
- Department of Biology, Pomona College, Claremont, CA 91711, USA;
| | - Antiño R. Allen
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Correspondence: ; Tel.: +1-501-686-7335
| |
Collapse
|
39
|
Yamamoto S, Egashira N. Pathological Mechanisms of Bortezomib-Induced Peripheral Neuropathy. Int J Mol Sci 2021; 22:ijms22020888. [PMID: 33477371 PMCID: PMC7830235 DOI: 10.3390/ijms22020888] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Bortezomib, a first-generation proteasome inhibitor widely used in chemotherapy for hematologic malignancy, has effective anti-cancer activity but often causes severe peripheral neuropathy. Although bortezomib-induced peripheral neuropathy (BIPN) is a dose-limiting toxicity, there are no recommended therapeutics for its prevention or treatment. One of the most critical problems is a lack of knowledge about pathological mechanisms of BIPN. Here, we summarize the known mechanisms of BIPN based on preclinical evidence, including morphological abnormalities, involvement of non-neuronal cells, oxidative stress, and alterations of transcriptional programs in both the peripheral and central nervous systems. Moreover, we describe the necessity of advancing studies that identify the potential efficacy of approved drugs on the basis of pathological mechanisms, as this is a convincing strategy for rapid translation to patients with cancer and BIPN.
Collapse
Affiliation(s)
- Shota Yamamoto
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo 162-8655, Japan;
| | - Nobuaki Egashira
- Department of Pharmacy, Kyushu University Hospital, Fukuoka 812-8582, Japan
- Correspondence: ; Tel.: +81-92-642-5920
| |
Collapse
|
40
|
Lin JY, Zhu N, He YN, Xu BL, Peng B. Stereological study on the numerical plasticity of myelinated fibers and oligodendrocytes in the rat spinal cord with painful diabetic neuropathy. Neuroreport 2021; 31:319-324. [PMID: 32058434 PMCID: PMC7041624 DOI: 10.1097/wnr.0000000000001407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Painful diabetic neuropathy may associate with nerve morphological plasticity in both peripheral and central nervous system. The aim of this study was to determine numerical changes of myelinated fibers in the spinothalamic tract region and oligodendrocytes in the spinal dorsal horn of rats with painful diabetic neuropathy and the effects of metformin on the above changes. Male Sprague–Dawley rats were randomly allocated into the control group (n = 7), the painful diabetic neuropathy group (n = 6) and the painful diabetic neuropathy treated with metformin group (the PDN + M group, n = 7), respectively. Twenty-eight days after medication, numbers of myelinated fibers in the spinothalamic tract and oligodendrocytes in the spinal dorsal horn were estimated by the optical disector (a stereological technique). Compared to the control group, number of myelinated fibers in the spinothalamic tract increased significantly in the painful diabetic neuropathy and PDN + M group, compared to the painful diabetic neuropathy group, number of myelinated fibers decreased in the PDN + M group (P < 0.05). As the oligodendrocyte in the spinal dorsal horn was considered, its number increased significantly in the painful diabetic neuropathy group compared to the control and the PDN + M group (P < 0.05), there was no significant difference between the control and the PDN + M group (P > 0.05). Our results indicate that painful diabetic neuropathy is associated with a serial of morphometric plasticity in the rat spinal cord including the numerical increase of the myelinated fibers in the spinothalamic tract and the oligodendrocytes in the spinal dorsal horn. The analgesic effect of metformin against painful diabetic neuropathy might be related to its adverse effects on the above morphometric plasticity.
Collapse
Affiliation(s)
- Jing-Yan Lin
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong
| | - Na Zhu
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong.,Department of Anesthesiology, the First Affiliated Hospital of Chengdu Medical College, Chengdu
| | - Yi-Na He
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong.,Department of Anesthesiology, Nanchong Central Hospital, Nanchong
| | - Bo-Lin Xu
- Department of Anesthesiology, Santai County People's Hospital (Affiliated Hospital of North Sichuan Medical College in Santai County), Mianyang
| | - Bin Peng
- Research Unit of Electron Microscopy Structures, North Sichuan Medical College, Nanchong, Sichuan, China
| |
Collapse
|
41
|
Yousuf MS, Shiers SI, Sahn JJ, Price TJ. Pharmacological Manipulation of Translation as a Therapeutic Target for Chronic Pain. Pharmacol Rev 2021; 73:59-88. [PMID: 33203717 PMCID: PMC7736833 DOI: 10.1124/pharmrev.120.000030] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dysfunction in regulation of mRNA translation is an increasingly recognized characteristic of many diseases and disorders, including cancer, diabetes, autoimmunity, neurodegeneration, and chronic pain. Approximately 50 million adults in the United States experience chronic pain. This economic burden is greater than annual costs associated with heart disease, cancer, and diabetes combined. Treatment options for chronic pain are inadequately efficacious and riddled with adverse side effects. There is thus an urgent unmet need for novel approaches to treating chronic pain. Sensitization of neurons along the nociceptive pathway causes chronic pain states driving symptoms that include spontaneous pain and mechanical and thermal hypersensitivity. More than a decade of preclinical research demonstrates that translational mechanisms regulate the changes in gene expression that are required for ongoing sensitization of nociceptive sensory neurons. This review will describe how key translation regulation signaling pathways, including the integrated stress response, mammalian target of rapamycin, AMP-activated protein kinase (AMPK), and mitogen-activated protein kinase-interacting kinases, impact the translation of different subsets of mRNAs. We then place these mechanisms of translation regulation in the context of chronic pain states, evaluate currently available therapies, and examine the potential for developing novel drugs. Considering the large body of evidence now published in this area, we propose that pharmacologically manipulating specific aspects of the translational machinery may reverse key neuronal phenotypic changes causing different chronic pain conditions. Therapeutics targeting these pathways could eventually be first-line drugs used to treat chronic pain disorders. SIGNIFICANCE STATEMENT: Translational mechanisms regulating protein synthesis underlie phenotypic changes in the sensory nervous system that drive chronic pain states. This review highlights regulatory mechanisms that control translation initiation and how to exploit them in treating persistent pain conditions. We explore the role of mammalian/mechanistic target of rapamycin and mitogen-activated protein kinase-interacting kinase inhibitors and AMPK activators in alleviating pain hypersensitivity. Modulation of eukaryotic initiation factor 2α phosphorylation is also discussed as a potential therapy. Targeting specific translation regulation mechanisms may reverse changes in neuronal hyperexcitability associated with painful conditions.
Collapse
Affiliation(s)
- Muhammad Saad Yousuf
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas (M.S.Y., S.I.S., T.J.P.) and 4E Therapeutics Inc, Austin, Texas (J.J.S.)
| | - Stephanie I Shiers
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas (M.S.Y., S.I.S., T.J.P.) and 4E Therapeutics Inc, Austin, Texas (J.J.S.)
| | - James J Sahn
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas (M.S.Y., S.I.S., T.J.P.) and 4E Therapeutics Inc, Austin, Texas (J.J.S.)
| | - Theodore J Price
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas (M.S.Y., S.I.S., T.J.P.) and 4E Therapeutics Inc, Austin, Texas (J.J.S.)
| |
Collapse
|
42
|
Sekiguchi F, Kawabata A. Role of HMGB1 in Chemotherapy-Induced Peripheral Neuropathy. Int J Mol Sci 2020; 22:ijms22010367. [PMID: 33396481 PMCID: PMC7796379 DOI: 10.3390/ijms22010367] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/25/2020] [Accepted: 12/26/2020] [Indexed: 12/11/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN), one of major dose-limiting side effects of first-line chemotherapeutic agents such as paclitaxel, oxaliplatin, vincristine, and bortezomib is resistant to most of existing medicines. The molecular mechanisms of CIPN have not been fully understood. High mobility group box 1 (HMGB1), a nuclear protein, is a damage-associated molecular pattern protein now considered to function as a pro-nociceptive mediator once released to the extracellular space. Most interestingly, HMGB1 plays a key role in the development of CIPN. Soluble thrombomodulin (TMα), known to degrade HMGB1 in a thrombin-dependent manner, prevents CIPN in rodents treated with paclitaxel, oxaliplatin, or vincristine and in patients with colorectal cancer undergoing oxaliplatin-based chemotherapy. In this review, we describe the role of HMGB1 and its upstream/downstream mechanisms in the development of CIPN and show drug candidates that inhibit the HMGB1 pathway, possibly useful for prevention of CIPN.
Collapse
|
43
|
Demaré S, Kothari A, Calcutt NA, Fernyhough P. Metformin as a potential therapeutic for neurological disease: mobilizing AMPK to repair the nervous system. Expert Rev Neurother 2020; 21:45-63. [PMID: 33161784 PMCID: PMC9482886 DOI: 10.1080/14737175.2021.1847645] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Metformin is currently first line therapy for type 2 diabetes (T2D). The mechanism of action of metformin involves activation of AMP-activated protein kinase (AMPK) to enhance mitochondrial function (for example, biogenesis, refurbishment and dynamics) and autophagy. Many neurodegenerative diseases of the central and peripheral nervous systems arise from metabolic failure and toxic protein aggregation where activated AMPK could prove protective. Areas covered: The authors review literature on metformin treatment in Parkinson’s disease, Huntington’s disease and other neurological diseases of the CNS along with neuroprotective effects of AMPK activation and suppression of the mammalian target of rapamycin (mTOR) pathway on peripheral neuropathy and neuropathic pain. The authors compare the efficacy of metformin with the actions of resveratrol. Expert opinion: Metformin, through activation of AMPK and autophagy, can enhance neuronal bioenergetics, promote nerve repair and reduce toxic protein aggregates in neurological diseases. A long history of safe use in humans should encourage development of metformin and other AMPK activators in preclinical and clinical research. Future studies in animal models of neurological disease should strive to further dissect in a mechanistic manner the pathways downstream from metformin-dependent AMPK activation, and to further investigate mTOR dependent and independent signaling pathways driving neuroprotection.
Collapse
Affiliation(s)
- Sarah Demaré
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre , Winnipeg, MB, Canada.,Department of Pharmacology and Therapeutics, University of Manitoba , Winnipeg, MB, Canada
| | - Asha Kothari
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre , Winnipeg, MB, Canada.,Department of Pharmacology and Therapeutics, University of Manitoba , Winnipeg, MB, Canada
| | - Nigel A Calcutt
- Department of Pathology, University of California San Diego , La Jolla, CA, USA
| | - Paul Fernyhough
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre , Winnipeg, MB, Canada.,Department of Pharmacology and Therapeutics, University of Manitoba , Winnipeg, MB, Canada
| |
Collapse
|
44
|
Guo L, Cui J, Wang H, Medina R, Zhang S, Zhang X, Zhuang Z, Lin Y. Metformin enhances anti-cancer effects of cisplatin in meningioma through AMPK-mTOR signaling pathways. MOLECULAR THERAPY-ONCOLYTICS 2020; 20:119-131. [PMID: 33575476 PMCID: PMC7851485 DOI: 10.1016/j.omto.2020.11.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 11/13/2020] [Indexed: 12/25/2022]
Abstract
Cisplatin is currently used to treat inoperable recurrent meningiomas, but its side effects and drug resistance limit its use. Metformin has recently been identified as a chemosensitizing agent. However, the combined treatment of cisplatin and metformin in high-grade meningiomas has not been reported. Herein, our findings demonstrate metformin significantly enhanced cisplatin-induced inhibition of proliferation in meningioma cells, which was associated with the induction of G0/G1 cell cycle arrest. Additionally, metformin activated adenosine monophosphate activated protein kinase (AMPK) and repressed the mammalian target of rapamycin (mTOR) signaling pathways via an AMPK-dependent mechanism. Furthermore, our xenograft murine model confirmed that metformin enhanced cisplatin’s anti-cancer effect by upregulation of AMPK and downregulation of mTOR signaling pathways. In addition, in 63 patients with atypical meningiomas, the activation of AMPK was significantly associated with tumor recurrence and short disease-free survival (DFS). These results demonstrate metformin enhanced the anti-cancer effect of cisplatin in meningioma in vitro and in vivo, an effect mediated through the activation of AMPK and repression of mTOR signaling pathways. Our study suggests the combined treatment of metformin and cisplatin is an effective and safe treatment for high-grade meningiomas.
Collapse
Affiliation(s)
- Liemei Guo
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 160, Pujian Road, District Pudong, Shanghai 200127, China
| | - Jing Cui
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Herui Wang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rogelio Medina
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shilei Zhang
- Department of Pathology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 160, Pujian Road, District Pudong, Shanghai 200127, China
| | - Xiaohua Zhang
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 160, Pujian Road, District Pudong, Shanghai 200127, China
| | - Zhengping Zhuang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yingying Lin
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 160, Pujian Road, District Pudong, Shanghai 200127, China
| |
Collapse
|
45
|
Baeza-Flores GDC, Guzmán-Priego CG, Parra-Flores LI, Murbartián J, Torres-López JE, Granados-Soto V. Metformin: A Prospective Alternative for the Treatment of Chronic Pain. Front Pharmacol 2020; 11:558474. [PMID: 33178015 PMCID: PMC7538784 DOI: 10.3389/fphar.2020.558474] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022] Open
Abstract
Metformin (biguanide) is a drug widely used for the treatment of type 2 diabetes. This drug has been used for 60 years as a highly effective antihyperglycemic agent. The search for the mechanism of action of metformin has produced an enormous amount of research to explain its effects on gluconeogenesis, protein metabolism, fatty acid oxidation, oxidative stress, glucose uptake, autophagy and pain, among others. It was only up the end of the 1990s and beginning of this century that some of its mechanisms were revealed. Metformin induces its beneficial effects in diabetes through the activation of a master switch kinase named AMP-activated protein kinase (AMPK). Two upstream kinases account for the physiological activation of AMPK: liver kinase B1 and calcium/calmodulin-dependent protein kinase kinase 2. Once activated, AMPK inhibits the mechanistic target of rapamycin complex 1 (mTORC1), which in turn avoids the phosphorylation of p70 ribosomal protein S6 kinase 1 and phosphatidylinositol 3-kinase/protein kinase B signaling pathways and reduces cap-dependent translation initiation. Since metformin is a disease-modifying drug in type 2 diabetes, which reduces the mTORC1 signaling to induce its effects on neuronal plasticity, it was proposed that these mechanisms could also explain the antinociceptive effect of this drug in several models of chronic pain. These studies have highlighted the efficacy of this drug in chronic pain, such as that from neuropathy, insulin resistance, diabetic neuropathy, and fibromyalgia-type pain. Mounting evidence indicates that chronic pain may induce anxiety, depression and cognitive impairment in rodents and humans. Interestingly, metformin is able to reverse some of these consequences of pathological pain in rodents. The purpose of this review was to analyze the current evidence about the effects of metformin in chronic pain and three of its comorbidities (anxiety, depression and cognitive impairment).
Collapse
Affiliation(s)
- Guadalupe Del Carmen Baeza-Flores
- Laboratorio de Mecanismos de Dolor, División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico
| | - Crystell Guadalupe Guzmán-Priego
- Laboratorio de Mecanismos de Dolor, División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico
| | - Leonor Ivonne Parra-Flores
- Laboratorio de Mecanismos de Dolor, División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico
| | - Janet Murbartián
- Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | - Jorge Elías Torres-López
- Laboratorio de Mecanismos de Dolor, División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico.,Departamento de Anestesiología, Hospital Regional de Alta Especialidad "Dr. Juan Graham Casasús", Villahermosa, Mexico
| | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| |
Collapse
|
46
|
Hansen CS, Lundby-Christiansen L, Tarnow L, Gluud C, Hedetoft C, Thorsteinsson B, Hemmingsen B, Wiinberg N, Sneppen SB, Lund SS, Krarup T, Madsbad S, Almdal T, Carstensen B, Jørgensen ME. Metformin may adversely affect orthostatic blood pressure recovery in patients with type 2 diabetes: substudy from the placebo-controlled Copenhagen Insulin and Metformin Therapy (CIMT) trial. Cardiovasc Diabetol 2020; 19:150. [PMID: 32979921 PMCID: PMC7520024 DOI: 10.1186/s12933-020-01131-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/18/2020] [Indexed: 02/08/2023] Open
Abstract
Background Metformin has been shown to have both neuroprotective and neurodegenerative effects. The aim of this study was to investigate the effect of metformin in combination with insulin on cardiovascular autonomic neuropathy (CAN) and distal peripheral neuropathy (DPN) in individuals with type 2 diabetes (T2DM). Methods The study is a sub-study of the CIMT trial, a randomized placebo-controlled trial with a 2 × 3 factorial design, where 412 patients with T2DM were randomized to 18 months of metformin or placebo in addition to open-labelled insulin. Outcomes were measures of CAN: Changes in heart rate response to deep breathing (beat-to-beat), orthostatic blood pressure (OBP) and heart rate and vibration detection threshold (VDT) as a marker DPN. Serum levels of vitamin B12 and methyl malonic acid (MMA) were analysed. Results After 18 months early drop in OBP (30 s after standing) was increased in the metformin group compared to placebo: systolic blood pressure drop increased by 3.4 mmHg (95% CI 0.6; 6.2, p = 0.02) and diastolic blood pressure drop increased by 1.3 mmHg (95% CI 0.3; 2.6, p = 0.045) compared to placebo. Beat-to-beat variation decreased in the metformin group by 1.1 beats per minute (95% CI − 2.4; 0.2, p = 0.10). Metformin treatment did not affect VDT group difference − 0.33 V (95% CI − 1.99; 1.33, p = 0.39) or other outcomes. Changes in B12, MMA and HbA1c did not confound the associations. Conclusions Eighteen months of metformin treatment in combination with insulin compared with insulin alone increased early drop in OBP indicating an adverse effect of metformin on CAN independent of vitamin B12, MMA HbA1c. Trial registration The protocol was approved by the Regional Committee on Biomedical Research Ethics (H–D-2007-112), the Danish Medicines Agency and registered with ClinicalTrials.gov (NCT00657943).
Collapse
Affiliation(s)
| | - Louise Lundby-Christiansen
- Steno Diabetes Center Copenhagen, A/S, Niels Steensens Vej 2-4, 2820, Gentofte, Denmark.,Dept of Paediatrics, Nordsjaellands Hospital, Copenhagen University, Copenhagen, Denmark
| | - Lise Tarnow
- Department of Clinical Research, Nordsjaellands Hospital, Hillerød, Denmark.,Health, Aarhus University, Aarhus, Denmark
| | - Christian Gluud
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Birger Thorsteinsson
- Department of Cardiology, Nephrology and Endocrinology, Nordsjællands University Hospital - Hillerød, Hillerød, Denmark
| | - Bianca Hemmingsen
- Department of Cardiology, Nephrology and Endocrinology, Nordsjællands University Hospital - Hillerød, Hillerød, Denmark
| | - Niels Wiinberg
- Department of Clinical Physiology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Simone B Sneppen
- Department of Medicine, Gentofte, Copenhagen University Hospital, Hellerup, Denmark
| | - Søren S Lund
- Steno Diabetes Center Copenhagen, A/S, Niels Steensens Vej 2-4, 2820, Gentofte, Denmark
| | - Thure Krarup
- Department of Endocrinology, Bispebjerg, Copenhagen University Hospital, Copenhagen, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Hvidovre Hospital, University of Copenhagen, Hvidovre, Denmark
| | - Thomas Almdal
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Dept. of Endocrinology PE, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Bendix Carstensen
- Steno Diabetes Center Copenhagen, A/S, Niels Steensens Vej 2-4, 2820, Gentofte, Denmark
| | - Marit E Jørgensen
- Steno Diabetes Center Copenhagen, A/S, Niels Steensens Vej 2-4, 2820, Gentofte, Denmark.,National Institute of Public Health, Southern Denmark University, Odense, Denmark
| | | |
Collapse
|
47
|
Cell-specific role of histone deacetylase 6 in chemotherapy-induced mechanical allodynia and loss of intraepidermal nerve fibers. Pain 2020; 160:2877-2890. [PMID: 31356453 DOI: 10.1097/j.pain.0000000000001667] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a serious adverse side effect of cancer treatment with no Food and Drug Administration-approved medication for its prevention or management. Using RNA sequencing analysis of dorsal root ganglia (DRG), we identify critical contributions of histone deacetylase 6 (HDAC6) and mitochondrial damage to the establishment of CIPN in a mouse model of cisplatin-induced neuropathy. We show that pharmacological inhibition of HDAC6 using ACY-1215 or global deletion of HDAC6 is sufficient to prevent cisplatin-induced mechanical allodynia, loss of intraepidermal nerve fibers (IENFs), and mitochondrial bioenergetic deficits in DRG neurons and peripheral nerves in male and female mice. The bioenergetic deficits in the neuronal cell bodies in the DRG are characterized by reduced oxidative phosphorylation, whereas the mitochondrial deficits in the nerves are due to a reduction in axonal mitochondrial content. Notably, deleting HDAC6 in sensory neurons protects against the cisplatin-induced loss of IENFs and the reduction in mitochondrial bioenergetics and content in the peripheral nerve. By contrast, deletion of HDAC6 in sensory neurons only partially and transiently prevents cisplatin-induced mechanical allodynia and does not protect against impairment of mitochondrial function in DRG neurons. We further reveal a critical role of T cells in the protective effects of HDAC6 inhibition on these signs of CIPN. In summary, we show that cisplatin-induced mechanical allodynia is associated with mitochondrial damage in DRG neurons, whereas the loss of IENFs is related to bioenergetic deficits in peripheral nerves. Moreover, our findings identify cell-specific contributions of HDAC6 to mechanical allodynia and loss of IENFs that characterize cisplatin-induced peripheral neuropathy.
Collapse
|
48
|
Depletion of senescent-like neuronal cells alleviates cisplatin-induced peripheral neuropathy in mice. Sci Rep 2020; 10:14170. [PMID: 32843706 PMCID: PMC7447787 DOI: 10.1038/s41598-020-71042-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/23/2020] [Indexed: 12/21/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy is among the most common dose-limiting adverse effects of cancer treatment, leading to dose reduction and discontinuation of life-saving chemotherapy and a permanently impaired quality of life for patients. Currently, no effective treatment or prevention is available. Senescence induced during cancer treatment has been shown to promote the adverse effects. Here, we show that cisplatin induces senescent-like neuronal cells in primary culture and in mouse dorsal root ganglia (DRG), as determined by the characteristic senescence markers including senescence-associated beta-galactosidase, accumulation of cytosolic p16INK4A and HMGB1, as well as increased expression of p16Ink4a, p21, and MMP-9. The accumulation of senescent-like neuronal cells in DRG is associated with cisplatin-induced peripheral neuropathy (CIPN) in mice. To determine if depletion of senescent-like neuronal cells may effectively mitigate CIPN, we used a pharmacological ‘senolytic’ agent, ABT263, which inhibits the anti-apoptotic proteins BCL-2 and BCL-xL and selectively kills senescent cells. Our results demonstrated that clearance of DRG senescent neuronal cells reverses CIPN, suggesting that senescent-like neurons play a role in CIPN pathogenesis. This finding was further validated using transgenic p16-3MR mice, which permit ganciclovir (GCV) to selectively kill senescent cells expressing herpes simplex virus 1 thymidine kinase (HSV-TK). We showed that CIPN was alleviated upon GCV administration to p16-3MR mice. Together, the results suggest that clearance of senescent DRG neuronal cells following platinum-based cancer treatment might be an effective therapy for the debilitating side effect of CIPN.
Collapse
|
49
|
Martinez N, Sánchez A, Diaz P, Broekhuizen R, Godoy J, Mondaca S, Catenaccio A, Macanas P, Nervi B, Calvo M, Court F. Metformin protects from oxaliplatin induced peripheral neuropathy in rats. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2020; 8:100048. [PMID: 32490289 PMCID: PMC7260677 DOI: 10.1016/j.ynpai.2020.100048] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/20/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022]
Abstract
Oxaliplatin is a commonly used drug to treat cancer, extending the rate of disease-free survival by 20% in colorectal cancer. However, oxaliplatin induces a disabling form of neuropathy resulting in more than 60% of patients having to reduce or discontinue oxaliplatin, negatively impacting their chance of survival. Oxaliplatin-induced neuropathies are accompanied by degeneration of sensory fibers in the epidermis and hyperexcitability of sensory neurons. These morphological and functional changes have been associated with sensory symptoms such as dysesthesia, paresthesia and mechanical and cold allodynia. Various strategies have been proposed to prevent or treat oxaliplatin-induced neuropathies without success. The anti-diabetic drug metformin has been recently shown to exert neuroprotection in other chemotherapy-induced neuropathies, so here we aimed to test if metformin can prevent the development of oxaliplatin-induced neuropathy in a rat model of this condition. Animals treated with oxaliplatin developed significant intraepidermal fiber degeneration, a mild gliosis in the spinal cord, and mechanical and cold hyperalgesia. The concomitant use of metformin prevented degeneration of intraepidermal fibers, gliosis, and the altered sensitivity. Our evidence further supports metformin as a new approach to prevent oxaliplatin-induced neuropathy with a potential important clinical impact.
Collapse
Affiliation(s)
- N.W. Martinez
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor de Chile, Santiago 8580745, Chile
- Department of Physiology, Faculty of Biology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - A. Sánchez
- Department of Physiology, Faculty of Biology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - P. Diaz
- Department of Physiology, Faculty of Biology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - R. Broekhuizen
- Department of Hematology and Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - J. Godoy
- Department of Neurology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - S. Mondaca
- Department of Hematology and Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - A. Catenaccio
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor de Chile, Santiago 8580745, Chile
| | - P. Macanas
- Department of Hematology and Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - B. Nervi
- Department of Hematology and Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - M. Calvo
- Department of Physiology, Faculty of Biology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - F.A. Court
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor de Chile, Santiago 8580745, Chile
- FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago 8580745, Chile
- Buck Institute for Research on Ageing, Novato, San Francisco, CA 94945, USA
| |
Collapse
|
50
|
Zhang M, Du W, Acklin S, Jin S, Xia F. SIRT2 protects peripheral neurons from cisplatin-induced injury by enhancing nucleotide excision repair. J Clin Invest 2020; 130:2953-2965. [PMID: 32134743 PMCID: PMC7260000 DOI: 10.1172/jci123159] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 02/26/2020] [Indexed: 01/01/2023] Open
Abstract
Platinum-based chemotherapy-induced peripheral neuropathy is one of the most common causes of dose reduction and discontinuation of life-saving chemotherapy in cancer treatment; it often causes permanent impairment of quality of life in cancer patients. The mechanisms that underlie this neuropathy are not defined, and effective treatment and prevention measures are not available. Here, we demonstrate that SIRT2 protected mice against cisplatin-induced peripheral neuropathy (CIPN). SIRT2 accumulated in the nuclei of dorsal root ganglion sensory neurons and prevented neuronal cell death following cisplatin treatment. Mechanistically, SIRT2, an NAD+-dependent deacetylase, protected neurons from cisplatin cytotoxicity by promoting transcription-coupled nucleotide excision repair (TC-NER) of cisplatin-induced DNA cross-links. Consistent with this mechanism, pharmacological inhibition of NER using spironolactone abolished SIRT2-mediated TC-NER activity in differentiated neuronal cells and protection of neurons from cisplatin-induced cytotoxicity and CIPN in mice. Importantly, SIRT2's protective effects were not evident in lung cancer cells in vitro or in tumors in vivo. Taken together, our results identified SIRT2's function in the NER pathway as a key underlying mechanism of preventing CIPN, warranting future investigation of SIRT2 activation-mediated neuroprotection during platinum-based cancer treatment.
Collapse
|