1
|
Yousefi Avarvand A, Meshkat Z, Khademi F, Aryan E, Sankian M, Tafaghodi M. Enhancement of the immunogenicity of a Mycobacterium tuberculosis fusion protein using ISCOMATRIX and PLUSCOM nano-adjuvants as prophylactic vaccine after nasal administration in mice. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:24-30. [PMID: 38164481 PMCID: PMC10722485 DOI: 10.22038/ijbms.2023.69295.15100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 08/05/2023] [Indexed: 01/03/2024]
Abstract
Objectives Tuberculosis (TB), a contagious disease caused by Mycobacterium tuberculosis (M. tuberculosis), remains a health problem worldwide and this infection has the highest mortality rate among bacterial infections. Current studies suggest that intranasal administration of new TB vaccines could enhance the immunogenicity of M. tuberculosis antigens. Hence, we aim to evaluate the protective efficacy and immunogenicity of HspX/EsxS fusion protein of M. tuberculosis along with ISCOMATRIX and PLUSCOM nano-adjuvants and MPLA through intranasal administration in a mice model. Materials and Methods In the present study, the recombinant fusion protein was expressed in Escherichia coli and purified and used to prepare different nanoparticle formulations in combination with ISCOMATRIX and PLUSCOM nano-adjuvants and MPLA. Mice were intranasally vaccinated with each formulation three times at an interval of 2 weeks. Three weeks after the final vaccination, IFN-γ, IL-4. IL-17, and TGF-β concentrations in the supernatant of cultured splenocytes of vaccinated mice as well as serum titers of IgG1 and IgG2a and sIgA titers in nasal lavage were determined. Results According to obtained results, intranasally vaccinated mice with formulations containing ISCOMATRIX and PLUSCOM nano-adjuvants and MPLA could effectively induce IFN-γ and sIgA responses. Moreover, both HspX/EsxS/ISCOMATRIX/MPLA and HspX/EsxS/PLUSCOM/MPLA and their BCG booster formulation could strongly stimulate the immune system and enhance the immunogenicity of M. tuberculosis antigens. Conclusion The results demonstrate the potential of HspX/EsxS-fused protein in combination with ISCOMATRIX, PLUSCOM, and MPLA after nasal administration in enhancing the immune response against M. tuberculosis antigens. Both nanoparticles were good adjuvants in order to promote the immunogenicity of TB-fused antigens. So, nasal immunization with these formulations, could induce immune responses and be considered a new TB vaccine or a BCG booster.
Collapse
Affiliation(s)
- Arshid Yousefi Avarvand
- Department of Laboratory Sciences, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Meshkat
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Bacteriology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzad Khademi
- Department of Microbiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ehsan Aryan
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Bacteriology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Sankian
- Immunobiochemistry laboratory, Immunology Research Center, Bu-Ali Research Institute, Mashhad, Iran
| | - Mohsen Tafaghodi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad Iran
| |
Collapse
|
2
|
Kim H, Choi HG, Shin SJ. Bridging the gaps to overcome major hurdles in the development of next-generation tuberculosis vaccines. Front Immunol 2023; 14:1193058. [PMID: 37638056 PMCID: PMC10451085 DOI: 10.3389/fimmu.2023.1193058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
Although tuberculosis (TB) remains one of the leading causes of death from an infectious disease worldwide, the development of vaccines more effective than bacille Calmette-Guérin (BCG), the only licensed TB vaccine, has progressed slowly even in the context of the tremendous global impact of TB. Most vaccine candidates have been developed to strongly induce interferon-γ (IFN-γ)-producing T-helper type 1 (Th1) cell responses; however, accumulating evidence has suggested that other immune factors are required for optimal protection against Mycobacterium tuberculosis (Mtb) infection. In this review, we briefly describe the five hurdles that must be overcome to develop more effective TB vaccines, including those with various purposes and tested in recent promising clinical trials. In addition, we discuss the current knowledge gaps between preclinical experiments and clinical studies regarding peripheral versus tissue-specific immune responses, different underlying conditions of individuals, and newly emerging immune correlates of protection. Moreover, we propose how recently discovered TB risk or susceptibility factors can be better utilized as novel biomarkers for the evaluation of vaccine-induced protection to suggest more practical ways to develop advanced TB vaccines. Vaccines are the most effective tools for reducing mortality and morbidity from infectious diseases, and more advanced technologies and a greater understanding of host-pathogen interactions will provide feasibility and rationale for novel vaccine design and development.
Collapse
Affiliation(s)
- Hongmin Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Han-Gyu Choi
- Department of Microbiology and Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
3
|
Srivastava S, Dey S, Mukhopadhyay S. Vaccines against Tuberculosis: Where Are We Now? Vaccines (Basel) 2023; 11:vaccines11051013. [PMID: 37243117 DOI: 10.3390/vaccines11051013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Tuberculosis (TB) is among the top 10 leading causes of death in low-income countries. Statistically, TB kills more than 30,000 people each week and leads to more deaths than any other infectious disease, such as acquired immunodeficiency syndrome (AIDS) and malaria. TB treatment is largely dependent on BCG vaccination and impacted by the inefficacy of drugs, absence of advanced vaccines, misdiagnosis improper treatment, and social stigma. The BCG vaccine provides partial effectiveness in demographically distinct populations and the prevalence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) TB incidences demands the design of novel TB vaccines. Various strategies have been employed to design vaccines against TB, such as: (a) The protein subunit vaccine; (b) The viral vector vaccine; (c) The inactivation of whole-cell vaccine, using related mycobacteria, (d) Recombinant BCG (rBCG) expressing Mycobacterium tuberculosis (M.tb) protein or some non-essential gene deleted BCG. There are, approximately, 19 vaccine candidates in different phases of clinical trials. In this article, we review the development of TB vaccines, their status and potential in the treatment of TB. Heterologous immune responses generated by advanced vaccines will contribute to long-lasting immunity and might protect us from both drug-sensitive and drug-resistant TB. Therefore, advanced vaccine candidates need to be identified and developed to boost the human immune system against TB.
Collapse
Affiliation(s)
- Shruti Srivastava
- Research and Development Office, Ashoka University, Rajiv Gandhi Education City, Sonipat 131029, Haryana, India
| | - Sajal Dey
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad 500039, Telangana, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sangita Mukhopadhyay
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad 500039, Telangana, India
| |
Collapse
|
4
|
Pereira MMR, de Oliveira FM, da Costa AC, Junqueira-Kipnis AP, Kipnis A. Ferritin from Mycobacterium abscessus is involved in resistance to antibiotics and oxidative stress. Appl Microbiol Biotechnol 2023; 107:2577-2595. [PMID: 36862179 DOI: 10.1007/s00253-023-12420-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/22/2023] [Accepted: 01/30/2023] [Indexed: 03/03/2023]
Abstract
Mycobacterium abscessus subsp. massiliense (Mycma) is a rapidly growing Mycobacterium belonging to the M. abscessus complex that is often associated with lung and soft tissue infection outbreaks. Mycma is resistant to many antimicrobials, including those used for treating tuberculosis. Therefore, Mycma infections are difficult to treat and may lead to high infectious complication rates. Iron is essential for bacterial growth and establishment of infection. During infection, the host reduces iron concentrations as a defense mechanism. To counteract the host-induced iron deficiency, Mycma produces siderophores to capture iron. Mycma has two ferritins (encoded by mycma_0076 and mycma_0077) modulated by different iron concentrations, which allow the survival of this pathogen during iron scarcity. In this study, we constructed knockout (Mycma 0076KO) and complemented (Mycma 0076KOc) gene strains for mycma_0076 to understand the function of 0076 ferritin. Deletion of mycma_0076 in Mycma led to the transition in colony morphology from smooth to rough, alteration of the glycopeptidolipids spectra, increased permeability of the envelope, reduction in biofilm formation, increased susceptibility to antimicrobials and hydrogen peroxide-induced oxidative stress, and decreased internalization by macrophages. This study shows that Mycma_0076 ferritin in Mycma is involved in resistance to oxidative stress and antimicrobials, and alteration of cell envelope architecture. KEY POINTS: • Deletion of the mycma_0076 gene altered colony morphology to rough; • Mycma 0076KO changed GPL profile; • Absence of Mycma_0076 ferritin results in increased susceptibility to antimicrobials and oxidative stress in Mycma. Legend: a In wild-type M. abscessus subsp. massiliense strain, iron is captured from the environment by carboxymycobactins and mycobactins (1). Iron-dependent regulator (IdeR) proteins bind to ferrous iron (Fe+2) in the bacterial cytoplasm leading to the activation of the IdeR-Fe+2 complex (2). The activated complex binds to the promoter regions of iron-dependent genes, called iron box, which in turn help in the recruitment of RNA polymerase to promote transcription of genes such as mycma_0076 and mycma_0077 ferritin genes (3). Mycma_0076 and Mycma_0077 ferritins bind to excess iron in the medium and promote Fe2+ oxidation into ferric iron (Fe3+) and store iron molecules to be released under iron scarcity conditions. (4) Genes related to biosynthesis and transport of glycopeptidolipids (GPL) are expressed normally and the cell envelope is composed of different GPL species (colored squares represented on the cell surface (GPLs). Consequently, WT Mycma present smooth colony phenotype (5). b In Mycma 0076KO strain, the lack of ferritin 0076 causes overexpression of mycma_0077 (6), but does not restore wild-type iron homeostasis and thus may result in free intracellular iron, even in the presence of miniferritins (MaDps). The excess iron potentiates oxidative stress (7) by generating hydroxyl radicals through Fenton Reaction. During this process, through an unknown mechanism, that could involve Lsr2 (8), the expression of GPL synthesis locus is regulated positively and/or negatively, resulting in alteration of GPL composition in the membrane (as represented by different colors of squares on the cell surface), resulting in a rough colony phenotype (9). The changes of GPL can increase cell wall permeability, contributing to antimicrobial susceptibility (10).
Collapse
Affiliation(s)
- Maria Micaella Rodrigues Pereira
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
- Tropical Medicine and Public Health Graduate Program at Federal, University of Goiás, Goiânia, GO, Brazil
| | - Fábio Muniz de Oliveira
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
- Tropical Medicine and Public Health Graduate Program at Federal, University of Goiás, Goiânia, GO, Brazil
- Indiana Center for Regenerative Medicine and Engineering, School of Medicine, Indiana University, Indianapolis, IN, USA
| | | | | | - André Kipnis
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
5
|
dos Santos CC, Walburg KV, van Veen S, Wilson LG, Trufen CEM, Nascimento IP, Ottenhoff THM, Leite LCC, Haks MC. Recombinant BCG-LTAK63 Vaccine Candidate for Tuberculosis Induces an Inflammatory Profile in Human Macrophages. Vaccines (Basel) 2022; 10:vaccines10060831. [PMID: 35746439 PMCID: PMC9227035 DOI: 10.3390/vaccines10060831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/29/2022] Open
Abstract
Tuberculosis (TB) is one of the top 10 leading causes of death worldwide. The recombinant BCG strain expressing the genetically detoxified A subunit of the thermolabile toxin from Escherichia coli (LTAK63) adjuvant (rBCG-LTAK63) has previously been shown to confer superior protection and immunogenicity compared to BCG in a murine TB infection model. To further investigate the immunological mechanisms induced by rBCG-LTAK63, we evaluated the immune responses induced by rBCG-LTAK63, BCG, and Mycobacterium tuberculosis (Mtb) H37Rv strains in experimental infections of primary human M1 and M2 macrophages at the transcriptomic and cytokine secretion levels. The rBCG-LTAK63-infected M1 macrophages more profoundly upregulated interferon-inducible genes such as IFIT3, OAS3, and antimicrobial gene CXCL9 compared to BCG, and induced higher levels of inflammatory cytokines such as IL-12(p70), TNF-β, and IL-15. The rBCG-LTAK63-infected M2 macrophages more extensively upregulated transcripts of inflammation-related genes, TAP1, GBP1, SLAMF7, TNIP1, and IL6, and induced higher levels of cytokines related to inflammation and tissue repair, MCP-3 and EGF, as compared to BCG. Thus, our data revealed an important signature of immune responses induced in human macrophages by rBCG-LTAK63 associated with increased inflammation, activation, and tissue repair, which may be correlated with a protective immune response against TB.
Collapse
Affiliation(s)
- Carina C. dos Santos
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo 05503-900, Brazil;
- Programa de Pós-Graduação Interunidades em Biotecnologia, Universidade de São Paulo, São Paulo 05508-900, Brazil
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (K.V.W.); (S.v.V.); (L.G.W.); (T.H.M.O.); (M.C.H.)
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Bahia, Salvador 40170-115, Brazil
- Correspondence: (C.C.d.S.); (L.C.C.L.)
| | - Kimberley V. Walburg
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (K.V.W.); (S.v.V.); (L.G.W.); (T.H.M.O.); (M.C.H.)
| | - Suzanne van Veen
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (K.V.W.); (S.v.V.); (L.G.W.); (T.H.M.O.); (M.C.H.)
| | - Louis G. Wilson
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (K.V.W.); (S.v.V.); (L.G.W.); (T.H.M.O.); (M.C.H.)
| | | | - Ivan P. Nascimento
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo 05503-900, Brazil;
| | - Tom H. M. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (K.V.W.); (S.v.V.); (L.G.W.); (T.H.M.O.); (M.C.H.)
| | - Luciana C. C. Leite
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo 05503-900, Brazil;
- Programa de Pós-Graduação Interunidades em Biotecnologia, Universidade de São Paulo, São Paulo 05508-900, Brazil
- Correspondence: (C.C.d.S.); (L.C.C.L.)
| | - Mariëlle C. Haks
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (K.V.W.); (S.v.V.); (L.G.W.); (T.H.M.O.); (M.C.H.)
| |
Collapse
|
6
|
Junqueira-Kipnis AP, de Castro Souza C, de Oliveira Carvalho AC, de Oliveira FM, Almeida VP, de Paula AR, Celes MR, Kipnis A. Protease-Based Subunit Vaccine in Mice Boosts BCG Protection against Mycobacterium tuberculosis. Vaccines (Basel) 2022; 10:vaccines10020306. [PMID: 35214766 PMCID: PMC8877678 DOI: 10.3390/vaccines10020306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/04/2022] Open
Abstract
The significant number of people with latent and active tuberculosis infection requires further efforts to develop new vaccines or improve the Bacillus Calmette-Guérin (BCG), which is the only approved vaccine against this disease. In this study, we developed a recombinant fusion protein (PEPf) containing high-density immunodominant epitope sequences from Rv0125, Rv2467, and Rv2672 Mycobacterium tuberculosis (Mtb) proteases that proved immunogenic and used it to develop a recombinant BCG vaccine expressing the fusion protein. After challenging using Mtb, a specific immune response was recalled, resulting in a reduced lung bacterial load with similar protective capabilities to BCG. Thus BCG PEPf failed to increase the protection conferred by BCG. The PEPf was combined with Advax4 adjuvant and tested as a subunit vaccine using a prime-boost strategy. PEPf + Advax4 significantly improved protection after Mtb challenge, with a reduction in bacterial load in the lungs. Our results confirm that Mtb proteases can be used to develop vaccines against tuberculosis and that the use of the recombinant PEPf subunit protein following a prime-boost regimen is a promising strategy to improve BCG immunity.
Collapse
|
7
|
Zare S, Kabiri M, Amini Y, Najafi A, Mohammadpour F, Ayati SH, Nikpoor AR, Tafaghodi M. Immunological Assessment of Chitosan or Trimethyl Chitosan-Coated PLGA Nanospheres Containing Fusion Antigen as the Novel Vaccine Candidates Against Tuberculosis. AAPS PharmSciTech 2021; 23:15. [PMID: 34893923 DOI: 10.1208/s12249-021-02146-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/19/2021] [Indexed: 01/02/2023] Open
Abstract
The crucial challenge in tuberculosis (TB) as a chronic infectious disease is to present a novel vaccine candidate that improves current vaccination and provides efficient protection in individuals. The present study aimed to evaluate the immune efficacy of multi-subunit vaccines containing chitosan (CHT)- or trimethyl chitosan (TMC)-coated PLGA nanospheres to stimulate cell-mediated and mucosal responses against Mycobacterium Tuberculosis (Mtb) in an animal model. The surface-modified PLGA nanoparticles (NPs) containing tri-fusion protein from three Mtb antigens were produced by the double emulsion technique. The subcutaneously or nasally administered PLGA vaccines in the absence or presence of BCG were assessed to compare the levels of mucosal IgA, IgG1, and IgG2a production as well as secretion of IFN-γ, IL-17, IL-4, and TGF-β cytokines. According to the release profile, the tri-fusion encapsulated in modified PLGA NPs demonstrated a biphasic release profile including initial burst release on the first day and sustained release within 18 days. All designed PLGA vaccines induced a shift of Th1/Th2 balance toward Th1-dominant response. Although immunized mice through subcutaneous injection elicited higher cell-mediated responses relative to the nasal vaccination, the intranasally administered groups stimulated robust mucosal IgA immunity. The modified PLGA NPs using TMC cationic polymer were more efficient to elevate Th1 and mucosal responses in comparison with the CHT-coated PLGA nanospheres. Our findings highlighted that the tri-fusion loaded in TMC-PLGA NPs may represent an efficient prophylactic vaccine and can be considered as a novel candidate against TB.
Collapse
|
8
|
Chiwala G, Liu Z, Mugweru JN, Wang B, Khan SA, Bate PNN, Yusuf B, Hameed HMA, Fang C, Tan Y, Guan P, Hu J, Tan S, Liu J, Zhong N, Zhang T. A recombinant selective drug-resistant M. bovis BCG enhances the bactericidal activity of a second-line anti-tuberculosis regimen. Biomed Pharmacother 2021; 142:112047. [PMID: 34426260 DOI: 10.1016/j.biopha.2021.112047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022] Open
Abstract
Drug-resistant tuberculosis (DR-TB) poses a new threat to global health; to improve the treatment outcome, therapeutic vaccines are considered the best chemotherapy adjuvants. Unfortunately, there is no therapeutic vaccine approved against DR-TB. Our study assessed the therapeutic efficacy of a recombinant drug-resistant BCG (RdrBCG) vaccine in DR-TB. We constructed the RdrBCG overexpressing Ag85B and Rv2628 by selecting drug-resistant BCG strains and transformed them with plasmid pEBCG or pIBCG to create RdrBCG-E and RdrBCG-I respectively. Following successful stability testing, we tested the vaccine's safety in severe combined immune deficient (SCID) mice that lack both T and B lymphocytes plus immunoglobulins. Finally, we evaluated the RdrBCG's therapeutic efficacy in BALB/c mice infected with rifampin-resistant M. tuberculosis and treated with a second-line anti-TB regimen. We obtained M. bovis strains which were resistant to several second-line drugs and M. tuberculosis resistant to rifampin. Notably, the exogenously inserted genes were lost in RdrBCG-E but remained stable in the RdrBCG-I both in vitro and in vivo. When administered adjunct to a second-line anti-TB regimen in a murine model of DR-TB, the RdrBCG-I lowered lung M. tuberculosis burden by 1 log10. Furthermore, vaccination with RdrBCG-I adjunct to chemotherapy minimized lung tissue pathology in mice. Most importantly, the RdrBCG-I showed almost the same virulence as its parent BCG Tice strain in SCID mice. Our findings suggested that the RdrBCG-I was stable, safe and effective as a therapeutic vaccine. Hence, the "recombinant" plus "drug-resistant" BCG strategy could be a useful concept for developing therapeutic vaccines against DR-TB.
Collapse
MESH Headings
- Amikacin/pharmacology
- Amikacin/therapeutic use
- Animals
- Antigens, Bacterial/biosynthesis
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Antitubercular Agents/pharmacology
- Antitubercular Agents/therapeutic use
- BCG Vaccine/biosynthesis
- BCG Vaccine/genetics
- BCG Vaccine/immunology
- BCG Vaccine/therapeutic use
- Disease Models, Animal
- Drug Resistance, Bacterial/genetics
- Levofloxacin/pharmacology
- Levofloxacin/therapeutic use
- Mice, Inbred BALB C
- Mice, SCID
- Mycobacterium bovis/chemistry
- Mycobacterium bovis/drug effects
- Mycobacterium bovis/genetics
- Mycobacterium tuberculosis/drug effects
- Mycobacterium tuberculosis/pathogenicity
- Plasmids
- Prothionamide/pharmacology
- Prothionamide/therapeutic use
- Pyrazinamide/pharmacology
- Pyrazinamide/therapeutic use
- Tuberculosis, Pulmonary/drug therapy
- Tuberculosis, Pulmonary/pathology
- Tuberculosis, Pulmonary/prevention & control
- Vaccines, Synthetic/biosynthesis
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/therapeutic use
- Virulence
- Mice
Collapse
Affiliation(s)
- Gift Chiwala
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou 510530, China; Guangzhou National Laboratory, Guangzhou 510320, China
| | - Zhiyong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou 510530, China
| | - Julius N Mugweru
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Biological Sciences, University of Embu, Embu 60100, Kenya
| | - Bangxing Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Shahzad Akbar Khan
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou 510530, China
| | - Petuel Ndip Ndip Bate
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou 510530, China; Guangzhou National Laboratory, Guangzhou 510320, China
| | - Buhari Yusuf
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou 510530, China; Guangzhou National Laboratory, Guangzhou 510320, China
| | - H M Adnan Hameed
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou 510530, China; Guangzhou National Laboratory, Guangzhou 510320, China
| | - Cuiting Fang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou 510530, China; Guangzhou National Laboratory, Guangzhou 510320, China
| | - Yaoju Tan
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Ping Guan
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Jinxing Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Shouyong Tan
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Jianxiong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Nanshan Zhong
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou 510530, China; Guangzhou National Laboratory, Guangzhou 510320, China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou 510530, China; Guangzhou National Laboratory, Guangzhou 510320, China.
| |
Collapse
|
9
|
Mast cells modulate early responses to Mycobacterium bovis Bacillus Calmette-Guerin by phagocytosis and formation of extracellular traps. Cell Immunol 2021; 365:104380. [PMID: 34049012 DOI: 10.1016/j.cellimm.2021.104380] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 12/15/2022]
Abstract
The early interactions between the vaccine Mycobacterium bovis Bacillus Calmette Guerin (BCG) and host peripheral innate immune cells like Mast cells (MCs) may pave the way for generating appropriate protective innate and adaptive immune responses. Mice on administration of BCG by intratracheal instillation showed a massive increase in MC numbers in the infected lung. In vitro co-culture of BCG and rodent Rat Basophilic Leukaemia (RBL-2H3) MCs led to significant killing of BCG. RBL-2H3 MCs were able to phagocytose BCG, take up BCG-derived antigens by macropinocytosis, generate Reactive Oxygen Species (ROS) and degranulate. Further, a few MCs died and released MC extracellular traps (MCETs) having DNA, histones and tryptase to trap BCG. This study highlights the multi-pronged effector responses of MCs on encountering BCG. These responses or their evasion may lead to success or failure of BCG vaccine to provide long term immunity to infections.
Collapse
|
10
|
Ahmed A, Rakshit S, Adiga V, Dias M, Dwarkanath P, D'Souza G, Vyakarnam A. A century of BCG: Impact on tuberculosis control and beyond. Immunol Rev 2021; 301:98-121. [PMID: 33955564 DOI: 10.1111/imr.12968] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/13/2021] [Accepted: 03/13/2021] [Indexed: 12/14/2022]
Abstract
BCG turns 100 this year and while it might not be the perfect vaccine, it has certainly contributed significantly towards eradication and prevention of spread of tuberculosis (TB). The search for newer and better vaccines for TB is an ongoing endeavor and latest results from trials of candidate TB vaccines such as M72AS01 look promising. However, recent encouraging data from BCG revaccination trials in adults combined with studies on mucosal and intravenous routes of BCG vaccination in non-human primate models have renewed interest in BCG for TB prevention. In addition, several well-demonstrated non-specific effects of BCG, for example, prevention of viral and respiratory infections, give BCG an added advantage. Also, BCG vaccination is currently being widely tested in human clinical trials to determine whether it protects against SARS-CoV-2 infection and/or death with detailed analyses and outcomes from several ongoing trials across the world awaited. Through this review, we attempt to bring together information on various aspects of the BCG-induced immune response, its efficacy in TB control, comparison with other candidate TB vaccines and strategies to improve its efficiency including revaccination and alternate routes of administration. Finally, we discuss the future relevance of BCG use especially in light of its several heterologous benefits.
Collapse
Affiliation(s)
- Asma Ahmed
- Laboratory of Immunology of HIV-TB co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Srabanti Rakshit
- Laboratory of Immunology of HIV-TB co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Vasista Adiga
- Laboratory of Immunology of HIV-TB co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Mary Dias
- Division of Infectious Diseases, St John's Research Institute, Bangalore, India
| | | | - George D'Souza
- Division of Infectious Diseases, St John's Research Institute, Bangalore, India.,Department of Pulmonary Medicine, St John's Medical College, Bangalore, India
| | - Annapurna Vyakarnam
- Laboratory of Immunology of HIV-TB co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, Guy's Hospital, King's College London, London, UK
| |
Collapse
|
11
|
Gong W, Liang Y, Mi J, Jia Z, Xue Y, Wang J, Wang L, Zhou Y, Sun S, Wu X. Peptides-Based Vaccine MP3RT Induced Protective Immunity Against Mycobacterium Tuberculosis Infection in a Humanized Mouse Model. Front Immunol 2021; 12:666290. [PMID: 33981313 PMCID: PMC8108698 DOI: 10.3389/fimmu.2021.666290] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/06/2021] [Indexed: 12/25/2022] Open
Abstract
Background Tuberculosis (TB) is still a global infectious disease that seriously threatens human beings. The only licensed TB vaccine Bacille Calmette-Guérin (BCG)’s protective efficacy varies significantly among populations and regions. It is very urgent to develop more effective vaccines. Methods In this study, eleven candidate proteins of Mycobacterium tuberculosis were selected to predict peptides with high-affinity binding capacity for the HLA-DRB1*01:01 molecule. The immunodominant peptides were identified with the enzyme-linked immunospot assay (ELISPOT) and linked in silico to result in a novel polypeptide vaccine in Escherichia coli cells. The vaccine’s protective efficacy was evaluated in humanized and wild-type C57BL/6 mice. The potential immune protective mechanisms were explored with Enzyme-linked Immunosorbent Assay (ELISA), flow cytometry, and ELISPOT. Results Six immunodominant peptides screened from 50 predicted peptides were used to construct a new polypeptide vaccine named MP3RT. After challenge with M. tuberculosis, the colony-forming units (CFUs), lung lesion area, and the number of inflammatory cells in humanized mice rather than wild-type mice vaccinated with MP3RT were significantly lower than these in mice immunized with PBS. The humanized mice vaccinated with MP3RT revealed significant increases in IFN-γ cytokine production, IFN-γ+ T lymphocytes, CD3+IFN-γ+ T lymphocytes, and the MP3RT-specific IgG antibody. Conclusions Taken together, MP3RT is a promising peptides-based TB vaccine characterized by inducing high levels of IFN-γ and CD3+IFN-γ+ T lymphocytes in humanized mice. These new findings will lay a foundation for the development of peptides-based vaccines against TB.
Collapse
Affiliation(s)
- Wenping Gong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, 8th Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yan Liang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, 8th Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Jie Mi
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, 8th Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Zaixing Jia
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, 8th Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China.,Graduate School, Hebei North University, Zhangjiakou, China
| | - Yong Xue
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, 8th Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Jie Wang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, 8th Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Lan Wang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, 8th Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yusen Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Shihui Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xueqiong Wu
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, 8th Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
12
|
Rodríguez-Hernández E, Quintas-Granados LI, Flores-Villalva S, Cantó-Alarcón JG, Milián-Suazo F. Application of antigenic biomarkers for Mycobacterium tuberculosis. J Zhejiang Univ Sci B 2020; 21:856-870. [PMID: 33150770 PMCID: PMC7670104 DOI: 10.1631/jzus.b2000325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/19/2020] [Indexed: 01/12/2023]
Abstract
The study and characterization of biomolecules involved in the interaction between mycobacteria and their hosts are crucial to determine their roles in the invasion process and provide basic knowledge about the biology and pathogenesis of disease. Promising new biomarkers for diagnosis and immunotherapy have emerged recently. Mycobacterium is an ancient pathogen that has developed complex strategies for its persistence in the host and environment, likely based on the complexity of the network of interactions between the molecules involved in infection. Several biomarkers have received recent attention in the process of developing rapid and reliable detection techniques for tuberculosis. Among the most widely investigated antigens are CFP-10 (10-kDa culture filtrate protein), ESAT-6 (6-kDa early secretory antigenic target), Ag85A, Ag85B, CFP-7, and PPE18. Some of these antigens have been proposed as biomarkers to assess the key elements of the response to infection of both the pathogen and host. The design of novel and accurate diagnostic methods is essential for the control of tuberculosis worldwide. Presently, the diagnostic methods are based on the identification of molecules in the humoral response in infected individuals. Therefore, these tests depend on the capacity of the host to develop an immune response, which usually is heterogeneous. In the last 20 years, special attention has been given to the design of multiantigenic diagnostic methods to improve the levels of sensitivity and specificity. In this review, we summarize the state of the art in the study and use of mycobacterium biomolecules with the potential to support novel tuberculosis control strategies.
Collapse
Affiliation(s)
- Elba Rodríguez-Hernández
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal, Km. 1 Carretera a Colón, Ajuchitlán Colón, 76280, Colón, Querétaro, México
| | - Laura Itzel Quintas-Granados
- Universidad Mexiquense del Bicentenario, Unidad de Estudios Superiores de Tultitlán, Avenida Ex-Hacienda de Portales s/n, Villa Esmeralda, Tultitlán Estado de México, 54910, Tultitlán, México
| | - Susana Flores-Villalva
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal, Km. 1 Carretera a Colón, Ajuchitlán Colón, 76280, Colón, Querétaro, México
| | - Jorge Germinal Cantó-Alarcón
- Universidad Autónoma de Querétaro, Facultad de Ciencias Naturales, Avenida de las Ciencias s/n, Juriquilla, Delegación Santa Rosa Jáuregui, 76230, Querétaro, México
| | - Feliciano Milián-Suazo
- Universidad Autónoma de Querétaro, Facultad de Ciencias Naturales, Avenida de las Ciencias s/n, Juriquilla, Delegación Santa Rosa Jáuregui, 76230, Querétaro, México
| |
Collapse
|
13
|
Bontempi I, Leal K, Prochetto E, Díaz G, Cabrera G, Bortolotti A, Morbidoni HR, Borsuk S, Dellagostin O, Marcipar I. Recombinant Mycobacterium bovis BCG is a promising platform to develop vaccines against Trypansoma cruzi infection. Clin Exp Immunol 2020; 201:306-316. [PMID: 32464684 DOI: 10.1111/cei.13469] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/05/2020] [Accepted: 05/22/2020] [Indexed: 12/22/2022] Open
Abstract
Chagas disease, caused by the hemoflagelate parasite Trypanosoma cruzi, is one of the most prevalent endemic parasitoses, affecting 7-8 million people. Due to the complexity of the infection, no vaccines are available at present. The extraordinary adjuvant capacity of bacille Calmette-Guérin (BCG) was explored in this work to develop a vaccine candidate to protect against T. cruzi infection using the recombinant BCG (rBCG) vaccine platform. Three antigens of the parasite corresponding to the N and C terminal fragments of the enzyme trans-sialidase (NT-TS and CT-TS, respectively) and a fragment of the cruzipain enzyme (CZf) were cloned into the vectors pUS997 and pUS2000 and transformed into the BCG Pasteur strain. In vaccinated mice, rBCG expressing NT-TS in pUS2000 plasmid provided the highest protection and the lowest parasitemia after challenging BALB/c mice with a 50% lethal dose of parasites. When mice vaccinated with pUS2000-NT-TS were challenged with a 100% lethal dose of parasite, high levels of protection were also obtained, together with a low degree of cardiac lesions 120 days after infection. In immunized mice with pUS2000-NT-TS/rBCG clone, the proliferation of CD4+ cells from splenocytes stimulated with the TS antigen was significant; this stimulation increased interferon (IFN)-γ and interleukin (IL)-17 within CD4⁺ T lymphocytes (LTCD4+ ) cells and IFN-γ and CD107 expression within LTCD8+ cells. Therefore, pUS2000-NT-TS/rBCG conferred high levels of protection, which correlated with an immune response orientated towards a T helper type 1 (Th1)/Th17 profile, together with an LTC-specific response, indicating that rBCG is a promising platform to develop vaccines against T. cruzi.
Collapse
Affiliation(s)
- I Bontempi
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.,Facultad de Ciencias Médicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - K Leal
- Núcleo de Biotecnologia, CDTec, Universidade Federal de Pelotas, Pelotas, Brazil
| | - E Prochetto
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - G Díaz
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - G Cabrera
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.,Facultad de Ciencias Médicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - A Bortolotti
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - H R Morbidoni
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - S Borsuk
- Núcleo de Biotecnologia, CDTec, Universidade Federal de Pelotas, Pelotas, Brazil
| | - O Dellagostin
- Núcleo de Biotecnologia, CDTec, Universidade Federal de Pelotas, Pelotas, Brazil
| | - I Marcipar
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.,Facultad de Ciencias Médicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
14
|
Junqueira-Kipnis AP, Trentini MM, Marques Neto LM, Kipnis A. Live Vaccines Have Different NK Cells and Neutrophils Requirements for the Development of a Protective Immune Response Against Tuberculosis. Front Immunol 2020; 11:741. [PMID: 32391021 PMCID: PMC7189015 DOI: 10.3389/fimmu.2020.00741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/01/2020] [Indexed: 12/24/2022] Open
Abstract
It has been shown that neutrophils drive NK cells to activate DCs while NK cells regulate neutrophils survival. In response to mycobacteria, NK cells proliferate and produces IFN-γ, that appears to regulate the neutrophilic inflammatory responses to both M. tuberculosis infection and BCG vaccination. Although the role of neutrophils in the immune response to tuberculosis is a matter of debate, neutrophils were shown to be crucial to induce specific response against mc2-CMX vaccine. The objective of this study was to investigate the interplay between NK cells and neutrophils in regard to the development of a protective immune response against M. tuberculosis. Depletion of NK cells during vaccination did not alter the total number of neutrophils or DCs, but reduced the number of activated DCs, thus reducing the generation of Th1 specific immune responses and the protection conferred by mc2-CMX and BCG vaccines. However, only in mc2-CMX vaccination that neutrophil depletion interfered with the NK cell numbers and protection. In conclusion, it was shown that only when both NK and neutrophils were present, specific Th1 response and protection was achieved by mc2-CMX vaccine, while neutrophils although activated upon BCG vaccination were not necessary for the induced protection.
Collapse
Affiliation(s)
- Ana Paula Junqueira-Kipnis
- Laboratory of Immunopathology of Infectious Disease, Department of Biosciences and Technology, Tropical Institute of Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - Monalisa Martins Trentini
- Laboratory of Immunopathology of Infectious Disease, Department of Biosciences and Technology, Tropical Institute of Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - Lázaro Moreira Marques Neto
- Laboratory of Immunopathology of Infectious Disease, Department of Biosciences and Technology, Tropical Institute of Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - André Kipnis
- Laboratory of Molecular Bacteriology, Department of Biosciences and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| |
Collapse
|
15
|
Animal Models of Tuberculosis Vaccine Research: An Important Component in the Fight against Tuberculosis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4263079. [PMID: 32025519 PMCID: PMC6984742 DOI: 10.1155/2020/4263079] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/25/2019] [Accepted: 08/20/2019] [Indexed: 12/23/2022]
Abstract
Tuberculosis (TB), an infectious disease caused by Mycobacterium tuberculosis, is one of the top ten infectious diseases worldwide, and is the leading cause of morbidity from a single infectious agent. M. tuberculosis can cause infection in several species of animals in addition to humans as the natural hosts. Although animal models of TB disease cannot completely simulate the occurrence and development of human TB, they play an important role in studying the pathogenesis, immune responses, and pathological changes as well as for vaccine research. This review summarizes the commonly employed animal models, including mouse, guinea pig, rabbit, rat, goat, cattle, and nonhuman primates, and their characteristics as used in TB vaccine research, and provides a basis for selecting appropriate animal models according to specific research needs. Furthermore, some of the newest animal models used for TB vaccine research (such as humanized animal models, zebrafish, Drosophila, and amoeba) are introduced, and their characteristics and research progress are discussed.
Collapse
|
16
|
Understanding the early host immune response against Mycobacterium tuberculosis. Cent Eur J Immunol 2020; 45:99-103. [PMID: 32425687 PMCID: PMC7226546 DOI: 10.5114/ceji.2020.94711] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/05/2018] [Indexed: 12/14/2022] Open
Abstract
Generation of immune response is a crucial activity of host defense against any microbial attack. When facultative organism Mycobacterium tuberculosis (MTB) invades its host, various pathways are activated in the host to mount immune responses against invading pathogen for nullifying its actions. During this host-pathogen interaction, interplay of complex network of cytokines and chemokines, initiation of phagocytosis, and formation of granuloma play an important role in containing MTB infections at host side. Simultaneously, MTB also evolves a plethora of specialized mechanisms to evade the host’s killing cascades on other side, and during this bilateral cross-talk, many mycobacterial products play crucial role in survival of MTB inside the host. Hence, a better understanding of these phenomena is necessary not only for getting clear picture of pathogenesis of MTB, but also for developing effective, preventive, and therapeutic modalities against the pathogen. With some suggestions on future work, an insight into diversity of immune response of host against MTB was provided in the present review.
Collapse
|
17
|
Yousefi Avarvand A, Khademi F, Tafaghodi M, Ahmadipour Z, Moradi B, Meshkat Z. The roles of latency-associated antigens in tuberculosis vaccines. ACTA ACUST UNITED AC 2019; 66:487-491. [DOI: 10.1016/j.ijtb.2019.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/26/2019] [Indexed: 11/27/2022]
|
18
|
Rana A, Thakur S, Kumar G, Akhter Y. Recent Trends in System-Scale Integrative Approaches for Discovering Protective Antigens Against Mycobacterial Pathogens. Front Genet 2018; 9:572. [PMID: 30538722 PMCID: PMC6277634 DOI: 10.3389/fgene.2018.00572] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/06/2018] [Indexed: 11/21/2022] Open
Abstract
Mycobacterial infections are one of the deadliest infectious diseases still posing a major health burden worldwide. The battle against these pathogens needs to focus on novel approaches and key interventions. In recent times, availability of genome scale data has revolutionized the fields of computational biology and immunoproteomics. Here, we summarize the cutting-edge ‘omics’ technologies and innovative system scale strategies exploited to mine the available data. These may be targeted using high-throughput technologies to expedite the identification of novel antigenic candidates for the rational next generation vaccines and serodiagnostic development against mycobacterial pathogens for which traditional methods have been failing.
Collapse
Affiliation(s)
- Aarti Rana
- School of Life Sciences, Central University of Himachal Pradesh, Shahpur, India
| | - Shweta Thakur
- School of Life Sciences, Central University of Himachal Pradesh, Shahpur, India
| | - Girish Kumar
- School of Life Sciences, Central University of Himachal Pradesh, Shahpur, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| |
Collapse
|
19
|
Neto LMM, Zufelato N, de Sousa-Júnior AA, Trentini MM, da Costa AC, Bakuzis AF, Kipnis A, Junqueira-Kipnis AP. Specific T cell induction using iron oxide based nanoparticles as subunit vaccine adjuvant. Hum Vaccin Immunother 2018; 14:2786-2801. [PMID: 29913109 DOI: 10.1080/21645515.2018.1489192] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Metal-based nanoparticles (NPs) stimulate innate immunity; however, they have never been demonstrated to be capable of aiding the generation of specific cellular immune responses. Therefore, our objective was to evaluate whether iron oxide-based NPs have adjuvant properties in generating cellular Th1, Th17 and TCD8 (Tc1) immune responses. For this purpose, a fusion protein (CMX) composed of Mycobacterium tuberculosis antigens was used as a subunit vaccine. Citrate-coated MnFe2O4 NPs were synthesized by co-precipitation and evaluated by transmission electron microscopy. The vaccine was formulated by homogenizing NPs with the recombinant protein, and protein corona formation was determined by dynamic light scattering and field-emission scanning electron microscopy. The vaccine was evaluated for the best immunization route and strategy using subcutaneous and intranasal routes with 21-day intervals between immunizations. When administered subcutaneously, the vaccine generated specific CD4+IFN-γ+ (Th1) and CD8+IFN-γ+ responses. Intranasal vaccination induced specific Th1, Th17 (CD4+IL-17+) and Tc1 responses, mainly in the lungs. Finally, a mixed vaccination strategy (2 subcutaneous injections followed by one intranasal vaccination) induced a Th1 (in the spleen and lungs) and splenic Tc1 response but was not capable of inducing a Th17 response in the lungs. This study shows for the first time a subunit vaccine with iron oxide based NPs as an adjuvant that generated cellular immune responses (Th1, Th17 and TCD8), thereby exhibiting good adjuvant qualities. Additionally, the immune response generated by the subcutaneous administration of the vaccine diminished the bacterial load of Mtb challenged animals, showing the potential for further improvement as a vaccine against tuberculosis.
Collapse
Affiliation(s)
| | - Nicholas Zufelato
- b Instituto de Física, Universidade Federal de Goiás (IF-UFG) , Brasil
| | | | - Monalisa Martins Trentini
- a Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás (IPTSP-UFG) , Brasil
| | - Adeliane Castro da Costa
- a Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás (IPTSP-UFG) , Brasil
| | | | - André Kipnis
- a Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás (IPTSP-UFG) , Brasil
| | | |
Collapse
|
20
|
de Paula Oliveira Santos B, Trentini MM, Machado RB, Rúbia Nunes Celes M, Kipnis A, Petrovsky N, Junqueira-Kipnis AP. Advax4 delta inulin combination adjuvant together with ECMX, a fusion construct of four protective mTB antigens, induces a potent Th1 immune response and protects mice against Mycobacterium tuberculosis infection. Hum Vaccin Immunother 2018; 13:2967-2976. [PMID: 28937879 DOI: 10.1080/21645515.2017.1368598] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Tuberculosis (TB) remains a main public health concern and 10.4 million new cases occurred in 2015 around the world. BCG is the only approved vaccine against TB, but has variable efficacy and new vaccines are needed. We developed two new mTB vaccine candidates based on the recombinant fusion proteins, rCMX and rECMX formulated with Advax4, a new combination adjuvant combining delta inulin, CpG oligonucleotide and murabutide. BALB/c mice were immunized three times intramuscularly with these vaccine formulations. Injection of Advax4 alone increased the percentage of lymphatic endothelial cells and activated macrophages (F480/CD11b+) in the draining lymph nodes consistent with a chemotactic adjuvant effect. Advax4+CMX and Advax4+ECMX induced the highest levels of IgG1 and IgG2a antibodies against rCMX and rECMX, respectively. Immunized mice challenged with Mycobacterium tuberculosis (Mtb) had increased vaccine-specific Th1 responses in the lungs together with reduced Mtb - associated alveolar damage, although only the Advax4+ECMX vaccine demonstrated significant reduction of lung bacterial load. This study confirmed Advax4+ECMX as a potential TB vaccine candidate, with potential for further optimization and clinical development.
Collapse
Affiliation(s)
- Bruno de Paula Oliveira Santos
- a Laboratory of Immunopathology of Infectious Diseases, Department of Microbiology, Immunology, Parasitology, and Pathology, Tropical Institute of Pathology and Public Health , Federal University of Goiás , Goiás , Brazil
| | - Monalisa Martins Trentini
- a Laboratory of Immunopathology of Infectious Diseases, Department of Microbiology, Immunology, Parasitology, and Pathology, Tropical Institute of Pathology and Public Health , Federal University of Goiás , Goiás , Brazil
| | - Renato Beilner Machado
- a Laboratory of Immunopathology of Infectious Diseases, Department of Microbiology, Immunology, Parasitology, and Pathology, Tropical Institute of Pathology and Public Health , Federal University of Goiás , Goiás , Brazil
| | - Mara Rúbia Nunes Celes
- b Laboratory of Pathology, Department of Microbiology, Immunology, Parasitology, and Pathology, Tropical Institute of Pathology and Public Health , Federal University of Goiás , Goiás , Brazil
| | - André Kipnis
- a Laboratory of Immunopathology of Infectious Diseases, Department of Microbiology, Immunology, Parasitology, and Pathology, Tropical Institute of Pathology and Public Health , Federal University of Goiás , Goiás , Brazil
| | - Nikolai Petrovsky
- c Flinders University and Vaxine Pty Ltd, Flinders Medical Center , Adelaide , Australia
| | - Ana Paula Junqueira-Kipnis
- a Laboratory of Immunopathology of Infectious Diseases, Department of Microbiology, Immunology, Parasitology, and Pathology, Tropical Institute of Pathology and Public Health , Federal University of Goiás , Goiás , Brazil
| |
Collapse
|
21
|
HspX protein as a candidate vaccine against Mycobacterium tuberculosis: an overview. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s11515-018-1494-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
22
|
Abstract
Protective immunity in tuberculosis (TB) is subject of debate in the TB research community, as this is key to fully understand TB pathogenesis and to develop new promising tools for TB diagnosis and prognosis as well as a more efficient TB vaccine. IFN-γ producing CD4+ T cells are key in TB control, but may not be sufficient to provide protection. Additional subsets have been identified that contribute to protection such as multifunctional and cytolytic T-cell subsets, including classical and nonclassical T cells as well as novel innate immune cell subsets resulting from trained immunity. However, to define protective immune responses against TB, the complexity of balancing TB immunity also has to be considered. In this review, insights into effector cell immunity and how this is modulated by regulatory cells, associated comorbidities and the host microbiome, is discussed. We systematically map how different suppressive immune cell subsets may affect effector cell responses at the local site of infection. We also dissect how common comorbidities such as HIV, helminths and diabetes may bias protective TB immunity towards pathogenic and regulatory responses. Finally, also the composition and diversity of the microbiome in the lung and gut could affect host TB immunity. Understanding these various aspects of the immunological balance in the human host is fundamental to prevent TB infection and disease.
Collapse
Affiliation(s)
- Susanna Brighenti
- Karolinska Institutet, Department of Medicine, Center for Infectious Medicine (CIM), Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Simone A. Joosten
- Leiden University Medical Center, Department of Infectious Diseases, Leiden, The Netherlands
| |
Collapse
|
23
|
Oliveira TL, Rizzi C, Dellagostin OA. Recombinant BCG vaccines: molecular features and their influence in the expression of foreign genes. Appl Microbiol Biotechnol 2017; 101:6865-6877. [PMID: 28779291 DOI: 10.1007/s00253-017-8439-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/13/2017] [Accepted: 07/15/2017] [Indexed: 01/17/2023]
Abstract
Recombinant Mycobacterium bovis BCG vaccines (rBCG) were first developed in the 1990s as a means of expressing antigens from multiple pathogens. This review examines the key structural factors of recombinant M. bovis that influence the expression of the heterologous antigens and the generation of genetic and functional stability in rBCG, which are crucial for inducing strong and lasting immune responses. The fundamental aim of this paper is to provide an overview of factors that affect the expression of recombinant proteins in BCG and the generation of the immune response against the target antigens, including mycobacterial promoters, location of foreign antigens, and stability of the vectors. The reporter systems that have been employed for evaluation of these molecular features in BCG are also reviewed here.
Collapse
Affiliation(s)
- Thaís Larré Oliveira
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Caroline Rizzi
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Odir Antônio Dellagostin
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil. .,Unidade de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário, Caixa Postal 354, Pelotas, RS, CEP 96010-900, Brazil.
| |
Collapse
|
24
|
Zagmignan A, Costa ACD, Viana JL, Lima Neto LG, Monteiro CDA, Gaioso Neto AG, Junqueira-Kipnis AP, de Sousa EM. Identification of specific antibodies against the Ag85C-MPT51-HspX fusion protein (CMX) for serological screening of tuberculosis in endemic area. Expert Rev Clin Immunol 2017. [PMID: 28633546 DOI: 10.1080/1744666x.2017.1345626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Development of new tools for rapid and accurate diagnosis of tuberculosis (TB) is considered a strategy for controlling the disease. The recombinant CMX fusion protein is composed of immunodominant epitopes of the Ag85C (Rv0129c), MPT51 (Rv3803c) and the entire HspX (Rv2031c) proteins from Mycobacterium tuberculosis H37Rv (Mtb). The aim of this study was to evaluate the applicability of a test using the CMX protein in individuals suspected of TB. METHODS Indirect ELISA was used to measure serum anti-CMX IgM and IgG in individuals with pulmonary TB. RESULTS Patients with pulmonary TB had higher titers of IgM (OD = 0.502 ± 0.281) than healthy controls (OD = 0.200 ± 0.125). The cutoff for IgM-ELISA was determined using ROC curve analyzes (AUC = 0.868) with a sensitivity of 80.1% and a specificity of 78.2%. Patients with pulmonary TB also had higher titers of IgG (OD = 0.525 ± 0.391) than healthy controls (OD = 0.215 ± 0.077). The cutoff for IgG-ELISA was determined using ROC curve analyzes (AUC = 0.864) with a sensitivity of 81.7% and a specificity of 74.7%. CONCLUSION The results suggest that the recombinant protein CMX can be used in a serological test to complement the screening of individuals suspected of having active pulmonary TB.
Collapse
Affiliation(s)
- Adrielle Zagmignan
- a Programa de Pós-graduação , Universidade Ceuma , São Luis , MA , Brazil
| | - Adeliane Castro da Costa
- b Universidade Federal de Goias- Laboratory of Immunopathology of Infectious Disease, Department of Microbiology , Immunology, Parasitology and Pathology, Institute of Tropical Disease and Public Health , Goiania , Brazil
| | - José Lima Viana
- a Programa de Pós-graduação , Universidade Ceuma , São Luis , MA , Brazil
| | | | | | | | - Ana Paula Junqueira-Kipnis
- b Universidade Federal de Goias- Laboratory of Immunopathology of Infectious Disease, Department of Microbiology , Immunology, Parasitology and Pathology, Institute of Tropical Disease and Public Health , Goiania , Brazil
| | | |
Collapse
|
25
|
Méndez-Samperio P. Commentary: The Role of Neutrophils in the Induction of Specific Th1 and Th17 during Vaccination against Tuberculosis. Front Cell Infect Microbiol 2017; 7:179. [PMID: 28553622 PMCID: PMC5427539 DOI: 10.3389/fcimb.2017.00179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/25/2017] [Indexed: 11/22/2022] Open
Affiliation(s)
- Patricia Méndez-Samperio
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de AyalaMexico City, Mexico
| |
Collapse
|
26
|
da Costa AC, de Resende DP, Santos BDPO, Zoccal KF, Faccioli LH, Kipnis A, Junqueira-Kipnis AP. Modulation of Macrophage Responses by CMX, a Fusion Protein Composed of Ag85c, MPT51, and HspX from Mycobacterium tuberculosis. Front Microbiol 2017; 8:623. [PMID: 28446902 PMCID: PMC5389097 DOI: 10.3389/fmicb.2017.00623] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/27/2017] [Indexed: 12/26/2022] Open
Abstract
Mycobacterium bovis Bacillus Calmette–Guérin (BCG) is a vaccine used to prevent tuberculosis (TB). Due to the poor protection conferred by BCG in adults, new, more effective formulations have been developed. A recombinant BCG vaccine expressing the CMX fusion protein Ag85c_MPT51_HspX (rBCG-CMX) induced Th1 and Th17 responses and provided better protection than BCG. It has been shown that Mycobacterium smegmatis expressing CMX also induces better protection than BCG and is a strong macrophage activator. The aim of the present study was to evaluate macrophage activation by the recombinant CMX fusion protein and by rBCG-CMX and to evaluate their ability to generate vaccine-specific immune responses. The results demonstrate that rCMX protein expressed by BCG (rBCG-CMX) activates pulmonary macrophages; increases the expression of activation molecules, cytokines, and MHC-II. The interaction with rCMX activates the transcription factor NF-κB and induces the production of the cytokines TGF-β, TNF-α, and IL-6. The in vitro stimulation of bone marrow-derived macrophages (BMMs) from TLR-4 or TLR-2 KO mice showed that in the absence of TLR-4, IL-6 was not produced. rBCG-CMX was unable to induce CMX-specific Th1 and Th17 cells in TLR-4 and TLR-2 KO mice, suggesting that these receptors participate in their induction. We concluded that both the rBCG-CMX vaccine and the rCMX protein can activate macrophages and favor the specific immune response necessary for this vaccine.
Collapse
Affiliation(s)
- Adeliane C da Costa
- Laboratory of Immunopathology of Infectious Disease, Department of Microbiology, Immunology, Parasitology and Pathology, Tropical Institute of Pathology and Public Health, Federal University of GoiásGoiânia, Brazil
| | - Danilo P de Resende
- Laboratory of Immunopathology of Infectious Disease, Department of Microbiology, Immunology, Parasitology and Pathology, Tropical Institute of Pathology and Public Health, Federal University of GoiásGoiânia, Brazil
| | - Bruno de P O Santos
- Laboratory of Immunopathology of Infectious Disease, Department of Microbiology, Immunology, Parasitology and Pathology, Tropical Institute of Pathology and Public Health, Federal University of GoiásGoiânia, Brazil
| | - Karina F Zoccal
- Laboratory of Inflammation and Immunology of Parasitoses, Department of Clinical, Toxicological and Bromatological Analyses, School of Pharmaceutical Sciences of Ribeirão Preto, University of São PauloSão Paulo, Brazil
| | - Lúcia H Faccioli
- Laboratory of Inflammation and Immunology of Parasitoses, Department of Clinical, Toxicological and Bromatological Analyses, School of Pharmaceutical Sciences of Ribeirão Preto, University of São PauloSão Paulo, Brazil
| | - André Kipnis
- Laboratory of Immunopathology of Infectious Disease, Department of Microbiology, Immunology, Parasitology and Pathology, Tropical Institute of Pathology and Public Health, Federal University of GoiásGoiânia, Brazil.,Laboratory of Molecular Bacteriology, Department of Microbiology, Immunology, Parasitology and Pathology, Tropical Institute of Pathology and Public Health, Federal University of GoiásGoiânia, Brazil
| | - Ana P Junqueira-Kipnis
- Laboratory of Immunopathology of Infectious Disease, Department of Microbiology, Immunology, Parasitology and Pathology, Tropical Institute of Pathology and Public Health, Federal University of GoiásGoiânia, Brazil.,Laboratory of Molecular Bacteriology, Department of Microbiology, Immunology, Parasitology and Pathology, Tropical Institute of Pathology and Public Health, Federal University of GoiásGoiânia, Brazil
| |
Collapse
|
27
|
Dai FY, Wang JF, Gong XL, Bao L. Immunogenicity and protective efficacy of recombinant Bacille Calmette-Guerin strains expressing mycobacterium antigens Ag85A, CFP10, ESAT-6, GM-CSF and IL-12p70. Hum Vaccin Immunother 2017; 13:1-8. [PMID: 28301284 DOI: 10.1080/21645515.2017.1279771] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE This study aimed to evaluate the immunogenicity and protective efficacy of recombinant bacille calmette-guerin (rBCG) strains expressing Ag85A (A), CFP10 (C), ESAT6 (E), IL-12p70 (I), and fusion protein GM-CSF (G). METHOD rBCGs were established by integrating of A, C, E, I, G, AE, CE, IE, GC, GE and GCE into Mycobacterium bovis BCG-1173 and BCG-SH. The macro-effects of rBCGs on mice were evaluated by phenotype and weight. The immunogenicity of rBCGs was analyzed by lgG, lgG1 and lgG2a antibody titers, and IFN-γ and IL-4 contents through Enzyme-linked immunosorbent assay (ELISA). Meanwhile, the proportions of CD4+ and CD8+ T splenic lymphocytes were determined using flow cytometry. The protective efficacy of rBCGs was evaluated by bacterial load in spleen and lung tissues from immunized mice. RESULTS rBCGs exhibited no obvious side effects on mice. The antibody titers of lgG, lgG1 and lgG2a, proportion of CD4+ and CD8+ T cells, and concentrations of IFN-γ were found to be significantly higher in multiple-gene rBCGs than that in single-gene rBCGs (P < 0.05). Bacterial load in both spleen and lung tissues from mice infected with M. tuberculosis H37Rv were significantly reduced by rBCGs. A significantly lower bacterial load was revealed in rBCG-1173:A compared with multiple-gene rBCGs (P < 0.05). CONCLUSION Immunogenicity was better on multiple-gene rBCGs than on single-gene rBCGs, while excellent protective efficacy was exhibited on rBCG-1173:A and BCG-1173.
Collapse
Affiliation(s)
- Fu-Ying Dai
- a Laboratory of Infection and Immunity, West China Center of Medical Science , Sichuan University , Chengdu , China.,b Department of Pathogenic Biology , School of Basic Medical Science, Chengdu Medical College , Chengdu , China
| | - Jun-Fang Wang
- a Laboratory of Infection and Immunity, West China Center of Medical Science , Sichuan University , Chengdu , China
| | - Xue-Li Gong
- a Laboratory of Infection and Immunity, West China Center of Medical Science , Sichuan University , Chengdu , China
| | - Lang Bao
- a Laboratory of Infection and Immunity, West China Center of Medical Science , Sichuan University , Chengdu , China
| |
Collapse
|
28
|
de Oliveira NR, Jorge S, Gomes CK, Rizzi C, Pacce VD, Collares TF, Monte LG, Dellagostin OA. A novel chimeric protein composed of recombinant Mycoplasma hyopneumoniae antigens as a vaccine candidate evaluated in mice. Vet Microbiol 2017; 201:146-153. [PMID: 28284602 DOI: 10.1016/j.vetmic.2017.01.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 12/07/2016] [Accepted: 01/18/2017] [Indexed: 10/20/2022]
Abstract
Enzootic Pneumonia (EP) is caused by the Mycoplasma hyopneumoniae pathogenic bacteria, and it represents a significant respiratory disease that is responsible for major economic losses within the pig industry throughout the world. The bacterins that are currently commercially available have been proven to offer only partial protection against M. hyopneumoniae, and the development of more efficient vaccines is required. Several recombinant antigens have been evaluated via different immunization strategies and have been found to be highly immunogenic. This work describes the construction and immunological characterization of a multi-antigen chimera composed of four M. hyopneumoniae antigens: P97R1, P46, P95, and P42. Immunogenic regions of each antigen were selected and combined to encode a single polypeptide. The gene was cloned and expressed in Escherichia coli, and the chimeric protein was recognized by specific antibodies against each subunit, as well as by convalescent pig sera. The immunogenic properties of the chimera were then evaluated in a mice model through two recombinant vaccines that were formulated as follows: (1) purified chimeric protein plus adjuvant or (2) recombinant Escherichia coli bacterin. The immune response induced in BALB/c mice immunized with each formulation was characterized in terms of total IgG levels, IgG1, and IgG2a isotypes against each antigen present in the chimera. The results of the study indicated that novel chimeric protein is a potential candidate for the future development of a more effective vaccine against EP.
Collapse
Affiliation(s)
- Natasha Rodrigues de Oliveira
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário Capão do Leão, CP 354, CEP: 96010-900, Pelotas, RS, Brazil
| | - Sérgio Jorge
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário Capão do Leão, CP 354, CEP: 96010-900, Pelotas, RS, Brazil
| | - Charles Klazer Gomes
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário Capão do Leão, CP 354, CEP: 96010-900, Pelotas, RS, Brazil
| | - Caroline Rizzi
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário Capão do Leão, CP 354, CEP: 96010-900, Pelotas, RS, Brazil
| | - Violetta Dias Pacce
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário Capão do Leão, CP 354, CEP: 96010-900, Pelotas, RS, Brazil
| | - Thais Farias Collares
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário Capão do Leão, CP 354, CEP: 96010-900, Pelotas, RS, Brazil
| | - Leonardo Garcia Monte
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário Capão do Leão, CP 354, CEP: 96010-900, Pelotas, RS, Brazil
| | - Odir Antônio Dellagostin
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário Capão do Leão, CP 354, CEP: 96010-900, Pelotas, RS, Brazil.
| |
Collapse
|
29
|
Amini Y, Moradi B, Fasihi-Ramandi M. Aluminum hydroxide nanoparticles show strong activity to stimulate Th-1 immune response against tuberculosis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:1331-1335. [PMID: 27647321 DOI: 10.1080/21691401.2016.1233111] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Many materials such as aluminum hydroxide have been tried as adjuvants to compensate low inherent immunogenicity of subunit vaccines. The aim of this study was to evaluate the specific immune response following the administration of aluminum hydroxide nanoparticles with EsxV antigen. The physiochemical properties of the nanoparticle were characterized in vitro. After subcutaneous immunization, cytokine secretion patterns including IFN-gama,IL-4, and TGF-beta levels were measured by indirect enzyme linked immunosorbent assay (ELISA). Aluminum hydroxide-NPs were demonstrated excellent effects to raise of IFN-γ secretion in compare to EsxV alone. Administration of aluminum hydroxide nanoparticles stimulates strong cellular immune response and could be considered as appropriate adjuvant against TB infection.
Collapse
Affiliation(s)
- Yousef Amini
- a Molecular Biology Research Center, Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Bagher Moradi
- b Esfarayen Faculty of Medical Sciences , Esfarayen , Iran
| | - Mahdi Fasihi-Ramandi
- a Molecular Biology Research Center, Baqiyatallah University of Medical Sciences , Tehran , Iran
| |
Collapse
|
30
|
Trentini MM, de Oliveira FM, Kipnis A, Junqueira-Kipnis AP. The Role of Neutrophils in the Induction of Specific Th1 and Th17 during Vaccination against Tuberculosis. Front Microbiol 2016; 7:898. [PMID: 27375607 PMCID: PMC4901074 DOI: 10.3389/fmicb.2016.00898] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 05/26/2016] [Indexed: 11/15/2022] Open
Abstract
Mycobacterium tuberculosis causes tuberculosis (TB), a disease that killed more than 1.5 million people worldwide in 2014, and the Bacillus Calmette Guérin (BCG) vaccine is the only currently available vaccine against TB. However, it does not protect adults. Th1 and Th17 cells are crucial for TB control, as well as the neutrophils that are directly involved in DC trafficking to the draining lymph nodes and the activation of T lymphocytes during infection. Although several studies have shown the importance of neutrophils during M. tuberculosis infection, none have shown its role in the development of a specific response to a vaccine. The vaccine mc2-CMX was shown to protect mice against M. tuberculosis challenge, mainly due to specific Th1 and Th17 cells. This study evaluated the importance of neutrophils in the generation of the Th1- and Th17-specific responses elicited by this vaccine. The vaccine injection induced a neutrophil rich lesion with a necrotic central area. The IL-17 KO mice did not generate vaccine-specific Th1 cells. The vaccinated IL-22 KO mice exhibited Th1- and Th17-specific responses. Neutrophil depletion during vaccination abrogated the induction of Th1-specific responses and prohibited the bacterial load reduction observed in the vaccinated animals. The results show, for the first time, the role of neutrophils in the generation of specific Th1 and Th17 cells in response to a tuberculosis vaccine.
Collapse
Affiliation(s)
- Monalisa M Trentini
- Laboratory of Immunopathology of Infectious Disease, Department of Microbiology, Immunology, Parasitology and Pathology, Institute of Tropical Disease and Public Health, Federal University of Goiás Goiânia, Brazil
| | - Fábio M de Oliveira
- Laboratory of Immunopathology of Infectious Disease, Department of Microbiology, Immunology, Parasitology and Pathology, Institute of Tropical Disease and Public Health, Federal University of Goiás Goiânia, Brazil
| | - André Kipnis
- Laboratory of Immunopathology of Infectious Disease, Department of Microbiology, Immunology, Parasitology and Pathology, Institute of Tropical Disease and Public Health, Federal University of Goiás Goiânia, Brazil
| | - Ana P Junqueira-Kipnis
- Laboratory of Immunopathology of Infectious Disease, Department of Microbiology, Immunology, Parasitology and Pathology, Institute of Tropical Disease and Public Health, Federal University of Goiás Goiânia, Brazil
| |
Collapse
|
31
|
Graves AJ, Hokey DA. Tuberculosis vaccine development: Shifting focus amid increasing development challenges. Hum Vaccin Immunother 2016; 11:1910-6. [PMID: 26125249 PMCID: PMC4635864 DOI: 10.1080/21645515.2015.1040955] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A new tuberculosis vaccine is needed to replace or enhance BCG, which induces variable protection against Mycobacterium tuberculosis pulmonary infections in adults. Development of new TB vaccine candidates is severely hampered by the lack of a correlate of immunity, unproven animal models, and limited funding opportunities. One candidate, MVA85A, recently failed to meet its efficacy endpoint goals despite promising early-phase trial data. As a result, some in the field believe we should now shift our focus away from product development and toward a research-oriented approach. Here, we outline our suggestions for this research-oriented strategy including diversification of the candidate pipeline, expanding measurements of immunity, improving pre-clinical animal models, and investing in combination pre-clinical/experimental medicine studies. As with any evolution, this change in strategy comes at a cost but may also represent an opportunity for advancing the field.
Collapse
|
32
|
de Oliveira FM, Trentini MM, Junqueira-Kipnis AP, Kipnis A. The mc2-CMX vaccine induces an enhanced immune response against Mycobacterium tuberculosis compared to Bacillus Calmette-Guérin but with similar lung inflammatory effects. Mem Inst Oswaldo Cruz 2016; 111:223-31. [PMID: 27074251 PMCID: PMC4830111 DOI: 10.1590/0074-02760150411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 02/24/2016] [Indexed: 01/15/2023] Open
Abstract
Although the attenuated Mycobacterium bovis Bacillus Calmette-Guérin (BCG) vaccine has been used since 1921, tuberculosis (TB) control still proceeds at a slow pace. The main reason is the variable efficacy of BCG protection against TB among adults, which ranges from 0-80%. Subsequently, the mc2-CMX vaccine was developed with promising results. Nonetheless, this recombinant vaccine needs to be compared to the standard BCG vaccine. The objective of this study was to evaluate the immune response induced by mc2-CMX and compare it to the response generated by BCG. BALB/c mice were immunised with both vaccines and challenged with Mycobacterium tuberculosis (Mtb). The immune and inflammatory responses were evaluated by ELISA, flow cytometry, and histopathology. Mice vaccinated with mc2-CMX and challenged with Mtb induced an increase in the IgG1 and IgG2 levels against CMX as well as recalled specific CD4+ T-cells that produced T-helper 1 cytokines in the lungs and spleen compared with BCG vaccinated and challenged mice. Both vaccines reduced the lung inflammatory pathology induced by the Mtb infection. The mc2-CMX vaccine induces a humoral and cellular response that is superior to BCG and is efficiently recalled after challenge with Mtb, although both vaccines induced similar inflammatory reductions.
Collapse
Affiliation(s)
- Fábio Muniz de Oliveira
- Universidade Federal de Goiás, Instituto de Patologia Tropical e Saúde
Pública, Laboratório de Bacteriologia Molecular, Goiânia, GO, Brasil
| | - Monalisa Martins Trentini
- Universidade Federal de Goiás, Instituto de Patologia Tropical e Saúde
Pública, Laboratório de Imunopatologia das Doenças Infecciosas, Goiânia, GO,
Brasil
| | - Ana Paula Junqueira-Kipnis
- Universidade Federal de Goiás, Instituto de Patologia Tropical e Saúde
Pública, Laboratório de Imunopatologia das Doenças Infecciosas, Goiânia, GO,
Brasil
| | - André Kipnis
- Universidade Federal de Goiás, Instituto de Patologia Tropical e Saúde
Pública, Laboratório de Bacteriologia Molecular, Goiânia, GO, Brasil
| |
Collapse
|
33
|
Riccomi A, Palma C. B Cells and Programmed Death-Ligand 2 Signaling Are Required for Maximal Interferon-γ Recall Response by Splenic CD4⁺ Memory T Cells of Mice Vaccinated with Mycobacterium tuberculosis Ag85B. PLoS One 2015; 10:e0137783. [PMID: 26379242 PMCID: PMC4574766 DOI: 10.1371/journal.pone.0137783] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/21/2015] [Indexed: 02/06/2023] Open
Abstract
CD4+ T cells producing interferon-γ are crucial for protection against Mycobacterium tuberculosis infection and are the cornerstone of tuberculosis vaccination and immunological diagnostic assays. Since emerging evidence indicates that B cells can modulate T cell responses to M. tuberculosis infection, we investigated the contribution of B cells in regulating interferon-γ recall response by memory Thelper1 cells specific for Ag85B, a leading candidate for tuberculosis sub-unit vaccines. We found that B cells were able to maximize the reactivation of CD4+ memory T cells and the interferon-γ response against ex vivo antigen recall in spleens of mice vaccinated with Ag85B. B cell-mediated increase of interferon-γ response was particular evident for high interferon-γ producer CD4+ memory T cells, likely because those T cells were required for triggering and amplification of B cell activation. A positive-feedback loop of mutual activation between B cells, not necessarily antigen-experienced but with integral phosphatidylinositol-3 kinase (PI3K) pathway and a peculiar interferon-γ-producing CD4highT cell subset was established. Programed death-ligand 2 (PD-L2), expressed both on B and the highly activated CD4high T cells, contributed to the increase of interferon-γ recall response through a PD1-independent pathway. In B cell-deficient mice, interferon-γ production and activation of Ag85B-specific CD4+ T cells were blunted against ex vivo antigen recall but these responses could be restored by adding B cells. On the other hand, B cells appeared to down-regulate interleukin-22 recall response. Our data point out that nature of antigen presenting cells determines quality and size of T cell cytokine recall responses. Thus, antigen presenting cells, including B cells, deserve to be considered for a better prediction of cytokine responses by peripheral memory T cells specific for M. tuberculosis antigens. We also invite to consider B cells, PD-L2 and PI3K as potential targets for therapeutic modulation of T cell cytokine responses for tuberculosis control.
Collapse
Affiliation(s)
- Antonella Riccomi
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| | - Carla Palma
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| |
Collapse
|
34
|
Marcus SA, Steinberg H, Talaat AM. Protection by novel vaccine candidates, Mycobacterium tuberculosis ΔmosR and ΔechA7, against challenge with a Mycobacterium tuberculosis Beijing strain. Vaccine 2015; 33:5633-5639. [PMID: 26363381 DOI: 10.1016/j.vaccine.2015.08.084] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/07/2015] [Accepted: 08/28/2015] [Indexed: 11/18/2022]
Abstract
Mycobacterium tuberculosis, the etiological agent of tuberculosis (TB), infects over two billion people, claiming around 1.5 million lives annually. The only vaccine approved for clinical use against this disease is the Bacillus Calmette-Guérin (BCG) vaccine. Unfortunately, BCG has limited efficacy against the adult, pulmonary form of tuberculosis. This vaccine was developed from M. bovis with antigen expression and host specificity that differ from M. tuberculosis. To address these problems, we have designed two novel, live attenuated vaccine (LAV) candidates on an M. tuberculosis background: ΔmosR and ΔechA7. These targeted genes are important to M. tuberculosis pathogenicity during infection. To examine the efficacy of these strains, C57BL/6 mice were vaccinated subcutaneously with either LAV, BCG, or PBS. Both LAV strains persisted up to 16 weeks in the spleens or lungs of vaccinated mice, while eliciting minimal pathology prior to challenge. Following challenge with a selected, high virulence M. tuberculosis Beijing strain, protection was notably greater for both groups of LAV vaccinated animals as compared to BCG at both 30 and 60 days post-challenge. Additionally, vaccination with either ΔmosR or ΔechA7 elicited an immune response similar to BCG. Although these strains require further development to meet safety standards, this first evidence of protection by these two new, live attenuated vaccine candidates shows promise.
Collapse
Affiliation(s)
- Sarah A Marcus
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Howard Steinberg
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Adel M Talaat
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
35
|
Bali P, Tousif S, Das G, Van Kaer L. Strategies to improve BCG vaccine efficacy. Immunotherapy 2015; 7:945-8. [DOI: 10.2217/imt.15.60] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Prerna Bali
- Special Center for Molecular Medicine, Jawaharlal Nehru University, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sultan Tousif
- Special Center for Molecular Medicine, Jawaharlal Nehru University, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Gobardhan Das
- Special Center for Molecular Medicine, Jawaharlal Nehru University, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Luc Van Kaer
- Department of Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
36
|
Hwang SA, Kruzel ML, Actor JK. CHO expressed recombinant human lactoferrin as an adjuvant for BCG. Int J Immunopathol Pharmacol 2015; 28:452-68. [PMID: 26315722 DOI: 10.1177/0394632015599832] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/15/2015] [Indexed: 01/31/2023] Open
Abstract
Lactoferrin (LF), an iron binding protein with immune modulatory activities, has adjuvant activity to enhance vaccine efficacy. Tuberculosis (TB) is a pulmonary disease caused by the pathogen Mycobacterium tuberculosis (MTB). Progressive TB disease is clinically defined by damaging pulmonary pathology, a result of inflammation due to immune reactivity. The current vaccine for TB, an attenuated strain of Mycobacterium bovis, Bacillus Calmette Guerin (BCG), has only limited efficacy to prevent adult pulmonary TB. This study examines a Chinese hamster ovary (CHO) expressed recombinant human LF (rHLF) to boost efficacy of the BCG vaccine and delay early pathology post infectious challenge. C57BL/6 mice were immunized with BCG, or BCG admixed with either rHLF or bovine LF (bLF; internal control), or remained unvaccinated. Mice were then aerosol challenged with Erdman MTB. All vaccinated mice demonstrated decreased organ bacterial load up to 19 weeks post infection compared with non-vaccinated controls. Furthermore, mice receiving bLF or rHLF supplemented BCG vaccines showed a modest decrease in lung pathology developed over time, compared to the BCG vaccine alone. While mice vaccinated with BCG/rHLF demonstrated increased general lung inflammation at day 7, it occurred without noticeable increase in pro-inflammatory cytokines. At later times, decreased pathology in the rHLF groups correlated with decreased inflammatory cytokines. Splenic recall to BCG antigens showed BCG/rHLF vaccination increased production of IFN-γ, IL-6, and GM-CSF compared to naïve, BCG, and BCG/bLF groups. Analysis of T cell stimulating functions of bone marrow derived macrophages and dendritic cells treated with BCG/bLF or BCG/rHLF showed decreases in IL-10 production when co-cultured with sensitized CD4 and CD8 T cells, compared to those cultured with macrophages/dendritic cells treated with BCG without LF. These results indicate that addition of rHLF to the BCG vaccine can modulate development of host pathology early post infectious challenge, most likely through host immune regulation affecting hypersensitive responses.
Collapse
Affiliation(s)
- Shen-An Hwang
- Department of Pathology, Medical School, University of Texas-Houston Medical School, Houston, TX, USA
| | - Marian L Kruzel
- Department of Integrative Biology and Pharmacology, University of Texas-Houston Medical School, Houston, TX, USA
| | - Jeffrey K Actor
- Department of Pathology, Medical School, University of Texas-Houston Medical School, Houston, TX, USA
| |
Collapse
|