1
|
Hendrycks W, Mullens N, Bakengesa J, Kabota S, Tairo J, Backeljau T, Majubwa R, Mwatawala M, De Meyer M, Virgilio M. Deterministic and stochastic effects drive the gut microbial diversity in cucurbit-feeding fruit flies (Diptera, Tephritidae). PLoS One 2025; 20:e0313447. [PMID: 39854335 PMCID: PMC11759365 DOI: 10.1371/journal.pone.0313447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/23/2024] [Indexed: 01/26/2025] Open
Abstract
Insect diversity is closely linked to the evolution of phytophagy, with most phytophagous insects showing a strong degree of specialisation for specific host plants. Recent studies suggest that the insect gut microbiome might be crucial in facilitating the dietary (host plant) range. This requires the formation of stable insect-microbiome associations, but it remains largely unclear which processes govern the assembly of insect microbiomes. In this study, we investigated the role of deterministic and stochastic processes in shaping the assembly of the larval microbiome of three tephritid fruit fly species (Dacus bivittatus, D. ciliatus, Zeugodacus cucurbitae). We found that deterministic and stochastic processes play a considerable role in shaping the larval gut microbiome. We also identified 65 microbial ASVs (Amplicon sequence variants) that were associated with these flies, most belonging to the families Enterobacterales, Sphingobacterales, Pseudomonadales and Betaproteobacterales, and speculate about their relationship with cucurbit specialisation. Our data suggest that the larval gut microbiome assembly fits the "microbiome on a leash" model.
Collapse
Affiliation(s)
- Wouter Hendrycks
- Department of Biology, Royal Museum for Central Africa (RMCA), Tervuren, Belgium
- Department of Biology, Evolutionary Ecology Group, University of Antwerp, Wilrijk, Belgium
| | - Nele Mullens
- Department of Biology, Royal Museum for Central Africa (RMCA), Tervuren, Belgium
- Department of Biology, Evolutionary Ecology Group, University of Antwerp, Wilrijk, Belgium
| | - Jackline Bakengesa
- Department of Crop Science and Horticulture, Sokoine University of Agriculture, Morogoro, Tanzania
- Department of Biology, University of Dodoma, Dodoma, Tanzania
| | - Sija Kabota
- Department of Crop Science and Horticulture, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Jenipher Tairo
- Department of Crop Science and Horticulture, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Thierry Backeljau
- Department of Biology, Evolutionary Ecology Group, University of Antwerp, Wilrijk, Belgium
- Department of Biology, Royal Belgian Institute of Natural Sciences (RBINS), Brussels, Belgium
| | - Ramadhani Majubwa
- Department of Crop Science and Horticulture, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Maulid Mwatawala
- Department of Crop Science and Horticulture, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Marc De Meyer
- Department of Biology, Royal Museum for Central Africa (RMCA), Tervuren, Belgium
| | | |
Collapse
|
2
|
Ge D, Yin C, Jing J, Li Z, Liu L. Relationship Between the Host Plant Range of Insects and Symbiont Bacteria. Microorganisms 2025; 13:189. [PMID: 39858957 PMCID: PMC11767274 DOI: 10.3390/microorganisms13010189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/21/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
The evolution of phytophagous insects has resulted in the development of feeding specializations that are unique to this group. The majority of current research on insect palatability has concentrated on aspects of ecology and biology, with relatively little attention paid to the role of insect gut symbiotic bacteria. Symbiont bacteria have a close relationship with their insect hosts and perform a range of functions. This research aimed to investigate the relationship between insect host plant range and gut symbiotic bacteria. A synthesis of the extant literature on the intestinal commensal bacteria of monophagous, oligophagous, and polyphagous tephritids revealed no evidence of a positive correlation between the plant host range and the diversity of larval intestinal microbial species. The gut symbionts of same species were observed to exhibit discrepancies between different literature sources, which were attributed to variations in multiple environmental factors. However, following beta diversity analysis, monophagy demonstrated the lowest level of variation in intestinal commensal bacteria, while polyphagous tephritids exhibited the greatest variation in intestinal commensal bacteria community variation. In light of these findings, this study proposes the hypothesis that exclusive or closely related plant hosts provide monophagy and oligophagy with a stable core colony over long evolutionary periods. The core flora is closely associated with host adaptations in monophagous and oligophagous tephritids, including nutritional and detoxification functions. This is in contrast to polyphagy, whose dominant colony varies in different environments. Our hypothesis requires further refinement of the data on the gut commensal bacteria of monophagy and oligophagy as the number of species and samples is currently limited.
Collapse
Affiliation(s)
- Doudou Ge
- College of Plant Protection, China Agricultural University, Beijing 100193, China; (D.G.); (C.Y.); (J.J.); (Z.L.)
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Chongwen Yin
- College of Plant Protection, China Agricultural University, Beijing 100193, China; (D.G.); (C.Y.); (J.J.); (Z.L.)
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- Sanya Institute, China Agricultural University, Sanya 572025, China
| | - Jiayu Jing
- College of Plant Protection, China Agricultural University, Beijing 100193, China; (D.G.); (C.Y.); (J.J.); (Z.L.)
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Zhihong Li
- College of Plant Protection, China Agricultural University, Beijing 100193, China; (D.G.); (C.Y.); (J.J.); (Z.L.)
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Lijun Liu
- College of Plant Protection, China Agricultural University, Beijing 100193, China; (D.G.); (C.Y.); (J.J.); (Z.L.)
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
3
|
Fan Z, Khan MM, Wang K, Li Y, Jin F, Peng J, Chen X, Kong W, Lv X, Chen X, Qiu B, Wang X. Disruption of midgut homeostasis by microplastics in Spodoptera frugiperda: Insights into inflammatory and oxidative mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137262. [PMID: 39842122 DOI: 10.1016/j.jhazmat.2025.137262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 01/05/2025] [Accepted: 01/16/2025] [Indexed: 01/24/2025]
Abstract
Microplastics have evolved as widespread contaminants in terrestrial and aquatic environments, raising significant environmental concerns due to their persistence and bioaccumulation. In this study, we investigated the toxicity of polyethylene microplastics (PE-MPs) on the agricultural insect, Spodoptera frugiperda. Maize leaves containing three sizes (0.5 μm, 5 μm, and 50 μm) of PE-MPs were fed to fall armyworm larvae for 12 days at concentrations of 1.25 g/ L, 5 g/L, and 20 g/L. The results showed that smaller size and higher concentration of microplastics led to increased toxicity. Furthermore, different sizes and maximum concentrations of PE-MPs were selected for subsequent experiments to observe changes in histological and enzymatic biomarkers, midgut microbiome, and metabolic responses. Following PE-MPs exposure, inflammation signs and oxidative stress were detected in the midgut. Significant changes were also observed in midgut microbiota and metabolomes, most related with oxidative stress, inflammatory disorders, and energy metabolism. These results provide evidence of midgut damage and alterations in the microbiota and metabolome of S. frugiperda because of PE-MPs exposure, highlighting the harm that microplastics can inflict on agricultural insects. Additionally, the study lays a theoretical foundation for future research on the transmission of microplastics through the food chain in agricultural ecosystems.
Collapse
Affiliation(s)
- Zeyun Fan
- Engineering Research Center of Biocontrol, Ministry of Education Guangdong Province, South China Agricultural University, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - Muhammad Musa Khan
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572000, China
| | - Kai Wang
- Department of Computational Medicine and Bioinformatics, School of Medicine, University of Michigan, Ann Arbor, MI 48109, United States
| | - Yihan Li
- Engineering Research Center of Biocontrol, Ministry of Education Guangdong Province, South China Agricultural University, Guangzhou 510640, China
| | - Fengliang Jin
- Engineering Research Center of Biocontrol, Ministry of Education Guangdong Province, South China Agricultural University, Guangzhou 510640, China
| | - Jing Peng
- Engineering Research Center of Biocontrol, Ministry of Education Guangdong Province, South China Agricultural University, Guangzhou 510640, China
| | - Xinyi Chen
- Engineering Research Center of Biocontrol, Ministry of Education Guangdong Province, South China Agricultural University, Guangzhou 510640, China
| | - Weizhen Kong
- Engineering Research Center of Biocontrol, Ministry of Education Guangdong Province, South China Agricultural University, Guangzhou 510640, China
| | - Xiaolu Lv
- Engineering Research Center of Biocontrol, Ministry of Education Guangdong Province, South China Agricultural University, Guangzhou 510640, China
| | - Xiaoyuan Chen
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - Baoli Qiu
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing 401331, China.
| | - Xingmin Wang
- Engineering Research Center of Biocontrol, Ministry of Education Guangdong Province, South China Agricultural University, Guangzhou 510640, China.
| |
Collapse
|
4
|
Higashi CHV, Patel V, Kamalaker B, Inaganti R, Bressan A, Russell JA, Oliver KM. Another tool in the toolbox: Aphid-specific Wolbachia protect against fungal pathogens. Environ Microbiol 2024; 26:e70005. [PMID: 39562330 DOI: 10.1111/1462-2920.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/28/2024] [Indexed: 11/21/2024]
Abstract
Aphids harbor nine common facultative symbionts, most mediating one or more ecological interactions. Wolbachia pipientis, well-studied in other arthropods, remains poorly characterized in aphids. In Pentalonia nigronervosa and P. caladii, global pests of banana, Wolbachia was initially hypothesized to function as a co-obligate nutritional symbiont alongside the traditional obligate Buchnera. However, genomic analyses failed to support this role. Our sampling across numerous populations revealed that more than 80% of Pentalonia aphids carried an M-supergroup strain of Wolbachia (wPni). The lack of fixation further supports a facultative status for Wolbachia, while high infection frequencies in these entirely asexual aphids strongly suggest Wolbachia confers net fitness benefits. Finding no correlation between Wolbachia presence and food plant use, we challenged Wolbachia-infected aphids with common natural enemies. Bioassays revealed that Wolbachia conferred significant protection against a specialized fungal pathogen (Pandora neoaphidis) but not against generalist pathogens or parasitoids. Wolbachia also improved aphid fitness in the absence of enemy challenge. Thus, we identified the first clear benefits for aphid-associated Wolbachia and M-supergroup strains specifically. Aphid-Wolbachia systems provide unique opportunities to merge key models of symbiosis to better understand infection dynamics and mechanisms underpinning symbiont-mediated phenotypes.
Collapse
Affiliation(s)
- Clesson H V Higashi
- Department of Entomology, University of Georgia, Athens, GA, USA
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Vilas Patel
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Bryan Kamalaker
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Rahul Inaganti
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Alberto Bressan
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI, USA
| | - Jacob A Russell
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Kerry M Oliver
- Department of Entomology, University of Georgia, Athens, GA, USA
| |
Collapse
|
5
|
Agarwal R, Althoff DM. Extreme specificity in obligate mutualism-A role for competition? Ecol Evol 2024; 14:e11628. [PMID: 38911491 PMCID: PMC11190587 DOI: 10.1002/ece3.11628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 06/25/2024] Open
Abstract
Obligate mutualisms, reciprocally obligate beneficial interactions, are some of the most important mutualisms on the planet, providing the basis for the evolution of the eukaryotic cell, the formation and persistence of terrestrial ecosystems and the establishment and expansion of coral reefs. In addition, these mutualisms can also lead to the diversification of interacting partner species. Accompanying this diversification is a general pattern of a high degree of specificity among interacting partner species. A survey of obligate mutualisms demonstrates that greater than half of these systems have only one or two mutualist species on each side of the interaction. This is in stark contrast to facultative mutualisms that can have dozens of interacting mutualist species. We posit that the high degree of specificity in obligate mutualisms is driven by competition within obligate mutualist guilds that limits species richness. Competition may be particularly potent in these mutualisms because mutualistic partners are totally dependent on each other's fitness gains, which may fuel interspecific competition. Theory and the limited number of empirical studies testing for the role of competition in determining specificity suggest that competition may be an important force that fuels the high degree of specificity. Further empirical research is needed to dissect the relative roles of trait complementarity, mutualism regulation, and competition among mutualist guild members in determining mutualism specificity at local scales.
Collapse
Affiliation(s)
- Renuka Agarwal
- Department of BiologySyracuse UniversitySyracuseNew YorkUSA
| | | |
Collapse
|
6
|
Arai H, Legeai F, Kageyama D, Sugio A, Simon JC. Genomic insights into Spiroplasma endosymbionts that induce male-killing and protective phenotypes in the pea aphid. FEMS Microbiol Lett 2024; 371:fnae027. [PMID: 38632047 DOI: 10.1093/femsle/fnae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 04/19/2024] Open
Abstract
The endosymbiotic bacteria Spiroplasma (Mollicutes) infect diverse plants and arthropods, and some of which induce male killing, where male hosts are killed during development. Male-killing Spiroplasma strains belong to either the phylogenetically distant Citri-Poulsonii or Ixodetis groups. In Drosophila flies, Spiroplasma poulsonii induces male killing via the Spaid toxin. While Spiroplasma ixodetis infects a wide range of insects and arachnids, little is known about the genetic basis of S. ixodetis-induced male killing. Here, we analyzed the genome of S. ixodetis strains in the pea aphid Acyrthosiphon pisum (Aphididae, Hemiptera). Genome sequencing constructed a complete genome of a male-killing strain, sAp269, consisting of a 1.5 Mb circular chromosome and an 80 Kb plasmid. sAp269 encoded putative virulence factors containing either ankyrin repeat, ovarian tumor-like deubiquitinase, or ribosome inactivating protein domains, but lacked the Spaid toxin. Further comparative genomics of Spiroplasma strains in A. pisum biotypes adapted to different host plants revealed their phylogenetic associations and the diversity of putative virulence factors. Although the mechanisms of S. ixodetis-induced male killing in pea aphids remain elusive, this study underlines the dynamic genome evolution of S. ixodetis and proposes independent acquisition events of male-killing mechanisms in insects.
Collapse
Affiliation(s)
- Hiroshi Arai
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki 305-0851, Japan
| | - Fabrice Legeai
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France
| | - Daisuke Kageyama
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki 305-0851, Japan
| | - Akiko Sugio
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France
| | | |
Collapse
|
7
|
Peng L, Hoban J, Joffe J, Smith AH, Carpenter M, Marcelis T, Patel V, Lynn-Bell N, Oliver KM, Russell JA. Cryptic community structure and metabolic interactions among the heritable facultative symbionts of the pea aphid. J Evol Biol 2023; 36:1712-1730. [PMID: 37702036 DOI: 10.1111/jeb.14216] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/07/2023] [Accepted: 07/18/2023] [Indexed: 09/14/2023]
Abstract
Most insects harbour influential, yet non-essential heritable microbes in their hemocoel. Communities of these symbionts exhibit low diversity. But their frequent multi-species nature raises intriguing questions on roles for symbiont-symbiont synergies in host adaptation, and on the stability of the symbiont communities, themselves. In this study, we build on knowledge of species-defined symbiont community structure across US populations of the pea aphid, Acyrthosiphon pisum. Through extensive symbiont genotyping, we show that pea aphids' microbiomes can be more precisely defined at the symbiont strain level, with strain variability shaping five out of nine previously reported co-infection trends. Field data provide a mixture of evidence for synergistic fitness effects and symbiont hitchhiking, revealing causes and consequences of these co-infection trends. To test whether within-host metabolic interactions predict common versus rare strain-defined communities, we leveraged the high relatedness of our dominant, community-defined symbiont strains vs. 12 pea aphid-derived Gammaproteobacteria with sequenced genomes. Genomic inference, using metabolic complementarity indices, revealed high potential for cooperation among one pair of symbionts-Serratia symbiotica and Rickettsiella viridis. Applying the expansion network algorithm, through additional use of pea aphid and obligate Buchnera symbiont genomes, Serratia and Rickettsiella emerged as the only symbiont community requiring both parties to expand holobiont metabolism. Through their joint expansion of the biotin biosynthesis pathway, these symbionts may span missing gaps, creating a multi-party mutualism within their nutrient-limited, phloem-feeding hosts. Recent, complementary gene inactivation, within the biotin pathways of Serratia and Rickettsiella, raises further questions on the origins of mutualisms and host-symbiont interdependencies.
Collapse
Affiliation(s)
- Linyao Peng
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Jessica Hoban
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Jonah Joffe
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Andrew H Smith
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Melissa Carpenter
- Department of Biodiversity, Earth, and Environmental Science, Drexel University, Philadelphia, Pennsylvania, USA
| | - Tracy Marcelis
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Vilas Patel
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | - Nicole Lynn-Bell
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | - Kerry M Oliver
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | - Jacob A Russell
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Fourie A, Venter SN, Slippers B, Fourie G. Pantoea bathycoeliae sp. nov and Sodalis sp. are core gut microbiome symbionts of the two-spotted stink bug. Front Microbiol 2023; 14:1284397. [PMID: 38098653 PMCID: PMC10720322 DOI: 10.3389/fmicb.2023.1284397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/04/2023] [Indexed: 12/17/2023] Open
Abstract
Stink bug species (Pentatomoidea superfamily) have developed an interdependence with obligate bacterial gut symbionts in specialized midgut crypts (M4 sub-region). Species of the Enterobacteriaceae family (predominantly Pantoea) are vertically transferred to their offspring and provide nutrients that cannot be obtained from plant sap food sources. However, the bacteria in the other gut compartments of stink bugs have rarely been investigated. The two-spotted stink bug, Bathycoelia distincta, is a serious pest of macadamias in South Africa. Nothing is currently known regarding its gut microbiome or how symbionts are transferred between insect generations. In this study, the consistency of B. distincta gut bacteria across geographic locations and life stages was determined with 16S rRNA metabarcoding, considering both the M4 and other gut compartments. A novel Pantoea species was found to be the primary M4 gut symbiont and is vertically transferred to the offspring. The other gut compartments had a low bacterial diversity and genera varied between stink bug populations but a Sodalis species was prominent in all populations. Sequence data of the M4 compartment were used to produce high-quality metagenome-assembled genomes (MAGs) for the Pantoea and Sodalis species. Functional analyses suggested a similar role in nutrient provision for the host, yet also unique metabolites produced by each species. The Sodalis sp. also had additional traits, such as secretion systems, that likely allowed it to establish itself in the host. The Pantoea species was described as Pantoea bathycoeliae sp. nov based on the rules of the SeqCode.
Collapse
Affiliation(s)
| | | | | | - Gerda Fourie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
9
|
Peng X, Wang H, Yang Z. Differences in Male-Killing Rickettsia Bacteria between Lineages of the Invasive Gall-Causing Pest Leptocybe invasa. INSECTS 2023; 14:757. [PMID: 37754725 PMCID: PMC10532318 DOI: 10.3390/insects14090757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/22/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023]
Abstract
(1) Background: Leptocybe invasa (Hymenoptera: Eulophidae) is a global invasive pest that seriously damages eucalyptus plants and has caused serious harm to forestry production in many countries. Two genotypically distinct lineages of L. invasa have been detected outside of Australia, namely, lineage A and lineage B. However, the composition and abundance of endosymbiotic bacteria in L. invasa are still unclear between lineages. Therefore, the purpose of this study was to compare the bacterial communities in female adults of L. invasa of different lineages distributed in the same domain; (2) Methods: The PacBio Sequel II platform was used to compare bacterial community composition between lineages of L. invasa by sequencing the V1-V9 region of the 16S rRNA gene, and fluorescence quantitative PCR was used to compare the relative expression of Rickettsia between lineages of L. invasa; (3) Results: A total of 437 operational taxonomic units (OTUs) were obtained. These OTUs were subdivided into 20 phyla, 32 classes, 77 orders, 129 families, and 217 genera. At the genus level, the dominant bacteria in lineage A and lineage B were Rickettsia and Bacteroides, respectively. There were differences in the bacterial community of L. invasa between lineages, and the abundance and relative expression of Rickettsia in lineage A were significantly higher than those in lineage B; (4) Conclusions: There were differences in the bacterial community of L. invasa between lineages, and the abundance and relative expression of Rickettsia in lineage A were significantly higher than those in lineage B.
Collapse
Affiliation(s)
| | | | - Zhende Yang
- Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China; (X.P.); (H.W.)
| |
Collapse
|
10
|
Liu Y, Zhao L, Qiu Z, Yuan H. The gut microbiota diversity of five Orthoptera (Insecta, Polyneoptera) insects determined by DNA metabarcoding. Biodivers Data J 2023; 11:e98162. [PMID: 38327358 PMCID: PMC10848783 DOI: 10.3897/bdj.11.e98162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
Most orthopteran insects are phytophagous and some are important pests in agriculture and forests. Many intestinal microflora of Orthoptera insects have been reported, primarily from Acridoidea and there have been few reports of other taxa. In this study, we collected 15 individuals representing five species (Ruspolialineosa, Tetrixjaponica, Erianthusversicolor, Gryllotalpaorientalis and Teleogryllusemma) belonging to five orthopteran superfamilies (Tettigonioidea, Tetrigoidea, Eumastacoidea, Gryllotalpoidea and Grylloidea) to characterise and compare the gut microbiota with greater taxonomic width by performing sequencing analysis of the 16S rRNA V4 region in gut material. A total of 606,053 high-quality sequences and 3,105 OTUs were acquired from 15 gut samples representing 24 phyla, 48 classes, 69 orders, 133 families and 219 genera. Firmicutes and bacteria were the most abundant phyla, followed by Bacteroidetes, Cyanobacteria, Actinobacteria and Acidobacteria. At the genus level, Serratia, Citrobacter, Wolbachia, Lactobacillus and Parabacteroides were the most predominant genera in R.lineosa, T.japonica, E.versicolor, G.orientalis and T.emma, respectively. Both Principal Coordinates Analysis (PCoA) and heatmap results revealed significant differences in bacterial community composition across species. Additionally, alpha diversity analysis indicated the bacterial richness was significantly different amongst the five species.
Collapse
Affiliation(s)
- Yantong Liu
- School of Basic Medical Sciences, Xi’an Medical University, xi'an, ChinaSchool of Basic Medical Sciences, Xi’an Medical Universityxi'anChina
| | - Lina Zhao
- College of Life Sciences, Shaanxi Normal University, xi'an, ChinaCollege of Life Sciences, Shaanxi Normal Universityxi'anChina
| | - Zhongying Qiu
- School of Basic Medical Sciences, Xi’an Medical University, xi'an, ChinaSchool of Basic Medical Sciences, Xi’an Medical Universityxi'anChina
| | - Hao Yuan
- School of Basic Medical Sciences, Xi’an Medical University, xi'an, ChinaSchool of Basic Medical Sciences, Xi’an Medical Universityxi'anChina
| |
Collapse
|
11
|
Chen R, Luo J, Zhu X, Wang L, Zhang K, Li D, Gao X, Niu L, Huangfu N, Ma X, Ji J, Cui J. Dynamic changes in species richness and community diversity of symbiotic bacteria in five reproductive morphs of cotton aphid Aphis gossypii Glover (Hemiptera: Aphididae). Front Microbiol 2023; 13:1086728. [PMID: 36713208 PMCID: PMC9877530 DOI: 10.3389/fmicb.2022.1086728] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/21/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction Reproductive polymorphism and symbiotic bacteria are commonly observed in aphids, but their interaction remains largely unclear. In polymorphic aphid species (Aphis gossypii), offspring of parthenogenetic females (PFs) develops into sexuparae which produces gynoparae and males successively. Gynoparae further produces sexual females (SFs), and these sexual females mate with males to produce offspring. Methods In this study, we investigated the dynamic changes of symbiotic bacteria during the above-mentioned five reproductive morph switch in A. gossypii via 16S rRNA sequencing technology. Results The results showed that species richness and community diversity of symbiotic bacteria in males were the highest. Proteobacteria was absolutely dominant bacterial phylum (with relative abundance of more than 90%) in the five reproductive morphs of A. gossypii, and Buchnera was absolutely dominant genus (with relative abundance of >90%), followed by Rhodococcus, Pseudomonas, and Pantoea. Male-killing symbiont Arsenophonus presented the highest relative abundance in gynoparae, a specific morph whose offsprings were exclusively sexual females. Both principal component analysis (PCA) and clustering analysis showed trans-generation similarity in microbial community structure between sexuparae and sexual females, between PFs and gynoparae. PICRUSt 2 analysis showed that symbiotic bacteria in the five reproductive morphs were mainly enriched in metabolic pathways. Discussion Reproductive morph switch induced by environmental changes might be associated with bacterial community variation and sexual polymorphism of aphids. This study provides a new perspective for further deciphering the interactions between microbes and reproductive polymorphism in host aphids.
Collapse
Affiliation(s)
- Ruifang Chen
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China,State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Junyu Luo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China,State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China,Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Xiangzhen Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Li Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Kaixin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China,Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Dongyang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xueke Gao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China,State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China,Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Lin Niu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Ningbo Huangfu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiaoyan Ma
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China,State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China,Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Jichao Ji
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China,State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China,Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China,*Correspondence: Jichao Ji,
| | - Jinjie Cui
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China,State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China,Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China,Jinjie Cui,
| |
Collapse
|
12
|
Aphid species specializing on milkweed harbor taxonomically similar bacterial communities that differ in richness and relative abundance of core symbionts. Sci Rep 2022; 12:21127. [PMID: 36477425 PMCID: PMC9729595 DOI: 10.1038/s41598-022-25554-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Host plant range is arguably one of the most important factors shaping microbial communities associated with insect herbivores. However, it is unclear whether host plant specialization limits microbial community diversity or to what extent herbivores sharing a common host plant evolve similar microbiomes. To investigate whether variation in host plant range influences the assembly of core herbivore symbiont populations we compared bacterial diversity across three milkweed aphid species (Aphis nerii, Aphis asclepiadis, Myzocallis asclepiadis) feeding on a common host plant (Asclepias syriaca) using 16S rRNA metabarcoding. Overall, although there was significant overlap in taxa detected across all three aphid species (i.e. similar composition), some structural differences were identified within communities. Each aphid species harbored bacterial communities that varied in terms of richness and relative abundance of key symbionts. However, bacterial community diversity did not vary with degree of aphid host plant specialization. Interestingly, the narrow specialist A. asclepiadis harbored significantly higher relative abundances of the facultative symbiont Arsenophonus compared to the other two aphid species. Although many low abundance microbes were shared across all milkweed aphids, key differences in symbiotic partnerships were observed that could influence host physiology or additional ecological variation in traits that are microbially-mediated. Overall, this study suggests overlap in host plant range can select for taxonomically similar microbiomes across herbivore species, but variation in core aphid symbionts within these communities may still occur.
Collapse
|
13
|
Yang T, Wang X, Zhou X. Microbiome Analysis of the Bamboo Aphid Melanaphis bambusae Infected with the Aphid Obligate Pathogen Conidiobolus obscurus (Entomophthoromycotina). INSECTS 2022; 13:insects13111040. [PMID: 36354864 PMCID: PMC9692958 DOI: 10.3390/insects13111040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 06/01/2023]
Abstract
Insect-associated microbes exert diverse effects on host fitness. This study provides insights into the microbiota of the bamboo aphid, Melanaphis bambusae, and their response to Conidiobolus obscurus infection. 16S rRNA and ITS sequencing data were used to analyze the bacterial and fungal samples associated with healthy, infected, and starved aphids. At ≥97% nucleotide similarity, the total reads were clustered into 79 bacteria and 97 fungi operational Taxonomic Units (OTUs). The phyla Proteobacteria and Ascomycota dominated the bacterial and fungal communities, respectively. The significant divergence in OTU distribution presented differential profiles of the microbiota in response to host conditions. Lower α-diversity indices were found in bacterial and fungal diversity when the aphids were experiencing fungal infection and starvation stresses, respectively. The β-diversity analyses of the communities showed significant differences among the three host conditions, demonstrating that aphid-associated microbiota could significantly shift in response to varying host conditions. Moreover, some OTUs increased under fungal infection, which potentially increased aphid susceptibility. Presumably, C. obscurus infection contributed to this increase by causing the disintegration of host tissues other than host starvation. In conclusion, understanding the differentiation of aphid microbiota caused by fungal entomopathogens helped facilitate the development of novel pest management strategies.
Collapse
|
14
|
Sentis A, Hemptinne J, Magro A, Outreman Y. Biological control needs evolutionary perspectives of ecological interactions. Evol Appl 2022; 15:1537-1554. [PMID: 36330295 PMCID: PMC9624075 DOI: 10.1111/eva.13457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 05/30/2024] Open
Abstract
While ecological interactions have been identified as determinant for biological control efficiency, the role of evolution remains largely underestimated in biological control programs. With the restrictions on the use of both pesticides and exotic biological control agents (BCAs), the evolutionary optimization of local BCAs becomes central for improving the efficiency and the resilience of biological control. In particular, we need to better account for the natural processes of evolution to fully understand the interactions of pests and BCAs, including in biocontrol strategies integrating human manipulations of evolution (i.e., artificial selection and genetic engineering). In agroecosystems, the evolution of BCAs traits and performance depends on heritable phenotypic variation, trait genetic architecture, selection strength, stochastic processes, and other selective forces. Humans can manipulate these natural processes to increase the likelihood of evolutionary trait improvement, by artificially increasing heritable phenotypic variation, strengthening selection, controlling stochastic processes, or overpassing evolution through genetic engineering. We highlight these facets by reviewing recent studies addressing the importance of natural processes of evolution and human manipulations of these processes in biological control. We then discuss the interactions between the natural processes of evolution occurring in agroecosystems and affecting the artificially improved BCAs after their release. We emphasize that biological control cannot be summarized by interactions between species pairs because pests and biological control agents are entangled in diverse communities and are exposed to a multitude of deterministic and stochastic selective forces that can change rapidly in direction and intensity. We conclude that the combination of different evolutionary approaches can help optimize BCAs to remain efficient under changing environmental conditions and, ultimately, favor agroecosystem sustainability.
Collapse
Affiliation(s)
- Arnaud Sentis
- INRAEAix Marseille University, UMR RECOVERAix‐en‐ProvenceFrance
| | - Jean‐Louis Hemptinne
- Laboratoire Évolution et Diversité biologiqueUMR 5174 CNRS/UPS/IRDToulouseFrance
- Université Fédérale de Toulouse Midi‐Pyrénées – ENSFEACastanet‐TolosanFrance
| | - Alexandra Magro
- Laboratoire Évolution et Diversité biologiqueUMR 5174 CNRS/UPS/IRDToulouseFrance
- Université Fédérale de Toulouse Midi‐Pyrénées – ENSFEACastanet‐TolosanFrance
| | | |
Collapse
|
15
|
Liu Q, Zhang H, Huang X. Strong Linkage Between Symbiotic Bacterial Community and Host Age and Morph in a Hemipteran Social Insect. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02114-5. [PMID: 36138209 DOI: 10.1007/s00248-022-02114-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
The relationships between symbionts and insects are complex, and symbionts usually have diverse ecological and evolutionary effects on their hosts. The phloem sap-sucking aphids are good models to study the interactions between insects and symbiotic microorganisms. Although aphids usually exhibit remarkable life cycle complexity, most previous studies on symbiotic diversity sampled only apterous viviparous adult females or very few morphs. In this study, high-throughput 16S rDNA amplicon sequencing was used to assess the symbiotic bacterial communities of eleven morphs or developmental stages of the social aphid Pseudoregma bambucicola. We found there were significant differences in bacterial composition in response to different morphs and developmental stages, and for the first time, we revealed male aphids hosted very different symbiotic composition featured with low abundance of dominant symbionts but high diversity of total symbionts. The relative abundance of Pectobacterium showed relatively stable across different types of samples, while that of Wolbachia fluctuated greatly, indicating the former may have a consistent function in this species and the latter may provide specific function for certain morphs or developmental stages. Our study presents new evidence of complexity of symbiotic associations and indicates strong linkage between symbiotic bacterial community and host age and morph.
Collapse
Affiliation(s)
- Qian Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hui Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaolei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
16
|
Guo L, Tang C, Gao C, Li Z, Cheng Y, Chen J, Wang T, Xu J. Bacterial and fungal communities within and among geographic samples of the hemp pest Psylliodes attenuata from China. Front Microbiol 2022; 13:964735. [PMID: 36147860 PMCID: PMC9485832 DOI: 10.3389/fmicb.2022.964735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/29/2022] [Indexed: 11/24/2022] Open
Abstract
The hemp flea beetle Psylliodes attenuata (Coleoptera: Chrysomelidae: Psylliodes) is a common pest of Cannabis sativa, including cultivars of both medicinal marijuana and industrial hemp. Both the larval and adult stages of this beetle can cause significant damages to C. sativa, resulting in substantial crop losses. At present, little is known about the bacterial and fungal community diversity among populations of this pest insect. In the present study, we obtained P. attenuata samples from nine field sites representing broad industrial hemp productions in China and analyzed their microbial communities using DNA metabarcoding. Bacterial sequences of all the samples were assigned to 3728 OTUs, which belonged to 45 phyla, 1058 genera and 1960 known species. The most common genera were Rickettsia, Wolbachia, and Candidatus_Brownia. Fungal sequences of all the samples were assigned to 910 OTUs, which belonged to 9 phyla, 308 genera and 464 known species. The most common fungal genera were Cladosporium, Cutaneotrichosporon, and Aspergillus. Principal coordinate analysis revealed a significant difference in the bacterial and fungal community structure among the nine P. attenuata populations. Understanding the microbial symbionts may provide clues to help develop potential biocontrol techniques against this pest.
Collapse
Affiliation(s)
- Litao Guo
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
- *Correspondence: Litao Guo,
| | - Chao Tang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Chunsheng Gao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Zhimin Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Yi Cheng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Jia Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Tuhong Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Jianping Xu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
- Department of Biology, McMaster University, Hamilton, ON, Canada
- Jianping Xu, ; 0000-0003-2915-2780
| |
Collapse
|
17
|
Eason J, Mason L. Characterization of Microbial Communities from the Alimentary Canal of Typhaea stercorea (L.) (Coleoptera: Mycetophagidae). INSECTS 2022; 13:insects13080685. [PMID: 36005310 PMCID: PMC9408915 DOI: 10.3390/insects13080685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/18/2022] [Accepted: 07/24/2022] [Indexed: 12/10/2022]
Abstract
Simple Summary Hairy fungus beetle, Typhaea stercorea, is a secondary post-harvest pest of stored grains that thrives by feeding on mytoxigenic fungi. Bacterial communities residing in the alimentary canal of most insects contribute to their host’s development. While there are many examples, little is known about the role of bacterial communities in the alimentary canal of T. stercorea. The objectives of this study were to (1) characterize the microbial communities residing in T. stercorea and (2) compare the microbial compositions of field-collected and laboratory-reared populations. In this study, we were able to identify bacterial communities that possess mycolytic properties and track mark changes in the microbiota profiles associated with development. The genus Pseudomonas was enriched in T. stercorea larvae compared to adults. Furthermore, field-collected T. sterocrea adults had a lower species richness than both larva and adult laboratory-reared T. sterocrea. Moreover, the gut microbial compositions of field-collected and laboratory-reared populations were vastly different. Overall, our results suggest that the environment and physiology can shift the microbial composition in the alimentary canal of T. stercorea. Abstract The gut microbiomes of symbiotic insects typically mediate essential functions lacking in their hosts. Here, we describe the composition of microbes residing in the alimentary canal of the hairy fungus beetle, Typhaea stercorea (L.), at various life stages. This beetle is a post-harvest pest of stored grains that feeds on fungi and serves as a vector of mycotoxigenic fungi. It has been reported that the bacterial communities found in most insects’ alimentary canals contribute to nutrition, immune defenses, and protection from pathogens. Hence, bacterial symbionts may play a key role in the digestive system of T. stercorea. Using 16S rRNA amplicon sequencing, we examined the microbiota of T. stercorea. We found no difference in bacterial species richness between larvae and adults, but there were compositional differences across life stages (PERMANOVA:pseudo-F(8,2) = 8.22; p = 0.026). The three most abundant bacteria found in the alimentary canal of the larvae and adults included Pseudomonas (47.67% and 0.21%, respectively), an unspecified genus of the Enterobacteriaceae family (46.60 % and 90.97%, respectively), and Enterobacter (3.89% and 5.75%, respectively). Furthermore, Pseudomonas spp. are the predominant bacteria in the larval stage. Our data indicated that field-collected T. stercorea tended to have lower species richness than laboratory-reared beetles (Shannon: H = 5.72; p = 0.057). Furthermore, the microbial communities of laboratory-reared insects resembled one another, whereas field-collected adults exhibited variability (PERMANOVA:pseudo-F(10,3) = 4.41; p = 0.006). We provide evidence that the environment and physiology can shift the microbial composition in the alimentary canal of T. stercorea.
Collapse
|
18
|
Qin M, Jiang L, Kholmatov BR, Qiao G, Chen J. Phylosymbiotic Structures of the Microbiota in Mollitrichosiphum tenuicorpus (Hemiptera: Aphididae: Greenideinae). MICROBIAL ECOLOGY 2022; 84:227-239. [PMID: 34387702 PMCID: PMC9250915 DOI: 10.1007/s00248-021-01830-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Aphids harbor an array of symbionts that provide hosts with ecological benefits. Microbial community assembly generally varies with respect to aphid species, geography, and host plants. However, the influence of host genetics and ecological factors on shaping intraspecific microbial community structures has not been fully understood. In the present study, using Illumina sequencing of the V3 - V4 hypervariable region of the 16S rRNA gene, we characterized the microbial compositions associated with Mollitrichosiphum tenuicorpus from different regions and plants in China. The primary symbiont Buchnera aphidicola and the secondary symbiont Arsenophonus dominated the microbial flora in M. tenuicorpus. Ordination analyses and statistical tests suggested that geography and aphid genetics primarily contributed to the variation in the microbiota of M. tenuicorpus. We further confirmed the combined effect of aphid genetics and geography on shaping the structures of symbiont and secondary symbiont communities. Moreover, the significant correlation between aphid genetic divergence and symbiont community dissimilarity provides evidence for intraspecific phylosymbiosis in natural systems. Our study helped to elucidate the eco-evolutionary relationship between symbiont communities and aphids within one given species.
Collapse
Affiliation(s)
- Man Qin
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liyun Jiang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bakhtiyor R Kholmatov
- Institute of Zoology, Academy of Sciences Republic of Uzbekistan, Bagishamol Str., 232b, Tashkent, 100053, Uzbekistan
| | - Gexia Qiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jing Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
19
|
Qin M, Chen J, Jiang L, Qiao G. Insights Into the Species-Specific Microbiota of Greenideinae (Hemiptera: Aphididae) With Evidence of Phylosymbiosis. Front Microbiol 2022; 13:828170. [PMID: 35273583 PMCID: PMC8901875 DOI: 10.3389/fmicb.2022.828170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/20/2022] [Indexed: 11/25/2022] Open
Abstract
Aphids and their symbionts represent an outstanding model for studies of insect–symbiont interactions. The aphid microbiota can be shaped by aphid species, geography and host plants. However, the relative importance of phylogenetic and ecological factors in shaping microbial community structures is not well understood. Using Illumina sequencing of the V3–V4 hypervariable region of the 16S rRNA gene, we characterized the microbial compositions of 215 aphid colonies representing 53 species of the aphid subfamily Greenideinae from different regions and plants in China, Nepal, and Vietnam. The primary endosymbiont Buchnera aphidicola and secondary symbiont Serratia symbiotica dominated the microbiota of Greenideinae. We simultaneously explored the relative contribution of host identity (i.e., aphid genus and aphid species), geography and host plant to the structures of bacterial, symbiont and secondary symbiont communities. Ordination analyses and statistical tests highlighted the strongest impact of aphid species on the microbial flora in Greenideinae. Furthermore, we found a phylosymbiosis pattern in natural Greenideinae populations, in which the aphid phylogeny was positively correlated with microbial community dissimilarities. These findings will advance our knowledge of host-associated microbiota assembly across both host phylogenetic and ecological contexts.
Collapse
Affiliation(s)
- Man Qin
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Liyun Jiang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Gexia Qiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
20
|
Luo C, Belghazi M, Schmitz A, Lemauf S, Desneux N, Simon JC, Poirié M, Gatti JL. Hosting certain facultative symbionts modulates the phenoloxidase activity and immune response of the pea aphid Acyrthosiphon pisum. INSECT SCIENCE 2021; 28:1780-1799. [PMID: 33200579 DOI: 10.1111/1744-7917.12888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/08/2020] [Accepted: 11/01/2020] [Indexed: 06/11/2023]
Abstract
The pea aphid Acyrthosiphon pisum hosts different facultative symbionts (FS) which provide it with various benefits, such as tolerance to heat or protection against natural enemies (e.g., fungi, parasitoid wasps). Here, we investigated whether and how the presence of certain FS could affect phenoloxidase (PO) activity, a key component of insect innate immunity, under normal and stressed conditions. For this, we used clones of A. pisum of different genetic backgrounds (LL01, YR2 and T3-8V1) lacking FS or harboring one or two (Regiella insecticola, Hamiltonella defensa, Serratia symbiotica + Rickettsiella viridis). Gene expression and proteomics analyses of the aphid hemolymph indicated that the two A. pisum POs, PPO1 and PPO2, are expressed and translated into proteins. The level of PPO genes expression as well as the amount of PPO proteins and phenoloxidase activity in the hemolymph depended on both the aphid genotype and FS species. In particular, H. defensa and R. insecticola, but not S. symbiotica + R. viridis, caused a sharp decrease in PO activity by interfering with both transcription and translation. The microinjection of different types of stressors (yeast, Escherichia coli, latex beads) in the YR2 lines hosting different symbionts affected the survival rate of aphids and, in most cases, also decreased the expression of PPO genes after 24 h. The amount and activity of PPO proteins varied according to the type of FS and stressor, without clear corresponding changes in gene expression. These data demonstrate that the presence of certain FS influences an important component of pea aphid immunity.
Collapse
Affiliation(s)
- Chen Luo
- Université Côte d'Azur, INRAE, CNRS, UMR Institut Sophia Agrobiotech (ISA), Sophia Antipolis, France
- Present address: State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Maya Belghazi
- INP, UMR7051, CNRS, Aix Marseille Université, Marseille, 13015, France
| | - Antonin Schmitz
- Université Côte d'Azur, INRAE, CNRS, UMR Institut Sophia Agrobiotech (ISA), Sophia Antipolis, France
| | - Séverine Lemauf
- Université Côte d'Azur, INRAE, CNRS, UMR Institut Sophia Agrobiotech (ISA), Sophia Antipolis, France
| | - Nicolas Desneux
- Université Côte d'Azur, INRAE, CNRS, UMR Institut Sophia Agrobiotech (ISA), Sophia Antipolis, France
- Université Côte d'Azur, INRAE, CNRS, UMR Institut Sophia Agrobiotech (ISA), 06000 Nice, France
| | | | - Marylène Poirié
- Université Côte d'Azur, INRAE, CNRS, UMR Institut Sophia Agrobiotech (ISA), Sophia Antipolis, France
| | - Jean-Luc Gatti
- Université Côte d'Azur, INRAE, CNRS, UMR Institut Sophia Agrobiotech (ISA), Sophia Antipolis, France
| |
Collapse
|
21
|
Xu S, Chen J, Qin M, Jiang L, Qiao G. Geography-dependent symbiont communities in two oligophagous aphid species. FEMS Microbiol Ecol 2021; 97:6368335. [PMID: 34506623 PMCID: PMC8478477 DOI: 10.1093/femsec/fiab132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/08/2021] [Indexed: 01/07/2023] Open
Abstract
Aphids and their diverse symbionts have become a good model to study bacteria-arthropod symbiosis. The feeding habits of aphids are usually influenced by a variety of symbionts. Most studies on symbiont diversity have focused on polyphagous aphids, while symbiont community patterns for oligophagous aphids remain unclear. Here, we surveyed the bacterial communities in natural populations of two oligophagous aphids, Melanaphis sacchari and Neophyllaphis podocarpi, in natural populations. Seven common symbionts were detected, among which Buchnera aphidicola and Wolbachia were the most prevalent. In addition, an uncommon Sodalis-like symbiont was also detected in these two aphids, and Gilliamella was found in some samples of M. sacchari. We further assessed the significant variation in symbiont communities within the two aphid species, geographical regions and host specialization using statistical and ordination analyses. Geography was an important factor in shaping the symbiont community structure in these oligophagous aphids. Furthermore, the strong geographical influence may be related to specific environmental factors, especially temperature, among different regions. These findings extend our knowledge of the significance of geography and its associated environmental conditions in the symbiont community structure associated with oligophagous aphids.
Collapse
Affiliation(s)
- Shifen Xu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Man Qin
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liyun Jiang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Gexia Qiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Smee MR, Raines SA, Ferrari J. Genetic identity and genotype × genotype interactions between symbionts outweigh species level effects in an insect microbiome. THE ISME JOURNAL 2021; 15:2537-2546. [PMID: 33712703 PMCID: PMC8397793 DOI: 10.1038/s41396-021-00943-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023]
Abstract
Microbial symbionts often alter the phenotype of their host. Benefits and costs to hosts depend on many factors, including host genotype, symbiont species and genotype, and environmental conditions. Here, we present a study demonstrating genotype-by-genotype (G×G) interactions between multiple species of endosymbionts harboured by an insect, and the first to quantify the relative importance of G×G interactions compared with species interactions in such systems. In the most extensive study to date, we microinjected all possible combinations of five Hamiltonella defensa and five Fukatsuia symbiotica (X-type; PAXS) isolates into the pea aphid, Acyrthosiphon pisum. We applied several ecological challenges: a parasitoid wasp, a fungal pathogen, heat shock, and performance on different host plants. Surprisingly, genetic identity and genotype × genotype interactions explained far more of the phenotypic variation (on average 22% and 31% respectively) than species identity or species interactions (on average 12% and 0.4%, respectively). We determined the costs and benefits associated with co-infection, and how these compared to corresponding single infections. All phenotypes were highly reliant on individual isolates or interactions between isolates of the co-infecting partners. Our findings highlight the importance of exploring the eco-evolutionary consequences of these highly specific interactions in communities of co-inherited species.
Collapse
Affiliation(s)
- Melanie R. Smee
- grid.5685.e0000 0004 1936 9668Department of Biology, University of York, York, UK ,grid.5386.8000000041936877XPresent Address: Microbiology Department, Cornell University, Ithaca, NY USA
| | - Sally A. Raines
- grid.5685.e0000 0004 1936 9668Department of Biology, University of York, York, UK
| | - Julia Ferrari
- grid.5685.e0000 0004 1936 9668Department of Biology, University of York, York, UK
| |
Collapse
|
23
|
Fakhour S, Renoz F, Ambroise J, Pons I, Noël C, Gala JL, Hance T. Insight into the bacterial communities of the subterranean aphid Anoecia corni. PLoS One 2021; 16:e0256019. [PMID: 34379678 PMCID: PMC8357138 DOI: 10.1371/journal.pone.0256019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 07/28/2021] [Indexed: 11/23/2022] Open
Abstract
Many insect species are associated with bacterial partners that can significantly influence their evolutionary ecology. Compared to other insect groups, aphids harbor a bacterial microbiota that has the reputation of being poorly diversified, generally limited to the presence of the obligate nutritional symbiont Buchnera aphidicola and some facultative symbionts. In this study, we analyzed the bacterial diversity associated with the dogwood-grass aphid Anoecia corni, an aphid species that spends much of its life cycle in a subterranean environment. Little is known about the bacterial diversity associated with aphids displaying such a lifestyle, and one hypothesis is that close contact with the vast microbial community of the rhizosphere could promote the acquisition of a richer bacterial diversity compared to other aphid species. Using 16S rRNA amplicon Illumina sequencing on specimens collected on wheat roots in Morocco, we identified 10 bacterial operational taxonomic units (OTUs) corresponding to five bacterial genera. In addition to the obligate symbiont Buchnera, we identified the facultative symbionts Serratia symbiotica and Wolbachia in certain aphid colonies. The detection of Wolbachia is unexpected as it is considered rare in aphids. Moreover, its biological significance remains unknown in these insects. Besides, we also detected Arsenophonus and Dactylopiibacterium carminicum. These results suggest that, despite its subterranean lifestyle, A. corni shelter a bacterial diversity mainly limited to bacterial endosymbionts.
Collapse
Affiliation(s)
- Samir Fakhour
- Department of Plant Protection, National Institute for Agricultural Research (INRA), Béni-Mellal, Morocco
- Earth and Life Institute, UC Louvain, Louvain-la-Neuve, Belgium
| | - François Renoz
- Earth and Life Institute, UC Louvain, Louvain-la-Neuve, Belgium
| | - Jérôme Ambroise
- Center for Applied Molecular Technologies (CTMA), Institut de Recherche Expérimentale et Clinique (IREC), UC Louvain, Woluwe-Saint-Lambert, Belgium
| | - Inès Pons
- Earth and Life Institute, UC Louvain, Louvain-la-Neuve, Belgium
| | - Christine Noël
- Earth and Life Institute, UC Louvain, Louvain-la-Neuve, Belgium
| | - Jean-Luc Gala
- Center for Applied Molecular Technologies (CTMA), Institut de Recherche Expérimentale et Clinique (IREC), UC Louvain, Woluwe-Saint-Lambert, Belgium
| | - Thierry Hance
- Earth and Life Institute, UC Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
24
|
He B, Chen X, Yang H, Cernava T. Microbiome Structure of the Aphid Myzus persicae (Sulzer) Is Shaped by Different Solanaceae Plant Diets. Front Microbiol 2021; 12:667257. [PMID: 34290679 PMCID: PMC8287905 DOI: 10.3389/fmicb.2021.667257] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022] Open
Abstract
Myzus persicae (Sulzer) is an important insect pest in agriculture that has a very broad host range. Previous research has shown that the microbiota of insects has implications for their growth, development, and environmental adaptation. So far, there is little detailed knowledge about the factors that influence and shape the microbiota of aphids. In the present study, we aimed to investigate diet-induced changes in the microbiome of M. persicae using high-throughput sequencing of bacterial 16S ribosomal RNA gene fragments in combination with molecular and microbiological experiments. The transfer of aphids to different plants from the Solanaceae family resulted in a substantial decrease in the abundance of the primary symbiont Buchnera. In parallel, a substantial increase in the abundance of Pseudomonas was observed; it accounted for up to 69.4% of the bacterial community in M. persicae guts and the attached bacteriocytes. In addition, we observed negative effects on aphid population dynamics when they were transferred to pepper plants (Capsicum annuum L.). The microbiome of this treatment group showed a significantly lower increase in the abundance of Pseudomonas when compared with the other Solanaceae plant diets, which might be related to the adaptability of the host to this diet. Molecular quantifications of bacterial genera that were substantially affected by the different diets were implemented as an additional verification of the microbiome-based observations. Complementary experiments with bacteria isolated from aphids that were fed with different plants indicated that nicotine-tolerant strains occur in Solanaceae-fed specimens, but they were not restricted to them. Overall, our mechanistic approach conducted under controlled conditions provided strong indications that the aphid microbiome shows responses to different plant diets. This knowledge could be used in the future to develop environmentally friendly methods for the control of insect pests in agriculture.
Collapse
Affiliation(s)
- Baoyu He
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, China
| | - Xiaoyulong Chen
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, China.,College of Tobacco Science, Guizhou University, Guiyang, China
| | - Hong Yang
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, China.,College of Tobacco Science, Guizhou University, Guiyang, China
| | - Tomislav Cernava
- College of Tobacco Science, Guizhou University, Guiyang, China.,Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| |
Collapse
|
25
|
Ourry M, Crosland A, Lopez V, Derocles SAP, Mougel C, Cortesero AM, Poinsot D. Influential Insider: Wolbachia, an Intracellular Symbiont, Manipulates Bacterial Diversity in Its Insect Host. Microorganisms 2021; 9:1313. [PMID: 34208681 PMCID: PMC8234596 DOI: 10.3390/microorganisms9061313] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 01/04/2023] Open
Abstract
Facultative intracellular symbionts like the α-proteobacteria Wolbachia influence their insect host phenotype but little is known about how much they affect their host microbiota. Here, we quantified the impact of Wolbachia infection on the bacterial community of the cabbage root fly Delia radicum by comparing the microbiota of Wolbachia-free and infected adult flies of both sexes. We used high-throughput DNA sequencing (Illumina MiSeq, 16S rRNA, V5-V7 region) and performed a community and a network analysis. In both sexes, Wolbachia infection significantly decreased the diversity of D. radicum bacterial communities and modified their structure and composition by reducing abundance in some taxa but increasing it in others. Infection by Wolbachia was negatively correlated to 8 bacteria genera (Erwinia was the most impacted), and positively correlated to Providencia and Serratia. We suggest that Wolbachia might antagonize Erwinia for being entomopathogenic (and potentially intracellular), but would favor Providencia and Serratia because they might protect the host against chemical plant defenses. Although they might seem prisoners in a cell, endocellular symbionts can impact the whole microbiota of their host, hence its extended phenotype, which provides them with a way to interact with the outside world.
Collapse
Affiliation(s)
- Morgane Ourry
- Institut de Génétique, Environnement et Protection des Plantes (IGEPP), INRAE, Agrocampus Ouest, Université de Rennes, F-35650 Le Rheu, France;
| | - Agathe Crosland
- Institut de Génétique, Environnement et Protection des Plantes (IGEPP), INRAE, Agrocampus Ouest, Université de Rennes, F-35000 Rennes, France; (A.C.); (V.L.); (S.A.P.D.); (A.-M.C.); (D.P.)
| | - Valérie Lopez
- Institut de Génétique, Environnement et Protection des Plantes (IGEPP), INRAE, Agrocampus Ouest, Université de Rennes, F-35000 Rennes, France; (A.C.); (V.L.); (S.A.P.D.); (A.-M.C.); (D.P.)
| | - Stéphane A. P. Derocles
- Institut de Génétique, Environnement et Protection des Plantes (IGEPP), INRAE, Agrocampus Ouest, Université de Rennes, F-35000 Rennes, France; (A.C.); (V.L.); (S.A.P.D.); (A.-M.C.); (D.P.)
| | - Christophe Mougel
- Institut de Génétique, Environnement et Protection des Plantes (IGEPP), INRAE, Agrocampus Ouest, Université de Rennes, F-35650 Le Rheu, France;
| | - Anne-Marie Cortesero
- Institut de Génétique, Environnement et Protection des Plantes (IGEPP), INRAE, Agrocampus Ouest, Université de Rennes, F-35000 Rennes, France; (A.C.); (V.L.); (S.A.P.D.); (A.-M.C.); (D.P.)
| | - Denis Poinsot
- Institut de Génétique, Environnement et Protection des Plantes (IGEPP), INRAE, Agrocampus Ouest, Université de Rennes, F-35000 Rennes, France; (A.C.); (V.L.); (S.A.P.D.); (A.-M.C.); (D.P.)
| |
Collapse
|
26
|
Coexistence of Three Dominant Bacterial Symbionts in a Social Aphid and Implications for Ecological Adaptation. INSECTS 2021; 12:insects12050416. [PMID: 34066350 PMCID: PMC8148176 DOI: 10.3390/insects12050416] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 11/29/2022]
Abstract
Simple Summary Most insects are associated with a variety of symbionts that play a crucial role in insect life history. Symbiosis of aphids and their symbionts is a good model system to study insect–symbiont interactions. Pseudoregma bambucicola is a typical social aphid that lives parthenogenetically throughout the year on bamboos in subtropical areas, and it is the only aphid that exclusively feeds on the hard stalks of bamboo. In this study, we surveyed the symbiotic bacterial community associated with P. bambucicola. Our results showed that the diversity of P. bambucicola microbiome was low, but three symbionts, namely the primary endosymbiont Buchnera and two secondary symbionts (Pectobacterium and Wolbachia), were stable coexisting with a high infection rate. Combined with the biology of P. bambucicola, we speculate that Pectobacterium may help P. bambucicola feed on the stalks of bamboo, and Wolbachia may regulate the loss of sexual reproduction or has a nutritional role in P. bambucicola. These findings will advance our knowledge of the microbiomes of social aphids and set the foundation for further studies on the functional roles of P. bambucicola symbionts. Abstract Aphids are associated with an array of symbionts that have diverse ecological and evolutionary effects on their hosts. To date, symbiont communities of most aphid species are still poorly characterized, especially for the social aphids. In this study, high-throughput 16S rDNA amplicon sequencing was used to assess the bacterial communities of the social aphid Pseudoregma bambucicola, and the differences in bacterial diversity with respect to ant attendance and time series were also assessed. We found that the diversity of symbionts in P. bambucicola was low and three dominant symbionts (Buchnera, Pectobacterium and Wolbachia) were stably coexisting. Pectobacterium may help P. bambucicola feed on the hard bamboo stems, and genetic distance analysis suggests that the Pectobacterium in P. bambucicola may be a new symbiont species. Wolbachia may be associated with the transition of reproduction mode or has a nutritional role in P. bambucicola. Statistical tests on the diversity of bacterial communities in P. bambucicola suggest that aphid populations attended by ants usually have a significantly higher evenness than populations without ant attendance but there was no significant difference among aphid populations from different seasons.
Collapse
|
27
|
Kang WN, Jin L, Fu KY, Guo WC, Li GQ. A switch of microbial flora coupled with ontogenetic niche shift in Leptinotarsa decemlineata. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 107:e21782. [PMID: 33724519 DOI: 10.1002/arch.21782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/31/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
In Leptinotarsa decemlineata, a final-instar wandering larva typically undergoes an ontogenetic niche shift (ONS), from potato plant during the foraging stage to its pupation site below ground. Using high-throughput sequencing of the bacterial 16S ribosomal RNA gene, we determined the hypothesis that the L. decemlineata pupae harbor stage-specific bacteria to meet the physiological requirements for underground habitat. We identified 34 bacterial phyla, comprising 73 classes, 208 orders, 375 families, and 766 genera in the collected specimens. Microbes across phyla Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes were enriched in the pupae, while those in the phylum Proteobacteria, Tenericutes, Firmicutes, and Bacteroidetes dominated in the larvae and adults. A total of 18 genera, including Blastococcus, Corynebacterium_1, Gordonia, Microbacterium, Nocardia, Nocardioides, Rhodococcus, Solirubrobacter, Tsukamurella, Enterococcus, Acinetobacter, Escherichia_Shigella, Lysobacter, Pseudomonas, and Stenotrophomonas, were specifically distributed in pupae. Moreover, soil sterilizing removed a major portion of bacteria in pupae. Specifically, both Enterococcus and Pseudomonas were eliminated in the soil sterilizing and antibiotic-fed beetle groups. Furthermore, the pupation rate and fresh pupal weight were similar, whereas the emergence rate and adult weight were decreased in the antibiotic-fed beetles, compared with controls. The results demonstrate that a switch of bacterial communities occurs in the pupae; the pupal-specific bacteria genera are mainly originated from soil; this bacterial biodiversity improves pupa performance in soil. Our results provide new insight into the evolutionary fitness of L. decemlineata to different environmental niches.
Collapse
Affiliation(s)
- Wei-Nan Kang
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Lin Jin
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Kai-Yun Fu
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Wen-Chao Guo
- Institute of Microbiological Application, Xinjiang Academy of Agricultural Science, Urumqi, China
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
28
|
Xu S, Jiang L, Qiao G, Chen J. Diversity of bacterial symbionts associated with Myzus persicae (Sulzer) (Hemiptera: Aphididae: Aphidinae) revealed by 16S rRNA Illumina sequencing. MICROBIAL ECOLOGY 2021; 81:784-794. [PMID: 33070212 PMCID: PMC7982390 DOI: 10.1007/s00248-020-01622-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Aphids are known to be associated with a variety of symbiotic bacteria. To improve our knowledge of the bacterial diversity of polyphagous aphids, in the present study, we investigated the microbiota of the cosmopolitan agricultural pest Myzus persicae (Sulzer). Ninety-two aphid samples collected from different host plants in various regions of China were examined using high-throughput amplicon sequencing. We comprehensively characterized the symbiont diversity of M. persicae and assessed the variations in aphid-associated symbiont communities. We detected a higher diversity of symbionts than has been previously observed. M. persicae hosted the primary endosymbiont Buchnera aphidicola and seven secondary symbionts, among which Wolbachia was the most prevalent and Rickettsia, Arsenophonus, and Spiroplasma were reported for the first time. Ordination analyses and statistical tests revealed that the symbiont flora associated with M. persicae did not change with respect to host plant or geography, which may be due to frequent migrations between different aphid populations. These findings will advance our knowledge of the microbiota of polyphagous insects and will enrich our understanding of assembly of host-microbiome systems.
Collapse
Affiliation(s)
- Shifen Xu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liyun Jiang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Gexia Qiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jing Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
29
|
Leclair M, Buchard C, Mahéo F, Simon JC, Outreman Y. A Link Between Communities of Protective Endosymbionts and Parasitoids of the Pea Aphid Revealed in Unmanipulated Agricultural Systems. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.618331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the last decade, the influence of microbial symbionts on ecological and physiological traits of their hosts has been increasingly recognized. However, most of these effects have been revealed under laboratory conditions, which oversimplifies the complexity of the factors involved in the dynamics of symbiotic associations in nature. The pea aphid, Acyrthosiphon pisum, forms a complex of plant-adapted biotypes, which strongly differ in the prevalence of their facultative endosymbionts. Some of the facultative endosymbionts of A. pisum have been shown to confer protection against natural enemies, among which Hamiltonella defensa is known to protect its host from parasitoid wasps. Here, we tested under natural conditions whether the endosymbiont communities of different A. pisum biotypes had a protective effect on their hosts and whether endosymbiotic associations and parasitoid communities associated with the pea aphid complex were linked. A space-time monitoring of symbiotic associations, parasitoid pressure and parasitoid communities was carried out in three A. pisum biotypes respectively specialized on Medicago sativa (alfalfa), Pisum sativum (pea), and Trifolium sp. (clover) throughout the whole cropping season. While symbiotic associations, and to a lesser extent, parasitoid communities were stable over time and structured mainly by the A. pisum biotypes, the parasitoid pressure strongly varied during the season and differed among the three biotypes. This suggests a limited influence of parasitoid pressure on the dynamics of facultative endosymbionts at a seasonal scale. However, we found a positive correlation between the α and β diversities of the endosymbiont and parasitoid communities, indicating interactions between these two guilds. Also, we revealed a negative correlation between the prevalence of H. defensa and Fukatsuia symbiotica in co-infection and the intensity of parasitoid pressure in the alfalfa biotype, confirming in field conditions the protective effect of this symbiotic combination.
Collapse
|
30
|
Říhová J, Batani G, Rodríguez-Ruano SM, Martinů J, Vácha F, Nováková E, Hypša V. A new symbiotic lineage related to Neisseria and Snodgrassella arises from the dynamic and diverse microbiomes in sucking lice. Mol Ecol 2021; 30:2178-2196. [PMID: 33639022 DOI: 10.1111/mec.15866] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 02/06/2023]
Abstract
The phylogenetic diversity of symbiotic bacteria in sucking lice suggests that lice have a complex history of symbiont acquisition, loss, and replacement throughout their evolution. These processes have resulted in the establishment of different, phylogenetically distant bacteria as obligate mutualists in different louse groups. By combining metagenomics and amplicon screening across several populations of three louse species (members of the genera Polyplax and Hoplopleura) we describe a novel louse symbiont lineage related to Neisseria and Snodgrassella, and show its independent origin in the two louse genera. While the genomes of these symbionts are highly similar, their respective distributions and status within lice microbiomes indicate that they have different functions and history. In Hoplopleura acanthopus, the Neisseriaceae-related bacterium is a dominant obligate symbiont present across several host populations. In contrast, the Polyplax microbiomes are dominated by the obligate symbiont Legionella polyplacis, with the Neisseriaceae-related bacterium co-occurring only in some samples and with much lower abundance. The results thus support the view that compared to other exclusively blood feeding insects, Anoplura possess a unique capacity to acquire symbionts from diverse groups of bacteria.
Collapse
Affiliation(s)
- Jana Říhová
- Department of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Giampiero Batani
- Department of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Sonia Maria Rodríguez-Ruano
- Department of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Jana Martinů
- Department of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.,Institute of Parasitology, Biology Centre, ASCR, v.v.i, České Budějovice, Czech Republic
| | - František Vácha
- Department of Chemistry, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Eva Nováková
- Department of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.,Institute of Parasitology, Biology Centre, ASCR, v.v.i, České Budějovice, Czech Republic
| | - Václav Hypša
- Department of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.,Institute of Parasitology, Biology Centre, ASCR, v.v.i, České Budějovice, Czech Republic
| |
Collapse
|
31
|
Shi XB, Yan S, Zhang C, Zheng LM, Zhang ZH, Sun SE, Gao Y, Tan XQ, Zhang DY, Zhou XG. Aphid endosymbiont facilitates virus transmission by modulating the volatile profile of host plants. BMC PLANT BIOLOGY 2021; 21:67. [PMID: 33514310 PMCID: PMC7846988 DOI: 10.1186/s12870-021-02838-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Most plant viruses rely on vectors for their transmission and spread. One of the outstanding biological questions concerning the vector-pathogen-symbiont multi-trophic interactions is the potential involvement of vector symbionts in the virus transmission process. Here, we used a multi-factorial system containing a non-persistent plant virus, cucumber mosaic virus (CMV), its primary vector, green peach aphid, Myzus persicae, and the obligate endosymbiont, Buchnera aphidicola to explore this uncharted territory. RESULTS Based on our preliminary research, we hypothesized that aphid endosymbiont B. aphidicola can facilitate CMV transmission by modulating plant volatile profiles. Gene expression analyses demonstrated that CMV infection reduced B. aphidicola abundance in M. persicae, in which lower abundance of B. aphidicola was associated with a preference shift in aphids from infected to healthy plants. Volatile profile analyses confirmed that feeding by aphids with lower B. aphidicola titers reduced the production of attractants, while increased the emission of deterrents. As a result, M. persicae changed their feeding preference from infected to healthy plants. CONCLUSIONS We conclude that CMV infection reduces the B. aphidicola abundance in M. persicae. When viruliferous aphids feed on host plants, dynamic changes in obligate symbionts lead to a shift in plant volatiles from attraction to avoidance, thereby switching insect vector's feeding preference from infected to healthy plants.
Collapse
Affiliation(s)
- Xiao-Bin Shi
- Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Shuo Yan
- Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Chi Zhang
- Department of Entomology, University of Kentucky, Lexington, KY, 40546, USA
| | - Li-Min Zheng
- Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Zhan-Hong Zhang
- Institute of Vegetable, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Shu-E Sun
- Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Yang Gao
- Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Xin-Qiu Tan
- Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - De-Yong Zhang
- Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China.
| | - Xu-Guo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
32
|
Qin M, Chen J, Xu S, Jiang L, Qiao G. Microbiota associated with Mollitrichosiphum aphids (Hemiptera: Aphididae: Greenideinae): diversity, host species specificity and phylosymbiosis. Environ Microbiol 2021; 23:2184-2198. [PMID: 33415800 PMCID: PMC8248049 DOI: 10.1111/1462-2920.15391] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/11/2020] [Accepted: 01/04/2021] [Indexed: 11/28/2022]
Abstract
Symbiotic association is universal in nature, and an array of symbionts play a crucial part in host life history. Aphids and their diverse symbionts have become a good model system to study insect‐symbiont interactions. Previous symbiotic diversity surveys have mainly focused on a few aphid clades, and the relative importance of different factors regulating microbial community structure is not well understood. In this study, we collected 65 colonies representing eight species of the aphid genus Mollitrichosiphum from different regions and plants in southern China and Nepal and characterized their microbial compositions using Illumina sequencing of the V3 − V4 hypervariable region of the 16S rRNA gene. We evaluated how microbiota varied across aphid species, geography and host plants and the correlation between microbial community structure and host aphid phylogeny. Heritable symbionts dominated the microbiota associated with Mollitrichosiphum, and multiple infections of secondary symbionts were prevalent. Ordination analyses and statistical tests highlighted the contribution of aphid species in shaping the structures of bacterial, symbiont and secondary symbiont communities. Moreover, we observed a significant correlation between Mollitrichosiphum aphid phylogeny and microbial community composition, providing evidence for a pattern of phylosymbiosis between natural aphid populations and their microbial associates.
Collapse
Affiliation(s)
- Man Qin
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shifen Xu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Liyun Jiang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Gexia Qiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
33
|
Badji CA, Sol-Mochkovitch Z, Fallais C, Sochard C, Simon JC, Outreman Y, Anton S. Alarm Pheromone Responses Depend on Genotype, but Not on the Presence of Facultative Endosymbionts in the Pea Aphid Acyrthosiphon pisum. INSECTS 2021; 12:43. [PMID: 33430009 PMCID: PMC7826508 DOI: 10.3390/insects12010043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 11/17/2022]
Abstract
Aphids use an alarm pheromone, E-β farnesene (EBF), to warn conspecifics of potential danger. The antennal sensitivity and behavioural escape responses to EBF can be influenced by different factors. In the pea aphid, Acyrthosiphon pisum, different biotypes are adapted to different legume species, and within each biotype, different genotypes exist, which can carry or not Hamiltonella defensa, a bacterial symbiont that can confer protection against natural enemies. We investigate here the influence of the aphid genotype and symbiotic status on the escape behaviour using a four-way olfactometer and antennal sensitivity for EBF using electroantennograms (EAGs). Whereas the investigated three genotypes from two biotypes showed significantly different escape and locomotor behaviours in the presence of certain EBF doses, the infection with H. defensa did not significantly modify the escape behaviour and only marginally influenced the locomotor behaviour at high doses of EBF. Dose-response curves of EAG amplitudes after stimulation with EBF differed significantly between aphid genotypes in correlation with behavioural differences, whereas antennal sensitivity to EBF did not change significantly as a function of the symbiotic status. The protective symbiont H. defensa does thus not modify the olfactory sensitivity to the alarm pheromone. How EBF sensitivity is modified between genotypes or biotypes remains to be investigated.
Collapse
Affiliation(s)
- Cesar Auguste Badji
- IGEPP, INRAE, Institut Agro, University Rennes, CEDEX, 49045 Angers, France; (C.A.B.); (Z.S.-M.); (C.F.)
| | - Zoé Sol-Mochkovitch
- IGEPP, INRAE, Institut Agro, University Rennes, CEDEX, 49045 Angers, France; (C.A.B.); (Z.S.-M.); (C.F.)
| | - Charlotte Fallais
- IGEPP, INRAE, Institut Agro, University Rennes, CEDEX, 49045 Angers, France; (C.A.B.); (Z.S.-M.); (C.F.)
| | - Corentin Sochard
- IGEPP, INRAE, Institut Agro, University Rennes, CEDEX, 35000 Rennes, France; (C.S.); (Y.O.)
| | | | - Yannick Outreman
- IGEPP, INRAE, Institut Agro, University Rennes, CEDEX, 35000 Rennes, France; (C.S.); (Y.O.)
| | - Sylvia Anton
- IGEPP, INRAE, Institut Agro, University Rennes, CEDEX, 49045 Angers, France; (C.A.B.); (Z.S.-M.); (C.F.)
| |
Collapse
|
34
|
Romanov DA, Zakharov IA, Shaikevich EV. Wolbachia, Spiroplasma, and Rickettsia symbiotic bacteria in aphids (Aphidoidea). Vavilovskii Zhurnal Genet Selektsii 2020; 24:673-682. [PMID: 33659853 PMCID: PMC7716544 DOI: 10.18699/vj20.661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Aphids are a diverse family of crop pests. Aphids formed a complex relationship with intracellular bacteria.
Depending on the region of study, the species composition of both aphids and their facultative endosymbionts
varies. The aim of the work was to determine the occurrence and genetic diversity of Wolbachia, Spiroplasma and
Rickettsia symbionts in aphids collected in 2018–2019 in Moscow. For these purposes, 578 aphids from 32 collection
sites were tested by PCR using specific primers. At least 21 species of aphids from 14 genera and four families were
identified by barcoding method, of which 11 species were infected with endosymbionts. Rickettsia was found in six
species, Wolbachia in two species, Spiroplasma in one species. The presence of Rickettsia in Impatientinum asiaticum,
Myzus cerasi, Hyalopterus pruni, Eucallipterus tiliae, Chaitophorus tremulae and Wolbachia in Aphis pomi and C. tremulae
has been described for the first time. A double infection with Rickettsia and Spiroplasma was detected in a half of
pea aphid (Acyrthosiphon pisum) individuals. For the first time was found that six species of aphids are infected with
Rickettsia that are genetically different from previously known. It was first discovered that A. pomi is infected with two
Wolbachia strains, one of which belongs to supergroup B and is genetically close to Wolbachia from C. tremulae. The
second Wolbachia strain from A. pomi belongs to the supergroup M, recently described in aphid species. Spiroplasma,
which we observed in A. pisum, is genetically close to male killing Spiroplasma from aphids, ladybirds and moths. Both
maternal inheritance and horizontal transmission are the pathways for the distribution of facultative endosymbiotic
bacteria in aphids.
Collapse
Affiliation(s)
- D A Romanov
- Vavilov Institute of General Genetics of the Russian Academy of Sciences, Moscow, Russia Moscow Region State University, Mytishi, Moscow region, Russia
| | - I A Zakharov
- Vavilov Institute of General Genetics of the Russian Academy of Sciences, Moscow, Russia
| | - E V Shaikevich
- Vavilov Institute of General Genetics of the Russian Academy of Sciences, Moscow, Russia Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Меdical University, Moscow, Russia
| |
Collapse
|
35
|
Blow F, Bueno E, Clark N, Zhu DT, Chung SH, Güllert S, Schmitz RA, Douglas AE. B-vitamin nutrition in the pea aphid-Buchnera symbiosis. JOURNAL OF INSECT PHYSIOLOGY 2020; 126:104092. [PMID: 32763248 DOI: 10.1016/j.jinsphys.2020.104092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 05/09/2023]
Abstract
Various insects that utilize vitamin-deficient diets derive a supplementary supply of these micronutrients from their symbiotic microorganisms. Here, we tested the inference from genome annotation that the symbiotic bacterium Buchnera aphidicola in the pea aphid Acyrthosiphon pisum provides the insect with vitamins B2 and B5 but no other B-vitamins. Contrary to expectation, aphid survival over five days of larval development on artificial diets individually lacking each B-vitamin not synthesized by Buchnera was not significantly reduced, despite significantly lower carcass B1, B3, B6 and B7 concentrations in the aphids on diets lacking each of these B-vitamins than on the vitamin-complete diet. Aphid survival was, however, significantly reduced on diet containing low concentrations (≤0.2 mM) or no pantothenate (B5). Complementary transcriptome analysis revealed low abundance of the sense-transcript, but high abundance of the antisense transcript, of the Buchnera gene panC encoding the enzyme mediating the terminal reaction in pantothenate synthesis. We hypothesize that metabolic constraints or antisense transcripts may reduce Buchnera-mediated production of pantothenate, resulting in poor aphid performance on pantothenate-free diets. The discrepancy between predictions from genome data and empirical data illustrates the need for physiological study to test functional inferences made from genome annotations.
Collapse
Affiliation(s)
- Frances Blow
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Eduardo Bueno
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Noah Clark
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Dan Tong Zhu
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Seung Ho Chung
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Simon Güllert
- Institute of General Microbiology, Christian-Albrechts University Kiel, Germany
| | - Ruth A Schmitz
- Institute of General Microbiology, Christian-Albrechts University Kiel, Germany
| | - Angela E Douglas
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
36
|
Wang ZL, Pan HB, Wu W, Li MY, Yu XP. The gut bacterial flora associated with brown planthopper is affected by host rice varieties. Arch Microbiol 2020; 203:325-333. [PMID: 32940717 DOI: 10.1007/s00203-020-02013-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/28/2020] [Accepted: 08/04/2020] [Indexed: 11/26/2022]
Abstract
Gut microbiota plays vital roles in the development, evolution and environmental adaptation of the host insects. The brown planthopper (BPH) is one of the most destructive pests of rice, but little is known about its gut microbiota. In this study, we investigated the gut bacterial communities in two BPH populations feeding on susceptible and resistant rice varieties by high-throughput amplicon sequencing. Our results revealed that the gut bacterial communities in BPH were species diverse. A total of 29 phyla and 367 genera were captured, with Proteobacteria and Acinetobacter being the most prominent phylum and genus, respectively. Comparative analysis showed that significant differences in the profile of gut bacterial communities existed between the two BPH populations. The species richness detected in the population feeding on the resistant rice variety was significantly higher than that in the population rearing on the susceptible rice variety. Although the most dominant gut bacteria at all taxonomic levels showed no significant differences between the two BPH populations, the relative abundances of two subdominant phyla (Firmicutes and Bacteroidetes) and two subdominant classes (Bacteroidia and Clostridia) were significantly different. FAPROTAX analysis further indicated that host rice varieties might induce changes of the gut bacterial flora in BPH, as significant differences in five metabolism-related functional categories (fermentation, methylotrophy, xylanolysis, nitrate reduction and ureolysis) were detected between the two BPH populations. Our results are informative for studies which focused on the interactions between BPH and its symbiotic microbes and could also provide the basis of future BPH biological management.
Collapse
Affiliation(s)
- Zheng-Liang Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, Zhejiang, People's Republic of China
| | - Hai-Bo Pan
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, Zhejiang, People's Republic of China
| | - Wei Wu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, Zhejiang, People's Republic of China
| | - Mu-Yu Li
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, Zhejiang, People's Republic of China
| | - Xiao-Ping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, Zhejiang, People's Republic of China.
| |
Collapse
|
37
|
Pandharikar G, Gatti JL, Simon JC, Frendo P, Poirié M. Aphid infestation differently affects the defences of nitrate-fed and nitrogen-fixing Medicago truncatula and alters symbiotic nitrogen fixation. Proc Biol Sci 2020; 287:20201493. [PMID: 32873201 PMCID: PMC7542793 DOI: 10.1098/rspb.2020.1493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/07/2020] [Indexed: 11/28/2022] Open
Abstract
Legumes can meet their nitrogen requirements through root nodule symbiosis, which could also trigger plant systemic resistance against pests. The pea aphid Acyrthosiphon pisum, a legume pest, can harbour different facultative symbionts (FS) influencing various traits of their hosts. It is therefore worth determining if and how the symbionts of the plant and the aphid modulate their interaction. We used different pea aphid lines without FS or with a single one (Hamiltonella defensa, Regiella insecticola, Serratia symbiotica) to infest Medicago truncatula plants inoculated with Sinorhizobium meliloti (symbiotic nitrogen fixation, SNF) or supplemented with nitrate (non-inoculated, NI). The growth of SNF and NI plants was reduced by aphid infestation, while aphid weight (but not survival) was lowered on SNF compared to NI plants. Aphids strongly affected the plant nitrogen fixation depending on their symbiotic status, suggesting indirect relationships between aphid- and plant-associated microbes. Finally, all aphid lines triggered expression of Pathogenesis-Related Protein 1 (PR1) and Proteinase Inhibitor (PI), respective markers for salicylic and jasmonic pathways, in SNF plants, compared to only PR1 in NI plants. We demonstrate that the plant symbiotic status influences plant-aphid interactions while that of the aphid can modulate the amplitude of the plant's defence response.
Collapse
|
38
|
Castillo AM, Saltonstall K, Arias CF, Chavarria KA, Ramírez-Camejo LA, Mejía LC, De León LF. The Microbiome of Neotropical Water Striders and Its Potential Role in Codiversification. INSECTS 2020; 11:insects11090578. [PMID: 32878094 PMCID: PMC7565411 DOI: 10.3390/insects11090578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023]
Abstract
Simple Summary Insects host a highly diverse bacterial community. Although we have a good understanding of the role that this microbiome plays in insects, the composition and diversity of microbiomes associated with Neotropical freshwater insects is virtually unknown. Here, we describe, for the first time, the microbiome associated with six species of Neotropical water striders in Panama. We also performed phylogenetic analyses to explore potential codiversification or coevolution between water strider species and their associated microbiome. We found a diverse microbiome associated with the six species of water striders, with the dominant bacterial taxa belonging to the phyla Proteobacteria and Tenericutes. Although some bacterial lineages were shared across species, some lineages were also uniquely associated with different water strider species. Our results suggest that both environmental variation and host phylogenetic identity are important drivers of the microbiome associated with water striders. Understanding the evolution of the host-microbiome interaction is crucial to our understanding of Neotropical freshwater ecosystems. Abstract Insects host a highly diverse microbiome, which plays a crucial role in insect life. However, the composition and diversity of microbiomes associated with Neotropical freshwater insects is virtually unknown. In addition, the extent to which diversification of this microbiome is associated with host phylogenetic divergence remains to be determined. Here, we present the first comprehensive analysis of bacterial communities associated with six closely related species of Neotropical water striders in Panama. We used comparative phylogenetic analyses to assess associations between dominant bacterial linages and phylogenetic divergence among species of water striders. We found a total of 806 16S rRNA amplicon sequence variants (ASVs), with dominant bacterial taxa belonging to the phyla Proteobacteria (76.87%) and Tenericutes (19.51%). Members of the α- (e.g., Wolbachia) and γ- (e.g., Acinetobacter, Serratia) Proteobacteria, and Mollicutes (e.g., Spiroplasma) were predominantly shared across species, suggesting the presence of a core microbiome in water striders. However, some bacterial lineages (e.g., Fructobacillus, Fluviicola and Chryseobacterium) were uniquely associated with different water strider species, likely representing a distinctive feature of each species’ microbiome. These findings indicate that both host identity and environmental context are important drivers of microbiome diversity in water striders. In addition, they suggest that diversification of the microbiome is associated with diversification in water striders. Although more research is needed to establish the evolutionary consequences of host-microbiome interaction in water striders, our findings support recent work highlighting the role of bacterial community host-microbiome codiversification.
Collapse
Affiliation(s)
- Anakena M. Castillo
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), P.O. Box 0843-01103 Panamá 5, Panama; (A.M.C.); (L.A.R.-C.); (L.C.M.)
- Department of Biotechnology, Acharya Nagarjuna University, Guntur 522 510, Andhra Pradesh, India
| | - Kristin Saltonstall
- Smithsonian Tropical Research Institute, P.O. Box 0843-03092 Amador, Naos, Panama; (K.S.); (C.F.A.); (K.A.C.)
| | - Carlos F. Arias
- Smithsonian Tropical Research Institute, P.O. Box 0843-03092 Amador, Naos, Panama; (K.S.); (C.F.A.); (K.A.C.)
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Karina A. Chavarria
- Smithsonian Tropical Research Institute, P.O. Box 0843-03092 Amador, Naos, Panama; (K.S.); (C.F.A.); (K.A.C.)
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720, USA
| | - Luis A. Ramírez-Camejo
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), P.O. Box 0843-01103 Panamá 5, Panama; (A.M.C.); (L.A.R.-C.); (L.C.M.)
- Coiba Scientific Station (COIBA-AIP), City of Knowledge, P.O. Box 0843-01853 Balboa, Panama
| | - Luis C. Mejía
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), P.O. Box 0843-01103 Panamá 5, Panama; (A.M.C.); (L.A.R.-C.); (L.C.M.)
- Smithsonian Tropical Research Institute, P.O. Box 0843-03092 Amador, Naos, Panama; (K.S.); (C.F.A.); (K.A.C.)
| | - Luis F. De León
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), P.O. Box 0843-01103 Panamá 5, Panama; (A.M.C.); (L.A.R.-C.); (L.C.M.)
- Smithsonian Tropical Research Institute, P.O. Box 0843-03092 Amador, Naos, Panama; (K.S.); (C.F.A.); (K.A.C.)
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
- Coiba Scientific Station (COIBA-AIP), City of Knowledge, P.O. Box 0843-01853 Balboa, Panama
- Correspondence:
| |
Collapse
|
39
|
Yang FY, Saqib HSA, Chen JH, Ruan QQ, Vasseur L, He WY, You MS. Differential Profiles of Gut Microbiota and Metabolites Associated with Host Shift of Plutella xylostella. Int J Mol Sci 2020; 21:E6283. [PMID: 32872681 PMCID: PMC7504026 DOI: 10.3390/ijms21176283] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 02/01/2023] Open
Abstract
Evolutionary and ecological forces are important factors that shape gut microbial profiles in hosts, which can help insects adapt to different environments through modulating their metabolites. However, little is known about how gut microbes and metabolites are altered when lepidopteran pest species switch hosts. In the present study, using 16S-rDNA sequencing and mass spectrometry-based metabolomics, we analyzed the gut microbiota and metabolites of three populations of Plutella xylostella: one feeding on radish (PxR) and two feeding on peas (PxP; with PxP-1 and PxP-17 being the first and 17th generations after host shift from radish to peas, respectively). We found that the diversity of gut microbes in PxP-17 was significantly lower than those in PxR and PxP-1, which indicates a distinct change in gut microbiota after host shift. Kyoto Encyclopedia of Genes and Genomes analysis revealed that the functions of energy metabolism, signal transduction, and xenobiotics biodegradation and metabolism were increased in PxP-17, suggesting their potential roles in host adaptation. Metabolic profiling showed a significant difference in the abundance of gut metabolites between PxR and PxP-17, and significant correlations of gut bacteria with gut metabolites. These findings shed light on the interaction among plants, herbivores, and symbionts, and advance our understanding of host adaptation associated with gut bacteria and metabolic activities in P. xylostella.
Collapse
Affiliation(s)
- Fei-Ying Yang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.-Y.Y.); (H.S.A.S.); (J.-H.C.); (Q.-Q.R.); (L.V.)
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
| | - Hafiz Sohaib Ahmed Saqib
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.-Y.Y.); (H.S.A.S.); (J.-H.C.); (Q.-Q.R.); (L.V.)
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
| | - Jun-Hui Chen
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.-Y.Y.); (H.S.A.S.); (J.-H.C.); (Q.-Q.R.); (L.V.)
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
| | - Qian-Qian Ruan
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.-Y.Y.); (H.S.A.S.); (J.-H.C.); (Q.-Q.R.); (L.V.)
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
| | - Liette Vasseur
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.-Y.Y.); (H.S.A.S.); (J.-H.C.); (Q.-Q.R.); (L.V.)
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Department of Biological Sciences, Faculty/School, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Wei-Yi He
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.-Y.Y.); (H.S.A.S.); (J.-H.C.); (Q.-Q.R.); (L.V.)
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
| | - Min-Sheng You
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.-Y.Y.); (H.S.A.S.); (J.-H.C.); (Q.-Q.R.); (L.V.)
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
| |
Collapse
|
40
|
Zhang ZY, Ali MW, Saqib HSA, Liu SX, Yang X, Li Q, Zhang H. A Shift Pattern of Bacterial Communities Across the Life Stages of the Citrus Red Mite, Panonychus citri. Front Microbiol 2020; 11:1620. [PMID: 32754145 PMCID: PMC7366552 DOI: 10.3389/fmicb.2020.01620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 06/22/2020] [Indexed: 02/01/2023] Open
Abstract
As one of the most detrimental citrus pests worldwide, the citrus red mite, Panonychus citri (McGregor), shows extraordinary fecundity, polyphagia, and acaricide resistance, which may be influenced by microbes as other arthropod pests. However, the community structure and physiological function of microbes in P. citri are still largely unknown. Here, the high-throughput sequencing of 16S rDNA amplicons was employed to identify and compare the profile of bacterial communities across the larva, protonymph, deutonymph, and adult stages of P. citri. We observed a dominance of phylums Proteobacteria and Firmicutes, and classes α-, γ-, β-Proteobacteria and Bacilli in the bacterial communities across the host lifespan. Based on the dynamic analysis of the bacterial community structure, a significant shift pattern between the immature (larva, protonymph, and deutonymph) and adult stages was observed. Accordingly, among the major families (and corresponding genera), although the relative abundances of Pseudomonadaceae (Pseudomonas), Moraxellaceae (Acinetobacter), and Sphingobacteriaceae (Sphingobacterium) were consistent in larva to deutonymph stages, they were significantly increased to 30.18 ± 8.76% (30.16 ± 8.75%), 20.78 ± 10.86% (18.80 ± 10.84%), and 11.71 ± 5.49% (11.68 ± 5.48%), respectively, in adult stage, which implied the important function of these bacteria on the adults' physiology. Actually, the functional prediction of bacterial communities and Spearman correlation analysis further confirm that these bacteria had positively correlations with the pathway of "lipid metabolism" (including eight sublevel pathways) and "metabolism of cofactors and vitamins" (including five sublevel pathways), which all only increased in adult stages. In addition, the bacterial communities were eliminated by using broad-spectrum antibiotics, streptomycin, which significantly suppressed the survival and oviposition of P. citri. Overall, we not only confirmed the physiological effects of bacteria community on the vitality and fecundity of adult hosts, but also revealed the shift pattern of bacterial community structures across the life stages and demonstrated the co-enhancements of specific bacterial groups and bacterial functions in nutritional metabolism in P. citri. This study sheds light on basic information about the mutualism between spider mites and bacteria, which may be useful in shaping the next generation of control strategies for spider mite pests, especially P. citri.
Collapse
Affiliation(s)
- Zhen-Yu Zhang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Waqar Ali
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Hafiz Sohaib Ahmed Saqib
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sheng-Xuan Liu
- College of Life Science, Yangtze University, Jingzhou, China
| | - Xin Yang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qin Li
- College of Life Science, Yangtze University, Jingzhou, China
| | - Hongyu Zhang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
41
|
Abstract
Beneficial microorganisms associated with animals derive their nutritional requirements entirely from the animal host, but the impact of these microorganisms on host metabolism is largely unknown. The focus of this study was the experimentally tractable tripartite symbiosis between the pea aphid Acyrthosiphon pisum, its obligate intracellular bacterial symbiont Buchnera, and the facultative bacterium Hamiltonella which is localized primarily to the aphid hemolymph (blood). Metabolome experiments on, first, multiple aphid genotypes that naturally bear or lack Hamiltonella and, second, one aphid genotype from which Hamiltonella was experimentally eliminated revealed no significant effects of Hamiltonella on aphid metabolite profiles, indicating that Hamiltonella does not cause major reconfiguration of host metabolism. However, the titer of just one metabolite, 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), displayed near-significant enrichment in Hamiltonella-positive aphids in both metabolome experiments. AICAR is a by-product of biosynthesis of the essential amino acid histidine in Buchnera and, hence, an index of histidine biosynthetic rates, suggesting that Buchnera-mediated histidine production is elevated in Hamiltonella-bearing aphids. Consistent with this prediction, aphids fed on [13C]histidine yielded a significantly elevated 12C/13C ratio of histidine in Hamiltonella-bearing aphids, indicative of increased (∼25%) histidine synthesized de novo by Buchnera However, in silico analysis predicted an increase of only 0.8% in Buchnera histidine synthesis in Hamiltonella-bearing aphids. We hypothesize that Hamiltonella imposes increased host demand for histidine, possibly for heightened immune-related functions. These results demonstrate that facultative bacteria can alter the dynamics of host metabolic interactions with co-occurring microorganisms, even when the overall metabolic homeostasis of the host is not substantially perturbed.IMPORTANCE Although microbial colonization of the internal tissues of animals generally causes septicemia and death, various animals are persistently associated with benign or beneficial microorganisms in their blood or internal organs. The metabolic consequences of these persistent associations for the animal host are largely unknown. Our research on the facultative bacterium Hamiltonella, localized primarily to the hemolymph of pea aphids, demonstrated that although Hamiltonella imposed no major reconfiguration of the aphid metabolome, it did alter the metabolic relations between the aphid and its obligate intracellular symbiont, Buchnera Specifically, Buchnera produced more histidine in Hamiltonella-positive aphids to support both Hamiltonella demand for histidine and Hamiltonella-induced increase in host demand. This study demonstrates how microorganisms associated with internal tissues of animals can influence specific aspects of metabolic interactions between the animal host and co-occurring microorganisms.
Collapse
|
42
|
Using automated reasoning to explore the metabolism of unconventional organisms: a first step to explore host-microbial interactions. Biochem Soc Trans 2020; 48:901-913. [PMID: 32379295 DOI: 10.1042/bst20190667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 01/24/2023]
Abstract
Systems modelled in the context of molecular and cellular biology are difficult to represent with a single calibrated numerical model. Flux optimisation hypotheses have shown tremendous promise to accurately predict bacterial metabolism but they require a precise understanding of metabolic reactions occurring in the considered species. Unfortunately, this information may not be available for more complex organisms or non-cultured microorganisms such as those evidenced in microbiomes with metagenomic techniques. In both cases, flux optimisation techniques may not be applicable to elucidate systems functioning. In this context, we describe how automatic reasoning allows relevant features of an unconventional biological system to be identified despite a lack of data. A particular focus is put on the use of Answer Set Programming, a logic programming paradigm with combinatorial optimisation functionalities. We describe its usage to over-approximate metabolic responses of biological systems and solve gap-filling problems. In this review, we compare steady-states and Boolean abstractions of metabolic models and illustrate their complementarity via applications to the metabolic analysis of macro-algae. Ongoing applications of this formalism explore the emerging field of systems ecology, notably elucidating interactions between a consortium of microbes and a host organism. As the first step in this field, we will illustrate how the reduction in microbiotas according to expected metabolic phenotypes can be addressed with gap-filling problems.
Collapse
|
43
|
Shang F, Niu J, Ding BY, Wang JJ. Comparative Insight into the Bacterial Communities in Alate and Apterous Morphs of Brown Citrus Aphid (Hemiptera: Aphididae). JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:1436-1444. [PMID: 32040182 DOI: 10.1093/jee/toaa016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Indexed: 06/10/2023]
Abstract
Wing polyphenism (alate and apterous morphs) in aphids is a trade-off between dispersal and reproduction. How bacterial communities are associated with wing polyphenism in aphids is still not clearly understood. This study used 16S rRNA sequencing to examine the differences in diversity of the bacterial community between alate and apterous morphs in Aphis citricidus, the main vector of the Citrus tristeza virus. Eighty-one operational taxonomic units (OTUs) belonging to 37 orders, 34 classes, and 13 phyla were identified from all samples. Among these OTUs, Wolbachia (79.17%), Buchnera (17.64%), and Pseudomonas (2.99%) were the dominant bacterial genera. The diversity of symbionts varied between the two morphs; apterous morphs had more bacterial diversity (69 OTUs belonging to 45 families, 21 classes, and 12 phyla) than alate morphs (45 OTUs belonging to 36 families, 15 classes, and 10 phyla). In addition, the abundance of five OTUs was significantly different between two morphs. Among these OTUs, two Pseudomonas species (Pseudomonas_brenneri [OTU21] and unclassified_Pseudomonas [OTU13]) represented a high proportion (3.93% and 2.06%) in alate morphs but were present in low abundance (0.006% and 0.002%) in apterous morphs. RT-qPCR showed consistent results with high-throughput DNA sequencing. The preliminary survey showed the difference in composition and frequency of bacteria between alate and apterous morphs. Thus, the results contribute to anew insight of microorganisms that may be involved in wing dimorphism and helpful for controlling the dispersal of this pest through artificial elimination or reinfection of bacterial symbionts or targeting symbiosis-related host genes by RNA interference in future.
Collapse
Affiliation(s)
- Feng Shang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jinzhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Bi-Yue Ding
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
44
|
Sentis A, Bertram R, Dardenne N, Simon JC, Magro A, Pujol B, Danchin E, Hemptinne JL. Intraspecific difference among herbivore lineages and their host-plant specialization drive the strength of trophic cascades. Ecol Lett 2020; 23:1242-1251. [PMID: 32394585 DOI: 10.1111/ele.13528] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 11/29/2022]
Abstract
Trophic cascades - the indirect effect of predators on non-adjacent lower trophic levels - are important drivers of the structure and dynamics of ecological communities. However, the influence of intraspecific trait variation on the strength of trophic cascade remains largely unexplored, which limits our understanding of the mechanisms underlying ecological networks. Here we experimentally investigated how intraspecific difference among herbivore lineages specialized on different host plants influences trophic cascade strength in a terrestrial tri-trophic system. We found that the occurrence and strength of the trophic cascade are strongly influenced by herbivores' lineage and host-plant specialization but are not associated with density-dependent effects mediated by the growth rate of herbivore populations. Our findings stress the importance of intraspecific heterogeneities and evolutionary specialization as drivers of trophic cascade strength and underline that intraspecific variation should not be overlooked to decipher the joint influence of evolutionary and ecological factors on the functioning of multi-trophic interactions.
Collapse
Affiliation(s)
- Arnaud Sentis
- UMR-5174, EDB, CNRS, Université Toulouse III-Paul Sabatier, IRD, Toulouse, France.,UMR RECOVER, INRAE, Aix Marseille Univ, Aix-en-Provence, France
| | - Raphaël Bertram
- UMR-5174, EDB, CNRS, Université Toulouse III-Paul Sabatier, IRD, Toulouse, France
| | - Nathalie Dardenne
- UMR-5174, EDB, CNRS, Université Toulouse III-Paul Sabatier, IRD, Toulouse, France
| | | | - Alexandra Magro
- UMR-5174, EDB, CNRS, Université Toulouse III-Paul Sabatier, IRD, Toulouse, France
| | - Benoit Pujol
- PSL Université Paris: EPHE-UPVD-CNRS, USR, 3278 CRIOBE, Uni. Perpignan, France
| | - Etienne Danchin
- UMR-5174, EDB, CNRS, Université Toulouse III-Paul Sabatier, IRD, Toulouse, France
| | - Jean-Louis Hemptinne
- UMR-5174, EDB, CNRS, Université Toulouse III-Paul Sabatier, IRD, Toulouse, France
| |
Collapse
|
45
|
Xu S, Jiang L, Qiao G, Chen J. The Bacterial Flora Associated with the Polyphagous Aphid Aphis gossypii Glover (Hemiptera: Aphididae) Is Strongly Affected by Host Plants. MICROBIAL ECOLOGY 2020; 79:971-984. [PMID: 31802184 PMCID: PMC7198476 DOI: 10.1007/s00248-019-01435-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 08/28/2019] [Indexed: 06/10/2023]
Abstract
Aphids live in symbiosis with a variety of bacteria, including the obligate symbiont Buchnera aphidicola and diverse facultative symbionts. The symbiotic associations for one aphid species, especially for polyphagous species, often differ across populations. In the present study, by using high-throughput 16S rRNA sequencing, we surveyed in detail the microbiota in natural populations of the cotton aphid Aphis gossypii in China and assessed differences in bacterial diversity with respect to host plant and geography. The microbial community of A. gossypii was dominated by a few heritable symbionts. Arsenophonus was the most dominant secondary symbiont, and Spiroplasma was detected for the first time. Statistical tests and ordination analyses showed that host plants rather than geography seemed to have shaped the associated symbiont composition. Special symbiont communities inhabited the Cucurbitaceae-feeding populations, which supported the ecological specialization of A. gossypii on cucurbits from the viewpoint of symbiotic bacteria. Correlation analysis suggested antagonistic interactions between Buchnera and coexisting secondary symbionts and more complicated interactions between different secondary symbionts. Our findings lend further support to an important role of the host plant in structuring symbiont communities of polyphagous aphids and will improve our understanding of the interactions among phytophagous insects, symbionts, and environments.
Collapse
Affiliation(s)
- Shifen Xu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liyun Jiang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Gexia Qiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jing Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
46
|
Xu TT, Jiang LY, Chen J, Qiao GX. Host Plants Influence the Symbiont Diversity of Eriosomatinae (Hemiptera: Aphididae). INSECTS 2020; 11:E217. [PMID: 32244698 PMCID: PMC7240687 DOI: 10.3390/insects11040217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/16/2020] [Accepted: 03/28/2020] [Indexed: 01/13/2023]
Abstract
Eriosomatinae is a particular aphid group with typically heteroecious holocyclic life cycle, exhibiting strong primary host plant specialization and inducing galls on primary host plants. Aphids are frequently associated with bacterial symbionts, which can play fundamental roles in the ecology and evolution of their host aphids. However, the bacterial communities in Eriosomatinae are poorly known. In the present study, using high-throughput sequencing of the bacterial 16S ribosomal RNA gene, we surveyed the bacterial flora of eriosomatines and explored the associations between symbiont diversity and aphid relatedness, aphid host plant and geographical distribution. The microbiota of Eriosomatinae is dominated by the heritable primary endosymbiont Buchnera and several facultative symbionts. The primary endosymbiont Buchnera is expectedly the most abundant symbiont across all species. Six facultative symbionts were identified. Regiella was the most commonly identified facultative symbiont, and multiple infections of facultative symbionts were detected in the majority of the samples. Ordination analyses and statistical tests show that the symbiont community of aphids feeding on plants from the family Ulmaceae were distinguishable from aphids feeding on other host plants. Species in Eriosomatinae feeding on different plants are likely to carry different symbiont compositions. The symbiont distributions seem to be not related to taxonomic distance and geographical distance. Our findings suggest that host plants can affect symbiont maintenance, and will improve our understanding of the interactions between aphids, their symbionts and ecological conditions.
Collapse
Affiliation(s)
- Ting-Ting Xu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (T.-T.X.); (L.-Y.J.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li-Yun Jiang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (T.-T.X.); (L.-Y.J.)
| | - Jing Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (T.-T.X.); (L.-Y.J.)
| | - Ge-Xia Qiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (T.-T.X.); (L.-Y.J.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
47
|
Gallo-Franco JJ, Toro-Perea N. Variations in the Bacterial Communities in Anastrepha obliqua (Diptera: Tephritidae) According to the Insect Life Stage and Host Plant. Curr Microbiol 2020; 77:1283-1291. [PMID: 32130504 DOI: 10.1007/s00284-020-01939-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/24/2020] [Indexed: 02/06/2023]
Abstract
Insects have established close relationships with a wide variety of microorganisms, which play a key role in insect ecology and evolution. Fruit flies in the Tephritidae family have economic importance at the global level, including species such as Anastrepha obliqua, which is an important pest in the neotropical region. Although several studies have been performed on the microbiota associated with fruit flies, there are still large gaps in our knowledge about the bacterial communities on the genus Anastrepha. During this study, we used high-throughput sequencing to characterize the bacterial communities of the polyphagous fly A. obliqua, and we evaluated the effect of the life stage (larvae and adults) and host plant (three plant species) on the structure of these communities. Our results show that the bacterial communities in A. obliqua appears to be structured according to the insect life stage and the host plant. The predominant genera belonging to the phylum Proteobacteria were Wolbachia and Enterobacter in both larvae and adults, and they displayed differences in abundance between them, with Wolbachia sp. being more abundant in larvae and Enterobacter sp. being more abundant in adults. Differences in the structures of the bacterial communities were also observed according to the host plant with higher abundance of Enterobacter and Acetobacter bacteria in mango and plum fruits. Based on our results, it can be hypothesized that the bacterial communities on A. obliqua reorganize according to the needs of these insects during their different life stages and could also play an important role in the establishment of this fly species on different host plants. This study represents the first approach to understanding microorganism-insect interactions in fruit flies in Colombia.
Collapse
Affiliation(s)
- Jenny J Gallo-Franco
- Biology Department (Departamento de Biología), Universidad del Valle, Street 13 No. 100-00, Cali, 760032, Colombia.
| | - Nelson Toro-Perea
- Biology Department (Departamento de Biología), Universidad del Valle, Street 13 No. 100-00, Cali, 760032, Colombia
| |
Collapse
|
48
|
Prevalence and Implications of Contamination in Public Genomic Resources: A Case Study of 43 Reference Arthropod Assemblies. G3-GENES GENOMES GENETICS 2020; 10:721-730. [PMID: 31862787 PMCID: PMC7003083 DOI: 10.1534/g3.119.400758] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Thanks to huge advances in sequencing technologies, genomic resources are increasingly being generated and shared by the scientific community. The quality of such public resources are therefore of critical importance. Errors due to contamination are particularly worrying; they are widespread, propagate across databases, and can compromise downstream analyses, especially the detection of horizontally-transferred sequences. However we still lack consistent and comprehensive assessments of contamination prevalence in public genomic data. Here we applied a standardized procedure for foreign sequence annotation to 43 published arthropod genomes from the widely used Ensembl Metazoa database. This method combines information on sequence similarity and synteny to identify contaminant and putative horizontally-transferred sequences in any genome assembly, provided that an adequate reference database is available. We uncovered considerable heterogeneity in quality among arthropod assemblies, some being devoid of contaminant sequences, whereas others included hundreds of contaminant genes. Contaminants far outnumbered horizontally-transferred genes and were a major confounder of their detection, quantification and analysis. We strongly recommend that automated standardized decontamination procedures be systematically embedded into the submission process to genomic databases.
Collapse
|
49
|
Leybourne DJ, Bos JIB, Valentine TA, Karley AJ. The price of protection: a defensive endosymbiont impairs nymph growth in the bird cherry-oat aphid, Rhopalosiphum padi. INSECT SCIENCE 2020; 27:69-85. [PMID: 29797656 PMCID: PMC7379937 DOI: 10.1111/1744-7917.12606] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/04/2018] [Accepted: 05/15/2018] [Indexed: 05/31/2023]
Abstract
Bacterial endosymbionts have enabled aphids to adapt to a range of stressors, but their effects in many aphid species remain to be established. The bird cherry-oat aphid, Rhopalosiphum padi (Linnaeus), is an important pest of cereals worldwide and has been reported to form symbiotic associations with Serratia symbiotica and Sitobion miscanthi L-type symbiont endobacteria, although the resulting aphid phenotype has not been described. This study presents the first report of R. padi infection with the facultative bacterial endosymbiont Hamiltonella defensa. Individuals of R. padi were sampled from populations in Eastern Scotland, UK, and shown to represent seven R. padi genotypes based on the size of polymorphic microsatellite markers; two of these genotypes harbored H. defensa. In parasitism assays, survival of H. defensa-infected nymphs following attack by the parasitoid wasp Aphidius colemani (Viereck) was 5 fold higher than for uninfected nymphs. Aphid genotype was a major determinant of aphid performance on two Hordeum species, a modern cultivar of barley H. vulgare and a wild relative H. spontaneum, although aphids infected with H. defensa showed 16% lower nymph mass gain on the partially resistant wild relative compared with uninfected individuals. These findings suggest that deploying resistance traits in barley will favor the fittest R. padi genotypes, but symbiont-infected individuals will be favored when parasitoids are abundant, although these aphids will not achieve optimal performance on a poor quality host plant.
Collapse
Affiliation(s)
- Daniel J. Leybourne
- Division of Plant Sciences, School of Life SciencesUniversity of DundeeDundeeUK
- Cell and Molecular Sciencesthe James Hutton InstituteInvergowrieDundeeUK
- Ecological Sciencesthe James Hutton InstituteInvergowrieDundeeUK
| | - Jorunn I. B. Bos
- Division of Plant Sciences, School of Life SciencesUniversity of DundeeDundeeUK
- Cell and Molecular Sciencesthe James Hutton InstituteInvergowrieDundeeUK
| | | | - Alison J. Karley
- Ecological Sciencesthe James Hutton InstituteInvergowrieDundeeUK
| |
Collapse
|
50
|
The green peach aphid gut contains host plant microRNAs identified by comprehensive annotation of Brassica oleracea small RNA data. Sci Rep 2019; 9:18904. [PMID: 31827121 PMCID: PMC6906386 DOI: 10.1038/s41598-019-54488-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/05/2019] [Indexed: 12/28/2022] Open
Abstract
Like all organisms, aphids, plant sap-sucking insects that house a bacterial endosymbiont called Buchnera, are members of a species interaction network. Ecological interactions across such networks can result in phenotypic change in network members mediated by molecular signals, like microRNAs. Here, we interrogated small RNA data from the aphid, Myzus persicae, to determine the source of reads that did not map to the aphid or Buchnera genomes. Our analysis revealed that the pattern was largely explained by reads that mapped to the host plant, Brassica oleracea, and a facultative symbiont, Regiella. To start elucidating the function of plant small RNA in aphid gut, we annotated 213 unique B. oleracea miRNAs; 32/213 were present in aphid gut as mature and star miRNAs. Next, we predicted targets in the B. oleracea and M. persicae genomes for these 32 plant miRNAs. We found that plant targets were enriched for genes associated with transcription, while the distribution of targets in the aphid genome was similar to the functional distribution of all genes in the aphid genome. We discuss the potential of plant miRNAs to regulate aphid gene expression and the mechanisms involved in processing, export and uptake of plant miRNAs by aphids.
Collapse
|