1
|
Wang W, Fan X, Liu W, Huang Y, Zhao S, Yang Y, Tang Z. The Spatial-Temporal Alternative Splicing Profile Reveals the Functional Diversity of FXR1 Isoforms in Myogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405157. [PMID: 39499773 DOI: 10.1002/advs.202405157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/08/2024] [Indexed: 11/07/2024]
Abstract
Alternative splicing (AS) is a fundamental mechanism contributing to proteome diversity, yet its comprehensive landscape and regulatory dynamics during skeletal muscle development remain largely unexplored. Here, the temporal AS profiles are investigated during myogenesis in five vertebrates, conducting comprehensive profiling across 27 developmental stages in skeletal muscle and encompassing ten tissues in adult pigs. The analysis reveals a pervasive and evolutionarily conserved pattern of alternative exon usage throughout myogenic differentiation, with hundreds of skipped exons (SEs) showing developmental regulation, particularly within skeletal muscle. Notably, this study identifies a muscle-specific SE (exon 15) within the Fxr1 gene, whose AS generates two dynamically expressed isoforms with distinct functions: the isoform without exon 15 (Fxr1E15 -) regulates myoblasts proliferation, while the isoform incorporating exon 15 (Fxr1E15+) promotes myogenic differentiation and fusion. Transcriptome analysis suggests that specifically knocking-down Fxr1E15+ isoform in myoblasts modulates differentiation by influencing gene expression and splicing of specific targets. The increased inclusion of exon 15 during differentiation is mediated by the binding of Rbm24 to the intron. Furthermore, in vivo experiments indicate that the Fxr1E15+ isoform facilitates muscle regeneration. Collectively, these findings provide a comprehensive resource for AS studies in skeletal muscle development, underscoring the diverse functions and regulatory mechanisms governing distinct Fxr1 isoforms in myogenesis.
Collapse
Affiliation(s)
- Wei Wang
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan, 528226, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Xinhao Fan
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan, 528226, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Weiwei Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science & Technology, Guangxi University, Nanning, 530004, China
| | - Yuxin Huang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science & Technology, Guangxi University, Nanning, 530004, China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yalan Yang
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan, 528226, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Zhonglin Tang
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan, 528226, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| |
Collapse
|
2
|
Zorn P, Calvo Sánchez J, Alakhras T, Schreier B, Gekle M, Hüttelmaier S, Köhn M. Rbfox1 controls alternative splicing of focal adhesion genes in cardiac muscle cells. J Mol Cell Biol 2024; 16:mjae003. [PMID: 38253401 PMCID: PMC11216089 DOI: 10.1093/jmcb/mjae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 11/30/2023] [Accepted: 01/19/2024] [Indexed: 01/24/2024] Open
Abstract
Alternative splicing is one of the major cellular processes that determine the tissue-specific expression of protein variants. However, it remains challenging to identify physiologically relevant and tissue-selective proteins that are generated by alternative splicing. Hence, we investigated the target spectrum of the splicing factor Rbfox1 in the cardiac muscle context in more detail. By using a combination of in silico target prediction and in-cell validation, we identified several focal adhesion proteins as alternative splicing targets of Rbfox1. We focused on the alternative splicing patterns of vinculin (metavinculin isoform) and paxillin (extended paxillin isoform) and identified both as potential Rbfox1 targets. Minigene analyses suggested that both isoforms are promoted by Rbfox1 due to binding in the introns. Focal adhesions play an important role in the cardiac muscle context, since they mainly influence cell shape, cytoskeletal organization, and cell-matrix association. Our data confirmed that depletion of Rbfox1 changed cardiomyoblast morphology, cytoskeletal organization, and multinuclearity after differentiation, which might be due to changes in alternative splicing of focal adhesion proteins. Hence, our results indicate that Rbfox1 promotes alternative splicing of focal adhesion genes in cardiac muscle cells, which might contribute to heart disease progression, where downregulation of Rbfox1 is frequently observed.
Collapse
Affiliation(s)
- Peter Zorn
- Junior Group ‘Non-coding RNAs and RBPs in Human Diseases’, Medical Faculty, University of Halle–Wittenberg, 06120 Halle (Saale), Germany
| | - Jaime Calvo Sánchez
- Junior Group ‘Non-coding RNAs and RBPs in Human Diseases’, Medical Faculty, University of Halle–Wittenberg, 06120 Halle (Saale), Germany
| | - Tala Alakhras
- Junior Group ‘Non-coding RNAs and RBPs in Human Diseases’, Medical Faculty, University of Halle–Wittenberg, 06120 Halle (Saale), Germany
| | - Barbara Schreier
- Julius Bernstein Institute of Physiology, Medical Faculty, University of Halle–Wittenberg, 06112 Halle (Saale), Germany
| | - Michael Gekle
- Julius Bernstein Institute of Physiology, Medical Faculty, University of Halle–Wittenberg, 06112 Halle (Saale), Germany
| | - Stefan Hüttelmaier
- Institute of Molecular Medicine, Medical Faculty, University of Halle–Wittenberg, 06120 Halle (Saale), Germany
| | - Marcel Köhn
- Junior Group ‘Non-coding RNAs and RBPs in Human Diseases’, Medical Faculty, University of Halle–Wittenberg, 06120 Halle (Saale), Germany
| |
Collapse
|
3
|
Falcetta D, Quirim S, Cocchiararo I, Chabry F, Théodore M, Stiefvater A, Lin S, Tintignac L, Ivanek R, Kinter J, Rüegg MA, Sinnreich M, Castets P. CaMKIIβ deregulation contributes to neuromuscular junction destabilization in Myotonic Dystrophy type I. Skelet Muscle 2024; 14:11. [PMID: 38769542 PMCID: PMC11106974 DOI: 10.1186/s13395-024-00345-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Myotonic Dystrophy type I (DM1) is the most common muscular dystrophy in adults. Previous reports have highlighted that neuromuscular junctions (NMJs) deteriorate in skeletal muscle from DM1 patients and mouse models thereof. However, the underlying pathomechanisms and their contribution to muscle dysfunction remain unknown. METHODS We compared changes in NMJs and activity-dependent signalling pathways in HSALR and Mbnl1ΔE3/ΔE3 mice, two established mouse models of DM1. RESULTS Muscle from DM1 mouse models showed major deregulation of calcium/calmodulin-dependent protein kinases II (CaMKIIs), which are key activity sensors regulating synaptic gene expression and acetylcholine receptor (AChR) recycling at the NMJ. Both mouse models exhibited increased fragmentation of the endplate, which preceded muscle degeneration. Endplate fragmentation was not accompanied by changes in AChR turnover at the NMJ. However, the expression of synaptic genes was up-regulated in mutant innervated muscle, together with an abnormal accumulation of histone deacetylase 4 (HDAC4), a known target of CaMKII. Interestingly, denervation-induced increase in synaptic gene expression and AChR turnover was hampered in DM1 muscle. Importantly, CaMKIIβ/βM overexpression normalized endplate fragmentation and synaptic gene expression in innervated Mbnl1ΔE3/ΔE3 muscle, but it did not restore denervation-induced synaptic gene up-regulation. CONCLUSIONS Our results indicate that CaMKIIβ-dependent and -independent mechanisms perturb synaptic gene regulation and muscle response to denervation in DM1 mouse models. Changes in these signalling pathways may contribute to NMJ destabilization and muscle dysfunction in DM1 patients.
Collapse
Affiliation(s)
- Denis Falcetta
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, Geneva, CH-1211, Switzerland
- Neuromuscular Research Group, Departments of Neurology and Biomedicine, University and University Hospital Basel, Klingelbergstrasse 50/70, Basel, CH-4056, Switzerland
- Biozentrum, University of Basel, Spitalstrasse 41, Basel, CH-4056, Switzerland
| | - Sandrine Quirim
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, Geneva, CH-1211, Switzerland
| | - Ilaria Cocchiararo
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, Geneva, CH-1211, Switzerland
| | - Florent Chabry
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, Geneva, CH-1211, Switzerland
| | - Marine Théodore
- Neuromuscular Research Group, Departments of Neurology and Biomedicine, University and University Hospital Basel, Klingelbergstrasse 50/70, Basel, CH-4056, Switzerland
| | - Adeline Stiefvater
- Neuromuscular Research Group, Departments of Neurology and Biomedicine, University and University Hospital Basel, Klingelbergstrasse 50/70, Basel, CH-4056, Switzerland
| | - Shuo Lin
- Biozentrum, University of Basel, Spitalstrasse 41, Basel, CH-4056, Switzerland
| | - Lionel Tintignac
- Neuromuscular Research Group, Departments of Neurology and Biomedicine, University and University Hospital Basel, Klingelbergstrasse 50/70, Basel, CH-4056, Switzerland
| | - Robert Ivanek
- Department of Biomedicine, University Hospital and University of Basel, Hebelstrasse 20, Basel, CH-4053, Switzerland
- Swiss Institute of Bioinformatics, Hebelstrasse 20, Basel, CH-4053, Switzerland
| | - Jochen Kinter
- Neuromuscular Research Group, Departments of Neurology and Biomedicine, University and University Hospital Basel, Klingelbergstrasse 50/70, Basel, CH-4056, Switzerland
| | - Markus A Rüegg
- Biozentrum, University of Basel, Spitalstrasse 41, Basel, CH-4056, Switzerland
| | - Michael Sinnreich
- Neuromuscular Research Group, Departments of Neurology and Biomedicine, University and University Hospital Basel, Klingelbergstrasse 50/70, Basel, CH-4056, Switzerland
| | - Perrine Castets
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, Geneva, CH-1211, Switzerland.
| |
Collapse
|
4
|
Ito S, Takuwa H, Kakehi S, Someya Y, Kaga H, Kumahashi N, Kuwata S, Wakatsuki T, Kadowaki M, Yamamoto S, Abe T, Takeda M, Ishikawa Y, Liu X, Otomo N, Suetsugu H, Koike Y, Hikino K, Tomizuka K, Momozawa Y, Ozaki K, Isomura M, Nabika T, Kaneko H, Ishijima M, Kawamori R, Watada H, Tamura Y, Uchio Y, Ikegawa S, Terao C. A genome-wide association study identifies a locus associated with knee extension strength in older Japanese individuals. Commun Biol 2024; 7:513. [PMID: 38769351 PMCID: PMC11106293 DOI: 10.1038/s42003-024-06108-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 03/26/2024] [Indexed: 05/22/2024] Open
Abstract
Sarcopenia is a common skeletal muscle disease in older people. Lower limb muscle strength is a good predictive value for sarcopenia; however, little is known about its genetic components. Here, we conducted a genome-wide association study (GWAS) for knee extension strength in a total of 3452 Japanese aged 60 years or older from two independent cohorts. We identified a significant locus, rs10749438 which is an intronic variant in TACC2 (transforming acidic coiled-coil-containing 2) (P = 4.2 × 10-8). TACC2, encoding a cytoskeleton-related protein, is highly expressed in skeletal muscle, and is reported as a target of myotonic dystrophy 1-associated splicing alterations. These suggest that changes in TACC2 expression are associated with variations in muscle strength in older people. The association was consistently observed in young and middle-aged subjects. Our findings would shed light on genetic components of lower limb muscle strength and indicate TACC2 as a potential therapeutic target for sarcopenia.
Collapse
Affiliation(s)
- Shuji Ito
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, 108-8639, Japan
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Department of Orthopedic Surgery, Shimane University Faculty of Medicine, Izumo, 693-8501, Japan
| | - Hiroshi Takuwa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, 108-8639, Japan
- Department of Orthopedic Surgery, Shimane University Faculty of Medicine, Izumo, 693-8501, Japan
| | - Saori Kakehi
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Yuki Someya
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
- Graduate School of Health and Sports Science, Juntendo University, Inzai, 270-1695, Japan
| | - Hideyoshi Kaga
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Nobuyuki Kumahashi
- Department of Orthopedic Surgery, Matsue Red Cross Hospital, Matsue, 690-8506, Japan
| | - Suguru Kuwata
- Department of Orthopedic Surgery, Shimane University Faculty of Medicine, Izumo, 693-8501, Japan
| | - Takuya Wakatsuki
- Department of Orthopedic Surgery, Shimane University Faculty of Medicine, Izumo, 693-8501, Japan
| | - Masaru Kadowaki
- Department of Orthopedic Surgery, Shimane University Faculty of Medicine, Izumo, 693-8501, Japan
| | - Soichiro Yamamoto
- Department of Orthopedic Surgery, Shimane University Faculty of Medicine, Izumo, 693-8501, Japan
| | - Takafumi Abe
- The Center for Community-based Healthcare Research and Education (CoHRE), Shimane University, Izumo, 693-8501, Japan
| | - Miwako Takeda
- The Center for Community-based Healthcare Research and Education (CoHRE), Shimane University, Izumo, 693-8501, Japan
| | - Yuki Ishikawa
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Xiaoxi Liu
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Nao Otomo
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, 108-8639, Japan
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo, 160-8582, Japan
| | - Hiroyuki Suetsugu
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, 108-8639, Japan
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yoshinao Koike
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, 108-8639, Japan
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Keiko Hikino
- Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Kohei Tomizuka
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Kouichi Ozaki
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Obu, 474-8511, Japan
| | - Minoru Isomura
- The Center for Community-based Healthcare Research and Education (CoHRE), Shimane University, Izumo, 693-8501, Japan
- Faculty of Human Sciences, Shimane University, Matsue, 690-8504, Japan
| | - Toru Nabika
- The Center for Community-based Healthcare Research and Education (CoHRE), Shimane University, Izumo, 693-8501, Japan
- Department of Functional Pathology, Shimane University School of Medicine, Izumo, 693-8501, Japan
| | - Haruka Kaneko
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Muneaki Ishijima
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Ryuzo Kawamori
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Hirotaka Watada
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Yoshifumi Tamura
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Yuji Uchio
- Department of Orthopedic Surgery, Shimane University Faculty of Medicine, Izumo, 693-8501, Japan
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, 108-8639, Japan
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan.
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, 420-8527, Japan.
- The Department of Applied Genetics, The School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan.
| |
Collapse
|
5
|
Nowzari ZR, Hale M, Ellis J, Biaesch S, Vangaveti S, Reddy K, Chen AA, Berglund JA. Mutation of two intronic nucleotides alters RNA structure and dynamics inhibiting MBNL1 and RBFOX1 regulated splicing of the Insulin Receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.08.574689. [PMID: 38260517 PMCID: PMC10802415 DOI: 10.1101/2024.01.08.574689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Alternative splicing (AS) of Exon 11 of the Insulin Receptor ( INSR ) is highly regulated and disrupted in several human disorders. To better understand INSR exon 11 AS regulation, splicing activity of an INSR exon 11 minigene reporter was measured across a gradient of the AS regulator muscleblind-like 1 protein (MBNL1). The RNA-binding protein Fox-1 (RBFOX1) was added to determine its impact on MBNL1-regulated splicing. The role of the RBFOX1 UGCAUG binding site within intron 11 was assessed across the MBNL1 gradient. Mutating the UGCAUG motif inhibited RBFOX1 regulation of exon 11 and had the unexpected effect of reducing MBNL1 regulation of this exon. Molecular dynamics simulations showed that exon 11 and the adjacent RNA adopts a dynamically stable conformation. Mutation of the RBFOX1 binding site altered RNA structure and dynamics, while a mutation that created an optimal MBNL1 binding site at the RBFOX1 site shifted the RNA back to wild type. An antisense oligonucleotide (ASO) was used to confirm the structure in this region of the pre-mRNA. This example of intronic mutations shifting pre-mRNA structure and dynamics to modulate splicing suggests RNA structure and dynamics should be taken into consideration for AS regulation and therapeutic interventions targeting pre-mRNA.
Collapse
|
6
|
Mukherjee A, Nongthomba U. To RNA-binding and beyond: Emerging facets of the role of Rbfox proteins in development and disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023:e1813. [PMID: 37661850 DOI: 10.1002/wrna.1813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 09/05/2023]
Abstract
The RNA-binding Fox-1 homologue (Rbfox) proteins represent an ancient family of splicing factors, conserved through evolution. All members share an RNA recognition motif (RRM), and a particular affinity for the GCAUG signature in target RNA molecules. The role of Rbfox, as a splice factor, deciding the tissue-specific inclusion/exclusion of an exon, depending on its binding position on the flanking introns, is well known. Rbfox often acts in concert with other splicing factors, and forms splicing regulatory networks. Apart from this canonical role, recent studies show that Rbfox can also function as a transcription co-factor, and affects mRNA stability and translation. The repertoire of Rbfox targets is vast, including genes involved in the development of tissue lineages, such as neurogenesis, myogenesis, and erythropoeiesis, and molecular processes, including cytoskeletal dynamics, and calcium handling. A second layer of complexity is added by the fact that Rbfox expression itself is regulated by multiple mechanisms, and, in vertebrates, exhibits tissue-specific expression. The optimum dosage of Rbfox is critical, and its misexpression is etiological to various disease conditions. In this review, we discuss the contextual roles played by Rbfox as a tissue-specific regulator for the expression of many important genes with diverse functions, through the lens of the emerging data which highlights its involvement in many human diseases. Furthermore, we explore the mechanistic details provided by studies in model organisms, with emphasis on the work with Drosophila. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Turnover and Surveillance > Regulation of RNA Stability RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Amartya Mukherjee
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India
| | - Upendra Nongthomba
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India
| |
Collapse
|
7
|
Porquet F, Weidong L, Jehasse K, Gazon H, Kondili M, Blacher S, Massotte L, Di Valentin E, Furling D, Gillet NA, Klein AF, Seutin V, Willems L. Specific DMPK-promoter targeting by CRISPRi reverses myotonic dystrophy type 1-associated defects in patient muscle cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:857-871. [PMID: 37273786 PMCID: PMC10238591 DOI: 10.1016/j.omtn.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 05/10/2023] [Indexed: 06/06/2023]
Abstract
Myotonic dystrophy type 1 (DM1) is a neuromuscular disease that originates from an expansion of CTG microsatellites in the 3' untranslated region of the DMPK gene, thus leading to the expression of transcripts containing expanded CUG repeats (CUGexp). The pathophysiology is explained by a toxic RNA gain of function where CUGexp RNAs form nuclear aggregates that sequester and alter the function of MBNL splicing factors, triggering splicing misregulation linked to the DM1 symptoms. There is currently no cure for DM1, and most therapeutic strategies aim at eliminating CUGexp-DMPK transcripts. Here, we investigate a DMPK-promoter silencing strategy using CRISPR interference as a new alternative approach. Different sgRNAs targeting the DMPK promoter are evaluated in DM1 patient muscle cells. The most effective guides allowed us to reduce the level of DMPK transcripts and CUGexp-RNA aggregates up to 80%. The CUGexp-DMPK repression corrects the overall transcriptome, including spliceopathy, and reverses a physiological parameter in DM1 muscle cells. Its action is specific and restricted to the DMPK gene, as confirmed by genome-wide expression analysis. Altogether, our findings highlight DMPK-promoter silencing by CRISPRi as a promising therapeutic approach for DM1.
Collapse
Affiliation(s)
- Florent Porquet
- Laboratory of Molecular and Cellular Epigenetics, GIGA-Cancer, ULiège, 4000 Liège, Belgium
- Laboratory of Neurophysiology, GIGA-Neurosciences, ULiège, 4000 Liège, Belgium
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Lin Weidong
- Laboratory of Molecular and Cellular Epigenetics, GIGA-Cancer, ULiège, 4000 Liège, Belgium
| | - Kévin Jehasse
- Laboratory of Neurophysiology, GIGA-Neurosciences, ULiège, 4000 Liège, Belgium
| | - Hélène Gazon
- Laboratory of Molecular and Cellular Epigenetics, GIGA-Cancer, ULiège, 4000 Liège, Belgium
| | - Maria Kondili
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Silvia Blacher
- Laboratory of Biology of Tumor and Development, GIGA-Cancer, ULiège, 4000 Liège, Belgium
| | - Laurent Massotte
- Laboratory of Neurophysiology, GIGA-Neurosciences, ULiège, 4000 Liège, Belgium
| | | | - Denis Furling
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Nicolas Albert Gillet
- Namur Research Institute for Life Sciences (NARILIS), Integrated Veterinary Research Unit (URVI), University of Namur, 5000 Namur, Belgium
| | - Arnaud François Klein
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Vincent Seutin
- Laboratory of Neurophysiology, GIGA-Neurosciences, ULiège, 4000 Liège, Belgium
| | - Luc Willems
- Laboratory of Molecular and Cellular Epigenetics, GIGA-Cancer, ULiège, 4000 Liège, Belgium
| |
Collapse
|
8
|
El Boujnouni N, van der Bent ML, Willemse M, ’t Hoen PA, Brock R, Wansink DG. Block or degrade? Balancing on- and off-target effects of antisense strategies against transcripts with expanded triplet repeats in DM1. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:622-636. [PMID: 37200862 PMCID: PMC10185704 DOI: 10.1016/j.omtn.2023.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/13/2023] [Indexed: 05/20/2023]
Abstract
Antisense oligonucleotide (ASO) therapies for myotonic dystrophy type 1 (DM1) are based on elimination of transcripts containing an expanded repeat or inhibition of sequestration of RNA-binding proteins. This activity is achievable by both degradation of expanded transcripts and steric hindrance, although it is unknown which approach is superior. We compared blocking ASOs with RNase H-recruiting gapmers of equivalent chemistries. Two DMPK target sequences were selected: the triplet repeat and a unique sequence upstream thereof. We assessed ASO effects on transcript levels, ribonucleoprotein foci and disease-associated missplicing, and performed RNA sequencing to investigate on- and off-target effects. Both gapmers and the repeat blocker led to significant DMPK knockdown and a reduction in (CUG)exp foci. However, the repeat blocker was more effective in MBNL1 protein displacement and had superior efficiency in splicing correction at the tested dose of 100 nM. By comparison, on a transcriptome level, the blocking ASO had the fewest off-target effects. In particular, the off-target profile of the repeat gapmer asks for cautious consideration in further therapeutic development. Altogether, our study demonstrates the importance of evaluating both on-target and downstream effects of ASOs in a DM1 context, and provides guiding principles for safe and effective targeting of toxic transcripts.
Collapse
Affiliation(s)
- Najoua El Boujnouni
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - M. Leontien van der Bent
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Marieke Willemse
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Peter A.C. ’t Hoen
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Roland Brock
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 293, Bahrain
- Corresponding author Roland Brock, Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands.
| | - Derick G. Wansink
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Corresponding author Derick G. Wansink, Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands.
| |
Collapse
|
9
|
Ellis JA, Hale MA, Cleary JD, Wang E, Andrew Berglund J. Alternative splicing outcomes across an RNA-binding protein concentration gradient. J Mol Biol 2023:168156. [PMID: 37230319 DOI: 10.1016/j.jmb.2023.168156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/18/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023]
Abstract
Alternative splicing (AS) is a dynamic RNA processing step that produces multiple RNA isoforms from a single pre-mRNA transcript and contributes to the complexity of the cellular transcriptome and proteome. This process is regulated through a network of cis-regulatory sequence elements and trans-acting factors, most-notably RNA binding proteins (RBPs). The muscleblind-like (MBNL) and RNA binding fox-1 homolog (RBFOX) are two well characterized families of RBPs that regulate fetal to adult AS transitions critical for proper muscle, heart, and central nervous system development. To better understand how the concentration of these RBPs influences AS transcriptome wide, we engineered a MBNL1 and RBFOX1 inducible HEK-293 cell line. Modest induction of exogenous RBFOX1 in this cell line modulated MBNL1-dependent AS outcomes in 3 skipped exon events, despite significant levels of endogenous RBFOX1 and RBFOX2. Due to background RBFOX levels, we conducted a focused analysis of dose-dependent MBNL1 skipped exon AS outcomes and generated transcriptome wide dose-response curves. Analysis of this data demonstrates that MBNL1-regulated exclusion events may require higher concentrations of MBNL1 protein to properly regulate AS outcomes compared to inclusion events and that multiple arrangements of YGCY motifs can produce similar splicing outcomes. These results suggest that rather than a simple relationship between the organization of RBP binding sites and a specific splicing outcome, that complex interaction networks govern both AS inclusion and exclusion events across a RBP gradient.
Collapse
Affiliation(s)
- Joseph A Ellis
- Department of Biochemistry & Molecular Biology & Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, Florida 32610, United States; The RNA Institute, College of Arts and Sciences, University at Albany, SUNY, Albany, NY 12222, United States
| | - Melissa A Hale
- Department of Biochemistry & Molecular Biology & Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, Florida 32610, United States; Department of Neurology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - John D Cleary
- The RNA Institute, College of Arts and Sciences, University at Albany, SUNY, Albany, NY 12222, United States
| | - Eric Wang
- Department of Microbiology and Molecular Genetics & Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - J Andrew Berglund
- Department of Biochemistry & Molecular Biology & Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, Florida 32610, United States; The RNA Institute, College of Arts and Sciences, University at Albany, SUNY, Albany, NY 12222, United States; Department of Biological Sciences, College of Arts and Sciences, University at Albany, SUNY, Albany, NY 12222, United States; RNA Institute, State University of New York at Albany, LSRB-2033, 1400 Washington Avenue, Albany, New York, 12222.
| |
Collapse
|
10
|
Cognate RNA-Binding Modes by the Alternative-Splicing Regulator MBNL1 Inferred from Molecular Dynamics. Int J Mol Sci 2022; 23:ijms232416147. [PMID: 36555788 PMCID: PMC9780971 DOI: 10.3390/ijms232416147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
The muscleblind-like protein family (MBNL) plays a prominent role in the regulation of alternative splicing. Consequently, the loss of MBNL function resulting from sequestration by RNA hairpins triggers the development of a neuromuscular disease called myotonic dystrophy (DM). Despite the sequence and structural similarities between the four zinc-finger domains that form MBNL1, recent studies have revealed that the four binding domains have differentiated splicing activity. The dynamic behaviors of MBNL1 ZnFs were simulated using conventional molecular dynamics (cMD) and steered molecular dynamics (sMD) simulations of a structural model of MBNL1 protein to provide insights into the binding selectivity of the four zinc-finger (ZnF) domains toward the GpC steps in YGCY RNA sequence. In accordance with previous studies, our results suggest that both global and local residue fluctuations on each domain have great impacts on triggering alternative splicing, indicating that local motions in RNA-binding domains could modulate their affinity and specificity. In addition, all four ZnF domains provide a distinct RNA-binding environment in terms of structural sampling and mobility that may be involved in the differentiated MBNL1 splicing events reported in the literature.
Collapse
|
11
|
G R, Mitra A, Pk V. Predicting functional riboSNitches in the context of alternative splicing. Gene X 2022; 837:146694. [PMID: 35738445 DOI: 10.1016/j.gene.2022.146694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/11/2022] [Accepted: 06/17/2022] [Indexed: 11/19/2022] Open
Abstract
RNAs are the major regulators of gene expression, and their secondary structures play crucial roles at different levels. RiboSNitches are disease-associated SNPs that cause changes in the pre-mRNA secondary structural ensemble. Several riboSNitches have been detected in the 5' and 3' untranslated regions and lncRNA. Although cases of secondary structural elements playing a regulatory role in alternative splicing are known, regions specific to splicing events, such as splice junctions have not received much attention. We tested splice-site mutations for their efficiency in disrupting the secondary structure and hypothesized that these could play a crucial role in alternative splicing. Multiple riboSNitch prediction methods were applied to obtain overlapping results that are potentially more reliable. Putative riboSNitches were identified from aberrant 5' and 3' splice site mutations, cancer-causing somatic mutations, and genes that harbor the regulatory RNA secondary structural elements. Our workflow for predicting riboSNitches associated with alternative splicing is novel and paves the way for subsequent experimental validation.
Collapse
Affiliation(s)
- Ramya G
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Gachibowli, Hyderabad, Telangana 500032, India.
| | - Abhijit Mitra
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Gachibowli, Hyderabad, Telangana 500032, India.
| | - Vinod Pk
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Gachibowli, Hyderabad, Telangana 500032, India.
| |
Collapse
|
12
|
Choi S, Lee HS, Cho N, Kim I, Cheon S, Park C, Kim EM, Kim W, Kim KK. RBFOX2-regulated TEAD1 alternative splicing plays a pivotal role in Hippo-YAP signaling. Nucleic Acids Res 2022; 50:8658-8673. [PMID: 35699208 PMCID: PMC9410899 DOI: 10.1093/nar/gkac509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/14/2022] Open
Abstract
Alternative pre-mRNA splicing is key to proteome diversity; however, the biological roles of alternative splicing (AS) in signaling pathways remain elusive. Here, we focus on TEA domain transcription factor 1 (TEAD1), a YAP binding factor in the Hippo signaling pathway. Public database analyses showed that expression of YAP-TEAD target genes negatively correlated with the expression of a TEAD1 isoform lacking exon 6 (TEAD1ΔE6) but did not correlate with overall TEAD1 expression. We confirmed that the transcriptional activity and oncogenic properties of the full-length TEAD1 isoform were greater than those of TEAD1ΔE6, with the difference in transcription related to YAP interaction. Furthermore, we showed that RNA-binding Fox-1 homolog 2 (RBFOX2) promoted the inclusion of TEAD1 exon 6 via binding to the conserved GCAUG element in the downstream intron. These results suggest a regulatory mechanism of RBFOX2-mediated TEAD1 AS and provide insight into AS-specific modulation of signaling pathways.
Collapse
Affiliation(s)
- Sunkyung Choi
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyo Seong Lee
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Namjoon Cho
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Inyoung Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seongmin Cheon
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea.,Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Chungoo Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Eun-Mi Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Wantae Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kee K Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
13
|
Wheeler JR, Whitney ON, Vogler TO, Nguyen ED, Pawlikowski B, Lester E, Cutler A, Elston T, Dalla Betta N, Parker KR, Yost KE, Vogel H, Rando TA, Chang HY, Johnson AM, Parker R, Olwin BB. RNA-binding proteins direct myogenic cell fate decisions. eLife 2022; 11:e75844. [PMID: 35695839 PMCID: PMC9191894 DOI: 10.7554/elife.75844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
RNA-binding proteins (RBPs), essential for skeletal muscle regeneration, cause muscle degeneration and neuromuscular disease when mutated. Why mutations in these ubiquitously expressed RBPs orchestrate complex tissue regeneration and direct cell fate decisions in skeletal muscle remains poorly understood. Single-cell RNA-sequencing of regenerating Mus musculus skeletal muscle reveals that RBP expression, including the expression of many neuromuscular disease-associated RBPs, is temporally regulated in skeletal muscle stem cells and correlates with specific stages of myogenic differentiation. By combining machine learning with RBP engagement scoring, we discovered that the neuromuscular disease-associated RBP Hnrnpa2b1 is a differentiation-specifying regulator of myogenesis that controls myogenic cell fate transitions during terminal differentiation in mice. The timing of RBP expression specifies cell fate transitions by providing post-transcriptional regulation of messenger RNAs that coordinate stem cell fate decisions during tissue regeneration.
Collapse
Affiliation(s)
- Joshua R Wheeler
- Department of Biochemistry, University of ColoradoBoulderUnited States
- Medical Scientist Training Program, University of Colorado Anschutz Medical CampusAuroraUnited States
- Howard Hughes Medical Institute, University of ColoradoBoulderUnited States
- Department of Pathology, Stanford UniversityStanfordUnited States
- Department of Neuropathology, Stanford UniversityStanfordUnited States
| | - Oscar N Whitney
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Thomas O Vogler
- Medical Scientist Training Program, University of Colorado Anschutz Medical CampusAuroraUnited States
- Department of Molecular, Cellular and Developmental Biology, University of ColoradoBoulderUnited States
- Department of Surgery, University of ColoradoAuroraUnited States
| | - Eric D Nguyen
- Medical Scientist Training Program, University of Colorado Anschutz Medical CampusAuroraUnited States
- Molecular Biology Program and Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Bradley Pawlikowski
- Department of Molecular, Cellular and Developmental Biology, University of ColoradoBoulderUnited States
| | - Evan Lester
- Department of Biochemistry, University of ColoradoBoulderUnited States
- Medical Scientist Training Program, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Alicia Cutler
- Department of Molecular, Cellular and Developmental Biology, University of ColoradoBoulderUnited States
| | - Tiffany Elston
- Department of Molecular, Cellular and Developmental Biology, University of ColoradoBoulderUnited States
| | - Nicole Dalla Betta
- Department of Molecular, Cellular and Developmental Biology, University of ColoradoBoulderUnited States
| | - Kevin R Parker
- Center for Personal and Dynamic Regulomes, Stanford UniversityPalo AltoUnited States
| | - Kathryn E Yost
- Center for Personal and Dynamic Regulomes, Stanford UniversityPalo AltoUnited States
| | - Hannes Vogel
- Department of Pathology, Stanford UniversityStanfordUnited States
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University School of MedicineStanfordUnited States
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of MedicineStanfordUnited States
- Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care SystemPalo AltoUnited States
| | - Howard Y Chang
- Center for Personal and Dynamic Regulomes, Stanford UniversityPalo AltoUnited States
- Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Aaron M Johnson
- Molecular Biology Program and Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical CampusAuroraUnited States
- University of Colorado School of Medicine, RNA Bioscience Initiative, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Roy Parker
- Howard Hughes Medical Institute, University of ColoradoBoulderUnited States
| | - Bradley B Olwin
- Department of Molecular, Cellular and Developmental Biology, University of ColoradoBoulderUnited States
| |
Collapse
|
14
|
Nikonova E, Mukherjee A, Kamble K, Barz C, Nongthomba U, Spletter ML. Rbfox1 is required for myofibril development and maintaining fiber type-specific isoform expression in Drosophila muscles. Life Sci Alliance 2022; 5:5/4/e202101342. [PMID: 34996845 PMCID: PMC8742874 DOI: 10.26508/lsa.202101342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/24/2022] Open
Abstract
Protein isoform transitions confer muscle fibers with distinct properties and are regulated by differential transcription and alternative splicing. RNA-binding Fox protein 1 (Rbfox1) can affect both transcript levels and splicing, and is known to contribute to normal muscle development and physiology in vertebrates, although the detailed mechanisms remain obscure. In this study, we report that Rbfox1 contributes to the generation of adult muscle diversity in Drosophila Rbfox1 is differentially expressed among muscle fiber types, and RNAi knockdown causes a hypercontraction phenotype that leads to behavioral and eclosion defects. Misregulation of fiber type-specific gene and splice isoform expression, notably loss of an indirect flight muscle-specific isoform of Troponin-I that is critical for regulating myosin activity, leads to structural defects. We further show that Rbfox1 directly binds the 3'-UTR of target transcripts, regulates the expression level of myogenic transcription factors myocyte enhancer factor 2 and Salm, and both modulates expression of and genetically interacts with the CELF family RNA-binding protein Bruno1 (Bru1). Rbfox1 and Bru1 co-regulate fiber type-specific alternative splicing of structural genes, indicating that regulatory interactions between FOX and CELF family RNA-binding proteins are conserved in fly muscle. Rbfox1 thus affects muscle development by regulating fiber type-specific splicing and expression dynamics of identity genes and structural proteins.
Collapse
Affiliation(s)
- Elena Nikonova
- Department of Physiological Chemistry, Biomedical Center, Ludwig-Maximilians-Universität München, Martinsried-Planegg, Germany
| | - Amartya Mukherjee
- Department of Molecular Reproduction, Development and Genetics (MRDG), Indian Institute of Science, Bangalore, India
| | - Ketaki Kamble
- Department of Molecular Reproduction, Development and Genetics (MRDG), Indian Institute of Science, Bangalore, India
| | - Christiane Barz
- Muscle Dynamics Group, Max Planck Institute of Biochemistry, Martinsried-Planegg, Germany
| | - Upendra Nongthomba
- Department of Molecular Reproduction, Development and Genetics (MRDG), Indian Institute of Science, Bangalore, India
| | - Maria L Spletter
- Department of Physiological Chemistry, Biomedical Center, Ludwig-Maximilians-Universität München, Martinsried-Planegg, Germany
| |
Collapse
|
15
|
Potier B, Lallemant L, Parrot S, Huguet-Lachon A, Gourdon G, Dutar P, Gomes-Pereira M. DM1 Transgenic Mice Exhibit Abnormal Neurotransmitter Homeostasis and Synaptic Plasticity in Association with RNA Foci and Mis-Splicing in the Hippocampus. Int J Mol Sci 2022; 23:ijms23020592. [PMID: 35054778 PMCID: PMC8775431 DOI: 10.3390/ijms23020592] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 12/31/2021] [Accepted: 01/02/2022] [Indexed: 02/01/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a severe neuromuscular disease mediated by a toxic gain of function of mutant RNAs. The neuropsychological manifestations affect multiple domains of cognition and behavior, but their etiology remains elusive. Transgenic DMSXL mice carry the DM1 mutation, show behavioral abnormalities, and express low levels of GLT1, a critical regulator of glutamate concentration in the synaptic cleft. However, the impact of glutamate homeostasis on neurotransmission in DM1 remains unknown. We confirmed reduced glutamate uptake in the DMSXL hippocampus. Patch clamp recordings in hippocampal slices revealed increased amplitude of tonic glutamate currents in DMSXL CA1 pyramidal neurons and DG granule cells, likely mediated by higher levels of ambient glutamate. Unexpectedly, extracellular GABA levels and tonic current were also elevated in DMSXL mice. Finally, we found evidence of synaptic dysfunction in DMSXL mice, suggestive of abnormal short-term plasticity, illustrated by an altered LTP time course in DG and in CA1. Synaptic dysfunction was accompanied by RNA foci accumulation in localized areas of the hippocampus and by the mis-splicing of candidate genes with relevant functions in neurotransmission. Molecular and functional changes triggered by toxic RNA may induce synaptic abnormalities in restricted brain areas that favor neuronal dysfunction.
Collapse
Affiliation(s)
- Brigitte Potier
- LuMIn, CNRS FRE2036, ENS Paris-Saclay, CentraleSupelec, Université Paris-Saclay, 91190 Gif-sur-Yvette, France; (B.P.); (P.D.)
| | - Louison Lallemant
- Centre de Recherche en Myologie, Institut de Myologie, Inserm, Sorbonne Université, 75013 Paris, France; (L.L.); (A.H.-L.)
| | - Sandrine Parrot
- Lyon Neuroscience Research Center, Inserm U1028, CNRS UMR5292, Université Lyon 1, 69500 Bron, France;
| | - Aline Huguet-Lachon
- Centre de Recherche en Myologie, Institut de Myologie, Inserm, Sorbonne Université, 75013 Paris, France; (L.L.); (A.H.-L.)
| | - Geneviève Gourdon
- Centre de Recherche en Myologie, Institut de Myologie, Inserm, Sorbonne Université, 75013 Paris, France; (L.L.); (A.H.-L.)
- Correspondence: (G.G.); (M.G.-P.)
| | - Patrick Dutar
- LuMIn, CNRS FRE2036, ENS Paris-Saclay, CentraleSupelec, Université Paris-Saclay, 91190 Gif-sur-Yvette, France; (B.P.); (P.D.)
| | - Mário Gomes-Pereira
- Centre de Recherche en Myologie, Institut de Myologie, Inserm, Sorbonne Université, 75013 Paris, France; (L.L.); (A.H.-L.)
- Correspondence: (G.G.); (M.G.-P.)
| |
Collapse
|
16
|
Pharmacological Modulation and (Patho)Physiological Roles of TRPM4 Channel-Part 2: TRPM4 in Health and Disease. Pharmaceuticals (Basel) 2021; 15:ph15010040. [PMID: 35056097 PMCID: PMC8779181 DOI: 10.3390/ph15010040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023] Open
Abstract
Transient receptor potential melastatin 4 (TRPM4) is a unique member of the TRPM protein family and, similarly to TRPM5, is Ca2+ sensitive and permeable for monovalent but not divalent cations. It is widely expressed in many organs and is involved in several functions; it regulates membrane potential and Ca2+ homeostasis in both excitable and non-excitable cells. This part of the review discusses the currently available knowledge about the physiological and pathophysiological roles of TRPM4 in various tissues. These include the physiological functions of TRPM4 in the cells of the Langerhans islets of the pancreas, in various immune functions, in the regulation of vascular tone, in respiratory and other neuronal activities, in chemosensation, and in renal and cardiac physiology. TRPM4 contributes to pathological conditions such as overactive bladder, endothelial dysfunction, various types of malignant diseases and central nervous system conditions including stroke and injuries as well as in cardiac conditions such as arrhythmias, hypertrophy, and ischemia-reperfusion injuries. TRPM4 claims more and more attention and is likely to be the topic of research in the future.
Collapse
|
17
|
Liu J, Guo ZN, Yan XL, Yang Y, Huang S. Brain Pathogenesis and Potential Therapeutic Strategies in Myotonic Dystrophy Type 1. Front Aging Neurosci 2021; 13:755392. [PMID: 34867280 PMCID: PMC8634727 DOI: 10.3389/fnagi.2021.755392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/20/2021] [Indexed: 12/17/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is the most common muscular dystrophy that affects multiple systems including the muscle and heart. The mutant CTG expansion at the 3'-UTR of the DMPK gene causes the expression of toxic RNA that aggregate as nuclear foci. The foci then interfere with RNA-binding proteins, affecting hundreds of mis-spliced effector genes, leading to aberrant alternative splicing and loss of effector gene product functions, ultimately resulting in systemic disorders. In recent years, increasing clinical, imaging, and pathological evidence have indicated that DM1, though to a lesser extent, could also be recognized as true brain diseases, with more and more researchers dedicating to develop novel therapeutic tools dealing with it. In this review, we summarize the current advances in the pathogenesis and pathology of central nervous system (CNS) deficits in DM1, intervention measures currently being investigated are also highlighted, aiming to promote novel and cutting-edge therapeutic investigations.
Collapse
Affiliation(s)
- Jie Liu
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Zhen-Ni Guo
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Xiu-Li Yan
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
| | - Yi Yang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Shuo Huang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| |
Collapse
|
18
|
Shi DL, Grifone R. RNA-Binding Proteins in the Post-transcriptional Control of Skeletal Muscle Development, Regeneration and Disease. Front Cell Dev Biol 2021; 9:738978. [PMID: 34616743 PMCID: PMC8488162 DOI: 10.3389/fcell.2021.738978] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/31/2021] [Indexed: 12/21/2022] Open
Abstract
Embryonic myogenesis is a temporally and spatially regulated process that generates skeletal muscle of the trunk and limbs. During this process, mononucleated myoblasts derived from myogenic progenitor cells within the somites undergo proliferation, migration and differentiation to elongate and fuse into multinucleated functional myofibers. Skeletal muscle is the most abundant tissue of the body and has the remarkable ability to self-repair by re-activating the myogenic program in muscle stem cells, known as satellite cells. Post-transcriptional regulation of gene expression mediated by RNA-binding proteins is critically required for muscle development during embryogenesis and for muscle homeostasis in the adult. Differential subcellular localization and activity of RNA-binding proteins orchestrates target gene expression at multiple levels to regulate different steps of myogenesis. Dysfunctions of these post-transcriptional regulators impair muscle development and homeostasis, but also cause defects in motor neurons or the neuromuscular junction, resulting in muscle degeneration and neuromuscular disease. Many RNA-binding proteins, such as members of the muscle blind-like (MBNL) and CUG-BP and ETR-3-like factors (CELF) families, display both overlapping and distinct targets in muscle cells. Thus they function either cooperatively or antagonistically to coordinate myoblast proliferation and differentiation. Evidence is accumulating that the dynamic interplay of their regulatory activity may control the progression of myogenic program as well as stem cell quiescence and activation. Moreover, the role of RNA-binding proteins that regulate post-transcriptional modification in the myogenic program is far less understood as compared with transcription factors involved in myogenic specification and differentiation. Here we review past achievements and recent advances in understanding the functions of RNA-binding proteins during skeletal muscle development, regeneration and disease, with the aim to identify the fundamental questions that are still open for further investigations.
Collapse
Affiliation(s)
- De-Li Shi
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Developmental Biology Laboratory, CNRS-UMR 7622, Institut de Biologie de Paris-Seine, Sorbonne University, Paris, France
| | - Raphaëlle Grifone
- Developmental Biology Laboratory, CNRS-UMR 7622, Institut de Biologie de Paris-Seine, Sorbonne University, Paris, France
| |
Collapse
|
19
|
Kao SY, Nikonova E, Chaabane S, Sabani A, Martitz A, Wittner A, Heemken J, Straub T, Spletter ML. A Candidate RNAi Screen Reveals Diverse RNA-Binding Protein Phenotypes in Drosophila Flight Muscle. Cells 2021; 10:2505. [PMID: 34685485 PMCID: PMC8534295 DOI: 10.3390/cells10102505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/14/2021] [Accepted: 09/18/2021] [Indexed: 12/30/2022] Open
Abstract
The proper regulation of RNA processing is critical for muscle development and the fine-tuning of contractile ability among muscle fiber-types. RNA binding proteins (RBPs) regulate the diverse steps in RNA processing, including alternative splicing, which generates fiber-type specific isoforms of structural proteins that confer contractile sarcomeres with distinct biomechanical properties. Alternative splicing is disrupted in muscle diseases such as myotonic dystrophy and dilated cardiomyopathy and is altered after intense exercise as well as with aging. It is therefore important to understand splicing and RBP function, but currently, only a small fraction of the hundreds of annotated RBPs expressed in muscle have been characterized. Here, we demonstrate the utility of Drosophila as a genetic model system to investigate basic developmental mechanisms of RBP function in myogenesis. We find that RBPs exhibit dynamic temporal and fiber-type specific expression patterns in mRNA-Seq data and display muscle-specific phenotypes. We performed knockdown with 105 RNAi hairpins targeting 35 RBPs and report associated lethality, flight, myofiber and sarcomere defects, including flight muscle phenotypes for Doa, Rm62, mub, mbl, sbr, and clu. Knockdown phenotypes of spliceosome components, as highlighted by phenotypes for A-complex components SF1 and Hrb87F (hnRNPA1), revealed level- and temporal-dependent myofibril defects. We further show that splicing mediated by SF1 and Hrb87F is necessary for Z-disc stability and proper myofibril development, and strong knockdown of either gene results in impaired localization of kettin to the Z-disc. Our results expand the number of RBPs with a described phenotype in muscle and underscore the diversity in myofibril and transcriptomic phenotypes associated with splicing defects. Drosophila is thus a powerful model to gain disease-relevant insight into cellular and molecular phenotypes observed when expression levels of splicing factors, spliceosome components and splicing dynamics are altered.
Collapse
Affiliation(s)
- Shao-Yen Kao
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany; (S.-Y.K.); (E.N.); (S.C.); (A.W.); (J.H.)
| | - Elena Nikonova
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany; (S.-Y.K.); (E.N.); (S.C.); (A.W.); (J.H.)
| | - Sabrina Chaabane
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany; (S.-Y.K.); (E.N.); (S.C.); (A.W.); (J.H.)
| | - Albiona Sabani
- Department of Biology, University of Wisconsin at Madison, 1117 W. Johnson St., Madison, WI 53706, USA;
| | - Alexandra Martitz
- Molecular Nutrition Medicine, Else Kröner-Fresenius Center, Technical University of Munich, 85354 Freising, Germany;
| | - Anja Wittner
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany; (S.-Y.K.); (E.N.); (S.C.); (A.W.); (J.H.)
| | - Jakob Heemken
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany; (S.-Y.K.); (E.N.); (S.C.); (A.W.); (J.H.)
| | - Tobias Straub
- Biomedical Center, Bioinformatics Core Facility, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany;
| | - Maria L. Spletter
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany; (S.-Y.K.); (E.N.); (S.C.); (A.W.); (J.H.)
| |
Collapse
|
20
|
Alexander MS, Hightower RM, Reid AL, Bennett AH, Iyer L, Slonim DK, Saha M, Kawahara G, Kunkel LM, Kopin AS, Gupta VA, Kang PB, Draper I. hnRNP L is essential for myogenic differentiation and modulates myotonic dystrophy pathologies. Muscle Nerve 2021; 63:928-940. [PMID: 33651408 DOI: 10.1002/mus.27216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 02/25/2021] [Accepted: 02/28/2021] [Indexed: 12/12/2022]
Abstract
INTRODUCTION RNA-binding proteins (RBPs) play an important role in skeletal muscle development and disease by regulating RNA splicing. In myotonic dystrophy type 1 (DM1), the RBP MBNL1 (muscleblind-like) is sequestered by toxic CUG repeats, leading to missplicing of MBNL1 targets. Mounting evidence from the literature has implicated other factors in the pathogenesis of DM1. Herein we sought to evaluate the functional role of the splicing factor hnRNP L in normal and DM1 muscle cells. METHODS Co-immunoprecipitation assays using hnRNPL and MBNL1 expression constructs and splicing profiling in normal and DM1 muscle cell lines were performed. Zebrafish morpholinos targeting hnrpl and hnrnpl2 were injected into one-cell zebrafish for developmental and muscle analysis. In human myoblasts downregulation of hnRNP L was achieved with shRNAi. Ascochlorin administration to DM1 myoblasts was performed and expression of the CUG repeats, DM1 splicing biomarkers, and hnRNP L expression levels were evaluated. RESULTS Using DM1 patient myoblast cell lines we observed the formation of abnormal hnRNP L nuclear foci within and outside the expanded CUG repeats, suggesting a role for this factor in DM1 pathology. We showed that the antiviral and antitumorigenic isoprenoid compound ascochlorin increased MBNL1 and hnRNP L expression levels. Drug treatment of DM1 muscle cells with ascochlorin partially rescued missplicing of established early biomarkers of DM1 and improved the defective myotube formation displayed by DM1 muscle cells. DISCUSSION Together, these studies revealed that hnRNP L can modulate DM1 pathologies and is a potential therapeutic target.
Collapse
Affiliation(s)
- Matthew S Alexander
- Division of Neurology, Department of Pediatrics, University of Alabama at Birmingham and Children's of Alabama, Birmingham, Alabama, USA.,Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rylie M Hightower
- Division of Neurology, Department of Pediatrics, University of Alabama at Birmingham and Children's of Alabama, Birmingham, Alabama, USA.,Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Andrea L Reid
- Division of Neurology, Department of Pediatrics, University of Alabama at Birmingham and Children's of Alabama, Birmingham, Alabama, USA
| | - Alexis H Bennett
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Lakshmanan Iyer
- Department of Neuroscience, Tufts University, Boston, Massachusetts, USA
| | - Donna K Slonim
- Department of Computer Science, Tufts University, Medford, Massachusetts, USA
| | - Madhurima Saha
- Division of Pediatric Neurology, Department of Pediatrics, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Genri Kawahara
- Department of Pathophysiology, Tokyo Medical University, Tokyo, Japan
| | - Louis M Kunkel
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Alan S Kopin
- Department of Medicine, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Vandana A Gupta
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Peter B Kang
- Division of Pediatric Neurology, Department of Pediatrics, University of Florida College of Medicine, Gainesville, Florida, USA.,Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida, USA.,Department of Neurology, University of Florida College of Medicine, Gainesville, Florida, USA.,Genetics Institute and Myology Institute, University of Florida, Gainesville, Florida, USA.,Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota Medical School, Minneapolis, Minnesota, USA.,Neurology Department, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Isabelle Draper
- Department of Medicine, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Morton SU, Sefton CR, Zhang H, Dai M, Turner DL, Uhler MD, Agrawal PB. microRNA-mRNA Profile of Skeletal Muscle Differentiation and Relevance to Congenital Myotonic Dystrophy. Int J Mol Sci 2021; 22:ijms22052692. [PMID: 33799993 PMCID: PMC7962092 DOI: 10.3390/ijms22052692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 01/08/2023] Open
Abstract
microRNAs (miRNAs) regulate messenger RNA (mRNA) abundance and translation during key developmental processes including muscle differentiation. Assessment of miRNA targets can provide insight into muscle biology and gene expression profiles altered by disease. mRNA and miRNA libraries were generated from C2C12 myoblasts during differentiation, and predicted miRNA targets were identified based on presence of miRNA binding sites and reciprocal expression. Seventeen miRNAs were differentially expressed at all time intervals (comparing days 0, 2, and 5) of differentiation. mRNA targets of differentially expressed miRNAs were enriched for functions related to calcium signaling and sarcomere formation. To evaluate this relationship in a disease state, we evaluated the miRNAs differentially expressed in human congenital myotonic dystrophy (CMD) myoblasts and compared with normal control. Seventy-four miRNAs were differentially expressed during healthy human myocyte maturation, of which only 12 were also up- or downregulated in CMD patient cells. The 62 miRNAs that were only differentially expressed in healthy cells were compared with differentiating C2C12 cells. Eighteen of the 62 were conserved in mouse and up- or down-regulated during mouse myoblast differentiation, and their C2C12 targets were enriched for functions related to muscle differentiation and contraction.
Collapse
Affiliation(s)
- Sarah U. Morton
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Correspondence: (S.U.M.); (P.B.A.)
| | | | - Huanqing Zhang
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA; (H.Z.); (M.D.); (D.L.T.); (M.D.U.)
| | - Manhong Dai
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA; (H.Z.); (M.D.); (D.L.T.); (M.D.U.)
| | - David L. Turner
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA; (H.Z.); (M.D.); (D.L.T.); (M.D.U.)
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michael D. Uhler
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA; (H.Z.); (M.D.); (D.L.T.); (M.D.U.)
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pankaj B. Agrawal
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA 02115, USA
- Correspondence: (S.U.M.); (P.B.A.)
| |
Collapse
|
22
|
Tanner MK, Tang Z, Thornton CA. Targeted splice sequencing reveals RNA toxicity and therapeutic response in myotonic dystrophy. Nucleic Acids Res 2021; 49:2240-2254. [PMID: 33503262 PMCID: PMC7913682 DOI: 10.1093/nar/gkab022] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 01/03/2021] [Accepted: 01/08/2021] [Indexed: 12/14/2022] Open
Abstract
Biomarker-driven trials hold promise for therapeutic development in chronic diseases, such as muscular dystrophy. Myotonic dystrophy type 1 (DM1) involves RNA toxicity, where transcripts containing expanded CUG-repeats (CUGexp) accumulate in nuclear foci and sequester splicing factors in the Muscleblind-like (Mbnl) family. Oligonucleotide therapies to mitigate RNA toxicity have emerged but reliable measures of target engagement are needed. Here we examined muscle transcriptomes in mouse models of DM1 and found that CUGexp expression or Mbnl gene deletion cause similar dysregulation of alternative splicing. We selected 35 dysregulated exons for further study by targeted RNA sequencing. Across a spectrum of mouse models, the individual splice events and a composite index derived from all events showed a graded response to decrements of Mbnl or increments of CUGexp. Antisense oligonucleotides caused prompt reduction of CUGexp RNA and parallel correction of the splicing index, followed by subsequent elimination of myotonia. These results suggest that targeted splice sequencing may provide a sensitive and reliable way to assess therapeutic impact in DM1.
Collapse
Affiliation(s)
- Matthew K Tanner
- Medical Scientist Training Program, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Zhenzhi Tang
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Charles A Thornton
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
23
|
Angarola BL, Anczuków O. Splicing alterations in healthy aging and disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021. [PMID: 33565261 DOI: 10.1002/wrna.1643.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alternative RNA splicing is a key step in gene expression that allows generation of numerous messenger RNA transcripts encoding proteins of varied functions from the same gene. It is thus a rich source of proteomic and functional diversity. Alterations in alternative RNA splicing are observed both during healthy aging and in a number of human diseases, several of which display premature aging phenotypes or increased incidence with age. Age-associated splicing alterations include differential splicing of genes associated with hallmarks of aging, as well as changes in the levels of core spliceosomal genes and regulatory splicing factors. Here, we review the current known links between alternative RNA splicing, its regulators, healthy biological aging, and diseases associated with aging or aging-like phenotypes. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
| | - Olga Anczuków
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA.,Department of Genetics and Genome Sciences, UConn Health, Farmington, Connecticut, USA.,Institute for Systems Genomics, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
24
|
Angarola BL, Anczuków O. Splicing alterations in healthy aging and disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1643. [PMID: 33565261 DOI: 10.1002/wrna.1643] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/19/2022]
Abstract
Alternative RNA splicing is a key step in gene expression that allows generation of numerous messenger RNA transcripts encoding proteins of varied functions from the same gene. It is thus a rich source of proteomic and functional diversity. Alterations in alternative RNA splicing are observed both during healthy aging and in a number of human diseases, several of which display premature aging phenotypes or increased incidence with age. Age-associated splicing alterations include differential splicing of genes associated with hallmarks of aging, as well as changes in the levels of core spliceosomal genes and regulatory splicing factors. Here, we review the current known links between alternative RNA splicing, its regulators, healthy biological aging, and diseases associated with aging or aging-like phenotypes. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
| | - Olga Anczuków
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA.,Department of Genetics and Genome Sciences, UConn Health, Farmington, Connecticut, USA.,Institute for Systems Genomics, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
25
|
Poulin H, Mercier A, Djemai M, Pouliot V, Deschenes I, Boutjdir M, Puymirat J, Chahine M. iPSC-derived cardiomyocytes from patients with myotonic dystrophy type 1 have abnormal ion channel functions and slower conduction velocities. Sci Rep 2021; 11:2500. [PMID: 33510259 PMCID: PMC7844414 DOI: 10.1038/s41598-021-82007-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiac complications such as electrical abnormalities including conduction delays and arrhythmias are the main cause of death in individuals with Myotonic Dystrophy type 1 (DM1). We developed a disease model using iPSC-derived cardiomyocytes (iPSC-CMs) from a healthy individual and two DM1 patients with different CTG repeats lengths and clinical history (DM1-1300 and DM1-300). We confirmed the presence of toxic RNA foci and mis-spliced MBNL1/2 transcripts in DM1 iPSC-CMs. In DM1-1300, we identified a switch in the cardiac sodium channel SCN5A from the adult to the neonatal isoform. The down-regulation of adult SCN5A isoforms is consistent with a shift in the sodium current activation to depolarized potentials observed in DM1-1300. L-type calcium current density was higher in iPSC-CMs from DM1-1300, which is correlated with the overexpression of the CaV1.2 transcript and proteins. Importantly, INa and ICaL dysfunctions resulted in prolonged action potentials duration, slower velocities, and decreased overshoots. Optical mapping analysis revealed a slower conduction velocity in DM1-1300 iPSC-CM monolayers. In conclusion, our data revealed two distinct ions channels perturbations in DM1 iPSC-CM from the patient with cardiac dysfunction, one affecting Na+ channels and one affecting Ca2+ channels. Both have an impact on cardiac APs and ultimately on heart conduction.
Collapse
Affiliation(s)
- Hugo Poulin
- CERVO Brain Research Centre, Quebec, QC, Canada
| | | | | | | | - Isabelle Deschenes
- Department of Physiology and Cell Biology, Ohio State University, Columbus, OH, USA
| | - Mohamed Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare System, Brooklyn, New York, NY, USA
- Department of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Medical Center, New York, NY, USA
- Depatrment of Medicine, NYU School of Medicine, New York, NY, USA
| | - Jack Puymirat
- Unit of Human Genetics, Hôpital de l'Enfant-Jésus, CHU Research Center, Quebec, QC, Canada
| | - Mohamed Chahine
- CERVO Brain Research Centre, Quebec, QC, Canada.
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec, QC, Canada.
| |
Collapse
|
26
|
Zhang M, Han Y, Liu J, Liu L, Zheng L, Chen Y, Xia R, Yao D, Cai X, Xu X. Rbm24 modulates adult skeletal muscle regeneration via regulation of alternative splicing. Am J Cancer Res 2020; 10:11159-11177. [PMID: 33042276 PMCID: PMC7532667 DOI: 10.7150/thno.44389] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 08/12/2020] [Indexed: 12/16/2022] Open
Abstract
Rationale: The adult skeletal muscle can self-repair efficiently following mechanical or pathological damage due to its remarkable regenerative capacity. However, regulatory mechanisms underlying muscle regeneration are complicated and have not been fully elucidated. Alternative splicing (AS) is a major mechanism responsible for post-transcriptional regulation. Many aberrant AS events have been identified in patients with muscular dystrophy which is accompanied by abnormal muscle regeneration. However, little is known about the correlation between AS and muscle regeneration. It has been reported that RNA binding motif protein 24 (Rbm24), a tissue-specific splicing factor, is involved in embryo myogenesis while the role of Rbm24 in adult myogenesis (also called muscle regeneration) is poorly understood. Methods: To investigate the role of Rbm24 in adult skeletal muscle, we generated Rbm24 conditional knockout mice and satellite cell-specific knockout mice. Furthermore, a cardiotoxin (CTX)-induced injury model was utilized to assess the effects of Rbm24 on skeletal muscle regeneration. Genome-wide RNA-Seq was performed to identify the changes in AS following loss of Rbm24. Results: Rbm24 knockout mice displayed abnormal regeneration 4 months after tamoxifen treatment. Using RNA-Seq, we found that Rbm24 regulated a complex network of AS events involved in multiple biological processes, including myogenesis, muscle regeneration and muscle hypertrophy. Moreover, using a CTX-induced injury model, we showed that loss of Rbm24 in skeletal muscle resulted in myogenic fusion and differentiation defects and significantly delayed muscle regeneration. Furthermore, satellite cell-specific Rbm24 knockout mice recapitulated the defects in regeneration seen in the global Rbm24 knockout mice. Importantly, we demonstrated that Rbm24 regulated AS of Mef2d, Naca, Rock2 and Lrrfip1 which are essential for myogenic differentiation and muscle regeneration. Conclusions: The present study demonstrated that Rbm24 regulates dynamic changes in AS and is essential for adult skeletal muscle regeneration.
Collapse
|
27
|
Ballester-Lopez A, Núñez-Manchón J, Koehorst E, Linares-Pardo I, Almendrote M, Lucente G, Guanyabens N, Lopez-Osias M, Suárez-Mesa A, Hanick SA, Chojnacki J, Lucia A, Pintos-Morell G, Coll-Cantí J, Martínez-Piñeiro A, Ramos-Fransi A, Nogales-Gadea G. Three-dimensional imaging in myotonic dystrophy type 1: Linking molecular alterations with disease phenotype. NEUROLOGY-GENETICS 2020; 6:e484. [PMID: 32802949 PMCID: PMC7413607 DOI: 10.1212/nxg.0000000000000484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/05/2020] [Indexed: 12/31/2022]
Abstract
Objective We aimed to determine whether 3D imaging reconstruction allows identifying molecular:clinical associations in myotonic dystrophy type 1 (DM1). Methods We obtained myoblasts from 6 patients with DM1 and 6 controls. We measured cytosine-thymine-guanine (CTG) expansion and detected RNA foci and muscleblind like 1 (MBNL1) through 3D reconstruction. We studied dystrophia myotonica protein kinase (DMPK) expression and splicing alterations of MBNL1, insulin receptor, and sarcoplasmic reticulum Ca(2+)-ATPase 1. Results Three-dimensional analysis showed that RNA foci (nuclear and/or cytoplasmic) were present in 45%-100% of DM1-derived myoblasts we studied (range: 0-6 foci per cell). RNA foci represented <0.6% of the total myoblast nuclear volume. CTG expansion size was associated with the number of RNA foci per myoblast (r = 0.876 [95% confidence interval 0.222-0.986]) as well as with the number of cytoplasmic RNA foci (r = 0.943 [0.559-0.994]). Although MBNL1 colocalized with RNA foci in all DM1 myoblast cell lines, colocalization only accounted for 1% of total MBNL1 expression, with the absence of DM1 alternative splicing patterns. The number of RNA foci was associated with DMPK expression (r = 0.967 [0.079-0.999]). On the other hand, the number of cytoplasmic RNA foci was correlated with the age at disease onset (r = -0.818 [-0.979 to 0.019]). Conclusions CTG expansion size modulates RNA foci number in myoblasts derived from patients with DM1. MBNL1 sequestration plays only a minor role in the pathobiology of the disease in these cells. Higher number of cytoplasmic RNA foci is related to an early onset of the disease, a finding that should be corroborated in future studies.
Collapse
Affiliation(s)
- Alfonsina Ballester-Lopez
- Neuromuscular and Neuropediatric Research Group (A.B.-L., J.N.-M., E.K., I.L.-P., M.A., G.L., M.L.-O., A.S.-M., S.A.H., G.P.-M., J.C.-C., A.M.-P., A.R.-F., G.N.-G.), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (A.B.-L., G.P.-M., J.C.-C., G.N.-G.), Instituto de Salud Carlos III, Madrid; Neuromuscular Pathology Unit. Neurology Service. Neuroscience department (M.A., G.L., N.G., J.C.-C., A.M.-P., A.R.-F.), Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona; IrsiCaixa AIDS Research Institute (J.C.), Badalona, Spain; Faculty of Sport Sciences (A.L.), Universidad Europea de Madrid; Instituto de Investigación Hospital 12 de Octubre (i+12) (A.L.), Madrid; and Division of Rare Diseases. University Hospital Vall d'Hebron (G.P.-M.), Barcelona, Spain
| | - Judit Núñez-Manchón
- Neuromuscular and Neuropediatric Research Group (A.B.-L., J.N.-M., E.K., I.L.-P., M.A., G.L., M.L.-O., A.S.-M., S.A.H., G.P.-M., J.C.-C., A.M.-P., A.R.-F., G.N.-G.), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (A.B.-L., G.P.-M., J.C.-C., G.N.-G.), Instituto de Salud Carlos III, Madrid; Neuromuscular Pathology Unit. Neurology Service. Neuroscience department (M.A., G.L., N.G., J.C.-C., A.M.-P., A.R.-F.), Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona; IrsiCaixa AIDS Research Institute (J.C.), Badalona, Spain; Faculty of Sport Sciences (A.L.), Universidad Europea de Madrid; Instituto de Investigación Hospital 12 de Octubre (i+12) (A.L.), Madrid; and Division of Rare Diseases. University Hospital Vall d'Hebron (G.P.-M.), Barcelona, Spain
| | - Emma Koehorst
- Neuromuscular and Neuropediatric Research Group (A.B.-L., J.N.-M., E.K., I.L.-P., M.A., G.L., M.L.-O., A.S.-M., S.A.H., G.P.-M., J.C.-C., A.M.-P., A.R.-F., G.N.-G.), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (A.B.-L., G.P.-M., J.C.-C., G.N.-G.), Instituto de Salud Carlos III, Madrid; Neuromuscular Pathology Unit. Neurology Service. Neuroscience department (M.A., G.L., N.G., J.C.-C., A.M.-P., A.R.-F.), Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona; IrsiCaixa AIDS Research Institute (J.C.), Badalona, Spain; Faculty of Sport Sciences (A.L.), Universidad Europea de Madrid; Instituto de Investigación Hospital 12 de Octubre (i+12) (A.L.), Madrid; and Division of Rare Diseases. University Hospital Vall d'Hebron (G.P.-M.), Barcelona, Spain
| | - Ian Linares-Pardo
- Neuromuscular and Neuropediatric Research Group (A.B.-L., J.N.-M., E.K., I.L.-P., M.A., G.L., M.L.-O., A.S.-M., S.A.H., G.P.-M., J.C.-C., A.M.-P., A.R.-F., G.N.-G.), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (A.B.-L., G.P.-M., J.C.-C., G.N.-G.), Instituto de Salud Carlos III, Madrid; Neuromuscular Pathology Unit. Neurology Service. Neuroscience department (M.A., G.L., N.G., J.C.-C., A.M.-P., A.R.-F.), Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona; IrsiCaixa AIDS Research Institute (J.C.), Badalona, Spain; Faculty of Sport Sciences (A.L.), Universidad Europea de Madrid; Instituto de Investigación Hospital 12 de Octubre (i+12) (A.L.), Madrid; and Division of Rare Diseases. University Hospital Vall d'Hebron (G.P.-M.), Barcelona, Spain
| | - Miriam Almendrote
- Neuromuscular and Neuropediatric Research Group (A.B.-L., J.N.-M., E.K., I.L.-P., M.A., G.L., M.L.-O., A.S.-M., S.A.H., G.P.-M., J.C.-C., A.M.-P., A.R.-F., G.N.-G.), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (A.B.-L., G.P.-M., J.C.-C., G.N.-G.), Instituto de Salud Carlos III, Madrid; Neuromuscular Pathology Unit. Neurology Service. Neuroscience department (M.A., G.L., N.G., J.C.-C., A.M.-P., A.R.-F.), Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona; IrsiCaixa AIDS Research Institute (J.C.), Badalona, Spain; Faculty of Sport Sciences (A.L.), Universidad Europea de Madrid; Instituto de Investigación Hospital 12 de Octubre (i+12) (A.L.), Madrid; and Division of Rare Diseases. University Hospital Vall d'Hebron (G.P.-M.), Barcelona, Spain
| | - Giuseppe Lucente
- Neuromuscular and Neuropediatric Research Group (A.B.-L., J.N.-M., E.K., I.L.-P., M.A., G.L., M.L.-O., A.S.-M., S.A.H., G.P.-M., J.C.-C., A.M.-P., A.R.-F., G.N.-G.), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (A.B.-L., G.P.-M., J.C.-C., G.N.-G.), Instituto de Salud Carlos III, Madrid; Neuromuscular Pathology Unit. Neurology Service. Neuroscience department (M.A., G.L., N.G., J.C.-C., A.M.-P., A.R.-F.), Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona; IrsiCaixa AIDS Research Institute (J.C.), Badalona, Spain; Faculty of Sport Sciences (A.L.), Universidad Europea de Madrid; Instituto de Investigación Hospital 12 de Octubre (i+12) (A.L.), Madrid; and Division of Rare Diseases. University Hospital Vall d'Hebron (G.P.-M.), Barcelona, Spain
| | - Nicolau Guanyabens
- Neuromuscular and Neuropediatric Research Group (A.B.-L., J.N.-M., E.K., I.L.-P., M.A., G.L., M.L.-O., A.S.-M., S.A.H., G.P.-M., J.C.-C., A.M.-P., A.R.-F., G.N.-G.), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (A.B.-L., G.P.-M., J.C.-C., G.N.-G.), Instituto de Salud Carlos III, Madrid; Neuromuscular Pathology Unit. Neurology Service. Neuroscience department (M.A., G.L., N.G., J.C.-C., A.M.-P., A.R.-F.), Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona; IrsiCaixa AIDS Research Institute (J.C.), Badalona, Spain; Faculty of Sport Sciences (A.L.), Universidad Europea de Madrid; Instituto de Investigación Hospital 12 de Octubre (i+12) (A.L.), Madrid; and Division of Rare Diseases. University Hospital Vall d'Hebron (G.P.-M.), Barcelona, Spain
| | - Marta Lopez-Osias
- Neuromuscular and Neuropediatric Research Group (A.B.-L., J.N.-M., E.K., I.L.-P., M.A., G.L., M.L.-O., A.S.-M., S.A.H., G.P.-M., J.C.-C., A.M.-P., A.R.-F., G.N.-G.), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (A.B.-L., G.P.-M., J.C.-C., G.N.-G.), Instituto de Salud Carlos III, Madrid; Neuromuscular Pathology Unit. Neurology Service. Neuroscience department (M.A., G.L., N.G., J.C.-C., A.M.-P., A.R.-F.), Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona; IrsiCaixa AIDS Research Institute (J.C.), Badalona, Spain; Faculty of Sport Sciences (A.L.), Universidad Europea de Madrid; Instituto de Investigación Hospital 12 de Octubre (i+12) (A.L.), Madrid; and Division of Rare Diseases. University Hospital Vall d'Hebron (G.P.-M.), Barcelona, Spain
| | - Adrián Suárez-Mesa
- Neuromuscular and Neuropediatric Research Group (A.B.-L., J.N.-M., E.K., I.L.-P., M.A., G.L., M.L.-O., A.S.-M., S.A.H., G.P.-M., J.C.-C., A.M.-P., A.R.-F., G.N.-G.), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (A.B.-L., G.P.-M., J.C.-C., G.N.-G.), Instituto de Salud Carlos III, Madrid; Neuromuscular Pathology Unit. Neurology Service. Neuroscience department (M.A., G.L., N.G., J.C.-C., A.M.-P., A.R.-F.), Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona; IrsiCaixa AIDS Research Institute (J.C.), Badalona, Spain; Faculty of Sport Sciences (A.L.), Universidad Europea de Madrid; Instituto de Investigación Hospital 12 de Octubre (i+12) (A.L.), Madrid; and Division of Rare Diseases. University Hospital Vall d'Hebron (G.P.-M.), Barcelona, Spain
| | - Shaliza Ann Hanick
- Neuromuscular and Neuropediatric Research Group (A.B.-L., J.N.-M., E.K., I.L.-P., M.A., G.L., M.L.-O., A.S.-M., S.A.H., G.P.-M., J.C.-C., A.M.-P., A.R.-F., G.N.-G.), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (A.B.-L., G.P.-M., J.C.-C., G.N.-G.), Instituto de Salud Carlos III, Madrid; Neuromuscular Pathology Unit. Neurology Service. Neuroscience department (M.A., G.L., N.G., J.C.-C., A.M.-P., A.R.-F.), Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona; IrsiCaixa AIDS Research Institute (J.C.), Badalona, Spain; Faculty of Sport Sciences (A.L.), Universidad Europea de Madrid; Instituto de Investigación Hospital 12 de Octubre (i+12) (A.L.), Madrid; and Division of Rare Diseases. University Hospital Vall d'Hebron (G.P.-M.), Barcelona, Spain
| | - Jakub Chojnacki
- Neuromuscular and Neuropediatric Research Group (A.B.-L., J.N.-M., E.K., I.L.-P., M.A., G.L., M.L.-O., A.S.-M., S.A.H., G.P.-M., J.C.-C., A.M.-P., A.R.-F., G.N.-G.), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (A.B.-L., G.P.-M., J.C.-C., G.N.-G.), Instituto de Salud Carlos III, Madrid; Neuromuscular Pathology Unit. Neurology Service. Neuroscience department (M.A., G.L., N.G., J.C.-C., A.M.-P., A.R.-F.), Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona; IrsiCaixa AIDS Research Institute (J.C.), Badalona, Spain; Faculty of Sport Sciences (A.L.), Universidad Europea de Madrid; Instituto de Investigación Hospital 12 de Octubre (i+12) (A.L.), Madrid; and Division of Rare Diseases. University Hospital Vall d'Hebron (G.P.-M.), Barcelona, Spain
| | - Alejandro Lucia
- Neuromuscular and Neuropediatric Research Group (A.B.-L., J.N.-M., E.K., I.L.-P., M.A., G.L., M.L.-O., A.S.-M., S.A.H., G.P.-M., J.C.-C., A.M.-P., A.R.-F., G.N.-G.), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (A.B.-L., G.P.-M., J.C.-C., G.N.-G.), Instituto de Salud Carlos III, Madrid; Neuromuscular Pathology Unit. Neurology Service. Neuroscience department (M.A., G.L., N.G., J.C.-C., A.M.-P., A.R.-F.), Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona; IrsiCaixa AIDS Research Institute (J.C.), Badalona, Spain; Faculty of Sport Sciences (A.L.), Universidad Europea de Madrid; Instituto de Investigación Hospital 12 de Octubre (i+12) (A.L.), Madrid; and Division of Rare Diseases. University Hospital Vall d'Hebron (G.P.-M.), Barcelona, Spain
| | - Guillem Pintos-Morell
- Neuromuscular and Neuropediatric Research Group (A.B.-L., J.N.-M., E.K., I.L.-P., M.A., G.L., M.L.-O., A.S.-M., S.A.H., G.P.-M., J.C.-C., A.M.-P., A.R.-F., G.N.-G.), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (A.B.-L., G.P.-M., J.C.-C., G.N.-G.), Instituto de Salud Carlos III, Madrid; Neuromuscular Pathology Unit. Neurology Service. Neuroscience department (M.A., G.L., N.G., J.C.-C., A.M.-P., A.R.-F.), Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona; IrsiCaixa AIDS Research Institute (J.C.), Badalona, Spain; Faculty of Sport Sciences (A.L.), Universidad Europea de Madrid; Instituto de Investigación Hospital 12 de Octubre (i+12) (A.L.), Madrid; and Division of Rare Diseases. University Hospital Vall d'Hebron (G.P.-M.), Barcelona, Spain
| | - Jaume Coll-Cantí
- Neuromuscular and Neuropediatric Research Group (A.B.-L., J.N.-M., E.K., I.L.-P., M.A., G.L., M.L.-O., A.S.-M., S.A.H., G.P.-M., J.C.-C., A.M.-P., A.R.-F., G.N.-G.), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (A.B.-L., G.P.-M., J.C.-C., G.N.-G.), Instituto de Salud Carlos III, Madrid; Neuromuscular Pathology Unit. Neurology Service. Neuroscience department (M.A., G.L., N.G., J.C.-C., A.M.-P., A.R.-F.), Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona; IrsiCaixa AIDS Research Institute (J.C.), Badalona, Spain; Faculty of Sport Sciences (A.L.), Universidad Europea de Madrid; Instituto de Investigación Hospital 12 de Octubre (i+12) (A.L.), Madrid; and Division of Rare Diseases. University Hospital Vall d'Hebron (G.P.-M.), Barcelona, Spain
| | - Alicia Martínez-Piñeiro
- Neuromuscular and Neuropediatric Research Group (A.B.-L., J.N.-M., E.K., I.L.-P., M.A., G.L., M.L.-O., A.S.-M., S.A.H., G.P.-M., J.C.-C., A.M.-P., A.R.-F., G.N.-G.), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (A.B.-L., G.P.-M., J.C.-C., G.N.-G.), Instituto de Salud Carlos III, Madrid; Neuromuscular Pathology Unit. Neurology Service. Neuroscience department (M.A., G.L., N.G., J.C.-C., A.M.-P., A.R.-F.), Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona; IrsiCaixa AIDS Research Institute (J.C.), Badalona, Spain; Faculty of Sport Sciences (A.L.), Universidad Europea de Madrid; Instituto de Investigación Hospital 12 de Octubre (i+12) (A.L.), Madrid; and Division of Rare Diseases. University Hospital Vall d'Hebron (G.P.-M.), Barcelona, Spain
| | - Alba Ramos-Fransi
- Neuromuscular and Neuropediatric Research Group (A.B.-L., J.N.-M., E.K., I.L.-P., M.A., G.L., M.L.-O., A.S.-M., S.A.H., G.P.-M., J.C.-C., A.M.-P., A.R.-F., G.N.-G.), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (A.B.-L., G.P.-M., J.C.-C., G.N.-G.), Instituto de Salud Carlos III, Madrid; Neuromuscular Pathology Unit. Neurology Service. Neuroscience department (M.A., G.L., N.G., J.C.-C., A.M.-P., A.R.-F.), Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona; IrsiCaixa AIDS Research Institute (J.C.), Badalona, Spain; Faculty of Sport Sciences (A.L.), Universidad Europea de Madrid; Instituto de Investigación Hospital 12 de Octubre (i+12) (A.L.), Madrid; and Division of Rare Diseases. University Hospital Vall d'Hebron (G.P.-M.), Barcelona, Spain
| | - Gisela Nogales-Gadea
- Neuromuscular and Neuropediatric Research Group (A.B.-L., J.N.-M., E.K., I.L.-P., M.A., G.L., M.L.-O., A.S.-M., S.A.H., G.P.-M., J.C.-C., A.M.-P., A.R.-F., G.N.-G.), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (A.B.-L., G.P.-M., J.C.-C., G.N.-G.), Instituto de Salud Carlos III, Madrid; Neuromuscular Pathology Unit. Neurology Service. Neuroscience department (M.A., G.L., N.G., J.C.-C., A.M.-P., A.R.-F.), Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona; IrsiCaixa AIDS Research Institute (J.C.), Badalona, Spain; Faculty of Sport Sciences (A.L.), Universidad Europea de Madrid; Instituto de Investigación Hospital 12 de Octubre (i+12) (A.L.), Madrid; and Division of Rare Diseases. University Hospital Vall d'Hebron (G.P.-M.), Barcelona, Spain
| |
Collapse
|
28
|
Nikonova E, Kao SY, Spletter ML. Contributions of alternative splicing to muscle type development and function. Semin Cell Dev Biol 2020; 104:65-80. [PMID: 32070639 DOI: 10.1016/j.semcdb.2020.02.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/30/2022]
Abstract
Animals possess a wide variety of muscle types that support different kinds of movements. Different muscles have distinct locations, morphologies and contractile properties, raising the question of how muscle diversity is generated during development. Normal aging processes and muscle disorders differentially affect particular muscle types, thus understanding how muscles normally develop and are maintained provides insight into alterations in disease and senescence. As muscle structure and basic developmental mechanisms are highly conserved, many important insights into disease mechanisms in humans as well as into basic principles of muscle development have come from model organisms such as Drosophila, zebrafish and mouse. While transcriptional regulation has been characterized to play an important role in myogenesis, there is a growing recognition of the contributions of alternative splicing to myogenesis and the refinement of muscle function. Here we review our current understanding of muscle type specific alternative splicing, using examples of isoforms with distinct functions from both vertebrates and Drosophila. Future exploration of the vast potential of alternative splicing to fine-tune muscle development and function will likely uncover novel mechanisms of isoform-specific regulation and a more holistic understanding of muscle development, disease and aging.
Collapse
Affiliation(s)
- Elena Nikonova
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany
| | - Shao-Yen Kao
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany
| | - Maria L Spletter
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany; Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
29
|
Wieben ED, Baratz KH, Aleff RA, Kalari KR, Tang X, Maguire LJ, Patel SV, Fautsch MP. Gene Expression and Missplicing in the Corneal Endothelium of Patients With a TCF4 Trinucleotide Repeat Expansion Without Fuchs' Endothelial Corneal Dystrophy. Invest Ophthalmol Vis Sci 2019; 60:3636-3643. [PMID: 31469403 PMCID: PMC6716950 DOI: 10.1167/iovs.19-27689] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/31/2019] [Indexed: 01/18/2023] Open
Abstract
Purpose CTG trinucleotide repeat (TNR) expansion in an intron of the TCF4 gene is the most common genetic variant associated with Fuchs' endothelial corneal dystrophy (FECD). Although several mechanisms have been implicated in the disease process, their exact pathophysiologic importance is unclear. To understand events leading from TCF4 TNR expansion to disease phenotype, we characterized splicing, gene expression, and exon sequence changes in a rare cohort of patients with TNR expansions but no phenotypic FECD (RE+/FECD-). Methods Corneal endothelium and blood were collected from patients undergoing endothelial keratoplasty for non-FECD corneal edema. Total RNA was isolated from corneal endothelial tissue (n = 3) and used for RNASeq. Gene splicing and expression was assessed by Mixture of Isoforms (MISO) and MAP-RSeq software. Genomic DNA was isolated from blood mononuclear cells and used for whole genome exome sequencing. Base calling was performed using Illumina's Real-Time Analysis. Results Three genes (MBNL1, KIF13A, AKAP13) that were previously identified as misspliced in patients with a CTG TNR expansion and FECD disease (RE+/FECD+) were found normally spliced in RE+/FECD- samples. Gene expression differences in pathways associated with the innate immune response, cell signaling (e.g., TGFβ, WNT), and cell senescence markers were also identified between RE+/FECD- and RE+/FECD+ groups. No consistent genetic variants were identified in RE+/FECD- patient exomes. Conclusions Identification of novel splicing patterns and differential gene expression in RE+/FECD- samples provides new insights and more relevant gene targets that may be protective against FECD disease in vulnerable patients with TCF4 CTG TNR expansions.
Collapse
Affiliation(s)
- Eric D. Wieben
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States
| | - Keith H. Baratz
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States
| | - Ross A. Aleff
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States
| | - Krishna R. Kalari
- Division of Biostatistics and Bioinformatics and Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States
| | - Xiaojia Tang
- Division of Biostatistics and Bioinformatics and Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States
| | - Leo J. Maguire
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States
| | - Sanjay V. Patel
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States
| | - Michael P. Fautsch
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
30
|
Wang ET, Treacy D, Eichinger K, Struck A, Estabrook J, Olafson H, Wang TT, Bhatt K, Westbrook T, Sedehizadeh S, Ward A, Day J, Brook D, Berglund JA, Cooper T, Housman D, Thornton C, Burge C. Transcriptome alterations in myotonic dystrophy skeletal muscle and heart. Hum Mol Genet 2019; 28:1312-1321. [PMID: 30561649 DOI: 10.1093/hmg/ddy432] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/30/2018] [Accepted: 12/10/2018] [Indexed: 11/12/2022] Open
Abstract
Myotonic dystrophy (dystrophia myotonica, DM) is a multi-systemic disease caused by expanded CTG or CCTG microsatellite repeats. Characterized by symptoms in muscle, heart and central nervous system, among others, it is one of the most variable diseases known. A major pathogenic event in DM is the sequestration of muscleblind-like proteins by CUG or CCUG repeat-containing RNAs transcribed from expanded repeats, and differences in the extent of MBNL sequestration dependent on repeat length and expression level may account for some portion of the variability. However, many other cellular pathways are reported to be perturbed in DM, and the severity of specific disease symptoms varies among individuals. To help understand this variability and facilitate research into DM, we generated 120 RNASeq transcriptomes from skeletal and heart muscle derived from healthy and DM1 biopsies and autopsies. A limited number of DM2 and Duchenne muscular dystrophy samples were also sequenced. We analyzed splicing and gene expression, identified tissue-specific changes in RNA processing and uncovered transcriptome changes strongly correlating with muscle strength. We created a web resource at http://DMseq.org that hosts raw and processed transcriptome data and provides a lightweight, responsive interface that enables browsing of processed data across the genome.
Collapse
Affiliation(s)
- Eric T Wang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Koch Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Molecular Genetics & Microbiology, University of Florida, Gainesville, FL, USA.,Center for NeuroGenetics, University of Florida, Gainesville, FL, USA.,University of Florida Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Daniel Treacy
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Katy Eichinger
- Department of Neurology, University of Rochester, Rochester, NY, USA
| | - Adam Struck
- Department of Biochemistry, University of Oregon, Eugene, OR, USA
| | - Joseph Estabrook
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Koch Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Molecular Genetics & Microbiology, University of Florida, Gainesville, FL, USA.,Center for NeuroGenetics, University of Florida, Gainesville, FL, USA.,University of Florida Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Hailey Olafson
- Department of Molecular Genetics & Microbiology, University of Florida, Gainesville, FL, USA.,Center for NeuroGenetics, University of Florida, Gainesville, FL, USA.,University of Florida Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Thomas T Wang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kirti Bhatt
- Department of Neurology, University of Rochester, Rochester, NY, USA
| | - Tony Westbrook
- School of Life Sciences, Queen's Medical Center, University of Nottingham, Nottingham, UK
| | - Sam Sedehizadeh
- School of Life Sciences, Queen's Medical Center, University of Nottingham, Nottingham, UK
| | - Amanda Ward
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - John Day
- Department of Neurology, Stanford University, Palo Alto, CA, USA
| | - David Brook
- School of Life Sciences, Queen's Medical Center, University of Nottingham, Nottingham, UK
| | - J Andrew Berglund
- Department of Molecular Genetics & Microbiology, University of Florida, Gainesville, FL, USA.,Center for NeuroGenetics, University of Florida, Gainesville, FL, USA.,University of Florida Genetics Institute, University of Florida, Gainesville, FL, USA.,Department of Biochemistry, University of Oregon, Eugene, OR, USA
| | - Thomas Cooper
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - David Housman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Koch Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Charles Thornton
- Department of Neurology, University of Rochester, Rochester, NY, USA
| | - Christopher Burge
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Koch Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
31
|
Nikonova E, Kao SY, Ravichandran K, Wittner A, Spletter ML. Conserved functions of RNA-binding proteins in muscle. Int J Biochem Cell Biol 2019; 110:29-49. [PMID: 30818081 DOI: 10.1016/j.biocel.2019.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 02/21/2019] [Accepted: 02/23/2019] [Indexed: 12/13/2022]
Abstract
Animals require different types of muscle for survival, for example for circulation, motility, reproduction and digestion. Much emphasis in the muscle field has been placed on understanding how transcriptional regulation generates diverse types of muscle during development. Recent work indicates that alternative splicing and RNA regulation are as critical to muscle development, and altered function of RNA-binding proteins causes muscle disease. Although hundreds of genes predicted to bind RNA are expressed in muscles, many fewer have been functionally characterized. We present a cross-species view summarizing what is known about RNA-binding protein function in muscle, from worms and flies to zebrafish, mice and humans. In particular, we focus on alternative splicing regulated by the CELF, MBNL and RBFOX families of proteins. We discuss the systemic nature of diseases associated with loss of RNA-binding proteins in muscle, focusing on mis-regulation of CELF and MBNL in myotonic dystrophy. These examples illustrate the conservation of RNA-binding protein function and the marked utility of genetic model systems in understanding mechanisms of RNA regulation.
Collapse
Affiliation(s)
- Elena Nikonova
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Shao-Yen Kao
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Keshika Ravichandran
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Anja Wittner
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Maria L Spletter
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany; Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
32
|
RNA-binding protein (RBFOX1) inherited polymorphism rs8051518 is not associated with splice factor mutations in myelodysplastic syndromes and myeloproliferative neoplasms. Ann Hematol 2018; 98:1297-1299. [PMID: 30159600 DOI: 10.1007/s00277-018-3478-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/13/2018] [Indexed: 10/28/2022]
|
33
|
Cywoniuk P, Taylor K, Sznajder ŁJ, Sobczak K. Hybrid splicing minigene and antisense oligonucleotides as efficient tools to determine functional protein/RNA interactions. Sci Rep 2017; 7:17587. [PMID: 29242583 PMCID: PMC5730568 DOI: 10.1038/s41598-017-17816-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/01/2017] [Indexed: 12/16/2022] Open
Abstract
Alternative splicing is a complex process that provides a high diversity of proteins from a limited number of protein-coding genes. It is governed by multiple regulatory factors, including RNA-binding proteins (RBPs), that bind to specific RNA sequences embedded in a specific structure. The ability to predict RNA-binding regions recognized by RBPs using whole-transcriptome approaches can deliver a multitude of data, including false-positive hits. Therefore, validation of the global results is indispensable. Here, we report the development of an efficient and rapid approach based on a modular hybrid minigene combined with antisense oligonucleotides to enable verification of functional RBP-binding sites within intronic and exonic sequences of regulated pre-mRNA. This approach also provides valuable information regarding the regulatory properties of pre-mRNA, including the RNA secondary structure context. We also show that the developed approach can be used to effectively identify or better characterize the inhibitory properties of potential therapeutic agents for myotonic dystrophy, which is caused by sequestration of specific RBPs, known as muscleblind-like proteins, by mutated RNA with expanded CUG repeats.
Collapse
Affiliation(s)
- Piotr Cywoniuk
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614, Poznan, Poland
| | - Katarzyna Taylor
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614, Poznan, Poland
| | - Łukasz J Sznajder
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614, Poznan, Poland.,Center for NeuroGenetics and the Genetics Institute, Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida,, Gainesville, Florida, 32610-3610, USA
| | - Krzysztof Sobczak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614, Poznan, Poland.
| |
Collapse
|
34
|
Abstract
Muscleblind-like (MBNL) proteins bind to hundreds of pre- and mature mRNAs to regulate their alternative splicing, alternative polyadenylation, stability and subcellular localization. Once MBNLs are withheld from transcript regulation, cellular machineries generate products inapt for precise embryonal/adult developmental tasks and myotonic dystrophy, a devastating multi-systemic genetic disorder, develops. We have recently demonstrated that all three MBNL paralogs are capable of fine-tuning cellular content of one of the three MBNL paralogs, MBNL1, by binding to the first coding exon (e1) of its pre-mRNA. Intriguingly, this autoregulatory feedback loop grounded on alternative splicing of e1 appears to play a crucial role in delaying the onset of myotonic dystrophy. Here, we describe this process in the context of other autoregulatory and regulatory loops that maintain the content and diverse functions of MBNL proteins at optimal level in health and disease, thus supporting the overall cellular homeostasis.
Collapse
Affiliation(s)
- Patryk Konieczny
- a Department of Gene Expression , Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University , Poland
| | - Ewa Stepniak-Konieczna
- a Department of Gene Expression , Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University , Poland
| | - Krzysztof Sobczak
- a Department of Gene Expression , Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University , Poland
| |
Collapse
|
35
|
Allen SE, Toro CP, Andrade A, López-Soto EJ, Denome S, Lipscombe D. Cell-Specific RNA Binding Protein Rbfox2 Regulates Ca V2.2 mRNA Exon Composition and Ca V2.2 Current Size. eNeuro 2017; 4:ENEURO.0332-16.2017. [PMID: 29067356 PMCID: PMC5633781 DOI: 10.1523/eneuro.0332-16.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 09/14/2017] [Accepted: 09/21/2017] [Indexed: 01/25/2023] Open
Abstract
The majority of multiexon mammalian genes contain alternatively spliced exons that have unique expression patterns in different cell populations and that have important cell functions. The expression profiles of alternative exons are controlled by cell-specific splicing factors that can promote exon inclusion or exon skipping but with few exceptions we do not know which specific splicing factors control the expression of alternatively spliced exons of known biological function. Many ion channel genes undergo extensive alternative splicing including Cacna1b that encodes the voltage-gated CaV2.2 α1 subunit. Alternatively spliced exon 18a in Cacna1b RNA encodes 21 amino acids in the II-III loop of CaV2.2, and its expression differs across the nervous system and over development. Genome-wide, protein-RNA binding analyses coupled to high-throughput RNA sequencing show that RNA binding Fox (Rbfox) proteins associate with CaV2.2 (Cacna1b) pre-mRNAs. Here, we link Rbfox2 to suppression of e18a. We show increased e18a inclusion in CaV2.2 mRNAs: (1) after siRNA knockdown of Rbfox2 in a neuronal cell line and (2) in RNA from sympathetic neurons of adult compared to early postnatal mice. By immunoprecipitation of Rbfox2-RNA complexes followed by qPCR, we demonstrate reduced Rbfox2 binding upstream of e18a in RNA from sympathetic neurons of adult compared to early postnatal mice. CaV2.2 currents in cell lines and in sympathetic neurons expressing only e18a-CaV2.2 are larger compared to currents from those expressing only Δ18a-CaV2.2. We conclude that Rbfox2 represses e18a inclusion during pre-mRNA splicing of CaV2.2, limiting the size of CaV2.2 currents early in development in certain neuronal populations.
Collapse
MESH Headings
- Action Potentials/genetics
- Animals
- Animals, Newborn
- Calcium Channels, N-Type/genetics
- Calcium Channels, N-Type/metabolism
- Cells, Cultured
- Exons/genetics
- Female
- Gene Expression Regulation, Developmental/genetics
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Models, Molecular
- Neurons/physiology
- RNA Splicing Factors/genetics
- RNA Splicing Factors/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Rats
- Superior Cervical Ganglion/cytology
Collapse
Affiliation(s)
- Summer E. Allen
- Department of Neuroscience, and the Brown Institute for Brain Science, Brown University, Providence, RI 02912
| | - Cecilia P. Toro
- Department of Biology, Linfield College, McMinnville, OR 97128
| | - Arturo Andrade
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824
| | - Eduardo J. López-Soto
- Department of Neuroscience, and the Brown Institute for Brain Science, Brown University, Providence, RI 02912
| | - Sylvia Denome
- Department of Neuroscience, and the Brown Institute for Brain Science, Brown University, Providence, RI 02912
| | - Diane Lipscombe
- Department of Neuroscience, and the Brown Institute for Brain Science, Brown University, Providence, RI 02912
| |
Collapse
|
36
|
Jauvin D, Chrétien J, Pandey SK, Martineau L, Revillod L, Bassez G, Lachon A, MacLeod AR, Gourdon G, Wheeler TM, Thornton CA, Bennett CF, Puymirat J. Targeting DMPK with Antisense Oligonucleotide Improves Muscle Strength in Myotonic Dystrophy Type 1 Mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2017. [PMID: 28624222 PMCID: PMC5453865 DOI: 10.1016/j.omtn.2017.05.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Myotonic dystrophy type 1 (DM1), a dominant hereditary muscular dystrophy, is caused by an abnormal expansion of a (CTG)n trinucleotide repeat in the 3′ UTR of the human dystrophia myotonica protein kinase (DMPK) gene. As a consequence, mutant transcripts containing expanded CUG repeats are retained in nuclear foci and alter the function of splicing regulatory factors members of the MBNL and CELF families, resulting in alternative splicing misregulation of specific transcripts in affected DM1 tissues. In the present study, we treated DMSXL mice systemically with a 2′-4′-constrained, ethyl-modified (ISIS 486178) antisense oligonucleotide (ASO) targeted to the 3′ UTR of the DMPK gene, which led to a 70% reduction in CUGexp RNA abundance and foci in different skeletal muscles and a 30% reduction in the heart. Furthermore, treatment with ISIS 486178 ASO improved body weight, muscle strength, and muscle histology, whereas no overt toxicity was detected. This is evidence that the reduction of CUGexp RNA improves muscle strength in DM1, suggesting that muscle weakness in DM1 patients may be improved following elimination of toxic RNAs.
Collapse
Affiliation(s)
- Dominic Jauvin
- Laval University Experimental Organogenesis Center/LOEX, Enfant-Jésus Hospital, Québec, QC G1J 1Z4, Canada
| | - Jessina Chrétien
- Laval University Experimental Organogenesis Center/LOEX, Enfant-Jésus Hospital, Québec, QC G1J 1Z4, Canada
| | - Sanjay K Pandey
- Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, USA; Triangulum Biopharma, San Diego, CA 92121, USA
| | - Laurie Martineau
- Laval University Experimental Organogenesis Center/LOEX, Enfant-Jésus Hospital, Québec, QC G1J 1Z4, Canada
| | - Lucille Revillod
- INSERM U955, Neuromuscular Reference Center, Henri-Mondor Hospital, Créteil 94000, France
| | - Guillaume Bassez
- INSERM U955, Neuromuscular Reference Center, Henri-Mondor Hospital, Créteil 94000, France
| | - Aline Lachon
- INSERM U781, Imagine Institute, Paris 75015, France
| | | | | | | | | | | | - Jack Puymirat
- Laval University Experimental Organogenesis Center/LOEX, Enfant-Jésus Hospital, Québec, QC G1J 1Z4, Canada; Department of Neurological Sciences CHU de Québec-Laval University, Enfant-Jésus Hospital, Québec, QC G1J 1Z4, Canada.
| |
Collapse
|
37
|
Gazzara MR, Mallory MJ, Roytenberg R, Lindberg JP, Jha A, Lynch KW, Barash Y. Ancient antagonism between CELF and RBFOX families tunes mRNA splicing outcomes. Genome Res 2017; 27:1360-1370. [PMID: 28512194 PMCID: PMC5538552 DOI: 10.1101/gr.220517.117] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/08/2017] [Indexed: 12/11/2022]
Abstract
Over 95% of human multi-exon genes undergo alternative splicing, a process important in normal development and often dysregulated in disease. We sought to analyze the global splicing regulatory network of CELF2 in human T cells, a well-studied splicing regulator critical to T cell development and function. By integrating high-throughput sequencing data for binding and splicing quantification with sequence features and probabilistic splicing code models, we find evidence of splicing antagonism between CELF2 and the RBFOX family of splicing factors. We validate this functional antagonism through knockdown and overexpression experiments in human cells and find CELF2 represses RBFOX2 mRNA and protein levels. Because both families of proteins have been implicated in the development and maintenance of neuronal, muscle, and heart tissues, we analyzed publicly available data in these systems. Our analysis suggests global, antagonistic coregulation of splicing by the CELF and RBFOX proteins in mouse muscle and heart in several physiologically relevant targets, including proteins involved in calcium signaling and members of the MEF2 family of transcription factors. Importantly, a number of these coregulated events are aberrantly spliced in mouse models and human patients with diseases that affect these tissues, including heart failure, diabetes, or myotonic dystrophy. Finally, analysis of exons regulated by ancient CELF family homologs in chicken, Drosophila, and Caenorhabditis elegans suggests this antagonism is conserved throughout evolution.
Collapse
Affiliation(s)
- Matthew R Gazzara
- Department of Genetics.,Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Michael J Mallory
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Renat Roytenberg
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - John P Lindberg
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Anupama Jha
- Department of Computer and Information Science, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Kristen W Lynch
- Department of Genetics.,Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yoseph Barash
- Department of Genetics.,Department of Computer and Information Science, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
38
|
Gallego-Paez LM, Bordone MC, Leote AC, Saraiva-Agostinho N, Ascensão-Ferreira M, Barbosa-Morais NL. Alternative splicing: the pledge, the turn, and the prestige : The key role of alternative splicing in human biological systems. Hum Genet 2017; 136:1015-1042. [PMID: 28374191 PMCID: PMC5602094 DOI: 10.1007/s00439-017-1790-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/25/2017] [Indexed: 02/06/2023]
Abstract
Alternative pre-mRNA splicing is a tightly controlled process conducted by the spliceosome, with the assistance of several regulators, resulting in the expression of different transcript isoforms from the same gene and increasing both transcriptome and proteome complexity. The differences between alternative isoforms may be subtle but enough to change the function or localization of the translated proteins. A fine control of the isoform balance is, therefore, needed throughout developmental stages and adult tissues or physiological conditions and it does not come as a surprise that several diseases are caused by its deregulation. In this review, we aim to bring the splicing machinery on stage and raise the curtain on its mechanisms and regulation throughout several systems and tissues of the human body, from neurodevelopment to the interactions with the human microbiome. We discuss, on one hand, the essential role of alternative splicing in assuring tissue function, diversity, and swiftness of response in these systems or tissues, and on the other hand, what goes wrong when its regulatory mechanisms fail. We also focus on the possibilities that splicing modulation therapies open for the future of personalized medicine, along with the leading techniques in this field. The final act of the spliceosome, however, is yet to be fully revealed, as more knowledge is needed regarding the complex regulatory network that coordinates alternative splicing and how its dysfunction leads to disease.
Collapse
Affiliation(s)
- L M Gallego-Paez
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - M C Bordone
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - A C Leote
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - N Saraiva-Agostinho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - M Ascensão-Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - N L Barbosa-Morais
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
39
|
Conboy JG. Developmental regulation of RNA processing by Rbfox proteins. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27748060 DOI: 10.1002/wrna.1398] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/17/2016] [Accepted: 08/27/2016] [Indexed: 12/15/2022]
Abstract
The Rbfox genes encode an ancient family of sequence-specific RNA binding proteins (RBPs) that are critical developmental regulators in multiple tissues including skeletal muscle, cardiac muscle, and brain. The hallmark of Rbfox proteins is a single high-affinity RRM domain, highly conserved from insects to humans, that binds preferentially to UGCAUG motifs at diverse regulatory sites in pre-mRNA introns, mRNA 3'UTRs, and pre-miRNAs hairpin structures. Versatile regulatory circuits operate on Rbfox pre-mRNA and mRNA to ensure proper expression of Rbfox1 protein isoforms, which then act on the broader transcriptome to regulate alternative splicing networks, mRNA stability and translation, and microRNA processing. Complex Rbfox expression is encoded in large genes encompassing multiple promoters and alternative splicing options that govern spatiotemporal expression of structurally distinct and tissue-specific protein isoforms with different classes of RNA targets. Nuclear Rbfox1 is a candidate master regulator that binds intronic UGCAUG elements to impact splicing efficiency of target alternative exons, many in transcripts for other splicing regulators. Tissue-specificity of Rbfox-mediated alternative splicing is executed by combinatorial regulation through the integrated activity of Rbfox proteins and synergistic or antagonistic splicing factors. Studies in animal models show that Rbfox1-related genes are critical for diverse developmental processes including germ cell differentiation and memory in Drosophila, neuronal migration and function in mouse brain, myoblast fusion and skeletal muscle function, and normal heart function. Finally, genetic and biochemical evidence suggest that aberrations in Rbfox-regulated circuitry are risk factors for multiple human disorders, especially neurodevelopmental disorders including epilepsy and autism, and cardiac hypertrophy. WIREs RNA 2017, 8:e1398. doi: 10.1002/wrna.1398 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- John G Conboy
- Biological Systems and Engineering Division Lawrence Berkeley National Laboratory Berkeley, CA 94720, USA
| |
Collapse
|
40
|
Bondy-Chorney E, Crawford Parks TE, Ravel-Chapuis A, Jasmin BJ, Côté J. Staufen1s role as a splicing factor and a disease modifier in Myotonic Dystrophy Type I. Rare Dis 2016; 4:e1225644. [PMID: 27695661 PMCID: PMC5027583 DOI: 10.1080/21675511.2016.1225644] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/23/2016] [Accepted: 08/11/2016] [Indexed: 12/19/2022] Open
Abstract
In a recent issue of PLOS Genetics, we reported that the double-stranded RNA-binding protein, Staufen1, functions as a disease modifier in the neuromuscular disorder Myotonic Dystrophy Type I (DM1). In this work, we demonstrated that Staufen1 regulates the alternative splicing of exon 11 of the human Insulin Receptor, a highly studied missplicing event in DM1, through Alu elements located in an intronic region. Furthermore, we found that Staufen1 overexpression regulates numerous alternative splicing events, potentially resulting in both positive and negative effects in DM1. Here, we discuss our major findings and speculate on the details of the mechanisms by which Staufen1 could regulate alternative splicing, in both normal and DM1 conditions. Finally, we highlight the importance of disease modifiers, such as Staufen1, in the DM1 pathology in order to understand the complex disease phenotype and for future development of new therapeutic strategies.
Collapse
Affiliation(s)
- Emma Bondy-Chorney
- Department of Cellular and Molecular Medicine, University of Ottawa, Center for Neuromuscular Disease , Ottawa, Ontario, Canada
| | - Tara E Crawford Parks
- Department of Cellular and Molecular Medicine, University of Ottawa, Center for Neuromuscular Disease , Ottawa, Ontario, Canada
| | - Aymeric Ravel-Chapuis
- Department of Cellular and Molecular Medicine, University of Ottawa, Center for Neuromuscular Disease , Ottawa, Ontario, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, University of Ottawa, Center for Neuromuscular Disease , Ottawa, Ontario, Canada
| | - Jocelyn Côté
- Department of Cellular and Molecular Medicine, University of Ottawa, Center for Neuromuscular Disease , Ottawa, Ontario, Canada
| |
Collapse
|
41
|
Bondy-Chorney E, Crawford Parks TE, Ravel-Chapuis A, Klinck R, Rocheleau L, Pelchat M, Chabot B, Jasmin BJ, Côté J. Staufen1 Regulates Multiple Alternative Splicing Events either Positively or Negatively in DM1 Indicating Its Role as a Disease Modifier. PLoS Genet 2016; 12:e1005827. [PMID: 26824521 PMCID: PMC4733145 DOI: 10.1371/journal.pgen.1005827] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/05/2016] [Indexed: 01/10/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a neuromuscular disorder caused by an expansion of CUG repeats in the 3' UTR of the DMPK gene. The CUG repeats form aggregates of mutant mRNA, which cause misregulation and/or sequestration of RNA-binding proteins, causing aberrant alternative splicing in cells. Previously, we showed that the multi-functional RNA-binding protein Staufen1 (Stau1) was increased in skeletal muscle of DM1 mouse models and patients. We also showed that Stau1 rescues the alternative splicing profile of pre-mRNAs, e.g. the INSR and CLC1, known to be aberrantly spliced in DM1. In order to explore further the potential of Stau1 as a therapeutic target for DM1, we first investigated the mechanism by which Stau1 regulates pre-mRNA alternative splicing. We report here that Stau1 regulates the alternative splicing of exon 11 of the human INSR via binding to Alu elements located in intron 10. Additionally, using a high-throughput RT-PCR screen, we have identified numerous Stau1-regulated alternative splicing events in both WT and DM1 myoblasts. A number of these aberrant ASEs in DM1, including INSR exon 11, are rescued by overexpression of Stau1. However, we find other ASEs in DM1 cells, where overexpression of Stau1 shifts the splicing patterns away from WT conditions. Moreover, we uncovered that Stau1-regulated ASEs harbour Alu elements in intronic regions flanking the alternative exon more than non-Stau1 targets. Taken together, these data highlight the broad impact of Stau1 as a splicing regulator and suggest that Stau1 may act as a disease modifier in DM1.
Collapse
Affiliation(s)
- Emma Bondy-Chorney
- Department of Cellular and Molecular Medicine, University of Ottawa; Centre for Neuromuscular Disease, Ottawa, Ontario, Canada
| | - Tara E. Crawford Parks
- Department of Cellular and Molecular Medicine, University of Ottawa; Centre for Neuromuscular Disease, Ottawa, Ontario, Canada
| | - Aymeric Ravel-Chapuis
- Department of Cellular and Molecular Medicine, University of Ottawa; Centre for Neuromuscular Disease, Ottawa, Ontario, Canada
| | - Roscoe Klinck
- Département de microbiologie et d'infectiologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Lynda Rocheleau
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Martin Pelchat
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Benoit Chabot
- Département de microbiologie et d'infectiologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Bernard J. Jasmin
- Department of Cellular and Molecular Medicine, University of Ottawa; Centre for Neuromuscular Disease, Ottawa, Ontario, Canada
| | - Jocelyn Côté
- Department of Cellular and Molecular Medicine, University of Ottawa; Centre for Neuromuscular Disease, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
42
|
Cho CH, Lee YS, Kim E, Hwang EM, Park JY. Physiological functions of the TRPM4 channels via protein interactions. BMB Rep 2015; 48:1-5. [PMID: 25441424 PMCID: PMC4345635 DOI: 10.5483/bmbrep.2015.48.1.252] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Indexed: 11/23/2022] Open
Abstract
Transient Receptor Potential, Melastatin-related, member 4 (TRPM4) channels are Ca2+-activated Ca2+-impermeable cation channels. These channels are expressed in various types of mammalian tissues including the brain and are implicated in many diverse physiological and pathophysiological conditions. In the past several years, the trafficking processes and regulatory mechanism of these channels and their interacting proteins have been uncovered. Here in this minireview, we summarize the current understanding of the trafficking mechanism of TRPM4 channels on the plasma membrane as well as heteromeric complex formation via protein interactions. We also describe physiological implications of protein-TRPM4 interactions and suggest TRPM4 channels as therapeutic targets in many related diseases. [BMB Reports 2015; 48(1): 1-5]
Collapse
Affiliation(s)
- Chang-Hoon Cho
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul 136-703, Korea
| | - Young-Sun Lee
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 136-791; Department of Physiology, Institute of Health Science and Medical Research Center for Neural Dysfunction, Gyeongsang National University School of Medicine, Jinju 660-751, Korea
| | - Eunju Kim
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul 136-703; Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 136-791, Korea
| | - Eun Mi Hwang
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 136-791; Neuroscience Program, University of Science and Technology (UST), Daejeon 305-350, Korea
| | - Jae-Yong Park
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul 136-703, Korea
| |
Collapse
|
43
|
Du J, Aleff RA, Soragni E, Kalari K, Nie J, Tang X, Davila J, Kocher JP, Patel SV, Gottesfeld JM, Baratz KH, Wieben ED. RNA toxicity and missplicing in the common eye disease fuchs endothelial corneal dystrophy. J Biol Chem 2015; 290:5979-90. [PMID: 25593321 PMCID: PMC4358235 DOI: 10.1074/jbc.m114.621607] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Fuchs endothelial corneal dystrophy (FECD) is an inherited degenerative disease that affects the internal endothelial cell monolayer of the cornea and can result in corneal edema and vision loss in severe cases. FECD affects ∼5% of middle-aged Caucasians in the United States and accounts for >14,000 corneal transplantations annually. Among the several genes and loci associated with FECD, the strongest association is with an intronic (CTG·CAG)n trinucleotide repeat expansion in the TCF4 gene, which is found in the majority of affected patients. Corneal endothelial cells from FECD patients harbor a poly(CUG)n RNA that can be visualized as RNA foci containing this condensed RNA and associated proteins. Similar to myotonic dystrophy type 1, the poly(CUG)n RNA co-localizes with and sequesters the mRNA-splicing factor MBNL1, leading to missplicing of essential MBNL1-regulated mRNAs. Such foci and missplicing are not observed in similar cells from FECD patients who lack the repeat expansion. RNA-Seq splicing data from the corneal endothelia of FECD patients and controls reveal hundreds of differential alternative splicing events. These include events previously characterized in the context of myotonic dystrophy type 1 and epithelial-to-mesenchymal transition, as well as splicing changes in genes related to proposed mechanisms of FECD pathogenesis. We report the first instance of RNA toxicity and missplicing in a common non-neurological/neuromuscular disease associated with a repeat expansion. The FECD patient population with this (CTG·CAG)n trinucleotide repeat expansion exceeds that of the combined number of patients in all other microsatellite expansion disorders.
Collapse
Affiliation(s)
- Jintang Du
- From the Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037 and
| | - Ross A Aleff
- the Departments of Biochemistry and Molecular Biology
| | - Elisabetta Soragni
- From the Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037 and
| | | | | | | | | | | | | | - Joel M Gottesfeld
- From the Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037 and
| | | | - Eric D Wieben
- the Departments of Biochemistry and Molecular Biology,
| |
Collapse
|
44
|
Pedrotti S, Giudice J, Dagnino-Acosta A, Knoblauch M, Singh RK, Hanna A, Mo Q, Hicks J, Hamilton S, Cooper TA. The RNA-binding protein Rbfox1 regulates splicing required for skeletal muscle structure and function. Hum Mol Genet 2015; 24:2360-74. [PMID: 25575511 DOI: 10.1093/hmg/ddv003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The Rbfox family of RNA-binding proteins is highly conserved with established roles in alternative splicing (AS) regulation. High-throughput studies aimed at understanding transcriptome remodeling have revealed skeletal muscle as displaying one of the largest number of AS events. This finding is consistent with requirements for tissue-specific protein isoforms needed to sustain muscle-specific functions. Rbfox1 is abundant in vertebrate brain, heart and skeletal muscle. Genome-wide genetic approaches have linked the Rbfox1 gene to autism, and a brain-specific knockout mouse revealed a critical role for this splicing regulator in neuronal function. Moreover, a Caenorhabditis elegans Rbfox1 homolog regulates muscle-specific splicing. To determine the role of Rbfox1 in muscle function, we developed a conditional knockout mouse model to specifically delete Rbfox1 in adult tissue. We show that Rbfox1 is required for muscle function but a >70% loss of Rbfox1 in satellite cells does not disrupt muscle regeneration. Deep sequencing identified aberrant splicing of multiple genes including those encoding myofibrillar and cytoskeletal proteins, and proteins that regulate calcium handling. Ultrastructure analysis of Rbfox1(-/-) muscle by electron microscopy revealed abundant tubular aggregates. Immunostaining showed mislocalization of the sarcoplasmic reticulum proteins Serca1 and Ryr1 in a pattern indicative of colocalization with the tubular aggregates. Consistent with mislocalization of Serca1 and Ryr1, calcium handling was drastically altered in Rbfox1(-/-) muscle. Moreover, muscle function was significantly impaired in Rbfox1(-/-) muscle as indicated by decreased force generation. These results demonstrate that Rbfox1 regulates a network of AS events required to maintain multiple aspects of muscle physiology.
Collapse
Affiliation(s)
| | | | | | | | | | - Amy Hanna
- Department of Molecular Physiology and Biophysics
| | - Qianxing Mo
- Dan L. Duncan Cancer Center, Department of Medicine
| | - John Hicks
- Department of Pathology and Immunology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA and Texas Children's Hospital, Houston, TX 77030, USA
| | | | - Thomas A Cooper
- Department of Pathology and Immunology, Department of Molecular and Cellular Biology, Department of Molecular Physiology and Biophysics,
| |
Collapse
|