1
|
Stela M, Cichon N, Spławska A, Szyposzynska M, Bijak M. Therapeutic Potential and Mechanisms of Bee Venom Therapy: A Comprehensive Review of Apitoxin Applications and Safety Enhancement Strategies. Pharmaceuticals (Basel) 2024; 17:1211. [PMID: 39338374 PMCID: PMC11434713 DOI: 10.3390/ph17091211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Apitoxin therapy (BVT-bee venom therapy) is an emerging complementary treatment utilizing bee venom for various medical conditions. This review explores the potential and therapeutic mechanisms of bee venom, focusing on its chemical composition and the methods for its extraction and purification to enhance safety while maintaining bioactivity. Bee venom contains amphipathic peptides such as melittin and apamin, enzymes like phospholipase A2, and bioamines including histamine and catecholamines, contributing to its pleiotropic effects. The therapeutic applications of bee venom span anti-inflammatory, analgesic, antimicrobial, antiviral, neuroprotective, anti-arthritic, and anti-cancer activities. Clinical and laboratory studies have demonstrated its efficacy in treating chronic and autoimmune diseases, pain management, and improving quality of life. The immunogenic properties of bee venom necessitate ongoing research to mitigate allergic reactions, ensuring its safe and effective use in medical practice. This review summarizes the current state of research on bee venom therapy, highlighting its potential benefits and future research directions.
Collapse
Affiliation(s)
- Maksymilian Stela
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Natalia Cichon
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Aleksandra Spławska
- CBRN Reconnaissance and Decontamination Department, Military Institute of Chemistry and Radiometry, Antoniego Chrusciela "Montera" 105, 00-910 Warsaw, Poland
| | - Monika Szyposzynska
- CBRN Reconnaissance and Decontamination Department, Military Institute of Chemistry and Radiometry, Antoniego Chrusciela "Montera" 105, 00-910 Warsaw, Poland
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
2
|
Sadek KM, Shib NA, Taher ES, Rashed F, Shukry M, Atia GA, Taymour N, El-Nablaway M, Ibrahim AM, Ramadan MM, Abdelkader A, Abdo M, Imbrea I, Pet E, Ali LS, Abdeen A. Harnessing the power of bee venom for therapeutic and regenerative medical applications: an updated review. Front Pharmacol 2024; 15:1412245. [PMID: 39092234 PMCID: PMC11291246 DOI: 10.3389/fphar.2024.1412245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/24/2024] [Indexed: 08/04/2024] Open
Abstract
Honeybees have been helpful insects since ancient centuries, and this benefit is not limited to being a honey producer only. After the bee stings a person, pain, and swelling occur in this place, due to the effects of bee venom (BV). This is not a poison in the total sense of the word because it has many benefits, and this is due to its composition being rich in proteins, peptides, enzymes, and other types of molecules in low concentrations that show promise in the treatment of numerous diseases and conditions. BV has also demonstrated positive effects against various cancers, antimicrobial activity, and wound healing versus the human immunodeficiency virus (HIV). Even though topical BV therapy is used to varying degrees among countries, localized swelling or itching are common side effects that may occur in some patients. This review provides an in-depth analysis of the complex chemical composition of BV, highlighting the diverse range of bioactive compounds and their therapeutic applications, which extend beyond the well-known anti-inflammatory and pain-relieving effects, showcasing the versatility of BV in modern medicine. A specific search strategy was followed across various databases; Web of sciences, Scopus, Medline, and Google Scholar including in vitro and in vivo clinical studies.to outline an overview of BV composition, methods to use, preparation requirements, and Individual consumption contraindications. Furthermore, this review addresses safety concerns and emerging approaches, such as the use of nanoparticles, to mitigate adverse effects, demonstrating a balanced and holistic perspective. Importantly, the review also incorporates historical context and traditional uses, as well as a unique focus on veterinary applications, setting it apart from previous works and providing a valuable resource for researchers and practitioners in the field.
Collapse
Affiliation(s)
- Kadry M. Sadek
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Naira A. Shib
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Ehab S. Taher
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Fatema Rashed
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Gamal A. Atia
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| | - Noha Taymour
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammad El-Nablaway
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ateya M. Ibrahim
- Department of Administration and Nursing Education, College of Nursing, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Family and Community Health Nursing, Faculty of Nursing, Port Said University, Port Said, Egypt
| | - Mahmoud M. Ramadan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Afaf Abdelkader
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Egypt
- Department of Anatomy and Embryology, Faculty Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Ilinca Imbrea
- Department of Forestry, Faculty of Engineering and Applied Technologies, University of Life Sciences “King Mihai I” from Timisoara, Timisoara, Romania
| | - Elena Pet
- Department of Management and Rural Development, Faculty of Management and Rural Tourism, University of Life Sciences “King Mihai I” from Timisoara, Timisoara, Romania
| | - Lashin S. Ali
- Department of Basic Medical Sciences, Faculty of Dentistry, Al-Ahliyya Amman University, Amman, Jordan
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| |
Collapse
|
3
|
Dinu M, Tatu AL, Cocoș DI, Nwabudike LC, Chirilov AM, Stefan CS, Earar K, Dumitriu Buzia O. Natural Sources of Therapeutic Agents Used in Skin Conditions. Life (Basel) 2024; 14:492. [PMID: 38672762 PMCID: PMC11051086 DOI: 10.3390/life14040492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Skin conditions are numerous and often have a major impact on patients' quality of life, and effective and safe treatment is very important. The conventional drugs used for skin diseases are usually corticosteroids and antimicrobial products that can induce various side effects, especially with long-term use, which is why researchers are studying alternatives, especially biologically active natural products. Three products caught our attention: bee venom (BV), due to reported experimental results showing anti-inflammatory, antibacterial, antiviral, antioxidant, antimycotic, and anticancer effects, Ficus carica (FC) due to its demonstrated antioxidant, antibacterial, and anti-inflammatory action, and finally Geranium essential oil (GEO), with proven antifungal, antibacterial, anti-inflammatory, and antioxidant effects. Following a review of the literature, we produced this paper, which presents a review of the potential therapeutic applications of the three products in combating various skin conditions and for skin care, because BV, FC, and GEO have common pharmacological actions (anti-inflammatory, antibacterial, and antioxidant). We also focused on studying the safety of the topical use of BV, FC, and GEO, and new approaches to this. This paper presents the use of these natural therapeutic agents to treat patients with conditions such as vitiligo, melasma, and melanoma, as well as their use in treating dermatological conditions in patients with diabetes.
Collapse
Affiliation(s)
- Monica Dinu
- Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania; (M.D.); (C.S.S.); (K.E.); (O.D.B.)
| | - Alin Laurențiu Tatu
- Clinical Medical Department, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania;
- Dermatology Department, “Sf. Cuvioasa Parascheva” Clinical Hospital of Infectious Diseases, 800179 Galati, Romania
- Multidisciplinary Integrative Center for Dermatologic Interface Research MIC-DIR, 800010 Galati, Romania
| | - Dorin Ioan Cocoș
- Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania; (M.D.); (C.S.S.); (K.E.); (O.D.B.)
| | | | - Ana Maria Chirilov
- Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania; (M.D.); (C.S.S.); (K.E.); (O.D.B.)
| | - Claudia Simona Stefan
- Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania; (M.D.); (C.S.S.); (K.E.); (O.D.B.)
| | - Kamel Earar
- Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania; (M.D.); (C.S.S.); (K.E.); (O.D.B.)
| | - Olimpia Dumitriu Buzia
- Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania; (M.D.); (C.S.S.); (K.E.); (O.D.B.)
| |
Collapse
|
4
|
Goswami S, Chowdhury JP. Antiviral attributes of bee venom as a possible therapeutic approach against SARS-CoV-2 infection. Future Virol 2023:10.2217/fvl-2023-0127. [PMID: 37970095 PMCID: PMC10630947 DOI: 10.2217/fvl-2023-0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/05/2023] [Indexed: 11/17/2023]
Abstract
The unprecedented scale of the SARS-CoV-2 pandemic has driven considerable investigation into novel antiviral treatments since effective vaccination strategies cannot completely eradicate the virus. Apitherapy describes the medicinal use of bee venom, which may be an effective treatment against SARS-CoV-2 infection. Bee venom contains chemicals that are antimicrobial and stimulate the immune system to counteract viral load. The present review focuses on the use of bee venom as a possible treatment for COVID-19 and reviews studies on the pharmacodynamics of bee venom.
Collapse
Affiliation(s)
- Soumik Goswami
- Department of Zoology, Sunbeam Women's College, Varuna, Varanasi, 221002, India
| | | |
Collapse
|
5
|
Nelli F, Virtuoso A, Giannarelli D, Fabbri A, Giron Berrios JR, Marrucci E, Fiore C, Ruggeri EM. Effects of Acetaminophen Exposure on Outcomes of Patients Receiving Immune Checkpoint Inhibitors for Advanced Non-Small-Cell Lung Cancer: A Propensity Score-Matched Analysis. Curr Oncol 2023; 30:8117-8133. [PMID: 37754504 PMCID: PMC10527930 DOI: 10.3390/curroncol30090589] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/10/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023] Open
Abstract
(1) Background: Several studies have investigated potential interactions between immune checkpoint inhibitors (ICIs) and commonly prescribed medications. Although acetaminophen (APAP) has not been considered susceptible to interaction with ICIs, recent research has shown that detectable plasma levels of this drug can hinder the efficacy of PD-1/PD-L1 blockade therapies. A reliable assessment of the potential interaction between APAP and ICIs in advanced non-small cell lung cancer (NSCLC) patients would be worthwhile since it is often prescribed in this condition. We sought to evaluate the impact of the concomitant use of APAP in patients with advanced NSCLC on PD-1/PD-L1 blockade using real-world evidence. (2) Methods: This study included consecutive patients with histologically proven stage IV NSCLC who underwent first-line therapy with pembrolizumab as a single agent or in combination with platinum-based chemotherapy, or second-line therapy with pembrolizumab, nivolumab, or atezolizumab. The intensity of APAP exposure was classified as low (therapeutic intake lasting less than 24 h or a cumulative intake lower than 60 doses of 1000 mg) or high (therapeutic intake lasting more than 24 h or a total intake exceeding 60 doses of 1000 mg). The favorable outcome of anti-PD-1/PD-L1 therapies was defined by durable clinical benefit (DCB). Progression-free survival (PFS) and overall survival (OS) were relevant to our efficacy analysis. Propensity score matching (PSM) methods were applied to adjust for differences between the APAP exposure subgroups. (3) Results: Over the course of April 2018 to October 2022, 80 patients were treated with first-line pembrolizumab either as single-agent therapy or in combination with platinum-based chemotherapy. During the period from June 2015 to November 2022, 145 patients were given anti-PD-1/PD-L1 blockade therapy as second-line treatment. Subsequent efficacy analyses relied on adjusted PSM populations in both treatment settings. Multivariate testing revealed that only the level of APAP and corticosteroid intake had an independent effect on DCB in both treatment lines. Multivariate Cox regression analysis confirmed high exposure to APAP and immunosuppressive corticosteroid therapy as independent predictors of shorter PFS and OS in both treatment settings. (4) Conclusions: Our findings would strengthen the available evidence that concomitant intake of APAP blunts the efficacy of ICIs in patients with advanced NSCLC. The detrimental effects appear to depend on the cumulative dose and duration of exposure to APAP. The inherent shortcomings of the current research warrant confirmation in larger independent series.
Collapse
Affiliation(s)
- Fabrizio Nelli
- Thoracic Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, 01100 Viterbo, Italy
| | - Antonella Virtuoso
- Thoracic Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, 01100 Viterbo, Italy
| | - Diana Giannarelli
- Biostatistics Unit, Scientific Directorate, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Agnese Fabbri
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, 01100 Viterbo, Italy
| | - Julio Rodrigo Giron Berrios
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, 01100 Viterbo, Italy
| | - Eleonora Marrucci
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, 01100 Viterbo, Italy
| | - Cristina Fiore
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, 01100 Viterbo, Italy
| | - Enzo Maria Ruggeri
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, 01100 Viterbo, Italy
| |
Collapse
|
6
|
Abdelhamid MS, El Bohi KM, Sherif MH, Abdelhamid MS, Abdel-Daim MM, Elewa YHA, Metwally MMM, Albadrani GM, Najda A, El Abdel-Hamid S, Abu-Zeid EH. Apitoxin alleviates methyl mercury-induced peripheral neurotoxicity in male rats by regulating dorsal root ganglia neuronal degeneration and oxidative stress. Biomed Pharmacother 2023; 161:114521. [PMID: 36921536 DOI: 10.1016/j.biopha.2023.114521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Methylmercury (MeHg) toxicity is associated with extensive neuronal degeneration of dorsal root ganglia (DRG). This study aimed to assess the ameliorative effect of bee venom (BV) on methyl mercury chloride (MeHgCl)-induced peripheral neurotoxicity using DRGs in rats. Forty-eight adult male Sprague Dawley rats were allocated into four equal groups: G I: control (gavaged MilliQ water 1 ml/rat), G II: subcutaneously injected with BV (0.5 mg/kg b.wt), G III: gavaged MeHgCl (6.7 mg/kg b.wt), and G IV: received MeHgCl+BV. Dosing was done five times/week for 2 weeks. Ataxic behavior and visual impairments were significantly increased, whereas the movement behavior and motility gait were suppressed in the MeHgCl group. MeHgCl significantly decreased total antioxidant capacity (TAC) in DRG and significantly decreased the serum levels of glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD). Tumor necrosis factor-alpha (TNF-α) and interleukin 1β (IL-1β) levels were significantly elevated, whereas interleukin 10 (IL-10) levels were significantly decreased in the MeHgCl group compared with the control group. DRGs of the MeHgCl-exposed rats showed pyknotic shrunken neurons with perineural vacuolations, demyelination of nerve axons, and proliferation of the satellite cells. MeHgCl significantly induced a higher positive index ratio of Iba-1, SOX10, neurofilament, pan-neuron, and vimentin immunostaining in the DRG. BV administration significantly mitigated the MeHgCl-induced alterations in oxidative stress-related indices. BV modified the immunostaining of Iba-1, SOX10, neurofilament, pan-neuron, and vimentin-positive index ratio in the DRG of the MeHgCl group. Our findings acknowledged that BV could enhance in vivo neuroprotective effects against MeHgCl-induced DRGs damage in male rats.
Collapse
Affiliation(s)
- Moustafa S Abdelhamid
- Biochemistry division, Chemistry Department, Faculty of Science, Zagazig University, 44511, Egypt
| | - Khlood M El Bohi
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, 44511, Egypt
| | - Mohamed H Sherif
- Biochemistry division, Chemistry Department, Faculty of Science, Zagazig University, 44511, Egypt
| | - Manar S Abdelhamid
- Biochemistry division, Chemistry Department, Faculty of Science, Zagazig University, 44511, Egypt
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Yaser H A Elewa
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, 44511, Egypt; Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Mohamed M M Metwally
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Ghadeer M Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, B.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Agnieszka Najda
- Department of Vegetable Crops and Medicinal Plants University of Life Sciences in Lublin, 50 A Doświadczalna Street, 20-280 Lublin, Poland.
| | - Shereen El Abdel-Hamid
- Department of Behavior and Management of Animal, Poultry and Aquatics, Faculty of Veterinary Medicine, Zagazig University, 44511, Egypt
| | - Ehsan H Abu-Zeid
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, 44511, Egypt.
| |
Collapse
|
7
|
El-Seedi HR, El-Wahed AAA, Zhao C, Saeed A, Zou X, Guo Z, Hegazi AG, Shehata AA, El-Seedi HHR, Algethami AF, Al Naggar Y, Agamy NF, Rateb ME, Ramadan MFA, Khalifa SAM, Wang K. A Spotlight on the Egyptian Honeybee ( Apis mellifera lamarckii). Animals (Basel) 2022; 12:ani12202749. [PMID: 36290135 PMCID: PMC9597722 DOI: 10.3390/ani12202749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/15/2022] [Accepted: 09/27/2022] [Indexed: 12/20/2022] Open
Abstract
Simple Summary The Egyptian honeybee (Apis mellifera lamarckii) is one of the honeybee subspecies known for centuries since the ancient Egypt civilization. The subspecies of the Egyptian honeybee is distinguished by certain traits of appearance and behavior that were well-adapted to the environment and unique in a way that it is resistant to bee diseases, such as the Varroa disease. The subspecies is different than those found in Europe and is native to southern Egypt. Therefore, a special care should be paid to the vulnerable A. m. lamarckii subspecies and greater knowledge about the risk factors as well as conservation techniques will protect these bees. Additionally, more qualitative and quantitative measures will be taken to obtain deep insights into the A. m. lamarckii products’ chemical profile and biological characters. Abstract Egypt has an ongoing long history with beekeeping, which started with the ancient Egyptians making various reliefs and inscriptions of beekeeping on their tombs and temples. The Egyptian honeybee (Apis mellifera lamarckii) is an authentic Egyptian honeybee subspecies utilized in apiculture. A. m. lamarckii is a distinct honeybee subspecies that has a particular body color, size, and high levels of hygienic behavior. Additionally, it has distinctive characteristics; including the presence of the half-queens, an excessive number of swarm cells, high adaptability to climatic conditions, good resistance to specific bee diseases, including the Varro disorder, and continuous breeding during the whole year despite low productivity, using very little propolis, and tending to abscond readily. This review discusses the history of beekeeping in Egypt and its current situation in addition to its morphology, genetic analysis, and distinctive characters, and the defensive behaviors of native A. m. lamarckii subspecies.
Collapse
Affiliation(s)
- Hesham R. El-Seedi
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, P.O. Box 591, SE-751 24 Uppsala, Sweden
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Koom 32512, Egypt
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu Education Department, Nanjing 210024, China
- Correspondence: (H.R.E.-S.); (S.A.M.K.); Tel.: +46-700-43-43-43 (H.R.E.-S.)
| | - Aida A. Abd El-Wahed
- Department of Bee Research, Plant Protection Research Institute, Agricultural Research Centre, Giza 12627, Egypt
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ahmed G. Hegazi
- Zoonotic Diseases Department, National Research Centre, Giza 12622, Egypt
| | - Awad A. Shehata
- Avian and Rabbit Diseases Department, Faculty of Veterinary Medicine, University of Sadat City, Menoufia 22857, Egypt
- PerNaturam GmbH, An der Trift 8, 56290 Gödenroth, Germany
- Prophy-Institute for Applied Prophylaxis, 59159 Bönen, Germany
| | | | - Ahmed F. Algethami
- Alnahal Aljwal Foundation Saudi Arabia, P.O. Box 617, Makkah 24211, Saudi Arabia
| | - Yahya Al Naggar
- Zoology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Neveen F. Agamy
- Nutrition Department, Food Analysis Division, High Institute of Public Health, Alexandria University, Alexandria 21561, Egypt
| | - Mostafa E. Rateb
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Mohamed F. A. Ramadan
- Central Agriculture Pesticides Laboratory, Pesticide Analysis Research Department, Agriculture Research Center, Giza 24221, Egypt
| | - Shaden A. M. Khalifa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
- Correspondence: (H.R.E.-S.); (S.A.M.K.); Tel.: +46-700-43-43-43 (H.R.E.-S.)
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| |
Collapse
|
8
|
Soltan-Alinejad P, Alipour H, Meharabani D, Azizi K. Therapeutic Potential of Bee and Scorpion Venom Phospholipase A2 (PLA2): A Narrative Review. IRANIAN JOURNAL OF MEDICAL SCIENCES 2022; 47:300-313. [PMID: 35919080 PMCID: PMC9339116 DOI: 10.30476/ijms.2021.88511.1927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/07/2020] [Accepted: 01/23/2021] [Indexed: 11/19/2022]
Abstract
Venomous arthropods such as scorpions and bees form one of the important groups with an essential role in medical entomology. Their venom possesses a mixture of diverse compounds, such as peptides, some of which have toxic effects, and enzymatic peptide Phospholipase A2 (PLA2) with a pharmacological potential in the treatment of a wide range of diseases. Bee and scorpion venom PLA2 group III has been used in immunotherapy, the treatment of neurodegenerative and inflammatory diseases. They were assessed for antinociceptive, wound healing, anti-cancer, anti-viral, anti-bacterial, anti-parasitic, and anti-angiogenesis effects. PLA2 has been identified in different species of scorpions and bees. The anti-leishmania, anti-bacterial, anti-viral, and anti-malarial activities of scorpion PLA2 still need further investigation. Many pieces of research have been stopped in the laboratory stage, and several studies need vast investigation in the clinical phase to show the pharmacological potential of PLA2. In this review, the medical significance of PLA2 from the venom of two arthropods, namely bees and scorpions, is discussed.
Collapse
Affiliation(s)
- Parisa Soltan-Alinejad
- Research Center for Health Sciences, Institute of Health, Department of Medical Entomology and Vector Control, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamzeh Alipour
- Research Center for Health Sciences, Institute of Health, Department of Medical Entomology and Vector Control, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Davood Meharabani
- Li Ka Shing Center for Health Research and Innovation, University of Alberta, Edmonton, AB, Canada,
Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kourosh Azizi
- Research Center for Health Sciences, Institute of Health, Department of Medical Entomology and Vector Control, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Park SY, Yang H, Ye M, Liu X, Shim I, Chang YT, Bae H. Neuroprotective effects of ex vivo-expanded regulatory T cells on trimethyltin-induced neurodegeneration in mice. J Neuroinflammation 2022; 19:143. [PMID: 35690816 PMCID: PMC9188044 DOI: 10.1186/s12974-022-02512-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 06/01/2022] [Indexed: 11/10/2022] Open
Abstract
Background Trimethyltin (TMT) is a potent neurotoxicant that leads to hippocampal neurodegeneration. Regulatory T cells (Tregs) play an important role in maintaining the immune balance in the central nervous system (CNS), but their activities are impaired in neurodegenerative diseases. In this study, we aimed to determine whether adoptive transfer of Tregs, as a living drug, ameliorates hippocampal neurodegeneration in TMT-intoxicated mice. Methods CD4+CD25+ Tregs were expanded in vitro and adoptively transferred to TMT-treated mice. First, we explored the effects of Tregs on behavioral deficits using the Morris water maze and elevated plus maze tests. Biomarkers related to memory formation, such as cAMP response element-binding protein (CREB), protein kinase C (PKC), neuronal nuclear protein (NeuN), nerve growth factor (NGF), and ionized calcium binding adaptor molecule 1 (Iba1) in the hippocampus were examined by immunohistochemistry after killing the mouse. To investigate the neuroinflammatory responses, the polarization status of microglia was examined in vivo and in vitro using real-time reverse transcription polymerase chain reaction (rtPCR) and Enzyme-linked immunosorbent assay (ELISA). Additionally, the inhibitory effects of Tregs on TMT-induced microglial activation were examined using time-lapse live imaging in vitro with an activation-specific fluorescence probe, CDr20. Results Adoptive transfer of Tregs improved spatial learning and memory functions and reduced anxiety in TMT-intoxicated mice. Additionally, adoptive transfer of Tregs reduced neuronal loss and recovered the expression of neurogenesis enhancing molecules in the hippocampi of TMT-intoxicated mice. In particular, Tregs inhibited microglial activation and pro-inflammatory cytokine release in the hippocampi of TMT-intoxicated mice. The inhibitory effects of TMT were also confirmed via in vitro live time-lapse imaging in a Treg/microglia co-culture system. Conclusions These data suggest that adoptive transfer of Tregs ameliorates disease progression in TMT-induced neurodegeneration by promoting neurogenesis and modulating microglial activation and polarization.
Collapse
Affiliation(s)
- Seon-Young Park
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, 02453, South Korea
| | - HyeJin Yang
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, 02453, South Korea
| | - Minsook Ye
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Xiao Liu
- Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Insop Shim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, 02453, South Korea
| | - Young-Tae Chang
- Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673, South Korea.,Center for Self-Assembly and Complexity, Institute for Basic Science (IBS), Pohang, 37673, South Korea
| | - Hyunsu Bae
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, 02453, South Korea.
| |
Collapse
|
10
|
dos Santos AT, Cruz GS, Baptista GR. Anti-inflammatory activities of arthropod peptides: a systematic review. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20200152. [PMID: 34795699 PMCID: PMC8564866 DOI: 10.1590/1678-9199-jvatitd-2020-0152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/09/2021] [Indexed: 01/21/2023] Open
Abstract
Peptides obtained from different animal species have gained importance recently due to research that aims to develop biopharmaceuticals with therapeutic potential. In this sense, arthropod venoms have drawn attention, not only because of their toxicity but mainly for the search for molecules with various bioactivities, including anti-inflammatory activity. The purpose of the present study is to gather data available in the literature on new peptides derived from arthropod species with anti-inflammatory potential. This systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Studies on peptides from arthropods that display anti-inflammatory activity were retrieved from PubMed, Scopus, Web of Science, and Google Scholar databases. The bibliographic research started in 2020 and searched papers without a limit on the publication date. The articles were analyzed using a search string containing the following terms: "Peptides" and "Anti-inflammatory", in combinations such as "Ant", "Bee", "Wasp", "Crab", "Shrimp", "Scorpion", "Spider", "Tick" and "Centipedes". Besides, a search was carried out in the databases with the terms: "Peptides", "Antitumor", or "Anticancer", and "Arthropods". Articles that met the inclusion and exclusion criteria totalized 171, and these served for data extraction. Additionally, the present review included anti-inflammatory peptides with anticancer properties. Peptides with confirmed anti-inflammatory activity were from insects (ants, bees, and wasps), crustaceans (shrimp and crabs), arachnids (scorpions, spiders, and ticks), and centipedes. These arthropod peptides act mainly by decreasing pro-inflammatory cytokines as analyzed in vitro and in vivo. Some showed significant antineoplastic activity, working in essential cellular pathways against malignant neoplasms.
Collapse
Affiliation(s)
- Ariane Teixeira dos Santos
- Graduate Program in Pharmaceutical Sciences, School of Pharmacy, Dentistry and Nursing, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
| | - Gabriela Silva Cruz
- Graduate Program in Pharmaceutical Sciences, School of Pharmacy, Dentistry and Nursing, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
| | - Gandhi Rádis Baptista
- Graduate Program in Pharmaceutical Sciences, School of Pharmacy, Dentistry and Nursing, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
- Laboratory of Biochemistry and Biotechnology, Institute for Marine Sciences, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
| |
Collapse
|
11
|
Gong L, Liao L, Dai X, Xue X, Peng C, Li Y. The dual role of immune response in acetaminophen hepatotoxicity: Implication for immune pharmacological targets. Toxicol Lett 2021; 351:37-52. [PMID: 34454010 DOI: 10.1016/j.toxlet.2021.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 07/16/2021] [Accepted: 08/23/2021] [Indexed: 12/14/2022]
Abstract
Acetaminophen (APAP), one of the most widely used antipyretic and analgesic drugs, principally contributes to drug-induced liver injury when taken at a high dose. APAP-induced liver injury (AILI) results in extensive necrosis of hepatocytes along with the occurrence of multiple intracellular events such as metabolic activation, cell injury, and signaling pathway activation. However, the specific role of the immune response in AILI remains controversial for its complicated regulatory mechanisms. A variety of inflammasomes, immune cells, inflammatory mediators, and signaling transduction pathways are activated in AILI. These immune components play antagonistic roles in aggravating the liver injury or promoting regeneration. Recent experimental studies indicated that natural products showed remarkable therapeutic effects against APAP hepatotoxicity due to their favorable efficacy. Therefore, this study aimed to review the present understanding of the immune response in AILI and attempted to establish ties among a series of inflammatory cascade reactions. Also, the immune molecular mechanisms of natural products in the treatment of AILI were extensively reviewed, thus providing a fundamental basis for exploring the potential pharmacological targets associated with immune interventions.
Collapse
Affiliation(s)
- Lihong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Li Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xuyang Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xinyan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
12
|
Jo H, Baek H, Park SY, Goo B, Jung WS, Bae H, Nam SS. The Responsiveness of Bee Venom Phospholipase A2 on Regulatory T Cells Correlates with the CD11c +CD206 +Population in Human Peripheral Blood Mononuclear Cells. Toxins (Basel) 2021; 13:717. [PMID: 34679010 PMCID: PMC8539571 DOI: 10.3390/toxins13100717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/25/2021] [Accepted: 09/30/2021] [Indexed: 11/17/2022] Open
Abstract
Bee venom phospholipase A2 (bvPLA2) has been reported to have therapeutic effects such as neuroprotection, anti-inflammation, anti-nociception, anti-cancer properties, caused by increasing regulatory T cells (Tregs). The mechanism of Tregs modulation by bvPLA2 has been demonstrated by binding with the mannose receptor, CD206 in experimental models of several diseases. However, it remains unknown whether this mechanism can also be applied in human blood. In this study, we collected peripheral blood samples from healthy donors and analyzed the percentages of monocyte-derived dendritic cells with CD206 (CD206+ DCs) before expansion, the proportion of Tregs, and the subpopulations after expansion treated with bvPLA2 or PBS using flow cytometry and the correlations among them. The percentage of Tregs tended to be higher in the bvPLA2 group than in the control group. There were significant positive correlations between the CD206 population in hPBMC and the proportions of Tregs treated with bvPLA2, especially in the Treg fold change comparing the increase ratio of Tregs in bvPLA2 and in PBS. These findings indicate that bvPLA2 increased the proportion of Tregs in healthy human peripheral blood and the number of CD206+ DCs could be a predictor of the bvPLA2 response of different individuals.
Collapse
Affiliation(s)
- Heejin Jo
- Chaum Life Center, Department of Korean Medicine, CHA University School of Medicine, Seoul 06062, Korea;
| | - Hyunjung Baek
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02453, Korea; (H.B.); (S.-Y.P.)
| | - Seon-Young Park
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02453, Korea; (H.B.); (S.-Y.P.)
| | - Bonhyuk Goo
- Department of Acupuncture & Moxibustion, Kyung Hee University Hospital at Gangdong, Seoul 05278, Korea;
| | - Woo-Sang Jung
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Hyunsu Bae
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02453, Korea; (H.B.); (S.-Y.P.)
| | - Sang-Soo Nam
- Department of Acupuncture & Moxibustion, Kyung Hee University Hospital at Gangdong, Seoul 05278, Korea;
| |
Collapse
|
13
|
Khalil A, Elesawy BH, Ali TM, Ahmed OM. Bee Venom: From Venom to Drug. Molecules 2021; 26:4941. [PMID: 34443529 PMCID: PMC8400317 DOI: 10.3390/molecules26164941] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 11/17/2022] Open
Abstract
Insects of the order Hymenoptera have a defensive substance that contains many biologically active compounds. Specifically, venom from honeybees (Apis mellifera) contains many enzymes and peptides that are effective against various diseases. Different research papers stated the possibility of using bee venom (a direct bee sting or in an injectable form) in treating several complications; either in vivo or in vitro. Other reports used the active fractions of bee venom clinically or at labratory scale. Many reports and publications have stated that bee venom and its constituents have multiple biological activities including anti-microbial, anti-protozoan, anti-cancer, anti-inflammatory, and anti-arthritic properties. The present review aims to refer to the use of bee venom itself or its fractions in treating several diseases and counteracting drug toxicities as an alternative protocol of therapy. The updated molecular mechanisms of actions of bee venom and its components are discussed in light of the previous updated publications. The review also summarizes the potential of venom loaded on nanoparticles as a drug delivery vehicle and its molecular mechanisms. Finally, the products of bee venom available in markets are also demonstrated.
Collapse
Affiliation(s)
- Abdelwahab Khalil
- Entomology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt;
| | - Basem H. Elesawy
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Tarek M. Ali
- Department of Physiology, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
- Department of Physiology, Faculty of Medicine, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Osama M. Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| |
Collapse
|
14
|
Kim JY, Jang HJ, Leem J, Kim GM. Protective Effects of Bee Venom-Derived Phospholipase A 2 against Cholestatic Liver Disease in Mice. Biomedicines 2021; 9:biomedicines9080992. [PMID: 34440196 PMCID: PMC8394029 DOI: 10.3390/biomedicines9080992] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 12/20/2022] Open
Abstract
Hepatocyte apoptosis and inflammation play important roles in cholestatic liver diseases. Bee venom-derived secretory phospholipase A2 (bvPLA2) has been shown to ameliorate various inflammatory diseases. However, whether bvPLA2 has a therapeutic effect against cholestatic liver disease has not been evaluated. Therefore, we investigated the effects of bvPLA2 on cholestatic liver injury and fibrosis in a murine model of 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet feeding. The administration of bvPLA2 ameliorated liver damage, cholestasis, and fibrosis in DDC diet-fed mice, as assessed by serum biochemical tests and histological examinations. In addition, bvPLA2 reduced myofibroblast accumulation, concomitant with suppression of transforming growth factor-β signaling cascade. The administration of bvPLA2 inhibited hepatocyte apoptosis in DDC diet-fed mice as represented by a reduction in the number of cells stained with terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling and suppression of caspase-3 activation. Moreover, bvPLA2 reduced cytokine production along with the inhibition of the nuclear factor kappa-B pathway. The number of regulatory T-cells was increased by bvPLA2, while the number of other immune cells, including neutrophils, macrophages, and CD8+ T-cells, was decreased. Our data indicate that the administration of bvPLA2 ameliorates cholestatic liver injury and fibrosis by inhibiting hepatocyte apoptosis and inflammation.
Collapse
Affiliation(s)
- Jung-Yeon Kim
- Department of Immunology, School of Medicine, Catholic University of Daegu, Daegu 42472, Korea;
| | - Hyo-Jeong Jang
- Department of Pediatrics, School of Medicine, Keimyung University, Daegu 42601, Korea;
| | - Jaechan Leem
- Department of Immunology, School of Medicine, Catholic University of Daegu, Daegu 42472, Korea;
- Correspondence: (J.L.); (G.-M.K.)
| | - Gyun-Moo Kim
- Department of Emergency Medicine, School of Medicine, Catholic University of Daegu, Daegu 42472, Korea
- Correspondence: (J.L.); (G.-M.K.)
| |
Collapse
|
15
|
Choi GM, Lee B, Hong R, Park SY, Cho DE, Yeom M, Park HJ, Bae H, Hahm DH. Bee venom phospholipase A2 alleviates collagen-induced polyarthritis by inducing Foxp3 + regulatory T cell polarization in mice. Sci Rep 2021; 11:3511. [PMID: 33568685 PMCID: PMC7876016 DOI: 10.1038/s41598-021-82298-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/19/2021] [Indexed: 11/18/2022] Open
Abstract
The mechanism underlying bee venom (BV) therapy is still controversial, with opinions ranging from constituent-based pharmacological action to homeopathic-like activity. The purpose of this study was to examine whether BV phospholipase A2 (bvPLA2), an enzymatic component of BV, is a novel anti-inflammatory and anti-arthritic mediator capable of stimulating CD25+ Foxp3+ regulatory T cell (Treg) polarization in a mouse model of human rheumatoid arthritis (RA). An experimental model of RA was established in male DBA/1 mouse by 2-week-interval injections of 100 μg type II collagen emulsified in complete (first injection) or incomplete Freund's adjuvant (second injection) at the base of the tail. During arthritis development, bvPLA2 (0.1, 0.5, 1.0 mg/kg) and/or Treg inhibitors such as anti-CD25 antibodies and peptide 60 (P60) were injected intraperitoneally for 5 weeks. Arthritic symptoms and the expansion of Tregs were then assessed by behavioral assessments, histological and micro-CT imaging, and flow cytometry. bvPLA2 injections significantly alleviated arthritic behaviors such as squeaking and joint swelling, consistent with changes seen on both histological and micro-CT images. The anti-arthritic effects of bvPLA2 were blocked by intraperitoneal injections of 0.25 mg/kg anti-CD25 antibody and 10 μg/kg P60, as determined by behavioral assessments. Flow cytometric analysis of dendritic cells, B cells, and major T cell subsets from spleens revealed a significant depletion of Tregs following anti-CD25 antibody, but not P60, treatment. bvPLA2 treatment exerted significant anti-inflammatory and anti-arthritic activities in a mouse model of RA via the induction of Tregs.
Collapse
Affiliation(s)
- Gwang-Muk Choi
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Bombi Lee
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Riwon Hong
- Department of Korean Medical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Seon-Young Park
- Department of Korean Medical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Da-Eun Cho
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Mijung Yeom
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hi-Joon Park
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Korean Medical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hyunsu Bae
- Department of Korean Medical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Dae-Hyun Hahm
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
- BioNanocomposite Research Center, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
16
|
Kasozi KI, Niedbała G, Alqarni M, Zirintunda G, Ssempijja F, Musinguzi SP, Usman IM, Matama K, Hetta HF, Mbiydzenyuy NE, Batiha GES, Beshbishy AM, Welburn SC. Bee Venom-A Potential Complementary Medicine Candidate for SARS-CoV-2 Infections. Front Public Health 2020; 8:594458. [PMID: 33363088 PMCID: PMC7758230 DOI: 10.3389/fpubh.2020.594458] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is characterized by severe cytokine storm syndrome following inflammation. SARS-CoV-2 directly interacts with angiotensin-converting enzyme 2 (ACE-2) receptors in the human body. Complementary therapies that impact on expression of IgE and IgG antibodies, including administration of bee venom (BV), have efficacy in the management of arthritis, and Parkinson's disease. A recent epidemiological study in China showed that local beekeepers have a level of immunity against SARS-CoV-2 with and without previous exposure to virus. BV anti-inflammatory properties are associated with melittin and phospholipase A2 (PLA2), both of which show activity against enveloped and non-enveloped viruses, including H1N1 and HIV, with activity mediated through antagonist activity against interleukin-6 (IL-6), IL-8, interferon-γ (IFN-γ), and tumor necrosis factor-α (TNF-α). Melittin is associated with the underexpression of proinflammatory cytokines, including nuclear factor-kappa B (NF-κB), extracellular signal-regulated kinases (ERK1/2), and protein kinase Akt. BV therapy also involves group III secretory phospholipase A2 in the management of respiratory and neurological diseases. BV activation of the cellular and humoral immune systems should be explored for the application of complementary medicine for the management of SARS-CoV-2 infections. BV "vaccination" is used to immunize against cytomegalovirus and can suppress metastases through the PLA2 and phosphatidylinositol-(3,4)-bisphosphate pathways. That BV shows efficacy for HIV and H1NI offers opportunity as a candidate for complementary therapy for protection against SARS-CoV-2.
Collapse
Affiliation(s)
- Keneth Iceland Kasozi
- Infection Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom.,School of Medicine, Kabale University, Kabale, Uganda
| | - Gniewko Niedbała
- Department of Biosystems Engineering, Faculty of Environmental Engineering and Mechanical Engineering, Poznan University of Life Sciences, Poznan, Poland
| | - Mohammed Alqarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Gerald Zirintunda
- Faculty of Agriculture and Animal Sciences, Busitema University Arapai Campus, Soroti, Uganda
| | - Fred Ssempijja
- Faculty of Biomedical Sciences, Kampala International University Western Campus, Bushenyi, Uganda
| | | | - Ibe Michael Usman
- Faculty of Biomedical Sciences, Kampala International University Western Campus, Bushenyi, Uganda
| | - Kevin Matama
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy, Kampala International University Western Campus, Bushenyi, Uganda
| | - Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ngala Elvis Mbiydzenyuy
- Department of Basic Medical Sciences, Michael Chilufya Sata School of Medicine, Copperbelt University, Ndola, Zambia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Amany Magdy Beshbishy
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Susan Christina Welburn
- Infection Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| |
Collapse
|
17
|
Investigation of anti-inflammatory effects of bee venom in experimentally induced adjuvant arthritis. Reumatologia 2020; 58:265-271. [PMID: 33227058 PMCID: PMC7667938 DOI: 10.5114/reum.2020.99764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 09/22/2020] [Indexed: 01/30/2023] Open
Abstract
Objectives Rheumatoid arthritis is a multisystemic inflammatory disease characterized by destruction of the joints. An effective treatment method of the disease has not been developed yet. The aim of the present study is to evaluate the effects of bee (Apis mellifera anatoliaca) venom (BV) on serum inflammatory parameters, serum antioxidant load and clinical parameters of experimentally induced adjuvant arthritis in rats. Material and methods A total of 35 Wistar albino male rats were used. The animals were divided into 5 groups. First group animals served as negative controls. The second, third, fourth and fifth groups were used for experimental arthritis induction. Following clinical development of arthritis, the first group was subcutaneously administered 0.2 ml of physiological saline, and the second, third and fourth groups were treated subcutaneously with 2 µg/kg, 4 µg/kg and 20 µg/kg once a week three times. Physiological saline injected fifth group animals were used as a sham-treatment group. Clinical observations and evaluation of arthritis were made at the 15th day, and at the end of the experiment. The levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase, paraoxonase, serum aryl esterase, high-sensitivity C reactive protein, interleukin 1β (IL-1β), interleukin 6 (IL-6), and tumor necrosis factor alpha (TNF-α) were determined in cardiac blood samples taken at the end of the 29th day. Results From the data, total oxidant level (TOL) and oxidative stress index (OSI) were calculated. Significant improvements were observed in the clinical signs of arthritis and inflammatory markers such as in IL-1β, TNF-α, IL-6 and TOL and OSI in the 20.0 µg/kg BV-administered group. Bee venom administration did not cause any significant increase in ALT and AST values or signs of liver toxicity. Conclusions Bee venom treatment was effective in alleviation of symptoms of the experimental rat adjuvant arthritis by means of clinical observation and serum inflammatory markers.
Collapse
|
18
|
Lin TY, Hsieh CL. Clinical Applications of Bee Venom Acupoint Injection. Toxins (Basel) 2020; 12:toxins12100618. [PMID: 32992601 PMCID: PMC7601520 DOI: 10.3390/toxins12100618] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 12/29/2022] Open
Abstract
Bee venom is a complex natural mixture with various pharmaceutical properties. Among these properties, its peptides and enzymes have potential medical therapy for pain relief and inflammation. In clinical settings, this therapy has been used widely to treat diseases by injecting into acupoints. In this article, we have conducted various research from PubMed, Cochrane Library, and Clinical Key from inception of July 2020. The results revealed that bee venom therapy has been reported effective in anti-inflammatory, antiapoptosis, and analgesic effects. Moreover, bee venom acupuncture has been commonly used for clinical disorders such as Parkinson disease, neuropathic pain, Alzheimer disease, intervertebral disc disease, spinal cord injury, musculoskeletal pain, arthritis, multiple sclerosis, skin disease and cancer.
Collapse
Affiliation(s)
- Ting-Yen Lin
- Department of Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan;
| | - Ching-Liang Hsieh
- Department of Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan;
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan
- Correspondence: ; Tel.: +886-2205-3366-3128
| |
Collapse
|
19
|
Kang GH, Lee S, Choi DB, Shin D, Kim J, Yang H, Bae H. Bee Venom Phospholipase A2 Ameliorates Atherosclerosis by Modulating Regulatory T Cells. Toxins (Basel) 2020; 12:toxins12100609. [PMID: 32977607 PMCID: PMC7598180 DOI: 10.3390/toxins12100609] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 01/02/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease caused by lipids and calcareous accumulations in the vascular wall due to an inflammatory reaction. Recent reports have demonstrated that regulatory T (Treg) cells have an important role as a new treatment for atherosclerosis. This study suggests that bee venom phospholipase A2 (bvPLA2) may be a potential therapeutic agent in atherosclerosis by inducing Treg cells. We examined the effects of bvPLA2 on atherosclerosis using ApoE-/- and ApoE-/-/Foxp3DTR mice. In this study, bvPLA2 increased Treg cells, followed by a decrease in lipid accumulation in the aorta and aortic valve and the formation of foam cells. Importantly, the effect of bvPLA2 was found to depend on Treg cells. This study suggests that bvPLA2 can be a potential therapeutic agent for atherosclerosis.
Collapse
|
20
|
Bee Venom Melittin Protects against Cisplatin-Induced Acute Kidney Injury in Mice via the Regulation of M2 Macrophage Activation. Toxins (Basel) 2020; 12:toxins12090574. [PMID: 32899913 PMCID: PMC7551791 DOI: 10.3390/toxins12090574] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 12/17/2022] Open
Abstract
Inflammation is an essential biological response that eliminates pathogenic bacteria and repairs tissue after injury. Acute kidney injury (AKI) is associated with systemic and intrarenal inflammation as the inflammatory process decreases renal function and promotes progression to advanced chronic kidney disease. Macrophages are key mediators of the inflammatory response; their activation influences the immune system and may have various effects. Classically activated type I macrophages (M1) produce a variety of pro-inflammatory cytokines at the lesion site. However, anti-inflammatory type II macrophages (M2) are alternatively activated upon exposure to anti-inflammatory cytokines and are associated with wound healing and tissue repair following AKI. Here, we used melittin from bee venom to enhance the polarization of M2 macrophages and promote renal recovery after AKI. Melittin was administered to mice intraperitoneally for 5 days at various concentrations (10, 50, and 100 µg/kg); serum creatinine and blood urea nitrogen (BUN) levels were analyzed 72 h after cisplatin administration to confirm renal dysfunction. Melittin inhibited the cisplatin-induced increase in creatinine and BUN, an indicator of renal dysfunction. The expression of M1 markers (CD16/32) decreased significantly, whereas that of M2 markers (CD206, Arg1nase I) increased after melittin administration. Consistently, tubular necrosis was substantially reduced in melittin-treated mice. Thus, melittin alleviates cisplatin-induced AKI by regulating M2 macrophage expression.
Collapse
|
21
|
Meligi NM, Ismail SA, Tawfik NS. Protective effects of honey and bee venom against lipopolysaccharide and carbon tetrachloride-induced hepatoxicity and lipid peroxidation in rats. Toxicol Res (Camb) 2020; 9:693-705. [PMID: 33178430 PMCID: PMC7640919 DOI: 10.1093/toxres/tfaa077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/07/2020] [Accepted: 09/09/2020] [Indexed: 11/12/2022] Open
Abstract
In the present study, the protective effects of honey and bee venom (BV) either independently or in combination against lipopolysaccharide (LPS) and carbon tetrachloride (CCl4)-induced hepatoxicity, lipid peroxidation, and hematological alterations in male albino rats were investigated. In addition, histopathological alterations of hepatic tissues induced by LPS/CCL4 were recorded. Sixty-four of male albino rats of average weight 120-150 g were included in this study. Rats were divided into eight equal groups of eight. The obtained results demonstrated that treatment with LPS/CCl4 caused an increase in the levels of alpha-fetoprotein, which was accompanied by changes in the hepatic function biomarkers that characterized by the increased levels of transaminases (AST, ALT). The results showed oxidative stress as assigned by the increase in lipid peroxide. Meantime detraction in the antioxidants, including glutathione peroxidase was observed. Interruptions in biochemical parameters accompanied by disturbances in hematological parameters and liver histopathology were resulted due to exposure to LPS/CCl4. This study showed the use of honey and BV provided a protective effect on hepatotoxicity induced by LPS/CCl4. This might have been occurred through the reduction of hepatic transaminases and the "Alpha-fetoprotein" in serum and the equilibration of the antioxidation system, thereby, inhibiting the reactive oxygen species accumulation. Honey and BV administration reestablish disturbed hematological parameters and liver histopathology persuaded by LPS/CCl4. More interesting, we demonstrated that using a combination of the honey and BV showed promising enhancement in their protective effects over the use of just one of the two reagents.
Collapse
Affiliation(s)
- Noha M Meligi
- Zoology Department, Faculty of Science, Minia University 61519, Minia, Egypt
| | - Suzan Alaa Ismail
- Zoology Department, Faculty of Science, Minia University 61519, Minia, Egypt
| | - Nagy S Tawfik
- Zoology Department, Faculty of Science, Minia University 61519, Minia, Egypt
| |
Collapse
|
22
|
Pucca MB, Cerni FA, Oliveira IS, Jenkins TP, Argemí L, Sørensen CV, Ahmadi S, Barbosa JE, Laustsen AH. Bee Updated: Current Knowledge on Bee Venom and Bee Envenoming Therapy. Front Immunol 2019; 10:2090. [PMID: 31552038 PMCID: PMC6743376 DOI: 10.3389/fimmu.2019.02090] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 08/19/2019] [Indexed: 12/13/2022] Open
Abstract
Honey bees can be found all around the world and fulfill key pollination roles within their natural ecosystems, as well as in agriculture. Most species are typically docile, and most interactions between humans and bees are unproblematic, despite their ability to inject a complex venom into their victims as a defensive mechanism. Nevertheless, incidences of bee stings have been on the rise since the accidental release of Africanized bees to Brazil in 1956 and their subsequent spread across the Americas. These bee hybrids are more aggressive and are prone to attack, presenting a significant healthcare burden to the countries they have colonized. To date, treatment of such stings typically focuses on controlling potential allergic reactions, as no specific antivenoms against bee venom currently exist. Researchers have investigated the possibility of developing bee antivenoms, but this has been complicated by the very low immunogenicity of the key bee toxins, which fail to induce a strong antibody response in the immunized animals. However, with current cutting-edge technologies, such as phage display, alongside the rise of monoclonal antibody therapeutics, the development of a recombinant bee antivenom is achievable, and promising results towards this goal have been reported in recent years. Here, current knowledge on the venom biology of Africanized bees and current treatment options against bee envenoming are reviewed. Additionally, recent developments within next-generation bee antivenoms are presented and discussed.
Collapse
Affiliation(s)
- Manuela B. Pucca
- Medical School, Federal University of Roraima, Boa Vista, Brazil
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Felipe A. Cerni
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Isadora S. Oliveira
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Timothy P. Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Lídia Argemí
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Christoffer V. Sørensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Shirin Ahmadi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
- Department of Biotechnology and Biosafety, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - José E. Barbosa
- Department of Biochemistry and Immunology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Andreas H. Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
23
|
El-Boshy M, BaSalamah MA, Ahmad J, Idris S, Mahbub A, Abdelghany AH, Almaimani RA, Almasmoum H, Ghaith MM, Elzubier M, Refaat B. Vitamin D protects against oxidative stress, inflammation and hepatorenal damage induced by acute paracetamol toxicity in rat. Free Radic Biol Med 2019; 141:310-321. [PMID: 31255668 DOI: 10.1016/j.freeradbiomed.2019.06.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/10/2019] [Accepted: 06/26/2019] [Indexed: 12/21/2022]
Abstract
Acute paracetamol (APAP) toxicity is a leading cause of liver, and less commonly renal, injuries through oxidative stress and inflammation. Albeit vitamin D (VD) is a well-known anti-oxidant and anti-inflammatory hormone, there is no report on its potential protective/therapeutic actions against APAP acute toxicity. This study, therefore, measured the interplay between APAP toxicity and the hepatorenal expressions of the VD-metabolising enzymes (Cyp2R1, Cyp27b1 & cyp24a1), receptor (VDR) and binding protein (VDBP) alongside the effects of VD treatment on APAP-induced hepatorenal injuries. Thirty-two male rats were distributed equally into negative (NC) and positive (PC) controls besides VD prophylactic (P-VD) and therapeutic (T-VD) groups. All groups, except the NC, received a single oral dose of APAP (1200 mg/kg). The P-VD also received by intraperitoneal injection two cycles of VD3 (1000 IU/Kg/day; 5 days/week) prior to, and a third round after, APAP administration. Similarly, the T-VD group received VD3 (3000 IU/Kg/day) for five successive days post-APAP intoxication. Euthanasia was on the sixth day post-APAP toxicity. The PC group had marked alterations in the hepatorenal biochemical parameters, upregulation in cellular cleaved caspase-3 as well as pronounced increase in the numbers of apoptotic/necrotic cells by TUNEL technique. The PC group plasma levels of 25-hydroxyvitamin D (25-OH VD) also declined markedly and coincided with significant inhibitions in the expression of Cyp2R1 and Cyp27b1 enzymes and VDR, whereas the VDBP and Cyp24a1 increased substantially, in the hepatorenal tissues at the gene and protein levels compared with the NC group. Coherently, the lipid peroxidation marker (MDA) and pro-inflammatory cytokines (IL1β, IL6, IL17A, IFN-γ & TNF-α) augmented significantly, while the anti-oxidative markers (GSH, GPx & CAT) and anti-inflammatory cytokines (IL10 & IL22) diminished substantially, in the PC hepatorenal tissues. Both VD regimens alleviated the APAP-induced hepatorenal damages and restored the 25-OH VD levels together with the hepatorenal expression of Cyp2R1, Cyp27b1, Cyp24a1, VDR and VDBP. Additionally, MDA and all the targeted pro-inflammatory cytokines declined, whereas all the anti-oxidative and anti-inflammatory markers increased, in both VD groups hepatorenal tissues and the results were significantly different than the PC group. Although the P-VD anti-inflammatory and anti-oxidative stress actions were more pronounced than the T-VD group, the results remained markedly abnormal than the NC group. In conclusion, this report is the first to reveal that the circulatory VD levels alongside the hepatorenal VD-metabolising enzymes and VDR are pathologically altered following acute APAP toxicity. Moreover, the prophylactic protocol showed better anti-oxidative and anti-inflammatory effects than the therapeutic regimen against APAP-induced hepatorenal injuries.
Collapse
Affiliation(s)
- Mohamed El-Boshy
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia; Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mohammad A BaSalamah
- Pathology Department, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, Makkah, Saudi Arabia
| | - Jawwad Ahmad
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia
| | - Shakir Idris
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia
| | - Amani Mahbub
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia
| | - Abdelghany H Abdelghany
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia; Department of Anatomy, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Riyad A Almaimani
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia
| | - Hussain Almasmoum
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia
| | - Mazen M Ghaith
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia
| | - Mohamed Elzubier
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia
| | - Bassem Refaat
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia.
| |
Collapse
|
24
|
Baek H, Yang H, Lee JH, Kang NH, Lee J, Bae H, Hwang DS. Prophylactic Effects of Bee Venom Phospholipase A2 in Lipopolysaccharide-Induced Pregnancy Loss. Toxins (Basel) 2019; 11:toxins11070404. [PMID: 31336883 PMCID: PMC6669565 DOI: 10.3390/toxins11070404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/11/2019] [Accepted: 07/11/2019] [Indexed: 11/23/2022] Open
Abstract
Spontaneous abortion represents a common form of embryonic loss caused by early pregnancy failure. In the present study, we investigated the prophylactic effects of bee venom phospholipase A2 (bvPLA2), a regulatory T cell (Treg) inducer, on a lipopolysaccharide (LPS)-induced abortion mouse model. Fetal loss, including viable implants, the fetal resorption rate, and the fetal weight, were measured after LPS and bvPLA2 treatment. The levels of serum and tissue inflammatory cytokines were determined. To investigate the involvement of the Treg population in bvPLA2-mediated protection against fetal loss, the effect of Treg depletion was evaluated following bvPLA2 and LPS treatment. The results clearly revealed that bvPLA2 can prevent fetal loss accompanied by growth restriction in the remaining viable fetus. When the LPS-induced abortion mice were treated with bvPLA2, Treg cells were significantly increased compared with those in the non-pregnant, PBS, and LPS groups. After LPS injection, the levels of proinflammatory cytokines were markedly increased compared with those in the PBS mouse group, while bvPLA2 treatment showed significantly decreased TNF-α and IFN-γ expression compared with that in the LPS group. The protective effects of bvPLA2 treatment were not detected in Treg-depleted abortion-prone mice. These findings suggest that bvPLA2 has protective effects in the LPS-induced abortion mouse model by regulating Treg populations.
Collapse
Affiliation(s)
- Hyunjung Baek
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02453, Korea
| | - HyeJin Yang
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02453, Korea
| | - Jong Hoon Lee
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02453, Korea
| | - Na-Hoon Kang
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul 02453, Korea
| | - Jinwook Lee
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul 02453, Korea
| | - Hyunsu Bae
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02453, Korea.
| | - Deok-Sang Hwang
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul 02453, Korea.
| |
Collapse
|
25
|
Möller C, Davis WC, Clark E, DeCaprio A, Marí F. Conodipine-P1-3, the First Phospholipases A 2 Characterized from Injected Cone Snail Venom. Mol Cell Proteomics 2019; 18:876-891. [PMID: 30765458 DOI: 10.1074/mcp.ra118.000972] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 02/06/2019] [Indexed: 12/30/2022] Open
Abstract
The phospholipase A2 (PLA2s) superfamily are ubiquitous small enzymes that catalyze the hydrolysis of phospholipids at the sn-2 ester bond. PLA2s in the venom of cone snails (conodipines, Cdpi) are composed of two chains termed as alpha and beta subunits. Conodipines are categorized within the group IX of PLA2s. Here we describe the purification and biochemical characterization of three conodipines (Cdpi-P1, -P2 and -P3) isolated from the injected venom of Conus purpurascens Using proteomics methods, we determined the full sequences of all three conodipines. Conodipine-P1-3 have conserved consensus catalytic domain residues, including the Asp/His dyad. Additionally, these enzymes are expressed as a mixture of proline hydroxylated isoforms. The activities of the native Conodipine-Ps were evaluated by conventional colorimetric and by MS-based methods, which provide the first detailed cone snail venom conodipine activity monitored by mass spectrometry. Conodipines can have medicinal applications such inhibition of cancer proliferation, bacterial and viral infections among others.
Collapse
Affiliation(s)
- Carolina Möller
- From the ‡Marine Biochemical Sciences, Chemical Sciences Division, National Institute of Standards and Technology, 331 Fort Johnson Road, Charleston, South Carolina, 29412
| | - W Clay Davis
- From the ‡Marine Biochemical Sciences, Chemical Sciences Division, National Institute of Standards and Technology, 331 Fort Johnson Road, Charleston, South Carolina, 29412
| | - Evan Clark
- §Department of Biomedical Sciences, Florida Atlantic University, Boca Raton, Florida, 33431
| | - Anthony DeCaprio
- ¶Department of Chemistry and Biochemistry, Florida International University, SW 8th St, Miami, Florida, 33119
| | - Frank Marí
- From the ‡Marine Biochemical Sciences, Chemical Sciences Division, National Institute of Standards and Technology, 331 Fort Johnson Road, Charleston, South Carolina, 29412;.
| |
Collapse
|
26
|
Zhang S, Liu Y, Ye Y, Wang XR, Lin LT, Xiao LY, Zhou P, Shi GX, Liu CZ. Bee venom therapy: Potential mechanisms and therapeutic applications. Toxicon 2018; 148:64-73. [PMID: 29654868 DOI: 10.1016/j.toxicon.2018.04.012] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/15/2018] [Accepted: 04/10/2018] [Indexed: 01/09/2023]
Abstract
Bee venom is a very complex mixture of natural products extracted from honey bee which contains various pharmaceutical properties such as peptides, enzymes, biologically active amines and nonpeptide components. The use of bee venom into the specific points is so called bee venom therapy, which is widely used as a complementary and alternative therapy for 3000 years. A growing number of evidence has demonstrated the anti-inflammation, the anti-apoptosis, the anti-fibrosis and the anti-arthrosclerosis effects of bee venom therapy. With these pharmaceutical characteristics, bee venom therapy has also been used as the therapeutic method in treating rheumatoid arthritis, amyotrophic lateral sclerosis, Parkinson's disease, Alzheimer's disease, liver fibrosis, atherosclerosis, pain and others. Although widely used, several cases still reported that bee venom therapy might cause some adverse effects, such as local itching or swelling. In this review, we summarize its potential mechanisms, therapeutic applications, and discuss its existing problems.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Yi Liu
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Yang Ye
- Department of Acupuncture and Moxibustion, Dongfang Hospital, Beijing University of Chinese Medicine, No. 6 Fangxingyuan 1st Block, Fengtai District, Beijing, 100078, China
| | - Xue-Rui Wang
- Department of Acupuncture and Moxibustion, Dongfang Hospital, Beijing University of Chinese Medicine, No. 6 Fangxingyuan 1st Block, Fengtai District, Beijing, 100078, China
| | - Li-Ting Lin
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Ling-Yong Xiao
- Department of Acupuncture and Moxibustion, Dongfang Hospital, Beijing University of Chinese Medicine, No. 6 Fangxingyuan 1st Block, Fengtai District, Beijing, 100078, China
| | - Ping Zhou
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Guang-Xia Shi
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Cun-Zhi Liu
- Department of Acupuncture and Moxibustion, Dongfang Hospital, Beijing University of Chinese Medicine, No. 6 Fangxingyuan 1st Block, Fengtai District, Beijing, 100078, China.
| |
Collapse
|
27
|
Hossen MS, Shapla UM, Gan SH, Khalil MI. Impact of Bee Venom Enzymes on Diseases and Immune Responses. Molecules 2016; 22:molecules22010025. [PMID: 28035985 PMCID: PMC6155781 DOI: 10.3390/molecules22010025] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 01/14/2023] Open
Abstract
Bee venom (BV) is used to treat many diseases and exhibits anti-inflammatory, anti-bacterial, antimutagenic, radioprotective, anti-nociceptive immunity promoting, hepatocyte protective and anti-cancer activity. According to the literature, BV contains several enzymes, including phospholipase A2 (PLA2), phospholipase B, hyaluronidase, acid phosphatase and α-glucosidase. Recent studies have also reported the detection of different classes of enzymes in BV, including esterases, proteases and peptidases, protease inhibitors and other important enzymes involved in carbohydrate metabolism. Nevertheless, the physiochemical properties and functions of each enzyme class and their mechanisms remain unclear. Various pharmacotherapeutic effects of some of the BV enzymes have been reported in several studies. At present, ongoing research aims to characterize each enzyme and elucidate their specific biological roles. This review gathers all the current knowledge on BV enzymes and their specific mechanisms in regulating various immune responses and physiological changes to provide a basis for future therapies for various diseases.
Collapse
Affiliation(s)
- Md Sakib Hossen
- Laboratory of Preventive and Integrative Biomedicine, Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh.
| | - Ummay Mahfuza Shapla
- Laboratory of Preventive and Integrative Biomedicine, Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh.
| | - Siew Hua Gan
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia.
| | - Md Ibrahim Khalil
- Laboratory of Preventive and Integrative Biomedicine, Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh.
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia.
| |
Collapse
|
28
|
Pak SC. An Introduction to the Toxins Special Issue on "Bee and Wasp Venoms: Biological Characteristics and Therapeutic Application". Toxins (Basel) 2016; 8:toxins8110315. [PMID: 27801836 PMCID: PMC5127112 DOI: 10.3390/toxins8110315] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 10/19/2016] [Indexed: 02/07/2023] Open
Affiliation(s)
- Sok Cheon Pak
- School of Biomedical Sciences, Charles Sturt University, Bathurst, NSW 2795, Australia.
| |
Collapse
|
29
|
Lu S, Shi G, Xu X, Wang G, Lan X, Sun P, Li X, Zhang B, Gu X, Ichim TE, Wang H. Human endometrial regenerative cells alleviate carbon tetrachloride-induced acute liver injury in mice. J Transl Med 2016; 14:300. [PMID: 27770815 PMCID: PMC5075169 DOI: 10.1186/s12967-016-1051-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 10/05/2016] [Indexed: 01/08/2023] Open
Abstract
Background The endometrial regenerative cell (ERC) is a novel type of adult mesenchymal stem cell isolated from menstrual blood. Previous studies demonstrated that ERCs possess unique immunoregulatory properties in vitro and in vivo, as well as the ability to differentiate into functional hepatocyte-like cells. For these reasons, the present study was undertaken to explore the effects of ERCs on carbon tetrachloride (CCl4)–induced acute liver injury (ALI). Methods An ALI model in C57BL/6 mice was induced by administration of intraperitoneal injection of CCl4. Transplanted ERCs were intravenously injected (1 million/mouse) into mice 30 min after ALI induction. Liver function, pathological and immunohistological changes, cell tracking, immune cell populations and cytokine profiles were assessed 24 h after the CCl4 induction. Results ERC treatment effectively decreased the CCl4-induced elevation of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities and improved hepatic histopathological abnormalities compared to the untreated ALI group. Immunohistochemical staining showed that over-expression of lymphocyte antigen 6 complex, locus G (Ly6G) was markedly inhibited, whereas expression of proliferating cell nuclear antigen (PCNA) was increased after ERC treatment. Furthermore, the frequency of CD4+ and CD8+ T cell populations in the spleen was significantly down-regulated, while the percentage of splenic CD4+CD25+FOXP3+ regulatory T cells (Tregs) was obviously up-regulated after ERC treatment. Moreover, splenic dendritic cells in ERC-treated mice exhibited dramatically decreased MHC-II expression. Cell tracking studies showed that transplanted PKH26-labeled ERCs engrafted to lung, spleen and injured liver. Compared to untreated controls, mice treated with ERCs had lower levels of IL-1β, IL-6, and TNF-α but higher level of IL-10 in both serum and liver. Conclusions Human ERCs protect the liver from acute injury in mice through hepatocyte proliferation promotion, as well as through anti-inflammatory and immunoregulatory effects.
Collapse
Affiliation(s)
- Shanzheng Lu
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Ganggang Shi
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Xiaoxi Xu
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Grace Wang
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Xu Lan
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Peng Sun
- Department of General Surgery, Affiliated Hospital of Weifang Medical University, Shandong, China
| | - Xiang Li
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Baoren Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Xiangying Gu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | | | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China. .,Tianjin General Surgery Institute, Tianjin, China.
| |
Collapse
|
30
|
Aksu EH, Özkaraca M, Kandemir FM, Ömür AD, Eldutar E, Küçükler S, Çomaklı S. Mitigation of paracetamol-induced reproductive damage by chrysin in male rats via reducing oxidative stress. Andrologia 2016; 48:1145-1154. [PMID: 26914515 DOI: 10.1111/and.12553] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2016] [Indexed: 12/27/2022] Open
Abstract
Paracetamol (PRC) is a nonsteroidal anti-inflammatory drug used widely as a painkiller for various diseases and as the symptomatic flu cure in several countries worldwide. PRC toxicity may occur under conditions of the overdose usage. Chrysin (CR) is a flavonoid that is naturally present in several plants, honey and propolis. The aim of this study was to investigate the effects of CR (at the doses of 25 mg kg-1 and 50 mg kg-1 ) pre-treatment over seven consecutive days against PRC-induced reproductive toxicity in male rats. Our results showed that PRC toxicity decreased the sperm motility, and increased dead sperm rate, abnormal sperm cell rate, apoptosis and MDA levels in testicular tissues. Pre-treatment with CR at the dose of 25 and 50 mg kg-1 for 7 days mitigated side effects of acute PRC toxicity in male reproductive system proportionally in a dose-dependent manner. This possible protection mechanism might be dependent on the antioxidant activity of CR. In conclusion, pre-treatment with CR at the dose of 25 and 50 mg kg-1 for 7 days can be the beneficial against PRC-induced reproductive toxicity proportionally in a dose-dependent manner.
Collapse
Affiliation(s)
- E H Aksu
- Department of Reproduction and Artificial Insemination, Veterinary Medicine Faculty, Atatürk University, Erzurum, Turkey
| | - M Özkaraca
- Department of Pathology, Veterinary Medicine Faculty, Atatürk University, Erzurum, Turkey
| | - F M Kandemir
- Department of Biochemistry, Veterinary Medicine Faculty, Atatürk University, Erzurum, Turkey
| | - A D Ömür
- Department of Reproduction and Artificial Insemination, Veterinary Medicine Faculty, Atatürk University, Erzurum, Turkey
| | - E Eldutar
- Department of Biochemistry, Veterinary Medicine Faculty, Atatürk University, Erzurum, Turkey
| | - S Küçükler
- Department of Biochemistry, Veterinary Medicine Faculty, Atatürk University, Erzurum, Turkey
| | - S Çomaklı
- Department of Pathology, Veterinary Medicine Faculty, Atatürk University, Erzurum, Turkey
| |
Collapse
|
31
|
Lee G, Bae H. Bee Venom Phospholipase A2: Yesterday's Enemy Becomes Today's Friend. Toxins (Basel) 2016; 8:48. [PMID: 26907347 PMCID: PMC4773801 DOI: 10.3390/toxins8020048] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/26/2016] [Accepted: 02/14/2016] [Indexed: 01/09/2023] Open
Abstract
Bee venom therapy has been used to treat immune-related diseases such as arthritis for a long time. Recently, it has revealed that group III secretory phospholipase A2 from bee venom (bee venom group III sPLA2) has in vitro and in vivo immunomodulatory effects. A growing number of reports have demonstrated the therapeutic effects of bee venom group III sPLA2. Notably, new experimental data have shown protective immune responses of bee venom group III sPLA2 against a wide range of diseases including asthma, Parkinson’s disease, and drug-induced organ inflammation. It is critical to evaluate the beneficial and adverse effects of bee venom group III sPLA2 because this enzyme is known to be the major allergen of bee venom that can cause anaphylactic shock. For many decades, efforts have been made to avoid its adverse effects. At high concentrations, exposure to bee venom group III sPLA2 can result in damage to cellular membranes and necrotic cell death. In this review, we summarized the current knowledge about the therapeutic effects of bee venom group III sPLA2 on several immunological diseases and described the detailed mechanisms of bee venom group III sPLA2 in regulating various immune responses and physiopathological changes.
Collapse
Affiliation(s)
- Gihyun Lee
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 1 Hoeki-Dong, Dongdaemoon-gu, Seoul 130-701, Korea.
| | - Hyunsu Bae
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 1 Hoeki-Dong, Dongdaemoon-gu, Seoul 130-701, Korea.
| |
Collapse
|
32
|
Preventive Effects of Bee Venom Derived Phospholipase A₂ on Oxaliplatin-Induced Neuropathic Pain in Mice. Toxins (Basel) 2016; 8:toxins8010027. [PMID: 26797636 PMCID: PMC4728549 DOI: 10.3390/toxins8010027] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 12/27/2022] Open
Abstract
Oxaliplatin, a chemotherapy drug used to treat colorectal cancer, induces specific sensory neurotoxicity signs that are aggravated by cold and mechanical stimuli. Here we examined the preventive effects of Bee Venom (BV) derived phospholipase A2 (bvPLA2) on oxaliplatin-induced neuropathic pain in mice and its immunological mechanism. The cold and mechanical allodynia signs were evaluated by acetone and von Frey hair test on the hind paw, respectively. The most significant allodynia signs were observed at three days after an injection of oxaliplatin (6 mg/kg, i.p.) and then decreased gradually to a normal level on days 7–9. The oxaliplatin injection also induced infiltration of macrophages and upregulated levels of the pro-inflammatory cytokine interleukin (IL)-1β in the lumbar dorsal root ganglia (DRG). Daily treatment with bvPLA2 (0.2 mg/kg, i.p.) for five consecutive days prior to the oxaliplatin injection markedly inhibited the development of cold and mechanical allodynia, and suppressed infiltration of macrophages and the increase of IL-1β level in the DRG. Such preventive effects of bvPLA2 were completely blocked by depleting regulatory T cells (Tregs) with CD25 antibody pre-treatments. These results suggest that bvPLA2 may prevent oxaliplatin-induced neuropathic pain by suppressing immune responses in the DRG by Tregs.
Collapse
|
33
|
Ye M, Chung HS, Lee C, Yoon MS, Yu AR, Kim JS, Hwang DS, Shim I, Bae H. Neuroprotective effects of bee venom phospholipase A2 in the 3xTg AD mouse model of Alzheimer's disease. J Neuroinflammation 2016; 13:10. [PMID: 26772975 PMCID: PMC4715334 DOI: 10.1186/s12974-016-0476-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/05/2016] [Indexed: 11/10/2022] Open
Abstract
Background Alzheimer’s disease (AD) is a severe neuroinflammatory disease. CD4+Foxp3+ regulatory T cells (Tregs) modulate various inflammatory diseases via suppressing Th cell activation. There are increasing evidences that Tregs have beneficial roles in neurodegenerative diseases. Previously, we found the population of Treg cells was significantly increased by bee venom phospholipase A2 (bvPLA2) treatment in vivo and in vitro. Methods To examine the effects of bvPLA2 on AD, bvPLA2 was administered to 3xTg-AD mice, mouse model of Alzheimer’s disease. The levels of amyloid beta (Aβ) deposits in the hippocampus, glucose metabolism in the brain, microglia activation, and CD4+ T cell infiltration were analyzed to evaluate the neuroprotective effect of bvPLA2. Results bvPLA2 treatment significantly enhanced the cognitive function of the 3xTg-AD mice and increased glucose metabolism, as assessed with 18F-2 fluoro-2-deoxy-D-glucose ([F-18] FDG) positron emission tomography (PET). The levels of Aβ deposits in the hippocampus were dramatically decreased by bvPLA2 treatment. This neuroprotective effect of bvPLA2 was associated with microglial deactivation and reduction in CD4+ T cell infiltration. Interestingly, the neuroprotective effects of bvPLA2 were abolished in Treg-depleted mice. Conclusions The present studies strongly suggest that the increase of Treg population by bvPLA2 treatment might inhibit progression of AD in the 3xTg AD mice.
Collapse
Affiliation(s)
- Minsook Ye
- Department of Physiology, College of Korean Medicine, Kyung Hee University, #1 Hoegi-dong, Dongdaemoon-ku, Seoul, 130-701, Republic of Korea.
| | - Hwan-Suck Chung
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), 70, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea.
| | - Chanju Lee
- Department of Physiology, College of Korean Medicine, Kyung Hee University, #1 Hoegi-dong, Dongdaemoon-ku, Seoul, 130-701, Republic of Korea.
| | - Moon Sik Yoon
- Department of Physiology, College of Korean Medicine, Kyung Hee University, #1 Hoegi-dong, Dongdaemoon-ku, Seoul, 130-701, Republic of Korea.
| | - A Ram Yu
- Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, University of Science and Technology, #215-4 Gongneug-dong, Nowon-ku, Seoul, 139-241, Republic of Korea.
| | - Jin Su Kim
- Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, University of Science and Technology, #215-4 Gongneug-dong, Nowon-ku, Seoul, 139-241, Republic of Korea.
| | - Deok-Sang Hwang
- Department of Obstetrics and Gynecology, College of Korean Medicine, Kyung Hee University, #1 Hoegi-dong, Dongdaemoon-ku, Seoul, 130-701, Republic of Korea.
| | - Insop Shim
- Acupuncture and Meridian Science Research Center, College of Korean Medical Science Graduate School, Kyung Hee University, #1 Hoegi-dong, Dongdaemoon-ku, Seoul, 130-701, Republic of Korea.
| | - Hyunsu Bae
- Department of Physiology, College of Korean Medicine, Kyung Hee University, #1 Hoegi-dong, Dongdaemoon-ku, Seoul, 130-701, Republic of Korea.
| |
Collapse
|
34
|
Chen RC, Xu LM, Du SJ, Huang SS, Wu H, Dong JJ, Huang JR, Wang XD, Feng WK, Chen YP. Lactobacillus rhamnosus GG supernatant promotes intestinal barrier function, balances T reg and T H 17 cells and ameliorates hepatic injury in a mouse model of chronic-binge alcohol feeding. Toxicol Lett 2016; 241:103-10. [DOI: 10.1016/j.toxlet.2015.11.019] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 02/07/2023]
|
35
|
The protective effect of bee venom on fibrosis causing inflammatory diseases. Toxins (Basel) 2015; 7:4758-72. [PMID: 26580653 PMCID: PMC4663532 DOI: 10.3390/toxins7114758] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/24/2015] [Accepted: 11/05/2015] [Indexed: 02/06/2023] Open
Abstract
Bee venom therapy is a treatment modality that may be thousands of years old and involves the application of live bee stings to the patient’s skin or, in more recent years, the injection of bee venom into the skin with a hypodermic needle. Studies have proven the effectiveness of bee venom in treating pathological conditions such as arthritis, pain and cancerous tumors. However, there has not been sufficient review to fully elucidate the cellular mechanisms of the anti-inflammatory effects of bee venom and its components. In this respect, the present study reviews current understanding of the mechanisms of the anti-inflammatory properties of bee venom and its components in the treatment of liver fibrosis, atherosclerosis and skin disease.
Collapse
|
36
|
Li D, Lee Y, Kim W, Lee K, Bae H, Kim SK. Analgesic Effects of Bee Venom Derived Phospholipase A(2) in a Mouse Model of Oxaliplatin-Induced Neuropathic Pain. Toxins (Basel) 2015; 7:2422-34. [PMID: 26131771 PMCID: PMC4516921 DOI: 10.3390/toxins7072422] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 06/11/2015] [Accepted: 06/23/2015] [Indexed: 12/20/2022] Open
Abstract
A single infusion of oxaliplatin, which is widely used to treat metastatic colorectal cancer, induces specific sensory neurotoxicity signs that are triggered or aggravated when exposed to cold or mechanical stimuli. Bee Venom (BV) has been traditionally used in Korea to treat various pain symptoms. Our recent study demonstrated that BV alleviates oxaliplatin-induced cold allodynia in rats, via noradrenergic and serotonergic analgesic pathways. In this study, we have further investigated whether BV derived phospholipase A2 (bvPLA2) attenuates oxaliplatin-induced cold and mechanical allodynia in mice and its mechanism. The behavioral signs of cold and mechanical allodynia were evaluated by acetone and a von Frey hair test on the hind paw, respectively. The significant allodynia signs were observed from one day after an oxaliplatin injection (6 mg/kg, i.p.). Daily administration of bvPLA2 (0.2 mg/kg, i.p.) for five consecutive days markedly attenuated cold and mechanical allodynia, which was more potent than the effect of BV (1 mg/kg, i.p.). The depletion of noradrenaline by an injection of N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride (DSP4, 50 mg/kg, i.p.) blocked the analgesic effect of bvPLA2, whereas the depletion of serotonin by injecting DL-p-chlorophenylalanine (PCPA, 150 mg/kg, i.p.) for three successive days did not. Furthermore, idazoxan (α2-adrenegic receptor antagonist, 1 mg/kg, i.p.) completely blocked bvPLA2-induced anti-allodynic action, whereas prazosin (α1-adrenegic antagonist, 10 mg/kg, i.p.) did not. These results suggest that bvPLA2 treatment strongly alleviates oxaliplatin-induced acute cold and mechanical allodynia in mice through the activation of the noradrenergic system, via α2-adrenegic receptors, but not via the serotonergic system.
Collapse
Affiliation(s)
- Dongxing Li
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdamoon-gu, Seoul 130-701, Korea.
| | - Younju Lee
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdamoon-gu, Seoul 130-701, Korea.
| | - Woojin Kim
- Department of East-West Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdamoon-gu, Seoul 130-701, Korea.
| | - Kyungjin Lee
- Department of Herbology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdamoon-gu, Seoul 130-701, Korea.
| | - Hyunsu Bae
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdamoon-gu, Seoul 130-701, Korea.
| | - Sun Kwang Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdamoon-gu, Seoul 130-701, Korea.
- Department of East-West Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdamoon-gu, Seoul 130-701, Korea.
| |
Collapse
|
37
|
Li SQ, Zhu S, Han HM, Lu HJ, Meng HY. IL-6 trans-signaling plays important protective roles in acute liver injury induced by acetaminophen in mice. J Biochem Mol Toxicol 2015; 29:288-97. [PMID: 25914167 DOI: 10.1002/jbt.21708] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/11/2015] [Accepted: 03/25/2015] [Indexed: 12/26/2022]
Abstract
Our study was undertaken to evaluate the important role of interleukin-6 (IL-6) trans-signaling in acetaminophen (AAP)-induced liver injury. A soluble gp130 protein (sgp130Fc) exclusively inhibits IL-6 trans-signaling, whereas an IL-6/soluble IL-6 receptor (sIL-6R) fusion protein (hyper-IL-6) mimics IL-6 trans-signaling. Using these tools, we investigated the role of IL-6 trans-signaling in AAP-induced liver injury. Blockade of IL-6 trans-signaling during AAP-induced liver injury remarkably increased the levels of serum aspartate aminotransferase and alanine aminotransferase; lowered the level of serum sIL-6R; aggravated liver injury; inhibited the expression of phosphorylation of STAT3 (pSTAT3), proliferating cell nuclear antigen, vascular endothelial growth factor, and glycogen synthesis; and induced the expression of Caspase3, cytochrome P450 2E1 (CYP2E1), and hepatocyte apoptosis in the liver of mice. In summary, our study suggested that IL-6 trans-signaling plays important protective roles by regulating the hepatocyte proliferation and apoptosis, angiogenesis, CYP2E1 expression, and glycogen metabolism during AAP-induced liver injury in mice.
Collapse
Affiliation(s)
- San-Qiang Li
- The Molecular Medicine Key Laboratory of Liver Injury and Repair, Medical College, Henan University of Science and Technology, Luoyang, 471003, People's Republic of China.
| | - Sha Zhu
- Department of Microbiology Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 45001, People's Republic of China
| | - Hong-Mei Han
- The Molecular Medicine Key Laboratory of Liver Injury and Repair, Medical College, Henan University of Science and Technology, Luoyang, 471003, People's Republic of China
| | - Hua-Jie Lu
- The Molecular Medicine Key Laboratory of Liver Injury and Repair, Medical College, Henan University of Science and Technology, Luoyang, 471003, People's Republic of China
| | - Hong-Ye Meng
- The Molecular Medicine Key Laboratory of Liver Injury and Repair, Medical College, Henan University of Science and Technology, Luoyang, 471003, People's Republic of China
| |
Collapse
|