1
|
Kim JH, Yang S, Kim H, Vo DK, Maeng HJ, Jo A, Shin JH, Shin JH, Baek HM, Lee GH, Kim SH, Lim KH, Dawson VL, Dawson TM, Joo JY, Lee Y. Preclinical studies and transcriptome analysis in a model of Parkinson's disease with dopaminergic ZNF746 expression. Mol Neurodegener 2025; 20:24. [PMID: 40022229 PMCID: PMC11871723 DOI: 10.1186/s13024-025-00814-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 02/17/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND The parkin-interacting substrate (PARIS, also known as ZNF746) is a transcriptional repressor, whose accumulation and phosphorylation play central pathological roles in Parkinson's disease (PD). PARIS-induced transcriptional repression of PGC-1α or MDM4 contributes to mitochondrial dysfunction and p53-dependent neuron loss in PD. Despite the important role of PARIS in PD pathogenesis, unbiased transcriptomic profiles influenced by PARIS accumulation in dopaminergic neurons remain unexplored. METHODS We engineered Tet-Off conditional transgenic mice expressing PARIS in dopaminergic neurons, driven by DAT-PF-tTA driver mice. The conditional PARIS transgenic mice were characterized by PD-associated pathologies, including progressive dopamine cell loss, neuroinflammation, PGC-1α repression, and mitochondrial proteome alteration. Motor impairment was assessed using pole and rotarod tests. L-DOPA and c-Abl inhibitors were administered to PARIS transgenic mice to evaluate their therapeutic efficacy. The transcriptomic profiles and gene ontology clusters were analyzed by bulk and single-nucleus RNA-seq for the ventral midbrains from PARIS transgenic and age-matched controls. RESULTS Conditional dopaminergic PARIS expression in mice led to the robust and selective dopaminergic neuron degeneration, neuroinflammation, and striatal dopamine deficits, resulting in L-DOPA-responsive motor impairments. Consistent with the results of previous reports, PARIS suppressed dopaminergic PGC-1α expression, disturbed mitochondrial marker protein expression, and reduced COXIV-labeled mitochondria in dopamine neurons. Pharmacological inhibition of c-Abl activity in PARIS transgenic mice largely prevents PD-associated pathological features. Unbiased transcriptomic analysis revealed PARIS-regulated differentially expressed genes (DEGs), both collectively and in a cell-type-specific manner, along with enriched biological pathways linked to PD pathogenesis. Single-cell resolution transcriptomic analysis confirmed repression of PGC-1α and several mitochondria-related target genes in dopaminergic cells. Additionally, we identified distinct glial cell subpopulations and DEGs associated with PD pathogenesis. CONCLUSIONS Conditional PARIS transgenic mice recapitulate robust and dopaminergic neuron-selective pathological features of PD, allowing the preclinical evaluation of antisymptomatic and disease-modifying therapeutic strategies within a couple of months. Based on this new PD mouse model, we provide unbiased bulk and single-nucleus transcriptomic profiles that are regulated by PARIS and potentially contribute to PD pathogenesis. A PD mouse model with flexible pathology induction capacity and a whole transcriptome could serve as a useful resource for translational PD research.
Collapse
Affiliation(s)
- Ji Hun Kim
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute (SBRI), Suwon, 16419, Republic of Korea
| | - Sumin Yang
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, 15588, Republic of Korea
| | - Hyojung Kim
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute (SBRI), Suwon, 16419, Republic of Korea
| | - Dang-Khoa Vo
- College of Pharmacy, Gachon University, Incheon, 21936, Republic of Korea
| | - Han-Joo Maeng
- College of Pharmacy, Gachon University, Incheon, 21936, Republic of Korea
| | - Areum Jo
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute (SBRI), Suwon, 16419, Republic of Korea
| | - Joo-Heon Shin
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Joo-Ho Shin
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute (SBRI), Suwon, 16419, Republic of Korea
| | - Hyeon-Man Baek
- Department of Health Sciences & Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon, 21999, Republic of Korea
| | - Gum Hwa Lee
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
| | - Sung-Hyun Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, 15588, Republic of Korea
| | - Key-Hwan Lim
- Department of Pharmacy, College of Pharmacy, Chungbuk National University, Cheongju-Si, 28160, Republic of Korea
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jae-Yeol Joo
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, 15588, Republic of Korea.
| | - Yunjong Lee
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute (SBRI), Suwon, 16419, Republic of Korea.
| |
Collapse
|
2
|
Giannakis A, Tsamis K, Konitsiotis S. Increased incidence of akinetic crises in Parkinson's disease patients treated with Levodopa-Carbidopa Intestinal Gel: A case series and review of the literature. Clin Neurol Neurosurg 2025; 249:108777. [PMID: 39914276 DOI: 10.1016/j.clineuro.2025.108777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/29/2025] [Accepted: 02/03/2025] [Indexed: 02/26/2025]
Abstract
Akinetic crisis (AC) is a severe, potentially life-threatening condition affecting individuals with Parkinson's Disease (PD). Similar to neuroleptic malignant syndrome, AC is characterized by a rapid worsening of motor symptoms, including bradykinesia, rigidity, and dysphagia. Additional symptoms may include hyperthermia and autonomic dysfunction. Large-scale prospective studies indicate that the incidence of AC among PD patients ranges from 3.1 % to 3.9 %. In our department, we recorded nine episodes of AC in seven out of 44 patients treated with Levodopa-Carbidopa Intestinal Gel (LCIG) since 2011. This incidence rate is notably higher than the figures reported in larger studies. No significant differences were observed between our patients and those in previous studies, except for mean disease duration. Therefore, LCIG therapy may be linked to a higher incidence of AC. Notably, one of our patients with a parkin gene mutation experienced AC three times. This aligns with previous findings that genetic PD, particularly with parkin mutations, is associated with a higher risk of AC, especially recurrent episodes. Further research is necessary to definitively establish a link between LCIG treatment and AC. Large-scale prospective studies are needed to assess the potential increased risk of this serious complication, which can significantly impact morbidity and mortality in advanced PD patients.
Collapse
Affiliation(s)
- Alexandros Giannakis
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Stavrou Niarchou Av., University Campus, Ioannina, Greece.
| | - Konstantinos Tsamis
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Stavrou Niarchou Av., University Campus, Ioannina, Greece
| | - Spiridon Konitsiotis
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Stavrou Niarchou Av., University Campus, Ioannina, Greece
| |
Collapse
|
3
|
Park HY, Lee GS, Go J, Ryu YK, Lee CH, Moon JH, Kim KS. Angiotensin-converting enzyme inhibition prevents l-dopa-induced dyskinesia in a 6-ohda-induced mouse model of Parkinson's disease. Eur J Pharmacol 2024; 973:176573. [PMID: 38642669 DOI: 10.1016/j.ejphar.2024.176573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/11/2024] [Accepted: 04/09/2024] [Indexed: 04/22/2024]
Abstract
Parkinson's disease (PD) is characterised by severe movement defects and the degeneration of dopaminergic neurones in the midbrain. The symptoms of PD can be managed with dopamine replacement therapy using L-3, 4-dihydroxyphenylalanine (L-dopa), which is the gold standard therapy for PD. However, long-term treatment with L-dopa can lead to motor complications. The central renin-angiotensin system (RAS) is associated with the development of neurodegenerative diseases in the brain. However, the role of the RAS in dopamine replacement therapy for PD remains unclear. Here, we tested the co-treatment of the angiotensin-converting enzyme inhibitor (ACEI) with L-dopa altered L-dopa-induced dyskinesia (LID) in a 6-hydroxydopamine (6-OHDA)-lesioned mouse model of PD. Perindopril, captopril, and enalapril were used as ACEIs. The co-treatment of ACEI with L-dopa significantly decreased LID development in 6-OHDA-lesioned mice. In addition, the astrocyte and microglial transcripts involving Ccl2, C3, Cd44, and Iigp1 were reduced by co-treatment with ACEI and L-dopa in the 6-OHDA-lesioned striatum. In conclusion, co-treatment with ACEIs and L-dopa, such as perindopril, captopril, and enalapril, may mitigate the severity of L-DOPA-induced dyskinesia in a mouse model of PD.
Collapse
Affiliation(s)
- Hye-Yeon Park
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Ga Seul Lee
- Core Research Facility & Analysis Center, KRIBB, Daejeon 34141, Republic of Korea; College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28160, Republic of Korea
| | - Jun Go
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Young-Kyoung Ryu
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; KRIBB School, University of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jeong Hee Moon
- Core Research Facility & Analysis Center, KRIBB, Daejeon 34141, Republic of Korea.
| | - Kyoung-Shim Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; KRIBB School, University of Science and Technology, Daejeon 34141, Republic of Korea.
| |
Collapse
|
4
|
Cardinale A, de Iure A, Picconi B. Neuroinflammation and Dyskinesia: A Possible Causative Relationship? Brain Sci 2024; 14:514. [PMID: 38790492 PMCID: PMC11118841 DOI: 10.3390/brainsci14050514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024] Open
Abstract
Levodopa (L-DOPA) treatment represents the gold standard therapy for Parkinson's disease (PD) patients. L-DOPA therapy shows many side effects, among them, L-DOPA-induced dyskinesias (LIDs) remain the most problematic. Several are the mechanisms underlying these processes: abnormal corticostriatal neurotransmission, pre- and post-synaptic neuronal events, changes in gene expression, and altered plasticity. In recent years, researchers have also suggested non-neuronal mechanisms as a possible cause for LIDs. We reviewed recent clinical and pre-clinical studies on neuroinflammation contribution to LIDs. Microglia and astrocytes seem to play a strategic role in LIDs phenomenon. In particular, their inflammatory response affects neuron-glia communication, synaptic activity and neuroplasticity, contributing to LIDs development. Finally, we describe possible new therapeutic interventions for dyskinesia prevention targeting glia cells.
Collapse
Affiliation(s)
- Antonella Cardinale
- Experimental Neurophysiology Laboratory, IRCCS San Raffaele Roma, 00166 Rome, Italy; (A.C.); (A.d.I.)
- Department of Human Sciences and Quality of Life Promotion, Università Telematica San Raffaele, 00166 Rome, Italy
| | - Antonio de Iure
- Experimental Neurophysiology Laboratory, IRCCS San Raffaele Roma, 00166 Rome, Italy; (A.C.); (A.d.I.)
- Department of Human Sciences and Quality of Life Promotion, Università Telematica San Raffaele, 00166 Rome, Italy
| | - Barbara Picconi
- Experimental Neurophysiology Laboratory, IRCCS San Raffaele Roma, 00166 Rome, Italy; (A.C.); (A.d.I.)
- Department of Human Sciences and Quality of Life Promotion, Università Telematica San Raffaele, 00166 Rome, Italy
| |
Collapse
|
5
|
Sočan V, Dolinar K, Kržan M. Kinetic Properties and Pharmacological Modulation of High- and Low-Affinity Dopamine Transport in Striatal Astrocytes of Adult Rats. Int J Mol Sci 2024; 25:5135. [PMID: 38791173 PMCID: PMC11121484 DOI: 10.3390/ijms25105135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Astrocytes actively participate in neurotransmitter homeostasis by bidirectional communication with neuronal cells, a concept named the tripartite synapse, yet their role in dopamine (DA) homeostasis remains understudied. In the present study, we investigated the kinetic and molecular mechanisms of DA transport in cultured striatal astrocytes of adult rats. Kinetic uptake experiments were performed using radiolabeled [3H]-DA, whereas mRNA expression of the dopamine, norepinephrine, organic cation and plasma membrane monoamine transporters (DAT, NET, OCTs and PMAT) and DA receptors D1 and D2 was determined by qPCR. Additionally, astrocyte cultures were subjected to a 24 h treatment with the DA receptor agonist apomorphine, the DA receptor antagonist haloperidol and the DA precursor L-DOPA. [3H]-DA uptake exhibited temperature, concentration and sodium dependence, with potent inhibition by desipramine, nortriptyline and decynium-22, suggesting the involvement of multiple transporters. qPCR revealed prominent mRNA expression of the NET, the PMAT and OCT1, alongside lower levels of mRNA for OCT2, OCT3 and the DAT. Notably, apomorphine significantly altered NET, PMAT and D1 mRNA expression, while haloperidol and L-DOPA had a modest impact. Our findings demonstrate that striatal astrocytes aid in DA clearance by multiple transporters, which are influenced by dopaminergic drugs. Our study enhances the understanding of regional DA uptake, paving the way for targeted therapeutic interventions in dopaminergic disorders.
Collapse
Affiliation(s)
- Vesna Sočan
- Institute of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Klemen Dolinar
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Mojca Kržan
- Institute of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
| |
Collapse
|
6
|
Hynes T, Fouyssac M, Puaud M, Joshi D, Chernoff C, Stiebahl S, Michaud L, Belin D. Pan-striatal reduction in the expression of the astrocytic dopamine transporter precedes the development of dorsolateral striatum dopamine-dependent incentive heroin seeking habits. Eur J Neurosci 2024; 59:2502-2521. [PMID: 38650303 DOI: 10.1111/ejn.16354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/28/2024] [Accepted: 03/31/2024] [Indexed: 04/25/2024]
Abstract
The emergence of compulsive drug-seeking habits, a hallmark feature of substance use disorder, has been shown to be predicated on the engagement of dorsolateral striatal control over behaviour. This process involves the dopamine-dependent functional coupling of the anterior dorsolateral striatum (aDLS) with the nucleus accumbens core, but the mechanisms by which this coupling occurs have not been fully elucidated. The striatum is tiled by a syncytium of astrocytes that express the dopamine transporter (DAT), the level of which is altered in individuals with heroin use disorder. Astrocytes are therefore uniquely placed functionally to bridge dopamine-dependent mechanisms across the striatum. Here we tested the hypothesis that exposure to heroin influences the expression of DAT in striatal astrocytes across the striatum before the development of DLS-dependent incentive heroin seeking habits. Using Western-blot, qPCR, and RNAscope™, we measured DAT protein and mRNA levels in whole tissue, culture and in situ astrocytes from striatal territories of rats with a well-established cue-controlled heroin seeking habit and rats trained to respond for heroin or food under continuous reinforcement. Incentive heroin seeking habits were associated with a reduction in DAT protein levels in the anterior aDLS that was preceded by a heroin-induced reduction in DAT mRNA and protein in astrocytes across the striatum. Striatal astrocytes were also shown to be susceptible to direct dopamine- and opioid-induced downregulation of DAT expression. These results suggest that astrocytes may critically regulate the striatal dopaminergic adaptations that lead to the development of incentive heroin seeking habits.
Collapse
Affiliation(s)
- Tristan Hynes
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Maxime Fouyssac
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Mickaël Puaud
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Dhaval Joshi
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Chloe Chernoff
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Sonja Stiebahl
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Lola Michaud
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - David Belin
- Department of Psychology, University of Cambridge, Cambridge, UK
| |
Collapse
|
7
|
Sternberg Z. Neurodegenerative Etiology of Aromatic L-Amino Acid Decarboxylase Deficiency: a Novel Concept for Expanding Treatment Strategies. Mol Neurobiol 2024; 61:2996-3018. [PMID: 37953352 DOI: 10.1007/s12035-023-03684-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 09/29/2023] [Indexed: 11/14/2023]
Abstract
Aromatic l-amino acid decarboxylase deficiency (AADC-DY) is caused by one or more mutations in the DDC gene, resulting in the deficit in catecholamines and serotonin neurotransmitters. The disease has limited therapeutic options with relatively poor clinical outcomes. Accumulated evidence suggests the involvement of neurodegenerative mechanisms in the etiology of AADC-DY. In the absence of neurotransmitters' neuroprotective effects, the accumulation and the chronic presence of several neurotoxic metabolites including 4-dihydroxy-L-phenylalanine, 3-methyldopa, and homocysteine, in the brain of subjects with AADC-DY, promote oxidative stress and reduce the cellular antioxidant and methylation capacities, leading to glial activation and mitochondrial dysfunction, culminating to neuronal injury and death. These pathophysiological processes have the potential to hinder the clinical efficacy of treatments aimed at increasing neurotransmitters' synthesis and or function. This review describes in detail the mechanisms involved in AADC-DY neurodegenerative etiology, highlighting the close similarities with those involved in other neurodegenerative diseases. We then offer novel strategies for the treatment of the disease with the objective to either reduce the level of the metabolites or counteract their prooxidant and neurotoxic effects. These treatment modalities used singly or in combination, early in the course of the disease, will minimize neuronal injury, preserving the functional integrity of neurons, hence improving the clinical outcomes of both conventional and unconventional interventions in AADC-DY. These modalities may not be limited to AADC-DY but also to other metabolic disorders where a specific mutation leads to the accumulation of prooxidant and neurotoxic metabolites.
Collapse
Affiliation(s)
- Zohi Sternberg
- Jacobs School of Medicine and Biomedical Sciences, Buffalo Medical Center, Buffalo, NY, 14203, USA.
| |
Collapse
|
8
|
Sočan V, Dolinar K, Kržan M. Transporters involved in adult rat cortical astrocyte dopamine uptake: Kinetics, expression and pharmacological modulation. Eur J Neurosci 2024; 59:1296-1310. [PMID: 38054361 DOI: 10.1111/ejn.16202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/03/2023] [Accepted: 11/10/2023] [Indexed: 12/07/2023]
Abstract
Astrocytes, glial cells in the central nervous system, perform a multitude of homeostatic functions and are in constant bidirectional communication with neuronal cells, a concept named the tripartite synapse; however, their role in the dopamine homeostasis remains unexplored. The aim of this study was to clarify the pharmacological and molecular characteristics of dopamine transport in cultured cortical astrocytes of adult rats. In addition, we were interested in the expression of mRNA of dopamine transporters as well as dopamine receptors D1 and D2 and in the effect of dopaminergic drugs on the expression of these transporters and receptors. We have found that astrocytes possess both Na+-dependent and Na+-independent transporters. Uptake of radiolabelled dopamine was time-, temperature- and concentration-dependent and was inhibited by decynium-22, a plasma membrane monoamine transporter inhibitor, tricyclic antidepressants desipramine and nortriptyline, both inhibitors of the norepinephrine transporter. Results of transporter mRNA expression indicate that the main transporters involved in cortical astrocyte dopamine uptake are the norepinephrine transporter and plasma membrane monoamine transporter. Both dopamine receptor subtypes were identified in cortical astrocyte cultures. Twenty-four-hour treatment of astrocyte cultures with apomorphine, a D1/D2 agonist, induced upregulation of D1 receptor, norepinephrine transporter and plasma membrane monoamine transporter, whereas the latter was downregulated by haloperidol and L-DOPA. Astrocytes take up dopamine by multiple transporters and express dopamine receptors, which are sensitive to dopaminergic drugs. The findings of this study could open a promising area of research for the fine-tuning of existing therapeutic strategies.
Collapse
Affiliation(s)
- Vesna Sočan
- Institute of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Klemen Dolinar
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mojca Kržan
- Institute of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
9
|
Sočan V, Dolinar K, Kržan M. Cortical and Striatal Astrocytes of Neonatal Rats Display Distinct Molecular and Pharmacological Characteristics of Dopamine Uptake. Int J Mol Sci 2024; 25:911. [PMID: 38255983 PMCID: PMC10815805 DOI: 10.3390/ijms25020911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Astrocytes are crucial in the regulation of neurotransmitter homeostasis, and while their involvement in the dopamine (DA) tripartite synapse is acknowledged, it necessitates a more comprehensive investigation. In the present study, experiments were conducted on primary astrocyte cultures from the striatum and cortex of neonatal rats. The pharmacological intricacies of DA uptake, including dependence on time, temperature, and concentration, were investigated using radiolabelled [3H]-DA. The mRNA expression of transporters DAT, NET, PMAT, and OCTs was evaluated by qPCR. Notably, astrocytes from both brain regions exhibited prominent mRNA expression of NET and PMAT, with comparatively lower expression of DAT and OCTs. The inhibition of DA uptake by the DAT inhibitor, GBR12909, and NET inhibitors, desipramine and nortriptyline, impeded DA uptake in striatal astrocytes more than in cortical astrocytes. The mRNA expression of NET and PMAT was significantly upregulated in cortical astrocytes in response to the DA receptor agonist apomorphine, while only the mRNA expression of NET exhibited changes in striatal astrocytes. Haloperidol, a DA receptor antagonist, and L-DOPA, a DA precursor, did not induce significant alterations in transporter mRNA expression. These findings underscore the intricate and region-specific mechanisms governing DA uptake in astrocytes, emphasizing the need for continued exploration to unravel the nuanced dynamics of astrocytic involvement in the DA tripartite synapse.
Collapse
Affiliation(s)
- Vesna Sočan
- Institute of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Klemen Dolinar
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Mojca Kržan
- Institute of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
| |
Collapse
|
10
|
Narváez-Pérez LF, Paz-Bermúdez F, Avalos-Fuentes JA, Campos-Romo A, Florán-Garduño B, Segovia J. CRISPR/sgRNA-directed synergistic activation mediator (SAM) as a therapeutic tool for Parkinson´s disease. Gene Ther 2024; 31:31-44. [PMID: 37542151 PMCID: PMC10788271 DOI: 10.1038/s41434-023-00414-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/30/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023]
Abstract
Parkinson`s disease (PD) is the second most prevalent neurodegenerative disease, and different gene therapy strategies have been used as experimental treatments. As a proof-of-concept for the treatment of PD, we used SAM, a CRISPR gene activation system, to activate the endogenous tyrosine hydroxylase gene (th) of astrocytes to produce dopamine (DA) in the striatum of 6-OHDA-lesioned rats. Potential sgRNAs within the rat th promoter region were tested, and the expression of the Th protein was determined in the C6 glial cell line. Employing pseudo-lentivirus, the SAM complex and the selected sgRNA were transferred into cultures of rat astrocytes, and gene expression and Th protein synthesis were ascertained; furthermore, DA release into the culture medium was determined by HPLC. The DA-producing astrocytes were implanted into the striatum of 6-OHDA hemiparkinsonian rats. We observed motor behavior improvement in the lesioned rats that received DA-astrocytes compared to lesioned rats receiving astrocytes that did not produce DA. Our data indicate that the SAM-induced expression of the astrocyte´s endogenous th gene can generate DA-producing astrocytes that effectively reduce the motor asymmetry induced by the lesion.
Collapse
Affiliation(s)
- Luis Fernando Narváez-Pérez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, 07360, México
| | - Francisco Paz-Bermúdez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, 07360, México
| | - José Arturo Avalos-Fuentes
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, 07360, México
| | - Aurelio Campos-Romo
- Unidad Periférica de Neurociencias, Facultad de Medicina, Instituto Nacional de Neurología y Neurocirugía "MVS", Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Benjamín Florán-Garduño
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, 07360, México
| | - José Segovia
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, 07360, México.
| |
Collapse
|
11
|
Conti Mazza MM, Centner A, Werner DF, Bishop C. Striatal serotonin transporter gain-of-function in L-DOPA-treated, hemi-parkinsonian rats. Brain Res 2023; 1811:148381. [PMID: 37127174 PMCID: PMC10562932 DOI: 10.1016/j.brainres.2023.148381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/03/2023]
Abstract
L-DOPA is the standard treatment for Parkinson's disease (PD), but chronic treatment typically leads to L-DOPA-induced dyskinesia (LID). LID involves a complex interaction between the remaining dopamine (DA) system and the semi-homologous serotonin (5-HT) system. Since serotonin transporters (SERT) have some affinity for DA uptake, they may serve as a functional compensatory mechanism when DA transporters (DAT) are scant. DAT and SERT's functional contributions in the dyskinetic brain have not been well delineated. The current investigation sought to determine how DA depletion and L-DOPA treatment affect DAT and SERT transcriptional processes, translational processes, and functional DA uptake in the 6-hydroxydopamine-lesioned hemi-parkinsonian rat. Rats were counterbalanced for motor impairment into equally lesioned treatment groups then given daily L-DOPA (0 or 6 mg/kg) for 2 weeks. At the end of treatment, the substantia nigra was processed for tyrosine hydroxylase (TH) and DAT gene expression and dorsal raphe was processed for SERT gene expression. The striatum was processed for synaptosomal DAT and SERT protein expression and ex vivo DA uptake. Nigrostriatal DA loss severely reduced DAT mRNA and protein expression in the striatum with minimal changes in SERT. L-DOPA treatment, while not significantly affecting DAT or SERT alone, did increase striatal SERT:DAT protein ratios. Using ex vivo microdialysis, L-DOPA treatment increased DA uptake via SERT when DAT was depleted. Overall, these results suggest that DA loss and L-DOPA treatment uniquely alter DAT and SERT, revealing implications for monoamine transporters as potential biomarkers and therapeutic targets in the hemi-parkinsonian model and dyskinetic PD patients.
Collapse
Affiliation(s)
- Melissa M Conti Mazza
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902-6000, USA
| | - Ashley Centner
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902-6000, USA
| | - David F Werner
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902-6000, USA
| | - Christopher Bishop
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902-6000, USA.
| |
Collapse
|
12
|
Mancini M, Natoli S, Gardoni F, Di Luca M, Pisani A. Dopamine Transmission Imbalance in Neuroinflammation: Perspectives on Long-Term COVID-19. Int J Mol Sci 2023; 24:ijms24065618. [PMID: 36982693 PMCID: PMC10056044 DOI: 10.3390/ijms24065618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Dopamine (DA) is a key neurotransmitter in the basal ganglia, implicated in the control of movement and motivation. Alteration of DA levels is central in Parkinson’s disease (PD), a common neurodegenerative disorder characterized by motor and non-motor manifestations and deposition of alpha-synuclein (α-syn) aggregates. Previous studies have hypothesized a link between PD and viral infections. Indeed, different cases of parkinsonism have been reported following COVID-19. However, whether SARS-CoV-2 may trigger a neurodegenerative process is still a matter of debate. Interestingly, evidence of brain inflammation has been described in postmortem samples of patients infected by SARS-CoV-2, which suggests immune-mediated mechanisms triggering the neurological sequelae. In this review, we discuss the role of proinflammatory molecules such as cytokines, chemokines, and oxygen reactive species in modulating DA homeostasis. Moreover, we review the existing literature on the possible mechanistic interplay between SARS-CoV-2-mediated neuroinflammation and nigrostriatal DAergic impairment, and the cross-talk with aberrant α-syn metabolism.
Collapse
Affiliation(s)
- Maria Mancini
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
- IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Silvia Natoli
- Department of Clinical Science and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
- IRCCS Maugeri Pavia, 27100 Pavia, Italy
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, University of Milan, 20133 Milan, Italy; (F.G.); (M.D.L.)
| | - Monica Di Luca
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, University of Milan, 20133 Milan, Italy; (F.G.); (M.D.L.)
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
- IRCCS Mondino Foundation, 27100 Pavia, Italy
- Correspondence: ; Tel.: +39-0382-380-247
| |
Collapse
|
13
|
Adermark L, Lagström O, Loftén A, Licheri V, Havenäng A, Loi EA, Stomberg R, Söderpalm B, Domi A, Ericson M. Astrocytes modulate extracellular neurotransmitter levels and excitatory neurotransmission in dorsolateral striatum via dopamine D2 receptor signaling. Neuropsychopharmacology 2022; 47:1493-1502. [PMID: 34811469 PMCID: PMC9206030 DOI: 10.1038/s41386-021-01232-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 12/14/2022]
Abstract
Astrocytes provide structural and metabolic support of neuronal tissue, but may also be involved in shaping synaptic output. To further define the role of striatal astrocytes in modulating neurotransmission we performed in vivo microdialysis and ex vivo slice electrophysiology combined with metabolic, chemogenetic, and pharmacological approaches. Microdialysis recordings revealed that intrastriatal perfusion of the metabolic uncoupler fluorocitrate (FC) produced a robust increase in extracellular glutamate levels, with a parallel and progressive decline in glutamine. In addition, FC significantly increased the microdialysate concentrations of dopamine and taurine, but did not modulate the extracellular levels of glycine or serine. Despite the increase in glutamate levels, ex vivo electrophysiology demonstrated a reduced excitability of striatal neurons in response to FC. The decrease in evoked potentials was accompanied by an increased paired pulse ratio, and a reduced frequency of spontaneous excitatory postsynaptic currents, suggesting that FC depresses striatal output by reducing the probability of transmitter release. The effect by FC was mimicked by chemogenetic inhibition of astrocytes using Gi-coupled designer receptors exclusively activated by designer drugs (DREADDs) targeting GFAP, and by the glial glutamate transporter inhibitor TFB-TBOA. Both FC- and TFB-TBOA-mediated synaptic depression were inhibited in brain slices pre-treated with the dopamine D2 receptor antagonist sulpiride, but insensitive to agents acting on presynaptic glutamatergic autoreceptors, NMDA receptors, gap junction coupling, cannabinoid 1 receptors, µ-opioid receptors, P2 receptors or GABAA receptors. In conclusion, our data collectively support a role for astrocytes in modulating striatal neurotransmission and suggest that reduced transmission after astrocytic inhibition involves dopamine.
Collapse
Affiliation(s)
- Louise Adermark
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden. .,Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Oona Lagström
- grid.8761.80000 0000 9919 9582Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Loftén
- grid.8761.80000 0000 9919 9582Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden ,grid.1649.a000000009445082XBeroendekliniken, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Valentina Licheri
- grid.8761.80000 0000 9919 9582Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Amy Havenäng
- grid.8761.80000 0000 9919 9582Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Eleonora Anna Loi
- grid.8761.80000 0000 9919 9582Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Rosita Stomberg
- grid.8761.80000 0000 9919 9582Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bo Söderpalm
- grid.8761.80000 0000 9919 9582Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden ,grid.1649.a000000009445082XBeroendekliniken, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ana Domi
- grid.8761.80000 0000 9919 9582Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mia Ericson
- grid.8761.80000 0000 9919 9582Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
14
|
Nam MH, Sa M, Ju YH, Park MG, Lee CJ. Revisiting the Role of Astrocytic MAOB in Parkinson's Disease. Int J Mol Sci 2022; 23:4453. [PMID: 35457272 PMCID: PMC9028367 DOI: 10.3390/ijms23084453] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 12/11/2022] Open
Abstract
Monoamine oxidase-B (MAOB) has been believed to mediate the degradation of monoamine neurotransmitters such as dopamine. However, this traditional belief has been challenged by demonstrating that it is not MAOB but MAOA which mediates dopamine degradation. Instead, MAOB mediates the aberrant synthesis of GABA and hydrogen peroxide (H2O2) in reactive astrocytes of Parkinson's disease (PD). Astrocytic GABA tonically suppresses the dopaminergic neuronal activity, whereas H2O2 aggravates astrocytic reactivity and dopaminergic neuronal death. Recently discovered reversible MAOB inhibitors reduce reactive astrogliosis and restore dopaminergic neuronal activity to alleviate PD symptoms in rodents. In this perspective, we redefine the role of MAOB for the aberrant suppression and deterioration of dopaminergic neurons through excessive GABA and H2O2 synthesis of reactive astrocytes in PD.
Collapse
Affiliation(s)
- Min-Ho Nam
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea;
- Department of KHU-KIST Convergence Science and Technology, Kyung Hee University, Seoul 02453, Korea
| | - Moonsun Sa
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea; (M.S.); (M.G.P.)
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Korea
| | - Yeon Ha Ju
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea;
| | - Mingu Gordon Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea; (M.S.); (M.G.P.)
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Korea
| | - C. Justin Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea; (M.S.); (M.G.P.)
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Korea
| |
Collapse
|
15
|
Abstract
Drug addiction remains a key biomedical challenge facing current neuroscience research. In addition to neural mechanisms, the focus of the vast majority of studies to date, astrocytes have been increasingly recognized as an "accomplice." According to the tripartite synapse model, astrocytes critically regulate nearby pre- and postsynaptic neuronal substrates to craft experience-dependent synaptic plasticity, including synapse formation and elimination. Astrocytes within brain regions that are implicated in drug addiction exhibit dynamic changes in activity upon exposure to cocaine and subsequently undergo adaptive changes themselves during chronic drug exposure. Recent results have identified several key astrocytic signaling pathways that are involved in cocaine-induced synaptic and circuit adaptations. In this review, we provide a brief overview of the role of astrocytes in regulating synaptic transmission and neuronal function, and discuss how cocaine influences these astrocyte-mediated mechanisms to induce persistent synaptic and circuit alterations that promote cocaine seeking and relapse. We also consider the therapeutic potential of targeting astrocytic substrates to ameliorate drug-induced neuroplasticity for behavioral benefits. While primarily focusing on cocaine-induced astrocytic responses, we also include brief discussion of other drugs of abuse where data are available.
Collapse
|
16
|
Gorina YV, Salmina AB, Erofeev AI, Can Z, Bolshakova AV, Balaban PM, Bezprozvanny IB, Vlasova OL. Metabolic Plasticity of Astrocytes. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021060016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Asanuma M, Miyazaki I. Glutathione and Related Molecules in Parkinsonism. Int J Mol Sci 2021; 22:ijms22168689. [PMID: 34445395 PMCID: PMC8395390 DOI: 10.3390/ijms22168689] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/08/2021] [Accepted: 08/11/2021] [Indexed: 12/14/2022] Open
Abstract
Glutathione (GSH) is the most abundant intrinsic antioxidant in the central nervous system, and its substrate cysteine readily becomes the oxidized dimeric cystine. Since neurons lack a cystine transport system, neuronal GSH synthesis depends on cystine uptake via the cystine/glutamate exchange transporter (xCT), GSH synthesis, and release in/from surrounding astrocytes. Transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), a detoxifying master transcription factor, is expressed mainly in astrocytes and activates the gene expression of various phase II drug-metabolizing enzymes or antioxidants including GSH-related molecules and metallothionein by binding to the antioxidant response element (ARE) of these genes. Accumulating evidence has shown the involvement of dysfunction of antioxidative molecules including GSH and its related molecules in the pathogenesis of Parkinson’s disease (PD) or parkinsonian models. Furthermore, we found several agents targeting GSH synthesis in the astrocytes that protect nigrostriatal dopaminergic neuronal loss in PD models. In this article, the neuroprotective effects of supplementation and enhancement of GSH and its related molecules in PD pathology are reviewed, along with introducing new experimental findings, especially targeting of the xCT-GSH synthetic system and Nrf2–ARE pathway in astrocytes.
Collapse
|
18
|
Turk AZ, Lotfi Marchoubeh M, Fritsch I, Maguire GA, SheikhBahaei S. Dopamine, vocalization, and astrocytes. BRAIN AND LANGUAGE 2021; 219:104970. [PMID: 34098250 PMCID: PMC8260450 DOI: 10.1016/j.bandl.2021.104970] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 05/06/2023]
Abstract
Dopamine, the main catecholamine neurotransmitter in the brain, is predominately produced in the basal ganglia and released to various brain regions including the frontal cortex, midbrain and brainstem. Dopamine's effects are widespread and include modulation of a number of voluntary and innate behaviors. Vigilant regulation and modulation of dopamine levels throughout the brain is imperative for proper execution of motor behaviors, in particular speech and other types of vocalizations. While dopamine's role in motor circuitry is widely accepted, its unique function in normal and abnormal speech production is not fully understood. In this perspective, we first review the role of dopaminergic circuits in vocal production. We then discuss and propose the conceivable involvement of astrocytes, the numerous star-shaped glia cells of the brain, in the dopaminergic network modulating normal and abnormal vocal productions.
Collapse
Affiliation(s)
- Ariana Z Turk
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, 20892 MD, USA
| | - Mahsa Lotfi Marchoubeh
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, 72701 AR, USA
| | - Ingrid Fritsch
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, 72701 AR, USA
| | - Gerald A Maguire
- Department of Psychiatry and Neuroscience, School of Medicine, University of California, Riverside, 92521 CA, USA
| | - Shahriar SheikhBahaei
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, 20892 MD, USA.
| |
Collapse
|
19
|
Zheng C, Zhang F. New insights into pathogenesis of l-DOPA-induced dyskinesia. Neurotoxicology 2021; 86:104-113. [PMID: 34331976 DOI: 10.1016/j.neuro.2021.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
Parkinson's disease (PD) is a progressive and self-propelling neurodegenerative disorder, which is characterized by motor symptoms, such as rigidity, tremor, slowness of movement and problems with gait. These symptoms become worse over time. To date, Dopamine (DA) replacement therapy with 3, 4-dihydroxy-l-phenylalanine (L-DOPA) is still the most effective pharmacotherapy for motor symptoms of PD. Unfortunately, motor fluctuations consisting of wearing-off effect actions and dyskinesia tend to occur in a few years of starting l-DOPA. Currently, l-DOPA-induced dyskinesia (LID) is troublesome and the pathogenesis of LID requires further investigation. Importantly, a new intervention for LID is imminent. Thus, this review mainly summarized the clinical features, risk factors and pathogenesis of LID to provide updatefor the development of therapeutic targets and new approaches for the treatment of LID.
Collapse
Affiliation(s)
- Changqing Zheng
- Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Feng Zhang
- Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
20
|
Cho HU, Kim S, Sim J, Yang S, An H, Nam MH, Jang DP, Lee CJ. Redefining differential roles of MAO-A in dopamine degradation and MAO-B in tonic GABA synthesis. Exp Mol Med 2021; 53:1148-1158. [PMID: 34244591 PMCID: PMC8333267 DOI: 10.1038/s12276-021-00646-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 12/21/2022] Open
Abstract
Monoamine oxidase (MAO) is believed to mediate the degradation of monoamine neurotransmitters, including dopamine, in the brain. Between the two types of MAO, MAO-B has been believed to be involved in dopamine degradation, which supports the idea that the therapeutic efficacy of MAO-B inhibitors in Parkinson's disease can be attributed to an increase in extracellular dopamine concentration. However, this belief has been controversial. Here, by utilizing in vivo phasic and basal electrochemical monitoring of extracellular dopamine with fast-scan cyclic voltammetry and multiple-cyclic square wave voltammetry and ex vivo fluorescence imaging of dopamine with GRABDA2m, we demonstrate that MAO-A, but not MAO-B, mainly contributes to striatal dopamine degradation. In contrast, our whole-cell patch-clamp results demonstrated that MAO-B, but not MAO-A, was responsible for astrocytic GABA-mediated tonic inhibitory currents in the rat striatum. We conclude that, in contrast to the traditional belief, MAO-A and MAO-B have profoundly different roles: MAO-A regulates dopamine levels, whereas MAO-B controls tonic GABA levels.
Collapse
Affiliation(s)
- Hyun-U Cho
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Sunpil Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Korea
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Korea
| | - Jeongeun Sim
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Seulkee Yang
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Korea
| | - Heeyoung An
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Korea
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Korea
| | - Min-Ho Nam
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Korea.
- Department of KHU-KIST Convergence Science and Technology, Kyung Hee University, Seoul, Korea.
| | - Dong-Pyo Jang
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea.
| | - C Justin Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Korea.
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Korea.
| |
Collapse
|
21
|
Zheng CQ, Fan HX, Li XX, Li JJ, Sheng S, Zhang F. Resveratrol Alleviates Levodopa-Induced Dyskinesia in Rats. Front Immunol 2021; 12:683577. [PMID: 34248967 PMCID: PMC8267475 DOI: 10.3389/fimmu.2021.683577] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/31/2021] [Indexed: 02/01/2023] Open
Abstract
Dyskinesia is a serious complication of Parkinson’s disease during levodopa (L-DOPA) treatment. The pathophysiology of L-DOPA-induced dyskinesia (LID) is complex and not fully illuminated. At present, treatment of dyskinesia is quite limited. Recent studies demonstrated neuroinflammation plays an important role in development of LID. Thus, inhibition of neuroinflammation might open a new avenue for LID treatment. Resveratrol (RES) is the most well-known polyphenolic stilbenoid and verified to possess a large variety of biological activities. DA neurotoxicity was assessed via behavior test and DA neuronal quantification. The movement disorders of dyskinesia were detected by the abnormal involuntary movements scores analysis. Effects of RES on glial cells-elicited neuroinflammation were also explored. Data showed that RES attenuated dyskinesia induced by L-DOPA without affecting L-DOPA’s anti-parkinsonian effects. Furthermore, RES generated neuroprotection against long term treatment of L-DOPA-induced DA neuronal damage. Meanwhile, RES reduced protein expression of dyskinesia molecular markers, ΔFOS B and ERK, in the striatum. Also, there was a strong negative correlation between DA system damage and ΔFOS B level in the striatum. In addition, RES inhibited microglia and astroglia activation in substantia nigra and subsequent inflammatory responses in the striatum during L-DOPA treatment. RES alleviates dyskinesia induced by L-DOPA and these beneficial effects are closely associated with protection against DA neuronal damage and inhibition of glial cells-mediated neuroinflammatory reactions.
Collapse
Affiliation(s)
- Chang-Qing Zheng
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Center, Zunyi Medical University, Zunyi, China
| | - Hong-Xia Fan
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Center, Zunyi Medical University, Zunyi, China
| | - Xiao-Xian Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Center, Zunyi Medical University, Zunyi, China
| | - Jing-Jie Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Center, Zunyi Medical University, Zunyi, China
| | - Shuo Sheng
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Center, Zunyi Medical University, Zunyi, China
| | - Feng Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Center, Zunyi Medical University, Zunyi, China
| |
Collapse
|
22
|
Asanuma M, Miyazaki I. [Anti-oxidants in astrocytes as target of neuroprotection for Parkinson's disease]. Nihon Yakurigaku Zasshi 2021; 156:14-20. [PMID: 33390474 DOI: 10.1254/fpj.20071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Recently, it has been reported that dysfunction of astrocytes is involved vulnerability of neuronal cells in several neurological disorders. Glutathione (GSH) is the most abundant intrinsic antioxidant in the central nervous system, and its substrate cysteine is readily becomes the oxidized dimeric cystine. Since neurons lack a cystine transport system, neuronal GSH synthesis depends on cystine uptake via the cystine/glutamate exchange transporter (xCT), GSH synthesis and release in/from surrounding astrocytes. The expression and release of the zinc-binding protein metallothionein (MT) in astrocytes, which is a strong antioxidant, is induced and exerts neuroprotective in the case of dopaminergic neuronal damage. In addition, the transcription factor Nrf2 induces expression of MT-1 and GSH related molecules. We previously revealed that several antiepileptic drugs, serotonin 5-HT1A receptor agonists, plant-derived chemicals (phytochemicals) increased xCT expression, Nrf2 activation, GSH or MT expression and release in/from astrocytes, and exerted a neuroprotective effect against dopaminergic neurodegeneration in Parkinson's disease model. Our serial studies on neuroprotection via antioxidant defense mechanism of astrocytes have found three target molecular systems of astrocytes for neuroprotection: (1) xCT-GSH synthetic system, (2) Nrf2 system and (3) 5-HT1A receptor-Nrf2-MT system, 5-HT1A-S100β system. In this article, possible neuroprotective strategy for Parkinson's disease has been reviewed targeting antioxidative molecules in astrocytes.
Collapse
Affiliation(s)
- Masato Asanuma
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentist and Pharmaceutical Sciences
| | - Ikuko Miyazaki
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentist and Pharmaceutical Sciences
| |
Collapse
|
23
|
Miyazaki I, Asanuma M. Neuron-Astrocyte Interactions in Parkinson's Disease. Cells 2020; 9:cells9122623. [PMID: 33297340 PMCID: PMC7762285 DOI: 10.3390/cells9122623] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/20/2020] [Accepted: 12/05/2020] [Indexed: 12/12/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease. PD patients exhibit motor symptoms such as akinesia/bradykinesia, tremor, rigidity, and postural instability due to a loss of nigrostriatal dopaminergic neurons. Although the pathogenesis in sporadic PD remains unknown, there is a consensus on the involvement of non-neuronal cells in the progression of PD pathology. Astrocytes are the most numerous glial cells in the central nervous system. Normally, astrocytes protect neurons by releasing neurotrophic factors, producing antioxidants, and disposing of neuronal waste products. However, in pathological situations, astrocytes are known to produce inflammatory cytokines. In addition, various studies have reported that astrocyte dysfunction also leads to neurodegeneration in PD. In this article, we summarize the interaction of astrocytes and dopaminergic neurons, review the pathogenic role of astrocytes in PD, and discuss therapeutic strategies for the prevention of dopaminergic neurodegeneration. This review highlights neuron-astrocyte interaction as a target for the development of disease-modifying drugs for PD in the future.
Collapse
|
24
|
Kuter KZ, Cenci MA, Carta AR. The role of glia in Parkinson's disease: Emerging concepts and therapeutic applications. PROGRESS IN BRAIN RESEARCH 2020; 252:131-168. [PMID: 32247363 DOI: 10.1016/bs.pbr.2020.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Originally believed to primarily affect neurons, Parkinson's disease (PD) has recently been recognized to also affect the functions and integrity of microglia and astroglia, two cell categories of fundamental importance to brain tissue homeostasis, defense, and repair. Both a loss of glial supportive-defensive functions and a toxic gain of glial functions are implicated in the neurodegenerative process. Moreover, the chronic treatment with L-DOPA may cause maladaptive glial plasticity favoring a development of therapy complications. This chapter focuses on the pathophysiology of PD from a glial point of view, presenting this rapidly growing field from the first discoveries made to the most recent developments. We report and compare histopathological and molecular findings from experimental models of PD and human studies. We moreover discuss the important role played by astrocytes in compensatory adaptations taking place during presymptomatic disease stages. We finally describe examples of potential therapeutic applications stemming from an increased understanding of the important roles of glia in PD.
Collapse
Affiliation(s)
- Katarzyna Z Kuter
- Department of Neuropsychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland.
| | - M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Anna R Carta
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Cagliari, Italy.
| |
Collapse
|
25
|
Thomas Broome S, Louangaphay K, Keay KA, Leggio GM, Musumeci G, Castorina A. Dopamine: an immune transmitter. Neural Regen Res 2020; 15:2173-2185. [PMID: 32594028 PMCID: PMC7749467 DOI: 10.4103/1673-5374.284976] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The dopaminergic system controls several vital central nervous system functions, including the control of movement, reward behaviors and cognition. Alterations of dopaminergic signaling are involved in the pathogenesis of neurodegenerative and psychiatric disorders, in particular Parkinson’s disease, which are associated with a subtle and chronic inflammatory response. A substantial body of evidence has demonstrated the non-neuronal expression of dopamine, its receptors and of the machinery that governs synthesis, secretion and storage of dopamine across several immune cell types. This review aims to summarize current knowledge on the role and expression of dopamine in immune cells. One of the goals is to decipher the complex mechanisms through which these cell types respond to dopamine, in order to address the impact this has on neurodegenerative and psychiatric pathologies such as Parkinson’s disease. A further aim is to illustrate the gaps in our understanding of the physiological roles of dopamine to encourage more targeted research focused on understanding the consequences of aberrant dopamine production on immune regulation. These highlights may prompt scientists in the field to consider alternative functions of this important neurotransmitter when targeting neuroinflammatory/neurodegenerative pathologies.
Collapse
Affiliation(s)
- Sarah Thomas Broome
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney, Sydney, Australia
| | - Krystal Louangaphay
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney, Sydney, Australia
| | - Kevin A Keay
- Laboratory of Neural Structure and Function (LNSF), School of Medical Sciences, (Anatomy and Histology), Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Gian Marco Leggio
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giuseppe Musumeci
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Alessandro Castorina
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney; Laboratory of Neural Structure and Function (LNSF), School of Medical Sciences, (Anatomy and Histology), Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| |
Collapse
|
26
|
Li H, Liu Z, Wu Y, Chen Y, Wang J, Wang Z, Huang D, Wang M, Yu M, Fei J, Huang F. The deficiency of NRSF/REST enhances the pro-inflammatory function of astrocytes in a model of Parkinson's disease. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165590. [DOI: 10.1016/j.bbadis.2019.165590] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/11/2019] [Accepted: 09/30/2019] [Indexed: 12/15/2022]
|
27
|
Mashima K, Takahashi S, Minami K, Izawa Y, Abe T, Tsukada N, Hishiki T, Suematsu M, Kajimura M, Suzuki N. Neuroprotective Role of Astroglia in Parkinson Disease by Reducing Oxidative Stress Through Dopamine-Induced Activation of Pentose-Phosphate Pathway. ASN Neuro 2019; 10:1759091418775562. [PMID: 29768946 PMCID: PMC5960859 DOI: 10.1177/1759091418775562] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Oxidative stress plays an important role in the onset and progression of Parkinson disease. Although released dopamine at the synaptic terminal is mostly reabsorbed by dopaminergic neurons, some dopamine is presumably taken up by astroglia. This study examined the dopamine-induced astroglial protective function through the activation of the pentose-phosphate pathway (PPP) to reduce reactive oxygen species (ROS). In vitro experiments were performed using striatal neurons and cortical or striatal astroglia prepared from Sprague-Dawley rats or C57BL/6 mice. The rates of glucose phosphorylation in astroglia were evaluated using the [14C]deoxyglucose method. PPP activity was measured using [1-14C]glucose and [6-14C]glucose after acute (60 min) or chronic (15 hr) exposure to dopamine. ROS production was measured using 2',7'-dichlorodihydrofluorescein diacetate. The involvement of the Kelch-like ECH-associated protein 1 (Keap1) or nuclear factor-erythroid-2-related factor 2 (Nrf2) system was evaluated using Nrf2 gene knockout mice, immunohistochemistry, and quantitative reverse transcription polymerase chain reaction analysis for heme oxygenase-1. Acute exposure to dopamine elicited increases in astroglial glucose consumption with lactate release. PPP activity in astroglia was robustly enhanced independently of Na+-dependent monoamine transporters. In contrast, chronic exposure to dopamine induced moderate increases in PPP activity via the Keap1/Nrf2 system. ROS production from dopamine increased gradually over 12 hr. Dopamine induced neuronal cell damage that was prevented by coculturing with astroglia but not with Nrf2-deficient astroglia. Dopamine-enhanced astroglial PPP activity in both acute and chronic manners may possibly reduce neuronal oxidative stress.
Collapse
Affiliation(s)
- Kyoko Mashima
- 1 Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Shinichi Takahashi
- 1 Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Kazushi Minami
- 1 Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Yoshikane Izawa
- 1 Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Takato Abe
- 1 Department of Neurology, Keio University School of Medicine, Tokyo, Japan.,2 Department of Neurology, Graduate School of Medicine, Osaka City University, Japan
| | - Naoki Tsukada
- 1 Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Takako Hishiki
- 3 Clinical and Translational Research Center, Keio University School of Medicine, Tokyo, Japan.,4 Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Makoto Suematsu
- 4 Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Mayumi Kajimura
- 5 Department of Biology, Keio University School of Medicine, Yokohama, Japan
| | - Norihiro Suzuki
- 1 Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
28
|
Oksanen M, Lehtonen S, Jaronen M, Goldsteins G, Hämäläinen RH, Koistinaho J. Astrocyte alterations in neurodegenerative pathologies and their modeling in human induced pluripotent stem cell platforms. Cell Mol Life Sci 2019; 76:2739-2760. [PMID: 31016348 PMCID: PMC6588647 DOI: 10.1007/s00018-019-03111-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/06/2019] [Accepted: 04/16/2019] [Indexed: 12/12/2022]
Abstract
Astrocytes are the most abundant cell type in the brain. They were long considered only as passive support for neuronal cells. However, recent data have revealed many active roles for these cells both in maintenance of the normal physiological homeostasis in the brain as well as in neurodegeneration and disease. Moreover, human astrocytes have been found to be much more complex than their rodent counterparts, and to date, astrocytes are known to actively participate in a multitude of processes such as neurotransmitter uptake and recycling, gliotransmitter release, neuroenergetics, inflammation, modulation of synaptic activity, ionic balance, maintenance of the blood-brain barrier, and many other crucial functions of the brain. This review focuses on the role of astrocytes in human neurodegenerative disease and the potential of the novel stem cell-based platforms in modeling astrocytic functions in health and in disease.
Collapse
Affiliation(s)
- Minna Oksanen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Sarka Lehtonen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, PO. Box 63, 00290, Helsinki, Finland
| | - Merja Jaronen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Gundars Goldsteins
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Riikka H Hämäläinen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Jari Koistinaho
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland.
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, PO. Box 63, 00290, Helsinki, Finland.
| |
Collapse
|
29
|
Asanuma M, Okumura-Torigoe N, Miyazaki I, Murakami S, Kitamura Y, Sendo T. Region-Specific Neuroprotective Features of Astrocytes against Oxidative Stress Induced by 6-Hydroxydopamine. Int J Mol Sci 2019; 20:ijms20030598. [PMID: 30704073 PMCID: PMC6387089 DOI: 10.3390/ijms20030598] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 01/28/2019] [Accepted: 01/28/2019] [Indexed: 01/09/2023] Open
Abstract
In previous studies, we found regional differences in the induction of antioxidative molecules in astrocytes against oxidative stress, postulating that region-specific features of astrocytes lead region-specific vulnerability of neurons. We examined region-specific astrocytic features against dopaminergic neurotoxin 6-hydroxydopamine (6-OHDA) as an oxidative stress using co-culture of mesencephalic neurons and mesencephalic or striatal astrocytes in the present study. The 6-OHDA-induced reduction of mesencephalic dopamine neurons was inhibited by co-culturing with astrocytes. The co-culture of midbrain neurons with striatal astrocytes was more resistant to 6-OHDA than that with mesencephalic astrocytes. Furthermore, glia conditioned medium from 6-OHDA-treated striatal astrocytes showed a greater protective effect on the 6-OHDA-induced neurotoxicity and oxidative stress than that from mesencephalic astrocytes. The cDNA microarray analysis showed that the number of altered genes in both mesencephalic and striatal astrocytes was fewer than that changed in either astrocyte. The 6-OHDA treatment, apparently up-regulated expressions of Nrf2 and some anti-oxidative or Nrf2-regulating phase II, III detoxifying molecules related to glutathione synthesis and export in the striatal astrocytes but not mesencephalic astrocytes. There is a profound regional difference of gene expression in astrocytes induced by 6-OHDA. These results suggest that protective features of astrocytes against oxidative stress are more prominent in striatal astrocytes, possibly by secreting humoral factors in striatal astrocytes.
Collapse
Affiliation(s)
- Masato Asanuma
- Department of Medical Neurobiology, Okayama University Graduate School of Medical, Dental and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| | - Nao Okumura-Torigoe
- Department of Clinical Pharmacy, Okayama University Graduate School of Medical, Dental and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| | - Ikuko Miyazaki
- Department of Medical Neurobiology, Okayama University Graduate School of Medical, Dental and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| | - Shinki Murakami
- Department of Medical Neurobiology, Okayama University Graduate School of Medical, Dental and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| | - Yoshihisa Kitamura
- Department of Clinical Pharmacy, Okayama University Graduate School of Medical, Dental and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| | - Toshiaki Sendo
- Department of Clinical Pharmacy, Okayama University Graduate School of Medical, Dental and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| |
Collapse
|
30
|
Finberg JPM. Inhibitors of MAO-B and COMT: their effects on brain dopamine levels and uses in Parkinson's disease. J Neural Transm (Vienna) 2018; 126:433-448. [PMID: 30386930 DOI: 10.1007/s00702-018-1952-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/29/2018] [Indexed: 12/30/2022]
Abstract
MAO-B and COMT are both enzymes involved in dopamine breakdown and metabolism. Inhibitors of these enzymes are used in the treatment of Parkinson's disease. This review article describes the scientific background to the localization and function of the enzymes, the physiological changes resulting from their inhibition, and the basic and clinical pharmacology of the various inhibitors and their role in treatment of Parkinson's disease.
Collapse
Affiliation(s)
- John P M Finberg
- Neuroscience Group, Rappaport Faculty of Medicine, Haifa, Israel.
| |
Collapse
|
31
|
Ghiglieri V, Calabrese V, Calabresi P. Alpha-Synuclein: From Early Synaptic Dysfunction to Neurodegeneration. Front Neurol 2018; 9:295. [PMID: 29780350 PMCID: PMC5945838 DOI: 10.3389/fneur.2018.00295] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/17/2018] [Indexed: 01/24/2023] Open
Abstract
Over the last two decades, many experimental and clinical studies have provided solid evidence that alpha-synuclein (α-syn), a small, natively unfolded protein, is closely related to Parkinson's disease (PD) pathology. To provide an overview on the different roles of this protein, here we propose a synopsis of seminal and recent studies that explored the many aspects of α-syn. Ranging from the physiological functions to its neurodegenerative potential, the relationship with the possible pathogenesis of PD will be discussed. Close attention will be paid on early cellular and molecular alterations associated with the presence of α-syn aggregates.
Collapse
Affiliation(s)
- Veronica Ghiglieri
- Dipartimento di Filosofia, Scienze Sociali, Umane e della Formazione, Università degli Studi di Perugia, Perugia, Italy.,Laboratorio di Neurofisiologia, Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - Valeria Calabrese
- Laboratorio di Neurofisiologia, Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - Paolo Calabresi
- Laboratorio di Neurofisiologia, Fondazione Santa Lucia, IRCCS, Rome, Italy.,Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Ospedale Santa Maria della Misericordia di Perugia, Perugia, Italy
| |
Collapse
|
32
|
l-Dopa and Fluoxetine Upregulate Astroglial 5-HT2B Receptors and Ameliorate Depression in Parkinson’s Disease Mice. ACTA ACUST UNITED AC 2018. [DOI: 10.3390/neuroglia1010006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Here, we report the association between depressive behavior (anhedonia) and astroglial expression of 5-hydroxytryptamine receptor 2B (5-HT2B) in an animal model of Parkinson’s disease, induced by bilateral injection of 6-hydroxydopamine (6-OHDA) into the striatum. Expression of the 5-HT2B receptor at the mRNA and protein level was decreased in the brain tissue of 6-OHDA-treated animals with anhedonia. Expression of the 5-HT2B receptor was corrected by four weeks treatment with either l-3,4-dihydroxyphenylalanine (l-dopa) or fluoxetine. Simultaneously, treatment with l-dopa abolished 6-OHDA effects on both depressive behavior and motor activity. In contrast, fluoxetine corrected 6-OHDA-induced depression but did not affect 6-OHDA-induced motor deficiency. In addition, 6-OHDA downregulated gene expression of the 5-HT2B receptor in astrocytes in purified cell culture and this downregulation was corrected by both l-dopa and fluoxetine. Our findings suggest that 6-OHDA-induced depressive behavior may be related to the downregulation of gene expression of the 5-HT2B receptor but 6-OHDA-induced motor deficiency reflects, arguably, dopamine depletion. Previously, we demonstrated that fluoxetine regulates gene expression in astrocytes by 5-HT2B receptor-mediated transactivation of epidermal growth factor receptor (EGFR). However, the underlying mechanism of l-dopa action remains unclear. The present work indicates that the decrease of gene expression of the astroglial 5-HT2B receptor may contribute to development of depressive behavior in Parkinson’s disease.
Collapse
|
33
|
Herrera A, Muñoz P, Steinbusch HWM, Segura-Aguilar J. Are Dopamine Oxidation Metabolites Involved in the Loss of Dopaminergic Neurons in the Nigrostriatal System in Parkinson's Disease? ACS Chem Neurosci 2017; 8:702-711. [PMID: 28233992 DOI: 10.1021/acschemneuro.7b00034] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In 1967, L-dopa was introduced as part of the pharmacological therapy of Parkinson's disease (PD) and, in spite of extensive research, no additional effective drugs have been discovered to treat PD. This brings forward the question: why have no new drugs been developed? We consider that one of the problems preventing the discovery of new drugs is that we still have no information on the pathophysiology of the neurodegeneration of the neuromelanin-containing nigrostriatal dopaminergic neurons. Currently, it is widely accepted that the degeneration of dopaminergic neurons, i.e., in the substantia nigra pars compacta, involves mitochondrial dysfunction, the formation of neurotoxic oligomers of alpha-synuclein, the dysfunction of protein degradation systems, neuroinflammation, and oxidative and endoplasmic reticulum stress. However, the initial trigger of these mechanisms in the nigrostriatal system is still unknown. It has been reported that aminochrome induces the majority of these mechanisms involved in the neurodegeneration process. Aminochrome is formed within the cytoplasm of neuromelanin-containing dopaminergic neurons during the oxidation of dopamine to neuromelanin. The oxidation of dopamine to neuromelanin is a normal and harmless process, because healthy individuals have intact neuromelanin-containing dopaminergic neurons. Interestingly, aminochrome-induced neurotoxicity is prevented by two enzymes: DT-diaphorase and glutathione transferase M2-2, which explains why melanin-containing dopaminergic neurons are intact in healthy human brains.
Collapse
Affiliation(s)
- Andrea Herrera
- Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
- Department of Neuroscience, Faculty of
Health, Medicine and Life Sciences, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Patricia Muñoz
- Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Harry W. M. Steinbusch
- Department of Neuroscience, Faculty of
Health, Medicine and Life Sciences, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Juan Segura-Aguilar
- Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
34
|
Cacace F, Mineo D, Viscomi MT, Latagliata EC, Mancini M, Sasso V, Vannelli A, Pascucci T, Pendolino V, Marcello E, Pelucchi S, Puglisi-Allegra S, Molinari M, Picconi B, Calabresi P, Ghiglieri V. Intermittent theta-burst stimulation rescues dopamine-dependent corticostriatal synaptic plasticity and motor behavior in experimental parkinsonism: Possible role of glial activity. Mov Disord 2017; 32:1035-1046. [PMID: 28394013 DOI: 10.1002/mds.26982] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 02/20/2017] [Accepted: 02/25/2017] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Recent studies support the therapeutic utility of repetitive transcranial magnetic stimulation in Parkinson's disease (PD), whose progression is correlated with loss of corticostriatal long-term potentiation and long-term depression. Glial cell activation is also a feature of PD that is gaining increasing attention in the field because astrocytes play a role in chronic neuroinflammatory responses but are also able to manage dopamine (DA) levels. METHODS Intermittent theta-burst stimulation protocol was applied to study the effect of therapeutic neuromodulation on striatal DA levels measured by means of in vivo microdialysis in 6-hydroxydopamine-hemilesioned rats. Effects on corticostriatal synaptic plasticity were studied through in vitro intracellular and whole-cell patch clamp recordings while stepping test and CatWalk were used to test motor behavior. Immunohistochemical analyses were performed to analyze morphological changes in neurons and glial cells. RESULTS Acute theta-burst stimulation induced an increase in striatal DA levels in hemiparkinsonian rats, 80 minutes post-treatment, correlated with full recovery of plasticity and amelioration of motor performances. With the same timing, immediate early gene activation was restricted to striatal spiny neurons. Intense astrocytic and microglial responses were also significantly reduced 80 minutes following theta-burst stimulation. CONCLUSION Taken together, these results provide a first glimpse on physiological adaptations that occur in the parkinsonian striatum following intermittent theta-burst stimulation and may help to disclose the real potential of this technique in treating PD and preventing DA replacement therapy-associated disturbances. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Fabrizio Cacace
- Fondazione Santa Lucia, Istituto di Ricerca e Clinica a Carattere Scientifico (IRCCS), Rome, Italy
| | - Desirèe Mineo
- Fondazione Santa Lucia, Istituto di Ricerca e Clinica a Carattere Scientifico (IRCCS), Rome, Italy
| | - Maria Teresa Viscomi
- Fondazione Santa Lucia, Istituto di Ricerca e Clinica a Carattere Scientifico (IRCCS), Rome, Italy
| | | | - Maria Mancini
- Fondazione Santa Lucia, Istituto di Ricerca e Clinica a Carattere Scientifico (IRCCS), Rome, Italy
| | - Valeria Sasso
- Fondazione Santa Lucia, Istituto di Ricerca e Clinica a Carattere Scientifico (IRCCS), Rome, Italy
| | - Anna Vannelli
- Fondazione Santa Lucia, Istituto di Ricerca e Clinica a Carattere Scientifico (IRCCS), Rome, Italy
| | - Tiziana Pascucci
- Fondazione Santa Lucia, Istituto di Ricerca e Clinica a Carattere Scientifico (IRCCS), Rome, Italy.,Università di Roma "La Sapienza," Dipartimento di Psicologia, Centro "Daniel Bovet,", Rome, Italy
| | - Valentina Pendolino
- Fondazione Santa Lucia, Istituto di Ricerca e Clinica a Carattere Scientifico (IRCCS), Rome, Italy
| | - Elena Marcello
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Silvia Pelucchi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Stefano Puglisi-Allegra
- Fondazione Santa Lucia, Istituto di Ricerca e Clinica a Carattere Scientifico (IRCCS), Rome, Italy.,Università di Roma "La Sapienza," Dipartimento di Psicologia, Centro "Daniel Bovet,", Rome, Italy
| | - Marco Molinari
- Fondazione Santa Lucia, Istituto di Ricerca e Clinica a Carattere Scientifico (IRCCS), Rome, Italy
| | - Barbara Picconi
- Fondazione Santa Lucia, Istituto di Ricerca e Clinica a Carattere Scientifico (IRCCS), Rome, Italy
| | - Paolo Calabresi
- Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Ospedale Santa Maria della Misericordia, S. Andrea delle Fratte, Perugia, Italy
| | - Veronica Ghiglieri
- Fondazione Santa Lucia, Istituto di Ricerca e Clinica a Carattere Scientifico (IRCCS), Rome, Italy.,Dipartimento di Filosofia, Scienze Sociali, Umane e della Formazione, Università degli Studi di Perugia, Perugia, Italy
| |
Collapse
|
35
|
Astrocytic Pathological Calcium Homeostasis and Impaired Vesicle Trafficking in Neurodegeneration. Int J Mol Sci 2017; 18:ijms18020358. [PMID: 28208745 PMCID: PMC5343893 DOI: 10.3390/ijms18020358] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/30/2017] [Accepted: 01/31/2017] [Indexed: 02/08/2023] Open
Abstract
Although the central nervous system (CNS) consists of highly heterogeneous populations of neurones and glial cells, clustered into diverse anatomical regions with specific functions, there are some conditions, including alertness, awareness and attention that require simultaneous, coordinated and spatially homogeneous activity within a large area of the brain. During such events, the brain, representing only about two percent of body mass, but consuming one fifth of body glucose at rest, needs additional energy to be produced. How simultaneous energy procurement in a relatively extended area of the brain takes place is poorly understood. This mechanism is likely to be impaired in neurodegeneration, for example in Alzheimer’s disease, the hallmark of which is brain hypometabolism. Astrocytes, the main neural cell type producing and storing glycogen, a form of energy in the brain, also hold the key to metabolic and homeostatic support in the central nervous system and are impaired in neurodegeneration, contributing to the slow decline of excitation-energy coupling in the brain. Many mechanisms are affected, including cell-to-cell signalling. An important question is how changes in cellular signalling, a process taking place in a rather short time domain, contribute to the neurodegeneration that develops over decades. In this review we focus initially on the slow dynamics of Alzheimer’s disease, and on the activity of locus coeruleus, a brainstem nucleus involved in arousal. Subsequently, we overview much faster processes of vesicle traffic and cytosolic calcium dynamics, both of which shape the signalling landscape of astrocyte-neurone communication in health and neurodegeneration.
Collapse
|
36
|
Verkhratsky A, Zorec R, Rodriguez JJ, Parpura V. Neuroglia: Functional Paralysis and Reactivity in Alzheimer’s Disease and Other Neurodegenerative Pathologies. ADVANCES IN NEUROBIOLOGY 2017; 15:427-449. [DOI: 10.1007/978-3-319-57193-5_17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
37
|
Nishijima H, Tomiyama M. What Mechanisms Are Responsible for the Reuptake of Levodopa-Derived Dopamine in Parkinsonian Striatum? Front Neurosci 2016; 10:575. [PMID: 28018168 PMCID: PMC5156842 DOI: 10.3389/fnins.2016.00575] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/01/2016] [Indexed: 12/18/2022] Open
Abstract
Levodopa is the most effective medication for motor symptoms in Parkinson's disease. However, various motor and non-motor complications are associated with levodopa treatment, resulting from altered levodopa-dopamine metabolism with disease progression and long-term use of the drug. The present review emphasizes the role of monoamine transporters other than the dopamine transporter in uptake of extracellular dopamine in the dopamine-denervated striatum. When dopaminergic neurons are lost and dopamine transporters decreased, serotonin and norepinephrine transporters compensate by increasing uptake of excessive extracellular dopamine in the striatum. Organic cation transporter-3 and plasma membrane monoamine transporter, low affinity, and high capacity transporters, also potentially uptake dopamine when high-affinity transporters do not work normally. Selective serotonin reuptake inhibitors and serotonin norepinephrine reuptake inhibitors are often administered to patients with Parkinson's disease presenting with depression, pain or other non-motor symptoms. Thus, it is important to address the potential of these drugs to modify dopamine metabolism and uptake through blockade of the compensatory function of these transporters, which could lead to changes in motor symptoms of Parkinson's disease.
Collapse
Affiliation(s)
- Haruo Nishijima
- Department of Neurology, Aomori Prefectural Central HospitalAomori, Japan; Department of Neurophysiology, Institute of Brain Science, Hirosaki University Graduate School of MedicineHirosaki, Japan
| | - Masahiko Tomiyama
- Department of Neurology, Aomori Prefectural Central HospitalAomori, Japan; Department of Neurophysiology, Institute of Brain Science, Hirosaki University Graduate School of MedicineHirosaki, Japan
| |
Collapse
|
38
|
Del-Bel E, Bortolanza M, Dos-Santos-Pereira M, Bariotto K, Raisman-Vozari R. l-DOPA-induced dyskinesia in Parkinson's disease: Are neuroinflammation and astrocytes key elements? Synapse 2016; 70:479-500. [DOI: 10.1002/syn.21941] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/06/2016] [Accepted: 09/06/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Elaine Del-Bel
- Department of MFPB-Physiology; FORP, Campus USP, University of São Paulo; Av. Café, s/no Ribeirão Preto SP 14040-904 Brazil
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA); São Paulo Brazil
- Department of Physiology; FMRP; São Paulo Brazil
- Department of Neurology and Behavioral Neuroscience; FMRP, Campus USP, University of São Paulo; Av. Bandeirantes 13400 Ribeirão Preto SP 14049-900 Brazil
| | - Mariza Bortolanza
- Department of MFPB-Physiology; FORP, Campus USP, University of São Paulo; Av. Café, s/no Ribeirão Preto SP 14040-904 Brazil
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA); São Paulo Brazil
| | - Maurício Dos-Santos-Pereira
- Department of MFPB-Physiology; FORP, Campus USP, University of São Paulo; Av. Café, s/no Ribeirão Preto SP 14040-904 Brazil
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA); São Paulo Brazil
- Department of Physiology; FMRP; São Paulo Brazil
| | - Keila Bariotto
- Department of MFPB-Physiology; FORP, Campus USP, University of São Paulo; Av. Café, s/no Ribeirão Preto SP 14040-904 Brazil
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA); São Paulo Brazil
- Department of Neurology and Behavioral Neuroscience; FMRP, Campus USP, University of São Paulo; Av. Bandeirantes 13400 Ribeirão Preto SP 14049-900 Brazil
| | - Rita Raisman-Vozari
- INSERM UMR 1127, CNRS UMR 7225, UPMC; Thérapeutique Expérimentale de la Neurodégénérescence, Hôpital de la Salpetrière-ICM (Institut du cerveau et de la moelle épinière); Paris France
| |
Collapse
|
39
|
Asanuma M, Miyazaki I. 3-O-Methyldopa inhibits astrocyte-mediated dopaminergic neuroprotective effects of L-DOPA. BMC Neurosci 2016; 17:52. [PMID: 27456338 PMCID: PMC4960704 DOI: 10.1186/s12868-016-0289-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/18/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We evaluated the effects of 3-O-methyldopa (3-OMD), a metabolite of L-DOPA which is formed by catechol-O-methyltransferase (COMT), on the uptake, metabolism, and neuroprotective effects of L-DOPA in striatal astrocytes. We examined changes in the numbers of dopaminergic neurons after treatment with L-DOPA and 3-OMD or entacapone, a peripheral COMT inhibitor, using primary cultured mesencephalic neurons and striatal astrocytes. RESULTS The number of tyrosine hydroxylase-positive dopaminergic neurons was not affected by L-DOPA treatment in mesencephalic neurons alone. However, the increase in viability of dopaminergic neurons in the presence of astrocytes was further enhanced after methyl-L-DOPA treatment (25 µM) in mixed cultured mesencephalic neurons and striatal astrocytes. The neuroprotective effect of 25 µM L-DOPA was almost completely inhibited by simultaneous treatment with 3-OMD (10 or 100 µM), and was enhanced by concomitant treatment with entacapone (0.3 µM). The uptake of L-DOPA into and the release of glutathione from striatal astrocytes after L-DOPA treatment (100 µM) were inhibited by simultaneous exposure to 3-OMD (100 µM). CONCLUSIONS These data suggest that L-DOPA exerts its neuroprotective effect on dopaminergic neurons via astrocytes and that 3-OMD competes with L-DOPA by acting on target molecule(s) (possibly including glutathione) released from astrocytes. Since some amount of entacapone can cross the blood-brain barrier, this reagent may enhance L-DOPA transportation by inhibiting COMT and increase the astrocyte-mediated neuroprotective effects of L-DOPA on dopaminergic neurons.
Collapse
Affiliation(s)
- Masato Asanuma
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan. .,Department of Brain Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan.
| | - Ikuko Miyazaki
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.,Department of Brain Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| |
Collapse
|
40
|
De Deurwaerdère P, Di Giovanni G, Millan MJ. Expanding the repertoire of L-DOPA's actions: A comprehensive review of its functional neurochemistry. Prog Neurobiol 2016; 151:57-100. [PMID: 27389773 DOI: 10.1016/j.pneurobio.2016.07.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/18/2016] [Accepted: 07/03/2016] [Indexed: 01/11/2023]
Abstract
Though a multi-facetted disorder, Parkinson's disease is prototypically characterized by neurodegeneration of nigrostriatal dopaminergic neurons of the substantia nigra pars compacta, leading to a severe disruption of motor function. Accordingly, L-DOPA, the metabolic precursor of dopamine (DA), is well-established as a treatment for the motor deficits of Parkinson's disease despite long-term complications such as dyskinesia and psychiatric side-effects. Paradoxically, however, despite the traditional assumption that L-DOPA is transformed in residual striatal dopaminergic neurons into DA, the mechanism of action of L-DOPA is neither simple nor entirely clear. Herein, focussing on its influence upon extracellular DA and other neuromodulators in intact animals and experimental models of Parkinson's disease, we highlight effects other than striatal generation of DA in the functional profile of L-DOPA. While not excluding a minor role for glial cells, L-DOPA is principally transformed into DA in neurons yet, interestingly, with a more important role for serotonergic than dopaminergic projections. Moreover, in addition to the striatum, L-DOPA evokes marked increases in extracellular DA in frontal cortex, nucleus accumbens, the subthalamic nucleus and additional extra-striatal regions. In considering its functional profile, it is also important to bear in mind the marked (probably indirect) influence of L-DOPA upon cholinergic, GABAergic and glutamatergic neurons in the basal ganglia and/or cortex, while anomalous serotonergic transmission is incriminated in the emergence of L-DOPA elicited dyskinesia and psychosis. Finally, L-DOPA may exert intrinsic receptor-mediated actions independently of DA neurotransmission and can be processed into bioactive metabolites. In conclusion, L-DOPA exerts a surprisingly complex pattern of neurochemical effects of much greater scope that mere striatal transformation into DA in spared dopaminergic neurons. Their further experimental and clinical clarification should help improve both L-DOPA-based and novel strategies for controlling the motor and other symptoms of Parkinson's disease.
Collapse
Affiliation(s)
- Philippe De Deurwaerdère
- CNRS (Centre National de la Recherche Scientifique), Institut des Maladies Neurodégénératives, UMR CNRS 5293, F-33000 Bordeaux, France.
| | - Giuseppe Di Giovanni
- Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, UK; Department of Physiology & Biochemistry, Faculty of Medicine and Surgery, University of Malta, Malta
| | - Mark J Millan
- Institut de Recherche Servier, Pole for Therapeutic Innovation in Neuropsychiatry, 78290 Croissy/Seine,Paris, France
| |
Collapse
|
41
|
Verkhratsky A, Zorec R, Rodriguez JJ, Parpura V. PATHOBIOLOGY OF NEURODEGENERATION: THE ROLE FOR ASTROGLIA. OPERA MEDICA ET PHYSIOLOGICA 2016; 1:13-22. [PMID: 27308639 PMCID: PMC4905715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The common denominator of neurodegenerative diseases, which mainly affect humans, is the progressive death of neural cells resulting in neurological and cognitive deficits. Astroglial cells are the central elements of the homoeostasis, defence and regeneration of the central nervous system, and their malfunction or reactivity contribute to the pathophysiology of neurodegenerative diseases. Pathological remodelling of astroglia in neurodegenerative context is multifaceted. Both astroglial atrophy with a loss of function and astroglial reactivity have been identified in virtually all the forms of neurodegenerative disorders. Astroglia may represent a novel target for therapeutic strategies aimed at preventing and possibly curing neurodegenerative diseases.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PT, UK
- University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain & Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain
| | - Robert Zorec
- University of Ljubljana, Institute of Pathophysiology, Laboratory of Neuroendocrinology and Molecular Cell Physiology, Zaloska cesta 4; SI-1000, Ljubljana, Slovenia
- Celica, BIOMEDICAL, Technology Park 24, 1000 Ljubljana, Slovenia
| | - Jose J. Rodriguez
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain & Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain
| | - Vladimir Parpura
- Department of Neurobiology, Civitan International Research Center and Center for Glial Biology in Medicine, Evelyn F. McKnight Brain Institute, Atomic Force Microscopy & Nanotechnology Laboratories, 1719 6th Avenue South, CIRC 429, University of Alabama, Birmingham, AL 35294-0021, USA
| |
Collapse
|
42
|
Yu G, Liu H, Zhou W, Zhu X, Yu C, Wang N, Zhang Y, Ma J, Zhao Y, Xu Y, Liao L, Ji H, Yuan C, Ma J. In vivo protein targets for increased quinoprotein adduct formation in aged substantia nigra. Exp Neurol 2015; 271:13-24. [DOI: 10.1016/j.expneurol.2015.04.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 04/24/2015] [Accepted: 04/29/2015] [Indexed: 11/16/2022]
|
43
|
Brugger F, Erro R, Balint B, Kägi G, Barone P, Bhatia KP. Why is there motor deterioration in Parkinson's disease during systemic infections-a hypothetical view. NPJ Parkinsons Dis 2015; 1:15014. [PMID: 28725683 PMCID: PMC5516617 DOI: 10.1038/npjparkd.2015.14] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/23/2015] [Accepted: 07/19/2015] [Indexed: 01/29/2023] Open
Abstract
Clinicians are well aware of the fact that patients with Parkinson's disease may significantly deteriorate following a systemic infection or, in its most severe case, may even develop an akinetic crisis. Although this phenomenon is widely observed and has a major impact on the patients' condition, the knowledge about the underlying mechanisms behind is still sparse. Possible explanations encompass changes in the pharmacodynamics of the dopaminergic drugs, altered dopamine metabolism in the brain, alterations in the dopaminergic transmission in the striatum or an enhancement of neurodegeneration due to remote effects of peripheral inflammatory processes or circulating bacterial toxins. This article provides possible explanatory concepts and may hence support formulating hypothesis for future studies in this field.
Collapse
Affiliation(s)
- Florian Brugger
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College of London, London, UK
- Department of Neurology, Kantonsspital St Gallen, St Gallen, Switzerland
| | - Roberto Erro
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College of London, London, UK
| | - Bettina Balint
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College of London, London, UK
| | - Georg Kägi
- Department of Neurology, Kantonsspital St Gallen, St Gallen, Switzerland
| | - Paolo Barone
- Centre of Neurodegenerative Diseases-CEMAND, University of Salerno, Salerno, Italy
| | - Kailash P Bhatia
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College of London, London, UK
| |
Collapse
|
44
|
Pahuja R, Seth K, Shukla A, Shukla RK, Bhatnagar P, Chauhan LKS, Saxena PN, Arun J, Chaudhari BP, Patel DK, Singh SP, Shukla R, Khanna VK, Kumar P, Chaturvedi RK, Gupta KC. Trans-blood brain barrier delivery of dopamine-loaded nanoparticles reverses functional deficits in parkinsonian rats. ACS NANO 2015; 9:4850-71. [PMID: 25825926 DOI: 10.1021/nn506408v] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Sustained and safe delivery of dopamine across the blood brain barrier (BBB) is a major hurdle for successful therapy in Parkinson's disease (PD), a neurodegenerative disorder. Therefore, in the present study we designed neurotransmitter dopamine-loaded PLGA nanoparticles (DA NPs) to deliver dopamine to the brain. These nanoparticles slowly and constantly released dopamine, showed reduced clearance of dopamine in plasma, reduced quinone adduct formation, and decreased dopamine autoxidation. DA NPs were internalized in dopaminergic SH-SY5Y cells and dopaminergic neurons in the substantia nigra and striatum, regions affected in PD. Treatment with DA NPs did not cause reduction in cell viability and morphological deterioration in SH-SY5Y, as compared to bulk dopamine-treated cells, which showed reduced viability. Herein, we report that these NPs were able to cross the BBB and capillary endothelium in the striatum and substantia nigra in a 6-hydroxydopamine (6-OHDA)-induced rat model of PD. Systemic intravenous administration of DA NPs caused significantly increased levels of dopamine and its metabolites and reduced dopamine-D2 receptor supersensitivity in the striatum of parkinsonian rats. Further, DA NPs significantly recovered neurobehavioral abnormalities in 6-OHDA-induced parkinsonian rats. Dopamine delivered through NPs did not cause additional generation of ROS, dopaminergic neuron degeneration, and ultrastructural changes in the striatum and substantia nigra as compared to 6-OHDA-lesioned rats. Interestingly, dopamine delivery through nanoformulation neither caused alterations in the heart rate and blood pressure nor showed any abrupt pathological change in the brain and other peripheral organs. These results suggest that NPs delivered dopamine into the brain, reduced dopamine autoxidation-mediated toxicity, and ultimately reversed neurochemical and neurobehavioral deficits in parkinsonian rats.
Collapse
Affiliation(s)
- Richa Pahuja
- †CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 80 MG Marg, Lucknow 226001, India
- §Academy of Scientific and Innovative Research (AcSIR), Delhi 110001, India
| | - Kavita Seth
- †CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 80 MG Marg, Lucknow 226001, India
| | - Anshi Shukla
- †CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 80 MG Marg, Lucknow 226001, India
| | - Rajendra Kumar Shukla
- †CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 80 MG Marg, Lucknow 226001, India
| | | | | | - Prem Narain Saxena
- †CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 80 MG Marg, Lucknow 226001, India
| | - Jharna Arun
- ∥CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226001, India
| | - Bhushan Pradosh Chaudhari
- †CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 80 MG Marg, Lucknow 226001, India
- §Academy of Scientific and Innovative Research (AcSIR), Delhi 110001, India
| | - Devendra Kumar Patel
- †CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 80 MG Marg, Lucknow 226001, India
- §Academy of Scientific and Innovative Research (AcSIR), Delhi 110001, India
| | - Sheelendra Pratap Singh
- †CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 80 MG Marg, Lucknow 226001, India
| | - Rakesh Shukla
- §Academy of Scientific and Innovative Research (AcSIR), Delhi 110001, India
- ∥CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226001, India
| | - Vinay Kumar Khanna
- †CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 80 MG Marg, Lucknow 226001, India
- §Academy of Scientific and Innovative Research (AcSIR), Delhi 110001, India
| | - Pradeep Kumar
- §Academy of Scientific and Innovative Research (AcSIR), Delhi 110001, India
| | - Rajnish Kumar Chaturvedi
- †CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 80 MG Marg, Lucknow 226001, India
- §Academy of Scientific and Innovative Research (AcSIR), Delhi 110001, India
| | - Kailash Chand Gupta
- †CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 80 MG Marg, Lucknow 226001, India
- §Academy of Scientific and Innovative Research (AcSIR), Delhi 110001, India
| |
Collapse
|
45
|
Fuxe K, Agnati LF, Marcoli M, Borroto-Escuela DO. Volume Transmission in Central Dopamine and Noradrenaline Neurons and Its Astroglial Targets. Neurochem Res 2015; 40:2600-14. [PMID: 25894681 DOI: 10.1007/s11064-015-1574-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/16/2015] [Accepted: 04/04/2015] [Indexed: 12/11/2022]
Abstract
Already in the 1960s the architecture and pharmacology of the brainstem dopamine (DA) and noradrenaline (NA) neurons with formation of vast numbers of DA and NA terminal plexa of the central nervous system (CNS) indicated that they may not only communicate via synaptic transmission. In the 1980s the theory of volume transmission (VT) was introduced as a major communication together with synaptic transmission in the CNS. VT is an extracellular and cerebrospinal fluid transmission of chemical signals like transmitters, modulators etc. moving along energy gradients making diffusion and flow of VT signals possible. VT interacts with synaptic transmission mainly through direct receptor-receptor interactions in synaptic and extrasynaptic heteroreceptor complexes and their signaling cascades. The DA and NA neurons are specialized for extrasynaptic VT at the soma-dendrtitic and terminal level. The catecholamines released target multiple DA and adrenergic subtypes on nerve cells, astroglia and microglia which are the major cell components of the trophic units building up the neural-glial networks of the CNS. DA and NA VT can modulate not only the strength of synaptic transmission but also the VT signaling of the astroglia and microglia of high relevance for neuron-glia interactions. The catecholamine VT targeting astroglia can modulate the fundamental functions of astroglia observed in neuroenergetics, in the Glymphatic system, in the central renin-angiotensin system and in the production of long-distance calcium waves. Also the astrocytic and microglial DA and adrenergic receptor subtypes mediating DA and NA VT can be significant drug targets in neurological and psychiatric disease.
Collapse
Affiliation(s)
- Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden.
| | - Luigi F Agnati
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, 41100, Modena, Italy
| | - Manuela Marcoli
- Dipartimento di Farmacia, Sezione di Farmacologia e Tossicologia, Università di Genova, Viale Cembrano 4, 16148, Genoa, Italy.,Center of Excellence for Biomedical Research, Università di Genova, Viale Benedetto XV 5, 16132, Genoa, Italy
| | | |
Collapse
|
46
|
Verkhratsky A, Parpura V. Physiology of Astroglia: Channels, Receptors, Transporters, Ion Signaling and Gliotransmission. ACTA ACUST UNITED AC 2015. [DOI: 10.4199/c00123ed1v01y201501ngl004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|